According to (5.1.2.2) the parameters of GEH fields of central symmetry contain three

0
arbitrary constants of integration of n, r, and ¢ to various values of which correspond the
various GEH fields of central symmetry, representing the models of various material bodies.
Let's take the following values of these constants:
0
n=9,8336-107, r, =6,5-10°cm, ¢ =-6,3-10" CGSE(¢p).(6.1.1.1)
Below, while considering the heavy atomic nucleus, it is shown, that:

a=T81. (6.1.1.2)
0
Let's substitute @ and ¢ in (5.3.1.13) and determine the value of gravitational constant G
4 3
G=—"—0=667-10°"_. (6.1.1.3)
0 rs
do @
According to (5.1.2.4)
nr,c’ 33
M = ~2-107g. (6.1.1.4)

Admitting that L >>15-10° is a total energy of the body under consideration (GEH field of
central symmetry) in the sphere with the radius L, according to (5.3.1.12) is equal to

O 2
_ o B (EJ , (6.1.15)
s

4n

E

Here it is taken into account, that n is a small value.
On the other hand, material the body under consideration can be considered as a body with
ashall M and charge Q located in an external gravitational — with potential ¢ and electrical -

0
with potential ¢ — fields, that is why, according to (5.4.3.16), its total energy equals to

0
Mc?+Qg , ie.
02 2 .
%(%’7] _Mc2+Qp. (6.1.1.6)

Similarly for the energy density, according to (5.3.1.6) we have:

a2
1-n )7
0 g (27 2| P~ 1+n
2 (—J ; (6.1.1.7)

where, p,, - mass density, and p,- density of electrical charge. From (6.1.1.6), according to
(5.1.2.8), we have:

0 a )
Q¢[1+ﬂ — _Mc?. (6.1.1.8)

This equation in aggregation with (5.3.2.7) constitutes a system of two equations relative to

unknown Q and % , solution of which for considered body is such:
B/ _ —9.10%
/77 128, Q=2-10®CGSE(Q). (6.1.1.9)

Let r=6,89-10"cm (to this value r corresponds the radius of the Sun), so as r>>r,, from
(6.1.6.7) and (5.3.2.2) we'll get:
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From it

(6.1.1.10)

P =6.10"° %mS'

The experimental value p,, is such: p,, =5-10"° %m3

0
From above-indicated it may he concluded, that if the value of the parameters n,r, and ¢

are selected according to (6.1.1.1), than the corresponding GEH field of central symmetry
determines the approximated field modal (statistical model) of the Sun.

As it has been indicated above the Sun is a slowly changing system, that is why its

0
characteristic parameters n,r, and ¢ are as well slowly changing value and so as on them

depend the classical parameters G, M, Q etc. than they depend as well on the epoch and field
of observation of three-dimensional space.

6.1.2. MASS DENSITY AND DENSITY
OF ELECTRICAL CHARGE OF THE SUN

According to (6.1.1.7) and (5.3.2.2) a mass density of the Sun is equal to:
[ 2 5
g o [=n)
, ( 27 jz 1+n
B

- ) (6.1.2.1)

On the distances (r >>r,) being far from the centre of symmetry p, is determined by equity:

39
ppy = 2809107 (6.1.2.2)
r

In Table 6.1 there are given the values of p,,, corresponding to various values of coordinate r .

Table 6.1
r-10%cm o %m3
0.28 17.56
0.70 5.6-107"
1.39 3.6-1072
2.78 2.24-107
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3.48 0.92-10°°
418 44.10*
4.87 2.4.10™
5.57 1.4-107*
6.27 0.8-10™
6.61 7-107

6.89 6-10°°

Completely similarly to density of electrical charge at r >>r, we have

some values p,, corresponding to various values of parameter r is given in Table 6.2.

~1.3876-10°

Table 6.2

r-107%cm

p.CGSE(p,)

0.28

8.6-107*

0.70

2.18-107°

1.39

1.42.107°

2.09

2.77-1077

2.78

8.86-107°°

3.48

3.61-107°

4.18

1.73-10°%

4.87

9.4-107°

5.57

5.5-107°

6.27

3.4-107°

6.61

2.8-107°

6.89

2.3-107°

6.1.3. MOTION OF PLANETS

(6.1.2.3)

In a considered case r,/r<<1, where r is a coordinate of a planet that is why with high

degree of accuracy the following representations are valid:

r=R, p=r/r,=R/r,,
a(r)=1-2ry /r, b(r)=1+2r,/r

According to (5.4.1.18) for trajectory of planet we have:
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d(lj
p=dy¥c.f [ . (6132
; 2r, ¢? 2r,¢l
0 (Cg _1)+ rg ! + [¢]

I,.2 r3

The summand 2r,c/ / r® (under the root) is rather lesser in comparison to other summands.

Rejecting it let's define the trajectory of the planet in a zero approximation -

0

¢=¢ FC .
o 1£ T .
cy -1 +T—r—2
from here:
¢=¢6iiarccos jcal/r = rg /lea| , (61.33)
ci] \/(c§ —1)+ (rg /cl)2
where,
¢, =, F—Larccos eal/ro 1 /e . (61.34)

c4] \/(cg —1)+ (rg /cl)2

*

p

From (3.1.3.3) we get:

r:—

1+ gcos(g — ¢')
o . (6.1.3.5)
=, o= 1+2(c2-1

I’g rg

For the planets ¢ <1, that is why the trajectory (6.1.3.5) is an ellipse with major semiaxis ¢

2
gy PP _ 2P __ 2 (6.1.3.6)
l+gcosO 1l+ecosz 1-&° ry(l-&?)

From here: p= f(l— &? )
Thus, in a zero approximation the planets move along the ellipses with the eccentricity ¢
and a major semiaxis /.

For realization of the following approximation let's expanse the subintergral function in

2
ryC
r3

(6.1.3.2) in line relative to and limit ourselves to the members of first order, we'll get:

)l

3
trycf |

\/(05—1)+2rg‘clz ro\/(c(f —1)+2r9—clz3.

P=¢, $C1jl

r r

From this:
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—botr.c3 r _
¢ ¢o+rgC1 \/(CZ i ) ﬂ_i F
0 rortflo (6.1.3.7)
1
G
Fc (1— r 025) r
RUEEE
where:
= _iz’ p=r, i(?lzz(cgz_l)+ 6r922 |
C; C, [cl (co —1)+ Iy J
(cg —1X2012 +3rg) 3r,
7:CflC12(C§—l)+r92J’ 52—?. (6]38)

From (6.1.3.7) we get:

$= f(ljic—l(l—rgcﬁ)arccos eul/r =t /e , (6.1.39)

V6§ ~1)+lry e, ]

f(ljz% ¥ L 11,5 arc cos eal/% ~ry /o +

where,

r e \/(cg —1)+(rg /cl)2
a%+ﬂ1+7 ' (6.1.3.10)
tr,c; ! '
\/(cg —1)+ 2r, r—ct/r?
fo

The function f(lj is unambignious, that is why from (6.1.3.9) it is clear, that when r returns
r

to the initial value, angle ¢ takes the increment not of 2z, but — of 27— ( r,cro ) i.e. the

2

radius of a planet repeats its value not through the inrement 27, of the angle ¢, but a hit

earlier or later, depending on the marks of the value
2

c
26 =6x G ls

2 .
1

Ag= 27z Iy
N

At ¢, >0, according to the (6.1.3.6) for A¢ we have:
A= 6r, _ 67 MG ’
2(1—52) sz(l—gz)
where, M is the mass of the Sun. This equity is known in the modern literature [2].
From the results received here, it is evident that the electric charge of the central body in
the approximation under consideration does not influence on the character of motion of the
planets, it remains the same, as it occurs in case of pure gravitation field of central symmetry.
This is stipulated by the condition r, /r <<1, which is valid for all planets.

(6.1.3.11)
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6.1.4. PROPAGATION OF THE LIGHT - BEAM
NEAR THE SUN

Propagation of the light beam near the Sun is described by the equity (5.4.2.4), which, after
application of approximated equities (6.1.3.1) will get the following form:

d(lj
0 r
b=dy x| . (6.1.4.1)
o 2 o o
%J&_%+'¥ﬁ
© oz gl

Let's the light beam is propagated from the infinity from right to left, parallel to the
x —saxis, let's study its further running, during approaching the Sun. Meanwhile 4, >0 and
according to (5.4.2.5) c¢,/c, >0. Rejecting the small summand 2rc, / r®, let's define the

trajectory of light beam in zero approximation:
1/ +arcsin— at 0<¢<£,
$= Col (6.1.42)

B . C z
¢y —arcsin—L at —<g<rx
Col

. C . C . .
when r > ¢ +arcsin—- —0, and ¢ —arcsin— — 7. From it ¢; =0 and ¢; =7 i.e.
Cof Col

. C T
arcsin—— at 0<g<—,

b= Cof 2 (6.1.4.3)
. T
T —arcsin— at —<g< .
Col

T o . . .
At ¢ = the condition of continuity should take place i.e.
G o
arcsin——= =z — arcsin——.
Col Col

. . C . C .. .. . .
This equity takes place at —— =1, i.e. T =—+. This is the very minimum of the radius, i.e. to the
Col Co

value of ¢ =3 on the trajectory of the light beam, representing a direct line, correspond to a

point, being on minimal distance from the center of the Sun.
This is evident from (6.1.4.3), if we rewrite it in the form of:

r= C_l )
Co Sing
In case, when the light bean passes near the surface of the Sun, c,/c, equals to radius of the
Sun.
In the following approximation, similarly to the previous one, (6.1.4.1) may be rewritten
thus:
)L el
b=y 7o, ' sroof [— L (61.44)
fo (WJ fo ( cg—cf/rzj
From this:
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o c, 2-¢/cir? ~
¢ +arcsin—— —r, —° 1 at 0<¢g<g,
Col C 1- cl/c
¢= G 2ot - (6.1.4.5)
O—arcsmc—+r 0 L at ¢ <@ < Brax»

Col "¢ J1-c?/c2r?

where, ¢, —is maximal, and ¢ is some intermediall value of the angle ¢ .

The light propagates from infinity, from right to left side, that is why:

. C C, 2—C;/cC
¢5+arcsm—1—r G 2-¢/c5rt

Cof ° ¢ \J1-c?/cir?

—0 at r > oo,

i.e.
¢ =2r, ‘;—0 (6.1.4.6)

. co 2-¢f/cir?

c c
While reducing the r angle ¢—2r, - =arcsin— - —
Yo Cofl Ci \1-c?/c2r?

. ~ T ~ . . .
and during r=r becomes equal to 5> Le r is a solution of the following transcendental

gradually increases

equation
g co 2-c2/cit? o«
arcsin———r, —————m—=—. (6.1.4.7)
cif Yo 1oc?/cF?r 2
For such r, the angle ¢ becomes equal to ¢ i.e.
g=Lior 0 (6.1.4.8)
2 C,
With allowance of (6.1.4.7) from the conditions of continuity of ¢ at r=r, we'll get:
7 C T
—t2r, Y=gy - 6.1.4.9
2 "9c 72 ( /
Thus for ¢ from (6.1.4.5) we get:
2r, %o 4 aresin 2 ¢ CO 2-cijesr?

g
S¢c Cor
| 0 C, \1-c?/c2r?

at O<¢<%+2rgc—°,
e . Ccl Gy 2-ctlcir? (6.1.4.10)
7+ 2r, == —arcsin—— +r, - 1

9
¢ Col € \1-c?/c2r?

r c
at = +2r, -2 <p<P. .
2 gcl max

Value of ¢,,, is determined from the second branch of ¢ at r — oo, in particular:

Prnax =7r+4rgc_0 (6.1.4.11)
Cy
Comparing this with (6.1.4.2), it will be evident, that the trajectory of the light bean declines
from straight line, and this deviation on long distances from the Sun, constitutes:

Ag=ar, 2 (6.1.4.12)
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If the light beam passes near the surface of the Sun, than G R,,, and

A= . (6.1.4.13)

This equation is known in the modern literature [2].

6.2. THE ATOMIC NUCLEUS ., Au™”
6.2.1. STRUCTURE OF ATOMIC NUCLEUS , Au'*’

0
Let's admit that n=2.4-10"", r, =2.4-10"®cm and ¢ =-39440CGSE(¢) . With allowance that
n<<1 with the aim to simplify the calculations, in sums 1+n,1-n and 1- n? let's reject the n
and n?. After this:

4/2
1402

sz;\/gdrzre(\lhfz _1)=re(p_1)’

N o7
_ofp=1ys _of R, )7
v p+1 7 2+R/r, )
0 n_
_dp_ 4er, (R/n)s
drR LIV
“F (4R "

where, R is a distance from the symmetry center to the point with the coordinate r. From the
latter equities of this system, let's determine the value of potential ¢ and intensity E at R—0:

¢=yp? -1, p=y¢? +1, b=

(621.1)

0 . 0 Zﬂ” 7

2 d -2 R\ ”#

0= ¢’2n R/, _%Z_—m”rﬁ [—J . (6212)
(2r) s .

It is known that [3] the density of electrical charge in the nucleus ,, Au'®’ is distributed

according to the law:

p(R) = Po , (6.2.1.3)
R-6.38-10"
l+exp ——
0.5273-10
where, p, is peak value (when R=0) of the density. From the Poisson equation
1 d _,do
——R*"—=-4 6.2.14
REGR  dR 7 (6214
we get:
R 12 ’
_do_d4m, | R7AR . (62.1.5)
dR  R® g R'-6.38-107"
1+exp ——————
0.5273-107
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13 . R-6.38-107%
If R<<6.38-107" (provided exp| ——————— |<<1) from the (6.2.1.5) we have:
0.5273-10
_dp 4oy (6.2.1.6)
drR 3
Comparing (6.2.1.2) and (6.2.1.6) we'll get:
n
L =11 (6.2.1.7)
B

Than (6.2.1.2) will acquire such a form:

0

p=—2_R?=-17.12-10%R?,
4r
: (62.1.8)

0
_99__ % p_342.10°R
dr 2re2
Coefficient at R in the second equation of this system is 2,5-times more than the
coefficient of

Arp, 0% CGSE(p)

2
cm
in equation (6.2.1.6) (according to [3] p, ~8.16 -10% CGSE(p)).
With allowance of (6.2.1.7) from (5.3.2.7), for full electric charge of the considered GEH

field of central symmetry, we'll get:

=1.37-1

0
Q=-4¢pr,=3.7862-10 °CGSE(q) ~79-4,8-10 °CGSE(q) , (6.2.1.9)

and this is a charge of nucleus ,, Au™’

Taking into account the (6.2.1.7) the equations (6.1.1.6), (5.3.1.13) and (5.1.2.4) will receive
such a form:

0
Q(p(lJr%jz—Mcz,

02 4

2
MG = nreC .
1-n?

0
These equations, after substitution of the values of parameters n, r,, ¢, c? and Q, constitute a
system of equations relative to the parameters &, G and M, solution of which with the error of

no more than 1%, is such:

2
=781, G=102"_ M -197.167.10%g. (6.2111)

2

gs

7 "and the value of gravitation constant

From this, it is clear, that M is a mass of nucleus .4 Au
3
: gcm° I . : .
differs from the known value of 6,67-10° ~—-, i.e. the gravitation constant in atomic nuclei has

b
rc?

another values.

= L > =1.002009
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197

In this connection, it should be noted that the gravitation nuclear radius ,, Au™" is equal to

-13

r, =6-107“cm. It is by one order lesser in comparison to electric radius r, =2,4-10"°cm and it

should be recognized to be more reasonable, than the value of ry =2,4-10"cm which was

received earlier during application of value
3
G=667-10° .
gs
It is also possible to define the law of distribution of density of electric charge in considered
GEH field of central symmetry, in particular, according to (5.3.2.2) , we have:

0 0
_4(p 1 __4(p 1

= ; 6.2.1.12
i (et ol erry (M

Pe =

p. reaches a peak value at R=0

0
(06 e = _WLz =2,72-10®CGSE(p,).  (6.2.1.13)

It slightly differs from the known value [3].
According to (6.2.1.12) p, monotonously falls during increase of R and reaches half of its

peak value at (2+R/r,)* =32. Consequently R=091-10"%cm; it is 7 times smaller than the
known at present value of nuclear radius ,, Au™’ (6,38 1078 cm) [3].

It is also possible to determine the law of distribution of matter (mass density) in the
considered GEH field of central symmetry.
According to (6.1.2.1) we get:

2
4p 05a(p-1) +(p+1)

62113
ac?r,? (p+1)° ( /

P =

On the basis of extremal condition p;, =0 we have p=10051, p=1,9885; To the first there
corresponds R~0 and to the second one R~1977-10"®cm. At p=10051 (R=0) p, reaches its
minimum and at p=1,9885 (R ~1977-10°" Cm) Pm reaches its peak value, provided:

(P max = Pon| 1 g5 = 02710 @ Jem®  (6.2.1.14)

P reaches half of its peak value at

05a(p -1)* + (p +1)?

=0,275 6.2.1.15
(b1 (62113

From it: p=23,67; to this value of p corresponds
R=r,(p-1)=24-10".2,67=6,4-10"cm,
a this with sufficient accuracy coincides with the known value (6,38-10_13 Cm) of the nuclear
radius ., Au*®’ [3].
Thus, the considered GEH field of the central symmetry, together with the above indicated
values n,r, and (00 with definite degree of accuracy represents a statistical field model of the

atomic nucleus ,, Au'®’.

6.2.2. THE FORCE, INFLUENCING ON THE NUCLEON INSIDE THE HEAVY NUCLEUS
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While studying the raised question we are again applying the field model of atomic nucleus
and we'll mean that nucleon, as a constituting part of a nucleus, is a GEH field, included in the
sphere of the radius R, being on definite distance from the center of the nucleus. Let's mark the
first coordinate of the nucleon center by ¢ and the corresponding distance — by L.

Let's first determine that volume force, with which the rest part of the nucleus influences
on nucleon, and then while using of this force determines the potential energy of nucleon in a
heavy nucleus. With this aim, in future there will be applied an equation (4.2.1.5), in which F'
is a density of a volume force.

Let (XO XY, Z) is a divided system of coordinates (g,,)=0, which coincides on infinity with
the Dekart System of coordinates, when z is a coordinate line, passing through the center of
atomic nucleus and nucleons. In this system of coordinates of a parameter, characterizing let's
determine the unified field by dash lines, than the equation (4.2.1.5) will accept the following
form:

1 a 11 rki ri
—— /-9 T )+F" =0, 6221
/_ g/ axrk ( g ) ( )
where, x'® =x°, x =x, x'? =y, x'® =z. From it, for the force influencing on nucleon, we'll get:

tre = [[[J=gF“axax*dx =
\
o || B Ny O G
\

(6.2.2.2)

o'’
It is taken into account that for a considered field of the central symmetry the parameters of
GEH field do not depend on x°. Consequently, according to the Gauss theorem

raT 1 fa

'
o= [[ 22 [gias (6.2.2.3)
o0’
where, S is a surface of a nucleon, V is the area limited by the surface S, dS as — elementary
area, n'“ are contravariant components of normal vector of S surface (as it was mentioned
above, S isa spherical surface of the radius R,).
Old coordinates r,0 and ¢, which coincide with spherical coordinates on infinity and let's
connect to the coordinates X, y,z according to the following equities:

x=rsin@cosg, y=rsinfdsing and z=rcosd (6.2.2.4)

Transforming the tensors g; and T* we'll get:

sin?@cos’ g-A-1 sin? @cosgsing-A cos@sindcosp-A 0
(g} )= sin® @cosgsing-A  sin®@sin®g-A—1 cos@sinfsing-A 0 (6.2.2.5)
cos@singcosg-A  cosdsin@dsing-A cos’ -A-1 0/
0 0 0 a
Asin? @cos? p—1 Asin? Ocosgsing Acos@sindcosg 0
(g,ik>: Z_sinzé?cos;iﬁsinqﬁ Z_sinzacoszyﬁ—l chsé?sin fsing 0 (6.2.2.6)
Acos@sinfdcosg  Acos@sin@sin g Acos? -1 o

0 0 0 %

where, A=1-h, Zzl—%;
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(T'“?’): {cos @sin 6?cos¢(Tll _reT 22),
cosdsin @sin ¢(T u_ o7 22)' 6.22.7)

J-9'=+ab. (6.2.2.8)

With allowance, that the center of a nucleon lies on the coordinate line z it is sufficient to

Besides, from (6.2.2.5) we have:

calculate the force f'3
/aT 13

o

For calculation of the values participating in (6.2.2.9), let's introduce a new system of

4 [-g'ds. (6.2.2.9)

coordinates T, 8, ¢
Fsin@ cosg =rsin@cosg,
Fsin @ sing =rsindsin ¢, (6.2.2.10)
Fcosé + ¢ =rcoséb.

From these equations it is evident, that:

For02 412 —2r0cos6, r=+r2 +F2 +2F0cosd,

— rsind - rsing _ (6.2211)
t 0 =, =@, t 6 =, =
J rcos@—/ $=¢ 1 rcos@ +/ =9
The spherical surface of the nucleon we'll determine by the equity r=R,, than with

allowance of the first equity of the system (6.2.2.11), it is possible to determine the
contravariant components of normal vector n'“ of the surface S, in particular
d(r®)=2(r — fcos@)dr + 2r/sin@d&=0.
Thus, in a spherical system of coordinates r, 8, ¢ by covariant components of a normal
vector will be:
n,=r—~/,cosé, n,=rising, ny=0. (6.2.2.12)
After transformation in the system of coordinates X, y,z we'll have:
n; =rsin@cosg, n,=rsindsing, n;=rcosd—(. (6.2.2.13)
From it and from (6.2.2.6) we have:

n't = —(%+£Zcos er sin @cos ¢,
r

o (1 0= o

n =—(E+—Acosejrsmesm¢, (6.2.2.14)
r

n'® :—(%+§Kcos¢9)(r cos6 — /).

Let's consider two vectors dx;’ (0, d§,0) and dxj (0,0, dq?) on the surface r=R, :
dS =dadg. (6.2.2.15)
From the first equity of the system (6.2.2.11) at F =R, we get:
dr=_"SN0 4o (6.2.2.16)
fcos@—r

and from the second one -

dézﬁ[—fsinedwr(rz —ércosH)de]. (6.2.2.17)

Excluding from these latter equities dr, we'll get:
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B r
r—/zcosé
Taking into account this value dé as well the equality d¢ =dg¢ in (6.2.2.15), ds will acquire the

(62.2.18)

following form:
B r
r—/cosé
Let's determine the limits of integration in equities (6.2.2.9).
While integration the variable ¢ changes from 0 to 27 and @ - increases from zero to some

&g . (6.2.2.19)

peak value, after which it falls to zero. The peak value 4,,, is determined from the first equity

of the system (6.2.2.10), which may be rewritten thus:

) R . —
sin@=—"siné .
r

This equity, according to (6.2.2.11), will accept the following form:
R,sing
\/fz +R2 + 2R, (cosf

From this it's obvious, that the value 6,, depends on ¢ but always is valid the following

sin 6 = (6.2.2.20)

inequality 0<6,,, <7, provided 6,,, =0 at { >, 6, =%7r ¢/=R,and 6, =7 at /<R.

sin@ within the interval 0< HSEH is monotonously increasing function of the argument

0, that is why to peak value of argument 6 corresponds the peak value of the function itself.
According to it 4, is a solution of the equation
dsinég

deo

max

0,

or, with allowance of (6.2.2.20)
(R, cos® §+(£2 + Rf)cos§+€Rn =0.
The roots of these equations are:

cos@ = —% and coséd = _RL (6.2.2.21)

n

From there expressions it is obvious that:
1 -
1. > <O<r;

2. Let's apply the first root at />R, and the second at /<R, .
If we substitute the values cos@ from (6.2.2.21) into (6.2.2.20) for 6,,, we'll get:

R
— at />R,,
l
sinf,, =41 at (=R, (6.2222)
1 at /(<R,.

The latter value siné,, =1 at /<R, does not correspond to reality, since at this moment &

max
changes within the interval from 0 to 7, in which sin@ does not represent itself a monotonous
function, provided a peak value 6 equalsto 7.

Thus:
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. R
arcsm7” at (>R,

0 - %7[ at (=R, (6.2.2.23)
/4 at (<R,.

In compliance to this, from the first equity of the system (6.2.2.11) at r =R, we have:

r=10cosé++R2 —¢?sin? @ within the interval 0<0<80, .,
r=/cos@—R2 —¢%sin® @ within theinterval 6,,,, >6>0

r=10cosfd++R: —¢?sin® @ within theintervalOs&s%n at (=R, (6.22.24)

r=10coséd+R2 —¢?sin® @ within theinterval 0< @< at /<R,.
The expression /cos@—/R: —¢?sin” @ at R, >/ is a negative value in the vicinity of the angle

2] =%7z and, that is why has no sense.

at’/>R,,

Taking into account the above noted considerations and introducing the symbols

re :Ecose+\/mwithin theinterval 0<6<86,,,.
r-=/cos H—m within the interval 6,,,, > 8 >0,
O —\/mcosé’-b(r*)T“(r*)JrZr+2 sin2 gr2(r*)
'c[ \/R,f—ézsinzGJRf—[l—b(r*)KRf—ézsinz6’) "
xr+3\/msin6d0—

P \/mcos&'~b(r’)T“(r’)+£r’2 sin2 dr % (r7)
_9m \/an —EZSinzt%/Rﬁ—[l—b(r‘)Kan—fz sinZH) "

¢8| xrJa(r)b(r)sin@eo at ¢>R,,
2 1zz'
ZJ.—JR,f —¢?sin? @ cos @-b(r)T™(r)+ ¢r?sin? 61 2(r)
X

o RZ-r%sin? 0RZ ~[L-b(r)|R? - £ sin )
xr®Ja(r)b(r)sin@o at (=R,
T—mcose-b(r)ﬂl(rhfrz sin? HTzz(r)><

JRZ —¢Zsin? 0,[R? ~[L-b(r)[RZ ~ ¢ sin? 0)
xr®Ja(r)b(r)sin@e at ¢<R,. (6.2.2.25)

at¢>R_,than for f'° we'll get:

In these expressions:

2
(2 (ZcoseﬂlRﬁ—zzsinzaj

b(r*)=——-3= P
fo T re2+(fCOS(9+\/R§—EZSin29j
/(62226
(-2 (fcos&—ﬂRﬁ —fzsinzej
b(r_): = ,

2 -2 2
o +T re2+(£c0349—,/an—fzsin2¢9j
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2
(ﬂcosethnz —¢?sin® 6']
2
r? +(€cos€+,/an — (% sin? 6']
2
r2 +(£cos€+\/R§ —(?sin® 9] -,
2
r? +(£cos€+1/Rf — (% sin? 9) +,

b(r) =

n

a(r')=a(r-)=1 a(r)=

Besides,
T11:_£goo¢2G11, T2 :_igoo(/)szz) (6.22.27)
2r 2z

where, G and G* are the components of the Einstein tensor which, in case of considered
GEH field of central symmetry has such a form:

12 !
u__ l|r(e Bo | 2a¢
G__z__ + = = ,
rbc| 4\ ¢ n e Vs

’ ' "\ 2 4 4
cz___1 [ij +£(i) +1(i_b_J_ (6.2.2.28)
2r’p|\ a 2\ a ria b

_1alb' pe
2ab nrel

Consequently, taking into account the forms of functions a(r), b(r) and ¢(r) from (6.2.1.1)
we'll get:

L :ﬁ[z_,]] ¢l g1 14 7
g (1+\/]?]8—2n

Tzzzaéz(gjzgz_zn[w‘zl LT
g [1+\/]?T_2n

"
These equities determine T™(r*), T?(r*), T*(r"), T?(r") and T*(r), T?(r), participating in

2
7,

(6.2.2.29)

4
Tl e

sub-integral expressions (6.2.2.25). A numerical realization of f'* for various ¢ has been

realized with the error 10™*. Values of the force f'3, corresponding to various ¢ values are in
Table 6.3 (R, =35-10cm).

Table 6.3
1027 cm 10®L cm '3 dyn
9,60 7,50 ~7,86-10°
7,20 5,19 —4,06-107
6,00 4,06 ~7,96-10"
4,80 2,97 -1,46-108
4,20 2,44 -1,91-108
3,60 1,93 -2,40-108
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3,00 1,44 -2,82-108
2,40 0,99 -2,97-10°
1,80 0,60 —2,54-108
1,20 0,28 -1,48-10°
0,60 0,0739 —4,07-10’
0,35 0,0254 -1,70-107
0,12 0,003 -5,56-10°

Diagram of the functional dependence f'*(¢) is depicted in Fig. 6.1. As it is show from the
diagram ‘f's‘ reaches the peak value at /=2,4-10"cm (L =0,99-107% cm); the peak value ‘f '3‘ =

=2,97-10%dyn .
107f3dyn 10*%Icm
0 1 2 3 4 5 6 7 8 9 10

-35 1

Fig. 6.1

6.2.3. THE NUCLEAR POTENTIAL IN HEAVY
NUCLEI

The nuclear potential V in heavy nuclei is determined according to the following equity:
dv

fri=——r, 6.2.31
m (t )
from which, with allowance, that V =0 at L —> o we get:
Vv :j f3dL :NBf e, (6.2.3.2)
L |

2
With allowance that b= ) ggz , when ¢ :ri’ and applying the values f'° from the Table 6.1,
+ e

let's determine the values of V for some ¢ (distance L ). These values are given in Table 6.4.

Table 6.4
1027 cm 10°L cm V. mev
7,20 5,19 -3,46
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6,00 4,06 -7,67
4,80 2,97 -15,34
4,20 2,40 -20,89
3,60 1,93 -27,73
3,00 1,44 -35,60
2,40 0,99 -43,65
1,80 0,60 -50,45
1,20 0,28 -54,55
0,60 0,0739 -55,97
0,35 0,0254 -56,13
0,12 0,003 -56,18

Diagram of functional dependence V (/) is depicted in 6.2. From this diagram it is clear that
V| increases during reducing ¢ (distance L) and reaches its peak value V|  ~56mev.

108 Imc
VMevyg 1 2 3 4 5 6 7 8

0 , « 1
-10 -
-20 -
-30 -
-40 -
-50 -
-60

Fig. 6.2
At small ¢ V coincides with potential of harmonic oscillator, and at large (f >5.1078 Cm) it

coincides with potential of Woods-Saksone [3,4]; in the middle parts of V we have the
excellent values.

6.3. THE STATIONARY GEH FIELD OF AXTIAL
SYMMETRY, REPRESENTING A MODEL
OF SPHERICAL BODY WITH MAGNETIC MOMENT

6.3.1. PROTON STATISTICAL MODEL

0
Let's admit that n=0,1876, r, =10 cm, ¢ = —15955 CGSE (¢).
Quite similarly to the previous one the classical parameters G, m,, q, and pS/n,

corresponding to proton, are determined from the main terms, received earlier (5.1.2.4) ,
(5.3.1.14), (5.3.2.7) and (6.1.1.6):
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_n?2 c* 4G
i " (6.3.1.1)
0
Q:_4¢>ref7, arte @ 1A _ 12 +Qo.
it s B
Here, as before, o =781. From this:
3
M =166-102g, G =10° S, Q =4,8-10"° CGSE(q),

s (6.3.1.2)

7 _0,7676.

s

Such a mass and charge has proton. Similarly to previous one the value of gravitational constant
corresponding to proton differs from the value corresponding to the Sun.
To proton correspond the following values of parameters a,b and ¢,:

r=41247-10(p-8,271-101 " (p +1,200)>5%,

L_[p-827110* )"
p +1,209 ’

p-8271-107"

15376 (6.3.1.3)
p+1,209 ] ’

o= —15955[

b =i2(p ~8,271-10)(p +1,209), 827110 < p<oo
p

Quite similarly to the previous, it is possible to determine the distribution law of mass and
charge inside proton, they are expressed by functional dependences p,(r) and p,(r), where
P 1s a mass density, and p, - density of electrical charge of proton.

6.3.2. POTENTIAL OF STATIONARY GEH
FIELD OF AXTAL SYMMETRY

Let's call the stationary such a GEH field, the components g;, and ¢; of which do not
depend on time, and density of electrical current identically is not equal to zero in all three-
dimensional space:

jo#0. (6.3.2.1)
One of the possible examples of such a field, having an important value in the appendix, is
considered in this paragraph.

From the classical point of view there are the bodies having the magnetic dipole moments
(the Sun, proton, etc). These bodies with the definite degree of accuracy maintain the spherical
structure, corresponding to their statistic states. From the point of view of GEH field, such body
can be considered as GEH field of axial symmetry, which slightly differs from above considered
field of central symmetry. The potentials of this field are obtained from potentials of GEH field
of central symmetry by introducing the corresponding disturbing members, in particular

241



a(r)+af(r,o) 0 0 0

0 —b(r)+b(r,0) —d(r,0) 0
(9:)= 0 _d(r.e) -1 -gre 0
0 0 0 —r%sin?0
@0 =o(r), ¢ =9, =0, @3 =p5(r,0),
v'=y°(r), yl=y?=0, y’=y(r.0), (6322

where, 3, b, d, ¢, @, and y°’are small in comparison to corresponding members, values. With
allowance of the fact that ¢,° =4 and @uw° +@,w° = #, with high degree of accuracy, it is
possible to admit that y°® =0.

If the considered material body with high degree of accuracy has a spherical structure,
than, the metric properties of the space will very slightly differ from metric properties,
corresponding to unified GEH field of the central symmetry and that is why, the disturbed
members 3, b,¢, d are possible to reject. In this connection it is finally possible to be used by

the components:

a(r) 0 0 0
o -br) o 0
(9 )= 0 0 _r2 0
0 0 0 -r?sin?0
o =0(r), ¢1=0,=0, @3=p5(r,0), (6.3.2.3)

p°=y°(r), v'=y?=y’=0.
Here, a(r), b(r), ¢,(r) and y°(r) are known functions representing the solution of statistical
problem, having a central symmetry, and ¢,(r,6) is a sought function.
Thus, the stationary problem under consideration is reduced to determination of one
function ¢, (r,0).
It is easy to show, that:

!

0 a 0 0
. 2a
i’_W 4 0 0 1 0%
(Hi?): 2a  2p 4177 a@r ,
0 0 0 -y
4n 00
o Ve vy’ e 0
dn or 4n 00
(6.3.2.4)
a vy v
2b  4nb 4nb or
0 LI 0
(H.l.)z 2b
ij r '
0 0 —— 0
0 b HJ
V09 5 oy _ISin°0
4dnb or b

242



0
0 o o -2 s
4dpr 00
0 0 r 0
(Hu2 ): v ’
0 r 0 0
0
0 .
¥ Zﬂ 0 0 -—sinfcoséd
4dpr= 00
0 l//o 0ps '//0 0¢s
Anpr®sin?@ or  4pr?sin® e 00
0
v 0y
_ = 0 0 r
(HS‘): 4nr?sin? @ or Yy
0
0
V% 0 0 ctgd
4presin© @ 00
0 1r ctgd 0

Let's calculate the function of action S:

1
Szyj.v_ggpq[H;rH(;n _H;I;qurllr _zl//ngnqu -
\%

—izt//rt// For g (X dx?dx®.
817

After substitution of corresponding values from (6.3.2.3) and (6.3.2.4) we'll get:

agz/o2 1 o ?
S: L aaby 1a-,1 ; + __1 _3 +
7/-[{ (@b.g5,2,%) SUzrzsinZQHb j[ or j

(6.3.2.5)
(a%j }}/ gdrd&dg,
where, L(a, b,p,,a’, (pé) is a Lagranjian field of central symmetry, with allowance, that
&=0 and &[{L(ab,p,a" ¢\~ gdrddlg=0,
than from (6.3.2.5) we'll get:
2 a¢
- a\/_ 02 (— - lj : }
02 o { or
a/aby (6.3.2.6)
+5sin eiti% =
06\singd 060
The (6.3.2.6) represents a differential equation relative to sought function ¢,(r,9).
We are seeking ¢,(r,6) in the following form:
@3 (r,0) =R(r)-Q(0).
After substitution from (6.3.2.6) we'll get :
siin 91[_Ld—9j+zgz=o, (6.32.7)
d@\sing do
2
r—zi(a@wz ld—Rj _JR=0,  (6328)
avaby®” dr b dr

where, A is a constant value.
The equation (6.3.2.7) has the following spectrum of proper values
An =2m(2m-1) m=0,12,... and corresponding system of eigenfunctions
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Q,(0)=a,,

O (0)=a, 1+ 5| 17 2ME@M D M@V 1) | yea ocaez
" 0 =0 (2v+1)(2v+2) '

k=0
m=12,.. (6.3.2.9)
aswell 1, =2m(2m+1) m=0,12,..
Q,(0)=4a,cosd,
Q. (0)=a, {cos 0+ m_l[lkl 2m(2m +1) = 2v(2v + 1)}(—1)“1 cos?*2 0} With allowance of the
== (2v+2)(2v +3)
m=12,.. (6.3.2.10)

equality

1+ =0,

ml[ﬁ 2m(2m-1) - 2v(2v -1) (_1)k+l:|
=0 (2v+1)(2v+2)

the following conditions are evident

k=0

Q,0)=Q,(z)=0.
Besides, this very equation is satisfied by the function:

0 K _ _
Q(4,0)=a;1+ I w (=1 " cos?*2 9l 4
=l v=0 (2v+1)(2v+2)

(6.3211)

I1

y |k A-2v(2v+])
+ag4C0s 0+ _—
v=0 (2v +2)(2v +3)

:|(_1)k+l COSZk+3 9
k=0
for any value of the parameter A from the interval —wo<A<+w. Here a,,aj,a; are the

constants. In equity (6.3.2.11) the relation of k +1-th member to k -th member equals to:
A —2(k +1)(2k +1)
C(2k+3)(2k + 4)

which seeks to cos@ at k — o, i.e. the row (6.3.2.11) does not coincide at |COS 9| =1. According

to it, the solutions of equations (6.3.2.7) are determined by the equities (6.3.2.9) and (6.3.2.10).

From (6.3.2.9) it should be distinguished the solution, corresponding to value m=1.

Q,(0)=a,(1-cos” §) =a,sin’ 4. (6.3.2.12)
To it corresponds the value 4, =2. The corresponding R,(r) function is determined from the

0S4,

equation (6.3.2.8) in particular from the equation

2
LA N P WL ) P T (6.3.2.13)
av/aby °* dr b dr

which has two linearly independent solutions R; and R;. The asymptotic of these solutions are
determined from (6.3.2.13) at r —> 0.

As it was mentioned above, a—>1,b—1 and w°=const at r -, that is why at r — oo
(6.3.2.13) is reduced to equation:

d?R, 2
drzl _r_ZRl =0, (632]4)
solutions of which are as follows:
RI=1 Rr=r2. (6.3.2.15)
r

Physically the first solution

a, .
Pi(r,0)=—Lsin’ g
r
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determines the potential of point magnetic dipole with magnetic moment x=a,, and the
second
Pi(r,0)=a,r’sin’ o -
potential of homogenous magnetic field, being parallel to vertical axis, with the voltage u =2a,.
With allowance of the fact that the parameters r, a, b, y° according to (5.1.2.2) are
expressed through p, then the equation (6.3.2.8) should be written relative to p, we'll get:

1-n 1+n |d°R drR
_|2=" / m_g,—2-A R =0, (6.32.16,
(p 1+nJ[p+ 1—nj dp? ° dp mem ( )

a0=4(2%— n J (6.32.17)

V1-n?

It should be determined such a solution of the equation (6.3.2.16), which is a regular

where,

. s . 1-n . . o .
function everywhere within the interval ‘/1— < p<+w, including the infinitely remote point,
+n

i.e.
R, (1) =Za§m)x"”ﬂ‘k s (6.3.2.18)
where, x=p+ T—n , itis evident that
-n
dR, dR,_ 1-n_ 2

_ = , =X—-X 5 = .
dp dx P~ 1+n ‘/1 n2 0 %o \J1-n?
From (6.3.2.16) after substitution of the solution (6.3.2.18), for o, and aﬁm) k=0,12,..., we get
the following conditions:
[O-m (Gm - 1) = A ]aém) =0,
_ _k— 6.32.19
(6, -k-1)o, —~k-2)- 4,

Let's consider the case a{™ #0, it corresponds to nontrivial solution. From the first equity

of the system (6.3.2.19) for o,, we have two values:
on=1-2m and o) =2m m=12.. (6.3220)
From (6.3.2.18) at o, =1-2m it is evident, that R/ (p) is everywhere a regular function

within the interval 1/1_—n§ p<o, including the infinitely remote