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INTRODUCTION

It is known that hypothesis of unified character of gravitational and electromagnetic fields,
as well the field structure of the matter, belong to Einstein. This idea can be practically realized
in two stages. On the first stage of investigation it is necessary to generalize the laws of
gravitational and electromagnetic fields and formulate the unified field, theory comprising (in
definite meaning of this word) of laws of gravitational and electromagnetic fields. Such theory
as it was repeatedly noted by Einstein himself, should be free of singularities in four-dimension
world. The limitation which is superimposed on the structure of the unified theory, is the
necessity in its elasticity, capability to respond to the questions, characteristic for the material
world. However, one such a requirement can't provide the singularity of unified field theory.
Various unified theories, existence of which is possible by their possibilities should be identical,
transforming, in definite meaning, one into another.

On the second stage, the investigations should be realized in compliance between the
conceptions of unified field theory and conceptions of modern physics by means of which the
investigator percieves the outer world.

It should be noted that main difficulties on the way of realization of this program are met
on the second stage of investigation, i.e. in the process of establishing the relation (relation
between the scheme of unified theory and outer world, as it takes place, e.g. in quantum
physics.

The recent work is dedicated to one of the possible versions of practical fulfillment of the
mentioned program.

The main principle on the basis of which we'll try to perform an investigation of the first
part of the planned program, is adopted from the evolution of physics and consists of the
following: If on this stage of development the definite physical theory is covariant in relation to
some group of transformation, than the analysis of evolution of physical science shows that the
requirement of covariance relative to more common group of transformation results to
necessity of introduction of new notions and widening and perfection of old theory. E.g.
demand of covariance of laws of mechanics relative to Lorenz group of transformation resulted
to creation of mechanics of special relativity theory and requirement of relativity of continuous
(holonomic) groups - to creation of mechanics of general relativity theory and relativistic
theory of gravitation field. In this connection for unified description of gravitational and
electromagnetic fields in the present work there is introduced a conception of continuous
(holonomic) groups, a corresponding nonholonomic geometry has been constructed, which, in
future is used for construction of unified field theory, covariant relative to nonholonomic group
of transformation. Such a procedure is quite identical to that, which was early applied by
Einstein during creation of common relativity theory and relativistic theory of gravitational
field and is capable to reveal by means of completely in analogy the physical essence of new
concepts, connected with nonholonomic group of transformation.

The established links (relations) between the concepts of unified field theory and usual
physical notions are independent principal task, which, in the present work has been realized
while applying the equations of relativistic theory of gravitational field and the equations of
electromagnetic field in the curved space, belonging to Einstein. In comparison to old classical
theory, in which these equations have been applied for determination of the metric tensor



components g; and electromagnetic field potential ¢, along to given values of the

components of energy pulse tensor T, and density of electric current j', in the proposed

theory parameter T, and j' are determined by values of components g; and ¢, , representation

solving the system of equation of unified field theory. Such a procedure of establishing the
relation between the mentioned parameters logically are not strongly substantiated, and it may
be justified only by the degree of coincidence of obtained theoretical results with the
corresponding experimental data.

With this purpose in this work there has been considered an unified field of central
symmetry. The corresponding system of relativity equations g; and ¢; has been solved and is

proved that these parameters are free of singularity in central point r =0 and in the whole four-
dimensional space. The asymmetric behavior of these very parameters have been investigated as
well while r - and it has been shown that g; and ¢, r—o coincide with the known

classical values.

Further, the received theoretical results have been used for approximated description of
proton structure of atomic cores and the Sun, identifying them by corresponding unified fields
of central symmetry. Comparison of obtained results with corresponding empiric data shows
that the offered field model of the matter with the precision of sufficient degree describes the
structure of proton, heavy atomic cores and the Sun.

CHAPTER 1

ELEMENTS OF NONHOLONOMIC
GEOMETRY

Main elements of nonholohomic geometry which are stated in the second paragraph of this
Chapter are the direct generalization of proper items of Riemannian geometry. The best way,
by means of which it is possible to realize the mentioned generalization, in our opinion, is an
apparatus of absolutely differential calculations and tensor analysis. This circumstance
conditions introduction in this chapter (in the first paragraph) of a known material from the
Riemannian geometry and tensor analysis, which, as we consider, contributes to natural
transition from Riemannian (holonomic) geometry to nonholonomic one.

1.1. SOME MAIN ELEMENTS
OF RIEMANNIAN GEOMETRY

1.1.1. ELEMENTS OF TENSOR ALGEBRA [1]

Space — is the aggregate of points. The notion of points is elementary (limiting), not
determined by more elementary notions. For addressing the points of the space there can be
used four acting numbers x°,x*,x* x*. The numbers x°,x',x*, x*are called the coordinates of
the main elements (points) of space.

Determination carried out here is not connected with the material phenomena and, that is
why is of abstract character; space-independent reality, in which run the material phenomena.



And the character of the space (see below) is closely related with material phenomena; only
thanks to material phenomena the main characteristics-metric features — space in which we
live, can be determined.

A priori it can be applied the following proposition: the space cannot have several various
metric features at the same time. Than, with allowance that these features with single meaning
are connected with material phenomena, running in the space, it becomes clear, that the
independent, as regards to classical physics, phenomena — mechanical, gravitational,
electromagnetic, etc. are unified.

Addressing of space points can be realized by completely arbitrary way, only following one
of the main requirements — monosemanticity of correspondence between points and their
addresses.

Let x'* — other addresses (coordinates) of points of considered spaces. The coordinates x*
and x'* must be located in interunambiguity functional dependence, i.e.:

X =x(x0 xhx% %), k=0,1,23 (1.1.1.1)

Values of x* and x'* determine various systems of addresses, or the various systems of
coordinates, and the equations (1.1.1.1) express the law of transformation of coordinates (law of
readdressing of points) during transition of one system of coordinates into another.

In the space, for which there has not yet been determined the metrics, it can't be realized
the geometrical constructions, i.e. it can't be judged the distances and directions, however, in
such a space, by means of method of point grouping, having the definite similar features, there
may be introduced the geometrical notions, useful during solution of various problems. For
example, totality of points having the similar x“ coordinates (k -fixed number from multitude
of 0,1,2,3) constitutes the three-dimensional hyper surface. Let's generally call the three-
dimensional hyper surface as a totality of four-dimensional space, coordinates x* of which are
represented by the equations:

x* =x*(p*, p?, p%), k=0,1,2,3 (1.1.1.2)
where, p', p> and p°® are some parameters having the definite domain of variation.

Completely similarly, the equations:

x* =x*(p*,P?), k=0,1 2,3 (1.1.1.3)
determine the two-dimensional hypersurface, and the equities:
x* =x*(p'), k=0,1 23 (1.1.1.4)

determine the one-dimensional hypersurface or, that is the same — the line.
The hypersurface x* =0, x.;, <x' <x}, i#=kis called the k - coordinate hypersurface (k -
fixed number); in case, when i - fixed number, these terms determine the i -*# coordinate line.
By means of coordinates of main elements (points) of four-dimensional space it is possible
to form some characteristic elements, in particular, so called infinitesimal controlled vector. If
M, (x%, x x?, x¥yand M, (x° +dx°, x* +dx*, x> + dx*,x* + dx®) — two points of space, coordinates
of which differ from each other by infinitesimals of dx’,dx',dx?,dx®. Let's call the totality of

these values as the infinitesimal contravariant vector, and the separate elements of dx* —
components of this vector.

It is obvious that in other system of coordinate the considering infinitesimal contravariant
vector is characterized by the components dx'*. Relation between infinitesimals dx* and dx'*
can be established by using (1.1.1.1). Really, from this equity after differentiation we'll have:



axrk
ox®
On the basis of transformation law, during transition from one system of coordinates into

dx'* = dx” (1.1.1.5)

another, it is possible to introduce generally a determination of controlled vector.

If some physical phenomenon which runs in considered four-dimensional space in various
systems of coordinates x“ and x'* is characterized by totality of values A* and A’* correspon-
dingly, and if between these values there exists a relation of the type (1.1.1.5), i.e. there takes
place the following equity:

X'~
oxP
than we'll say that A" constitutes a contravariant vector with the components A°, A', A% A%,

Ak AP (1.1.1.6)

If AY and B* — are the contravariant vectors, than from them it is possible to form
totality of the values A*-B*, number of which is equal to 16. In the system of coordinates x'®
to these values according to (1.1.1.) correspond:

A% .B" =££A’)Bq
oxP oxt
In connection to transformation law we are introducing a tensor of second order. If some

physical phenomenon in various systems of coordinates x“ and x'* are characterized by

(1.1.1.7)

totality of the values A and A’ correspondingly and if there takes place the transformation
law of the type (1.1.1.7)
Ark| — ax’k %qu
oxP? ox1

than the totality of values A will be called a contravariant tensor of second order.
k

(1.1.1.8)

Similarly, the totality of values A% constitutes a contravariant tensor of n-* order, if
the corresponding components in the system of coordinate x'* are determined by the following
equities:
ax/kl ax/kz ax/kn
axpl axpz ““axpn
A physical value u is called a scalar, if its value in any point of the space does not depend

on choice of coordinates, i.e. if

Ak Ky

APPz-Py (1.1.1.9)

u(x?, xh x2, x3) =u'(x%, x, x'2, x'?) (1.1.1.10)

. . . ou . .
From u it is possible to form so called covariant vector —~. Accordingly, in the system of

oxk
1

coordinates x'* this vector will have the following appearance

por Relationship between
X

these vectors is established by means of application of (1.1.1.10) and (1.1.1.1), in particular:
ou”  ox” ou
ox'* ax'f oxP

(11.1.11)

In connection to this transformation law let's introduce a notion of covariant vector. The
totality of physical values A; is called a covariant vector, if its components in the coordinate

system x'* are determined by the following equities:

p
N:?%Ap (1.1.1.12)
X



It's obvious that if A, and B; are the covariant vectors, than according to (1.1.1.12) the

following equities are valid:
oxP o’
AB’ = ——A,B 1.1.1.13
J axrl aX!] p=q ( )

In this connection, A s called a covariant tensor of second order, if its components in the
system of coordinates x'* are determined by the following equities:
oxP ox4
ox'" ox'!

and A .

ii,..i, 18 a covariant tensor of n-™ order, if the following transformation law is valid:

OX Py OX P2 OX Pn

Ailiz ----- in Zaxfil ox'e o' PiPzPy (1.1.1.15)
If A* is contravariant, and B; -is a covariant vector, than it is obvious that
rk q
akg =2 % pop (1.1.1.16)
oxP X'

Reducing these equities by indices i and k and with allowance that:
ox'’* oxe
——=7,, (1.1.1.17)
xP oax'*
we'll obtain:
A*B, = A*B, (1.1.1.18)
i.e. A“B, isinvariant.

In connection to the transformation law (1.1.1.16) let's introduce a notion of mixed tensor
of second order. A is called a mixed tensor of second order if there takes place the following
transformation law:

k
PSS
boxPoaxt T
" is called m times covariant and n times contravariant mixed tensor of m+n

(1.1.1.19)

kiks....k
as well A12

order, if
K Ak kn n
Ak, O XX ox™ ox® - ox1 APz
Waeedm gy P gx P2 gk P ox' ox'z gy Ao’ 4
From the transformation law of tensors it follows that if the tensor in some system of

P (1.1.1.20)

coordinates is symmetric (antisymmetric) relative to two indices, than the symmetry
(antisymmetry) according to these indices are maintained in any system of coordinates. Really,
if

A...Ik... = A...kl...
than
Ao oxP ox’ _ooxt oxP B
ke T axrl axlk pq v axrl axlk P T
oxP ox“ ,
= axrk axrl pq _Akl
For antisymmetric tensor A ;, =-A , has



At = o Bt =g i i R =
ox” ox* ,
= oK oyt e =—A.

A similar circumstance takes place for contra variant tensors.
The components of infinitesimal contravariant vector dx“ are absolutely arbitrary values,

but if the increment of coordinates corresponds to increment of some invariant parameter p,
k
. . , : X
than from them it is possible to create a final contravariant vector e

Let's consider some partial versions of this vector.
If D)

1) dx°=d xlo #0, dxlzdxll:O, dx?=d X12 =0, dx® =d x13=0;
2) dx° =d x20 =0, dxlzdle;to, dx? =d x22 =0, dx®=d x23=0;
3) dx’ =d xs0 =0, dx1=d><31=0, dx? =d x32 #0, dx® =d x33=0;
4) dx° =d x4O =0, dx1=d>511=0, dx? =d x42 =0, dx®=d x43¢0;

The corresponding final vectors have such a form:
L0 0 Sl 1 _ 52 1 _
1) x°=d X /dp;to, X' =dx /dp_O, X =dx /dp_O,

1

>l'<3:dxl3/dp=0;

0 1,0 Ca el 1o 2 12 _
2) X" =dx /dp_0,>2< _dxz/dp¢0,>2< =dx’ /dp_O,

23 1,3 A

X =dx /dp_o, (1.1.1.21)
.0 0 _ 21 1 _ .2 2

3) X" =dx /dp_O,%( _d>%/dp_0,>3< =dx /dp;tO,

.3 3 N
X*=dx /dp_O,

40 A el 4l 2 o2 B
4) _dx4/dp_0,21< —dﬁ/dpio’f _dx4/dp_0,

)-(0
4
3 1.3 )
X*=dx /dp;to,

These vectors are not linearly dependent, so as

>l'<° 0 0 O
o x* 0 o0 o1
2 ) =X XXX 20
O O X O 1 2 3 4
3
0 0 0 Xx°
4

dp is arbitrarily small value and, if in the first line of the system (1.1.1.21) we'll admit that
d )1(0 =dp, in the second — d )2(l =dp, in the third — d )3(2 =dp and in the last — d 31(3 =dp, than

we'll obtain the following linearly independent vectors:

! Index above the letter shows the number of the version and is not a number of the component of tensor value.



E(1,0,00),

E(0,1,0,0),
2 (1.1.1.22
E(Ololllo)i

|4§(o,o,o,1)

Thus, in any point of the space it is possible to construct 4 linearly independent vectors
(1.1.1.22), so-called independent basic vectors, which are obtained from the established law of
addressing points of space (see (1.1.1.21). In other words the basic vectors (1.1.1.22) are chosen
not by arbitrary way but are determined by a structure of coordinate system.

Any contravariant vector A“, which depends on the coordinates of points in considered
space, let's imagine in a linear combination of basic vectors (1.1.1.22), i.e.:

— 4 —
CA+> C, E=0 (1.1.1.23)
k=4
This equity really takes place if we admit that:
A = —% (1.1.1.24)

On the basis of these latter equities of the values A* we have received the indicated
components of the vector A in the basis of (1.1.1.22).

Here it should be done one important note, in the Riemannian geometry while
investigating the arbitrary question there are applied exclusively basic vectors (1.1.1.22).

In principle, introduction of basic vectors in the form of (1.1.1.22), depending on law of
addressing the space points, is not unique, they might be selected by completely arbitrary way
in each space point as well as the coordinates (of the address) of this point. The only limitation,
which the basic vectors (E have to satisfy, should meet requirements, is their linear

independencies, i.e. the components of these vectors in the basis (1.1.1.22) should meet the
requirement:

o
[EN
N
w

e e e? e
1 1 1 1
e’ et e? ¢°
2 2 2 2
A ) (1.1.1.25)
e’ e e e
3 3 3 3
e’ et e ¢&°
4 4 4 4

where, eizk — the components of vector in the basis of (1.1.1.22). They are the functions of the
coordinates of separate space points.

It is easy to show, that if A*(x%,x*,x?,x®) is any contravariant vector in the given space
point, than the system of the vectors A, e} , g , g ,g is linearly dependent, i.e. the following equity
takes place:

4
bA + kz; b, €=0 (1.1.1.26)

Really, in force of (1.1.1.25) the system (1.1.1.26) which we'll rewrite in such a form:



ieki (—X)=A (1.1.1.27)

has the only solution

_F:Kk —afA (1.1.1.28)
where,
AK
ak :ZI (1.1.1.29)

A- value of a determinant (1.1.1.25), and A¢ — algebraic addition to the element e* in a

determinant A. Values of A* determined according to (1.1.1.28), by analogy to the previous
one, are called the components of the same A vector in the basis €. Obviously, these equities
1

(1.1.1.127) and (1.1.1.28) establish the contact between the components of one and the same

vector A in various basisin E and €.
I 1

From the above indicated we come to the following conclusion: for a tensor calculus an
important value has not only the law of addressing of space points (on the law of addressing
depends the functional image of separate tensor components), but the choice of base vectors in
separate space points. In this connection, in future, in comparison to the system of coordinates,
we shall introduce the notion reference system, under which we'll understand the combination
of addresses (coordinates) of points x* and systems of basis vectors (E , chosen in each space

point. A reference system we'll denote through the symbol SR(x" ,(E). A partial type of the
reference system is SR(xk,Ikg) ; In this reference system in each space point a basis vector is
(1.1.1.22). SR(xk,Ik?) is the main reference system for Riemannian geometry (in four-

dimensional space) and Einstein's general relativity theory.
During transformation of only the system of coordinates SR(xk,(E) will pass to SR(X"‘,(E)

which differs only by the fact that the system of basis vectors coincides with the old system of
basis vectors. During transformation of only the system of basis vectors a new reference system

is symbolically written down this way: SR(xk,E’), and during transformation both of the

’
systems of coordinates, and the basis vectors - SR(x'*,8).
k

If in flat three-dimensional space for investigation of several problems of geometry there
are used the Cartesian coordinates and basis vectors being parallel to coordinate axis, than the
reference system SR(x*, Ikg) consists of these coordinates and basis vectors. In the same form is

written down the reference system in case of using the spherical coordinates and basis vectors,
relative to spherical coordinate lines, passing through a given space point. On the other side, it
is clear that for investigation of geometrical problems in a considered space can be used the
Cartesian coordinates and basis vectors relative to spherical coordinate lines, passing through
the given space point, or vice versa - the spherical coordinates and basis vector, being parallel to
the axe of Cartesian system of coordinates, in such cases the reference system is written down
as SR(x" ,i?) (about it see below):



1.1.2. INTRODUCTION OF A METRIC [1]

Addressing of the space points - is an arbitrary operation and it is not connected with any
limitations that is why it can't influence on metric properties of space. The metric properties of
space being its inner characteristics are determined by symmetric, nondegenare tensor of
second order g;. In particular, the length of infinitesimal contravariant vector dx is

ds = /eg,, dx'dx* (1.1.2.1)

and the length of some contravariant vectors A* - by equity

A=.Jeg, A'A¥ (1.1.2.2)

e_{Jrl, if g, AA >0,

determined by equity:

where,
-1, if g, A'A* <0.

0;c is called to be a metric tensor of the space.

By means of g, it is possible to form a covariant vector A;, corresponding to
contravariant vector A, in particular,
k
A =0, A" (1.1.2.3)
A vector character A; can be easily proved if in the right part of final equity we make a
substitution:
U SV S o S
ax? T T axk T

we'll receive

Y ox" oxK .S

_ ropTP
Ao o a9 T WA

i
Le.

_ox't

S

In connection to the fact that g; are characteristic parameters for a given space the value

A

of A and A' can be considered as covariant and contravariant components of one and the same

vector in a considered reference system SR(x*, Ikg) relative to metric tensor g; . Formation of

covariant components of the vector by means of contravariant components is called dipping of

index. Dipping of indices can be realized as well for tensors of high orders, thus, e.g.:
A = iA'p' Aik: iApka
i = 9 ! _ Jip (1.1.2.3)
Aijke = gip Apjke yees

From covariant metric tensor g; can be formed a contravariant metric tensor of second
order:

g™ == A (1.1.2.4)



where, ¢ is a determinant:

90 Y01 Y02 Yos
o1 91 Y2 Y3
9= o2 912 922 U2 (1.1.23)
903 Y13 Y23 Us3
and A - algebraic addition to the element of g; in a determinant g.
So as g = 0,;, than it is obvious that A* = A, that is why g*is symmetric to g" = g"“.
It is known that
gipApk = 5ik9 )
that is why
9,9% =05 (1.1.2.6)
With allowance that g, and &/ are tensors from this equity comes that g%is also a
contravariant tensor of second order;

On the basis of the law of multiplication the determinants we have:

90p9™°  90p0™ 90p0”° 900"
ggo|909” 9507 00" 95,07
9,9 9,0 9,,0" 9,,0

05,0 05,0 05,07 05,07

1 000
0 1 00
"o 00 17"
0 0 0 1
where,
g® g% g2 ¢
01 11 12 13
g_:302 312 322 323 (1.1.2.7)
g® ¢° ¢g® ¢®
thus,
gzé (1.1.2.8)

During using of tensor g it is possible to realize the index of tensors, thus, e.g.:
Ai — gipAp, Aik =g pkAip, Aik :gipAI;’.”

Tensor character of these values comes from the structure of right hand parts of the last
equations.

From (1.1.2.2) and (1.1.1.18) it fallows that the length of a vector is covariant.

If in some points of space, this length of a vector is equal to zero A=0 than we'll say that
the vector is isotropic in this point, and if this equity is true in some domains than the vector
field is isotropic in this domain.



If x'(p) — is some curve passing through two points X' (p,) and X! (p,), p, and p, — fixed
values of the parameter p that the length of the curve are between these points is determined

according to the equity:
P,

s= fw/egikx"x'kdp, (1.1.2.9)

Py
_ax
dp

Angle between two nonisotropic vectors A' and B' is determined according to the

where pisan invariant parameter, and X

following equity:
ipk
cosa = 9uAB (1.1.2.10)
\/egikA'A" \/egikB'B"

or
gxA'B* A'B; AB!
AB  AB AB
where, A=./eg; A'A“, B=,/eg,B'B* are the lengths of considered vectors relatively.
The condition of orthogonality of nonisotropic vectors is received from (1.1.2.11) with
allowance of cosa =0, in particular,

cosa = (1.1.2.11)

9, A'B¥ =0 (1.1.2.12)
From the expression of cose it is seen that: 1) it is an invariant value;

2) the inequality is not always valid |cose| <1, in some cases |cose|>1. In the first case the

(1.1.2.11) determines the material value of an angle «, and in the second « has a complex
value. In the latter case the (1.1.2.11) bears a formal character. It is possible to prove, that, if the
matrix |g,| is positively determined in some point (domain) of space, than in this point
(domain) inequity |cose| <1 is always valid.

Really, in a considered case in a selected point (domain) of space the inequity g;¢'¢* >0
is valid for any values of parameters ¢°,¢*,¢?%,¢3. Let's represent ¢* in the following way:

LNyl
where, 1 —some parameter. After substitution we'll receive
0ig "¢ #2209y ) + A (9ug ") 2 0.

From this inequity it comes out that a quadrate trinomial in any part of this equation
relative to arbitrary value 1 — is nonnegative, this means that its discriminant is non-positive,
ie.

(9" )* = (9ug "¢ Nawg "¢ ) <0
Consequently
1< gu s <1
NN P

Substituting here instead of ¢'' A’ and instead of ¢" —B', it becomes evident that the

condition |cose|<1 is valid. By analogous means it is possible to show the validity of this
condition in case, when the matrix |g; | is negatively determined.

Let's rewrite the equity (1.1.2.11) this way:

gikAin

Acosa = (1.1.2.13)



Acosa is a projection of vector A* to the vector B*. Similarly, a projection of vector B* is
calculated on A¥.If B¥ isa unit vector B =1, than from (1.1.2.13) we have:
Acosa =g, A'B* (1.1.2.14)
Using the basis vectors (1.1.1.22) it is possible to determine the projection of vector A* on
coordinate lines, in particular if B=E, than from (1.1.2.13) we shall have:

Acosay = o A /g

Let's similarly determine the other projections using the B= I; I§:I§, I§:I§. All these

projections can be written down in the form of one equity:

From this equation it is evident, that the projections of the vector A* on the coordinate
lines do not coincide with its components, only in one case, when g; =1 and g, =0 (i#k) (in

case of flat space with Decart system of coordinates).
Acosa, = A" (1.1.2.16)
Besides, from (1.1.2.15) it follows, that totality of projection of vector A* on coordinate
lines does not constitute a vector.
If the components of vectors A and B are proportional to
B¥ = 1A (1.1.2.17)
than, from (1.1.2.10) we have
Agy A A
oS =———.

\//qv_z‘gikAiAk‘

In case, when |g, | is nonnegative definite determined matrix, from here we have:

{1, A>0
cosa =

-1 1<0
1.e.
0, A>0
o= .
7, 1<0

Thus, in case of nonnegatively determined matrix |g; | the A and B vectors meeting the

requirements of (1.1.2.17) — are parallel. In this connection the condition (1.1.2.17) is called the
condition of parallelism in any case.
By means of a tensor ¢;, there can be also formed other invariants, having a great value in

appendix. For example, from the equity

, oxP ox¢
Oik T ox' 9pq >

it is evident that
g'=—g (1.1.2.18)

where,
o, X, X% x"®)
Cax®, x, x2, x%)
is a Jakobean transformation (1.1.1.1). On the other hand, as it is known, the following

equation is valid:

dx'%dx"tdx 2dx"® = 1dx°dx*dx2dx®.



If here instead of | we substitute its value form (1.1.2.18), than we'll receive :
Jo'dx %dx" dx"2dx"* = \[gdx dx*dx2dx® (1.1.2.19)

i.e. \/gdx°dx'dx?dx® - is invariant. The final equity has an important value during integration.

1.1.3. GEODESICAL LINE [1]

As it is known, in flat space between two points there can be traced multiple arcs of various
lines, among which a section of the straight line is the shortest in length. The straight line is
called a geodesical line of flat space. Let's consider the task for curved space.

According to (1.1.2.9) length of the arc of any curved line, passing through the point
x'(p,)and x'(p,) is equal to:

P2
S= j eg; X'x“ dp (1.1.3.1)

From all-possible curves, passing through the indicated point let's select the subsystem of
curves for which e maintains the constant symbol on the section of line between the points
x'(p,)and x'(p,). Let's introduce again the parameter s - the current length of a line, been
read from the point x'(p,). In future we shall mean, that s - function of the parameter p, i.e.
s=s(p),x' =x[s(p)].

The task determined by the geodesical line is reduced to minimization of the functional
(1.1.3.1). From this equity it is evident that sub-integral expression

L =./eg, X' x* (1.1.3.2)
is nonnegative value and that is why there exists minimum functional S, which is attained for
x'(p), satisfying the equations of Euler:

i(ij Ly (1.1.33)
dplox' ) ox'
From (1.1.3.2) itis evident, that
—=eg, X —, 1.1.3.4
% Oik ds ( )
oq ; )
b 1D oy 4P (1.1.35)
ox' 2 ox ds
After substitution of (1.1.3.4) and (1.1.3.5) into (1.1.3.3) we shall receive:
o'
ij ik 1095 . .« dp?
KO+ =L - =S - gy X ——=0 (1136
glk an 2 a)(, glk E ( )
dp

With allowance that g, =g,;, the second member of the left part can be represented in the
following form:
DBii 5y =1(%+%jxjxk
X 2(ox*  ox!
Then the equation (1.1.3.6) is reduced to the system:



d’s
gikX'k +%[Z§: + Ziijl - 29)1(1? ijxk - gikxk ddp: =0.
dp
From this, after multiplying by g* and convolution on index i we'll finally obtain:
d’s
ol ook o dp®
X+ T 00X =% T_O’ (1.1.3.7)
dp
where,
rt =%g kp(aagx‘? ; aangf - 23; ] . (1.1.38)
These values are called the Christoffel symbols of the second type. It is evident, that
Iy =T§. (1.1.3.9)

If the parameter p coincides with s (s=p), which, in considered case, is the current
length of the arc of geodesical line, than from (1.1.3.7) we'll receive more than a simple system
of the equations of nonisotropic geodesical lines:

X +T X% =0, (1.1.3.10)
where,
i dx' i d 2x!
X =—, X =
ds ds?

The isotropic geodesical line is determined also according to the system (1.1.3.10), in
which, under s there is meant some invariant parameter.

It should be noted, that the type of geodesical line is unambiguously determined along the
initial point x; and to the direction of ¥ , in other words, solution of the system (1.1.3.10)
meeting the following initial conditions:

X =X, ddi:xg; at s=0 (1.1.3.11)
s
is the only.

The sought for functions x'(s) in the vicinity of initial point x;can be represented in the

_ R 2,
W@)=x5+595+i—d é st4..=
1! 211 ds 0

0 Sk dei
‘%m( ds* JO

In the right hand side x; and X; are known values according to (1.1.3. 11), and the other

following form:

(1.1.3.12)

ki
(d ): j k > 2 are determined from (1.1.3.10) while using (1.1.3.11). Really:
ds® ),
dZXiJ i ik
=T X% [s=0
2 L !
( ds® )

d3x! d . .
( ds® JO ds * /




The right hand sides of these equities are determined in succession with allowance of
(1.1.3.11).
It is easy to show, that one of the first integrals of the system (1.1.3.10) has the following

form:

gy XX = const (1.1.3.13)
i.e., the valueof |= gkpXkXp (1.1.3.14)
maintains a constant value along the geodesical line. Indeed, from (1.1.3.14) we have:

d—':ngixkx‘ +ag—‘?‘xpx‘xi
ds ox!
In the right hand side of this equity instead of X* let's substitute its value from (1.1.3.10),
than we'll receive:
%:(%— 2gkirgjjxpx‘xj =0,
i.e. along the geodesical line the condition (1.1.3.13) is valid.

1.1.4. COVARIANT DIFFERENTIATION [1]

The question discussed here is closely related to some features of Christoffel symbols, that is
why we shall try to bring here some basic of them.
Let's calculate T . From the (1.1.3.8) it is evident that:
. - ( 0g; 0 )
rilk :iglp gllf n gk,p _aglk )
2 OX ox'  oxP

In the last member of the right part let's represent the indices i and p taking into account,

that g =g, than for I, we'll receive:

1 00
Il =—qgr 2P 1.1.4.1
ik 2 g axk ( )
On the other hand, according to determination of determinants it is evident, that
09 _ pp B
ox* ox*
where, AP is an algebraic addition of the elements of g;pin a determinant g, i.e.
AP =g-g”.
After substitution from (1.1.4.1) we'll receive:
riik = lia_gk
2 g ox
or
- 0Oln
T = \{H (1.1.4.2)

OX
Transformation law of Christoffel symbols during transformation of the system of
coordinates it is possible to determine from the equation (1.1.3.8). With this aim let's
differentiate the equity:

, _oxP oxt
Qik T o ox'K 9pq>

o

by x



o9 ox® ox® ox" 09h  9°xP ox¢ g +6xp o2x8 g
axd axri axlk axl| axl’ axliaxl| axrk P9 axli axrkaxd Py

From here:

i Laxax! 0, (axp ox¥ ox" oxP ox® ox"

L= - -+ - -
o2 o oox" (oxtax! ax! ax! ox't ax”!
CoP x| oxt %"
ox" ox'l ox"! Pd ox oxlox' 1
These equations can be rewritten as follows:
x* o ooxPooaxd o 9%k
axrl ij = axri aX!j pa axriaxrj (]]43)

From this transformation law it is evident that Christoffel symbols do not constitute a
tensor value.
Let's differentiate the equity
PO (1.1.4.4)
ox'P
by x!
oA _ o' xoNt o XY,
ox! o ox'P oox! ox' ox'ox'P ox!

In the right hand let's change the second derivative by its values from (1.1.4.3)
o2x! ox' ., axt ooxt
—_—— =T, ———T,. 1.1.4.5
ax'Pax'd  ox' P axPoaxe © ( )
After substitution we'll obtain:
i i rq rp i rq rq t S )
6A' _ O ax. oA N axl ax' Fqu,p_ﬁx' X' OX AP
ox! ox'P ox! ox'?  ox" ox! ox! ox'P ox'd
From it is clear that:

O o, ox axY[oAT
§+ijA me(ax—,q'Fr{/qA (]]46)
Thus, the tensor value is not a simple derivative of the vector A’, but the values
i OAi i
A,IJ:aX_j—i—r;JjAp, (].].4.7)

which are called the covariant derivative of a contravariant vector.
In full analogy is determined the surface derivative of covariant vector A;, in particular

AL,
From which it is clear, that:
oA OA;
A, -A L =— 1 1.1.49
PO ek X ( )

The covariant derivatives of tensors of the second order are determined according to
following equities:
oA i OAY
Ajic=—0 Tk Ay —TRAy . Aj=—r
OX OX
: (1.1.4.10)

Co o OAT .
+T AP + T AP AL :ax—;Jrr;,kAJP —TRA,-



These formula are easily generalized for tensors of second order.

1.1.5. CURVATURE TENSOR AND
TENSOR OF RICHI [1]

Let's differentiate (1.1.4.5) according to Xx'":

9%’ oxt ol axt ox® oxk ey,
= - +
ox'Pox'9ox'm  ox'! ax'" ox'P ox'% ox'" oxk
o%x' o2xt Xt . o2x®  oxt

+ I pq ts ts
ox"'ox'" ox'Pox'" ox'd ox'%ox'" ox'P

If here we substitute the value of the second derivatives from (1.1.4.5), permutate the
indices q and r and exclude the third derivative, finally we'll receive:

k S t
Kk _oxoxt oxt ox

i = 5 2 o] o (1.1.5.1)
where:
ory oy
“ :g}—a—xlfJfEFTE ~TPTy (1.1.5.2)

k.o )
R™ i —is expressed through T;*.
From (1.1.5.1) it is clear that Rkij, constitutes one-time contravariant and three-times

covariant mixed tensor of fourth order. In literature, according to Reimannian geometry it is
known as a curvature tensor or tensor of Reimannian. From the structure RkijI it is easy to

notice that the components of curvature tensor are antisymmetric relative to indices j and I,

ie.
R =-RY; (1.1.5.3)
Convolution R¥; according to indices k and | will give a covariant tensor of second order:
R; =RY Z%—i—jﬁif% -TfTy,, (1.1.5.4)
which is called a Tensor of Richi.
By means of Richi tensor it is possible to form a spectrum:
R=g"R; (1.1.5.5)

known under the name of velocity curvature.

1.2. SOME MAIN ELEMENTS OF GEOMETRY OF NONHOLONOMIC TRANSFORMERS

1.2.1. NONHOLONOMIC TRANSFORMATIONS
NONHOLONOMIC TENSOR ALGEBRA [2,3]

In previous paragraph there have been considered some main problems of Riemannian
geometry, according to which an inner structure of the space unambiguously is characterized
by metric tensor g; . Readdressing of points, i.e. transition from one state of reference system

SR(x*, Ikg) into another does not change the geometrical features of the space, to be invariant are



left such parameters, as: length of vector, angle between two vectors, etc. which can be
determined by means of direct measurement. In this respect, all the reference systems SR(x*, Ikg)

are equivalent. Such reference systems in future will be called holonomic.
Let's consider the reference system of more common type of SR(xk,(E) in which E is the

arbitrary linearly independent 4 vectors. According to (1.1.1.28) the components of some
contravariant vectors A“ in SR(xk,(E) are of following type!:
e

k k p
A= AT, (1.2.1.1)
where:
e et e €
1 1 1 1
k AX Q0 ol g2 g
_ 1 |2 2 2 2
ok =20 A= (1.2.1.2)
N e et e €
3 3 3 3
e et e €
4 4 4 4

And A% - an algebraic addition to the element e, in a determinant A . Completely similarly, in
SR(xk,ék’) well have:

A =aj A (1.2.1.3)

where:

1]
- (D
D
=MD

0 1 2 3

N D
N D
N D
N D

#0

0 1 2 3

w (D
w D
w D
w (D

0 1 2 3

~ @D
» @D
~ @D
~ @D

And A¥ —is the algebraic addition of the element €' in the determinant A’. It is obvious, that

1

e'af =6, e af =6, (1.2.1.4)
p p
According to (1.2.1.4) and (1.2.1.1) we have:
’ép =EP A¥ (1.2.1.5)
Substituting this value in to (1.2.1.3), we'll receive:
A =al AP (1.2.1.6)
where,
ay :agfp (1.2.1.7)

These a, coefficients determine the transformation law not only of contravariant vectors,

but of any tensors, independently from their character and order.
From (1.2.1.7) with allowance of (1.2.1.4) , we have:

' To differ the values in various reference frames we'll apply temporarily the lower indices "e" and "E". For example

. . . ~ Ko =
A* is a contravariant vector in the system SR(x*,&) and A"—in the system SR(x*,E).
e k E k



e a’=e' and e =3a’e (1.2.1.8)
p K K p
o (1.2.1.9)

where,

af H — is a reciprocal matrix of the matrix Haik H .

dx' — is an infinitesimal contravariant vector in the system SR(x*, Ikg) . This vector we shall

refer to a point with the coordinates x*. Components of this vector in the reference system
SR(xk,g), according to (1.2.1.1) will be a';dxp. These infinitesimals comprise 16 function

af (X%, x*,x?,x%), which, to say generally, do not meet the requirements of differentiability of
considered infinitesimal components, i.e.:
daf  oaf
ot
OX oX
That is why, in such cases, the values of a§dx" are not the differentials of some functions.

(1.2.1.10)

Thus to the infinitesimal contravariant vector, dx* the components of which are exact
differentials in SR(x*, Ikg) ,in SR(x* ,g) — correspond as well to the infinitesimal components:

dx =akdx” (1.2.1.11)

of which in force of (1.2.1.10) are not exact differentials of some functions [4].
In full analogy, the components of considered vector in SR(X",(?( ") are determined by the
equities:
rk

dx =ajdxP (1.2.1.12)

e
which are infinitesimal, but not the exact differentials.
From (1.2.1.11) and (1.2.1.12), with allowance of previous equities, we have:

rk
dx =ajdx” (1.2.1.13)

rk
ie. dx* and dx are the components of one contravariant vector in SR(xk,g) and SR(xk,ﬁL "
e e

correspondingly.
It should be noted that the coefficients of transformations a/, according to (1.2.1.7), to say
generally, meet the following equations:
oaf oaj
— F—
ox! o ox'
In this connection (1.2.1.6) (or 1.2.1.13) in future we'll call nonholonomic transformation.

(1.2.1.14)

The holonomoic transformation (1.1.1.1), which is used in Reimannian geometry, may be as
well written in infinitesimal parameters:
ax/k
oxP

The equity (1.2.1.8) establishes the contact between the basic vectors g and (E ', that is why

dx'* dx P (1.2.1.15)

the nonholonomic transformation should not be explained as the transformation of coordinates
(thy, at the same time can remain unchanged) but as a transformation of basic vectors.
Here, it should be mentioned one important circumstance.



rk
According to (1.2.1.7) af are the composition of ¢ and o/ (or e“ and e ) functions,

meeting the requirements of (1.2.1.10) that is why in some cases «{ functions can meet the
requirements of integrity (holonomicity)

cak oal

a0

For example, if o (or (kak) are the prescribed functions than it is always possible to select

(1.2.1.16)

rk
such a/* (or e ) functions, for which the conditions of (1.2.1.16) for af are fulfilled. Really,

selecting in advance such af functions, which during all fixed values of the index "k " meet the

requirements of (1.2.1.16), than the corresponding values of the function «/* are determined
from (1.2.1.9).

In such cases any contravariant vectors including the infinitesimal contravariant vectors
(infinitesimal of dx* and dx'*, are not the exact differentials), are connected between each
other by means of holonomic transformations.

Let's admit that u(x’,x",x%,x%) is a scalar. During transition from the point x* into point
x* +dx* it receives the increment

du :a‘i—”kolxk (1.2.1.17)

It is evident, that du is also a scalar, that is why its value in SR(XK,E) is not changed.
Similarly to partial derivatives, valid for SR(xk,lkg), let's introduce the partial derivatives in

SR(xk,eE) , as relation of infinitesimal du to d x*, when the whole d x’ =0, when j=k ie.:!
e e

aa_ukzdduk when dx!=0, j#=k
X X €
e e

If, here instead of du we'll substitute its value from (1.2.1.17) we'll receive:
ou  ou dx®

= 1.2.1.18
ox*  oax* dx* ‘ 4
For further transformation of this equity, let's use the (1.2.1.11), from which
dxP =ef d x’
j e
From here dx“ =0 and dx'=0 (j=k) isclear, that:
dx?
T = (1.2.1.19)
Than, from (1.2.1.18) we have:
ou_ _p U
p =e " (1.2.1.20)

In full analogy, SR(x" ,(i ") we have:

! For generalized partial derivatives, in the sense indicated here, in future we'll apply the symbol "6/ ax .
e



—e (1.2.1.21)

From (1.2.1.20) and (1.2.1.21) it is evident, that:

ou P o au
ax_'k_f P T (1.2.1.22)
Which, according to (1.2.1.8) is possible to rewrite thus:
o’ _gp OU (1.2.1.23)

a
rk k p
0X

6>e< A

This latter equity determines the transformation law of generalized partial derivatives of
scalar function during the transition from SR(x*, GE) into SR(x¥, ék .

In this connection, by analogy to the previous, the values of A constitute a covariant
e

vector, if its components A’ in the reference system SR(x" ,?i‘( ") are calculated according to the
e

formula:
(1.2.1.24)

'eAi :gip Ap

e
From (1.2.1.6) and (1.2.1.24) it is seen, that in case of nonholonomic transformations the
vector values are transformed completely analogously to the case of holonomic transformations.

These transformations differ from each other only by coefficients; In holonomic

transformations there are used aa)iik and 2%:, and in nonholonomic ones a‘ and a.
Tensors of nonholonomic transformations are determined in full similarity, in particular, if
: rkiky ..k _ Eialgi al;: eAplpz... Pn ,
Aty =808 A, (1.2.1.25)
Nl =alals. alatal. gl Al

kik, ..k . .
than A™?"™ —isa contravariant tensor of n order,
e

i T covariant tensor of n order, and
e tm
Kk, .k,

i, " — n-times contravariant and m-times covariant (mixed) tensor.
A n

As it was noted above, the length of infinitesimal of the curve ds is invariant value in all
reference systems SR(x", Ikg). Requirements to invariance ds in all reference systems SR(XK,E)

leads to the equities:
! rp rq

0= €' pq, Gre=g & gy (1.2.1.26)
From here, after exclusion a tensor g, we'll receive
E
g« =3a%, (1.2.1.27)

i.e. g,, —represents a covariant tensor relative to nonholonomonic transformations.
e



Length of a vector A' and cosine of an angle between two vectors A' and B* are
e e e

determined according to formula:

A’=eg A'A"
e e ik e e

g A'B' (1.2.1.28)
CoSa = £

These values are invariant.
From (1.2.1.27) we have:

g (1.2.1.29)

where, ais a determinant, composed of elements aik. On the other hand, from (1.2.1.13) we
have:
10 11 12 r3 0 1 2 3
dx dx dx dx =adx dx dx“dx (1.2.1.30)
Comparing (1.2.1.29) and (1.2.1.30) we'll receive:
10 11l 12 13 0 1 2 3
Joldx dx dx dx =oldx’dx'dx*dx® (2.2.1.30)
i.e.
lgldx°dx'dx*dx’ (1.2.1.31)

invariant. It has an important application in calculations of integrals.

1.2.2. ELEMENTS OF NONHOLONOMIC
TENSOR ANALYSIS [3,5]

The main parameters of tensor analysis of Riemannian geometry, as it was shown above,
are the symbols of Christoffel, that is why this paragraph we shall start with generalization of
these symbols in case of nonholonomic transformations.

In SR(XK,E) the Christoffel symbols let's formally determine completely analogous to the

reference system SR(x*, Ikg) :

1 09y, 00, 00y
{f==qg*®| & 4+_2& __¢ 1221
=597 2 " a0 ax (1.22.1)
e e e
rk
If we apply (1.2.1.27) for T j we'll receive:
e
rk S 09 pq
r'y=-akal g™ (@ asa +arata —arara) )=+
e 2 e ax!l’
e
mn oa’ oaf oa’
+=ana; g 5 al,j +3j I,i -3 al,l pgt
) dX dx ox |°



= q = q
1 kol qmn| = oa’ = da; 0a|
= p 4 P _gp T
+2amang F® ,j+a, - i gpq.
oX 0 X oX
e e e

With allowance, that aipﬁ:j =55, than from this it follows:

ko gam  aaj
2[1; ij—a,ﬁaipaﬁle“’;q):ar'; —"J-i——J” +
0 X 0 X
) ) (1.2.2.2)

T MY

. . 1] ax| ri 7l

0 X A 0X 0X

e € €

This equity determines the transformation law of symbols of le“:] obtained according to
(1.2.1.1) relative to nonholonomic transformers, i.e. while transition from SR(XK,E) into
muh@.

Let's introduce the notation

—k =k
_ ik _ 08 + aai_

77i,jk =i =— 3 it
ox  0X
e e
«_  x_ o0& 0af
a}ljk == j:( = I,j __J'i
ox  0X
e €
Than from (1.2.2.2) we'll receive that:
1 ki ' —
nijk = _arl1 g " g pq(a|pa)qu +ajqa)llp)+
e e

N ] (1.2.2.3)

as well

L2+ o) (1.2.2.4)

System of (1.2.2.3) consists of %nz (n+1) of the equations, which comprise

1 2 1 2 3
—n“(nh+D)+—=—n“(n-1)=n
5 ( )2 (n-1)

rk

that is why the parameters o], number of which equals to

being unknown ni'jk and w'¥ i

ij »
Enz (n—1), can satisfy the definite additional conditions of calibration. Here, we shall consider

one of the possible terms of calibration, which from all-possible reference systems SR(xk,(E),

connected between each other by nonholonomic transformations, distinguishes one of special
subclasses. Group properties corresponding to nonholonomic transformations will be discussed
in the following paragraph.

Let's admit that ¢, and y' are two prescribed vectors relative to nonholonomic
e e

transformations, meeting the following term:



(eoil/e/i = (1.2.2.5)

where,  —is some invariant, constant value. From all-possible reference system SR(x*,€&) we'll

distinguish only those, which are connected with each other by nonholomonic transformations

meeting the following terms of calibration:
L | P Sy (1.2.2.6)
ox! ox' n "e |ox! ox
e e e p
where, 7 — some constant value in reference system SR(x (E)
This term can be written in a short form:
1
of ==asy"Fy, (1.22.7)
n e ¢
where,
op; 0@ j
e e
Ie: =T (1.2.2.8)
e e
Itis evident, that F ;=-F ;.
e e
Taking into account the vector character ¢; and y', it is easy to establish the
€ e
transformation law of the values F;, in particular:
o9 » 09 q oaP oal
F“=alp € _aq ei +¢)p I. - i =
e ox! X ox’  ox
e e e e
Opp O@q L
:aipa? e_,q_ e,p t—@Q oy F ij
ox ox | e e ¢
e e
Taking into account the (1.2.2.5) we have
F -1 afal F (1.2.2.9)
e n-
i.e. F; —isa quasitensor relative to nonholonomic transformations of considered type
K €, let's

e
With the aim to establish the terms of calibration in reference system SR(x

multiply the (1.2.2.6) by afa.a) and summarize according to indices k,i and j, we'll receive
op; O¢ i

: oa, oa,
~aa)al e at Bl tgiglyl| et
n e | OX oX
h

ax’ Jax

from it, according to (1.2.1.23) and (1.2.2.9) we'll have:

— = |

BB Lalaly aral

0 X 0 X n=F ) e

e e

or
—1 = |
6amn—aa"m= Ly Fm-saly P Fm,  (12210)
ox  ox  MTH e e o
e e

where:



n'=n-p
A new constant value in the reference system is SR(xk,(E) . From it, and from (1.2.2.9) it is
evident that S F ; is a tensor.
77 e
In case when 77—« the (1.2.2.6) becomes a holonomic transformation and from (1.2.2.9)

!
we'll receive F;=afajF q, i.e. F; tensor relative to holonomic transformations. As well,
e e
during #=0 F ; tensor relative to considering nonholonomic transformations.
e

From (1.2.2.3), (1.2.2.4) and (1.2.2.8) by means of simple computations it is possible to show
the validity of the following equity:

k

T=agHP -afaH (1.2.2.11)
oX
e
where,
k 1 k 1 k k
dnpe ot agll e L T (1.2.2.12)

pk p k
g |p’ V/ gipl{’HljiHjl’

e e

and Hi’jk is the same expression in SR(x*,&").
k
Let A' —is a contravariant vector relative to nonholonomic transformations of considered
e

partial type, than

-
N =g
Hence:
P
oA ~ O0A 'p 0a
——=aja] *——+a
XJ P rq I rq
A OX X
e e
al
In the first part of this equity let's change it by its value from (1.2.2.11)
X
e
) p
oA _ q@A . — 'p
e _ =7l ' r=~/¢
aXj_apaj +a,a H, A —ajap qH ,eA .
X
e
e
Hence, it is evident, that
"
o -l S
€ 1 —_ 7l e
P +Hpj£\ =a,a; " +H4q£\ (1.2.2.13)
A oX
e
This equity shows that the values
oA
Al =——+H AP (1.2.2.14)
e ox’ ¢

relative to nonholonomic transformations are transformed as components of mixed tensor of
second order, i.e. they constitute a mixed tensor of second order. In this connection A'; are the
e



value, in future will be called covariant derivatives (in generalized sense) of contravariant
vector.

In full analogy are determined the covariant derivative tensors of various orders, in
particular:

oA
— €
Al T ax! ALY

el ax!
e
oA,
A= CHPA L —HPA
A ik, j— an — A pk kjeip'
e
oA K .
Al =——+H AP-HP A . (1.2.2.15)
e ox’ e ep
e

From these expressions it is evident that the symbols of H in nonholonomic tensor

analysis play such a role, which are played by the symbols of Christoffel in holonomic tensor
analysis.

. 1 . . .
Above it was shown, that —F; is a covariant tensor, that is why the summand
n

%(1// SR +y Fl+y F rj —in the right hand side of the equity (1.2.2.12) — is a mixed tensor of
7\ e e € e €

third order. Taking into account this fact from equations (1.2.2.14) and (1.2.2.15) it is evident,
that if in the right parts of these equities Hj is changeable through I'{ than the obtained

expressions, according to the physics coincide by form with the classical covariant derivatives,
as well they are tensors.
From (1.2.2.14) and from the first equity of the system (1.2.2.15) it is evident that

| oas,)
(A'B,) “A'B+AB, =—2 ¢
e e Foede e e ) ox’?
oo (1.2.2.16)
o | 8(A'Bi)
i _ P __‘e e
B HE A

Using the third equity of the system (1.2.2.15) relative to covariant metric tensor ¢ , , we

obtain:
09 i 1 09k 09k 00y
_ e e e e
9k,i=—=_ 3 5 T T Lok |
e O X 2| ox oX oX
e

e

B
2| ox*  ox!  ax' | 4y
e e e

viF wty Pty iF gty F ji"H//ijijzo'
e € e © e © e

e €

In full analogy it is possible to show, that g %=0.

Thus,



e

As it is known [1] always is possible to select such a SR(x*, Iki) , that in a given point of the
considered space all the Christoffel symbols are equal to zero. The similar circumstance takes
place for the symbols H.

If SR(xX, Ikg) and SR(x'¥, Ikg) are two reference systems provided that

k _ kK rk K w'py’q k rpyrgyrr
X=Xy + X7 +Cpg XX +Cpp XXX+ L

are the constant

where, x¢§ — are the coordinates of fixed point in SR(xk,Ikg) ,and Cf,,CK ..

values. It is evident, that in SR(x'¥, Ikg) for coordinates of the point x§ will be x'* =0.

k rk 2,k
aL_ :5ik, ax =5ik, ax - :Clij(
aX!I X,i=o axl Xi=xli) axllaxlj X,i=o

The considered transformation is holonomic that is why the coefficients of transformation

In this point:

a‘ and a have such a form:
ak _ 8X’k —k _ an
T

With allowance of this from (1.2.2.11) for Hi'jk we'll obtain the following transformation

law
K oxPoax® ax +6x’k o%xP
ot axd axt M axP ax'ox’!
These equities in the point x* =x§ (or x’* =0) is reduced to the following equities:
'k gk k
Hi" /o= Hii [ oo +Ci
and, if
k _ k
Cij __Hij x=x}
Than
rk _
Hij x":O_O

i.e.in SR(x'¥, Ik§) in point of x'' =0 the symbols Hi’jk are equal to zero.

After the above-indicated generalization of covariant determinants we'll use the
generalization of curvature tensor of fourth order. With this aim we'll rewrite the main
equation of the whole nonholonomic tensor analysis (1.2.2.11), with allowance of (1.2.1.21),
we'll in the following form:

L -
_akygrp _mpaapgk
e —-=a,Hi’-g"a'H,
¢ OX
From this it is evident, that
oa;’ _ s
—=ajaH —afafalH g
OX
or, according to (1.2.1.9) we have:
oa;’ _ _
—_—g'akH/" —a'a’HX (1.2.2.18)
ox j%ptlit j i pt

Let's differentiate this equity (in general sense) according to x ', and the equity



ox'
which is obtained from (1.2.2.18), if we substitute the index j by the index f , differentiate by

_ o rt=kpgrp t=ppk

x, and then from them exclude the second derivative
o’ak
axlox"
After some transformations, with allowance of above obtained main equities, we'll finally
receive:

Rit =afa’a’aj R o, (1.2.2.19)
e e
where,
OHYX  OH¥
B:}f: axl‘f _axlfj HiHS —HIHK +
e e
(1.2.2.20)
oal oal
FHEeg S5 ey S
X o0X
e e

rk
and R i —is the same expression in the reference system SR(x*, (31( .
e

From (1.2.2.19) it is clear, that R Ef are the components of a tensor of fourth order relative
e

of nonholonomic transformations of considered type. In future Rf will show by
e
nonholonomic curvature tensor of the fourth order.

From (1.2.2.20) it is clear, that R :}f =-—R :}j i.e. nonholonomic curvature tensor, analogous to
e e

the previous one, is antisymmetric relative to the index of j and f .

Here we shall not study the main properties of this tensor, so as for final aims of this works
sufficient are only several.

By means of mixed curvature tensor of the fourth order it is possible to form various tensor
values, in particular:

Nonholonomic covariant curvature tensor of the fourth order:

B kijf = 9 kpB i (1.2.2.21)
e
Nonholonomic covariant curvature tensor of the second order:
OH™  OoH"
Ry=R = o HHG —HIHE, —EHG, (1.2222)
e e
where

K k

Ef —er 0% _orlar (1.2.2.23)

From (1.2.2.22) it is evident that R ;#R ;.
e e
Nonholonomic scalar curvature:

(1.2.2.24)

—_nPd
R=g" R
e
k
0

Let's suppose that SR(x*, Iki) is such, that in the point of x§ the condition H{ =0 is valid.

In this point R ;. has such a form:
e



0% 9y azgij %9y

1
_ p_ 1 e e e
Bk”'_gkpgij'_Z ox'ox' ox*ox' ax*ox
e e e e e e
azgjk
: 1 a( j
R + = —= F.+v .F . +w F. |- 12225
ox'ox' | 4|ox! Wk T W ( /
e e e
0

From here, it is clear, that
R iij:_R kijl » R kilji— — R kijl R kijl = — R jlki (]-2-2-26)
e e e e e e
i.e. Ry; —isan antisymmetric tensor relative to i, k and j, I.
e

According to the results of the paragraph 1.1.1, the features mentioned here of
antisymmetry of a tensor R, valid in special reference system, take place in any reference
e

system.
If SR(xX, Ikg) is such that Hi'; =0 in the point x¢, than

K 0°Hj azHiij(

R |I,r: J r - | !
e OX " OX OX' OX
O2Hk O%H K
Ri= 5~ 1.2.2.27
e "M axdax! oxiex! ( )
RK = O*Hy _ o’Hil
e " axloxd ax"ox!
From this it's evident, that
R et R it R =0 (1.2.2.28)

This equity comprises exceptionally the tensor values and, that is why, is valid in any SR(x*, Ikg) .

The (1.2.2.28) is a generalized identity of Bianka. From it can he received other, more
elemental, identity. With this aim let's multiply by (1.2.2.28) g " 5! . With allowance of the fact,

that g%=0 we'll receive:
e

gij 511Ri?|,r =g’ Rij r Z(R5rj )
e e

where,
(1.2.2.29)

Soas R;#R ;,than R} %R, where R '=¢g'R .
eJ eJ e e e e

After substitution into (1.2.2.28) we have
G ik =0, (1.2.2.30)



where,

G =R —%5# R (1.2.2.31)
(1.2.2.30) is a generalization of known identity of general theory of relativity [6]. In
contravariant components the (1.2.2.30) has such a form.

GY« =0, (1.2.2.32)

where,

(1.2.2.33)

provided GY 2G"%, when R¥ 2R*.
According to (1.2.2.33) G" coincides by form with the tensor of Einstein, applied in
relativistic theory of gravitational field, however with allowance of the fact, the R, applied in

present work, is generalization of the tensor of Richi R , than G" should be considered as
e

generalization of Einstein tensor.

1.2.3. EH GROUP OF NONHOLONOMIC
TRANSFORMATIONS [3,5]

The above considered elements of tensor analysis are covariant relative to nonholonomic
transformations, meeting the requirements of calibration of (1.2.1.6) (or (1.2.2.7), (1.2.2.19),
corresponding to fixed functions ¢, and ', i.e. all reference systems SR(x" ,(E) , which are

connected between each other by means of nonholonomic transformations of considered type,
are equivalent. It is possible to show, that the considered nonholonomic transformations at
prescribed ¢, and y' constitute a group. With this aim let's consider two nonolonomic

transformations having the similar functions ¢, and y' and various constants 7' and 7":

Al

dx =aidx?, dx  =aldx (1.2.3.1)

ni

in which the function a'pi and aj

satisfy the conditions of:

f rk
aalik oa 1 IrkWIF

e”,

!

axl  ox 7 e
e e

P (1.2.3.2)
aa‘i _ aj :ia!rk [ F .
oxl ox e
e e
Combination of these transformations give one transformation
mi . ’p
d X = a,d X (1.2.3.3)
where,

which connects the reference system SR(x*, (i ") with the system SR(x*, ek”).



Let's calculate

k
8ai" Gaj
rj - ri
o0X 0X
e e
From (1.2.3.4) we have:
oak  oa oalP aalf da"k da"*
ai _ J — nk a'i _ J +a_/p p _E{p p
rj ri p ] ri ! rj J i "
oX 0X 0 X 0X oX 0X
e e e e e e

Let's multiply this equity by a/) a/! and sum it according to indices i and j:

k k =P = P k k
riqgr] aa'i aa'] _Atigtjqrk aai' aa'] aa;'n aa‘rl':
apd, | ———— [=aya,'a - — — |+ - .
rj rj p 1 ri axn axm
0 X 0 X 0X 0 X A A
e e e

e

Taking into account (1.2.3.2) and (1.2.2.10), we have:

K k
riar aa-i _aaj _ 1 tigrjarksrp
a,a, axj axi —ﬁ_n,amanap aq
e e

According to (1.2.2.9)

1q ' 1 K
- p
74 F |J+—”a"’) 774 F mn
e © n e €

on

. . ’
anal) Fjj
n'-p e

F mn=
e

Substituting this meaning F . into the second summon of the right hand side of the last
e

equity and replacing y° through a;"y*, we'll get:

k k !
a#]a;}] aal __ aaj _ a,ia,j( 1 + 77 1 ]aukg!p l//'q FV”
e e

ox ax | \B-n" =gy )" "
e e
From here, with allowance of (1.2.3.4) we finally have:
.k aak p ’
aa‘. ] iE:lkl// F ij
rj r p e
ox ox T e
e e
where,
n=n L7
n-n
In full analogy, it is possible to show that:
aa_k aajk 1 x np n
—:!j_ i ::apl// E >
ox ox M e
e e
where: ﬁ:n'ﬂ_n ie. 7=8-n.

(1.2.35)

(1.2.3.6)

Thus, combination of two nonholonomic transformations satisfying the condition of
calibration of (1.2.2.6), constitutes as well the nonholonomic transformation of the same type

with the constant 7, defined according to (1.2.3.6).



Besides, the transformation of the considered type comprises the identity transformation.
. i 1
Really, the transformation of d x =d x' corresponds to the case —=0, and thus belongs to the
e e 77
transformation under consideration.

There is available the inverse transformation. This property is a simple consequence of
requirement of det(af)=#0. From it, it is clear, that the nonholonomic transformation of
considered type constitutes a group, which in future we'll call the £H group of nonholonomic
transformations.

At specified g and 7’ it is always possible to find such a value of 7", for which l=O.
n

Really, from (1.2.3.6) this takes place at
n"=n' (1.2.3.7)
In compliance to (1.2.3.5) to such a value 7" corresponds a transformation, meeting the
requirements of

kK 5ak
A (1.2.38)

1] ri
0 X 0 X
e e
and if the reference frame SR(xk,(E ) coincides with SR(x, Ikg), than the transformation with
the coefficient af is holonomic. Provided (kai =, and, according to (1.2.1.20) condition (1.2.3.8)

is reduced to the conditions of holonomicity
K k
o _ aii =0.
r] ri
OX X
Thus, combination of two transformations of considered character, corresponding to one

and the same value 7, constitutes a holonomic transformation.
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CHAPTER II

ELEMENTS OF RELATIVISTIC KINEMATICS



Any physical phenomenon runs in four-dimensional space signified as + ———, i.e. in four-
dimensional space-time variety, and consequently only such spaces will be further considered.
The subject may investigate the physical phenomena based on application of rational - for a
subject - notions, as: time, distance, direction, velocity and movement acceleration, etc.
Coordinates used for point addressing, in general case, will not reflect the essence of these
rational notions (these are dimensionless numbers), that is why it becomes necessary to draw
those main equities, that allow to define the mentioned parameters, depending on metric
properties of four-dimensional space-time variety.

The authors will try to define in this Chapter the most common expressions for calculation
of kinematics parameters, justified for any four-dimensional space-time variety (both plane and
bend), as well as for any coordinate systems describing the investigated four-dimensional space.

Expressions yielded below for calculation of time and distance are valid and then, when
none of coordinate lines is timelike, and g <0. In that particular case, when one coordinate line
is timelike, the common expressions coincide with known expressions [1,2,3].

Such generalization should be recognized as natural, so as from geometric viewpoint it is
not important what coordinate lines will be used by us while describing four-dimensional
space-time variety, important is that the four coordinate lines would not be laying
simultaneously in subspace of n-measurement, where n<4.

Investigation of major kinematics issues have shown that for any study of issues related
with calculation of metric characteristics of four-dimensional space is reduced to study of
resolution of differential equations in partial derivatives of first order. In this connection, in
order to present the subject in full, this Chapter will have additional paragraph dealing with
elements theory of differential equations in partial derivatives of first order. To put it briefly,
the method of characteristics will be reduced to discussion, excluding its geometrical
interpretation. These issues are discussed in detail in [4,5,6].

2.1 SOME ASPECTS OF DIFFERENTIAL EQUATIONS IN PARTIAL DERIVATIVES OF
FIRST ORDER

2.1.1 LINEAR DIFFERENTIAL EQUATIONS
IN PARTIAL DERIVATIVES OF FIRST ORDER

The differential equation

Sa, M _a,, (21.1.1)

K= an
where, a, (x*,x?,...,x",u), a,(x*,x,...x",u) - are prescribed functions of their arguments, and
u(x, x2,...,x") - the sought function is called quasi-linear differential equation in partial

derivatives of first order.
. . . ou .
In the n+1- dimensional space of variables x*, u the values a—k-l constitute a normal
X
vector to surface u(x',x%,.,x")-u=0, that is why, as per (2.1.1.1), the coefficients a,,a,

represent the components of tangent vector of the same surface. According to this prescribed
vector power lines x*(s), u(s) can be constructed, belonging to indicated surfaces



dx* _ ou

s ¢ as

This system of ordinary differential equations is called a characteristic system for (2.1.1.1).
If a, =0, and coefficients a, do not depend on u, then from (2.1.1.1) is yielded:

ou

a, (2.1.1.2)

This equation is called a linear differential equation in partial derivatives of first order.
Characteristic system of equation (2.1.1.3) is as follows

dx* du
—=a , _— 0 2. ]. ].4
ds “ ds ‘ 4
Since a, doesn’t depend on u, a it is reduced to system:
k
% _a,, (2.1.1.5)

which constitutes a complete system of ordinary differential equations in relation to x*. Any
function of ¢(x',x%,...,x") is called an integral of this system, if

(/)[Xl(s),XZ(S),...,X"(S)]:COHSI, (2.1.1.6)
where, x*(x) —is a solution of system (2.1.1.5). Integral of system (2.1.1.5) can be formed as
follows: assuming that one of a, coefficients differs from zero, i.e. condition of

> af#0 (2.1.1.7)
k=1
is valid.
Assuming that such coefficient is a,, we'll rewrite (2.1.1.5) in the following way:
k
OC 3 _12..n-1 (2.1.1.8)
dx" a,

In accord to the theory of ordinary differential equations [5], this system has common solution
at rather general conditions relative to coefficients:

x*=y*(x",C,,C,,..C,,) k=12,..,n-1 (2.1.1.9)
where, C,,C,,..,C,, —are arbitrary constant integrations. y* functions admit solubility of this
system in relation to C,;,C,,..,C,, constants:

o (X' %%, x")=C,  k=12,..,n-1 (2.1.1.10)

n—1 functions of ¢, (x',x’,..,x"), determined as per procedure mentioned here, represent
themselves as functionally independent integrals of systems (2.1.1.8) or (2.1.1.5). Functional
independence of ¢, function is the result of method of their determination, in particular,
whereas (2.1.1.9) and (2.1.1.10) — are identity systems, than (2.1.1.10) is resolved in relation to
x!, x2,..x"" variables and that is why rank of matrix

op, O, oy

oxt axt T X"

0P, 0P, 0P,

axl aXZ axn (2.].].]])
a(Dn—l a(/Jn—l a¢)n—1

oxt oaxt T X"

is equal to n—1.



Any function of F(¢,,¢,,..¢,4) is also an integral (2.1.1.5), however it is in functional
dependance on preceding functions. It is easy to show that system (2.1.1.5) has no other integral
independently from ¢,,9,,..9, ;. Actually, if we assume that there is integral ¢, (x*,x%,...,x"),

independet from ¢,,¢,,..9,; , than we'll get that
det(é—(pk‘] #0
OX

0p, o dx* & O, :
[ ! =Ya——=0 i=12,..,n 2.1.1.12
s kz;‘axk ds é “ oxk ‘ /

representing the linear algebraic (homogeneous) equations relative to a,, it follows that
a, =0 k=12,..,n, and this contradicts to condition (2.1.1.7). In accord to (2.1.1.7) the
o9,
o+

Than from evident equaties

condition of det( )z 0 should take place, from which it follows that ¢, function depends on

@1, @y, 0o - Besides, it can be obtained from (2.1.1.12) that any integral of system (2.1.1.5)
satisfies the linear equation (2.1.1.3). Reverse proposal is correct: any solution of equation
(2.1.1.3) is an integral of system (2.1.1.5). Indeed, if we in (2.1.1.3) changes x* by x*(s) solution

k
of system (2.1.1.5), and a, is changed through ddi, then we'll get 3—“:0, i.e. u=const at
S S

x* =x*(s), consequently u(x',x?,...,x") is integral of system (2.1.1.5).

Thus, equation (2.1.1.3) has n—1 functionally independent solutions. These solutions of
equations of (2.1.1.3) give all independent integrals of system (2.1.1.5); inverse independent
integrals of system (2.1.1.5) determine the independent solution of differential equation
(2.1.1.3).

Quasi-linear (2.1.1.1) may be reduced to linear, if dependence between sought and
independent variables is represented as implicit function

F(u,x', x%,..,x") =c, (2.1.1.13)

where, ¢, — is some constant. Hence, with allowance that u is a function of x',x?,...,x", we'll

get:
oF
o
o - o (2.1.1.14)
ou
After substituting we'll get:
Sa, o (2.1.1.15)

k=0 X
where, u function is denoted through x°. Such differential equation will take place not for any
x°,x',...,x", but only for those which meet the conditions of (2.1.1.13), and due to being set

with (2.1.1.13) are not linear. However, considering independently (2.1.1.15) as a linear

n

equation for any x°x',..,x", we'll define some function of F Xo,xl,...,X”), after that the

n

variables x° x%,..,x" should be limited as per equity (2.1.1.13). Function u (in inplicit form)

defined this way, will satisfy the equation (2.1.1.1), so as according to (2.1.1.14) being sequence
of (2.1.1.13), the equations (2.1.1.1) and (2.1.1.15) are identical.



2.1.2 CAUCHI PROBLEM FOR QUASI-LINEAR DIFFERENTIAL EQUATION IN PARTTIAL
DERIVATIVES OF FIRST ORDER

In space of n+1 dimensional variables x°, x%,..,x", u we shall determine some variety of

n -1 dimension:

K _ ok _
X =x(0y, 0500 0ny) k=120, 2.121)
U=u(0;, 0y 0nq),
x* au - i i i
where, o 0 (k=12,..,n, i=12,.,n-1) - are continuous functions of their arguments,
a4 oG;

k

and rank of matrix is equal to n-1.

The essence of Cauchi problem for quasi-linear differential equation (2.1.1.1) concludes in
the following: to find such a solution of equation (2.1.1.1) u(x' x%,..,x"), which at
x* =x*(q;,9,..9,,) coincides with function u(q,q,,.,q,,), determined by (2.1.2.1). This
problem can be formulated also in this way: to find solution of differential equation (2.1.1.1)
that is running through variety (2.1.2.1).

Solution of the Cauchi problem can be implemented by application of characteristic system
(2.1.1.2), in particular, let

x* = (s,¢y,Cq,0.C,) k=12,..,n, (2122)
u=1°(s,cy,C,.C,) —
is general solution of characteristic system (2.1.1.2), where c,,c;,..c, - are arbitrary constants
of integration. Let's select them as functions ¢q;,q,,...,q,; of parameters in such a way that at
s=0 x* coincide with x*(g,,q,,....q, ), and u—u(q,,d,,...d,1)>
v (0,¢0,C1,0,C) =X (0], 0y e G y) kK=12,.,0,
¥°(0,C4,C;5,Cy) =U (0, Az s Ay )
In accord to theory of ordinary differential equations [5], functions

(2.1.2.3)

w* (5,Co,Cq,onCp) (k=0,1,2,...,n) are differentiated not only according to parameter s, but in
accord to all ¢, (k=0,12,...,n), and system (2.1.2.3) has the only one solution in relation to ¢,
parameter.
If solutions of system (2.1.2.3) ¢, (;,0,,..,0,) is substituted into (2.1.2.2) than we'll get:
XK =" (5,044,050, 05y ) k=12..,n,

U=0°(5,01,Gp1r Uy 1)
This system is to determine solution of the Cauchi problem in parameter form, provided that

(2.1.2.4)

the condition

a a, a,
oxt ox? ox"
k — —_— e
det(aqo J: oq, g O | 40 (2.1.2.5)
oxt ox? ox"
00y Opy 00Uy,

is valid only in points of variety (2.1.2.1) (i.e. at s=0).



By force of continuity of all elements of determinant, this inequity is in force in certain
vicinity of variety (2.1.2.1). Than in this vicinity of equity x* =¢*(s,q;,9,,...,0, ), reversed in
relation to variables s,q;,49,,..., 4, i.e.

s=s(x',x%,...x"), g =q(%%,.x")  i=12,..,n-1,
which upon substitution into the latter the equity of system (2.1.2.4) determines solution of the
Cauchi problem u=u(x',x?,...,x"). Actually from the obvious equity
du & ou dxt
& ok s
in accord to (2.1.1.2), we'll have
Zn: A a_uk =%
kel OX
It follows from (2.1.2.5) that system (2.1.2.4) is in the only one way solved relative to variables
S,0;,05,.--, 0, ; It means that in the vicinity of variety (2.1.2.1) in which (2.1.2.5) is valid, the

solution of the Cauchi problem is unique.
In case when condition of (2.1.2.5) does not take place, i.e. when condition of

a a, A,
o ol o
aq, oo, |9 2.1.2.6)
-,
aq n-1 aq n-1 aq n-1

is valid variety (2.1.2.1) (i.e. at s=0) it means that there are such multitudes
4(9;,95,.054) 1=1,2,...,n -1, for which the following conditions are valid:

n-1 Kl k
8, => 4L k=12,.,n (2.1.2.7)
o 00
If, along with that, condition
n-1
=y 4% (2.1.2.8)
i 0

is valid as well, than the variety (2.1.2.1) is called a characteristic variety.

It is proved, that [4,10] in case when initial variety (2.1.2.1) meets condition of (2.1.2.6),
than for solubility of Cauchi problem it is required and sufficient that (2.1.2.1) was
characteristic variety. In this case the Cauchi problem is not the only.

Thus: a) The Cauchi problem for quasi-linear differential equation (2.1.1.1) has the only
solution provided there is such variety of (2.1.2.1) which is valid the condition (2.1.2.5);

b) If variety (2.1.2.1) satisfies condition (2.1.2.6) than to solve the Cauchi problem it is
necessary and sufficient that variety (2.1.2.1) was a characteristic one. In such case the Cauchi
problem has infinitively many solutions.

2.1.3 THE CAUCHI PROBLEM FOR NON-LINEAR DIFFERENTIAL EQUATION IN
PARTIAL
DERIVATIVES OF FIRST ORDER

The non-linear differential equation in partial derivatives of first order has the following
form:



(2.1.3.1)

F[xl X2, X" U, — du ou GUJ

R
where F is some non-linear function continuously differential relative to its arguments.
Let’s consider the following system of ordinary differential equations relative to 2n+1of
variables x*(s), u(s) and p, (s)
dx* -
ds K E‘z k a
dL __oF oF

ds OXy P ou
where p,(s) k=12,.,n — are some functions of parameter s, and F - is a function of

Pi (2.1.32)

arguments X<, u, P, > determined in accord to (2.1.3.1), in particular,

F=F,%%,...,x" U, Py, Pyrees Pry) -
(2.1.3.2) is called a characteristic system for equation (2.1.3.1).
It may be shown that if x*(s),u(s), p, (s) - is solution of a system (2.1.3.2), than

F[xl(s), X2 (8),.., X" (8),U(8), P, (8), P2 (8), .-, pn(s)]:const 2.1.3.3)
indeed, from obvious equity of

OF < OF o OF ou S0 OF dby

+ )
ds 4ox* ds  ou ds 45 op* ds

dx* du dp, \
if we substitute here the values = ds and o from (2.1.3.2), we'll get:

dF & OF OF oF & OF

ds k—157a U io ké’p

(2.1.3.4)

n

_Z [ aFj 0
“op, Laxk ¢ au '

i.e. (2.1.3.3) is valid.
Let

X“(S,0, 0,00 Ung) K=12,0001, U(S, Gy, 000, Uny)  (21.3.5)
n-1 - dimensional variety in n+1 dimensional space of variables x*, u, meeting the following

conditions:
ox" ou
a) 0 and — continuous functions of its arguments;
0 i

k

b) Rank of matrix equals to n—1.

The Cauchi problem for differential equation (2.1.3.1) is put in the following way: find such
solution of differential equation (2.1.3.1) u=u(x' x%,.,x"), which at x* =x*(q;,9,,....0,4)
coincides with u(q,,d,,....0,4), or in other words, it is necessary to find such solution to
equation (2.1.3.1) which runs through variety of (2.1.3.5).

For solving the Cauchi problem, as earlier, we'll apply the characteristic system of (2.1.3.2)
which along with variables x*, u also contains variables p, . Initial data for x* and u are
determined in the form of n-1 dimensional variety (2.1.3.5), and as far as initial conditions for

p, parameters are concerned, they are determined from the following system:



Zn: ax_ i=12,..,n-1,
aq, =i 'ag, (2.1.3.6)

F[X (G2, G2 e Opg )y UGy, Uz veves Gy pk(qliq2i"'!qn—1)]=0
The first n-1 equity of this system is called a strip condition, and parameters
X (01, Gy ees Gna)s UG, G0 s 1)y Pe(@15 G500 yq)  (K=12,...,n) —are strip coordinates.
Let's assume that this is a system from n equations relative to n independent variables
P (1,0z,, 0 q) K=12,...,n (function x*(q;,q,,...,q,,), and u(g,,ds,....q, ;) ) are determined per

(2.1.3.5), and has a single solution. Namely these functions determine the initial conditions for
p, variables.

Let
XK =" (5,€,,Cpr0e Copug )y U= (5,C1,Cp ey Copy ),
P =7 (5,C1,Cp00, Copny) k=12,...,n =
is a common solution of system (2.1.3.2), depending on c,,c,,...,C,,,; arbitrary constants of

(2.1.37)

integration. We'll select these constants as function of parameters q,,q,,....q,), thus, that at
s=0 the following conditions could have taken place:
Y (0,1,Cp s Conya) = X (A1, Az ey Ay,
W°(0,C1,Cenes Conig) = U(Ay, g e U, (2.1.3.8)
M (0,C1,C 100 Conit) = P (A1, G20 Upy ), K=12,01
System (2.1.3.7) is differentiated relative to s,c,,C,,...,C,,,; and is uniquely solved relative to
constants C,C,,...,Cp,,4 [3], consequently from (2.1.3.7) and (2.1.3.8) we'll get

x* =" (5,01, 0z, Unt)

U=0°(5,0y,0,0ps),  K=12,..,0
If variety (2.1.3.5) is such that condition of

(2.1.3.9)

op'  0p° op" | | OF  OF oF
o o T es | |oA R T oR
a_¢l % a(pn 8(01 8g02 agﬂn
o9, o9,  oq |=|oq, oq,  oq |#0(21.310)
oot 09t 00" | |ap" ap* o
aqn’l aqn*1 " aqnfl 8qn—l aC]n—l ) aQn—l

is met in all of its points (it also is satisfied in some of its vicinity in force of continuity of
determinant), than (2.1.3.9) determines solution of the Cauchi problem in parametric form.

Values of 8_F in the left side of this inequality contain p, k=12,.., n, which represent
P

solution of system (2.1.3.6).
When s=0, as per (2.1.3.7) and (2.1.3.8):

(Dk (0,0;,05 -1, qn—l):Xk(qliqZ ----- Uns)s

(I’O(Oa%aqz ----- Up1) =U(0;, 00y Ang)y K=12,.00,
i.e., functions (2.1.3.9) satisfy the initial conditions of the Cauchi problem.
Equations (2.1.3.7) and (2.1.3.8) determine also the functions:
P =@ (5,0;,05,-004) k=12,...,n, (2.1.3.12)
which at s=0, in accord to (2.1.3.7) and (2.1.3.8) satisfy the following initial conditions:
®,(0,0,,9,,0,1) = P (A1, 0y, 0y y) k=12,...,n (2.1.3.13)
Let’s show that (2.1.3.9) and (2.1.3.12) satisfy condition:

(2.1.3.11)



F(gol,goz e 0", 0°, @), @y ..., D, ): 0 (2.1.3.14)
Actually, in accordance with that ¢*,¢° ®, k=12,..,n -is solution of characteristic system
(2.1.3.2), than equation (2.1.3.3) is valid for them, i.e.:
F[(”k (8,95,9z,0ny)s (pO(S,ql,qz ----- Uns)s
®, (5,9;,d,..-,q,, ;)] = const
Hence, from (2.1.3.11) and (2.1.3.13), at s=0, we'll get:
lek((hv%v--v%—l): U(dy, e Upg)s
Pk (qlqu""lqn—l)]:ConSt
And in accord to (2.1.3.6), the left hand side of this equity is equal to zero, i.e. const=0. Thus,
functions x*, u, p,, determined in accord to equities (2.1.3.9) and (2.1.3.12) satisfy (2.1.3.14)
for any value of arguments s,q,,0,,....q,; - If, by that, it can be proved that
;Tuk: Py =@, (5,0;,05,40,4) k=12,...,n (2.1.3.15)
for any value of arguments s,q,,q,,...,q,_;, than we'll get finally that x“ and u, determined by
(2.1.3.9) represent a solution of the Cauchi problem. For this, let’s consider the following
expressions:

Wo = @ npjai’ W= ZH:J
ES o 0s of oq; (2.1.3.16)
i=12,.,n-1
where, x*,u and p, are determined in accord to equities of (2.1.3.9) and (2.1.3.12).
In conformity to characteristic system (2.1.3.2) w, =0. From (2.1.3.16) we'll have:
ow, ow, <(0pjax!  op; ox!
on o _(mon o)

os 09y 43\ 0q; Os os 0q;
_ on.
If we substitute here the values of 8_J and % from characteristic system of (2.1.3.2), than
S S

we'll get:

p; oF E)xj oF oF ox! ) .
2 —+p—— | i=12..,n-1
oq; op; aQi aq; ou aq;

From (2.1.3.14), on the other hand, we'll have:

n ] )
3 OF o OFou 0RO g 15 n1
ox! aq; ou oq;  op; aq;

=1
These last two equities give:
: n i
My P g O U1 01
os oul\fZ o9 oq
Hence, with allowance of (2.1.3.16) we'll get:
—+—w, =0, i=12,..,n-1 (2.1.3.17)

In accordance with (2.1.3.6), functions w;(s,q;,0,,....4,4) (i=12,...,n-1), satisfy homogeneous
initial conditions:
w; =0 at s=0, i=12..,n-1 (2.1.3.18)

from (2.1.3.17) and (2.1.3.18) it is clear that
w;(s,q;,09;,--.9,)=0, i=12,..,n-1

consequently (2.1.3.16) will have the form of:



Lo au & !
= Z Pis 3 =ija—,|=1,2 ..... n-1
-1 S 0 = oF

From parametric dependence between u and x*, determined by (2.1.3.9) we'll have:
, .
a_fmal w_gwal L,
65 j=1 aXJ s 6ql j=1 8x aql

Comparing the last two systems and with allowance of condition of (2.1.3.10) is valid, we'll get:
P, (S,0;,05,-,054) =8—L1, k=12,..,n
OX
Than from (2.1.3.14) we'll have:
F(xl,xz,...,x“,u u ey au j
ot ox
i.e., (2.1.3.9) satisfies the equation (2.1.3.1)

In accordance with (2.1.3.10) system of (2.1.3.9) is reversible through unique way relative
to variables s,q;,0,,....q,4. It means that in vicinity of variety (2.1.3.5) in which (2.1.3.10) is
valid, the solution of Cauchi problem is unique.

Let the variety (2.1.3.5) is such that condition

FoE
o, p, b,
o ol o
oq, g,  oqg, |=0 (2.1.3.19)
5os T o
00, Oy 00,4

is valid in its points, where p,(q;,d,,....,0,4) (k=1,2,...,n) represent solution of system (2.1.3.6).
Owing to continuity of determinant, this condition is valid also for some vicinity of variety
(2.1.3.5). It is clear from this equity that:
oF &
P _z (0,95, ,qn_l) =12,...,n (2.1.320)
k
where, 4,(9;,09;,.-,0,4) (i=12,..,n—1) are some continuous functlons. If, along with that, is

also valid the condition of
n

Zn:pk_ =>4

apk i=1 aql

. (2.1.3.21)
_a_F__ 2,1 pk . k=12,..n

where p, (k=12,..,n) is solution of system (2.1.3.6), than the Varlety (2.1.3.5) is called the
variety of characteristic strips.

It is proved [4] that if condition (2.1.3.19) is correct for variety (2.1.3.5), than for
availability of Cauchi problem it is necessary and sufficient that (2.1.3.5) were variety of
characteristic strips. In this case, the Cauchi problem has infinitely many solutions.

Thus:

a) If variety (2.1.3.5) is such that condition (2.1.3.10) is valid, than Cauchi problem for
equation (2.1.3.1) has the only solution;

b) If variety (2.1.3.5) meets condition of (2.1.3.19), than in order that Cauchi problem has
solution, it is necessary and sufficient that variety (2.1.3.5) be variety of characteristic



strips. In this case, the Cauchi problem has infinitely multiple solutions, and (2.1.3.5) is
variety of ramification of solution.

2.2 KINEMATICS OF NONHOLONOMIC TRANSFORMATIONS
2.2.1 DIVISION OF METRICS INTO
TIME AND SPACE PARTS

It was mentioned above that four-dimensional space-time variety this four-dimensional
space signifying +—-—— may be applied to describe such a variety distinguish any reference
system SR(x*,&*). From four-dimensionless numbers x*, it is not possible to coordinates, and
consequently, they can’t explain time and distance in three-dimensional space. Realization of
orientation in three-dimensional space in terms of time distance and direction, in these four
numbers is an independent and not trivial problem.

For instance, to determine the flow of time in some point of three-dimensional space, it is
necessary to have opportunity of fixing such point, i.e., in four-dimensional space-time variety
such world line has to be distinguished that corresponds to a given point of three-dimensional
space. Or perhaps, if it is required to determine distance between two points of three-
dimensional space, than we'll have opportunity of fixing their coordinates simultaneously,
having understood this word in definite meaning of this word. These requirements
implementing correspondence between diverted meaning and usual (rational) notions of three-
dimensional space and time, are realizable through application of intermediate, special
reference system in which the space and time parts of metrics are separated. Such separation is
realizable through various methods including the method of orthogonalization of time and
space coordinates.

Thus, the real four-dimensional space-time variety, which shall be further dealt with, has
signature of + ———; it means that

g =det(g, ) <0 2.2.1.1)

Let’s consider a fixed point of four-dimensional space-time variety with coordinates

x =const ;in this point g, are fixed numbers. Let’s draw a quadratic form in this point

i ok
| =g9,¢'¢", 22.1.2)
where ¢' is some contra-variant vector. As it is known, it is always possible to select [4] such
orthogonal transformation of vector
{=apl’? 2.2.1.3)
where ”a'p“ is a transformation matrix, and ¢'P - are new components of vector, that reduce

quadratic form (2.2.1.2) of vector to a canonical form.

In order to determine such transformation, i.e. to define a matrix Haip , let’s put the

following extreme problem: to find such ¢' parameters of value, which satisfy additional
conditions of

5, 'k =1 (2.2.1.4)
and minimize quantity | . Here

1 ati=k
S = ’ 22.15
* {o at i#0 ‘ /



When applying the Lagrangian method of indefinite multitudes [7], it is easy to show that
these extreme values of variables ¢ satisfy the following system of linear algebraic equations of
fourth order:

0.¢* -8, =0 2.2.1.6)
which in totality to (2.2.1.4) represent a complete system of equations in relation to ' and 4.
The (2.2.1.6) is a homogeneous system, that’s why in order that it has a nontrivial solution,
A should satisfy the following algebraic equation:
|9y — A0 | =0 221.7)
This equation has four roots 4, (k=0,1,2,3) which are called the proper value of matrix ||gik ||
One of these roots is positive (let’s note it as 4, ), whereas the rest roots are negative - 1, <0.
With allowance that g, =g,, it is easy to show [10] that all roots A, are valid, and
consequently valid are all solutions of system (2.2.1.6) relative to ¢, corresponding to separate
roots A, of equation (2.2.1.7). To four different solutions of 1,. of equation (2.2.1.7) correspond

to four different solutions of system (2.2.1.6) ¢!, provided the values ¢, for each fixed value
r are determined with accuracy of arbitrary constant multiplier the value of which can be
determined through application of rating condition of (2.2.1.4). In accord to symmetry of
metric tensor (g; =0y), these solutions ¢, constitute the orthogonal system of four vectors

Co.Cr.C, and ¢4 [10]:

9ulily =6, 0k =0 at  r=l (22.1.8)
Conditions (2.2.1.4) and (2.2.1.8) can be unified in the form of a condition
5ik§:'§li§ =0y (2.2.1.9)

In case of multiple roots, i.e. when A, =4, r=l (r=0,1+=0), the system of equations
(2.2.1.4) and (2.2.1.6) ambiguously determine the corresponding ¢* values, and at the expense

of remained degree of freedom it is always possible to achieve fulfillment of condition of
(2.2.1.8).

All solutions of systems (2.2.1.4) and (2.2.1.6) determine the matrix , based on which in

S
infinitesimals vicinity of selected point x* =const of four-dimensional space-time variety, the

linear transformation can be determined as per following equities:

dx* =ckdx’ (2.2.1.10)

In accord to it, we'll have:
gid X' d X = 9. ckdx oy (221.11)
With allowance of (2.2.1.6), we'll get:
g;.d x' dx* =Zgl/1,,6ik§ri,§|'fd X dx
A e e

This equity, in accordance with (2.2.1.8) and (2.2.1.4), is simplified and will have the following
form:

ok 02 1Y
gikd§ d>e< _,10,(dx ) +/11'(dx ) " (2.2.1.12)
+ Ay (dx'z)2 + Ay (dx,g)Z

Transformation of (2.2.1.10), which reduces the quadratic form of g,dx'dx* to a

¢t

canonical form of (2.2.1.12), is orthogonal, so as the matrix satisfies condition (2.2.1.9).




Along with transformation (2.2.1.10), the following transformation may be considered as

well
10 "
dx* =¢hdx +aldx g (22.1.13)
where,
ru o nv K okpgy
dx =bfdx , a,=¢,b7,
so that
Silyak =0 when =123 (2.2.1.15)

In this case

. 10 2 na np
g;.d x'dx"zﬂo,[dx j +rdx dx , (22116)

e

where,
ik
Vo~ Jik@a8p

With allowance that 1, <0, from (2.2.1.12) and (2.2.1.16) it is clear that |y |- is

negatively defined matrix, that is why any vector, for which dx’® =0 and dx"“ are arbitrary
e

infinitesimals — is space-like.

So as the matrix elements |¢}| generally don’t satisfy conditions of
k k
ock _og!
ax/l ax/r

for any values of indices k, r and |, than locally linear transformation (2.2.1.10), in all four-
dimensional space-time variety, represents nonholonomic transformation.

Through variation of infinitesimals of dx/, we'll describe some infinitively small interval of
four-dimensional space-time variety near fixed point x* =const. With allowance that in all
points of this small interval of the value of components of metric tensor g; slightly differs from
these very components in point x* =const, than this interval of four-dimensional space-time

variety, with high degree of accuracy may be considered as plane having constant metric
9i/ ,« =const,, and tangential of real four-dimensional space-time variety.

2.2.2 DETERMINATION OF INFINITELY SMALL INTERVAL OF TIME AND INFINITELY
SMALL DISTANCE

Dividing of metrics (interval) into time and space parts, defined through equity (2.2.1.16)
(or equation (2.2.1.12)), is realized in some small vicinity of fixed point x* =const, of four-
dimensional space-time variety, gy,4y and y,, are the constant numbers in this vicinity,

10 na
whereas dx and dx are arbitrary infinitesimals which don’t represent differentials of some
e e

variables x'° and x"“.
Let's assume that

no

dx =0 (or dx'a:O)



10 2
than in accordance with (2.2.1.16) (or (2.2.1.12) interval coincides with /10,(d X j , and

e

equalizing it to c®dt?, we'll determine the infinitesimal interval of time
0
dt = %M ax’ | (2221)

referenced from some moment of time per hour placed in fixed point of three-dimensional
space. Moment of reference of interval of time dt and location of hour in three-dimensional
space correspond to selected fixed point x* =const of four-dimensional space-time variety.

In this connection, it should be noted that by means of nonholonomic transformations, it
is possible to achieve fulfillment of definite requirements relative to vectors, such as, for
instance d )e(k , and not relative to coordinates. That is why, when applying the nonholonomic

transformations it is not allowed to fix the location (coordinates) of bodies (clock) in standard
three-dimensional space as well as it is not possible to fix the moment of time in some point of
three-dimensional space. In considered case, only intervals of time and space between two
points in infinitesimals interval of point x* =constcan be determined. Determination of
location (coordinates) of clock in three-dimensional space, as well fixing of the moment of time
in selected point of three-dimensional space, corresponding to fixed point x* =constof four-
dimensional space-time variety, can be realized by method of coordinate transformation, which
is considered in next paragraph.

Summing up the infinitesimals dt corresponding to different points x* of four-dimensional
space-time variety does not determine the time interval readable per hour, so as it will be
shown below, to various values of coordinates x*; to say in general, correspond different clock
located at different points of three-dimensional space. Such summation, of course, can
determine some interval of time, that may have some sense in connection to same physical
requirements.

10
Quite similarly, assuming that d x =0 from (2.2.1.12) and (2.2.1.16) we shall have

9 11 2 12 2 13 2
—d/ :@[dx ] +/12,(dx ] +/13,(dx j =
¢ ¢ ¢ (2.2.2.2)

na np
=70 % dX
e e

These equities determine distance d/ between two points of infinitesimals of three-dimensional
space corresponding to mentioned infinitesimals, plane space-time variety.

2.2.3 VELOCITY AND ACCELERATION

Assuming, that
x* =x*(p) (2.2.3.1)
where p -is some invariant parameter, world line of four-dimensional space-time variety, and
d é(kis infinitesimals tangent vector of world line in some of its point, corresponding to

increment of dp to parameter p. In equities of (2.2.1.10), we'll substitute the values d X«

correspondent by values



dx“=—"dp 2232)
e dp
and we'll get:
dx'* =n*dp 2.2.3.3)
With allowance of this increment dp can be tied with interval of time dt:
dt :%\//TO, n°dp (2.2.3.4)

According to (2.2.3.3) and (2.2.3.4) to infinitesimals changes of time dt corresponds to
rk mk
infinitesimals changes of coordinates dx* in SR(E*,x*), dx in SR(E'*,x*) and dx in
€ e e
SR(€"*,x*). In connection with it, the notion of speed and acceleration of coordinate changes

can be introduced:

rk 10 na

d x d x d x

€ CH 2235

a O o dt (223.5)

It is clear that

y d XVO.’ - d XN(X
v =—2 and v =-—¢ (2.2.3.6)
e dt e dt

Constitute the space-like vectors which, in accord to (2.2.1.14), are interconnected by
transformation law

v =biv (2.2.3.7)

Motion speed of the point in three-dimensional space is determined as absolute value of

v;=\/—,11(v'1) —AZ(V'ZJ —ﬂs(v'sj
) ) 2238)

e
” na np ' ”
Vo=a|=74V Vo, V=V
e € e e e

these vectors:

o

"
Assuming ¢  as space-like vector of unit vector
e

na  np

_7/a,6€ T :1’

na na

then the speed projection v onv isequalto
e

€
” no na np
V=T =\-7pV Vo COSP, (2.2.3.9)
e e e €

ra ra

where, ¢ is angle between vectors of z;* and v.“. Hence

CoS @ = £ __° (2.2.3.10)

is not negatively determined matrix, it is easy to show that |cosg|<1. Actually,

na na np
—Yap|MT  HV nr +v'7 >0,
e e e

So as ” ~Vep

from inequity



where 7 is an arbitrary parameter, obviously:

9 na np na np
N°+2=y,7 V. [+ =Y,V V >0
e e e

e
This inequity means that discriminant of square trinomial (relative to 7 ) is nonpositive value,
le.
na  np 2 na np
~VepT V +7,45V vV <0
e e e e

Hence, according to (2.2.3.10) we'll have |Cos a| <1l

1,0,0), (0,1,0) and (0,0,1) three vectors correspondingly along reference points are &"*, "2
(1,0,0), (0,1,0) (0,0,1) p gly along P

and €"°. Lengths of these vectors correspondingly equal to /- y;;, «/— 75 and /—7as , that’s
why (1/ -7 ,0,0), (0,1/ N ,0) and (0,0,1/ A= 7/33) are unit vectors and projections of vector

no

v on reference points ", §"* and &"* correspondingly equal to:
e

np np

( u) 71/3\6{ ( u) 72/3\6/
Vv = — , = — ,
¢ /T VT 71 2 N2

Vv
e

(2.2.3.11)
np
" }/3,6 v
)~
¢ /s ~ 73
and in the system of reference points €', &', &’° these projection take the form of:
! ! !
V| =4Vt [v j = v'z,(v ) =J-ruV® (22312
(e Jl, Y1 e )y V22 e )y V33 (- )
Acceleration of change of coordinate is determined in accord to equities:
ra ra
DV i | OV o
a = =V.uV = +HLyv v,
e dt e TH g e
oX
e
na na
nao DV na i 6V "nv "nu
a =——=V 4V =|———+H/v v (2.2.3.13)
e dt e e "u e e
0 X
e
ra na . . . . .
a and a - are three-dimensional space-like vectors which are interconnected between
e e

ra ru

. re e, .
them by transformation law (v , and v is a tensor of second order and vector,and v ,Vv is
e e e e
vector) -
a,” =by g (2.2.3.14)

All major relations for speed component, obtained above, are valid for acceleration
component.

2.3 KINEMATICS OF HOLONOMIC TRANSFORMATIONS

2.3.1 TIME AND DISTANCE IN
THREE-DIMENSIONAL SPACE



In the considered case, by transforming of coordinates x'* =x"*(x°,x*,x?,x%), the reference
system SR(x*,E¥) is transformed into system of SR(x'*,E'*), provided the metrics in
SR(x*,E'*) is divided into time and space parts in all points of space. This procedure is
implemented by two methods, the first of which is more elementary and represents itself direct

generalization of local method described in §2.2. Initial point of this case is equation (2.2.1.7).
Assuming /01 is positive root of this equation. After substitution from (2.2.1.4) and (2.2.1.6)

we'll determine the corresponding values of ¢*(x°, x*,x2,x%). In considered case we'll assume
0

that these four functions satisfy the following equations:
0

£=0,¢" —u?”,, (2.3.1.1)

where, #(x°, x',x%,x%) and ¢°(x° x',x?,x%) are some functions. These conditions can be re-

written in other way if equation (2.2.1.6) is used, in particular:

op
A6, P =pu—"2. 2312
o *®3 ox' ‘ )

As it is known, the (2.3.1.1) and (2.3.1.2) are not always valid. In order to fulfill these
conditions, it is necessary and sufficient that four functions ¢*(x° x! x?,x%) satisfy the
0

following equities:

i(l 0 ¢ j 0 (1gkpg ] (2.31.3)

oxk ox'

0 [§5 ,o]_2[% 23.1.4
wliag |- Eiag] ess

for a certain function 4" (x°,x*,x?,x*). When considering the matrix structure |5, it is clear
0

or

from the last equity that 61 / 4 plays the role of integrating multiplier.

Consequently, in the first case we mean that conditions of (2.3.1.3) or (2.3.1.4) are fulfilled
and functions ¢ will be represented in the form of (2.3.1.1).
Let’s compose following differential equation in partial derivatives of first order:

0" ¢ 6¢ 0 (2.3.1.5)
As it was mentioned above, it has three independent solut1ons.
p* (X%, x' x%,x%) a=123,
which, in accordance to (2.3.1.1) and (2.3.1.5) are orthogonal to ¢°, in particular:

. 0 a
Lgwde oo _ (2.3.1.6)
7, ox' oOx
Let’s introduce new coordinates:
0 07,0 L1 .2 3
X7 =t 00X XX, 2.3.1.7)

ra

:¢)a(XO,Xl,X2,X3)



op“
ox*

By force of independence of functions ¢“, the rank of matrix is equal to three. Than, in

accord to (2.3.1.6) it is easy to show that four functions of ¢*(x° x' x*x*)— are also
independent and consequently the condition of:
"

=0 (2.31.8)
ox'

is valid.
Assuming that ¢* are dependent functions and there takes place the equity:

F(e°. 0" 9°,0%)=0 (2.31.9)
Hence,

0 a
OF Sp_ F 20 _yg (2.3.1.10)
op~ OX°  0p% oX

99

Let's multiply these equities by g* and summarize in accordance to index k: with

allowance (2.3.1.6) we'll get:
OF & 09° 09° 0

o0p° T axt axk
Le.
oF
0¢p°
It means that the function Fshould not depend on ¢°. Than (2.3.1.10) will have such a form
oF 20"
op” OX
On the other hand, the rank of matrix aa(pk equals to three, than from here will yield that
X
oF . , . . )
Py 0 i.e. F doesn’t depend on neither functions ¢*.
»

Thus, there is no such function F for which (2.3.1.9) occurs, and consequently
9°,0',9°,¢° are functionally independent, i.e. condition of (2.3.1.8) is valid.

In new coordinates x'* we have:

4 4 K
g :%Zi’q g™ (2.31.11)
From it,
100 5600 5(/’0 Pq
_JY Yy . 23112
g oxP ox? J ‘ /

This equity in accord to (2.3.1.1) can be re-written thus:

100 _

1 S 1 S
g _ququsgqtgo’gé' -7 gst§0'§(§’
u u

Considering (2.2.1.4) and (2.2.1.6), we'll get:
w 1
g 00 :_2/10' ,
Y7
but as A, >0, than it is obvious that g'® >0.

From (2.3.1.11) for g’°* will have:



g0 = 09° 0p” g™
oxP oxt
Hence, as per (2.3.1.1) we'll get:

a

b

10 _l pg 8(0
J ,ug gp ox*

10

ie. g“ =0, as ¢” represents itself a solution to equation (2.3.1.5).
Thus,
gVOO 0 0 0
ik 0 g111 g/12 g113
9= . , sl (2.3.1.13)
TR L

O grl3 ng3 grS3

' - 0. Hence

provided that g
Jew O 0 0
91 912 Ois
0 95, 9» Ub|
0 035 9 Yz

loill= (2.3.1.14)

and

where gy, :g’_lm >0, and “g'“ﬁ 9.4|| are non-positively defined matrices.

Thus:
a) x'% is time-like coordinate line;
b) x*, x> and x’* are space-like coordinate lines;
c) x'° is a line perpendicular to all lines x'“* and interval

ds® =g'®(dx"°)? + g, zdx'“dx'” (2.3.1.15)

is divided into time and space parts, provided that x'° is time coordinate, and x'“ is a space
coordinate.

Let’s consider the second case, when conditions (2.3.1.3) or (2.3.1.4) do not take place. In
this case there is no such function ¢°, which would satisfy the condition of (2.3.1.1). However,

during this it is always possible to select such function ¢°, which satisfies condition of

w 09° 09°

———->0. 2.3.1.16,

I ‘ 4

Actually, assuming 1//(x°, xt, x2, x3) is some function, than in accord to § 2.1, the differential
equation

w 09° 09" 2
T 23117,
x ‘ 7

always has solution ¢° in rather general conditions in relation to function y , and so as y° >0,
than it is obvious that solution of equation (2.3.1.17) satisfies condition of (2.3.1.16).

If function ¢° (XO xt X2, X3) is determined, then instead of (2.3.1.5), the following
differential equation should be drawn up for partial derivatives of first order relative to
o° (Xo,xl,xz,x3):

ik 5(00 op
—— =0 23118
J ox' oxk ( )



which in accord to §2.1 has three independent solutions ¢“. The totality of functions ¢° and
¢“ determines transformation of coordinates (2.3.1.7) and for g¢g'* will give expression
(2.3.1.13).
The second case is more general in comparison to the first one, and may be applied as well
to fulfill conditions of (2.3.1.3) or (2.3.1.4).
Indication of clock located in space point of x'“ =const is determined from (2.3.1.15) by

equity:
quity >
tztoi—j,/ggodf, x'* =const,
c
0

where, t, is initial indication of clock, i.e. reading of clock corresponding to value x'°=0.
Symbol before integral is selected in such a way, that to fulfill condition t>t,. t is function of
variables x'“; integration is implemented along time-like line x'“ =const, that’s why the value
t in different points of three-dimensional space will be various, i.e. clock located in different

points show different times:
t(XVO , X!1,XI2 ’ Xr3):t0 (X’l, X72 , X’S)i

Tl e

In this equity the coordinates x'“ are the parameters.

(2.3.1.19)

Fixation of time coordinate x'°=const means that from four-dimensional space-time
variety, we've selected the standard three-dimensional space, provided the clock located at its
different points, show different time depending on its coordinates x'“* in accord to the law of
(2.3.1.19). In this connection the following issue is of interest: if clock with coordinates x;“,
showing time t;, than what would be indication of t, clock with coordinates x;”. From
mathematical viewpoint, this problem is reduced to determination of functional dependence
between t;, and t,. It is determined from (2.3.1.19) as a system of two equations:

=t ) ol o e
0 (2.3.1.20)

0
1X

b=t e = i 67 67 0 e
0

These equities determine functional dependence between t, and t, in parametric form; x'° isa
parameter.

Development of this or that dynamic physical phenomenon can be referred to reading of
different clock located at various points of space. For instance, the investigated dynamic
phenomenon can be referred to reading of certain clock in the fixed point of three-dimensional
space. In connection with it, from practical viewpoint, in some cases it could seem convenient
to introduce a standard time t., reading of any isolated clock, for instance, located at initial

point or at infinity of reference system

te =teg i% [ Va5 (£.000)ds (2.3.1.21)
0

This equity in totality with equation (2.3.1.19) determines the functional dependence between
t. and t.



The major equation (2.3.1.19) and all equations yielded from it, expressed through line

parameters X' and gj,, can be expressed as well through initial parameters x“ and g;, .

Actually, from (2.3.1.12) and (2.3.1.7) we have:

' 1 1 10 6(00 k
Y00 =00 = , OXT =——dx (2.3.1.22)
00 o aq)o a¢0 axk
oxP ox‘

The reverse transforming of transformation (2.3.1.7) (it is always available there)
unambiguously determines the coordinates of initial and current points of integration
(x"’ = const):

x{ = x';(O, oconst,const,const) —initial point ,. (2.3.1.23)
X =x"(x"",const,const, const) —current point
These equities at every possible values of x'“ (i.e.const ) determine the coordinates of x* points
of standard three-dimensional space of four-dimensional space-time variety at initial (the first
four equations) and optional (the last four equations) moments of time. Taking it into account
from (2.3.1.19) and (2.3.1.22) we shall have:

XO

0 g Zfﬂp Z(/’q (2.3.1.24)
X X
X% (Xg,x3)=0

Here in sub-integral function x°,x“ are determined by second line of equation system
(2.3.1.23).
As well as earlier in (2.3.1.24) x’° plays a role of parameter, by means of which the

t(x’o,xg,xg) (xo,xO )

Oll—‘

synchronization of clock at various points of three-dimensional space can be realized.

If practically it is not feasible to transform a system (2.3.1.7), than the integration in
(2.3.1.19) can be realized in a different way, in particular, assuming that x'“ =const, after
differentiation from (2.3.1.7) we'll have:

09° i o9
dx'® == _dx*, 0= 23125
oxk ox* ( )

a

op
OX

As was shown above, functions ¢“ are independent, that’s why the rank of matrix ”

equals to three, than from the last three equations of the system (2.3.1.25) three out of four

differentials dx°, dx* can be represented through one differential, for example, it can be written
dx® =a%dx?, dx'=a'dx®, dx®=a’dx’

and realized the integrating along the parameter x*. In this respect none of variables of x* has

any advantage over the other ones, each of them can be used as integration parameter. Further

the integration will be accomplished along variable x°. For this purpose, from the last three

systems of equities (2.3.1.25), differentials dx“ are expressed through dx°

dx“ =a“dx? , (2.3.1.26)
than from the first equity of the same system we'll have:
0 0
NGO VAP YL (2.3.1.27)
OX ox*

With allowance of this equity we'll get from (2.3.1.24):



t(x%, x5 )=t (x&) =

O |k

0 0
o aio+a"‘6L dx®
,[ OX ox“
X0

fg P @@ (2.31.28)
oxP ox4
X' (X9, %5)=0

This equity permits to realize the synchronization of clock by means of parameter x°. It is
the most common and as particular case, contains in it the known expression to calculate the
time [2,3]:

1

Jg_(goodxo +g0adx“).
00

cdt = + (2.3.1.29)

The (2.3.1.29) is obtained in definite restrictions, relative to system of coordinates and metric
tensor, and if these restrictions are followed, than differential of equity (2.3.1.28) coincides with
(2.3.1.29).

Suppose that system of coordinates and metric tensor of four-dimensional space-time
variety are such that
a) x° is time-like line, i.e.

U >0, (2.3.1.30)
b) for g, components there exists an integrating multiplier x i.e. they permit presentation of
Fl 0
Qo = 42, (2.3.1.31)
OX

than the (2.3.1.29) is valid.
Let’s introduce new coordinates x'* by following equities:
XIO — XIO (XO , Xa) ’
X" =x"“(x")

and select corresponding functions in such a way that (2.3.1.32) would accomplish division of

(2.3.1.32)

metric into time and space parts. When x'° and x’“ are such functions, than g;, =0 and from

obvious equity:

o, ox'Poxf
gik - g pq aXi an
we'll have:
' aXIO aXVO , aX,O 2
gofz:gooax_oax_a: goozgoo(ax_oJ .

Hence, in accord to (2.3.1.30) we have:
Joo >0, ﬂ: g_(,)oa Yoq :\/900960% (2.3.1.33)
X 9oo OX

Thus, when x° is time-like coordinate line and g; through transformation (2.3.1.32) is
divisible, than g,, should satisfy conditions of (2.3.1.31), i.e. the necessary conditions.

These conditions are sufficient as well, i.e. when g, satisfy these conditions, than there’s
transformation of form (2.3.1.32) which realizes the division of metric g; . Actually, if
(2.3.1.31) has occurred, then x and ¢° are fully determined functions. Let's determine x'° and
0go as per following equities:

X0 =00, X7, Gho = 12900 (2.3.1.34)



By force of (2.3.1.30) g{, >0. Let's select arbitrary functions ¢“(x',x*,x*), for which

a

op
axﬂ

#0 and let's draw up transformation

X/O :q)O(XO’Xa)’ Xra :(oa (Xl,XZ,Xs) (23]35)
Having calculated g;, and g, we'll have:
ox° ox'° , )
0 e =0 gog :'uz/goo ! (2.3.1.35)
ox'" ox

Thus, in case when x° is time-like coordinate line, the necessary and sufficient conditions
to divide metric into space and time parts, will be (2.3.1.31).

Joq = M

In system x'°,x’“ the interval dswill have such a form:
ds? = ggo (X f + g, dx#dx" (2.3.1.36)
In this case for time we'll have:
aXIO aXfO
cdt = /g4, dx'® =4/gf, | ——dx® + ——dx*
9oo 9oo { PG ox” J
which, in accord to (2.3.1.33) coincides with (2.3.1.29).
The distance between two points in three-dimensional space can be calculated as well, by
meeting the conditions of (2.3.1.30) and (2.3.1.31). The corresponding expression will be

required below.
For g,, we have:
;XX ax o 4 ox'? ox'°
Paxe ox? T e ox? T xe ox”
With allowance of equation (2.3.1.33), we'll have:
, ox'* ox r Y0aY0p

9op =0

—= 2.3.1.37,
“oox® oxk Joo ( )
On the other hand for distance from (2.3.1.36) we'll have:
ox'# ox'"
—de? =g’ dx'“dx"’ =g’ — dx“dx”
I I ok o
With allowance of (2.3.1.37) we'll have:
_de? = (gaﬂ —g";ﬂ]dxadxﬂ (2.3.1.38)
00

Thus, in conditions of (2.3.1.30) and (2.3.1.31) the known formula (2.3.1.29) and (2.3.1.38)
are obtained for time and space. It is easy to show that in the same conditions, the general

expression (2.3.1.28) after differentiation coincides with (2.3.1.29). Differential of equity
(2.3.1.28) yields:

0 0
aiodx0 +aidx“
cdt = +-X ox” (2.3.1.39)
+ o 3.1
pq
oxP oxt

but, so as

0 10
! here was applied the equity sx' 5 =]/ 6X 5 » validity of which was proved in [10].
X X



8(/) dX +a¢ dX gOOdX + gOa a

ox° ox” V900900

Pq 6(00 a(ﬂo _ 00 :i
oxP oxd Uoo
than the last equity coincides indeed with (2.3.1.29).

From (2.3.1.15) for distance between two points with coordinates x'“ and x'“ +dx'“in

three-dimensional space x'° =const, we'll have:
—d¢? =g, dx'*dx"", x°=const (2.3139)
Assuming that x;“ and x,* are two fixed points of three-dimensional space x'° = constand
X'“=x""(p) - (2.3.1.40)

is some line running through these points x;* =x'“(p;) and x;* =x"“(p,), where p —is some
invariant parameter. The length of line arc ¢ between these points is determined by
application of (2.3.1.39 ) and is equal to

Py ' "
dx"* dx
(= 0-9'0—— d 2.3.1.41
!1 \/ 90 5o ap P C )
So as the three-dimensional space is inserted into four-dimensional space-time variety,
then its metric properties are determined in accord to (1.2.2.2) from [10], if assuming that

ra Ta

x'% = const, X'% =X

These equations determine metric tensor of three-dimensional space, it is equal to g,

such result is natural.
Distance between two points x;“ and x;* of three-dimensional space — is a length of arc
of geodesic line of three-dimensional space between these points.
Thus, in order to determine distance between two points x;* and x,* of three-
dimensional space, we have to:
a) construct a system of differential equations of geodesic line
ﬁﬂ“"’ dx’™ ﬂ=0, x°®=const, (23.1.42)
de? 7 de dr
where I'); - are Christoffel symbols corresponding to components g/, ;

b) determine solution of this system, that satisfies the following boundary conditions:
XTe=xtooat f=ty, (2.3.1.43)
X' = X" at  (={,;
c) Calculate the integral (2.3.1.41) substituting here the solution of problem (2.3.1.42) (2.3.1.43).
Distance between two points of three-dimensional space can be expressed as well in initial
parameters x*“ and g, . With this purpose, the considered three-dimensional space will be
represented in the following form:
p°(x°, x*, x%,x*) = const (2.3.1.44)
As was mentioned above, the x°,x,x?,x® are uniform dimensionless numbers, from which
no space and time coordinates can be separately distinguished, that’s why the investigated
three-dimensional space can be described with the help of three variables, selected in any way
from these four. For instance, when the x°,x* and x®, are taken as major parameters, than
three-dimensional space (2.3.1.44) is represented in following way:



where x'=i7(x°,x%,x*) is a solution of equation (2.3.1.44) relative to x'. By that, the metric
property of considered three-dimensional space can be expressed in variables x° x?, x°.
However, with the aim to keep the homogeneity, this procedure will be implemented in
variables x',x* and x° in particular, the considered three-dimensional space let's represent in
following form:

X =iy (x4, x%, %%, x¥=Xx“, (2.3.1.45)
where, x° = (x*,x*,x%) is solution of equation (2.3.1.44) relative to x°. By application of
equity (1.2.2.2) from [10], we'll receive:

oxP ox¢ ox* ox" x°® ox*
= 0o = + +
oxe oxP M axe ox T (ai“ ox’

ox° ax”J ox° ox“
y— o

7aﬁ

PR +__
x’? ox” oxe oxl =%

With allowance that x* =X“

ox° ox° ox° ox°
Vap = Yap +(8X_ag0ﬂ +ax_ﬁg°“j+ax_“ax_ﬁ 00
If we substitute here
x’ 09" / o¢°
xt ot/ &0’
which represents consequence of equity (2.3.1.44), than we'll get:
op° 0p° 09" d¢°
af“ Sop afﬁ Jo af“ axiﬂ
Vap =Yap ~ 0 + > 00, (231.46)
o op°
5X0 [6)(0 J

°(x°, x*, x?,x3) = const
This equity determines metric of three-dimensional space inserted into four-dimensional
space-time variety in the most general form. If the system of coordinates x* and metric tensor
g; meet conditions of (2.3.1.30) and (2.3.1.31), than in accord to (2.3.1.33)
d¢° 1

- Gk
ox* V900900

Let's substitute this expression in (2.3.1.46) and we'll get:
90090p
900

Vap =Y9ap —
which coincides with (2.3.1.38).
Having the metric tensor y,, of three-dimensional space, the infinitesimals length of d/
can be determined
—d¢? =y, ,dx“dx”
Butsoas X” =x“, thatis why
—d¢? =y, ,dx“dx” (2.3.1.47)



Values of y,, determined in accord to (2.3.1.46), depend in principle on four variables

x°,x“, which are interconnected between each other by condition (2.3.1.44), where const is a
fixed value of parameter x'°, according to which the synchronization of clock in three-
dimensional space is realized. It should be noted that the condition
P (x°, xh x2,x*) =x"0 = f(t,) (2.3.1.48)
(see (2.3.1.44)) in each moment of standard time t, from four-dimensional space-time variety
distinguishes the usual three-dimensional space.
Assuming t, = const (i.e. at x'° =const ) is some line,
x“ =x"(p)
belonging to three-dimensional space
o (ml= ),

is running through points x{ and x; of four-dimensional space-time variety, provided

X =x"(py), X; =X(p,),

P° (¢ X )=t 9°(x,x5) = f(t.),
Than the arc length of this line between these points, in accord to (2.3.1.47) is determined by
equity:

e dx“ dx"

/= (2.3.1.49)

In sub-integral expression the arguments x* of components 4, are changed through x*(p).

Let's determine distance between two points X, and x; in accord to length of geodesic line
belonging to considered three-dimensional space, which is the smallest in comparison to
lengths of arcs of other lines, that run through these points. System of differential equations this
geodesic line is determined from conditions of minimal value / determined by (2.3.1.49),
during fulfillment of additional restricting condition (2.3.1.48).

As it is known [4] the corresponding system of differential equations, has a form of:
CYECHR
dplox* ) ax* (2.3.1.50)
L=1=7,%“%" + 20° (x°, x*, x?,x%)

X* = d;( , A is a Lagrangian multiplier.
p

Quite similarly to clause 1.1.3, from here we'll sought system of differential equations, in
particular for variables of x“ these equations are as follows:

av
2ya - U v a 2 0
d X2 +rj, dx* dx _ dx dp +/17/0w 8&%:0 (23]5])
dp dp dp dp d¢ ox* dp
dp

where T . are Christoffel symbols, comprised of y,, and x“.

0
From (2.3.1.50) it is obvious that L doesn’t depend on ddi, that’s why the corresponding
p

x° Eulerian-Lagrangian equation is leading to equation of a@_lg =0, ie.
X



— 07 dx* dx" d—p+ d¢°
ox® dp dp d¢ ox°
The equations (2.3.1.48), (2.3.1.51) and (2.3.1.52) at t, =const (x'° =const) constitute a full

system of differential equations relative to the sought parameters x“(p) and A determining the

-0 (2.3.1.52)

geodesic line of three-dimensional space for a given moment of standard time t.. In case when
p=1/,we'll get:
d?x* =~ dx* dx" 0
« dx” e 09

+ —=0,
de? g dr 7 OxH
a 7] % 0
_ T XA 5500 g (2.31.53)
ox° de de ox°

P (x%, xH X2, x3) = f(t,)

This system in totality with boundary conditions:

x¥=x at =0, x*=x§ at (=¢,, (23154)
(x{ and xJ are determined correspondingly with equities ¢°(x),x*)=f(t.) and
@°(x3,x5) = f(t,)) determines the sought geodesic line x* =x*(¢,t.), passing through points x;
and x5 for each moment of standard time t,. By substituting these value x*(/,t.) in (2.3.1.49)
will determine distance between points x and x§ in three-dimensional space at the moment of
time t,.

2.3.2 SPEED AND ACCELERATION
OF MOVING POINT

Under the motion of some point in three-dimensional space we mean such a state at which
its coordinates are changed in time. Changing of coordinates point can be related to different
time, for instance, coordinates can be presented as functions of standard time t, or time t,
readable at certain fixed point of three-dimensional space, or at the point in which it is found
during process of motion. All these times are in unambiguous functional dependence on time
coordinate x'°, consequently we'll think that coordinates of moving point are the function of
parameter X'°

x* =" (x'°) 2321)
Moreover, these functions should satisfy the following conditions:
goo[a)o(X’O),wl(x’o),a)z(x'o),a)3(x’°)]= x'° (2.322)

10

Assuming that to two values x'° and x'°+dx'’® of parameter x'° correspond values of

coordinates x* and x* + dx* of moving point, than infinitively small distance passed by point, in

accord to (2.3.1.47) is equal to
di=/- 7de#a)_v/xk oy (2329

Interval of standard time dt, can be determined as well, which corresponds to changing of
dx'°. With this purpose, the equation (2.3.1.24) should be differentiated along x'° and
determine from (2.3.1.23) the functional dependence of x* =x*(x°,0,00)= =wk(x?°),

corresponding to standard time



(2.32.4)

10
gpq aq)o 6(00/
oxP ox? [ XK =y (x°)

By that, the speed v; of moving point by standard time is determined through equation:

g ooge_ | do do” _
“Ta, T dt, dt, [ X< =ek(x)
do* do’
=c.[— 2325
\/ 7/N erO deO /Xk :a)k (XrO)>< ( )

g™ op° do°
dxP dx? / x* =y f(x'°)

In parameters x'* and g}, the (2.3.2.5) will have such a form:

\/ o' dx'# dx’V/
T 9w 10 10 ra _ _ra 10
v, = dx” dx” / X" =0 (x7) (2.3.2.6)

V3 e o

where
R e R R O R (0 S
0= [ 2 () w2 () wd ()]
In case of light beam
9 ,gdXPdx? = gg, (dx'°)% + g/, dx'“dx"" =0
Hence and from (2.3.2.6) it is obvious that v, =c.
Thus, the light beam in the space with arbitrary admitted metric (when metric of four-
dimensional space-time variety has signature + ———) is moving at the speed of c.
Similarly the value of speed can be calculated related to different times using the fact that
these times are in unambiguous functional dependence on parameter x'°.
Coordinates x“ mentioned above have been used to describe the three-dimensional space
P° (x°,x*,x*,x*) =const and accordingly with it was determined metric tensor of three-

dimensional space 7,,. In the next paragraph will be shown that by transformation of only
coordinates x“, the values of y,, constitute a three-dimensional covariant tensor of second

order, whereas the dt, is invariant. Consequently, the totality of values
dx  de”
dt,  dt,

is a three-dimensional vector, the length of the latter, according to (2.3.2.5) is equal to velocity

V.. These values determine the coordinates changing speed x*,x?,x* of moving point and so as
x“ are dimensionless (non-metric) numbers, then dx“/dt, have no other physical sense.

Assuming that 7“ is an unit vector in three-dimensional space, determined along trajectory
x* =" (x'°) of moving point:

—]/aﬁ.r“rﬁ =1 at x*=w"(x"°) (2.3.2.8)
Projection of motion speed on v“ is determined according to formulae:
. dow”

e 40T 2329
Vor =TT g ey (P2



By application of those formulae let's determine the speed projection on coordinate lines. For
this purpose we'll introduce three vectors (1,0,0), (0,1.0) and (0,0,1), which are tangent
coordinate lines. The lengths of these vectors are correspondingly equal to

=714~ 72+ - 73 » that is why after normalizing we'll get the following unit vectors:

a

1 1
Ty = —1010 ’ Va’ = 01—10 ]
' [\1_711 ] i [ VT 72 J

(2.3.2.10)
1
73 =| 0,0,
[ V™73 }
Then in accord to (2.3.2.9), we have:
do” do”
w0
Va=——F— Vo =——F—,
N~ 7 N2 (2.32.11)
do’
V3p dt
Veg =————
~ V33
In case when x“ are orthogonal coordinates, these equities are simplified:
do” do®
Va =+~ 71 . Voo =~ 722 a
‘ ‘ (2.3.2.12)

dew®
Vez =4/ 733 at
C

In plane three-dimensional space, by application of Cartesian system of coordinates

-1 0 0
Yap|=]|0 -1 0
0 0 -
and
_dx _dy _dz

Vcl_E' ch_dt' Vc3_a'

dx”/dt, acquire definite physical sense, they coincide with projections of speed along

coordinate lines. By application of spherical system of coordinates

-1 0 0
2
[rl=jo —r* o
0 0 -r’sin®g
that’s why
dr d9 _de
Vcl:R’ vczer, V°3:r5|n9dt :

c c c

Angle can also be determined, this angle comprises direction of motion with some unit
vector 7“,in particular:

. ax?
VapT at.
cosg, =— < (2.3.2.13)
o
Ter g dt,

“— Yap ” is nonnegatively determined matrix, consequently |cosp,|<1.



In case when v“ coincides with vectors (2.3.2.10) —

Vi
Ccos (01 * Vc = ylﬂ (jjx )
—Ju L
B
CoSQ, -V, =— Y2 (jj); , (2.3.2.14)
—7V2 c
B
COS@; -V, =— Yo (iix
— V3 L

where ¢,, ¢, and ¢, are angles comprised by direction of motion with coordinate lines.
From (2.3.2.11) and (2.3.2.14) it is obvious that:
Ve, =V, COS@, (2.32.15)
These equities establish contact between absolute value of speed v, its projections v, on
coordinate lines and angles.
With allowance, that
dx® _dx* d¢ _ dx® v
dt, d¢ dt, d¢ °
from (2.3.2.14) we'll determine angles ¢, through line elements

dx“
&

cosg, =— (2.3.2.16)

7 aa
These equities are valid for any line, independently from the fact, whether some point is

moving along it or not. represents tangent vector of line motion (trajectory) of a point

c

[10].

o

o : . dx . :
By application of three-dimensional vector ——, other three-dimensional vector can be
c

D ( dx* d (dx® o dx# dx’
—|=—| — |+ T —=
dt, \ dt, ) dt | dt, A dt, dt,
d | dx” o Ox* dx' | de
del dt, “odt, de | dt,
the components of which specify acceleration of changing of coordinates of moving point. The

D (dx* ) D ( dx"
= |-y — — 23218
& \/ y’”dtc(dthdtCLdth ( )

we'll call acceleration of moving point according to standard time t..

formed as well:

(2.32.17)

absolute value of this vector

Let's admit that 7“ is three-dimensional vector determined along trajectory, then
projection of acceleration on 7“ will be determined from equity:
D (dx” d?x” dx* dx"
Ay = VgV — | —— |= ¥ usV” +T/ 2.3.2.19
o = Vep dtc[dth Vap ( dt,  “ dt, dt, ( )

Acceleration projection on coordinate lines, in accord to (2.3.2.10) are relevantly equal to:




2yp )7 v
a, =L | X pp O K (2.3.2.20)
N Yaa dtc dtC dtc

Angle that constitutes acceleration with direction v, is equal to

o D[
Ter® gt | dt,

cosg, =— (2.3.2.21)
_, D& D [ax”
Top gt dt, Jdt, | dt,
As “— Yap ” is nonnegatively determined matrix, then |cos¢,|<1.
In conformity with (2.3.2.18) and (2.3.2.21) we'll have:
a,, =a, Cos g, (2.3222)

These equities establish relation between absolute value of acceleration, its projections and
angles, comprised of acceleration with coordinate lines.

a

In above obtained equities relative to acceleration, vector is equal to

agoo 8(00
Pa 23223
97 o x| X =y () ‘ /

d?x“

and
dt 2

, d |deo” g™ d¢° égoo/ y
erO der axp axq Xk zy/k(XrO)
gpq 5(00 a¢0/

oxP oxd [ x* =y (x°)

D (dx“j D(dx“ j D(dx“j 2
=— Ve Vo =— V.o +
dt, { dt, del de di| dv
(2.3.2.25)

dx® d?¢

d¢ dt,”

(2.3.2.24)

Let's rewrite the (2.3.2.17) as follows

x“ X“
Here 37 is unit tangent, and | "z is normal vector to trajectory of motion point. Taking

into account that these vectors are orthogonal

_, @ Dfdx") o
Yw g ael ae |7

from (2.3.2.18) we'll have:

Also with allowance that [10]




_, Df&)D(d)_1
Twge\"de Jaelae )T 520
where, p -is first curvature of trajectory, we'll obtain:
2\? 2,\?
2’ :{"—cJ +(d fJ (2.3.2.26)

dt,

This formula coincides (by form) with a formula known in kinematics and is its
generalization. It is valid in any three-dimensional space as well as for any system of
coordinates. If the point is moving along geodesic line, then

U
B( dx J -0, 1 =0
del de P
and from (2.3.2.26) we'll have
2
a, =0t (2.3.2.27)
dt,
: : : . d¥
but if the point moves at zero linear acceleration e =0, than
tC
VZ
a, =— (2.3.2.28)
Yo,
a 2
In the first case a, is absolute value of vector TR representing a tangent trajectory,
t

c
and consequently is called a tangent acceleration, whereas in the second case — a, is absolute

a

value of vector _(%JVC, which is perpendicular to vector [10], that’s why this

de

acceleration is directed along the normal of trajectory.

2.4. TRANSFORMATION LAWS
2.4.1 TRANSFORMATION OF COORDINATES x*

The kinematics values dt,,d/,v,,v,, etc. have been determined above, which during
transformation of coordinate system are transformed in certain way. Their transformation laws
depend not only upon structure of kinematics values themselves, but depend as well on law of
coordinates transformation. In this connection we'll consider two types of system coordinates:

X0=x%  X“=x*(x'x%x% 2.4.1.1)
and
X" =x"(x0, x*, x'?, x"® (2.4.1.2)

"0 are time, and x'“ and Xx"“ are space coordinates. In the first case only

when x'° and x
coordinates x* (x° remains unchanged) are transformed, but in the second case — all four are
transformed. It should be remembered that transformation (2.4.1.1) can’t be considered only as
transformation of space coordinates, as in general case x° and x“ are neither time nor space
coordinates accordingly.

First let’s investigate transformation laws of kinematic values related to transformation of
system coordinates (2.4.1.1).



In accord to (2.3.1.39), the differential of standard time is determined in accord to

following equity:

0 0

op op
1 ox° ral Ox*
dt, == — , (2.4.1.3)
¢ /g pq 09~ 09~ X' =0
oxP oxd
where
-1
op’ op*
a* =a* , a“| =—— 2414
'S0 W (- )

It is obvious that denominator on the right hand side of equity (2.4.1.3) is invariant value
relation to transformation (2.4.1.1). Let's determine transformation laws for value a*.
In conformity with (2.4.1.4)
u u
a@%: a’ % (2.4.15)
Besides,
op"  op” dp"  Op" X“
U S G
) oo”
ox°

"
and ZL" are transformed both scalar and
X

covariant vector accordingly, that is why from (2.4.1.5) it is obvious that a“ is a three-

0
dimensional vector relative to transformation (2.4.1.1). With allowance by it that aio is

i.e., by transformation of coordinates (2.4.1.1

0

Op

ox*

we'll obtain that numerator on the right side of equation (2.4.1.3) is an invariant value as well.
Thus, relative to transformation of system of coordinate (2.4.1.1), the value dt, determined

scalar, and is three-dimensional covariant vector relative to transformation (2.4.1.1), then

by (2.4.1.3), is a scalar value.
The following expression has been yielded above for d¢?:

de? =y, dx*dx", (2.4.1.6)
where, y,, is determined in accord to equity (2.3.1.46).
From equations:
- ox” ox° ox* ox”?
T T R T T
~ oxP ox“ ox” . oxP oxt

Qo = % o r Opg = T O0oar Yoo :ai_‘)a‘i_f’gpq =00

which are obtained with allowance of (2.4.1.1), it is evident that with respect to the
transformation system of coordinates under consideration g, is the three-dimensional

covariant tensor, g, is the three-dimensional covariant vector and g, - the scalar. Than, since

0
ZL” is the three-dimensional covariant vector, it follows from (2.3.1.46) that y,, is the three-
X

dimensional covariant tensor of second order, and d/ is the scalar with respect to

. dx“ D ( dx* . . .
transformation (2.4.1.1). S as well as F(d j are the three-dimensional contravariant
C C

c



vectors with respect to these very transformations, since dt, is the invariant. In this
connection the velocity v., acceleration a, and their projections v, and a, on some

direction, defined by the vector v“ are also the scalar values. The validity of this suggestion
follows from the structure of these values.

2.4.2. TRANSFORMATION OF x'* COORDINATES
DIVIDED INTO TIME AND SPACE PARTS

As it has been shown above, there is an infinite number of functions ¢°(x°,x',x?,x*) and

thus, ¢*(x°, x*,x?,x%) functions which determine a new system of coordinates x'* with time

x'® and space x

ra

coordinates. These functions depend on one arbitrary function
w(x°,x*, x?,x%), to different forms of which correspond the different coordinate systems x'*. If
we restrict ourselves to continuous y -functions, then, as is known [9], a great number of such
functions have a continuum power, that is why a great number of corresponding functions
9" (x°,x*,x?,x*) and thus a great number of various coordinate systems under consideration

also have a continuum power.
All similar coordinate systems are in unambiguous accordance with each other, in fact, if

x'* and x"* are two coordinate systems which correspond to two functions ' and ", we
can write
k tkry0 1 2 3
X' = X0, X5, X5, X)),
7 k( N 3) (2421)
X" =" (X7, X7, X%, X7)

Hence, in accord to unambiguity of functions ¢'* and ¢"* it follows that

Xnk :Xnk(XIO’Xrl,XrZ’XrB (2422)

« being in unambiguous functional relation.

and x"¥

X'

From the kinematic viewpoint each such a coordinate systems differs from each other by
definite properties according to which it is possible to single out one isolated coordinate system
characterized by concepts reasonable for us. This system should be recognized as rational and
all other systems are considered with respect to it. A comparative analysis of the coordinate
systems determined by equities (2.4.2.1) will allow one to elaborate a clear physical essence of
these systems.

Since condition (2.3.1.8) holds for the functions ¢'* and ¢"*, not only (2.4.2.2) but also
the inverse functional relation is valid

X =x"*(x", x", x"?, x"3 (2.4.2.3)

(2.4.2.1) can be regarded as a parametric representation of transformations (2.4.2.2) and

(2.4.2.3); it is determined by the conditions:

ik 5¢'_0 5(1"0 :( ,)2, ik 5(0'_0 op'” -0

ox' ox ox' oxX ' (24.2.4)
gik 5¢”TO 5(0"0 =(l//")2 gik 5(/7'T0 op"” _
ox' oxX ' ox' ox

Thus it is evident that any transformation of the (2.4.2.2) or (2.4.2.3) type is determined by
two functions '(x%, x', x?,x%) and w"(x%,x!,x%,x%). In the multitude of these transformations



there is also an identity transformation relevant to identical values of the functions y’' and

"

v,

Combination of two transformations (2.4.2.2.)
erk — X”k (X'o , Xrl X'Z, Xr3)

2.4.2.5)
¢!I/k (X//O nl X/!Z , Xll3) (

III

X

can be taken as one transformation
ka :)—(k(XfO’Xrl’XVZ’XVS (2426)
when the first transformation of the system (2.4.2.5) is determined by equations (2.4.2.4) and

the second one by the equations:
n0

a a n0 ) i8 !rOa "o
gk€0_ op ()2 k 0P Y

1 g A - )
i i k
x' o axk ox  oOX (24.2.7)
g i« agamo agamo :( ,”)2 g i« aq)mo a mo _ 0
ox' o oxk ' T ko

As for the transformation (2.4.2.6) obtained from (2.4.2.5) by exclusion of the variables x"¥, it
is determined from (2.4.2.4) and (2.4.2.7) also by exclusion of parameters with two primes, i.e. it
is determined by the conditions:

ik aa(ﬂi ‘2(0 ( ,)2, glk aaﬁﬁi aaﬁl’ -0,
XX X' o' (2.4.2.8)
g i« a¢m0 a¢m0 (Wm)z g " a¢m0 a¢m0
o oxk ’ o ox

and therefore belongs to the class of transformations of (2.4.2.2).

Summarizing these results one can conclude that the transformations of (2.4.2.2) type
satisfy the following requirements:

a) There exists an inverse transformation of transformation (2.4.2.2);

b) There exists an identity transformation;

c) Combination of two of transformations of (2.4.2.2) class also belongs to the same class.
Therefore, the multitude of (2.4.2.2) transformations constitutes a group of transformations
depending on two arbitrary functions y/’(xo X X2, x3) and zy”(xo X X2, xa).

The transformation laws of time and distance of during the coordinate transformation

(2.4.2.2) can be established using (2.3.1.39) and (2.3.1.47).

Let ¢'* (xo,xl, x2,x3) and ¢ (xo,xl, x2,X3) are two function systems corresponding to the

y/'(xo,xl, x?, x3) functions and y/"(xo,xl, x?, X3), then, according to (2.3.1.39) we have:

a¢r0 +a'ﬂ 8(0'0
, 0 Xy
cdt’' = dx?,
g™ 8(/) 8(0
oxP oxd
ra 0 1 2 3 ra
X7, X7, X%,.x") =¢'* =const,
v - ) ~ (2.4.2.9)
0p""  qru 09
0
Cdtn: ax - 8X/; dXO
\/g pq a¢ﬂ a¢ﬂ
oxP ox1

V/O! nro

(x%,x', x2,.x3) =¢"* =const

na

The constants c¢'“ and c¢"“ in the right—hand side of these equities are dependent

quantities; of them only c¢'“ (or ¢"*) can be selected arbitrarily, while the second three



constants should be determined according to these values. To be specific, let us assume that
c'® are the fixed known values, whereas the conditions

o' “(x%,x' x%,x%)=c"" (2.4.2.10)

determine the world line of some point of three-dimensional space in the four-dimensional
space-time variety. The three-dimensional space itself is determined from the following equity

"% (x%, x*, x?,x*) =¢'® =const (2.42.11)

The arbitrary constant ¢’® can take a zero value, which corresponds to fixation of three-

dimensional space at the initial instant of time. Simultaneous fulfillment of conditions (2.4.2.10)

and (2.4.2.11) fixes a point in the four-dimensional space-time variety x{ which corresponds to

fixation of a point in three-dimensional space at the fixed instant of time. If we substitute these

na

x¢ coordinate values into the function ¢"“(x° x* x?,x%), we can define the fixed values of

nra

these functions which determine the values of the sought ¢"* ,i.e.

" = (x5 X3 3)
Thus the c¢'“ and c¢"“ constants are related to each other by the following conditions:
0" (X6 X050 %) =™ (2.42.12)
9" (X0, %g, X5 Xg) =¢"7
while the constant ¢'° determines the instant of time at which the interval dt’' is calculated.
Conditions (2.4.2.9) determine the relation between dt' and dt” in the parametric form;
dx° is the parameter and excluding it the sought time interval transformation law for the given
point of three-dimensional space at a fixed instant of time can be established during
transformation of coordinates system (2.4.2.2).
According to (2.3.1.47)

_dng z}/;NdedXv' Q)’O(XO,XI,XZ,XS):C’O =const,

_ n2 _ .n AV n0/,,0 1 2 3\ _ ~r0 _ (2 42 ]3)
de"s =y dx“dx’, " (x7,x7, X%, x%) =c"" = const,
where, according to (2.3.1.46):
aq)ro a(pro 8(010 8(0,0
gOy v + gOV '
' _ OX ox* oxX*  ox
yyv - g;N 0 + gOO 2 !
agg a(oro
8x° 8X0
n0 n0 n0 n0 (2 42 ]4)
g op"" | g op op"” O
e R & ox* ox"
7/,uv - g;N 0 *+ 000 2
a¢ aq)uo
5X0 8X0

The ¢’® and ¢’® constants that fix three-dimensional space in the four-dimensional space-time
variety at a certain instant of time are the dependent values. To fix the point in three-
dimensional space where the length of the infinitely small element d¢' is established, the
condition ¢'°(x%, x! x%,x3)=c’® should also be added to the condition ¢'*(x°,x*, x? x*)=c'“.
All these conditions determine the point in three-dimensional space at a fixed instant of time
where the length d/¢' is established. It is evident that the same conditions determine the value

"0, ie.

xs . Substituting them into ¢"°(x%,x*, x?,x%), can be defined ¢
CﬂO :(0

Thus, the functional relation between ¢'® and c

006,56 %)

"0 is determined from the conditions:



o™ (8, %5, X5, x5) = ¢ (2.42.15)

06856 X =

Knowing ¢’ and c¢", let us define d/' and d¢" in the selected point of three-dimensional

space for a fixed instant of time. The dx* values as characteristic elements of the one-
dimensional variety can be represented by one parameter
dx* =b* (x3, x5, %5, x3)dp (2.4.2.16)
Then, according to (2.4.2.13), we have:
0077 = 0, (0 X8 X XD (X0 X, X5 X3) x
<D0 Xo. 5, X0)dp", (24.2.17)
=07 = 0, (6, X5 G X (3. x5, xE x3) ¢
xb" (g, Xg, X5, %5)dp’
Hence, excluding the parameter dp, let's determine the transformation law for an infinitely
small length at the given point of three-dimensional space at a fixed instant during realization
of transformation of coordinate system (2.4.2.2).
The velocity transformation law can be established on the basis of use of (2.3.2.5), in
particular, its parametric expression has the form:

v dx* dx"’
- e k rk 10y
odtl dtl [ xS =a(x"7)

y dx* dx"’
w dt(r:/ dtg Xk :a)nk(XHO)
where the point motion laws

x¥ =0 (x'°)  and x* =" (x"°)
are established from the following equities:
X0 =g (x%, x' x2,x%), ¢* (X)) =9 (x°, x*, X3, X)), (2.4219)
X" =" (x%, x5, x5, x%), ¢"“(X%) =" (x°,x",x*,x%), (2.4.2.20)

where ¢'“(x’°) and c¢"“(x"°) are the given functions of x'° and x"° respectively. They

(2.4.2.18)

characterize the point motion law in the corresponding three-dimensional spaces. These
functions are dependent: indeed, if one excludes the variables x* from (2.4.2.19) and (2.4.2.10),
the following equations can be obtained

Xr/O :q)nO{l//rO[XrO’Cra (X'O):I,l//'a[XIO,C'a (X!O):I},
c"e (X/rO) :(oﬂa {V/’O[X'O,C'a(x'o)],lﬂ'a [XrO,C!a(XrO)]},
where xozl//'o[x’o,c’“(x’o)], X =(//’“[x’°,c’“(x’°)] - the solutions of system (2.4.2.19) with

(2.4221)

respect to x” and x“ - must be identical. In other words, if the functions ¢'(x'®) characterizing

n0

the point motion along the coordinates x'“ are properly selected, the functions ¢"“(x"") must

be determined from (2.4.2.21).

According to (2.4.2.21) the values v, and v{ determined from (2.4.2.18) depend on one
variable, either on x'°, or on x"°. Excluding this variable, let's determine the velocity
transformation law during the coordinate system transformation (2.4.2.2).

Quite similarly, the transformation law for the velocity projection on some direction v* is
quite similarly determined (in the parametric form) from the following relations:



Vr __]/r Va dxﬂ/
o A k K (yr0y’
Pt ) xE =™ (x°)

(2.4.2.22)
V" — " Va dxﬁ
v 7/aﬂ dtél Xk :a)ﬂk(XﬂO)’
Similarly for the acceleration transformation law we have:
a4 | d2x® e dx* dx" y
T e Ty dy )/ =e ()
d?x” dx® dx”
R 7l i ,
X\/{ dtéz en dté dt‘r: J/Xk :a)!k(er)
(2.4.2.23)

ar=_|-y" d*x” +T" dx” dx* X
(o j/aﬂ dth W dtg dtg Xk Za)"k(X"O)
2B SN
N d“x +Fgﬁ dx° dx k o
dt? 7 dty dty )/ xF =" (x")

and for the transformation law for the acceleration projection on some direction v“ we have:
a. =—y' y? dZX'B I 'f dx* dXv
cv }/aﬂ dtéz W dt(/: dt(/: Xk :a)lk(xlo)y
(2.4.2.24)

ar/ _ }/ﬂ Va dZXﬂ +r!lﬂ dX# dXV
A7) " " " k _ _nkyn0
o dt!? Aodty dt! )/ xK =" (x"°)

In [10] the problems of kinematics of a moving point in uniformly accelerated and
uniformly rotated coordinate system are discussed. To study these problems general results
obtained in the present paper were used. Below, in studies of the central symmetry GEH field

the relevant problems of kinematics will be considered.
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CHAPTER III

ELEMENTS OF RELATIVISTIC
DYNAMICS OF MATERIAL BODY

The concept "material body dynamics" makes sense if one assumes the existence of a
concept “material body” independent of the concept "field". In many cases this classical concept
is associated with substantial inconveniences resulting in a crisis situation in physics.
Nevertheless, it is rather attractive because it enables one to determine (in many cases with
very high accuracy) approximate finite solutions of complex problems allowing one to create
definite physical models of the physical phenomenon under consideration.

In chapter IV the basic elements of the unified GEH field theory will be given which, when
using the Einstein’s ideas, must define the laws of material body motion, determining a material
body by using the concept of a unified GEH field.

The considered problems of dynamic based on the classical notion of the material body are
one of the stages of the inductive judgment used in the present work to explain a physical
essence of the parameters used to explain the unified GEH field and allow one to establish the
relationship between these parameters and the usual classical parameters used in mechanics and
electricity.

3.1. THE LAW OF MATERIAL BODY MOTION

3.1.1.THE LAW OF UNCHARGED MATERIAL
BODY MOTION

In the next chapter of the present work, using the GEH field concept, it will be shown that
any material body is accompanied by electric phenomena. In some cases the total electric
charge of a material body may appear to be equal to zero, but its separate parts have a particular
electric charge. The concept of an uncharged material body used here is classical and means the
absence of the total electric charge in the material body representing the point objective reality.

Let us formulate the law of uncharged material body motion as the following principle: An
uncharged material body moves along the nonisotropic geodesic line of the four-dimensional
space-time variety.

According to the results of chapter I, the equation for uncharged material body motion in
SR(x¥, Ikg) has the form:

d2xk LTk dx” dx? _
ds? ™ ds ds

where s is the length of geodesic line. It is covariant in all reference systems of SR(x*, Ikg) - type.

0, (31.1.1)

Taking into account that ds is the invariant, the equations for uncharged material body motion
in SR(X",E) are defined from (3.1.1.1) using the relationship between the relevant parameters

in SR(xk,[kg) and SR(Xk,eE) (here, according to the results of chapter I, transformation

coefficients af are determined from the equities a =) we obtain, in particular,



ds| ds P A
e
where
1 a[aja:gstj a(aea gstj
I, ==e“e"g"af £~ 4qf £~
2p 4 ¢ 0X oX
e e
(3.1.1.3)
a(a?azt'gstj
_am e
' ox"
e

uite similarly, the equation of geodesic line in SR(x*,&") has the following form
y q 8 A 8

'

1k | oe _ p '
e[ GeXT ) | il oy grigrpyr [9eX7 94X g 577
ds| ds axq ds ds

e

And here the transformation coefficients responsible for transition from SR(x*, Ik§) to SR(x*, ék "

are equal to af =a/*. It should be mentioned, that (3.1.1.2) holds not only during using of
transformations belonging to the EH group, but also for any nonholonomic transformations.

It follows from (3.1.1.1), (3.1.1.2) and (3.1.1.4) that geodesic line equations in the form of
(3.1.1.2) are invariant with respect to arbitrary nonholonomic transformations, including those
which comprise the EH group of nonholonomic transformations.

Indeed, using the nonholonomic transformation with the coefficients af =« , let us go
back from (3.1.1.2) to (3.1.1.1) from which, using the nonholonomic transformation with the
coefficients af =a/*, we arrive at (3.1.1.4). The combination of these two nonholonomic
transformations is also a nonholonomic transformation which transforms (3.1.1.2) into (3.1.1.4).
ie. (3.1.1.2) is an invariant form of the geodesic line with respect to nonholonomic
transformations.

If the two transformations mentioned here belong to the EH group, the resulting
transformation also belongs to the EH group and therefore (3.1.1.2) is invariant with respect to
the EH group of nonholonomic transformations.

(3.1.1.2) is a general form of geodesic line equations in any SR(x" ,g) and is reduced to

oe'
(3.1.1.1) in SR(xk,Ik?). Here (iek =5 and of =65, a%:o, afa] =6, aya I, =T}, ie (31.12)
e
coincides with (3.1.1.1).
To study the practical problems, it is more convenient to use equations (3.1.1.1). The
solution of this system must satisfy the initial conditions:
k
x*=x§ and ddizxg at s=0 (3.1.1.5)
s
where x5 and X; are the given numbers satisfying the condition

gik(xglx(l)ixg’xg))‘((i)xg =1 (3]]6)



In the rational coordinate system x'* with the definite y?(x° x*,x?,x*) the conditions

96, =0 and g{, =y’ >0 are valid. The x* and x'* coordinate systems are related to the trans-

formations
X =x*(x% x x2, x3) (3.1.1.7)
Functions x'*(x%,x*,x?,x%) are defined by solving the above-mentioned differential
equations:
pa ﬁﬁzv/z(xo’xlyxzyxs),
oxP ox1
(3.1.1.8)
o 8X'0 ox' ¢ ~
axPoaxt

if particular initial conditions are fulfilled. x'° is the time x'* and is the space coordinates.
In the rational coordinate system a free material body moves along the geodesic line; the
motion laws are described by solving the following Cauchi problem:
d2x’® . dx'P dx'®
7+ g -
ds ds ds

(3.1.1.9)
- X'
X" =x;" and =X,, at s=0,
with
e (X67, XG5 Xo2, X62 )X Xp =1 (3.1.1.10)
Let x"* be another, also divided coordinate system corresponding to the function . The

relationship between x* and x"*

equations

is determined by solving the system of first-order differential

ax/fO 5X”0 o
pq 77 — 2 XNO
xP ot )
- ax/fO axl/a
oxP oxt
if particular initial conditions are fulfilled. The right-hand side of this system depends on the
n0

(3.1.1.10)

required function x"". Therefore system (3.1.1.10) differs from that considered above in section
§2.1, however, as is known, the existence and uniqueness theorem of solution also is valid for
system (3.1.1.10). And in the case under consideration the conditions gg,(x"°) = 2(X"O) and
go, =0 are also valid.

By solving the system (3.1.1.10), the relevant initial conditions being fulfilled, four
functions are determined:

X" =x"* (x°, xt, x2,x%), (31.1.11)

which in totality with (3.1.1.7) determine the relationship between the coordinates x' and
Xr/k

er — ’)‘('rk (XHO,erl, X"Z,Xﬂg) (3]]]2)

rk

Here is transformed as a vector

ds
aX”k - axﬂk dxrp
os  ox'P ds

(3.1.1.13)

In particular, if s=0, we have:



nk
ng:(ax J x0P, (3.1.1.14)

nk rk

5 J is the value of
XgP

One can always select initial conditions and the right-hand side of system (3.1.1.10) so as to

P _ y!'P
at x'P=xp".

where (ﬁx

ox’' ox'P

meet the conditions

nk
sk =| 2| xe o, (3.1.1.14)
ox'P P
then the law of a free neutral body in the system x"* is described by the following Cauchi
problem:
2,rk "p nq
d*x I dx"? dx 0.
ds? ds ds
dka dka
x"* =xg* and =0, —=x¢* at s=0, 3.1.1.15
0 ™ Pt (- )

lo06M067)? =]
Taking into account that gg, =0, the validity of the following equities can easily be

shown:

e =0, ILe =d:—”0(ln Joo )

Therefore (3.1.1.15) can be rewritten as follows:

dZX";/ s " dxrra dxrrﬂ s " anO dxnaf B
ds? Mds  ds % ds ds ' (31.1.16)
X" =xl7, X" =0 at s=0,
and
2,10 (&3 np n0 "o
d°x +Fa"§ dx"“ dx L ory dx"" dx
ds? ds ds ds
dXﬂO 2
+F6,00(d—J =0, (3]]]7)
S
n0 2
x"ozxgo,(dx ] = 1”0 at s=0,
ds Yoo (%)

n0

i.e. it is split up into two Cauchi problems. In the Cauchi problem (3.1.1.16) should be

replaced by its value determined from the condition g ;ﬂxmx“f + 90, (X"%)? =1. It is evident that

if x"*=x3%, (3.1.1.16) is satisfied and since this Cauchi problem has the wunique solution,

na

X"* =xg“ =const is its solution. If these  values x"“ are substituted into (3.1.1.13) we obtain

dZXHO d dXvO 2
+——(Inygg | — | =0,
dan ( gOO{ ds j

ds?
(3.1.1.18)
n0 n0 dX"O 1 -
x"" =xg  and =% = with s=0
ds 9oo (X0 )

The first integral of this problem has the following form:

V85 (x"%)dx" =ds, (31.1.19)




ie. s=ct (s isthe time in the x;” point with the accuracy of factor c).

Thus, it is always possible to select such x"k system of coordinates, where a neutral material

body is at rest. If we substitute x"“ =x;* and x"° =¢(s) from (3.1.1.19) into (3.1.1.12), then
(3.1.1.12) will determine the law of body motion along x'* coordinates, in particular,

XK =X" (4’ (s), xg", xgz,ng). The nature of the relationship between the x’* and x"* systems in

all points will be difficult to explain, and in the vicinity of the body itself the system x"” moves
relative to x'” according to the above-mentioned law. When a satellite is moving in the near
na

space X'/ is a system connected with the earth, and x
satellite.

- a system, connected with the

3.1.2. THE LAW OF CHARGED
BODY MOTION [1]

When considering the EH group of transformations the functions ¢; and y; were
introduced. The physical meaning (in the notions usual for us) of these parameters can be
explained by using the equations for charged material body motion. This method is completely
equivalent to that used by Einstein, which he used to explain the physical essence of the
elements of the metric tensor g; . Hereinafter similar to the relativistic theory of gravitational
field we assume that the tensor g; characterizes the gravitational field.

Let us formulate the law of charged material body motion as the following principle: a
charged material body moves along the non-isotropic line of the four-dimensional space-time
variety described by the equations:

u' puP =0, (3.1.2.1)
where u' :dé;x ,and ds is the elementary line arc length. Using the notation

e S
2,i ou' p i
X _yp e _GeX7 0 [deX ) (3.1.2.2)
ds e gxP ds oxP| ds

(3.1.2.1) can be rewritten in the following form:

N o dxPdx®
ds—2+ pq? dS =0, (3]23)

or

200 P g x4 PY . d.xP
d,"x ri dx" d.x 1 [ d X }F' d,X 0 (3124
q

+ +—
ds? Mods ds  2p ds | ° ds
This is precisely the system of equations for the charged continuous body motion
(pseudogeodesic system of equations) with the electric and gravitational charge density ratio
equal to:
Pe c d.x”

py 277" ds

In that part of the space where the condition

p
1z//p de X = 2a = const (3.1.2.5)
n ds




is valid (a=—Q/Mc?, where Q and M are the charge and the mass of a moving particle)
system (3.1.2.4) will take the form:
do2x" i doxP dgx¢ i dxP
——+I, — E—+aF, —=—=0 3.1.2.6,
ds? ™ ds ds " ds ( /
This system coincides with the motion equation system (in nonholonomic form) for a

charged material body in the curved space in the presence of the electromagnetic field. To be

sure therein it is sufficient to rewrite it in SR(x, Ikg). Due to the covariance of system (3.1.2.6)

with respect to nonholonomic transformations belonging to the EH group, it also retains its
form in SR(xk,Iki) , only the infinitesimals d x' and d®x' should be replaced by usual diffe-
e e

rentials dx' and d’x'. Then the system (3.1.2.6) in SR(x*, Ikg) will take the following form:

d.’x" i dxP dx? i dxP

ds® M ds ds P ds

This is the system of the charged material body motion equations in the external
gravitational and electromagnetic field with the potential ¢, and the covariant strength tensor

-0 (312.7)

%%
VUl X
Thus the equivalence requirement for the reference system SR(x* ,g) or the

covariance requirement for physical laws with respect to nonholonomic transformations has
resulted to introduction of new functions ¢; which can be taken as electromagnetic field

potentials. On the other hand, in chapter I it was shown that during transition from SR(x* ,g)
to SR(x*,€") g, and ¢, are transformed not as independent parameters, but as components of
k

a unified value. In this connection g¢;, and ¢; can be considered as gravitational and
electromagnetic potential components (gravitational potential, electromagnetic potential) of the
unified gravitational-electromagnetic (GEH) field.

Let the reference system SR(xk,Ikg) be divided, then charged body motion equations

(3.1.2.3) can be rewritten as:
d?” ., dx dx? o, dx® dx”
—+HZ, +H{, =
ds ds ds ds ds
dx°® dx” dx° Y’
fo————+Hg| — | =0, 3128
ds? M ds ds
This system, similar to the case of the neutral body, has the solution x* =x, x°=x°(s)

satisfying the initial conditions:

at s=0, (31.29)

only if the conditions

Hg =0 (3.1.2.10)
are valid.
Taking into account that g,, =0, g, >0 and
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condition (3.1.2.10) reduces to the equation:
0
ox“
These conditions are necessary and sufficient for the Cauchi problem (3.1.2.8), (3.1.2.9) to

0
(In goo)—‘g—ﬂFOa =0 (3.1.2.11)

have the solution x* =x& = =const, x°=x°(s), which corresponds to the motionless state of a

charged body in three-dimensional space.

3.2. CONSERVATION LAWS

3.2.1. CONSERVATION LAWS FOR
UNCHARGED MATERIAL BODY

In accord to the previous section the uncharged material body moves along the geodesic
line of four-dimensional space-time variety the equation of which in SR(x*, E) has the form of

(3.1.1.1) . As it was mentioned in chapter I, one of the integrals of motion of this system is the
following equation:
dx' dx*
K ———=1 3211
Qi ds ds ( )
Geometrically it expresses the fact that % is a unit tangent vector of the geodesic line.

It can be also defined other integrals of uncharged material body motion. With this aim and
to explain the physical essence of the motion integral (3.2.1.1) we introduce a new x'
coordinate system where the metric tensor gj is divided into time and space parts.. As was
shown in chapter II, this procedure is always feasible when defining the solutions
p° (x°,x', x?,x%) and ¢“(x% x",x*,x*) of the relevant differential equations in the first-order
partial derivatives. New x'’* coordinates are determined from the equities:
X" =" (x%, xt, x2, x%) (321.2)
The metric tensor in the system of x'* coordinate will have the following form:
G 0 0 0
) 0 9gn 9 9
(9i)=| g g (32.1.3)
0 9135 9% 9%
Besides, in x'* instead of (3.2.1.1) the equity
102 1a gyt B
ggo(dg—sJ v, %%:1 (3.2.1.4)
is valid.
Hence, taking into account that

ds? = ggo (dx®f + gl ,dx“dx’”,

\ (3.2.1.5)
gt (ax° fF =c2(at'?,

we get



1

C—ZE,QZ — p'? =m?c?, (3.2.1.6)
where
dx’° mc?
E, =mc?,/g! = — 3217,
k gOO ds m ( )
is the kinetic energy (at v'/c<<1 we have E'* ~mc® +%mv'2 )s
v'—\/—g' & d” (321.8)
@ ds ds o
is the absolute value of the motion velocity,
P'=y-0,p P - (3.2.1.9)
is the absolute value of the material body momentum
dxla
dx"“ m dt
p’“ =mc = (3.2.1.10)

ds ,1_ VrZ/CZ
Thus, according to (3.2.1.6), the motion integral (3.2.1.1) expresses physically the relation

between the kinetic energy and the absolute momentum value of the moving material body.
In the new Xx'* coordinate system the geodesic line equations have the following form:

d’x’* . dx'? dx'“
—+T] —=0 32.1.11
ds? M ds ds ( /
Let us consider the fourth equation of this system:
d’x® o dx'? dx'®
+T =0, 32.1.12
ds?> ™ ds ds ¢ 4
where
lg/oo Moo 1 000900 1 000900 1 00 oo
27 x° 2 oto2n ot 2 ox'?
1 009 1 0009, 1 00 9915
10 10 10
0)= 2 OX 2 8X' 2 8X' 32113
( 'k) _lg'oo 92 1 00 092 ( 4
2 axro 2 axlo
1 00 093
2 axlo
Taking this into account, (3.2.1.12) takes the form:
2,10 ' 10 d ! rp rq
X7 g B T Lo B XD 521,14
ds® ds ds 2° dx° ds ds
It is clear from the structure of the metric tensor g/, that g'® = '100 , therefore
g
, d?x’® dgg, dx’©  1dgh, dx'P dx'
05 T 0 =0,
ds ds ds 2dx™ ds ds
or
d » , dx’®) mc? 995 dx'P dx'®
—| mc“gg = 3.2.1.15
ds( 90~ 5s ] 2 ox'° ds ds ( /

If the four-dimensional space-time variety metric does not change in time (static
gravitational field), i.e. if g}, does not depend on x'?, (3.2.1.15) reduces to



10
i(mczg . O J:o (32.1.16)

Hence,
10

mc? g4, d;( = const (32.1.17)
s

where m isthe material body rest mass (classical notion).
Using equations (3.2.1.5) and (3.2.1.8), the latter equity takes the form:
mc?y/go
J1-v'3/c?
In the areas of three-dimensional space with weak gravitational field, the assessment is
valid [2]

= const (3.2.1.18)

9l ~1+— (32.1.19)
C

where u is the gravitational field potential (classical notion). Then, from (3.2.1.18) we have:
2
mc? +

+ mu = const (3.2.1.20)

This is precisely the mechanical energy law in classical physics. Therefore, let us call the
quantity

10 2 !
o, =mc?gy, X - M V9o (3.2.1.21)

ds /1 _y'? / c2
the total mechanical energy of a moving material body in general case.
Thus, the equity (3.2.1.17) expresses the total mechanical energy law for a moving

uncharged material body with allowance of relativistic effects.
(3.2.1.17) can be rewritten in the initial x* coordinate system parameters:

5 oxP ox9 ox'® dx"
mc = const 32122
gpq 8X'0 aXfO axr dS ( )

k

According to (3.2.1.2), the transformation coefficients can be determined through

aXrO

o (x°,x*, x2,x*) from the following system:
x axP

= 32123
ox"oox't " ( 4
Hence,
b k
- % (3.2.1.24)
X det( X J
ox'
rk
element in the determinant

' . : X
where o is the algebraic complement to the v
X X

rk
det(aax : j . After substitution the (3.2.1.22) is reduced to the following equity:
X



ox'P ox'®
ox'® | ox° ox° ) dx"
ox" «\1?  ds
{det(ax.ﬂ
ox'

This is precisely the sought motion integral of system (3.1.1.1) in x* variables, expressing

Po=Mc®g —const (3.2.1.25)

the mechanical energy law of an uncharged material body moving in the external static
gravitational field.
In the case when g, depend on x'°, from (3.2.1.15) we have:

dp, mc? 095 dx'P dx'®

= , 32126,
ds 2 ox'° ds ds ( )
or
dp, =dag , (3.2.1.27)
where
2 a9’ ’p rq
day = MC” Do X7 dXT 4 (3.2.1.28)

2 x° ds ds
Thus, the change in the total mechanical energy of a moving material body is equal to the
work dag, fulfilled by the dynamic gravitational field. It is connected with the variation of the

!

99 pg I . . :
x’oj; the gravitational field either gives the energy to the

gravitational field in time [

gravitational body (at daj >0), or does not take from it part of the mechanical energy (at
daj <0). From the viewpoint of classical physics the electromagnetic field must not participate
in this exchange since it has no direct effect on an uncharged material body. and besides, in
classical physics gravitational and electromagnetic fields are independent objective realities.
From the viewpoint of a unified field, in conditions of dynamics, the electromagnetic field
exerts an indirect effect on an uncharged material body; this is evident from the fact that the
time change in parameters ¢, causes the temporal change in parameters g, , this change,
according to (3.2.1.28), is related to the gravitational field work.

With allowance of the structure of the gj, and Iy,  parameters the following expression
for da; can easily be obtained:

2
daj =%(rg§ —Cizgg,or,;gv'“v'ﬂ jds (3.2.1.29)

From (3.2.11) for k=1,2,3 we have:

2 ra rp rq
X7 dzs dzs -0, (3.2.1.30)

where, according to (3.2.1.3) -

pa 2
After substitution from (3.2.1.30) we have:
d2x'* e d9pp oX'P 1 .5 O9pq dx'P dX'
ds? ds os 2 X'’ ds ds

Fra _lgraﬂ ag’pﬂ + ag‘;ﬂ _ ag,pq
x'd  ox'P o ox'”

Hence,
dp; _ mc 99pq dx'P dx'

_— 3.2.1.31
ds 2 ox'* ds ds ( )



where
p, =mcg,, e (3.2.1.32)
S

They are components of the moving material body momentum.
If we have such gravitational field where the condition

oq’ "p q
g X7 dXT7_ (3.2.1.33)
ox'* ds ds

is valid, then, according to (3.2.1.31)
p., =const, (3.2.1.34)
i.e. the momentum conservation law is realized. Otherwise, the infinitely small change in the
moving material body momentum is equal to:
dp., =da,,, (3.2.1.35)
where
da; = MC 0gpq dx'P dx'*
2 ox'* ds ds
If, instead of the parameter s, we use the time t’, then from (3.2.1.32) for the moving

ds (3.2.1.36)

material body momentum in SR(x'¥, Iki) we will get:

mg! dx'”?
af g1
A | (32.1.37)

P = J1-v'?/c?

Along with the parameter p; determined according to (3.2.1.21), we can introduce the

parameter
dx"  mc® 1
P?=mc?—= (3.2.1.37)
ds Ig(’)o ,1_\/12/02
3.2.2. CONSERVATION LAWS FOR
A CHARGED MATERIAL BODY
Ifin (3.1.2.7) a will be replaced by value
a=-—q, (3.22.1)
mc

then the system of equations for charged material body motion will take the following form:

dix*  _, dxP dx? g _,dxP
- F =0 3222
ds? Tl ds ds mc? P ds ( )

Here q isthe charge of a material body.

Let us multiply (3.2.2.2) by g, ddis and summarize over the k index, we'll obtain:
dfy o) g [ od d
as|°* ds ds ) mc? P ds ds

Since F, isthe antisymmetric tensor (in SR(x*,E)), then from this we have:
ik y K

i k
dx’ dx 1

K———= 3.2.2.3
glk dS dS ( )



Quite similar to the above, in the reference system with the metric tensor divided into
time and space parts the equation of the (3.2.2.2) system at k=0 gives:

0 200" dy'P dx’® P
i(mczggo dx J: mc” 09 pq dx'” dx o, dz 0(3224)
S

ds ds 2 ox'° ds ds
If the unified GEH field is static -
09 g opi o9y
=0, ——=0, F/;=— 3225
aXrO aX’O 0 axra ( )
and (3.2.2.4) takes the following form:
9 [ me2g: ﬂ+ ' =0 (3.2.2.6)
s 900 ds q@e =V, L. L
or
27 dX’O '
mc“dgo e + Q¢ = const (3.2.2.7)
the qg¢; in classical physics is the charge energy q in the static potential field with the potential
@y Then
10 mcz !
P, =mc?g}, o, qo. _MC V900 o} (3228)

ds 0 ,—1_\/,2/02 049

is the total energy of a charged material body — mechanical energy + electric energy and
(3.2.2.7) represents the energy conservation law.
In case of the dynamic GEH field from (3.2.2.4) we have:

dP; = dA, (32.2.9)
where
mc? 09y dx'P dx'?  O¢. dx'*
dA! = e ds, 32210
"o (2 ox'° ds ds " ox'% ds ( )
or

2

mc 1

dA; =—[r(38 5 Golpv v
1_V,2/C2 c2 ap

Op,, dx'“

ox'® ds
i.e. the change in the total energy dP, of a charged material body, moving in the dynamic
GEH field is equal to the elementary work dA, fulfilled by the GEH field.

Quite similarly to the previous one, from (3.2.2.2) in SR(x¥, Ikg) with k=1,2,3 we obtain:

}ds +
(3.22.11)

' 0 ! rp rq o ! rp
dP, _mc Qpg dx'P dx +g ?, dx , (32.2.12)
ds 2 ox'* ds ds cox'* ds

where

%go;, (322.13)
P, is the total momentum of a moving charged material body. Following (3.2.2.12) the

Pe=Po +

infinitely small change in the total momentum equals to
A :(E 09 q dx'P dx' 2a opy dx'P

ds, (32214)
2 ox'* ds ds cox'® ds

and if the GEH field is such that sA! =0,



dx'/ g m , dx'?

P, =mcgy, — —+— ¢, = T
Pods et ioyzjer 7t (3.2.2.15)

q
c
i.e. the law of conservation of the moving charged material body momentum is realized.

Along with P; and P, let usintroduce, the parameters P’° and P’ determined by the

+—¢, =const,

following equities:

P/O — p!O + qg!OOQ)é , P/a — pla +%gaﬁ(p/ﬁ (322]6)
In SR(x’k,Iki) the (3.2.2.3) has a form:

g, erO 2 s g' dx'® dXVﬂ 1
%l ds Y ds ds ’
ie.

izg(f)o(P!O)z+g;ﬂp/gp!ﬂ:m202 , (3'2'2.]7)
c

or
1

c?

With allowance of (3.2.2.16) the condition (3.2.2.17) will take the form:

P'°Py + P'“P, =m?c®

1 1 ’ 1 [ 2 ! ra 1Q, ! 2
C—Zgoo(p‘)—qg ) +gaﬁ(p —%g *‘qoyj x

(3.2.2.18)
X[p!ﬁ _9 g'ﬁv(/)\;j=m202,

c
or

1 ! 1 ! ! 1 ra 1O !
—2(P°—qg OO(DOXPO_Q(/’0)+[P —%g '%Jx

C
¢;j= m’c?

x[POZ—

o |a

3.3. SOME COMMENTS

3.3.1. BEHAVIOUR OF DYNAMIC CHARACTERISTICS
OF A MATERIAL BODY WITH RESPECT TO HOLONOMIC TRANSFORMATIONS

In the previous section the parameters p’,p'“and P'°,P'“, determined by the following

equations were introduced:

/0 2 0 ra 2 dx'
p’ =mc & p’“ =mc s (3.3.1.1)
PrO:pf0+qngO¢6 , Pfa :pfa+%gfaﬂ¢}3 (33]2)

.. .. . 1 .
From equities (3.3.1.1) it is clear that the totality of parameters =p’’, p’“constitutes a
c

four-dimensional contravariant vector which we call a four-dimensional contravariant



momentum of a moving uncharged material body. Taking into account the structure of the
metric tensor g; the equations (3.3.1.2.) can be rewritten as:

PP =pP g, PU=p g, (3313

from which it is clear that the totality of the parameters ~P'°,P'“, is also a four-dimensional
c

contravariant vector which we'll call a total four-dimensional contravariant momentum of a
moving charged material body.
The parameters p’,p, and PP, are related with the above-mentioned parameters by
the following equities:
0
Po=090P" =05, P'"" . P, =0sP" =0,p'"",
0
Po' :géopr :gépprp , P’ :g;ﬂprﬂ :gtrszrP

a

(3.3.1.4)

1., ., . . . ..
=P,,P, are four-dimensional covariant vectors; the first is
c

the covariant four-dimensional momentum of an uncharged material body, and the second —
the four-dimensional covariant momentum of a charged body.

... 1
Hence it is clear that = pg, p,, and
c

Hence it is easy to establish the laws of energy and momentum transformation at general
holonomic transformations. In particular, in SR(x¥, Ikg) we have:

oxk 1, ox dx*
—pP+—p'*=mc— 3315
aXrO C axra p dS ( )
- for the contravariant momentum,
ox'% 1 ox'“ dx P
~pg+ ! =mcg,, —— 3.3.1.6,
6Xk c pO an pa gkp dS ( )

- for the covariant momentum.
Since the metric in SR(x*, Ikg) is not divided into time-space parts, here it is impossible to

select a temporal component of the four-dimensional momentum which after being multiplied
by ¢ would give an energy of a moving uncharged material body. Similarly, it is impossible to
determine momentum components. If SR(x¥, Ikg) is such that its metric is divided (here g,,=0),

at k=0 (3.3.1.6.) determines the energy p,, and at k=1,2,3— the momentum components p,
of the material body in SR(x*, Ikg) :
0 B
Py =mege, S, p, =meg,, S (3317

This form of determination of the energy and momentum coincides with that determined
by (3.2.1.21) and (3.2.1.32). This is quite natural, since in all the reference systems with the
divided metrics the energy and momentum must be determined identically. Quite similar
situation is observed for P¥ and P, vectors.

The equities
dx’°

Dy =mc2gh [x° (), X" (5), X2 (), x'*(5)] -

(33.1.8)

0
Po =me?g X (5) X (917 (5), (9 S,

where x*(s) and x'*(s) are the solutions of differential equations (3.1.1.1) and (3.2.1.1),
respectively determine (in parametric form) a functional relation between p, and pg, i.e.



determine the law of material body energy transformation during the transition from
SR(Xk,Ik?) to SR(X'k,%') with the divided metrics. s is the parameter.

In the case under consideration the last three equations of system (3.3.1.7) are the
consequence of system (3.3.1.6) at k=1,2,3, therefore

ox'% 1 '’
- o+ ’ 3.3.1.9
Pe =" o Pot o P (- )
From (3.2.2.18) we have
p’° =c\/g'°°(mzc2 S p’ﬁ) (3.3.1.10)

Hence, following (3.3.1.4)

Po =00 =Cyfgm(mic? — g, p“p?) (33111
Substituting this value p; into (3.3.1.9), we get:
ox'° ox'?
Po =" a
OX OX
That last equities establish the functional relation between p, and p/, i.e. the law of

Jow(m?c? —glpp?)+ S p,  (33.2.12)
momentum component conversion during transition from SR(x'¥, Ek’) to SR(x*, Iki) with divided

metric tensors.

Thus, the independent of transformation energy and momentum is observed when
holonomic transformation connects two reference systems with metric tensors divided into
time and space parts.

Here the same situation is also observed for P, and P,, in particular

P, =mc2gg, [x°(s),x1(s),x2(s).x3(s>]%+
+ G0 [x° (), X1(5), x2 (), X* ()],
Py = me?g5, [ (). (8), ' (5), x"*(5)]

+ags[x (9.3 (6).x7(9). X7 (9)]
determine the law of charged material body energy transformation, whereas the equity

o ol -au{e g [ Lo
P = " 'm c? - ' P!a A Nrop 1 Prﬂ AN )
a 8X“ {\/QOO( gaﬂ c g (0# c g ?,

1B
—9¢5}+ X p, (3.3.1.14)

o (33113

X
ds

+

is the law of charged material

body momentum transformation.
Equations of uncharged material body motion (3.1.2.27) and (3.2.1.35) retain their form in

~ . .. . . 1 . . .
all SR(x¥, IkE) with divided metrics; besides, = p; and p constitute a four-dimensional vector,
C

. . 1 . . .
therefore it is clear that the totality of parameters —da, and da) is also a four-dimensional
c

vector with respect to transformations, connecting the reference system to the divided metric

. . .. 1
tensors. The same situation is also observed for the quantities —dA) and dA),.
c
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CHAPTER IV
EQUATIONS OF GRAVITATIONAL-ELECTROMAGNETIC (GEH) FIELD

In chapter one we have considered the basic elements of nonholonomic geometry which is
a generalization of Riemannian geometry in terms of equivalence of reference system SR(x" ’E)

interrelated by nonholonomic transformations belonging to the EH group. The results given in
the chapter will further be used to build a GEH field system of equations. Here the well-known
variation principle used in the Einstein’s relativistic theory of gravitational field will be applied.

As is known, one of the main requirements of this theory consists of equivalence of all
SR(x*, Iki) . This means that the Einstein’s gravitational field equations in all SR(x*, Iki) are equal.

Here, instead of this requirement, we use a more general requirement consisting of equivalence
of the reference system of SR(Xk,GE) selected by us. According to this requirement, GEH field

equations in all reference systems SR(xk,(E) interrelated by EH group nonholonomic

transformations, are similar. The remaining requirements and methods used here completely
coincide with the relevant requirements and methods used in the Einstein’s relativistic theory
of gravitational field.

4.1. THE ACTION FUNCTION AND
THE SYSTEM OF EQUATIONS OF GEH FIELD
4.1.1. THE ACTION FUNCTION OF GEH FIELD

Similar to the Einstein’s relativistic theory of gravitational field the GEH equation can be
derived using the extremal principle with respect to the field action function

§=j —g%d“)e(, (4.1.1.1)

where d* X= d Z(O d 2,-(1 d 1(2 d 2(3’ L is the Lagrangian density and integration! is performed in

the whole space filled with the GEH field. Main requirements satisfied by the quantities L and
S for the gravitational field consist of invariance of these quantities with regard to all the

1 d x'are not differentials of the quantities X', therefore the integral in the right-hand side of this equation is
e

actually the Stiltess integral.



reference systems SR(x*, Ikg). Let us generalize this condition for our case and demand that L
be invariant with respect to all reference systems SR(x, GE) interrelated by EH group nonholo-

nomic transformations. Since ,/—gd®x is also an invariant value, it is clear that L the
e e e

invariance results in invariance of the action function S as well, in covariance of the system of
e

GEH field equations with regard to nonholonomic transformations belonging to the EH group.
The Lagrangian function must be composed of the parameters g ; and ¢, characteristic
e

for the GEH field and of their first-order derivatives. The latter requirement provides the
second order of the system of GEH field equations, which, in its turn, is the main requirement
ensuring the correct asymptotic behavior of this system. Indeed, for a weak field the system of
GEH field equations must coincide with classical systems of gravitational and electromagnetic
field equations containing second-order equations with regard to potentials.

As has been repeatedly mentioned above, in all sections of the present chapter we use the
methods of the general relativity theory and of the relativistic theory of gravitational field,
generalizing them for nonholonomic transformations belonging to the EH group. In this
connection, to determine the Lagrangian function for the GEH field, we shall try to use the
Lagrangian function of gravitational field. It is known that [2,3,4] for the gravitational field

L=—R, (41.1.2)
where, y is the dimensional coefficient, and k is the scalar curvature. Though R contains the
second derivatives with respect to g, this choice of the Lagrangian function does not violate

the main requirement. The matter is that in the action function the second derivatives under
the integral enter as an addend divA, which is rejected when using the extremal principle with
allowance of boundary conditions and thus does not change the character of the system of
equations obtained in the rest part of the Lagrangian function containing only first derivatives.
Generalizing (4.1.1.2), in the case under consideration, the Lagrangian function can be obtained
with the nonholonomic scalar curvature. However, since the asymptotic value of the action
function

S=—yj —g§d4>e< (4.1.1.3)

does not coincide with the action function of the pure electromagnetic field in the flat space, an
additional addend should be introduced.

By direct calculations can be easily shown that with a very weak GEH field gravitational
component, ie. at g; ~ gi(j’ where! g =9% =0%=-1 9o =1, gi? =0at i#]j, the following

equation is valid:

1 n m 1 m n
L:y[—leﬂzwpl//meFn +877_29qu 74 Fmean (4]]4)
The first addend in the right-hand side with an accuracy of the multiplier iz(// v,
n

coincides with the Lagrangian function of the pure electromagnetic field, i.e. electromagnetic
field in the flat space (in the classical sense), whereas the second addend is not reduced to it. In

! This condition can hold in the special reference system SR(x¥, IE) .



this connection we determine the Lagrangian function of the GEH field from the following
equity:

L=_7(R+igpqy/mz//” FomF q”j’ (4.1.1.5)
€ 87]2 e e e © e
and demand that the function y* satisfy the following condition:
0
wPy, —>const at g; —>Q; (4.1.16)
The invariance addend of
1 s m 0
grd YN et

follows from the law of transformation for the quantities F; (see (1.2.2.9)), in particular, the

following equation takes place:

1 1 fpg rmn
— 9"y " F G Fa=——00 v y X
pm" gn
8772 e e e © e 8(77_,8)2 e € € (4]]7)
Xle: me gn

The Lagrangian function thus selected satisfies all requirements including the asymptotic
requirement at g; — gi? . Using (4.1.1.5) the GEH field action function will take the form:

sz—yj —g[m%g"qwmv/” F onF qnjd4§ (4.1.1.8)

Using the equities

for —\/E R we obtain:
e e

nogr r n 1 ryn
x(HoH, —Hqum)—Z /—g g”q VIHGE ot (4.1.19)
V-9 9" HHg
The first addend in the right-hand side of this equity has the form of divA, however, since

the derivatives in this term are generalized, the variation of the relevant integral is not zero. Let
us transform this addend. With this aim, let us rewrite it in SR(x*, Ikg) as follows (see (1.2.1.20)):

0 e
L]=e' —]...
KRPINENE
In addition, according to (1.2.1.30) d* x=ad*x, therefore

aim ] §=£{\/— gae' g™ (Hy, - orH Sn)}d“x—

e

a(ael)
g9 (Mg —oH ),

where o= det(a,i( ) Taking into account that (see (1.2.2.23))




|
a(;g ): By,
the last addend in the right-hand side of the last equity takes the following form:
~Cg g (HE oG B X
and the action function is defined fr;m the equity:
S =yj‘£{\/—e_gag' g"q(H " —6&”Hgn)d4x+

+7fJf§gpﬂH3J4;-—H;g4;-{Hg;—5§HgJE%4,pilzja)

1 r 1 | 4
_z‘/e/ Hgnle:qr+le)nE:r_877_zl//rl// 'e: pl’le:q| d z(
This equity determines the explicit form of the GEH field action function. It is very

complex, and therefore, the system of differential equations with regard to g ; and ¢, isalso
e e

complex. In this connection, in most of cases to study the GEH field it is expedient to use
directly the action function rather than the system of equations. Below the central symmetry
GEH field will be investigated immediately when using the action function (2.1.1.10).

In SR(xX, Ikg) the GEH field action function is simplified and has the following form:

T L IRy

oX
n r r n 1 regn
—u{J—ggmGuﬁun—HmHm—E;w H'F —  (411.11)

S=7|

1 I 4
__8772 v'y ForFa Jd X

Here integration is performed according to Riemann.

4.1.2. SYSTEM OF EQUATIONS RELETIVE
TO g; AND ¢,

Equations relative to g ;; and ¢ ; are obtained from the extremal principle
e e

05=0.
The first integral variation in the right-hand side of (4.1.1.11) is equal to zero and to define the
variation of the subintegral expression of the second addend, let's calculate at first the

following values

1 1
5y-9= 6@0)=5v—99”59m,

2
9 (412.1)
9® 59 ,+g9 59®°=0
e e e pi e

Hence
g =-g"g"s9g (4.1.2.2)

e



Besides,

S S 0 S 0
éH: :_gk Hitjé‘gst + Nil; ! W(é‘gst)"' Miljﬁﬁ(5¢s)’ (4123)

e e

where

Ni';Stl Z%(gks 5it5} +gks 5Jt'5il _gkl 5i55})v (4]24)
e e e
kst 1 s ot s ot k ks t t
My~ =—— (5i5j _5j5i)l// -9 (l//i5j+t//j5ij+
477 € e e

e
+ gkt(‘/f i6js ty jé‘isﬂ
e e e
Let's substitute these values into the right-hand side of the equity:
0=05=70[-g g™ [HiHi, —HiHL (HD, -
e e

1

—STH B -y HY W F ot HiEg - (4.1.2.5)

pn —qr

and allowing for the additional condition (1.2.2.5) and equating the coefficients before &g ;

and J¢,;, we obtain:
e

0
_p(Hijp +HL-6H _5ipH§j)+Hiij§p +HEHG -

8)e( (4.1.2.6)
—HpHg —HpHG + HgBj + H By =hypep™,
0

1 i m n i m
=(H}, +Efm{—9p 9"y " F pq+(gp p" - (4.1.2.7)

e
+%(g’“ B9 E‘quv/“}ﬂw'.
e
oL
=Ao, ,
61//k P

where A isthe Lagrangian multiplier,
U == 9 g HRHG —HioHE (5 -0 HG el -
e

1 1
——y HF, +HE" - FF |
an// pn" qr pn nr Snzww eq|:|

h 1
ijpg ZZ glpg Jq+glqg ip gu pq |



a1 . . o
Pl = [EE;‘p[h”‘”—4gprg‘j—4gprgq E;q}+
e

+%hiqu (quH:p + EanH Sn - Eng ,rm)+
29757 (E4 M}, Bl gL
e e
( 1:[ upr_4gpfgiijE:p_8gpfgqiqu:|— (4.1.2.8)
e €

0 1 pr i j i

_ - |:J_ p

6x{77(g l/e/ e P g
e

1 ijpg r | 2 pq ~ ri j n
BT AL AT

This system of equations for g; and ¢; is covariant relative to nonholonomic
e e

transformations belonging to the EH group, i.e. it retains its form in all SR(x" ,(E) , which are

interrelated by nonholonomic transformations of the given type.

With allowance that the systems (4.1.2.6) and (4.1.2.7) contain the generalized derivatives
and today the theory of differential equations with generalized derivatives does not exist, it is
more practical to write these systems in SR(x", Ikg). In this case (iek =af =6, Ei'Jf =0 and from

(4.1.2.6) — (4.1.2.8) we obtain:

5

6Xp(Hp+H" SPHE —6PHS )+ HPHE + HPHE —

CHIHE —HIHE =~ Th | (g7t - gy tEr
ip’ "qj qui_TIUStargl// gV/p

F gy PR )+ H (07w R — g Y 4 gy PR ) - (41.29)
1
_Zg pqgrs(H LrWnFqn - Hr?ql//tFpr + Htr)nl//nqu)+EX

xh*™y "y "F F ]

pr' gn
P , .
29970y P )= a2w.
oL’
81,//k = Ay

These equations in totality with (1.2.2.5) constitute a full system of differential equations
relative to g;, ¢;, w* and A. The parameters ¢, in (4.1.2.9) contain F;, therefore they are

determined with an accuracy of the addend F , where u is the arbitrary function. However,
X

since ¢, is represented by (1.2.2.5), it is clear that u must satisfy the following first-order

equation:



i
ox'
When solving the Cauchi problem relative to parameters g; and ¢, fora certain three-

-0 (4.1.2.10)

dimensional variety

x'=t' (v v2v3) (4.1.2.11)
the function values g; and ¢, are specified. This means that %:o for (4.1.2.11), i.e.
X
U _MX o o x =t (vt V3 ve),
ov®  ox' ov”

or

u=const  at x'=t' (vt vE VP (4.1.2.12)

(4.1.2.10) and (4.1.2.12) constitute the Cauchi problem for the linear uniform first-order

differential equation with respect to the function u. As is known (see chapter II of the present
work), it has the solution u=const and this is the only possible solution.

Thus, the system of equations (4.1.2.9) and (1.2.2.5) and the Cauchi problem conditions for

three-dimensional variety (4.1.2.11) with respect to g; and ¢; determine unambiguously (with

an accuracy of a constant addend) the ¢; .

4.2. CHARACTERISTICS OF THE MATERIAL WORLD

4.2.1. ENERGY-MOMENTUM TENSOR
OF THE MATTER

As has been mentioned in the Introduction of the present work, the unified GEH field, if its
existence is possible, should form the basis of all physical phenomena known for us. In
particular, using the concepts characterizing the GEH field, the essence of the material world
should be explained. In other words, such classical concepts as mass, energy, momentum,
electric field density, etc. by means of which in physics the material world is characterized
should be expressed by the GEH field parameters. Today the establishment of this relation
between the classical and the GEH field parameters is not limited by any fundamental
requirements ensuring its unambiguity. The only requirement, according to which the
asymptotic behavior of the introduced parameters must be of classical character, cannot provide
unambiguity of relation and hence the solution of the problem under consideration has, to
some extent, an intuitive character. The validity of the accepted solutions can be checked only
by comparison of the obtained theoretical results with the relevant experimental data.

Basic parameters characterizing the state the of material world, which can be determined
experimentally, are energy-momentum tensor T, and current density vector J*. The objective
of the present paragraph is to define these parameters through the parameters of GEH field.

First let us discuss the energy-momentum tensor of the matter.

To define the dependence between T, and g, and ¢, we shall use the known Einstein’s
gravitational field equation [3,4,5]:

Gl =—4Tk, (421.1)

where



G{ =R{ —%@kR - (4.2.1.2)

- . . . . . . 872G S 1.

is Einstein’s tensor, y is a dimension coefficient | y =—~|, and Ry and R - Richci’s tensor
c

and scalar curvature. However, use of these equations exactly as they are is impossible since the
constant y contains such classic notion as the mass, the definition of which we are trying to
make using the parameters g; and ¢;. To avoid tautology it is necessary to use only the law of
proportional dependency between G and T from the equation system (4.2.1.1); as for the
coefficient of proportionality it shall be formed only using GEH field parameters. It is natural
since we do not have any other parameters.

1

It can be readily demonstrated, that the dimensionality of parameter y coincides with

the dimensionality of quadrant of length vector ¢; i.e.
v =love ]

Basing only on this circumstance the proportionality coefficient between G and T;* is defined
by following expression: —% 9™, , and for the tensors CES ¥ and 'I; ¥ - as generalization of the

previous, is expressed by -
—Zig Mo 0, (4.2.1.3)
Te e e
where o - is dimensionless constant, the value of which will be defined later while comparing
the theoretical results and experimental data.
Thus, the energy-momentum tensor of the matter is defined by (equity):
T'=—ZgMyp 0 G (4.2.1.4)
e 2T e e 'e ®
In Einstein’s relativistic gravitational field theory the equation (4.2.1.1) are used to define
parameters g; assuming that the energy-momentum tensor of the matter T, is the prescribed

value. In comparison to this in the case under consideration the equations (4.2.1.4) are used to
define the parameters of T £ according to the prescribed values of g i and ¢; values which are
€ e e

solutions of the system (4.1.2.6), (4.1.2.7).

k

From the structure of the right part of (4.2.1.4) it is evident that 1y i 1is a mixed tensor of

o e
second order relative to the non-holonomic transformations belonging to the EH group.
Multiplying the identity (1.2.2.32) by the value (4.2.1.3) yields:

oT"

© HE TP HE TP 26" 0 (g7 o |0
an Pe P 21 e an e e Pe

e e

Hence, with allowance that

oJ-g
RS I
Vv—0 aXp 27]e epk
e

e

ko _

the following equation is received:
1 LK[HTHJ:_# , (4.2.15)
[— g 0

where



i i 0 n i 1 i K
-F' =5, o (In(gn(g j_Hpk _ng l/e/q Fia [T *, (42.16)
is a four-dimensional force density which characterizes the effect of GEH field on the matter
[5]. From (4.2.1.6) it is evident that F'does not represent the 4-vector. Irrespective of this the
equations (4.2.1.5) are covariant relative to non-holonomic transformations belonging to EH
group. This is evident since (4.2.1.5) is identical to (1.2.2.32) and this latter equity is covariant.

In SR(xk,Ikg) we have
7&7( [~gT4)=—F, (4.2.1.7)

i i O
—F =|:5pax—k(ln

In modern literature of relativistic theory of gravitational field T® is identified with the

n i 1 i
00 )—Hpk—z5pv//quq}Tkp (4.2.1.8)

energy density, T% - with momentum density and T - with the stress tensor of the matter. It
should be mentioned that in a general case in the random reference system SR(x", Ikg) such

differentiation of the energy-momentum tensor components by physical characteristics is not
valid. It is only valid for SR(x", Ikg) with the metric divided into spatial and temporal parts (ref.

Chapter II).

Similarly to this the components of tensor T* defined by (4.2.1.4) in the random reference
system SR(xk,(E) cannot be differentiated in accord to the above rule; they are absolutely

equipotent values. Using these components it is possible to define the energy and matter
impulse density and stress tensor. Indeed, if SR(X",(KL ") is the reference system with a divided

100

10
metric, then energy T and impulse T
e e

a ra0 raff
densities, energy flow T and stress tensor T ~ are
e e

defined using evident equities:

100 0.0 I 10 0« o

AT T -

» o (4.2.1.9)
_aa~0Tpq _ a2 TP

To=a,a, 7%, T =a,a 1%,

where af are transformation coefficients providing links between the systems SR(XK,E) and
SR(xk,ék "). In case when SR(x¥, Iki) is a random reference system, and SR(x", E;') is a reference

system with divided metric, then

100 _ ZX’;)—_ZX,; g T0a =—ZX'§ ZX,: T,

xP ox X P ox

i O (4.2.1.10)
T'%0 _ TR T T TH

oxP oxd oxP ox4

10a

In SR(x¥, Ek’) 9’ =0. Method of metric division, i.e. ensuring equities g'°* =0, is described in

Chapter II of the present work as well as in [8].



4.2.2. ELECTRIC CURRENT DENSITY

In full analogy to the above for determination of electric current density, being one of main
characteristics of material world. Let us use the equation of electromagnetic field in the curved
space [5]

3= 0 (Fgg”g™F,,), (4.2.2.1)

47r\/_ax

or

i C (i
J :E(g "ghF,, ), (4.22.2)

Generalization of these identical equities in the considered case is either

i ¢ 1 ¢ 0k
J =" Pg“F ) 4223
e 47r,/—g6xk( egg ; equ ( )

or

C ip kg
J' F 4224
) = (g 97 F 4 )k (42.24)
Below we shall demonstrate that tensor nature of both generalizations is identical however the
electric current density defined by the equity (4.2.2.4) does not satisfy the charge conservation

law even in SR(x¥, Ikg) . For this reason the current density is subsequently defined according to

the equity (4.2.2.3).
In the right part of this equity g, and ¢, are the solutions of the GEH field equations

system (4.1.2.6) and (4.1.2.7). In the classic theory of electromagnetic field [5] the equations
(4.2.2.1) were used to define the potential of the electromagnetic field ¢, in the curved space
with the prescribed metric tensor g, for the known value of current density J'. In contrast to
this in the considered case the metric tensor g, and potential ¢; are the solutions of the

system equations (4.1.2.6) and (4.1.2.7), which being substituted in (4.2.2.3) define the electric
current density.

In classic theory of electromagnetic field [5] current density defined by (4.2.2.1) complies
with the charge conservation law:

\/_8x 9 (J=g3')=0 (4.2.25)

This equity is the consequence of the identity:

L (=ga1)-2

ox 7 oox’ (\/_ gPg“F,)  (4226)

and the anti-symmetry of F, tensor. In SR(XK,E) the charge conservation law is not valid.

Besides, from the structure of the right part of equity (4.2.2.2) follows that J' is contravariant
vector.
To determine the vector character J' defined by (4.2.2.3) the following identity is used:



1 i A i 1 i I
_gpgqupq =—J + zl//kgpgqFrkaq+
N\e e ¢ k MnC e 2n° e e e & ¢

. : (4.22.7)
4772

In accordance with the charge conservation law F , (see (1.2.2.9)) the left part of this identity

+
m‘Sl

i rp - kq
g9 F rkF pq
e e e e

. . . 1. .
and the last two summands in the right part are contravariant vectors, hence =J' is a
77 e
contravariant vector.

Similar to the energy-momentum tensor in general case, in the random SR(Xk,Ik?), one

. 1 . . .
cannot claim that =J° is the charge density and J“ - the current density. Such a
c

differentiation of the vactor components in accord to physical properties is valid only in
SR(x'¥, Ikg) with divided into space and time parts of metric tensor, i.e. if SR(x¥, Iki) is such, that

0o, =0 and gy >0, ie. 1J’O is a charge density and J'* - is current density. These
c

parameters can be expressed through the equipotent parameters J':

aX/O axla
=3P, Je=
oxP oxP

The method of defining of SR(x'k,Iki) with divided metric, i.e. the method of defining the

J"° JP (4.2.2.8)

functional dependence x'* = =(x°x',x%,x%) is given in Chapter IL.

4.2.3. MATERIAL BODY

In this section we shall attempt to define a material body basing on the basic notion of GEH
field.

In [5] Einstein wrote: "Furthermore, there is an assertion that it is impossible to
simultaneously maintain the field and particle concepts as elements of physical description. The
concept of field requires absence of singularities while particles concept (being elementary
concept) requires the singularities in the field. However, the field concept seems to be
inevitable since otherwise it is impossible to formulate the general relativistic theory. The
General Relativistic theory is the only means to avoid such unreal "thing as inertial system".
Apart from this in [6] Einstein and Infield are developing the following idea: "We cannot build
physics on the basis of the only notion — matter. But division into the matter and field on the
background of recognition of mass and energy equivalency is somewhat artificial and vaguely
defined. Could we rather abandon the notion of matter and build a pure field physics? What
effects our senses in the form of matter actually is but a tremendous energy concentration in
relatively small space. We could have considered the matter as the domains in space where the
field is extremely strong. This would have allowed to develop the basics of a new philosophy.
Its ultimate goal would have been to explain all events occurring in nature by structural laws,
valid under all circumstances and everywhere. From this viewpoint a thrown stone is a
changing field where the states of the highest field intensity move in the space with the speed
developed by the stone".



The conservation law (4.2.1.5) obtained in 4.2.1 is similar to the identity (1.2.2.32), hence
below we shall use (1.2.2.32) to solve the problem set in this section. With allowance of the
results obtained in this very section we shall assume that in SR(xk,Ik?) the metric tensor is

divided into spatial and temporal parts to separate the energetic part from energy-momentum
tensor. In such SR(Xk,Ik?) T%®- is matter energy density, T — is the momentum density

component, T“® —the energy flow component and T“ —is a stress component.
In three-dimensional space let's isolate a certain volume V x°=const and integrating the
identity (1.2.2.32) in this volume, we shall get:

_[ Yoo ?aidaa"'ddTJ?Oi Mﬁdsxz
S v

. (42.3.1)
=—jH*pq ((-:"qp v 900 V-7d°x,
\
where S —is a surface, limiting V, do,, - is a surface element,
i i 1 i
Hoy =H, +§5’)WI Fu. 7=det(g,,).

Multiplying the same identity by x' and integrating it in V we get:

Ix’ VY00 ce; doﬁwjx‘ Ceao oo /- 7dx=

s v (4.2.3.2)

ZI(Eji \/goov_VdSX_J.XjH:q qup V900 v/ 7d°x
\ \
The average value of x! coordinate is defined from the equity:
YjJGOO 900 /- 703X =J'xj G® Jgp-7d’x  (4233)
\ ¢ \ ¢

and let's introduce the following definition:
a' =j o G /- yd°x (4.2.3.4)
\

provided X° =x°. Using these definitions the (4.2.3.1) will receive the following form:

d_ff:IH;;ce;qpm\/?&x_j... (4.2.35)
S

dx®
and (4.2.3.2) will get:
Kial . o
[ a7 [ G a7
v %
d (i oo
| =X g = rdx- .. (4236)
v s

With allowance of (4.2.3.5) the latter equity can be rewritten as:

B (67 78X -0 ~XN) = [..., (4237)
\ S

u, ds

dx®
where u® =",
ds

O(Xj—XJ)ZJ.(Xj—Yj)H;;gquMHd3x—
v
d i oiy O
—dx—oj(x‘—x‘)(eSO m\/?d%
v

(4.2.3.8)



The value O(x! —x') tends to zero when x* —X“ and is equal to zero when j=0.

From (4.2.3.3) it is evident, that X' depend on x°, if only the parameters of GEH field g,
and ¢, depend on variablex’, i.e. in four-dimensional spatial-and-temporal variety X’(s)
where the length of the arc s forms a certain trajectory. In case when g, and ¢; do not
depend on x°, the parameters X' are constants, i.e. movement of the material body does not
occur.

Let us consider the case when v is so small domain that the symbols H , can be expanded

in a Taylor series in the vicinity of point X! and one can with sufficient degree of accuracy be
confined to the linear terms relative to x! —x/ i.e.

HY =H" +'j o (XT=X"), (4.2.3.9)

pa = 1]
where

. . oH
HI HI HI

o PAT TRar g parT o

After substitution from (4.2.3.5) we get:

Ldim;iq G® [0 -rd*x=0(x' =x))+ [ ... (42.310)
\% S

u® ds
With allowance of (4.2.3.7) this equity will acquire the following form:
da’ i p OX°
o HH AT =~ —0o(x) -x )+j (4.2.3.11)

Assuming that the considered GEH field meets the following COIIdlthI‘lS.

[

S

1. Outside of V the GEH field falls very rapidly so that is much more significantly lower

compared to the volume integrals;
2.V is so small domain that O(x’ —X!) is an arbitrary small value;

3. |[6% g =7

tensor G™ and compared to the changing of this very value by a unit of the trajectory length.

is much higher comparing volume integrals with other components of

Such GEH field confined within the domain V will be indicated as a material body.
Basing on the first and second terms the equity (4.2.3.11) with a high degree of accuracy
will have the following form:

da’ 5 _p dxf

+H_ aP—=0 42312
ds M7 ds ( )
Considering that H, =H], +%v//' Fud,, we get:
da’ dx® 1 dx?
H ap =—Zy'F, —a 42313
ds ds 2V Tl g ( 4

When fulfilling the conditions of 1 and 2 from (4.2.3.7) with i=0 we get:

i a dX
IGO\/gooV yd? X_u__
which in totality with (4.3.2.4) ylelds

a ;L‘&qm( W?dsx (4.2.3.14)

u



After substitution from (4.2.3.13) we get:
i(dzxi . dxP dxq}+ da” i wp dxA

— 4 +H a?—+
u® | ds? M ds ds ds pd

i 0 q
+dx d[a J:_l ' dLa',

ds ds|u® 2" "4 g
where, a” :H(E‘Oi—(.e;io L/goo J-7d3x.

Using the third condition the (4.2.3.15) with a high degree of accuracy is be reduced to the
system of equations -

(4.2.3.15)

dxP dx* 1 - dx?

2,
dx+H' a'.

=——y'F, —
ds? “ds ds 20 @ ds
These are the equations of motion of the charged material body.
These equations are more general than the equations of pseudo-geodesic line (3.1.2.3) and
coincide with them only in cases when the following conditions are valid:
1 dx*
EFMI//IE:O (423]7)
(4.2.3.17) is a necessary and sufficient condition for compatibility of the systems (3.1.2.3) and
(4.2.3.16).

The pseudo-geodesic line equations (3.1.2.3) describe free motion of the charged material

(4.2.3.16)

body in external GEH field, while equations (4.2.3.16), derived basing on using of energy-
momentum tensor taking into account the force and energetic interactions between the
individual parts of the matter — the compulsory motion accompanied by dissipation of a certain
type of energy (as viewed by classic physics), namely there occurs the radiation of the GEH
field. Hence it follows that not all charged material body can perform free motion in the given
GEH field; for each given GEH field there is a relevant test body which is able to move freely in
space without radiation of own GEH field.

This issue will be discussed more detail below when considering the motion of a charged
test body in centrally symmetric GEH field.

Since F; is an anti-symmetric tensor of second order, the condition of (4.2.3.17) is

automatically fulfilled if the following conditions are valid along entire pseudo-geodesic line:
0 1 2 3
iOdL:ildL:izdL:ide:,z, (4.2.3.18)
v ds v ds v ds v ds
A can be chosen so that the validity of condition (3.1.2.5) directly follows from the condition
P dxC
9 g ddedL =1, which is valid for the case of free motion of the test body.
s ds
The mandatory nature of the condition (4.2.3.18) requires special investigation.
The system of equations of motion of uncharged material body is received from here with

F; =0, or from the identity G* k=0 (where G* is Einstein’s tensor) obtained from routine

Bianchi’s identity:

d?x' dx? dx?

+T = 42319
ds? ™ ds ds ( )
. ) . ) odxP odx? . o
From the viewpoint of the classic physics mH o g5 52 summed - gravitational +

electromagnetic - force effecting the charged material body placed in the external gravitational



and electromagnetic fields with potentials g; and ¢, respectively as if the material body and

gravitational and electromagnetic fields are absolutely independent from each other unrelated
realities. Such differentiation of the matter and field is a basis of investigation method in classic
physics; here it is obtained as a consequence - in the form of integral law — laws of unified field.

From the standpoint of the unified field GEH field in V domain and outside its limits is a
unified phenomenon; the field outside the V domain is an uninterrupted continuation of the
internal field, which by definition is a material body; motion of the material body is a result of
GEH field evolution in four-dimensional spatial-temporal variety.
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CHAPTER V
GEH FIELD OF THE CENTRAL SYMMETRY

In this chapter one of the specific cases of GEH field which has high applied importance is
considered. It is a GEH field of the central symmetry.

Due to the extreme complexity of GEH field system of equations we shall attempt to
investigate the raised problem directly while using the action function. It has rather simple
form in the case in question which facilitates building up of system GEH field of equation.

General solution of this system in parametric form is provided and energy-momentum
tensor and current density vector of the respective material world are defined. When using
these latter and asymptotic characteristics of GEH field potentials the values of random
constants resulting from the integrating of the system of equations are defined.

The issues of kinematics and dynamics in GEH field of central symmetry are also studied.

For the calculation simplicity we shall be limited by the reference system of SR(x", Iké) type,

with the system of coordinates x* is chosen so that in the sites located at distances from the
symmetry center it coincides with the spherical coordinates.



5.1. SYSTEM OF EQUATIONS OF GEH FIELD OF CENTRAL SYMMETRY AND ITS
GENERAL SOLUTION

5.1.1. ACTION FUNCTION AND SYSTEM OF EQUATIONS OF GEH FIELD OF CENTRAL
SYMMETRY

According to (4.1.1.11) the action function depends on parameters g; and ¢; and their

partial derivatives of first order, therefore in the first turn we should define the form of these
parameters. In the chosen reference system the components of the metric tensor g; have the

form identical to the one encountered in the case of pure gravitational field of central
symmetry:

a(r) 0 0 0
o —bn o 0
(gij)_ 0 0 _r? 0 , (5.1.1.1)

0 0 0 -—r?sin*@
where a(r) and b(r) are some sought functions, which in case in question differ from
Schwarzschild's solution. As for ¢; and y' they shall be selected in the following way:
Po(N=0(r), o=, =03 =0,
ye()=wp(r), v =0, y =y*=y°=0,
where ¢, and y are also sought functions satisfying the condition (1.2.2.5) ¢’ = . From this

(5.1.1.2)

condition (r) can be expressed through ¢(r), in particular

w(r)=p/o(r) (5.1.1.3)

From (5.1.1.1) and (5.1.1.2) for covariant components y; we get:

wo=2ay, Y=y =y;=0.
In further calculations we shall also need ~g and g", which according to (5.1.1.) are equal
to:

J-g =r2sinoab,

0

(6")- - %(r) 0 0 . (5114
0 0 —%2 0

0 0 0 _%2 sin? @

The value of H i'j‘ consists of two summands - Fi:-( and linear combination F

i » while the form of

Christoffel’s symbol I for gravitational field of central symmetry is known [1], and F; and F

according to (5.1.1.1) and (5.1.1.2) are defined using the following equities:

1,
—9' 0 0 0| [ 1,
E)e C(E)=|-Z¢ 0 0 0|,5115
(U) 0 0 00 (I) %(p 0 00 ( /
0 0 0O
0 0 00




where ¢ =((jj—f , and in matrices (F; ) and ( F.')index i is a number of the line and index j - is

the number of the column (i, j=0,12,3).
Substituting these values of F; and F! and known values of l“i;( from [1] in (1.2.2.12) we

shall receive the following value for H:

0 a2a 00
a’—lay/go’
(Hi(j))= 7 0
2a
0 0 0
0 0 O
“ayp' —a’
0 0 0
2b o
(Hi)=| O oy O o | (5.1.1.6)
_r
0 o -1 0 2
0 0 0 _2sin° 4
b
0 0 O 0 0 0 0 0
0 0 r 0 0 0 0 r
(Hij?): Y ,(HS)Z Y .
0 Yr O 0 0 O 0 ctgd
0 0 0 -sindcosé 0 1r ctgd O
Here a':$, b':?. Substituting these values into (4.1.1.11) while taking into account, that
r r

the parameters do not depend on x° we'll get:
0 2.2 ' 2 ’
5J\E sr (ﬂ] —ar® o aplar=o0 (5.1.1.7)
o Vbl 877 Lo a

2t

a=e' b=e* p=e/ |, (5.1.1.8)

Let's introduce symbols

will yield the following form of (5.1.1.7):
T A 2008 dv .
5je 2 || = | —2r—-2-2¢* [dr=0 (5.1.1.9)
5 2 \dr dr
Here v,A4 and f are variable parameters. Hence for these unknown functions we have:

y 2
di 1 e r(dfj _0

ar r r 4@

l 2
ﬂ+1_e__1(£j -0, (5.1.1.10)
dr r r 4\dr

General solution of this system is defined in [5] which after its substitution into (5.1.1.8) for a,b
and ¢ will yield the following value:



JONLINEY (RN FET R S U TR
r, € 1+n 1-n) '
n
o [i=n
a=g? Len | po b p—\/l‘—” p+\/1+—” (5.1.1.11)
1+n p 1+n 1-n
P+.——
1-n
2nV1-n?
o =)
0 1+n
=0 )
oy [Len
1-n
where p is some parameter from the domain 1—_n <p<wo, ¢,,n r, and C- are random
+n ’

constants of integration, when 0<n<1, r, >0, ¢ >0. From (5.1.1.11) it is evident, that 0<r < 4o

1-n
when | [=— < p<+o.
1+n

5.1.2. ASYMPTOTIC BEHAVIOR OF a, b AND ¢
INDICES WHEN r >

When p —» o from the first equity of (5.1.1.11) system we get:

¢=0(p), po» (5.1.2.1)
Besides,
/1—n "
P- 1+n
lima=lima=¢2 lim| —Y=*t0 | _g?2
p—o r—oo p—oo 1+n
1-n

On the other hand, in infinity the four-dimensional spatial-and-temporal variety is flat and if

x° has dimension of length then the following equity is valid:
lima=1

Comparing the last equities we are getting ¢ =1 and since € >0, then € =1.
After substitution the system (5.1.1.11) will acquire the following form:



p_ -
a= _ V1l+n ,bziz[p— L_n}(er ’1+_n] (5.1.2.2)
1+n p 1+n 1-n
P+.—
1-n
2n1-n?
L
0 1+n
p=0
oy [HHD
1-n

One can use both asymptotic values of these indices representing known values in classic
physics, and basic characteristics of material world indicated above to define the remaining
integration constants.

Let us at first discuss the method of asymptotic values of the parameters in question. In case
of large values of p decomposition of parameter a relative to 1/p yields:

1-n 1+n |1
a=1-n 1/—+1/— — 4, po®
( 1+n 1-njp

Hence according to (5.1.2.1) we'll have:
2n 1

a=1- e, oo (5.1.2.3)
1-n? ¢
Comparing this expression with Schwarzschild’s solution [1] we shall obtain:
2MG 2nr,
2r, = = £, 5.1.2.4
= (5.1.2.4)
cm®

where: ¢=3-10" % is the velocity of light, G =6,67-107 - is gravitational constant, m -

2

g-s
is total mass of the material body in question representing GEH field of central symmetry, r,-
gravitational radius.

From this equity it is obvious that:

r,>r, at n<%, r,=r, at n:%
and r,<r, at n>i (5.1.2.5)

e g \/E

Equity (5.1.2.4) connects new parameters n and r, with classic parameters M and G.

Asymptotic behavior of parameter b when r—« is defined from the third equity of
system (5.1.2.2), in particular:

b=1+ 2n l+ { oo
1-n?
Hence according to (5.1.24) we have:
1
bNTGl, — oo (5]26)




This expression coincides with Schwarzschild’s solution.
Let us calculate asymptotic value of parameter ¢ when r — o . From the last equity of the

system (5.1.2.2.) we have:

0
(pz(p( —4—;%), §—> o, (5.1.2.7)

0
The right hand part of this equity with the accuracy of constant summand ¢ coincides with

electric field potential of point source with a charge:

0
Q=210 (”; fo (51.2.8)

Here Q shall be assumed to be a full electric charge of the considered material world (ref.
0
below). From (5.1.2.8) which establishes link between the new ¢, r, and classic Q parameters

0
it is possible to define the value of ¢

p=-L (5.1.2.9)
4nr,

It should be noted that asymptotic behavior of ¢ potential defined by the equity (5.1.2.7) in
contrast to classic potential of point source is characterized by that, that at infinity it has a finite
(nonzero) constant value. According to (5.1.1.3) the same requirement is met by asymptotic
value of y , and this in its turn ensures fulfillment of the requirements of (4.1.1.6).

It should be mentioned that when x° has the dimension of time, the value of a defined in

accordance with the second equity of the system (5.1.2.2) is replaced by the value:
oo Y
2 1+n
gl
P 1-n

At the same time instead of (5.1.2.2) one should use the system:
1-n 1+n

1-n)2 1+n)2
“(h/m] (‘” mj ’
1 /1—n 1+n

n %x/l—nz

c

Comparing expressions for a and ¢ makes it evident that ¢’ for gravitational field plays the

0
same role as ¢ for electric field, in particular ¢ is asymptotic value of gravitational field

potential (in classic understanding) at infinity. Further when discussing the specific problems

0
we shall demonstrate that the value of ¢ depends on the nature of considered material world of

central symmetry; from the classic standpoint it means that to various values of classic

0
characteristics Q, M,... correspond the various ¢. In this connection the following hypothesis

can be put fourth: c? also depends on the nature of discussed material world of central



symmetry; for the Sun (for a certain GEH field of central symmetry) it has one value, for other
heavenly objects — another.

5.1.3. STRUCTURE OF PARAMETERS a, b AND ¢
IN THE VICINITIES OF THE CENTRAL POINT

Of particular interest is behavior of the parameters a, »and ¢ in the vicinities of the central
point r =0, since in accordance with Einstein (ref. sector 4.2.3 of the present work) the field in
this point shall be free from singularity [2,3].

From the first equity the system (5.1.2.2) due to the condition 1-n>0, we obtain:

p— ﬁ at -0 (r—>0),
+

with

2
- P_”:o[gln} £—>0 (n=0). (5.1.3.1)
1+n

From the second equity of the same system the following condition is valid:
2n

a(:)O[{p,/l—nJ }0(;1:} ¢—0 (n=0), (5.1.32)
l1+n
ie,a—0 at r—0 as rin

Quite similarly from the third and fourth equities of the systems (5.1.2.2) we obtain:

b(¢) =O[4’ HJ , (5.1.3.3)
4n [1+n
ol )O{(ﬂﬂ} 0, (n=0). (5.1.3.4)

Below we shall assume that the parameters 77 and g satisfy the term
n/B=0 (5.1.3.5)
This term will ensure the limitation of the value ¢(r) in the vicinity of point r=0 with
@(r)—>0 at r >0, />0 and ¢(2) =const in the vicinity of point r=0 at 7/ =0.
From (5.1.3.2) — (5.1.3.4) it is evident that the unified (GEH) field of central symmetry is
free from singularity in the point r=0.

5.2. KINEMATICS IN GEH FIELD
OF CENTRAL SYMMETRY
5.2.1. DISTANCE BETWEEN TWO POINTS [4]

In accord to (5.1.1.2) the metric is divided into the spatial and temporal parts. Unlike
Schwazschild’s metric in the considered case a>0, b>0 for any r from the interval 0<r <o,

i.e. x° is temporal-like and r - spatial-like coordinate lines in entire four-dimensional spatial-



temporal variety. Hence the metric of three-dimensional space can be defined by the
following equity:
-b 0 0
(9,)= 0 —r? 0 (52.1.1)
0 0 -r?sin’g
In accordance with the results in Chapter II the distance between the two points r,,6,, ¢,
and r,,6,, ¢, of three-dimensional space is defined as the arc length of geodesic line between

these points. With this aim it should be solved the system of equations of geodesic lines of
considered three-dimensional space with the metric (5.2.1.1):

d_2r+£[£f_£[d_9)2_fSinzé’[dljz_o
ds?  2b\2b b\ ds b ds ’

2 2
d—a—i—gE%—SingCOS@[%J =0, (52]2)
ds? rds ds ds

2
M.FEE%_FZCKJQ%%:O

ds? r ds ds ds ds

With allowance of boundary conditions
r=r, 0=0, and o= at s=0,
r=r,, =60, and o=¢, at s=J1,,

where s is a current length of arc of geodesic line and s, , is the length of the arc between the

(5.2.1.3)

first and second points. It is the solution of the following equation -
() o) oo ) o w
bj—| +r°|—| +r°sin“g|——| =1 at s=s,,, (5.214)
ds ds ds ‘
where r(s),0(s) and ¢(s) are the solution of the problems (5.2.1.2) and (5.2.1.3).

In each special case the procedure indicated here can be realized with due regard to the
nuances corresponding to a specific task. We shall consider here one special case when the
considered points are located on one coordinate line §=const and ¢=const, i.e. when 6, =6,
and ¢, =¢,. The solution (5.2.1.2) and (5.2.1.3) shall be sought in the following form:
r=r(s), @=const and ¢=const, where r(s) is the Sought function. For this solution from
(5.2.1.2) and (5.2.1.3) we shall obtain

d’r b’ (dr)’
25.5(2)

ds?  2blds (5.2.1.5)
r=r, at s=0 and r=r, at s=s;,.
The first integral of this equation has the following form
ar __¢ (5.2.1.6)

ds Jb(r)’

~ . . dr
where C is a random constant equal to one since at r— oo d—:l and b(r)=1. Then from
s

(5.2.1.6) we get
51, = [/bdr (5.2.1.7)

From the above indicated consideration it is obvious that coordinate line & =const and ¢ = const

is a geodesic line and arc length of this line between two points are defined in accord to



(5.2.1.7). If r, =0 (i.e. the first point of symmetry center) and r, is a random point (r, =r),
then (5.2.1.7) can be reduced to the following equity:

R =jJBdr, (5.2.1.8)

which defines the distance from the symmetry center r=0 to a random point of three-
dimensional space with a coordinate r in the presence of GEH field of central symmetry.
By substitution of values of b and r from (5.1.2.2) into (5.2.1.8) we get:

n
/1+n %
p | T+ 1—
R:re J. —_n d
\/E t— 1-n
L+n Vi+n
1-n

The integrand in the point p= Tin has a singularity however since % <1, the integral in
+n

t (5.2.1.9)

the right part of the last equity converges. Integrating by parts we shall get:

p_/lzﬂ %
[p 1/1+HJ : Rli%(p) , (5.2.1.10)

T1-n/2 . e 2
1-n
where
t 1-n =k
) _
1+n
R = —_— dt
1_%(p) j \/m
it [—
1+n 1-n
It is obvious that
0 1-n 72 N
_ V1. n 1-
Rw(m%(p—viﬂ | ?Rw(p)’
2_4 p+ -0 2_4
1-n
_ [i=n “2
(M= (p—,/l‘” T (P
2-N _n _n 3-N !
3 / 1+n R A

(52.1.11)

where



o [t "
Ry, (P)= | % dt, k=12,.. (52112
in ¢ +n
l+n 1-n
It can be readily demonstrated that
R (P) 0 at koo, (5.2.1.13)

Indeed the sequence

kN
t— ’1—7n &
_ V1l+n k=12
1+n o
T
1-n
uniformly converges to zero within the interval 1/1—_n <t<p, hence
+n
Kk_n
1-n 7%
P tj/i
J- 1+n
el [1+n
1+n 1-n

i.e. the condition (5.2.1.13) is valid for every fixed value of parameter p. If the respective

dt >0 at k— oo,

values from (5.2.1.11) will be substituted into (5.2.1.10) then the following expression will be
obtained for R:

o i)’

n 1-n 1+n 1
R=-r, —(p—\/ J { +

ten) L e | {lo-ngh-)

1-n

2

o [in o [in

1 1+n 1 1+n

S R ROA e

Continuing this process and considering the validity of condition (5.2.1.13) for R(p) we finally

get:
o [t-n v
r.n 1-n 1+n ke 1
R(p)=-—-| p- x
2[ 1+nJ oy [N %ik—%ik+%i
1-n (5.2.1.14)
=)
P 1+n
X
1+n
R

[T
|
S



This equity in totality with the first equity of the system (5.1.2.2) defines (in parametric form)
the functional dependence between R and r, i.e. it defines the distance from the symmetry
center to the point with coordinate r.

The series in the right part of this equity uniformly converges in entire infinite region
1-n

—— < p<o since its majorizing series
+n

[=Y

g(k —%x:+l—%)

is a converging series. Easy enough to calculate the value of majorizing series; indeed
- 1 1 1
= + +
Sl-nolk+1-15) o-ngh-np) h-noke-1))
1 1 1 1 1 . D
+ 4= —+ + - + By this value of the majorizing
-n,)3-1,) [% 1%} 1-N, 2-1,
1 1 2

+2_%_3_%+'"=_H' (5.2.1.15)

series it is possible to define the asymptotic value of parameter R at p— o ,(r - «) indeed

AL /1—n = 1 w
R(p)——T{p 1+”J§(k—n)(k+1—%)’ p—>o,

le.
R(p)=r.p at p— .
On the other hand from the first equity of (5.1.2.2) system we have:
¢c=p at p— oo
Then it is evident that
R=r at r—oo. (5.2.1.16)

Hence, the dimensionless number r (a coordinate ) in the infinity coincides with the
distance from the symmetry center to a random point.

At r—>0, ie.at p—o ‘/i_—: according to (5.2.1.14), R —0, really; in the right part the
+

1-n

multiplier p - is raised to 1— % >0 power.

Let's re-write the equity (5.2.1.14) in the following way:

1-n 72 1-n
1-n P 1+n P 1+n 52117
R(P =1 Py G,|—=11|, (5.2117)
(S

where

0 k

__n X
&= A1)

It is evident that G,(x) is a monotonously increasing function within the interval 0<x<1,

0<x<l1 0<n<l. (52118

hence considering that the value



1-n 1-n

1+n
p — - -
1+n /1—n 2 1+n)?2
————  and =l p—,— ——
1+n J [p 1+nj (p+ 1—n]
D+ﬁ44*
1-n

are similarly monotonously increasing functions of argument p, than easy enough that R(r) is

a monotonously increasing function of its argument r in interval 0<r <.
The values of G,(x) function for various values of argument X and parameter n are given
in the Annex.

5.2.2 TIME [4]

The readings of the watch located in the point with a coordinate r according to the results of
Chapter II can be defined by the following equity:

t= % [Va(nae (522.1)
0
Since the parameter a(r) does not depend on x° we have:

t %O Jar) (5.2.2.2)

If here instead of a(r) we substitute its value from the second equity of (5.1.2.2) system we shall

0 1-n %
oo [t
(=X Vi+n b (522.3)

This equity in totality with the first equity of (5.1.2.2) system defines the time in the point with
coordinate r; in various points the course of time is different. This effect is defined by

multiplier:
S Y
1+n
oy [Len
1-n

and by functional dependence on ¢ from p. Thus, for example, in infinitely remote point

get:

This result is natural since in the infinity the space is flat.
In accord to (5.2.2.3) the time interval At in the given point of the space is equal to

1-n %
1 P 1+n
Mzg-—————- AX°. (5.2.2.4)



Let us consider two points with coordinates r, and r, (or p, and p,) with r, <r;, i.e. the
point with coordinate r, lies closer to the symmetry center compared to the point with
coordinate r, with p, < p, and hence

)t ()
P2 1+n Py 1+n

<
p+fl+7” p+/1+7”
2 \1=n " V1i-n

At(r,) < At(ry) . (5.2.2.5)

Hence it follows that the course of time is faster in the points located at long distances from

as well

the symmetry center while as the distance between the point and symmetry center decreases
the course of time slows down. The opposite is valid for the oscillation frequency:
v(r,)>v(r) (5.2.2.6)
This is the effect of red shift.
Basing on using the results of Chapter II and equity (3.1.5.13) the relation between the
readings of the watches located in various points of three-dimensional space and coordinates r;
and r, (p, and p,), in particular,

0 1-n 2 0 1-n 2
Y D 1 P
t(r,) = 1+n 10 ). (5227
0+ \/1+n _ [L+n
2" \1-n Y Vi-n

Hence

0 1-n 2 0, + /1—n 2
2 T Ala 1 PN
1+n 0 A, (5.228)

from which it follows, that

D, + 1+n 7 o /1—n 7
2 P (Y
1-n 1+n (5.2.2.9)

v(r,) = v(r,)
A
2 \1+n '"Vi-n

If case, when the point with coordinate r, lies on the infinity (, >©), and r,=r is a
random point, then from (5.2.2.7), (5.2.2.8) and (5.2.2.9) we get:




o]
|
]
K
N

t(r)=| ———

=]~
+ ||+
S5

=]
e} +
|
'_\
ary |
| >
>
NS
>
—

8

At(r) = (5.2.2.10)

[y PN
+ ||+
>

©
+
RN
|
5

[ER
I
=]
<

8

v(r)=| —=1

[ERY
|
>

© o
| +
-
‘+
>
N S
N

[EEN
+ ‘
S

where t,,At, and v, are the values of parameters t,At and v on the infinity, i.e. in the regions
where three-dimensional space is flat.

These equities totality with the first equity of (5.1.2.2) system define the effect of red shift
depending on the location of observation point with coordinate r .

5.3. ENERGY AND CHARGE DENSITIES
OF GEH FIELD OF CENTRAL SYMMETRY

5.3.1.ENERGY DENSITY [5]

Since the considered metric is divided, according to paragraph 4.2.1. T is the energy
density
70 =-ZL 00,6 (5.31.1)
2
In the case under consideration ( g;, is a diagonal matrix)

1
Gg = gooRoo _E(gooRoo + gllRu +922R22 + 933R33):

. (53.1.2)

1 1 1 1
== =Ry + =Ry +—Ry, + ————R
Z(a Tt 2 ®  r26in%g 33j
Easy enough to show that
an arbr arZ a
2b  4b* 4ab rb
aﬂ a/bl a/2 b_/ ﬁz_(/)'

R,—-2 20 _ & b, ,

Y 2a 4ab 4a’ rb 2y rp (5.31.3)
rb" ra" 1 pro'

n=—o ot t -l
22 2ab b 27 b

Ry =Ry, sin® @

In accordance with the above from (5.3.1.4) we get:

4



1() 12
Gl=-r| &| = 5.3.1.4
T ( % j ‘ G319
After substitution for T, we get
2

12 2
=28 _He O 5315
® 8z ab 27 a’rt ¢ )

This equity with allowance of (5.1.2.2) will acquire the following form:

M 102 2
1-n\|#
02 P—y—
2n 1+n

2
TGP |41 . 5.3.1.6
° 2721‘82 ( ﬂj Y107 12 ¢ )

Hence it is evident, that at { — o, i.e. at p— o, the energy density of GEH field of central
symmetry is tending to zero and according to (5.1.2.2),

T (N=0(r™") at r—oow.
With the accuracy of infinitely small high-order terms the equity (5.3.1.6) with r —» o will

assume the following form:
O 2

2 2
Too(r)zﬁ 2_77 i+..., r o oo
2 B) rt
Taking into account (5.1.2.8) this equity is reduced to the following equity:
2
To(N=a Q4+---, r— oo (5.31.7)
8
The structure T, (r) in the vicinity of the central point r=0, according to (5.1.2.2) is
defined by the equity:
z[iﬂ”ﬁ —2]
T (r)=0|r 1 . (5.3.1.8)
Hence it is evident. that at
2
n< 1 {ﬁj (5.3.1.9)
2n
T, (r) is free from singularity in central point r=0.
With
2
n> 1 (ﬁ] (5.3.1.10)
21

the central point r=0 for T (r) is an isolated pole of 2(2 - Zg\/l— n’) /1-n order.

When using (5.3.1.6) it is possible to define the quantity of energy of GEH field of central
symmetry enclosed within the sphere with radius r and center located in the point r=0:

E(r)= quﬁjd@jTOO(r)ﬁdr
0 0 0

After substituting the value of T/, -g and dr we shall get:



A—ﬂn\/l—n2 -n

[EY

>

02 2 p_ -
E(ry= M2 N170 (2—”j _ Vl+n (5.3.1.11)

fﬁ ﬁ_nz_n B 0+ 1+n
B Vi-n

Full energy of GEH field of central symmetry is equal to:
O 2
E—limE(r)= e ® V1oN (Z_Uj . (5.3.1.12)

r—oo 4l ll_nz _n /B
B

One asymptotic character of T, parameter, defined according to (5.3.1.1) should be also
indicated. With high values of r it should coincide with Ty from (4.2.1.1). If high values of r

2
p 0

the coefficient 0!(02p(0 is tending to az(p , which according to (5.3.1.1) and (4.2.1.1) shall be
T T
equalto V/y, ie.
02
ap ¢’
278G
Hence,
02 o4
=—. 5.31.13
ap =, & )

5.3.2. ELECTRIC CHARGE DENSITY [5]

Since in the case in question metric of four-dimensional spatial-temporal variety is divided
into spatial and temporal parts, it is evident that the density of electric charge is defined by the
equity:

P= E J° >
c
where J° is a zero component of four-dimensional current density vector. From (4.2.2.3) it is
obvious that in the case in question

0 c 1 d(¢? do
J'=— — — 5321
4mr,? ¢*Jab dé[\/ab dé”J ¢ /

Considering the values of parameters ¢, a, b and ¢ from (5.1.2.2) the latter equity assumes the

21 1207 o
o[ 2n _[t-n)?
_¢{,B 1-n? n](z_nj(p l_"_nj

following form:

. (5322)

Hence it is evident that in asymptote with r >« p is estimated by the equity:



p=0(r"), roow. (5.32.3)
And in the vicinity of central point r=0 structure of electric charge density is defined by the

equity:
2n 2
2[? 1-n —2)
p=0( ), r—0. (5.3.2.4)
If it is required to satisfy the condition
2
n<.f1- (EJ , (5.32.5)
n

then p in the point r=0 is free from singularity. If (5.3.2.5) occurs then (5.3.1.9) is more valid.
In case when

2
n> 1-[@ (5.3.2.6)
n
the central point r=0 1is an isolated pole of electric charge density p of

2[?#1—772 —2}/1—n order.

Quantity of electric charge enclosed in the sphere with radius r and center located in point
r=0 is defined by the equity

Q= [dg]ae] p(r)~gar
0 0 0

Hence from the according to (5.3.2.1) we have:
td( r? de r2 de /r
Q) =—|— — |dr =— —/ .
") -([dr[@drj Jab dr/ 0
After substitution of the respective values of parameters a, b and ¢ we get:
20 127 n
1-n %
09 P-
(p_ﬂ 1+n
n b+ /1+ n
1-n

Let Q is a full electric charge of the considered GEH field of central symmetry, then the

Q(r) = -2r,

following condition takes place:
Q=1imQ(r)

From these two latter equities we get:

0
Q=21 ;’7 (5.32.7)

(5.3.2.7) fully coincides with (5.1.2.8), which early was obtained through absolutely different

way. Here it was obtained through fulfilling the condition

ne—_ 1 (5.3.2.8)

1+ [ﬂj
21

2
Necessity to satisfy this condition is determined by the fact that with n >/ 1+£2ﬁj the
n

parameter Q(r) is meaningless. On the other hand the inequity



B S 1_@2
1+(ﬂJ !
2n

is valid and if n satisfies the condition (5.3.2.5) then condition (5.3.2.8) is automatically
satisfied. In connection with this hereinafter we shall require that n satisfies condition (5.3.2.5),
which makes sense if f<7.

5.4. MOTION OF MATERIAL BODY IN GEH FIELD
OF CENTRAL SYMMETRY

5.4.1. MOTION OF UNCHARGED BODY WITH NON-ZERO MASS IN GEH FIELD OF
CENTRAL SYMMETRY

In paragraph 4.2.3 material body was defined through using the notions of GEH field and
from this definition as a consequence it follows that GEH field located outside of some region V
containing material body in the form of GEH field which is characterized by certain features, is
an external field independent of the material body. However actually GEH field external in
relation to volume V is a continuation of internal field (material body).

Material body in GEH field of central symmetry from the standpoint of GEH field is a
unified non-centrally symmetric field developing in time following a certain law and having
some small domain V satisfying certain requirements of material body definition provided in
4.2.3. Besides, deviation of GEH field from central symmetry is so insignificant that it can be
ignored. Thus a complex problem of development of some complex GEH field in time shall be
reduced to a purely classic problem on motion of the point material body in the external static
GEH field of central symmetry. Motion of this body is described by the system of equations of
geodesic line (or by the system (4.2.3.19)) of four-dimensional spatial-temporal variety with a
metric (5.1.1.1). This system has the following form:

d_zui@(ﬂjz _L(d_@j_ «9[%}2 N
ds? 2bdr\ds b\ ds b ds

1 dafdx®)’
+——| —| =0,
2b dr | dr




+————-sin@cosf| —
ds? rds ds

2
d_¢+g£d_¢+2(:tg9d_€d_¢
ds? r ds ds ds ds
4" | 1dadr & _
ds?> adrds ds

These equations contain exclusively characteristics (Fi:-‘) of gravitational field, in which the

d?0  2dr de (d¢J2—o

0, (5.41.1)

test body is moving. Solution of the system (5.4.1.1) under certain initial conditions allows to
define the trajectory and motion law along this trajectory. This system does not contain
gravitational charge (mass) of test body; various bodies with various gravitational charges but
equal starting conditions are moving along one trajectory with a similar law. The system of
equations considers only the gravitational impact of the gravitational field on the test body .

The first integral of the fourth equity of this system assumes the following form (ref.
(3.2.1.16)):

dx®
aE =¢, =const (5.4.1.2)
In (5.4.1.1) ds is a length of elementary arc of geodesic line

ds :\/a(dxo)2 —b(dr)? —r?(d@)* —r?sin? 9(d¢)?

According to (5.2.2.1)

a(dx®)? =c?(dt)?, (5.4.1.2)
where dt is a time interval measured by the watch located in the given point of the trajectory.
Hence,
V2
ds =c,|1-—-dt (5.4.1.3)
c
where

2 2 2
v2 =b[£j + rz[d—aj +r2sin? e(%j
dt dt dt

Considering the above from (5.4.1.2) we obtain:

=C,. (5.4.1.4)
1-
If for potential of gravitational field the values of a defined by (5.1.2.10) are used, then in

asymptote when the moving body is located far from the center of GEH field of central
symmetry and its velocity of movement is low, i.e. when

I\/lTG<<1, X<<1
c’r c
according to (5.1.2.3) and (5.1.2.4)
Va-1- 42|
c’r
v? 1v?
1-— =1--—
c? 2¢?

Hence



If this equity is multiplied by rest mass of moving body we shall receive full mechanical
energy of a moving body E,

2
E, - mv" _ GmM (5.4.15)
r
Hence the equity
mc\/a E,
Em —W, (CO _m_cJ (54]6)

defines the total mechanical energy of a moving body in the field of central symmetry if a is
defined in accordance with (5.1.2.10) and the equity (5.4.1.4) is a conservation law of
mechanical energy of a moving body.

From (5.4.1.4) it is evident that dissipation of mechanical energy of the test body does not
occur, in particular, no gravitational waves are radiated by the test body. Obviously in the
system consisting only of such sub-systems the dynamic phenomena cannot develop — it is dead
and hence unreasonable.

Since asymptotic value of the potential of gravitational field of central symmetry is equal

? is an energy of a material body with mass m in gravitational field which has

to ¢*, mc
potential c®. Such definition of energy mc? is more natural than currently known name of
"energy at rest".

When a is defined according to (5.1.2.2) total mechanical energy of the moving body is

defined by the equity
2
g - me’Va (co - E“;J. (5417)
J1-v?/c? mc

The potential of gravitational field in this case is c’a, not a.

Let us define other integrals of the system (5.4.1.1). Let us divide the third equation by %

and rewrite it in the following form'

Inrz 92 20956’d_¢9=
ds ds sin@ ds

Hence
2 ain? d¢
resin HE:cl:const. (5.4.1.8)

In accord to this the first and second equities of the system (5.4.1.1) will get the following form:

d’r 1 db(drj r(dejz c c. da
- = == - + ==
ds?  2bdrds bl ds br3sin®6 2a%b dr

(5419

d?¢ 2drd® cfcosd o
ds? rdsds risin®@
If for 6 the initial conditions are applied
o=Z 99 o a s-o, (5.4.1.10)
2 ds
then from the second equation of the system (5.4.1.9) 6 we shall get for

o="2
2

In such case the first equation for r from system (5.4.1.9) can be rewritten in the following
form:



ds

2 2 2
d2r 1db(drj R N Py a)))

ds® 2bdr br3  ° 2a%b dr

By multiplying this equity by % we shall easily get the first integral, which coincides with the

i k
above defined g;, ddisddis =1 integral of the system (5.4.1.1), in particular,
2 2 2
S _ b[ﬂJ _4 (5.4.1.12)
a ds r

This differential equation allows separation of the variables and its integral is defined in the
following form:

r
s:J_rJ‘ ~abdr
a
f \/—a—cfz+c§
r

where r, is an initial value of r,ie. r=r, with s=0. This latter equity defines the functional

, (5.4.1.13)

dependence of r(s). By substitution of r(s) into (5.4.1.8) and (5.4.1.8) and by integration we

get:
x°(s) = Xy +C, ﬁ
a
0 (5.4.1.14)
tds
S)=d, +C, | —,
#(3) = 4y jr

where x{ and ¢, are initial values of parameters x° and ¢.

The equities (5.4.1.13) and (5.4.1.14) in aggregate with solution & =% and initial conditions

r=r dr—r'
=l, ——=l
d‘f; ) (5.4.1.15)
=¢, ——=¢ at s=0
P=p, ds $o

define the motion law and trajectory of moving material body in three-dimensional space.
Arbitrary constants ¢, and c, are defined by these initial conditions, namely from (5.4.1.8) we

get:
¢, =12d, (5.4.1.16)
and from (5.4.1.12) we get

Co = 4/ally) 1+ b(ry)iZ + 1242 (5.4.1.17)
From (5.4.1.13) and (5.4.1.12) the parameter s can be excluded and to receive the functional
dependence between r and ¢

¢:¢Oiclj Jabdr

b
2a
f rz\/—a—clz+c§
r

which determines the shape of the motion trajectory of the material body.
The indicated here equities define the dependence of coordinates of moving point on s. To
define the dependence of coordinates r, & and ¢ on time let us apply equities (5.4.1.2) and

(5.4.1.2’) as a result of which we shall obtain:

(54.1.18)

ot =L Jadk® = %o 8 (5.4.1.19)
c c Ja



Standard time will be defined by the readings of watches located infinitely far from the origin
of coordinates, i.e. t, =t . Then according to (5.2.2.10)

dt =+/adt,

le.
d, = S0 98
c a
Taking into account the above from (5.4.1.13) we shall obtain:
ot \/Edr
to =% a (5.4.1.20)
c

>
a
0rz\/—a—c122+c§
r

which, in totality to (5.4.1.18) defines functional dependencies of r(t) and ¢(t), i.e. the motion

law of material body according to the standard time.
From the practical standpoint the initial conditions (5.4.1.15) are not convenient since they
are written for coordinates r, ¢ and for the parameter s. It is more convenient to formulate the

initial conditions in parameters R, ¢ and t. Distance R from the central point to the point with
r coordinate is defined by the equity (ref. (5.2.1.8))

R =_rf b(r)dr. (5.4.1.21)
0

From (5.4.1.19) and (5.4.1.21) we have:

dt ¢, ds
dg_c ¢
dt ¢, ds’

Thus, for R and ¢ relative to t we have the following initial conditions:

f dR . ¢ .
R:Rozj b(r)dr, E=R0=C—w/a(ro)b(ro)r01

0

b=y, —éo = \/a(r ., at  t=0.
From this if a(r) is defined by the equity (5.1.2.2) we get:

r=r,=r(Ry) dr _EnR, =
0 0" ds med a(Ry)b(R,) | (5.4.1.22)
pog,, 90 _Ent 1 at =0,

ds  mc® JaR,)
where r(R) is an inverse function of function (5.4.1.21).

Constants C,, ¢, (and also E, ) can be expressed through R,, #,,R,, ¢, in particular, from

(5.4.1.16), (5.4.1.17) and (5.4.1.22) we have:
2 a(Ry)

Co = ,
1r. .
1= 5 R+ o)




m?c?a(R,)

1 if a is defined by (5.1.2.10),
1—0—2[R§ +r2(Ry)d2]
E2

m®c*a(R,)

if a isdefined by (5.1.2.2),

1 RS +r R0t

_ Em¢or2(Ro) _C_oéorz(Ro)

e mc®a(R,) ¢ +a(Ry)

These equities limit the initial values of the parameters R and ¢ and their derivatives in

(5.4.1.23)

time, in particular motion of the material body is possible if the initial values meet the
requirement:

1. .
1—C—Z[R§ +r2(Ry)g2 >0

When using the system (5.1.2.2) the law of material body motion represented by the
equities (5.4.1.2) and (5.4.1.18) will assume the following form:

t :-i-CorezJ'2 dg’
Cc - ; ]
¢ VA
1 2n 1 3n
, -n , -n
2.2 ¢ 1+n 2 6= 1+n
A(é,'):CO fe -l -
C 1+n C 1+n
1-n 1-n

VB
o ,_].—_n272n , 1+_n2+2n_
N P =y P
2-n 2+n
—re{é'— L—"J (§'+ “—"] - (5.4.1.24)
1+n 1-n
ol o, 1-n , 1+n
‘Cl[é" mj[“ ﬁ]’



5.4.2. LIGHT BEAM PROPAGATION IN GEH
FIELD OF CENTRAL SYMMETRY

According to classic physics propagation of the light beam is described by the system of
equations (5.4.1.1), in which unlike the material body with rest mass m, s is some invariant
parameter rather than length of geodesic line arc of four-dimensional spatial-temporal variety.
In the case considered the light beam is propagated along the isotropic geodesic line

dx' dx*

Oix o ds 0. In this connection integral (5.4.1.12) of the system (5.4.1.1) is replaced by
integral:
2 2 2
S b(ﬂj _S g, (5.42.1)
a ds r
and equity (5.4.1.13) — by the equity:
r 2
s=x] _ dJabd? (5.422)
fo CZ CZ i
0 1 rz
In addition, instead of (5.4.1.17) we shall get:
Co =Ha(ry) y0(ry )¢ +1ids (5.4.2.3)
and instead of (5.4.1.20) and (5.4.1.18) — the equities:
r \/Edr
I [———.
C Lyct —cla/r? (5.4.2.4)
r Jabdr
P=¢o £ Clj 5

c2_c2alr?
which define the functional dependences r(t) and ¢(t) i.e. trajectory and law of beam
propagation in space.

For initial values the system (5.4.1.22) in considered case will assume the following form:

r=ry=r(Ry), %:Cofo m,
6 od 1 o (5.4.2.5)
9= E:?\/a(—RO) at s=0.
Constant ¢, can be defined from (5.4.1.16) with allowance of (5.4.2.5), namely
¢, = o (Ro)dy 1 (54.2.6)

¢ va(Ry) .

As for c, it cannot be defined from (5.4.2.3) and (5.4.2.5), as it was done in previous segment;

indeed, if the values of r, and 50 from (5.4.2.5) are substituted into (5.4.2.3), then c, is reduced
and the following condition is obtained:

R + 12t =c?. (5.4.2.7)

Thus the real initial values of parameters R,, ¢, and their derivatives in time shall satisfy

bond condition (5.4.2.7) which limits the degree of freedom of choice of initial conditions.



As it has been indicated s is a random invariant parameter provided taking into account,
that the system (5.4.1.1) is invariant relative to transformations s=as' where ¢ is a random

constant value and s’ - a new invariant parameter then according to (5.4.1.2) it will become
evident that ¢, can be equated to one.

Thus for the random constants ¢, and ¢, we have:

(5.42.8)

By using the system (5.1.2.2) the system (5.4.2.4) can be rewritten in the following form:

2.p '
L
C VA
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A2 1+n c;
(4)_re 1tn - 1 1 X
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p dé//
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1 2-2n 1 2+2n
r ' —-Nn ' +n
B(§)=re2[§— HJ [§+ mj -

(5.4.2.9)

5.4.3. MOTION OF A CHARGED MATERIAL BODY
IN GEH FIELD OF CENTRAL SYMMETRY

According to (4.2.3.17) equations of free motion of a charged material body have the
following form:



d2x*  ,odx®dx® 1 _,dx"P  dx®
>+t to o 1
ds ds ds 27 ds ds

They contain solely characteristics of GEH field (they contain parameters H;) and do not

0. (5431)

contain characteristic parameters of the test body. It is indicative of the fact that not all kinds of
test body can perform free motion in GEH field of central symmetry. Characteristic parameters
of the test body shall meet certain conditions to enable free motion to take place.

In general case these conditions are difficult to identify, that is why we shall consider the
cases when the distance between the symmetry center and test body is much larger than r,.

For GEH field of central symmetry the third summand in the left part of the system
(5.4.3.1) assumes the following form:

1 [l// dXOJF" dx® zizz—f at k=1
S Yo |Fo = 14nC @
2p(" " ds ) ods g at k #1

From this it is evident, that equations of free motion of any test body was a small m and electric
charge ¢, which meet the condition of selectivity

0 0
1 Yo O | _pe sign oA (5.4.3.2)
2n ds 5 0 ds

ne

take the following form:
d’x* o dxPdx! g Fk dx P

=0 5.4.3.3
ds? Mds ds mc? P ds s 4
In the case in question the (5.4.3.2) has the following form:
0
paoc 4 (5.4.3.4)

2n ¢ ds mc?

d’r Ldbfdr)’ r %jz_fsinzﬁ(%jz+
ds? 2bdrds bl ds b ds

0?2 0
! da(dx J B quoldx 0

and (5.4.3.3) is reduced to the system:

2b dr| ds mc ds
2 2
d°0 ,2drdo npcosgl 92 =0, (5.4.3.5)
ds? rds ds ds
2
d—¢+g£d—¢+20tged—0d—¢=0,
ds? r ds ds ds ds

+_
ds? adr ds ds mc? ' ds
Parameters of electron or positron satisfy condition (5.4.3.2) in cases when GEH field of

2,0 0
d°x” 1ldadx" dr q Foﬂzo.

central symmetry is proton. In case of positron the trajectory is infinite and in case of electron it
is finite. Hence electron with proton form a stable system (hydrogen atom). It is stable since
electron in GEH field of central symmetry being a proton performs free motion, it does not
radiate its own GEH field.

Similarly to previous one, these equations allow flat motion and if this plane coincides with

the plane 0= % the system (5.4.3.5), if here we substitute the values F; and F° from (5.1.1.5)

will get such a form:



d’r 1.db drj (dqﬁ 1 dafdx®
- —— +— +
ds?  2b dr\ds bl ds 2bdr| ds
1dpo° _

b dr ds

mc
d?¢ 2dr dg _

ds? rds ds
d’x” 1ldadx’ g 1depdr_

ds?> adr ds mc?adrds
Similarly to previous one (or see (3.2.2.7)) the last equity of this system has the following

(5.4.3.6)

first integral:
dx g
ds  mc?
where E, is a total (mechanical and electric) energy of moving material GEH in body field of

Pp=Cy=

E”‘ez =const, (5.4.3.7)
c

central symmetry. The (5.4.3.7) is a law of energy conservation (see the paragr. 3.2.2).
Considering the fact that

2
Jadx® =cdt, b[%) ir [‘lfj v, (54.3.8)

where v is the velocity of motion of the body in question, the following is obtained from

(5.4.3.7):
Jame?

2
1=V

Let us consider asymptote of this equity at r —> o0, i.e. at p — . Considering that:

+qp=E,,. (5.4.3.9)

Va=| YR g M 1 pong (5.4.3.10)
r

which according to (5.1.2.4) can be re-written in the following way:

Ja=1- r@/ , (5.43.11)
when r, = M%z . Quite similarly:

277\/?

o /1 n| 7

0 0

o= (oﬁ ~ (1_477re.1} p>>1 (5.4312)
1+n B

R

1-n

This equity according to (5.1.2.8) can be rewritten in the following way
0

¢:¢+% (543.13)

After substitution of values va and ¢ from (5.4.3.9) we shall have:

mcz(l— r%j aQ

= +q(p+— =E - (5.4.3.14)
1- %2

Hence for lower (relative to c) velocities we get:



Emezmc2+q;+mTV2—GmTM+$. (5.4.3.15)
The sum of three subsequent terms in the right part is a full energy of a moving body with mass
m and charge q in the external gravitational and electric fields of point source with mass M
and charge Q.

Thus when performing free motion of a charged test body while satisfying the condition
(5.4.3.2) the full energy of the test body is preserved, no dissipation of the full energy occurs or
which is the same, the test body does not radiate the respective GEH field. This circumstance is
a basic reason of stability, for example of hydrogen atom. With manifestation of a excitation
factor in the form of external GEH field a GEH field of complex structure is formed in the space
resulting in violation of the basic condition (5.4.3.2) and in the hydrogen atom start to form
dynamic phenomena accompanied either by atom ionization or irradiation of GEH field, etc.
These dynamic phenomena are described by equations (4.2.3.16), in which g,, ¢, and w* are
potentials of the resulting dynamic field with a complex configuration.

At very large distances from the field source the space is flat and if the initial velocity of the
moving material body is equal to zero, then the body will be in a state of rest at any moment of

time and (5.4.3.15) is reduced to the equity:
0

E,.=Mc’+qop. (5.4.3.16)
This is the very energy of a motionless material body with a small m and charge gq in

0
gravitational field with potential c* and electrostatic field with potential ¢, i.e. rest energy. It

0
differs from so far known rest energy by the value q¢.
Similarly to previous case in question the motion integral is an equity (5.4.1.8). Taking this

i k
into account the motion integral g;, c:jiddi =1 will acquire the following form:
s ds

0\2 2 2
al di _b(ﬂ) _C_I:]_.
ds ds r2

Hence according to (5.4.3.7) we have:

1 qe ' (dr)’ c?
—|Co - —bl—| -2-=1. 54317,
a (CO mc? ) ( ds j r ‘ )
This differential equation allows separation of variables and its integral has the following form:
s=t] Jabar , (5.43.18)

I, 2 02
Jeo-997 ) ~a-at%/.

where r, is an initial value r, i.e. ry=r with s=0. (5.4.3.18) defines functional dependence
r(s). By substitution of r(s) into (5.4.3.7) and (5.4.1.8) let's define x°(s) and ¢(s):

. ds
0(q) — 40 _Qo bt
X(S)—XO-}-!(CO /ncz)a’

9=ty o[ %

0

(5.4.3.19)

where xJ and ¢, are initial values (with s=0) of parameters x° and ¢ . The last three equities

in the aggregate with initial conditions



o,

ds °’

dg =

=@y, —=¢ at s=0
9=0 =%

define the law of the charged material body motion in the GEH field of central symmetry.

Random constants of ¢, and ¢, integration are defined from the initial conditions in particular,
from (5.4.1.8) and (5.4.3.17) we get:

r=r,,
(5.4.3.20)

.7
Ci=Tlo & »

Co =q¢(r%cz im\/l-i— b(ry)rZ +C1/02 .

By excluding s from (5.4.3.18) and (5.4.3.19) we shall define the equation of the motion
trajectory

(5.4.3.21)

(5.4.3.22)

HO) =gy . Jabdr

o 2 (C _q% )Z_a_acy
mc? r?

Dependence of the coordinates r, & and ¢ on the real time t can be also defined. From
(5.4.3.7) we get:

1 1
_1 /3 0:_( _QV )d . (54323
c adx C\/E Co me2 S ( )

Taking this into account and similarly to previous one introducing standard time, we shall have:

1" (co - q%czj\/gdr
= a , (5.4.3.24)
5 qo 2 ac?
(0= pge) —a="4/

which in aggregate with (5.4.3.22) defines the functional dependencies r(t) and ¢(t), i.e. the

law of the charged material body motion in GEH field of central symmetry.
Similarly to previous one the initial values of the coordinates can be expressed through

. (Co qco(R/ )

r=ryo=r(Ry), —=r, =

ds c/a(Ro)b(R,) (5.4.3.25)
w - ( ~ap(R) j

——=¢ =
ds cya(Ry)
Besides, for the constants ¢, and ¢, we have:

(Co _qgo(R%Cz)z a(Ro)

1——[R2 L3R, )¢O]

(Co q(D(RO)mCz) (Ro )¢o
cya(Ry)

t =+

Ry» Ry, ¢, and ¢, , in particular:

g, at s=o

¢=¢0:

(5.4.3.26)

C =

According to (5.4.3.7)



mc?y/a(R,)
17- .
1- 5 RS+ (R
c
In a given paragraph we always took into account the fact that a is defined from equity

(5.1.2.2). In case when a is defined from (5.1.2.10) in all above expressions mc? shall be
replaced by mc.

When using (5.1.2.2) the law of motion (5.4.3.22), (5.4.3.24) will acquire the following
form:

Eme =00(Ry) + (5.4.3.27)
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In general case the motion of the charged material body is described by the system of equations
(4.2.3.16). To use these equations in case of two charged material bodies (in the sense of classic



physics) of which one is a central body and the other — a test body, it is necessary to make use
of the GEH field, which is a model of two bodies. This is the GEH field having a dynamic
nature with a complex spatial configuration acquires the nature of static GEH field of central
symmetry in the vicinity of the center of the central body, while being placed near the center
of the test body — the nature of dynamic GEH field.
Since the equations (4.2.3.16) contain all characteristic parameters required for both central
and test bodies some conditions of selectivity, similar to condition (5.4.3.2) become
unnecessary.
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CHAPTER VI

SOME APPLICATIONS OF THEORY OF GEH FIELD
OF CENTRAL SYMMETRY

Here we shall try to use the results obtained in previous chapter for approximate
description of internal structure of material world possessing the central symmetry. If material
object is at large distances from the external world and if it consists of a large number of grains
(in classic sense) than for accuracy can be considered high decree of centrally-symmetric
material world. Centrally-symmetric material world are for example heavenly bodies, heavy
atomic nuclei, elementary particles, etc.

Approximate coincidence of the model (GEH field) with respective material world apart
from the above mentioned reasons is also conditioned by the fact that the model is statistic and
characteristic parameters of GEH field are regular values within entire space and do not allow
existence of individual sub-regions with strong and weak concentrations of GEH field clearly
demarcated by closed surfaces.

6.1. APPLICATION OF THE THEORY
OF GEH FIELD OF CENTRAL SYMMETRY
IN ASTROPHYSICS

6.1.1. STATIC MODEL OF THE SUN



The world is a unified GEH field in the process of its evolution, while the Sun as the part
of the entire world as well is GEH field changing in time, However it is changing so slowly that
generations of people do not notice this change and the Sun seems to be a static object (for
several generations). In this connection for creation model of the Sun we can use a static GEH
field. Besides, in some region of the space representing a sphere with radius L of the order of
about half of the distance from the Sun to the nearest stars GEH field can be assumed
(approximately) centrally-symmetrical.

Investigation of evolution of the entire GEH field, filling entire space is practically an
inaccessible problem for the human being and not only because that the the respective Cauchi
problem is extremely complex but also because baseline information about the state of the
world (GEH field) in the initial moment of time is required to solve this problem; it is
practically impossible to collect such information.

In this connection to develop a static model of the Sun we shall use a semi-classic method
according to which the Sun is considered as a material body placed in some external
gravitational and electromagnetic fields, which actually are the continuation of the Sun
considering it as a GEH field.

According to the above mentioned in some cases we consider the Sun as a static GEH field
of central symmetry and in other — as a classic material body; this is the very essence of semi-
classic consideration of the problem under study.
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