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INTRODUCTION 

 
It is known that hypothesis of unified character of gravitational and electromagnetic fields, 

as well the field structure of the matter, belong to Einstein. This idea can be practically realized 
in two stages. On the first stage of investigation it is necessary to generalize the laws of 
gravitational and electromagnetic fields and formulate the unified field, theory comprising (in 
definite meaning of this word) of laws of gravitational and electromagnetic fields. Such theory 
as it was repeatedly noted by Einstein himself, should be free of singularities in four-dimension 
world. The limitation which is superimposed on the structure of the unified theory, is the 
necessity in its elasticity, capability to respond to the questions, characteristic for the material 
world. However, one such a  requirement can't provide the singularity of unified field theory. 
Various unified theories, existence of which is possible by their possibilities should be identical, 
transforming, in definite meaning, one  into another. 

On the second stage, the investigations should be realized in compliance between the 
conceptions of unified field theory and conceptions of modern physics by means of which the 
investigator percieves the outer world. 

It should be noted that main difficulties on the way of realization of this program are met 
on the second stage of investigation, i.e. in the process of establishing the relation (relation  
between the scheme of unified theory and outer world, as it takes place, e.g. in quantum 
physics. 

The recent work is dedicated to one of the possible versions of practical fulfillment of the 
mentioned program.  

The main principle on the basis of which  we'll try to perform an investigation of the first 
part of  the planned program, is adopted from the evolution of physics and consists of  the 
following: If on this stage of development the definite physical theory is covariant in relation to 
some group of transformation, than the analysis of evolution of  physical science shows that the 
requirement of covariance relative to more common group of transformation results to 
necessity of introduction of new notions and widening and perfection of old theory. E.g. 
demand of covariance of laws of mechanics relative to Lorenz group of transformation resulted 
to creation of mechanics of special relativity theory and requirement of relativity of continuous 
(holonomic) groups - to creation of mechanics of general relativity theory and relativistic 
theory of gravitation field. In this connection for unified description of gravitational and 
electromagnetic fields in the present work there is introduced a conception of continuous 
(holonomic) groups, a corresponding nonholonomic geometry has been constructed, which, in 
future is used for construction of unified field theory, covariant relative to nonholonomic group 
of transformation. Such a procedure is quite identical to that, which was early applied by 
Einstein during creation of common relativity  theory and relativistic theory of gravitational 
field and is capable to reveal by means of completely in analogy the physical essence of new 
concepts, connected with nonholonomic group of transformation. 

The established links (relations) between the concepts of unified field theory and usual 
physical notions are independent principal task, which, in the present work has been realized 
while applying the equations of relativistic theory of gravitational field and the equations of 
electromagnetic field in the curved space, belonging to Einstein. In comparison to old classical 
theory, in which these equations have been applied for determination of the metric tensor 



 
components ijg  and  electromagnetic field potential iϕ  along to given values of the 

components of energy pulse tensor k
iT  and density of electric current ij , in the proposed 

theory parameter k
iT  and ij  are determined by values of components ijg  and iϕ , representation  

solving the system of equation of unified field theory. Such a procedure of establishing the 
relation between the mentioned parameters logically are not strongly substantiated, and it may 
be justified only by the degree of coincidence of obtained theoretical results with the 
corresponding experimental data. 

With this purpose in this work there has been considered an unified field of central 
symmetry. The corresponding system of relativity equations ijg   and iϕ   has been solved and is 
proved that these parameters are free of singularity in central point 0=r  and in the whole four-
dimensional space. The asymmetric behavior of these very parameters have been investigated as 
well while ∞→r  and it has been shown that ijg  and iϕ  ∞→r  coincide with the known 
classical values. 

Further, the received theoretical results have been used for approximated description of 
proton structure of atomic cores and the Sun, identifying them by corresponding unified fields 
of central symmetry. Comparison of obtained results with corresponding empiric data shows 
that the offered field model of the matter with the precision of sufficient degree describes the 
structure of proton, heavy atomic cores and the Sun. 

 
C H A P T E R   1 

 
ELEMENTS OF NONHOLONOMIC  

GEOMETRY 
 

Main elements of nonholohomic geometry which are stated in the second paragraph of this 
Chapter are the direct generalization of proper items of Riemannian geometry. The best way, 
by means of which it is possible to realize the mentioned generalization, in our opinion, is an 
apparatus of absolutely differential calculations and tensor analysis. This circumstance 
conditions introduction in this chapter (in the first paragraph) of a known material from the 
Riemannian geometry and tensor analysis, which, as we consider, contributes to natural 
transition from Riemannian (holonomic) geometry to nonholonomic one. 

 
 

1.1. SOME MAIN ELEMENTS  
OF RIEMANNIAN GEOMETRY 

 
1.1.1. ELEMENTS OF TENSOR ALGEBRA [1] 

 
Space − is the aggregate of points. The notion of points is elementary (limiting), not 

determined by more elementary notions. For addressing the points of the space there can be 
used four acting numbers .,,, 3210 xxxx  The numbers 3210 ,,, xxxx are called the coordinates of 
the main elements (points) of space. 

Determination carried out here is not connected with the material phenomena and, that is 
why is of abstract character; space-independent reality, in which run the material phenomena. 



 
And the character of the space (see below) is closely related with material phenomena; only 

thanks to material phenomena the main characteristics-metric features − space  in which we 
live, can be determined. 

A priori it can be applied the following proposition: the space cannot have several various 
metric features at the same time. Than, with allowance that these features with single meaning 
are connected with material phenomena, running in the space, it becomes clear, that the 
independent, as regards to classical physics, phenomena − mechanical, gravitational, 
electromagnetic, etc. are unified. 

Addressing of space points can be realized by completely arbitrary way, only following one 
of the main requirements − monosemanticity of correspondence between points and their 
addresses. 

Let  kx′  − other addresses (coordinates) of points of considered spaces. The coordinates kx  
and kx′  must be located in interunambiguity  functional dependence, i.e.: 

3,2,1,0),,,,( 3210 =′=′ kxxxxxx kk          (1.1.1.1)  
Values of kx  and kx′  determine various systems of addresses, or the various systems of 

coordinates, and the equations (1.1.1.1) express the law of transformation of coordinates (law of 
readdressing of points) during transition of one system of coordinates into another. 

In the space, for which there has not yet been determined the metrics, it can't be realized 
the geometrical constructions, i.e. it can't be judged the distances and directions, however, in 
such a space, by means of method of point grouping, having the definite similar features, there 
may be introduced the geometrical notions, useful during solution of various problems. For 
example, totality of points having the similar kx   coordinates ( k  - fixed number from multitude 
of 0,1,2,3) constitutes the three-dimensional hyper surface. Let's generally call the three-
dimensional hyper surface as a totality of four-dimensional space, coordinates kx  of which are 
represented by the equations: 

3,2,1,0),,,( 321 == kpppxx kk                        (1.1.1.2) 
where, 21 , pp  and  3p  are some parameters having the definite domain of variation. 

Completely similarly, the equations: 
3,2,1,0),,( 21 == kPpxx kk                   (1.1.1.3) 

determine the two-dimensional hypersurface, and the equities: 
3,2,1,0),( 1 == kpxx kk       (1.1.1.4) 

determine the one-dimensional hypersurface or, that is the same − the line. 
The hypersurface kixxxx iiik ≠<<= maxmin,0 is called the k -th coordinate hypersurface ( k -

fixed number); in case, when i  - fixed number, these terms determine the i -th coordinate line. 
By means of coordinates of main elements (points) of four-dimensional space it is possible 

to form some characteristic elements, in particular, so called infinitesimal controlled vector. If  
),,,( 3210

1 xxxxM and ),,,( 33221100
2 dxxdxxdxxdxxM ++++ − two points of space, coordinates 

of which differ from each other by infinitesimals of 3210 ,,, dxdxdxdx . Let's call the totality of 
these values as the infinitesimal contravariant vector, and the separate  elements of kdx  − 
components of this vector. 

It is obvious that in other system of coordinate the considering infinitesimal contravariant 
vector is characterized by the components kxd ′ . Relation between infinitesimals kdx  and kxd ′  
can be established by using (1.1.1.1). Really, from this equity after differentiation we'll have: 



 
p

p

k
k dx

x
xxd
∂

′∂
=′           (1.1.1.5) 

On the basis of transformation law, during transition from one system of coordinates into 
another, it is possible to introduce generally a determination of controlled vector. 

If some physical phenomenon which runs in considered four-dimensional space in various 
systems of coordinates kx  and kx′  is characterized by totality of values kA  and kA′  correspon-
dingly, and if between these values there exists a relation of the type (1.1.1.5), i.e. there takes 
place the following equity: 
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p

k
k A

x
xA
∂

′∂
=′    (1.1.1.6)   

than we'll say that  kA  constitutes a contravariant vector with the components 3210 ,,, AAAA . 
If  kA   and kB  −  are the contravariant vectors, than from them it is possible to form 

totality of the values kk BA ⋅ ,  number of which is equal to 16. In the system of coordinates kx′  
to these values according to (1.1.1.) correspond: 
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x
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xBA

∂

′∂
∂
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=′⋅′    (1.1.1.7) 

In connection to transformation law we are introducing a tensor of second order. If some 
physical phenomenon in various systems of coordinates kx  and  kx′  are characterized by 
totality of the values klA  and  klA′  correspondingly and if there takes place the transformation 
law of the type (1.1.1.7) 
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∂
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′∂
=′     (1.1.1.8) 

than the totality of values klA will be called a contravariant tensor of second order. 
Similarly, the totality of values nkkkA .....21  constitutes a contravariant tensor of n-th order, if 

the corresponding components in the system of coordinate kx′  are determined by the following 
equities: 
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=′    (1.1.1.9) 

A physical value  u  is called a scalar, if  its value in any point of the space does not depend 
on choice of coordinates, i.e. if 

),,,(),,,( 32103210 xxxxuxxxxu ′′′′′=    (1.1.1.10)    

From u it is possible to form so called covariant vector kx
u

∂
∂ .  Accordingly, in the system of 

coordinates kx′  this vector will have the following appearance kx
u
′∂

′∂ . Relationship between 

these vectors is established by means of application of (1.1.1.10) and (1.1.1.1), in particular: 
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′∂              (1.1.1.11) 

 
In connection to this transformation law let's introduce a notion of covariant vector. The 

totality of physical values iA   is called a covariant vector, if its components in the coordinate 
system kx′  are determined by the following equities: 

pi

p

i A
x
xA
′∂

∂
=′    (1.1.1.12) 



 
It's obvious that if iA   and iB   are the covariant vectors, than according to (1.1.1.12) the 

following equities are valid:  

qpj

q

i

p

ji BA
x
x

x
xBA

′∂
∂

′∂
∂

=′′    (1.1.1.13)      

In this connection, ijA   is called a covariant tensor of second order, if its components in the 

system of coordinates kx′  are determined by the following equities: 

pqj
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ij A
x
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x
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′∂
∂

′∂
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=′     (1.1.1.14)  

 
and 

miiiA ....21
 is a covariant tensor of n -th order, if the following  transformation law is valid: 
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If kA   is contravariant, and iB  - is a covariant vector, than it is obvious that    
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q
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i
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x
xBA
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∂

∂
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=′′                     (1.1.1.16) 

 
Reducing these equities by indices i  and k  and with allowance that: 
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x δ=
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∂

′∂ ,    (1..1.1.17) 

we'll obtain: 
   k

k
k

k BABA =′′                            (1.1.1.18) 
i.e. k

k BA  is invariant.  
In connection to the transformation law (1.1.1.16) let's introduce a notion of mixed tensor 

of second order. k
iA   is called a mixed tensor of second order if  there takes place the following 

transformation law: 
p
qi

q

p

k
k

i A
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x
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′∂
∂

∂

′∂
=′                   (1.1.1.19) 

as well  n

m

kkk
iiiA ....

......
21

21
 is called m   times covariant and  n  times contravariant mixed tensor of  nm +  

order, if 
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From the transformation law of tensors it follows that if the tensor in some system of 
coordinates is symmetric (antisymmetric) relative to two indices, than the symmetry 
(antisymmetry) according to these indices are maintained in any system of coordinates. Really, 
if 

............ kiik AA =  
than  

.........

...............

......

............

kipqi

q

k

p

qpk

p

i

q

pqk

q

i

p

ik

AA
x
x

x
x

A
x
x

x
xA

x
x

x
xA

′=
′∂

∂
′∂

∂
=

=
′∂

∂
′∂

∂
=

′∂
∂

′∂
∂

=′
 

For antisymmetric tensor  ............. kiik AA −=  has: 
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A similar circumstance takes place for contra variant tensors.      
The components of infinitesimal contravariant vector kdx   are absolutely arbitrary values, 

but if the increment of coordinates corresponds to increment of some invariant parameter   p, 

than from them it is possible to create a final contravariant vector  
dp
dxk

. 

Let's consider some partial versions of this vector. 
If                                                                                           1) 

1) ;0,0,0,0
1
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00 ======≠= xddxxddxxddxxddx  
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The corresponding final vectors have such a form: 
1) ,0,0,0
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3) ,0,0,0
3

22

33

11

33

00

3
≠===== dpxdxdpxdxdpxdx &&&  

   ;0
3

33

3
== dpxdx&  

4) ,0,0,0
4

22

44

11

44

00

4
==≠=== dpxdxdpxdxdpxdx &&&  

     ;0
3

33

4
≠= dpxdx&    

These vectors are not linearly dependent, so as 
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dp   is arbitrarily small value and, if  in the first line of the system (1.1.1.21) we'll admit that 
dpxd =0

1
, in the second −  dpxd =1

2
, in the third − dpxd =2

3
 and in the last  − dpxd =3

4
, than 

we'll  obtain the following linearly independent vectors:   

                                            
1 Index above the letter shows the number of the version and is not a number of  the component of tensor value. 
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   (1.1.1.22 

Thus, in any  point  of the space it is possible to construct 4  linearly independent vectors 
(1.1.1.22), so-called independent basic vectors, which are obtained from the established law of 
addressing points of space (see (1.1.1.21). In other words the basic vectors (1.1.1.22) are chosen 
not by arbitrary way but are determined by a structure of coordinate system.  

Any contravariant vector kA , which depends on the coordinates  of points  in considered 
space, let's imagine in a linear combination of  basic vectors (1.1.1.22), i.e.: 
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           (1.1.1.23) 

 
 
This equity really takes place if we admit that: 

C
C

A kk −=                        (1.1.1.24) 

On the basis of  these latter equities of  the values kA  we have received the indicated 
components of the vector A

r
 in the basis of (1.1.1.22). 

Here it should be done one important note, in the Riemannian geometry while 
investigating the arbitrary question there are applied exclusively basic vectors (1.1.1.22). 

In principle, introduction of basic vectors in the form of (1.1.1.22), depending on law of 
addressing the space points, is not unique, they might be selected by completely arbitrary way 
in each space point as well as the coordinates (of the address) of this point. The only limitation, 
which the basic vectors 

k
er  have to satisfy, should meet requirements, is their linear 

independencies, i.e. the components of these vectors in the basis (1.1.1.22) should meet the 
requirement: 
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                                 (1.1.1.25) 

where, k

i
e  − the components of vector in the basis of (1.1.1.22). They are the functions of the 

coordinates of separate space points. 
It is easy to show, that if  ),,,( 3210 xxxxAk  is any contravariant vector in the given space 

point, than the system of the vectors 
4321

,,,, eeeeA rrrrr
  is linearly dependent, i.e. the following equity 

takes place: 

0
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1
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= kk
k ebAb rr

                (1.1.1.26) 

Really, in force of (1.1.1.25) the system (1.1.1.26) which we'll rewrite in such a form: 
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has the only solution  
ik

i
kk AA
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α==−      (1.1.1.28) 

where, 

Δ
Δ

=
k
ik

iα               (1.1.1.29) 

Δ - value of a determinant (1.1.1.25), and k
iΔ  − algebraic addition to the element k

i
e  in a 

determinant Δ . Values of kA  determined according to (1.1.1.28), by analogy to the previous 
one, are called the components of the same A

r
  vector in the basis 

i
er . Obviously, these equities 

(1.1.1.127) and (1.1.1.28) establish the contact between the components of one and the same 
vector A

r
 in various basis in 

i
E
r

 and  
i
er . 

From the above indicated we come to the following conclusion: for a tensor calculus an 
important value has not only the law of addressing of space points (on the law of addressing 
depends the functional image of separate tensor components), but the choice of base vectors in 
separate space points. In this connection, in future, in comparison to the system of coordinates, 
we shall introduce the notion reference system, under which we'll understand the combination 
of addresses (coordinates) of points kx  and systems of basis vectors  

k
er , chosen in each space 

point. A reference system we'll denote through the symbol ),(
k

k exSR r . A partial type of the 

reference system is ),(
k

k ExSR
r

; In this reference system in each space point a basis vector is 

(1.1.1.22). ),(
k

k ExSR
r

 is the main reference system for Riemannian geometry (in four-

dimensional space) and Einstein's general relativity theory. 
During transformation of only the system of coordinates ),(

k

k exSR r  will pass to ),(
k

k exSR r′  

which differs only by the fact that the system of basis vectors coincides with the old system of 
basis vectors. During transformation of only the system of basis vectors a new reference system 
is symbolically written down this way: ),( ′

k

k exSR r , and during transformation both of the 

systems of coordinates, and the basis vectors - ),( ′′
k

k exSR r . 

If in flat three-dimensional space for investigation of several problems of geometry there 
are used the Cartesian coordinates and basis vectors being parallel to coordinate axis, than the 
reference system ),(

k

k ExSR
r

 consists of these coordinates and basis vectors. In the same form is 

written down the reference system in case of using the spherical coordinates and basis vectors, 
relative to spherical coordinate lines, passing through a given space point. On the other side, it 
is clear that for investigation of geometrical problems in a considered space can be used the 
Cartesian coordinates and basis vectors relative to spherical coordinate lines, passing through 
the given space point, or vice versa - the spherical coordinates and basis vector, being parallel to 
the axe of Cartesian system of coordinates, in such cases the reference system is written down 
as ),(

k

k exSR r  (about it see below): 

 
 



 
 

1.1.2.  INTRODUCTION OF A METRIC [1] 
 
Addressing of the space points - is an arbitrary operation and it is not connected with any 

limitations that is why it can't influence on metric properties of space. The metric properties of 
space being its inner characteristics are determined by symmetric, nondegenare tensor of 
second order ijg . In particular, the length of infinitesimal contravariant vector kdx   is 
determined by equity: 

ki
ik dxdxegds =      (1.1.2.1) 

and the length of some contravariant vectors  kA  - by equity   
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ik AAegA =       (1.1.2.2) 
where,  
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ikg  is called to be a metric tensor of the space. 

By means of ikg  it is possible to form a covariant vector iA ,   corresponding  to  

contravariant vector kA , in particular, 
k

iki AgA = .      (1.1.2.3) 
A vector character iA   can be easily proved if in the right part of final equity we make a 

substitution: 
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In  connection to the fact  that ikg  are characteristic parameters for a given space the value 
of iA  and iA  can be considered as covariant and contravariant components of one and the same 
vector in a considered reference system  ),(

k

k ExSR
r

 relative to metric tensor ikg . Formation of 

covariant components of the vector by means of contravariant components is called dipping of 
index. Dipping of indices can be realized as well for tensors of high orders, thus, e.g.:  
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From covariant metric tensor ikg  can be formed a contravariant metric tensor of second 

order: 
 

ikik

g
g Δ=

1                                        (1.1.2.4) 



 
 

where, g is a determinant:       

33231303

23221202

13121101

03020100

gggg
gggg
gggg
gggg

g =   (1.1.2.5) 

and ikΔ  – algebraic addition to the element of  ikg  in a determinant g . 
So as kiik gg = , than it is obvious that kiik Δ=Δ , that is why ikg is symmetric to kiik gg = .  
It is known that  

gg k
i

pk
ip δ=Δ , 

that is why  
k
i

pk
ipgg δ=                                 (1.1.2.6) 

With allowance that ikg  and k
iδ  are tensors from this equity comes that  ikg is also a 

contravariant tensor of second order;  
On the basis of the law of multiplication the determinants we have:  
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where,  

33231303

23221202

13121101

03020100

gggg
gggg
gggg
gggg

g =                                 (1.1.2.7) 

thus,  

g
g 1
=                                     (1.1.2.8) 

During using of tensor ikg  it is possible to realize the index of tensors,  thus, e.g.: 
...,,, k

p
ipik

ip
pkk

ip
ipi AgAAgAAgA ===  

Tensor character of these values comes from the structure of right hand parts of the last 
equations.  

From (1.1.2.2) and (1.1.1.18) it fallows that the length of a vector is covariant.  
If in some points of space, this length of a vector is equal to zero 0=A  than we'll say that 

the vector is isotropic in this point, and if this equity is true in some domains than the vector 
field is isotropic in this domain. 



 
If )( pxi  – is some curve passing through two points )( 1pxi  and )( 2pxi , 1p  and 2p  – fixed 

values of the parameter p  that the length of the curve are between these points is determined 
according to the equity: 

dpxxegs
p

p

ki
ik∫ ′′=

2

1

,                              (1.1.2.9) 

where  p is an invariant parameter, and    
dp
dxx

i
i =& . 

Angle between two nonisotropic vectors iA  and iB  is determined according to the 
following equity:  
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ik
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ik

ki
ik

BBegAAeg

BAg
=αcos                   (1.1.2.10) 

or 

AB
BA

AB
BA

AB
BAg i

ii
iki

ik ===αcos                  (1.1.2.11) 

where, ki
ik

ki
ik BBegBAAegA == ,  are the lengths of considered vectors relatively. 

The condition of orthogonality of nonisotropic vectors is received from (1.1.2.11) with 
allowance of 0cos =α , in particular, 

0=ki
ik BAg                                     (1.1.2.12) 

From the expression of  αcos  it is seen that: 1) it is an invariant value; 
2) the inequality is not always valid 1cos ≤α , in some cases 1cos >α .  In the first case the 

(1.1.2.11) determines the material value of an angle α , and in the second  α  has a complex 
value. In the latter case the (1.1.2.11) bears a formal character. It is possible to prove, that, if the 
matrix ikg  is positively determined in some point (domain) of space, than in this point 
(domain) inequity 1cos ≤α  is always valid.   

Really, in a considered case in a selected point (domain) of space the inequity  0≥ki
ikg ζζ  

is valid for any values of parameters 3210 ,,, ζζζζ .  Let's represent kζ   in the following way:  
kkk ζλζζ ′′+′=  

where, λ  – some parameter. After substitution we'll receive  
0)()(2 2 ≥′′′′+′′′+′′ ki

ik
ki

ik
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ik ggg ζζλζζλζζ . 
From this inequity it comes out that a quadrate trinomial in any part of this equation 

relative to arbitrary value λ  – is nonnegative, this means that its discriminant is non-positive, 
i.e.  
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Consequently 
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Substituting here instead of ii Aζ ′  and instead of ii B−′′ζ , it becomes evident that the 
condition 1cos ≤α  is valid. By analogous means it is possible to show the validity of this 
condition in case, when the matrix  ikg  is negatively determined.  

Let's rewrite the equity (1.1.2.11) this way:  

B
BAg

A
ki

ik=αcos                             (1.1.2.13) 



 
αcosA  is a projection of vector kA  to the vector kB . Similarly, a projection of vector kB  is 

calculated on kA . If kB  is a unit vector  1=B , than from (1.1.2.13) we have: 
ki

ik BAgA =αcos                             (1.1.2.14) 
Using the basis vectors (1.1.1.22) it is possible to determine the projection of vector kA  on 

coordinate lines, in particular if EB
rr

= ,  than from (1.1.2.13) we shall have:  
0000cos gAgA i

i=α  
Let's similarly determine the other projections using the 

432
,, EBEBEB

rrrrrr
=== . All these 

projections can be written down in the form of one equity:  
kk

i
kik gAgA =αcos                    (1.1.2.15) 

From this equation it is evident, that the projections of the vector kA  on the coordinate 
lines do not coincide with its components, only in one case, when 1=iig  and )(0 kigik ≠=  (in 
case of flat space with Decart system of coordinates).  

k
k AA =αcos                               (1.1.2.16)  

Besides, from (1.1.2.15) it follows, that totality of projection of vector kA  on coordinate 
lines does not constitute a vector.  

If the components of  vectors A
r

 and  B
r

 are proportional to 
kk AB λ=                                (1.1.2.17) 

than, from (1.1.2.10) we have  
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In case, when ikg  is nonnegative definite determined matrix, from here we have:  

⎩
⎨
⎧

<−
>

=
0,1
0,1

cos
λ
λ

α  

 i.e.  
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λπ
λ

α . 

Thus, in case of nonnegatively determined matrix ikg  the A
r

 and B
r

 vectors meeting the 
requirements of (1.1.2.17) – are parallel. In this connection the condition (1.1.2.17) is called the 
condition of parallelism in any case.   

By means of a tensor ikg  there can be also formed other invariants, having a great value in 
appendix. For example, from the equity 
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it is evident that  

g
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=′       (1.1.2.18) 

where,  
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),,,(

3210

3210

xxxx
xxxxI

∂

′′′′∂
=  

is a Iakobean transformation  (1.1.1.1).  On the other hand, as it is known, the following 
equation is valid: 

32103210 dxdxdxIdxxdxdxdxd =′′′′ . 



 
If here instead of I  we substitute its value form (1.1.2.18), than we'll receive : 

32103210 dxdxdxdxgxdxdxdxdg =′′′′′      (1.1.2.19) 
i.e. 3210 dxdxdxdxg - is invariant. The final equity has an important value during integration. 

  
 

1.1.3. GEODESICAL LINE [1] 
 

As it is known, in flat space between two points there can be traced multiple arcs of various 
lines, among which a section of the straight line is  the shortest in length. The straight line is 
called a geodesical line of flat space. Let's consider the task for curved space. 

According to (1.1.2.9) length of the arc of any curved line, passing through the point 
)( 1pxi and )( 2pxi  is equal to: 

dpxxegS
p

p

ki
ik∫=

2

1

&&              (1.1.3.1) 

From all-possible curves, passing through the indicated point let's  select the subsystem of 
curves  for which e  maintains  the constant symbol on the section of line between the points 

)( 1pxi and  )( 2pxi . Let's introduce again the parameter s  - the current length of a line, been 
read from the point )( 1pxi . In future we shall mean, that s  - function of the parameter p , i.e.   

)]([),( psxxpss ii == . 
The task determined by the geodesical line is reduced to minimization of the functional 

(1.1.3.1). From this equity it is evident that sub-integral expression 
ki

ik xxegL &&=               (1.1.3.2) 
is nonnegative value and that is why there exists minimum functional  S , which is attained for 

)( pxi , satisfying the equations of  Euler: 
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From   (1.1.3.2)  it is evident, that 

,
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After substitution of (1.1.3.4) and (1.1.3.5) into (1.1.3.3) we shall receive: 
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With allowance that kiik gg = , the second member of the left part  can be represented in the 
following form: 
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Then the equation (1.1.3.6) is reduced to the system: 
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From this, after multiplying by eig  and convolution on index  i  we'll finally obtain: 
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where, 
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These values are called the Christoffel symbols of the second type. It is evident, that 
  k

ji
k
ij Γ=Γ .   (1.1.3.9) 

If  the parameter p  coincides with  )( pss = , which, in considered case, is the current 
length of the arc of geodesical line,  than from (1.1.3.7) we'll receive  more than a simple system 
of the equations of nonisotropic geodesical lines: 

0=Γ+ jik
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k xxx &&&& ,             (1.1.3.10) 
where,  
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The isotropic geodesical line is determined also according to the system (1.1.3.10), in 
which, under s  there is meant some invariant parameter. 

It should be noted, that the type of geodesical line is unambiguously determined along the 
initial point ix0  and to the direction of ix0&  , in other words, solution of the system (1.1.3.10) 
meeting the following initial conditions: 

i
i

ii x
ds
dxxx 00 , ′==  at   0=s         (1.1.3.11) 

is the only. 
The sought for functions )(sxi  in the vicinity of initial point ix0 can be represented in the 

following form: 
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In the right hand side ix0   and  ix0&  are known values according to (1.1.3. 11), and the other  
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 are determined from (1.1.3.10) while using (1.1.3.11).  Really: 
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The right hand sides of these equities are determined in succession with allowance of 

(1.1.3.11). 
It is easy to show, that one of the first integrals of the system (1.1.3.10) has the following 

form:    
constxxg pk

kp =&&                    (1.1.3.13) 
i.e., the value of     pk

kp xxgI &&=                                   (1.1.3.14) 
maintains a constant value along the geodesical line. Indeed, from (1.1.3.14) we have: 
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In the right hand side of this equity instead of kx&&  let's substitute its value from (1.1.3.10), 
than we'll receive: 
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i.e. along the geodesical line the condition (1.1.3.13) is valid. 
 

1.1.4. COVARIANT DIFFERENTIATION [1] 
 
The question discussed here is closely related to some features of Christoffel symbols, that is 

why we shall try to bring here some basic of them. 
Let's calculate i

ikΓ .  From the (1.1.3.8) it is evident that: 
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In the last member of the right part let's represent the indices i  and p  taking into account, 
that piip gg = , than for i

ikΓ  we'll receive: 
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On the other hand, according to determination of determinants it is evident, that  
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where, ipΔ  is an algebraic addition of the elements of ipg in a determinant  g , i.e. 
ipip gg ⋅=Δ . 

After substitution from (1.1.4.1) we'll receive: 
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Transformation law of Christoffel symbols during transformation of the system of 
coordinates it is possible to determine from the equation (1.1.3.8). With this aim let's 
differentiate the equity:   
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From here: 
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These equations can be rewritten as follows:  
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From this transformation law it is evident that Christoffel symbols do not constitute a 
tensor value. 

 Let's differentiate the equity 
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In the right hand let's change the second derivative by its values from   (1.1.4.3) 
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After substitution we'll obtain: 
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From it  is clear that: 
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Thus, the tensor value is not a simple derivative of the vector iA ,  but the values 
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which are called the covariant derivative of  a contravariant vector. 
In full analogy is determined the surface derivative of covariant vector iA ,  in particular 
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From which it is clear, that: 
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The covariant derivatives of tensors of the second order are determined according to 
following equities: 
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These formula are easily generalized for tensors of second order.  

    
   

1.1.5. CURVATURE TENSOR AND 
TENSOR OF RICHI [1] 

 
Let's differentiate (1.1.4.5) according to rx′ : 
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If here we substitute the value of the second derivatives from (1.1.4.5), permutate the 
indices q  and r  and exclude the third derivative, finally we'll receive:  
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where:  
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ijl
kR′  – is expressed through  k

ijΓ′ .  

From (1.1.5.1) it is clear that k
ijlR  constitutes one-time contravariant and three-times 

covariant mixed tensor of fourth order. In literature, according to Reimannian geometry it is 
known as a curvature tensor or tensor of Reimannian. From the structure k

ijlR  it is easy to 
notice that the components of curvature tensor are antisymmetric relative to indices j  and l , 
i.e. 

k
ilj

k
ijl RR −=                                     (1.1.5.3)  

Convolution k
ijlR  according to indices k  and l  will give a covariant tensor of second order:   
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which is called a Tensor of Richi. 
By means of  Richi tensor it is possible to form a spectrum:  

ij
ij RgR =                                 (1.1.5.5) 

known under the name of velocity curvature.  
 
 

1.2. SOME MAIN ELEMENTS OF GEOMETRY OF NONHOLONOMIC TRANSFORMERS 
 

1.2.1. NONHOLONOMIC TRANSFORMATIONS 
NONHOLONOMIC TENSOR ALGEBRA [2,3] 

 
In previous paragraph there have been considered some main problems of Riemannian 

geometry, according to which an inner structure of the space unambiguously is characterized 
by metric tensor ikg . Readdressing of points, i.e. transition from one state of reference system 

),(
k

k ExSR
r

 into another does not change the geometrical features of the space, to be invariant are 



 
left such parameters, as: length of vector, angle between two vectors, etc. which can be 

determined by means of direct measurement. In this respect, all the reference systems ),(
k

k ExSR
r

 

are equivalent. Such reference systems in future will be called holonomic. 
Let's consider the reference system of more common type of ),(

k

k exSR r  in which 
k
er  is the 

arbitrary linearly independent 4 vectors. According to (1.1.1.28) the components of some 
contravariant vectors 

e

kA  in  ),(
k

k exSR r  are of following type1:  
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And k
iΔ  – an algebraic addition to the element i

ke  in a determinant Δ . Completely similarly, in 
),(

k

k exSR r′  well have:  
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And  k
iΔ′  – is the algebraic addition of the element i

ke′  in the determinant Δ′ . It is obvious, that  
i
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p
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p
ee δαδα =′= ,                          (1.2.1.4) 

According to (1.2.1.4) and (1.2.1.1) we have:  
 k
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E
AeA =                                       (1.2.1.5)  

Substituting this value in to (1.2.1.3), we'll receive:  
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AaA =′                                        (1.2.1.6)  

where,  
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k ea α′=                                          (1.2.1.7) 

These i
ka  coefficients determine the transformation law not only of contravariant vectors, 

but of any tensors, independently from their character and order.  
From (1.2.1.7) with allowance of (1.2.1.4) , we have: 

                                            
1 To differ the values in various reference frames we'll apply temporarily the lower indices "e" and "E". For example 

e

kA  is a contravariant vector in the system ),(
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k exSR r  and  k

E
A – in the system ),(
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where, k
ia  – is a reciprocal matrix of the matrix  k

ia . 
idx  – is an infinitesimal contravariant vector in the system ),(

k

k ExSR
r

. This vector we shall 

refer to a point with the coordinates kx . Components of this vector in the reference system 
),(

k

k exSR r , according to (1.2.1.1) will be pk
pdxα . These infinitesimals comprise 16 function 

),,,( 3210 xxxxk
iα , which, to say generally, do not meet the requirements of differentiability of 

considered infinitesimal components, i.e.: 
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That is why, in such cases, the values of pk
pdxα  are not the differentials of some functions.  

Thus to the infinitesimal contravariant vector, kdx  the components of which are exact 
differentials in ),(

k

k ExSR
r

, in ),(
k

k exSR r – correspond as well to the infinitesimal components:  
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p
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e
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of which in force of (1.2.1.10) are not exact differentials of some functions [4].  
In full analogy, the components of considered vector in ),(

k

k exSR ′r  are determined by the 

equities:  
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e
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which are infinitesimal, but not the exact differentials.  
From (1.2.1.11) and (1.2.1.12), with allowance of previous equities, we have:  
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i.e. k
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dx  and  
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e
dx′  are the components of one contravariant vector in ),(
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k exSR r  and  ),(
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correspondingly.  
It should be noted that the coefficients of transformations k

ia , according to (1.2.1.7), to say 
generally, meet the following equations:  
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In this connection (1.2.1.6) (or 1.2.1.13) in future we'll call nonholonomic transformation. 
The holonomoic transformation (1.1.1.1), which is used in Reimannian geometry, may be as 
well written in infinitesimal parameters:  
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The equity (1.2.1.8) establishes the contact between the basic vectors 
k
er  and ′

k
er , that is why 

the nonholonomic transformation should not be explained as the transformation of coordinates 
(thy, at the same time can remain  unchanged) but as a transformation of basic vectors.  

Here, it should be mentioned one important circumstance.  



 
According to (1.2.1.7) k

ia  are the composition of k
iα  and k

iα ′  (or k

i
e  and 

k

i
e′ )  functions, 

meeting the requirements of (1.2.1.10) that is why in some cases k
iα  functions can meet the 

requirements of integrity (holonomicity)  
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For example, if k
iα  (or k

k
e ) are the prescribed functions than it is always possible to select 

such k
iα ′  (or 

k

k
e′ ) functions, for which the conditions of (1.2.1.16) for k

ia  are fulfilled. Really, 

selecting in advance such k
ia  functions, which during all fixed values of the index " k " meet the 

requirements of (1.2.1.16), than the corresponding values of the function k
iα ′  are determined 

from (1.2.1.9). 
In such cases any contravariant vectors including the infinitesimal contravariant vectors 

(infinitesimal of kdx  and kxd ′ , are not the exact differentials), are connected between each 
other by means of holonomic transformations. 

Let's admit that ),,,( 3210 xxxxu  is a scalar. During transition from the point kx  into point 
kk dxx +  it receives the increment 
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It is evident, that du  is also a scalar, that is why its value in ),(
k

k exSR r  is not changed. 

Similarly to partial derivatives, valid for ),(
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r

, let's introduce the partial derivatives in 
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If, here instead of du  we'll substitute its value from (1.2.1.17) we'll receive: 
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For further transformation of this equity, let's use the (1.2.1.11), from which  
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Than, from (1.2.1.18) we have:   
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In full analogy, ),(
k

k exSR ′r  we have:     

                                            
1 For generalized partial derivatives, in the sense indicated here, in future we'll apply the symbol "" k
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From (1.2.1.20) and (1.2.1.21) it is evident, that:  
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Which, according to (1.2.1.8) is possible to rewrite thus: 
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This latter equity determines the transformation law of generalized partial derivatives of 
scalar function during the transition from ),(

k

k exSR r  into  ),(
k

k exSR ′r . 

In this connection, by analogy to the previous, the values of 
e
iA  constitute a covariant 

vector, if its components 
e
iA′  in the reference system ),(

k

k exSR ′r  are calculated according to the 

formula:  
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From (1.2.1.6) and (1.2.1.24) it is seen, that in case of nonholonomic transformations the 
vector values are transformed completely analogously to the case of holonomic transformations. 
These transformations differ from each other only by coefficients; In holonomic 

transformations there are used i

k

x
x
∂

′∂  and i

k

x
x
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∂ , and in nonholonomic ones k
ia  and k

ia . 

Tensors of nonholonomic transformations are determined in full similarity, in particular, if  
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than  nkkk

e
A ...21 – is a contravariant tensor of n  order,  

miiie
A ...21

 – covariant tensor of n  order, and  

n

m

kkk
iiie

A ...
......
21

21
– n -times contravariant and m-times covariant (mixed) tensor. 

As it was noted above, the length of infinitesimal of the curve ds  is invariant value in all 
reference systems ),(

k

k ExSR
r

. Requirements to invariance ds  in all reference systems  ),(
k

k exSR r  

leads to the equities: 

pq
E

q

e

p

k
ke

e
pq

E

q

e

p

kke
e

geeggeeg ′′=′= ,              (1.2.1.26) 

From here, after exclusion a tensor pq
E
g , we'll receive  
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e
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i.e. ke
e
g  – represents a covariant tensor relative to nonholonomonic transformations. 



 
Length of a vector i

e
A  and cosine of an angle between two vectors i

e
A  and k

e
B  are 

determined according to formula:  
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These values are invariant. 
From (1.2.1.27) we have:  
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where, a is a determinant, composed of elements k
ia . On the other hand, from (1.2.1.13) we 

have:  
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Comparing (1.2.1.29) and (1.2.1.30) we'll receive: 
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i.e.  
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invariant. It has an important application in calculations of integrals. 
  
 

1.2.2. ELEMENTS OF NONHOLONOMIC  
TENSOR ANALYSIS [3,5] 

 
The main parameters of tensor analysis of Riemannian geometry, as it  was shown above, 

are the symbols of Christoffel, that is why this paragraph we shall start with generalization of 
these symbols in case of nonholonomic transformations. 

In ),(
k

k exSR r  the Christoffel symbols let's formally determine completely analogous to the 

reference system ),(
k
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r
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If we apply (1.2.1.27) for  
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This equity determines the transformation law of symbols of k
ije

Γ  obtained according to 

(1.2.1.1) relative to nonholonomic transformers, i.e. while transition from ),(
k

k exSR r  into 
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k exSR ′r .  
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Than from (1.2.2.2) we'll receive that:  
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as well  
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System of (1.2.2.3) consists of )1(
2
1 2 +nn  of the equations, which comprise  

322 )1(
2
1)1(

2
1 nnnnn =−++  

being unknown k
ijη′  and k

ijω′ , that is why the parameters k
ijω′ , number of which equals to 

)1(
2
1 2 −nn , can satisfy the definite additional conditions of calibration. Here, we shall consider 

one of the possible terms of calibration, which from all-possible reference systems ),(
k

k exSR r , 

connected between each other by nonholonomic transformations, distinguishes one of special 
subclasses. Group properties corresponding to nonholonomic transformations will be discussed 
in the following paragraph. 

Let's admit that i
e
ϕ  and 

e

iψ  are two prescribed vectors relative to nonholonomic 

transformations, meeting the following term:  
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where, β  – is some invariant, constant value. From all-possible reference system ),(
k

k exSR r  we'll 

distinguish only those, which are connected with each other by nonholomonic transformations, 
meeting the following terms of calibration:  
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where, η  – some constant value in reference system ),(
k

k exSR r . 

This term can be written in a short form:  
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It is evident, that    jieije
FF −= . 

Taking into account the vector character i
e
ϕ  and i

e
ψ ,  it is easy to establish the 

transformation law of the values ijF , in particular:  
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Taking into account the (1.2.2.5) we have  

pq
e

q
j

p
iije

FaaF ′
−

=
βη

η                          (1.2.2.9) 

i.e. ije
F  – is a quasitensor relative to nonholonomic transformations of  considered type.  

With the aim to establish the terms of calibration in reference system ),(
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multiply the (1.2.2.6) by j
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from it, according to (1.2.1.23) and (1.2.2.9) we'll have:  

,1
pq

e

q
j

p
i

l

e

j
m

i
nm

e

l
n

n

e

l
m Faaaa

x

a

x

a ′
−

=
′∂

∂
−

′∂

∂
ψ

βη
 

or  

,11
mn

e

p

e

l
pnm

e

p

e

l
pm

e

l
n

n

e

l
m FaFa

x

a

x

a ′′
′

=′′
−

=
′∂

∂
−

′∂

∂
ψ

η
ψ

βη
  (1.2.2.10) 

where:                
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A new constant value in the reference system is ),(
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k exSR r . From it, and from (1.2.2.9) it is 

evident that ije
F
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1  is a tensor. 

In case when ∞→η  the (1.2.2.6) becomes a holonomic transformation and from (1.2.2.9) 
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and  k
ijH ′  is the same expression in  ),(
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Let i
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This equity shows that the values   

p

e

i
pjj

e

i

ei

je
AH

x

A
A +

∂

∂
=

'
                     (1.2.2.14) 

relative to nonholonomic transformations are transformed as components of mixed tensor of 
second order, i.e. they constitute a mixed tensor of second order. In this connection i

je
A '  are the 



 
value, in future will be called covariant derivatives (in generalized sense) of contravariant 

vector.  
In full analogy are determined the covariant derivative tensors of various orders, in 

particular: 
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From these expressions it is evident that the symbols of k
ijH  in nonholonomic tensor 

analysis play such a role, which are played by the symbols of Christoffel in holonomic tensor 
analysis.  

Above it was shown, that ijF
η
1  is a covariant tensor, that is why the summand 
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third order. Taking into account this fact from equations (1.2.2.14) and (1.2.2.15) it is evident, 
that if in the right parts of these equities k

ijH  is changeable through k
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Γ   than the obtained 

expressions, according to the physics coincide by form with the classical covariant derivatives, 
as well they are tensors.  
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Using the third equity of the system (1.2.2.15) relative to covariant metric tensor ik
e
g , we 

obtain:  
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In full analogy it is possible to show, that 0, =
ik

j
e
g .  

Thus,  
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As it is known [1] always is possible to select such a ),(
k

k ExSR
r

, that in a given point of the 

considered space all the Christoffel symbols are equal to zero. The similar circumstance takes 
place for the symbols k

ijH . 
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′  are two reference systems provided that  
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pq CC  are the constant 

values. It is evident, that in ),(
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The considered transformation is holonomic that is why the coefficients of transformation 
k
ia  and  k

ia  have such a form: 
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With allowance of this from (1.2.2.11) for k
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These equities in the point kk xx 0=  (or 0=′kx ) is reduced to the following equities: 
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′  in point of 0=′ix  the symbols k
ijH ′  are equal to zero.  

After the above-indicated generalization of covariant determinants we'll use the 
generalization of curvature tensor of fourth order. With this aim we'll rewrite the main 
equation of the whole nonholonomic tensor analysis (1.2.2.11), with allowance of (1.2.1.21), 
we'll in the following form: 
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Let's differentiate this equity (in general sense) according to fx , and the equity  
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which is obtained from (1.2.2.18), if we substitute the index  j  by the index f , differentiate by 
jx , and then from them exclude the second derivative  
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After some transformations, with allowance of above obtained main equities, we'll finally 
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and 
k
ijf

e
R′  – is the same expression in the reference system  ),(

k

k exSR ′r . 

From (1.2.2.19) it is clear, that k
ijfe

R  are the components of a tensor of fourth order relative 

of nonholonomic transformations of considered type. In future k
ijfe

R  will show by 

nonholonomic curvature tensor of the fourth order. 
From (1.2.2.20) it is clear, that k
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k
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RR −=  i.e. nonholonomic curvature tensor, analogous to 

the previous one, is antisymmetric relative to the index of j  and f .  
Here we shall not study the main properties of this tensor, so as for final aims of this works 

sufficient are only several. 
By means of mixed curvature tensor of the fourth order it is possible to form various tensor 

values, in particular: 
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From (1.2.2.22) it is evident that jieije
RR ≠ .  

Nonholonomic scalar curvature:  
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Let's suppose that ),(
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 is such, that in the point of kx0  the condition  0=k
ijH  is valid. 

In this point kijee
R  has such a form: 
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From here, it is clear, that  
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i.e. ikjle
R  – is an antisymmetric tensor relative to ki,  and  ., lj  

According to the results of the paragraph 1.1.1, the features mentioned here of 
antisymmetry of a tensor kijee

R , valid in special reference system, take place in any reference 

system.  
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From this it's evident, that  
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This equity comprises exceptionally the tensor values and, that is why, is valid in any ),(
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.  

The (1.2.2.28) is a generalized identity of Bianka. From it can he received other, more 
elemental, identity. With this aim let's multiply by (1.2.2.28) l
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g δ . With allowance of the fact, 
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After substitution into (1.2.2.28) we have  
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(1.2.2.30) is a generalization of known identity of general theory of relativity [6]. In 
contravariant components the (1.2.2.30) has such a form.  
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 provided   ik

e
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e
GG ≠ ,   when ik
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According to (1.2.2.33)  ki

e
G  coincides by form with the tensor of Einstein, applied in 

relativistic theory of gravitational field, however with allowance of the fact, the ike
R  applied in 

present work, is generalization of the tensor of Richi ikR , than ki

e
G  should be considered as 

generalization of Einstein tensor. 
 
 

1.2.3.  EH  GROUP OF NONHOLONOMIC  
TRANSFORMATIONS [3,5] 

 
The above considered elements of tensor analysis are covariant relative to nonholonomic 

transformations, meeting the requirements of calibration of (1.2.1.6) (or (1.2.2.7), (1.2.2.19), 
corresponding to fixed functions iϕ   and  iψ ,  i.e. all reference systems ),(
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k exSR r , which are 

connected between each other by means of nonholonomic transformations of considered type, 
are equivalent. It is possible to show, that the considered nonholonomic transformations at 
prescribed iϕ  and iψ  constitute a group. With this aim let's consider two nonolonomic 
transformations having the similar functions  iϕ  and iψ  and various constants η′  and η ′′ :   
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Combination of these transformations give one transformation  
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Let's multiply this equity by j
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Taking into account (1.2.3.2) and (1.2.2.10), we have: 
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According to (1.2.2.9)  
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F  into the second summon of the right hand side of the last 

equity and replacing p
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From here, with allowance of (1.2.3.4) we finally have:  
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where,  
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In full analogy, it is possible to show that: 
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where:      
ηη
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′′−′
′′−′= ,    i.e.   ηβη −= .  

Thus, combination of two nonholonomic transformations satisfying the condition of 
calibration of (1.2.2.6), constitutes as well the nonholonomic transformation of the same type 
with the constant η , defined according to (1.2.3.6). 



 
Besides, the transformation of the considered type comprises the identity transformation. 

Really, the transformation of i
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transformation under consideration. 
There is available the inverse transformation. This property is a simple consequence of 

requirement of 0)det( ≠k
ia . From it, it is clear, that the nonholonomic transformation of 

considered type constitutes a group, which in future we'll call the EH group of nonholonomic 
transformations. 

At specified β  and η′  it is always possible to find such a value of η ′′ , for which 01
=

η
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Really, from (1.2.3.6) this takes place at  
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and if the reference frame ),( ′
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k exSR r  coincides with ),(
k

k ExSR
r

, than the transformation with 

the coefficient k
ia  is holonomic. Provided i
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Thus, combination of two transformations of considered character, corresponding to one 
and the same value η , constitutes a holonomic transformation. 
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CHAPTER II 
 

ELEMENTS OF RELATIVISTIC  KINEMATICS 
 



 
Any physical phenomenon runs in four-dimensional space signified as −−−+ , i.e. in four-

dimensional space-time variety, and consequently only such spaces will be further considered. 
The subject may investigate the physical phenomena based on application of rational - for a 
subject - notions, as: time, distance, direction, velocity and movement acceleration, etc. 
Coordinates used for point addressing, in general case, will not reflect the essence of these 
rational notions (these are dimensionless numbers), that is why it becomes necessary to draw 
those main equities, that allow to define the mentioned parameters, depending on metric 
properties of four-dimensional space-time variety. 

The authors will try to define in this Chapter the most common expressions for calculation 
of kinematics parameters, justified for any four-dimensional space-time variety (both plane and 
bend), as well as for any coordinate systems describing the investigated four-dimensional  space. 

Expressions yielded below for calculation of time and distance are valid and then, when 
none of coordinate lines is timelike, and 0<g . In that particular case, when one coordinate line 
is timelike, the common expressions coincide with known expressions [1,2,3]. 

Such generalization should be recognized as natural, so as from geometric viewpoint it is 
not important what coordinate lines will be used by us while describing four-dimensional 
space-time variety, important is that the four coordinate lines would not be laying 
simultaneously in subspace of n-measurement, where 4<n . 

Investigation of major kinematics issues have shown that for any study of issues related 
with calculation of metric characteristics of four-dimensional space is reduced to study of 
resolution of differential equations in partial derivatives of first order. In this connection, in 
order to present the subject in full, this Chapter will have additional paragraph dealing with 
elements theory of differential equations in partial derivatives of first order. To put it briefly, 
the method of characteristics will be reduced to discussion, excluding its geometrical 
interpretation. These issues are discussed in detail in [4,5,6]. 
 
  
 

2.1 SOME ASPECTS OF DIFFERENTIAL EQUATIONS IN PARTIAL DERIVATIVES OF 
FIRST ORDER 

 
2.1.1 LINEAR DIFFERENTIAL EQUATIONS  

IN PARTIAL DERIVATIVES OF FIRST ORDER 
 

The differential equation  
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where, ),,...,,(),,,...,,( 21
0

21 uxxxauxxxa nn
k  - are prescribed functions of their arguments, and 

),...,,( 21 nxxxu  - the sought function is called quasi-linear differential equation in partial 
derivatives of  first order. 

In the 1+n - dimensional space of variables kx , u  the values kx
u

∂
∂ -1 constitute a  normal 

vector to surface 0),...,,( 21 =− uxxxu n , that is why, as per (2.1.1.1), the coefficients 0, aak  
represent the components of tangent vector of the same surface. According to this prescribed 
vector power lines )(),( susx k  can be constructed, belonging to indicated surfaces 



 

0, a
s
ua

ds
dx

k

k

=
∂
∂

=                                (2.1.1.2) 

This system of ordinary differential equations is called a characteristic system for (2.1.1.1). 
If 00 ≡a , and coefficients ka  do not depend on u , then from (2.1.1.1)  is yielded: 
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This equation is called a linear differential equation in partial derivatives of first order. 
Characteristic system of equation (2.1.1.3) is as follows 

0, ==
ds
dua

ds
dx

k

k

          (2.1.1.4) 

Since ka  doesn’t depend on  u , a it is reduced to system: 
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which constitutes a complete system of ordinary differential equations in relation to kx . Any 
function of ),...,,( 21 nxxxϕ  is called an integral of this system, if 
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where, )(xxk  – is a solution of system (2.1.1.5). Integral of system (2.1.1.5) can be formed as 
follows: assuming that one of ka  coefficients differs from zero, i.e. condition of 
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is valid. 
Assuming that such coefficient is na , we'll rewrite (2.1.1.5) in the following way: 
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In accord to the theory of ordinary differential equations [5], this system has common solution 
at rather general conditions relative to coefficients: 

1,...,2,1),....,,( 121 −== − nkCCCxx n
nkk ψ         (2.1.1.9) 

where, 121 ,...,, −nCCC  – are arbitrary constant integrations. kψ  functions admit solubility of this 
system in relation to 121 ,...,, −nCCC   constants: 
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1−n  functions of ),...,,( 21 n

k xxxϕ , determined as per procedure mentioned here, represent 
themselves as functionally independent integrals of systems (2.1.1.8) or (2.1.1.5). Functional 
independence of  kϕ  function is the result of method of their determination, in particular, 
whereas (2.1.1.9) and (2.1.1.10) – are identity systems, than (2.1.1.10) is resolved in relation to 
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is equal to 1−n . 



 
Any function of ),...,( 121 −nF ϕϕϕ  is also an integral (2.1.1.5), however it is in functional 

dependance on preceding functions. It is easy to show that system (2.1.1.5) has no other integral 
independently from 121 ,..., −nϕϕϕ . Actually, if we assume that there is integral  ),...,,( 21 n

n xxxϕ , 
independet from  121 ,..., −nϕϕϕ  , than we'll get that 
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representing the linear algebraic (homogeneous) equations relative to ka , it follows that 
nkak ...,,2,10 == , and this contradicts to condition (2.1.1.7). In accord to (2.1.1.7) the 
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ϕ  should take place, from which it follows that nϕ  function depends on 

121 ,...,, −nϕϕϕ . Besides, it can be obtained from (2.1.1.12) that any integral of system (2.1.1.5) 
satisfies the linear equation (2.1.1.3). Reverse proposal is correct: any solution of equation 
(2.1.1.3) is an integral of system (2.1.1.5). Indeed, if we in (2.1.1.3) changes kx  by )(sx k  solution 

of system (2.1.1.5), and ka  is changed through 
ds

dxk

, then we'll get 0=
ds
du , i.e. constu =  at 

)(sxx kk = , consequently ),...,,( 21 nxxxu  is integral of system (2.1.1.5). 
Thus, equation (2.1.1.3) has 1−n  functionally independent solutions. These solutions of 

equations of (2.1.1.3) give all independent integrals of system (2.1.1.5); inverse independent 
integrals of system (2.1.1.5) determine the independent solution of differential equation 
(2.1.1.3). 

Quasi-linear (2.1.1.1) may be reduced to linear, if dependence between sought and  
independent variables is represented as implicit function      

0
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 where, 0c  – is some constant. Hence, with allowance that u  is a  function of nxxx ,...,, 21 , we'll 
get: 
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After substituting we'll get: 
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where, u  function is denoted through 0x . Such differential equation will take place not for any 
nxxx ,...,, 10 , but only for those which  meet the conditions of (2.1.1.13), and due to being set 

with (2.1.1.13) are not linear. However, considering independently (2.1.1.15) as a linear 
equation for any nxxx ,...,, 10 , we'll define some function of ( )nxxxF ,...,, 10 , after that the 
variables nxxx ,...,, 10  should be limited as per equity (2.1.1.13). Function u  (in inplicit form) 
defined this way, will satisfy the equation (2.1.1.1), so as according to (2.1.1.14) being sequence 
of (2.1.1.13), the equations (2.1.1.1) and (2.1.1.15) are identical. 
 
 



 
 
2.1.2 CAUCHI PROBLEM FOR  QUASI-LINEAR DIFFERENTIAL EQUATION  IN PARTIAL  

DERIVATIVES OF FIRST ORDER 
 

In space of 1+n  dimensional variables uxxx n ,,...,, 10  we shall determine some variety of 
1−n  dimension: 

,),...,,(
,...,,2,1),...,,(

121

121

−

−

=
==

n

n
kk

qqquu
nkqqqxx  (2.1.2.1) 

where,  )1...,,2,1,...,,2,1(, −==
∂
∂

∂
∂ nink

q
u

q
x

ii

k

 - are continuous functions of their arguments, 

and rank of matrix 
i

k

q
x
∂
∂   is equal to 1−n . 

The essence of Cauchi problem for quasi-linear differential equation (2.1.1.1) concludes in 
the following: to find such a solution of equation (2.1.1.1) ),...,,( 1 nq xxxu , which at 

)...,( 121 −= n
kk qqqxx  coincides with function ),...,,( 121 −nqqqu , determined by (2.1.2.1). This 

problem can be formulated also in this way: to find solution of differential equation (2.1.1.1) 
that is running through variety (2.1.2.1). 

Solution of the Cauchi problem can be implemented by application of characteristic system 
(2.1.1.2), in particular, let 
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is general solution of characteristic system (2.1.1.2), where  nccc ,..., 10 - are arbitrary constants 
of integration. Let's select them as functions 121 ,...,, −nqqq  of parameters in such a way that at 
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In accord to theory of ordinary differential equations [5], functions 
)...,,2,1,0(),...,,,( 10 nkcccs n

k =ψ  are differentiated not only according to parameter s , but in 
accord to all )...,,2,1,0( nkck = , and system (2.1.2.3) has the only one solution in relation to kc  
parameter. 

If solutions of system (2.1.2.3) ),...,,( 121 −nk qqqc  is substituted into (2.1.2.2) than we'll get: 
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This system is to determine solution of the Cauchi problem in parameter form, provided that 
the condition   
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is valid only in points of variety (2.1.2.1) (i.e. at  0=s ).  



 
By force of continuity of all elements of determinant, this inequity is in force in certain 

vicinity of variety (2.1.2.1). Than in this vicinity of equity ),...,,,( 121 −= n
kk qqqsx ϕ , reversed in 

relation to variables 121 ,...,,, −nqqqs ,  i.e. 
),...,,( 21 nxxxss = ,  ),...,( 21 n

ii xxxqq =    1...,,2,1 −= ni , 
which upon substitution into the latter the equity of system (2.1.2.4) determines solution of the 
Cauchi problem ),...,,( 21 nxxxuu = . Actually from the obvious equity 
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in accord to (2.1.1.2), we'll have 
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It follows from (2.1.2.5) that system (2.1.2.4) is in the only one way solved relative to  variables 
121 ,...,,, −nqqqs ; It means that in the vicinity of variety (2.1.2.1) in which (2.1.2.5) is valid, the 

solution of the Cauchi problem is unique. 
In case when condition of (2.1.2.5) does not take place, i.e. when condition of 
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is valid variety (2.1.2.1)  (i.e. at 0=s ), it means that there are such multitudes 
1...,,2,1),...,,( 121 −=− niqqq niλ , for which the following conditions  are valid: 
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If, along with that, condition 
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is valid as well, than the variety (2.1.2.1) is called a characteristic  variety. 
It is proved, that [4,10] in case when initial variety (2.1.2.1) meets condition of (2.1.2.6), 

than for solubility of Cauchi problem it is required and sufficient that (2.1.2.1) was 
characteristic variety. In this case the Cauchi problem is not the only. 
Thus: a) The Cauchi problem for quasi-linear differential equation  (2.1.1.1) has the only 
solution provided there is such  variety of (2.1.2.1) which is valid the condition (2.1.2.5);  
b) If variety (2.1.2.1) satisfies condition (2.1.2.6) than to solve the Cauchi problem it is 
necessary and sufficient that variety (2.1.2.1) was a characteristic one. In such case the Cauchi 
problem has infinitively many solutions. 

 
 

2.1.3 THE CAUCHI PROBLEM FOR NON-LINEAR DIFFERENTIAL EQUATION  IN 
PARTIAL  

DERIVATIVES OF FIRST ORDER 
 

The non-linear differential equation in partial derivatives of first order has the following 
form: 
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where F   is some non-linear function continuously differential  relative to its arguments. 
Let’s consider the following system of ordinary differential equations relative to 12 +n of  

variables  )(),( susx k  and  )(spk  
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where nkspk ...,,2,1)( =  – are some functions of parameter s , and F  – is a function of 
arguments k

k pux ,, , determined in accord to (2.1.3.1), in particular, 
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(2.1.3.2) is called  a characteristic system for equation (2.1.3.1). 
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i.e. (2.1.3.3) is valid. 
Let 
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1−n  - dimensional variety in 1+n  dimensional space of variables uxk , ,  meeting the following 
conditions: 
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b) Rank of matrix  
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The Cauchi problem for differential equation (2.1.3.1) is put in the following way: find such 
solution of differential equation (2.1.3.1) ),...,,( 21 nxxxuu = , which at ),...,,( 121 −= n

kk qqqxx  
coincides with ),...,,( 121 −nqqqu , or in other words, it is necessary to find such solution to 
equation (2.1.3.1) which runs through variety of (2.1.3.5). 

For solving the Cauchi problem, as earlier, we'll apply the characteristic system of (2.1.3.2) 
which along with variables uxk ,  also contains variables kp . Initial data for  kx  and  u  are 
determined in the form of 1−n  dimensional variety (2.1.3.5), and as far as initial conditions for 

kp  parameters are concerned, they are determined from the following system: 
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The first 1−n  equity of this system is called a strip condition, and parameters 
),...,,(),,...,,(),,...,,( 121121121 −−− nknn

k qqqpqqquqqqx   )...,,2,1( nk = – are strip coordinates. 
Let's assume that this is a system from n  equations relative to n   independent variables 

nkqqqp nk ...,,2,1),...,,( 121 =−  (function ),,...,,( 121 −n
k qqqx  and ),...,,( 121 −nqqqu ) are determined per 

(2.1.3.5), and has a single solution. Namely these functions determine the initial conditions for 
kp  variables. 
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is a common solution of system (2.1.3.2), depending on 1221 ,...,, +nccc  arbitrary constants of 
integration. We'll select these constants as function of parameters ),,...,, 121 −nqqq  thus, that at 

0=s  the following conditions could have taken place: 
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System (2.1.3.7) is differentiated relative to 1221 ,...,,, +ncccs  and is uniquely solved relative to 
constants 1221 ,...,, +nccc  [5], consequently from (2.1.3.7) and (2.1.3.8) we'll get 
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If variety (2.1.3.5) is such that condition of 
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is met in all of its points (it also is satisfied in some of its vicinity in force of continuity of 
determinant), than (2.1.3.9) determines solution of the Cauchi problem in parametric form. 

Values of 
kp

F
∂
∂  in the left side of this inequality contain nkpk ...,,2,1= , which represent 

solution of system (2.1.3.6). 
When 0=s , as per (2.1.3.7) and (2.1.3.8): 
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i.e., functions (2.1.3.9) satisfy the initial conditions of the Cauchi problem. 
Equations (2.1.3.7) and (2.1.3.8) determine also the functions: 

,...,,2,1),...,,,( 121 nkqqqsp nkk == −ω        (2.1.3.12) 
which at 0=s , in accord to (2.1.3.7) and (2.1.3.8) satisfy the following initial conditions: 

nkqqqpqqq nknk ...,,2,1),...,,(),...,,,0( 121121 == −−ω  (2.1.3.13) 
Let’s show that (2.1.3.9) and (2.1.3.12) satisfy condition: 
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Actually, in accordance with that nkk
k ...,,2,1,, 0 =ωϕϕ  - is solution of characteristic system 

(2.1.3.2), than equation (2.1.3.3) is valid for them, i.e.: 
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Hence, from (2.1.3.11) and (2.1.3.13), at 0=s , we'll get: 
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And in accord to (2.1.3.6), the left hand side of this equity is equal to zero, i.e. 0=const . Thus, 
functions k

k pux ,, ,  determined in accord to equities (2.1.3.9) and (2.1.3.12) satisfy (2.1.3.14) 
for any value of arguments  121 ,...,,, −nqqqs . If, by that, it can be proved that 
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for any value of arguments 121 ,...,,, −nqqqs , than we'll get finally that kx  and  u , determined by 
(2.1.3.9) represent a solution of the Cauchi problem. For this, let’s consider the following 
expressions: 
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where, uxk ,  and kp  are determined in accord to equities of (2.1.3.9) and (2.1.3.12). 
In conformity to characteristic system (2.1.3.2) 00 =w . From (2.1.3.16) we'll have: 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂
−

∂
∂

∂

∂
=

∂
∂

−
∂
∂ n

j i

j
j

j

i

j

i

i

q
x

s
p

s
x

q
p

q
w

s
w

1

0 . 

If we substitute here the values of 
s

x j

∂

∂
 and 

s
p j

∂

∂
  from characteristic system of (2.1.3.2), than 

we'll get: 

1...,,2,1,
1

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂

∂
=

∂
∂ ∑

=

ni
q
x

u
Fp

q
F

q
x

p
F

q
p

s
w n

j i

j

j
ii

j

ji

ji  

From (2.1.3.14), on the other hand, we'll have: 
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These last two equities give: 
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Hence, with allowance of  (2.1.3.16) we'll get: 
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In accordance with (2.1.3.6), functions ),...,,,( 121 −ni qqqsw  )1...,,2,1( −= ni , satisfy homogeneous 
initial conditions: 

0=iw    at   1...,,2,1,0 −== nis          (2.1.3.18) 
from (2.1.3.17) and (2.1.3.18) it is clear that 

1...,,2,1,0)...,,,,( 21 −=≡ niqqqsw ni  
consequently (2.1.3.16) will have the form of: 
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From parametric dependence between u  and kx , determined by (2.1.3.9) we'll have: 
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Comparing the last two systems and with allowance of condition of (2.1.3.10) is valid, we'll get: 
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i.e., (2.1.3.9) satisfies the equation (2.1.3.1) 
In accordance with (2.1.3.10) system of (2.1.3.9) is reversible through unique way relative 

to variables 121 ,...,,, −nqqqs . It means that in vicinity of variety (2.1.3.5) in which (2.1.3.10) is 
valid, the solution of Cauchi problem is unique. 

Let the variety (2.1.3.5) is such that condition  
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is valid in its points, where )...,,2,1(),...,,( 121 nkqqqp nk =−  represent solution of system (2.1.3.6). 
Owing to continuity of determinant, this condition is valid also for some vicinity of variety 
(2.1.3.5). It is clear from this equity that: 
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where, )1,...,2,1(),...,,( 121 −=− niqqq niλ  are some continuous functions.  If, along with that, is 
also valid the condition of 
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where )...,,2,1( nkpk =  is solution of system (2.1.3.6), than the variety (2.1.3.5) is called the 
variety of characteristic strips. 

 It is proved [4] that if condition (2.1.3.19) is correct for variety (2.1.3.5), than for 
availability of Cauchi problem it is necessary and sufficient that (2.1.3.5) were variety of 
characteristic strips. In this case, the Cauchi problem has infinitely many solutions. 

Thus:   
a) If variety (2.1.3.5) is such that condition (2.1.3.10) is valid, than Cauchi problem for 

equation (2.1.3.1) has the only solution; 
b) If variety (2.1.3.5) meets condition of (2.1.3.19), than in order that Cauchi problem has 

solution, it is necessary and sufficient that variety (2.1.3.5) be variety of characteristic 



 
strips. In this case, the Cauchi problem has infinitely multiple solutions, and (2.1.3.5) is 

variety of ramification of solution. 
 

 
2.2 KINEMATICS OF NONHOLONOMIC  TRANSFORMATIONS 

2.2.1 DIVISION OF METRICS INTO  
TIME AND SPACE PARTS 

 
It was mentioned above that four-dimensional space-time variety this four-dimensional 

space signifying −−−+  may be applied to describe such a variety distinguish any reference 
system ),( kk exSR r . From four-dimensionless numbers kx , it is not possible to coordinates, and 
consequently, they can’t explain time and distance in three-dimensional space. Realization of 
orientation in three-dimensional space in terms of time distance and direction, in these four 
numbers is an independent and not trivial problem. 

For instance, to determine the flow of time in some point of three-dimensional space, it is 
necessary to have opportunity of fixing such point, i.e., in four-dimensional space-time variety 
such world line has to be distinguished that corresponds to a given point of three-dimensional 
space. Or perhaps, if it is required to determine distance between two points of three-
dimensional space, than we'll have opportunity of fixing their coordinates simultaneously, 
having understood this word in definite meaning of this word. These requirements 
implementing correspondence between diverted meaning and usual (rational) notions of three-
dimensional space and time, are realizable through application of intermediate, special 
reference system in which the space and time parts of metrics are separated. Such separation is 
realizable through various methods including the method of orthogonalization of time and 
space coordinates. 

Thus, the real four-dimensional space-time variety, which shall be further dealt with, has 
signature of −−−+ ; it means that 

0)det( <= ikgg               (2.2.1.1) 
Let’s consider a fixed point of four-dimensional space-time variety with coordinates 
constxk = ; in this point ikg   are fixed numbers. Let’s draw a quadratic form in this point 

ki
ikgI ζζ= ,      (2.2.1.2) 

where iζ  is some contra-variant vector. As it is known, it is always possible to select [4] such 
orthogonal transformation of vector 

pi
p

i ζαζ ′=    (2.2.1.3) 

where i
pα  is a transformation matrix, and pζ ′ - are new components of vector, that reduce 

quadratic form (2.2.1.2) of vector to a canonical form. 
In order to determine such transformation, i.e. to define a matrix i

pα , let’s put the 

following extreme problem: to find such  iζ  parameters of value, which satisfy additional 
conditions of 

1=ki
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and minimize quantity I . Here 
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When applying the Lagrangian method of indefinite multitudes [7], it is easy to show that 

these extreme values of variables iζ  satisfy the following system of linear algebraic equations of 
fourth order: 

0=− k
ik

k
ikg ζλδζ                (2.2.1.6) 

which in totality to (2.2.1.4) represent a complete system of equations in relation to iζ  and  λ . 
The (2.2.1.6) is a homogeneous system, that’s why in order that it has a nontrivial solution, 

λ  should satisfy the following algebraic equation: 
0=− ikikg λδ    (2.2.1.7) 

This equation has four roots )3,2,1,0( =′ kkλ  which are called the proper value of matrix ikg . 
One of these roots is positive (let’s note it as 0λ ), whereas the rest roots are negative - 0<′αλ . 

With allowance that kiik gg = , it is easy to show [10] that all roots k ′λ  are valid, and 
consequently valid are all solutions of system (2.2.1.6) relative to i

k ′ζ , corresponding to separate 
roots k ′λ  of equation (2.2.1.7). To four different solutions of r′λ  of equation (2.2.1.7) correspond 

to four different solutions of system (2.2.1.6) i
r′ζ ,  provided the values i

r′ζ  for each fixed value 
r  are determined with accuracy of arbitrary constant multiplier the value of which can be 
determined through application of rating condition of (2.2.1.4). In accord to symmetry of 
metric tensor )( kiik gg = , these solutions i

r′ζ  constitute the orthogonal system of four vectors  
iii

210 ,, ′′′ ζζζ   and  i
3′ζ  [10]: 
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Conditions (2.2.1.4) and (2.2.1.8) can be unified in the form of a condition 
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k
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i
rik δζζδ =′′    (2.2.1.9) 

In case of multiple roots, i.e. when )0,0( ≠≠≠= ′′ lrlrlr λλ , the system of equations 
(2.2.1.4) and (2.2.1.6) ambiguously determine the corresponding kζ  values, and at the expense 
of remained degree of freedom it is always possible to achieve fulfillment of condition of 
(2.2.1.8). 

All solutions of systems (2.2.1.4) and (2.2.1.6) determine the matrix i
r′ζ , based on which in 

infinitesimals vicinity of selected point constxk =  of four-dimensional space-time variety, the 
linear transformation can be determined as per following equities: 

r

e

k
r

k

e
xdxd ′= ′ζ    (2.2.1.10) 

In accord to it, we'll have: 
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With allowance of  (2.2.1.6), we'll get: 
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This equity, in accordance with (2.2.1.8) and (2.2.1.4), is simplified and will have the following 
form: 
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Transformation of (2.2.1.10), which reduces the quadratic form of k

e

i

eik xdxdg  to a 

canonical form of (2.2.1.12), is orthogonal, so as the matrix i
r′ζ   satisfies condition (2.2.1.9). 



 
Along with transformation (2.2.1.10), the following transformation may be considered as 

well 
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In this case 
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where, 
ki

ik aag βααβγ =  

With allowance that   0<′αλ , from (2.2.1.12) and (2.2.1.16) it is clear that αβγ – is 

negatively defined matrix, that is why any vector, for which 00 =′
e
xd   and μxd ′′  are arbitrary 

infinitesimals – is space-like. 
So as the matrix elements i

r′ζ  generally don’t satisfy conditions of 
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for any values of indices rk,  and l , than locally linear transformation (2.2.1.10), in all four-
dimensional space-time variety, represents nonholonomic transformation. 

Through variation of infinitesimals of k
ldx ′ , we'll describe some infinitively small interval of 

four-dimensional space-time variety near fixed point constx k = . With allowance that in all 
points of this small interval of the value of components of metric tensor ikg  slightly differs from 
these very components in point ,constx k =  than this interval of four-dimensional space-time 
variety, with high degree of accuracy may be considered as plane having constant metric 

,constg kxik = , and tangential of real four-dimensional space-time variety. 
 
 

2.2.2 DETERMINATION OF INFINITELY SMALL INTERVAL OF TIME AND INFINITELY  
SMALL DISTANCE 

 
Dividing of metrics (interval) into time and space parts, defined through equity (2.2.1.16) 

(or equation (2.2.1.12)), is realized in some small vicinity of fixed point ,constx k =  of four-
dimensional space-time variety, 0, ′λikg  and αβγ  are the constant numbers in this vicinity, 

whereas 
0′

e
xd  and 

α″
e
xd are arbitrary infinitesimals which don’t represent differentials of some 

variables 0x′  and αx ′′ . 
Let's assume that 

0=″α

e
xd            (or  0=′α

e
xd ) 



 

than in accordance with (2.2.1.16) (or (2.2.1.12) interval coincides with  
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xdλ , and 

equalizing it to 22dtc , we'll determine the infinitesimal interval of time 
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referenced from some moment of time per hour placed in fixed point of three-dimensional 
space. Moment of reference of interval of time dt  and location of hour in three-dimensional 
space correspond to selected fixed point constx k =  of four-dimensional space-time variety. 

In this connection, it should be noted that by means of  nonholonomic transformations, it 
is possible to achieve fulfillment of definite requirements relative to vectors, such as, for 
instance k

e
xd , and not relative to coordinates. That is why, when applying the nonholonomic 

transformations it is not allowed to fix the location (coordinates) of bodies (clock) in standard 
three-dimensional space as well as it is not possible to fix the moment of time in some point of 
three-dimensional space. In considered case, only intervals of time and space between two 
points in infinitesimals interval of point constx k = can be determined. Determination of 
location (coordinates) of clock in three-dimensional space, as well fixing of the moment of time 
in selected point of three-dimensional space, corresponding to fixed point constxk = of four-
dimensional space-time variety, can be realized by method of coordinate transformation, which 
is considered in next paragraph. 

Summing up the infinitesimals dt  corresponding to different points kx  of four-dimensional 
space-time variety does not determine the time interval readable per hour, so as it will be 
shown below, to various values of coordinates kx ; to say in general, correspond different clock 
located at different points of three-dimensional space. Such summation, of course, can 
determine some interval of time, that may have some sense in connection to same physical 
requirements. 

Quite similarly, assuming that 0
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        (2.2.2.2) 

These equities determine distance ld  between two points of infinitesimals of three-dimensional 
space corresponding to mentioned infinitesimals, plane space-time variety. 
 
 

2.2.3 VELOCITY AND ACCELERATION 
 

Assuming, that        
)( pxx kk =                                (2.2.3.1) 

where p  - is some invariant parameter, world line of four-dimensional space-time variety, and 
k

e
xd is infinitesimals tangent vector of world line in some of its point, corresponding to 

increment of dp  to parameter p . In equities of (2.2.1.10), we'll substitute the values k

e
xd  

correspondent by values 
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and we'll get: 
   dpxd kk η=′             (2.2.3.3) 

With allowance of this increment  dp   can be tied with interval of  time dt : 

dp
c

dt 0
0

1 ηλ ′=   (2.2.3.4) 

According to (2.2.3.3) and (2.2.3.4) to infinitesimals changes of time dt  corresponds to 

infinitesimals changes of coordinates  k

e
xd  in ),,( kk xeSR r   

k

e
xd ′  in ),( kk xeSR ′r  and 

k

e
xd ″ in 

),( kk xeSR ′′r . In connection with it, the notion of speed and acceleration of coordinate changes 
can be introduced: 

dt
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e
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  or     
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xd

dt
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ee
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,

0

    (2.2.3.5) 

It is clear that 

  
dt
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e

e

α

α
ν
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=′    and   
dt
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e

e

α

α
ν

″

=″         (2.2.3.6) 

Constitute the space-like vectors which, in accord to (2.2.1.14), are interconnected by 
transformation law 

   
μ

α
μ

α
νν ″=′
ee

b    (2.2.3.7) 

Motion speed of the point in three-dimensional space is determined as absolute value of 
these vectors: 
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 (2.2.3.8) 

Assuming 
α

τ ″
e

 as space-like vector of unit vector 

1=″″−
βα

αβ ττγ
ee

, 

then the speed projection  
α″

e
v  on 

α″
e
v   is equal to 

 ,cosϕγτγ
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αβ

α

αβν
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eeee
vvv            (2.2.3.9) 

where, ϕ  is angle between vectors of ατ e′′   and  α
ev ′′ . Hence 
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So as εβγ−  is not negatively determined matrix, it is easy to show that  1cos ≤ϕ . Actually, 

from inequity 
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where η  is an arbitrary parameter, obviously: 
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This inequity means that discriminant of square trinomial (relative to η ) is nonpositive value, 
i.e. 

0
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Hence, according to (2.2.3.10) we'll have .1cos ≤α  
 (1,0,0), (0,1,0) and (0,0,1) three vectors correspondingly along reference points are  21 , ee ′′′′ rr  

and 3e ′′r . Lengths of these vectors correspondingly equal to 2211 , γγ −−  and 33γ− , that’s 
why ( ),0,0,1 11γ−  ( )0,1,0 22γ−  and ( )331,0,0 γ−  are unit vectors and projections of vector 

α″
e
v  on reference points 21 , ee ′′′′ rr  and 3e ′′r  correspondingly equal to: 
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  (2.2.3.11) 

and in the system of reference points 321 ,, eee ′′′ rrr   these projection take the form of: 
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Acceleration of change of coordinate is determined in accord to equities: 
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α′
e
a  and  

α″
e
a –  are three-dimensional space-like vectors which are interconnected between 

them by transformation law (
α
μ,
′

e
v  and  

μ′
e
v  is a tensor of second order and vector, and   

μα
μ

′′
ee
vv ,  is 

vector)  - 
μ

α
μ

α ″=′
ee aba    (2.2.3.14) 

All major relations for speed component, obtained above, are valid for acceleration 
component. 
 
 
 

2.3 KINEMATICS OF HOLONOMIC TRANSFORMATIONS 
 

2.3.1 TIME AND DISTANCE IN  
THREE-DIMENSIONAL SPACE 



 
 

In the considered case, by transforming of coordinates ),,,( 3210 xxxxxx kk ′=′ , the reference 
system ),( kk ExSR

r
 is transformed into system of ),( kk ExSR ′′

r
, provided the metrics in 

),( kk ExSR ′
r

 is divided into time and space parts in all points of space. This procedure is 
implemented by two methods, the first of which is more elementary and represents itself direct 
generalization of local method described in §2.2. Initial point of this case is equation (2.2.1.7). 

Assuming 
0
λ  is positive root of this equation. After substitution from (2.2.1.4) and (2.2.1.6) 

we'll determine the corresponding values of ),,,( 3210

0
xxxxkζ . In considered case we'll assume 

that these four functions satisfy the following equations: 
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∂
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00

ϕμζζ ,                   (2.3.1.1) 

where, ),,,( 3210 xxxxμ  and ),,,( 32100 xxxxϕ  are some functions. These conditions can be re-
written in other way if equation (2.2.1.6) is used, in particular: 

i
p

ip x∂
∂

= 0

00

ϕ
μζδλ .  (2.3.1.2) 

As it is known, the (2.3.1.1) and (2.3.1.2) are not always valid. In order to fulfill these 
conditions, it is necessary and sufficient that four functions ),,,( 3210

0
xxxxkζ   satisfy the 

following equities: 
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or  
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for a certain function ),,,( 3210

0
xxxxkμ . When considering the matrix structure ikδ , it is clear 

from the last equity that μλ
0

 plays the role of integrating multiplier. 

Consequently, in the first case we mean that conditions of (2.3.1.3) or (2.3.1.4) are fulfilled 
and functions k

0′ζ  will be represented in the form of (2.3.1.1). 
Let’s compose following differential equation in partial derivatives of first order: 

0
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=
∂
∂

ki
ik

x
g ϕζ                 (2.3.1.5) 

As it was mentioned above, it has three independent solutions: 
3,2,1),,,( 3210 =αϕα xxxx , 

which, in accordance to (2.3.1.1) and (2.3.1.5) are orthogonal to 0ϕ , in particular: 
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               (2.3.1.6) 

Let’s introduce new coordinates:    
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321000

xxxxx

xxxxx
αα ϕ

ϕ
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=′
                         (2.3.1.7) 



 

By force of independence of functions αϕ , the rank of matrix kx∂
∂ αϕ  is equal to three. Than, in 

accord to (2.3.1.6) it is easy to show that four functions of ),,,( 3210 xxxxkϕ – are also 
independent and consequently the condition of: 
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i
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x
ϕ                (2.3.1.8) 

is valid. 
Assuming that kϕ  are dependent functions and there takes place the equity: 

0),,,( 3210 =ϕϕϕϕF                (2.3.1.9) 
Hence,  
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Let's multiply these equities by i
ik

x
g

∂
∂ 0ϕ  and summarize in accordance to index k :  with 

allowance (2.3.1.6) we'll get: 

0
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i.e. 

00 =
∂
∂
ϕ
F  

It means that the function F should not depend on 0ϕ . Than (2.3.1.10) will have such a form  

0=
∂
∂

∂
∂

kx
F α

α

ϕ
ϕ

. 

On the other hand, the rank of matrix kx∂
∂ αϕ  equals to three, than from here will yield that 

0=
∂
∂

αϕ
F  i.e. F  doesn’t depend on neither functions kϕ .  

Thus, there is no such function F  for which (2.3.1.9) occurs, and consequently 
3210 ,,, ϕϕϕϕ  are functionally independent, i.e. condition of (2.3.1.8) is valid. 

In new coordinates  kx′   we have: 
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p
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From it,   
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This equity in accord to  (2.3.1.1) can be re-written thus: 
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pq gggqg 002002

00 11
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Considering (2.2.1.4) and (2.2.1.6), we'll get: 

02
00 1

′=′ λ
μ

g , 

but as  00 >′λ , than it is obvious that  000 >′g . 
From (2.3.1.11) for α0g ′  will have: 
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Hence, as per (2.3.1.1) we'll get: 
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i.e. 00 =′ αg , as αϕ  represents itself a solution to equation (2.3.1.5). 
Thus, 
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provided that 000 >′g . Hence 
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where 01
0000 >
′

=′
g

g , and αβg ′  and αβg ′   are non-positively defined matrices.  

Thus: 
a) 0x′  is time-like coordinate line; 
b) 21 , xx ′′  and  3x′   are space-like coordinate lines; 
c) 0x′  is a line perpendicular to all lines  αx′  and interval 

βα
αβ xdxdgxdgds ′′′+′′= 20002 )(            (2.3.1.15) 

is divided into time and space parts, provided that 0x′   is time coordinate, and αx′  is a space 
coordinate. 

Let’s consider the second case, when conditions (2.3.1.3) or (2.3.1.4) do not take place. In 
this case there is no such function 0ϕ , which would satisfy the condition of (2.3.1.1). However, 
during this it is always possible to select such function 0ϕ , which satisfies condition of 

0
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g ϕϕ .              (2.3.1.16) 

Actually, assuming ( )3210 ,,, xxxxψ  is some function, than in accord to § 2.1, the differential 
equation 

2
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ψϕϕ
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g   (2.3.1.17) 

always has solution 0ϕ  in rather general conditions in relation to function ψ , and so as 02 >ψ , 
than it is obvious that solution of equation (2.3.1.17) satisfies condition of (2.3.1.16). 

If function ( )32100 ,,, xxxxϕ  is determined, then instead of (2.3.1.5), the following 
differential equation should be drawn up for partial derivatives of first order relative to 

( )3210 ,,, xxxxαϕ :  

0
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∂
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∂
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ki
ik

xx
g ϕϕ   (2.3.1.18) 



 
which in accord to §2.1 has three independent solutions αϕ . The totality of functions 0ϕ  and 
αϕ  determines transformation of coordinates (2.3.1.7) and for  ikg ′  will give expression 

(2.3.1.13). 
The second case is more general in comparison to the first one, and may be applied as well 

to fulfill conditions of (2.3.1.3) or (2.3.1.4). 
Indication of clock located in space point of constx =′α  is determined from (2.3.1.15) by 

equity: 

constxdg
c

tt
x

=′′±= ∫
′

αξ ,1
0

0
000 , 

where, 0t  is initial indication of clock, i.e. reading of clock corresponding to value 00 =′x . 
Symbol before integral is selected in such a way, that to fulfill condition 0tt > . t  is function of 
variables αx′ ; integration is implemented along time-like line constx =′α , that’s why the value 
t  in different points of three-dimensional space will be various, i.e. clock located in different 
points show different times: 
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  (2.3.1.19) 

In this equity the coordinates αx′  are the parameters. 
Fixation of time coordinate constx =′0  means that from four-dimensional space-time 

variety, we've selected the standard three-dimensional space, provided the clock located at its 
different points, show different time depending on its coordinates αx′  in accord to the law of 
(2.3.1.19). In this connection the following issue is of interest: if clock with coordinates α

1x′ , 
showing time 1t , than what would be indication of 2t  clock with coordinates α

2x′ . From 
mathematical viewpoint, this problem is reduced to determination of functional dependence 
between 1t  and 2t . It is determined from (2.3.1.19) as a system of two equations: 
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     (2.3.1.20) 

These equities determine functional dependence between 1t  and 2t  in parametric form;  0x′  is a 
parameter. 

Development of this or that dynamic physical phenomenon can be referred to reading of 
different clock located at various points of space. For instance, the investigated dynamic 
phenomenon can be referred to reading of certain clock in the fixed point of three-dimensional 
space. In connection with it, from practical viewpoint, in some cases it could seem convenient 
to introduce a standard time ct ; reading of any isolated clock, for instance, located at initial 
point or at infinity of reference system  
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000 0,0,0,1    (2.3.1.21) 

This equity in totality with equation (2.3.1.19) determines the functional dependence between 
ct  and  t . 



 
The major equation (2.3.1.19) and all equations yielded from it, expressed through line 

parameters kx′  and 00g ′ , can be expressed as well through initial parameters kx  and ikg . 
Actually, from (2.3.1.12) and (2.3.1.7) we have: 
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The reverse transforming of transformation (2.3.1.7) (it is always available there) 
unambiguously determines the coordinates of initial and current points of integration 
( )constx =′α : 
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    (2.3.1.23) 

These equities at every possible values of αx′  (i.e. const ) determine the coordinates of kx  points 
of standard three-dimensional space of four-dimensional space-time variety at initial (the first 
four equations) and optional (the last four equations) moments of time. Taking it into account 
from (2.3.1.19) and (2.3.1.22) we shall have: 
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Here in sub-integral function αxx ,0  are determined by second line of equation system 
(2.3.1.23). 

As well as earlier in (2.3.1.24) 0x′  plays a role of parameter, by means of which the 
synchronization of clock at various points of three-dimensional space can be realized. 

If practically it is not feasible to transform a system (2.3.1.7), than the integration in 
(2.3.1.19) can be realized in a different way, in particular, assuming that constx =′α , after 
differentiation from (2.3.1.7) we'll have: 
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As was shown above, functions αϕ  are independent, that’s why the rank of matrix  kx∂
∂ αϕ  

equals to three, than from the last three equations of the system (2.3.1.25)  three out of four 
differentials αdxdx ,0  can be represented through one differential, for example, it can be written 

233211200 ,, dxadxdxadxdxadx ===  
and realized the integrating along the parameter 2x . In this respect none of variables of kx  has 
any advantage over the other ones, each of them can be used as integration parameter. Further 
the integration will be accomplished along variable 0x . For this purpose, from the last three 
systems of equities (2.3.1.25), differentials αdx  are expressed through 0dx     

0dxadx αα =  ,                            (2.3.1.26) 
than from the first equity of the same system we'll have: 
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With allowance of  this equity we'll get from (2.3.1.24): 
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     (2.3.1.28) 

This equity permits to realize the synchronization of clock by means of parameter 0x . It is 
the most common and as particular case, contains in it the known expression to calculate the 
time [2,3]: 
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+±= .        (2.3.1.29) 

The (2.3.1.29) is obtained in definite restrictions, relative to system of coordinates and metric 
tensor, and if these restrictions are followed, than differential of equity (2.3.1.28) coincides with 
(2.3.1.29). 

Suppose that system of coordinates and metric tensor of four-dimensional space-time 
variety are such that 
a) 0x  is time-like line, i.e.   

000 >g ,         (2.3.1.30) 
b) for kg0  components there exists an integrating multiplier μ  i.e. they permit presentation of 
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than the (2.3.1.29) is valid. 
Let’s introduce new coordinates kx′  by following equities: 
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and select corresponding functions in such a way that (2.3.1.32) would accomplish division of 
metric into time and space parts. When  0x′  and αx′  are such functions, than 00 =′αg  and from 
obvious equity: 
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Hence, in accord to (2.3.1.30) we have: 
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Thus, when 0x  is time-like coordinate line and ikg  through transformation (2.3.1.32) is 
divisible, than kg0  should satisfy conditions of (2.3.1.31), i.e. the necessary conditions. 

These conditions are sufficient as well, i.e. when kg0  satisfy these conditions, than there’s 
transformation of form (2.3.1.32) which realizes the division of metric ikg . Actually, if 
(2.3.1.31) has occurred, then μ  and 0ϕ  are fully determined functions. Let's determine 0x′  and  

00g ′  as per following equities:  
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By force of (2.3.1.30)  000 >′g . Let's select arbitrary functions ),,( 321 xxxαϕ , for which 
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 and let's draw up transformation 

),,(),,( 321000 xxxxxxx ααα ϕϕ =′=′        (2.3.1.35) 
Having calculated  α0g ′  and  00g ′    we'll have: 
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Thus, in case when 0x  is time-like coordinate line, the necessary and sufficient conditions 
to divide metric into space and time parts, will be (2.3.1.31). 

In system αxx ′′ ,0  the interval ds will have such a form:  

( ) v
v xdxdgxdgds ′′′+′′= μ

μ
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In this case for time we'll have: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

′∂
+

∂

′∂′=′′= α
α dx

x
xdx

x
xgxdgcdt

0
0

0

0

00
0

00  

which, in accord to (2.3.1.33) coincides with (2.3.1.29). 
The distance between two points in three-dimensional space can be calculated as well, by 

meeting the conditions of (2.3.1.30) and (2.3.1.31). The corresponding expression will be 
required below. 

For αβg ′  we have: 
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With allowance of equation (2.3.1.33), we'll have: 
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On the other hand for distance from (2.3.1.36) we'll have: 
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With allowance of (2.3.1.37) we'll have:  
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Thus, in conditions of (2.3.1.30) and (2.3.1.31) the known formula (2.3.1.29) and (2.3.1.38) 
are obtained for time and space. It is easy to show that in the same conditions, the general 
expression (2.3.1.28) after differentiation coincides with (2.3.1.29). Differential of equity 
(2.3.1.28) yields: 
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but, so as  

                                            
1 here was applied the equity 0
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∂ , validity of which was proved in [10]. 
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than the last equity coincides indeed with (2.3.1.29). 
From (2.3.1.15) for distance between two points with coordinates αx′  and αα xdx ′+′ in 

three-dimensional space constx =′0 , we'll have: 
constxxdxdgd =′′′′=− 02 ,νμ

μνl    (2.3.1.39') 
Assuming that α

1x′  and α
2x′  are two fixed points of three-dimensional space  constx =′0 and  

−′=′ )( pxx αα    (2.3.1.40) 
is some line running through these points )( 11 pxx αα ′=′  and )( 22 pxx αα ′=′ , where p  – is some 
invariant parameter. The length of line arc l   between these points is determined by 
application of (2.3.1.39') and is equal to 
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So as the three-dimensional space is inserted into four-dimensional space-time variety, 
then its metric properties are determined in accord to (1.2.2.2) from [10], if assuming that 

αα xxconstx =′=′ ,0  
These equations determine metric tensor of three-dimensional space, it is equal to αβg ′ , 

such result is natural. 
 Distance between two points α

1x′  and α
2x′  of three-dimensional space – is a length of arc 

of geodesic line of three-dimensional space between these points. 
 Thus, in order to determine distance between two points α

1x′  and  α
2x′  of three-

dimensional space, we have to: 
a) construct a system of differential equations of geodesic line 
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where μ
αβΓ′  - are Christoffel symbols corresponding to components αβg ′ ; 

b) determine solution of this system, that satisfies the following boundary conditions: 

;

,

22

11

ll

ll

=′=′

=′=′

atxx

atxx
α

αα

      (2.3.1.43) 

c) Calculate the integral (2.3.1.41) substituting here the solution of problem (2.3.1.42) (2.3.1.43). 
Distance between two points  of three-dimensional space can be expressed as well in initial 

parameters kx  and ikg . With this purpose, the considered three-dimensional space will be 
represented in the following form: 

constxxxx =),,,( 32100ϕ                (2.3.1.44) 
As was mentioned above, the 3210 ,,, xxxx  are uniform dimensionless numbers, from which 

no space and time coordinates can be separately distinguished, that’s why the investigated 
three-dimensional space can be described with the help of three variables, selected in any way 
from these four. For instance, when the 20 , xx  and 3x , are taken as major parameters, than 
three-dimensional space (2.3.1.44) is represented in following way: 



 

,,

,),,(,
3322

320100

xxxx

xxxxxx

==

== ψ
 

where ),,( 3201 xxxx ψ=  is a solution of equation (2.3.1.44) relative to 1x . By that, the metric 
property of considered three-dimensional space can be expressed in variables 320 ,, xxx . 
However, with the aim to keep the homogeneity, this procedure will be implemented in 
variables 21 , xx  and 3x  in particular, the considered three-dimensional space let's represent in 
following form: 

ααψ xxxxxx == ),,,( 3210 ,          (2.3.1.45) 
where, ),,( 3210 xxxx ψ=  is solution of equation (2.3.1.44) relative to 0x . By application of 
equity (1.2.2.2) from [10], we'll receive: 
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With allowance that  αα xx =  
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which represents consequence of equity (2.3.1.44), than we'll get: 
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constxxxx =),,,( 32100ϕ  

This equity determines metric of three-dimensional space inserted into four-dimensional 
space-time variety in the most general form. If the system of coordinates kx  and metric tensor  

ikg  meet conditions of (2.3.1.30) and (2.3.1.31), than in accord to (2.3.1.33) 
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Let's substitute this expression in (2.3.1.46) and we'll get:  
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which coincides with (2.3.1.38). 
Having the metric tensor αβγ  of three-dimensional space, the infinitesimals length  of ld  

can be determined 
βα

αβγ xdxdd =− 2l  

But so as  αα xx = , that is why  
βα

αβγ dxdxd =− 2l    (2.3.1.47) 



 
Values of αβγ  determined in accord to (2.3.1.46), depend in principle on four variables 

αxx ,0 , which are interconnected between each other by condition (2.3.1.44), where const is a 
fixed value of parameter 0x′ , according to which the synchronization of clock in three-
dimensional space is realized. It should be noted that the condition 

)(),,,( 032100
ctfxxxxx =′=ϕ       (2.3.1.48) 

(see (2.3.1.44)) in each moment of standard time ct  from four-dimensional space-time variety 
distinguishes the usual three-dimensional space. 

Assuming consttc = (i.e. at constx =′0 ) is some line, 
)( pxx kk =  

belonging to three-dimensional space 
[ ] )()(),(00

ctfpxpx =αϕ , 
is running through points kx1  and kx2   of four-dimensional space-time variety, provided 
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Than the arc length of this line between these points, in accord to (2.3.1.47) is determined by 
equity: 
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In sub-integral expression the arguments kx  of components vμλ  are changed through )( pxk . 

Let's determine distance between two points kx1  and kx2  in accord to length of geodesic line 
belonging to considered three-dimensional space, which is the smallest in comparison to 
lengths of arcs of other lines, that run through these points. System of differential equations this 
geodesic line is determined from conditions of minimal value l, determined by (2.3.1.49), 
during fulfillment of additional restricting condition (2.3.1.48). 

As it is known [4] the corresponding system of differential equations, has a form of: 
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λ
α

α ,
dp

dxx =&   is a Lagrangian multiplier. 

Quite similarly to clause  1.1.3, from here we'll sought system of differential equations, in 
particular for variables of αx  these equations are as follows: 
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where α
μvΓ~   are Christoffel symbols, comprised of αβγ  and αx . 

From (2.3.1.50) it is obvious that L  doesn’t depend on 
dp
dx 0

, that’s why the corresponding 

0x  Eulerian-Lagrangian equation is leading to equation of 00 =
∂
∂
x
L ,  i.e. 
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The equations (2.3.1.48), (2.3.1.51) and (2.3.1.52) at consttc =  )( 0 constx =′  constitute a full 
system of differential equations relative to the sought parameters )( pxk  and λ  determining the 
geodesic line of three-dimensional space for a given moment of standard time ct . In case when 

l=p , we'll get: 
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    (2.3.1.53) 

This system in totality with boundary conditions: 
,, 2211 llll ==== atxxatxx kkk α  (2.3.1.54) 

( 0
1x  and 0

2x  are determined correspondingly with equities )(),( 1
0
1

0
ctfxx =αϕ  and 

)(),( 2
0
2

0
ctfxx =αϕ ) determines the sought geodesic line ),( c

kk txx l= , passing through points kx1  
and kx2  for each moment of standard time ct . By substituting these value ),( c

k tx l  in (2.3.1.49) 
will determine distance between points kx1  and kx2  in three-dimensional space at the moment of 
time ct . 
   
         

2.3.2 SPEED AND ACCELERATION  
OF MOVING POINT 

 
Under the motion of some point in three-dimensional space we mean such a state at which 

its coordinates are changed in time. Changing of coordinates point can be related to different 
time, for instance, coordinates can be presented as functions of standard time ct  or time t , 
readable at certain fixed point of three-dimensional space, or at the point in which it is found 
during process of motion. All these times are in unambiguous functional dependence on time 
coordinate 0x′ , consequently we'll think that coordinates of moving point are the function of 
parameter 0x′  

)( 0xx kk ′=ω    (2.3.2.1) 
Moreover, these functions should satisfy the following conditions: 

[ ] 0030201000 )(),(),(),( xxxxx ′=′′′′ ωωωωϕ     (2.3.2.2) 
Assuming that to two values 0x′  and 00 xdx ′+′  of parameter  0x′  correspond values of 

coordinates kx  and kk dxx + of moving point, than infinitively small distance passed by point, in 
accord to (2.3.1.47) is equal to 
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v
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Interval of standard time cdt  can be determined as well, which corresponds to changing of 
0xd ′ . With this purpose, the equation (2.3.1.24) should be differentiated along 0x′  and 

determine from (2.3.1.23) the functional dependence of =′= )0,0,0,( 0xxx kk  )( 0xk
c ′=ψ , 

corresponding to standard time 
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By that, the speed iv  of moving point by standard time is determined through equation: 
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In parameters kx′  and ikg ′  the (2.3.2.5) will have such a form: 
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where   
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In case of light beam 
0)( 20

00 =′′′+′′= v
v

qp
pq xdxdgxdgdxdxg μ

μ  
Hence and from (2.3.2.6) it is obvious that  cvc = . 

Thus, the light beam in the space with arbitrary admitted metric (when metric of four-
dimensional space-time variety has signature −−−+ ) is moving at the speed of  c . 

Similarly the value of speed can be calculated related to different times using the fact that 
these times are in unambiguous functional dependence on parameter 0x′ . 

Coordinates αx  mentioned above have been used to describe the three-dimensional space 
constxxxx =),,,( 32100ϕ  and accordingly with it was determined metric tensor of three-

dimensional space αβγ . In the next paragraph will be shown that by transformation of only 

coordinates αx , the values of αβγ  constitute a three-dimensional covariant tensor of second 
order, whereas the  cdt is invariant. Consequently, the totality of values 

−=
cc dt

d
dt
dx αα ω  

is a three-dimensional vector, the length of the latter, according to (2.3.2.5) is equal to velocity 
cv . These values determine the coordinates changing speed 321 ,, xxx  of moving point and so as 
αx  are dimensionless (non-metric) numbers, then cdtdxα  have no other physical sense. 

Assuming that ατ  is an unit vector in three-dimensional space, determined along trajectory 
)( 0xx kk ′=ω  of moving point: 

)(1 0xxat kk ′==− ωττγ βα
αβ           (2.3.2.8) 

Projection of motion speed on αv  is determined according to formulae: 
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By application of those formulae let's determine the speed projection on coordinate lines. For 

this purpose we'll introduce three vectors   (1,0,0), (0,1.0) and (0,0,1), which are tangent 
coordinate lines. The lengths of these vectors are correspondingly equal to  

332211 ,, γγγ −−− , that is why after normalizing we'll get the following unit vectors: 
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Then in accord to (2.3.2.9), we have: 
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In case when αx  are orthogonal coordinates, these equities are simplified: 
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In plane three-dimensional space, by application of Cartesian system of coordinates 
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cdtdxα acquire definite physical sense, they coincide with projections of speed along 
coordinate lines. By application of spherical system of coordinates 
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Angle can also be determined, this angle comprises direction of motion with some unit 
vector  ατ , in particular: 
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αβγ−  is nonnegatively determined matrix, consequently 1cos 0 ≤ϕ . 



 
In case when  αv  coincides with vectors (2.3.2.10) – 
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where 21 , ϕϕ  and  3ϕ  are angles comprised by direction of motion with coordinate lines. 
From (2.3.2.11) and (2.3.2.14) it is obvious that: 

αα ϕcoscc vv =    (2.3.2.15) 
These equities establish contact between absolute value of speed  cv , its projections αcv  on 
coordinate lines and angles. 

With allowance, that 
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from (2.3.2.14) we'll determine angles αϕ  through line elements 
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These equities are valid for any line, independently from the fact, whether some point is 

moving along it or not. 
cdt

dxα  represents tangent vector of line motion (trajectory) of a point 

[10]. 

By application of three-dimensional vector 
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dxα , other three-dimensional vector can be 

formed as well: 
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the components of which specify acceleration of changing of coordinates of moving point. The 
absolute value of this vector 
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we'll call acceleration of moving point according to standard time ct . 

Let's admit that ατ  is three-dimensional vector determined along trajectory, then 
projection of acceleration on ατ  will be determined from equity: 
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Acceleration projection on coordinate lines, in accord to (2.3.2.10) are relevantly equal to: 
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     (2.3.2.20) 

      Angle that constitutes acceleration with direction αv ,  is equal to 
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As αβγ−   is nonnegatively determined matrix, then  1cos 0 ≤ϕ . 

In conformity with (2.3.2.18) and (2.3.2.21) we'll have: 
vcc aa ϕα cos=    (2.3.2.22) 

These equities establish relation between absolute value of acceleration, its projections and 
angles, comprised of acceleration with coordinate lines. 

In above obtained equities relative to acceleration, vector 
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Let's rewrite the (2.3.2.17) as follows 
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Here 
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dxα  is unit tangent, and ⎟⎟
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 is normal vector to trajectory of motion point. Taking 

into account that these vectors are orthogonal 
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from (2.3.2.18) we'll have: 
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Also with allowance that [10] 
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where, ρ  - is first curvature of trajectory, we'll obtain: 
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This formula coincides (by form) with a formula known in kinematics and is its 
generalization. It is valid in any three-dimensional space as well as for any system of 
coordinates. If the point is moving along geodesic line, then 
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but if the point moves at zero linear acceleration 02
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In the first case ca  is absolute value of vector 2
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, representing a tangent trajectory, 

and consequently is called a tangent acceleration, whereas in the second case – ca  is absolute 

value of vector cv
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, which is perpendicular to vector 
ld

dxα  [10], that’s why this 

acceleration is directed along the normal of trajectory. 
 
 

2.4. TRANSFORMATION LAWS 
2.4.1 TRANSFORMATION OF COORDINATES  αx  

 
The kinematics values acc vvddt ,,, l , etc. have been determined above, which during 

transformation of coordinate system are transformed in certain way. Their transformation laws 
depend not only upon structure of kinematics values themselves, but depend as well on law of 
coordinates transformation. In this connection we'll consider two types of system coordinates: 

),,(~~,~ 32100 xxxxxxx αα ==             (2.4.1.1) 
and   

),,,( 3210 xxxxxx kk ′′′′′′=′′            (2.4.1.2) 
when 0x′  and 0x ′′  are time, and αx′  and αx ′′  are space coordinates. In the first case only 
coordinates αx  ( 0x  remains unchanged) are transformed, but in the second case – all four are 
transformed. It should be remembered that transformation (2.4.1.1) can’t be considered only as 
transformation of space coordinates, as in general case 0x  and αx  are neither time nor space 
coordinates accordingly. 

First let’s investigate transformation laws of kinematic values related to transformation of 
system coordinates (2.4.1.1). 



 
In accord to (2.3.1.39), the differential of standard time is determined in accord to 

following equity: 
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It is obvious that denominator on the right hand side of equity (2.4.1.3) is invariant value 
relation to transformation (2.4.1.1). Let's determine transformation laws for value μa . 

In conformity with (2.4.1.4) 
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Besides, 
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i.e., by transformation of coordinates (2.4.1.1) 0x∂
∂ μϕ  and vx∂

∂ μϕ  are transformed both scalar and 

covariant vector accordingly, that is why from (2.4.1.5) it is obvious that μa   is a three-

dimensional vector  relative to transformation (2.4.1.1). With allowance by it that 0

0

x∂
∂ϕ  is 

scalar, and μ

ϕ
x∂
∂ 0

  is three-dimensional covariant vector relative to transformation (2.4.1.1), then 

we'll obtain that numerator on the right side of equation (2.4.1.3) is an invariant value as well. 
Thus, relative to transformation of system of coordinate (2.4.1.1), the value cdt  determined 

by (2.4.1.3), is a scalar value. 
The following expression has been yielded above for 2ld :  

v
v dxdxd μ
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where, vμγ   is determined in accord to equity (2.3.1.46). 
From equations: 
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which are obtained with allowance of (2.4.1.1), it is evident that with respect to the 
transformation system of coordinates under consideration vg μ  is the three-dimensional 
covariant tensor, μ0g  is the three-dimensional covariant vector and 00g - the scalar. Than, since  

μ

ϕ
x∂
∂ 0

  is the three-dimensional covariant vector, it follows from (2.3.1.46) that  vμγ   is the three-

dimensional covariant tensor of second order, and ld  is the scalar with respect to 

transformation (2.4.1.1). 
cdt

dxα , as well as ⎟⎟
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⎞
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cc dt
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D α

 are the three-dimensional contravariant 



 
vectors with respect to these very transformations, since cdt  is the invariant. In this 

connection the velocity cv , acceleration ca   and their projections  cvv   and  cva   on some 
direction, defined by the vector  αv   are also the scalar values. The validity of this suggestion 
follows from the structure of these values. 
 
 

2.4.2.TRANSFORMATION OF kx′   COORDINATES 
DIVIDED INTO TIME AND SPACE PARTS 

 
 

As it has been shown above, there is an infinite number of functions ),,,( 32100 xxxxϕ  and 
thus, ),,,( 3210 xxxxαϕ  functions which determine a new system of coordinates kx′  with time 

0x′  and space αx′  coordinates. These functions depend on one arbitrary function 
),,,( 3210 xxxxψ , to different forms of which correspond the different coordinate systems kx′ . If 

we restrict ourselves to continuous ψ -functions, then, as is known [9], a great number of such 
functions have a continuum power, that is why a great number of corresponding functions 

),,,( 3210 xxxxkϕ  and thus a great number of various coordinate systems under consideration 
also have a continuum power. 

All similar coordinate systems are in unambiguous accordance with each other, in fact, if  
kx′   and  kx ′′  are two coordinate systems which correspond to two functions  ψ ′   and   ψ ′′ , we 

can write 
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                       (2.4.2.1) 

Hence, in accord to unambiguity of functions kϕ′  and  kϕ ′′  it follows that 
),,,( 3210 xxxxxx kk ′′′′′′=′′                      (2.4.2.2.) 

kx′  and  kx ′′   being in unambiguous functional relation.  
From the kinematic viewpoint each such a coordinate systems differs from each other by 

definite properties according to which it is possible to single out one isolated coordinate system 
characterized by concepts reasonable for us. This system should be recognized as rational and 
all other systems are considered with respect to it. A comparative analysis of the coordinate 
systems determined by equities (2.4.2.1) will allow one to elaborate a clear physical essence of 
these systems. 

Since condition (2.3.1.8) holds for the functions kϕ′   and   kϕ ′′ , not only (2.4.2.2) but also 
the inverse functional relation is valid 

),,,( 3210 xxxxxx kk ′′′′′′′′′=′                    (2.4.2.3) 
(2.4.2.1) can be regarded as a parametric representation of transformations (2.4.2.2) and 

(2.4.2.3); it is determined by the conditions: 
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Thus it is evident that any transformation of the (2.4.2.2) or (2.4.2.3) type is determined by 
two functions ),,,( 3210 xxxxψ ′  and   ),,,( 3210 xxxxψ ′′ .  In the multitude of these transformations 



 
there is also an identity transformation relevant to identical values of the functions  ψ ′  and   

ψ ′′ . 
Combination of two transformations  (2.4.2.2.) 

),,,(

),,,(
3210

3210

xxxxx

xxxxxx
kk

kk

′′′′′′′′′′′=′′′

′′′′′′=′′

ϕ
                 (2.4.2.5)  

can be taken  as one transformation 
),,,( 3210 xxxxxx kk ′′′′=′′′                    (2.4.2.6) 

when the first transformation of the system (2.4.2.5) is determined by equations (2.4.2.4) and 
the second one by the equations: 
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As for the transformation (2.4.2.6) obtained from (2.4.2.5) by exclusion of the variables  kx ′′ , it 
is determined from (2.4.2.4) and (2.4.2.7) also by exclusion of parameters with two primes, i.e. it 
is determined by the conditions: 
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and therefore belongs to the class of transformations of (2.4.2.2). 
Summarizing these results one can conclude that the transformations of (2.4.2.2) type 

satisfy the following requirements: 
a)  There exists an inverse transformation of transformation (2.4.2.2); 
b)   There exists an identity transformation; 
c)  Combination of two of transformations of (2.4.2.2) class also belongs to the same class. 

Therefore, the multitude of (2.4.2.2) transformations constitutes a group of transformations    
depending on two arbitrary functions ( )3210 ,,, xxxxψ ′  and   ( )3210 ,,, xxxxψ ′′ . 
The transformation laws of time and distance of during the coordinate transformation 

(2.4.2.2) can be established using (2.3.1.39) and (2.3.1.47). 
Let ( )3210 ,,, xxxxkϕ′  and  ( )3210 ,,, xxxxkϕ ′′  are two function systems corresponding to the 

( )3210 ,,, xxxxψ ′  functions and ( )3210 ,,, xxxxψ ′′ , then, according to (2.3.1.39) we have: 
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The constants αc′  and αc ′′  in the right-hand side of these equities are  dependent 
quantities; of them only αc′  (or αc ′′ ) can be selected arbitrarily, while the second three 



 
constants should be determined according to these values. To be specific, let us assume that  
αc′   are the fixed  known values, whereas the conditions 

ααϕ cxxxx ′=′ ),,,( 3210                   (2.4.2.10) 
determine the world line of some point of  three-dimensional space in the four-dimensional 
space-time variety. The three-dimensional space itself is determined from the following equity 

constcxxxx =′=′ 032100 ),,,(ϕ                    (2.4.2.11) 
The arbitrary constant 0c′  can take a zero value, which corresponds to fixation of three-

dimensional space at the initial instant of time. Simultaneous fulfillment of conditions (2.4.2.10) 
and (2.4.2.11) fixes a point in the four-dimensional space-time variety kx0  which corresponds to 
fixation of a point in three-dimensional space at the fixed instant of time. If we substitute these 

kx0  coordinate values into the function ),,,( 3210 xxxxαϕ ′′ , we can define the fixed values of 
these functions which determine the values of the sought  αc ′′   , i.e. 
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Thus  the   αc′  and  αc ′′   constants are  related to each other by  the following conditions: 
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while the constant  0c′  determines the instant of time at which the interval  td ′    is calculated. 
Conditions (2.4.2.9) determine the relation between  td ′  and td ′′  in the parametric form; 

0dx  is the parameter and excluding it the sought time interval transformation law for the given 
point of three-dimensional space at a fixed instant of time can be established during 
transformation of coordinates system (2.4.2.2).  

According to (2.3.1.47) 
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where, according to (2.3.1.46): 
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  (2.4.2.14) 

The  0c′  and  0c′   constants that fix three-dimensional space in the four-dimensional space-time 
variety at a certain instant of time are the dependent values. To fix the point in three-
dimensional space where the length of the infinitely small element  l′d  is established, the 
condition 032100 ),,,( cxxxx ′=′ϕ  should also be added to the condition ααϕ cxxxx ′=′ ),,,( 3210 . 
All these conditions determine the point in  three-dimensional space at a fixed instant of time 
where the length l′d  is established. It is evident that the same conditions determine the   value 

kx0 . Substituting them into  ),,,( 32100 xxxxϕ ′′ ,             can be defined 0c ′′ ,  i.e. 
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Thus, the functional relation between  0c′  and  0c ′′  is determined from the conditions: 
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Knowing  kc′  and 0c ′′ , let us define l′d  and  l ′′d  in the selected point of  three-dimensional 
space for a fixed instant of time. The kdx  values as characteristic elements of the one-
dimensional variety can be represented by one parameter 

dpxxxxbdx kk ),,,( 3
0

2
0

1
0

0
0=               (2.4.2.16) 

Then, according to (2.4.2.13), we have: 
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Hence, excluding the parameter dp , let's determine the transformation law for an infinitely 
small length at the given point of three-dimensional space at a fixed instant  during realization 
of transformation of coordinate system (2.4.2.2). 

The velocity transformation law can be established on the basis of use of (2.3.2.5), in 
particular, its parametric expression has the form: 
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where the point motion laws  
)( 0xx kk ′′=ω        and         )( 0xx kk ′′′′=ω  

are established  from the following equities: 
),,,()(),,,,( 32100321000 xxxxxcxxxxx αα ϕϕ ′=′′′=′ ,   (2.4.2.19) 
),,,()(),,,,( 32100321000 xxxxxcxxxxx αα ϕϕ ′′=′′′′′=′′ ,  (2.4.2.20) 

where  )( 0xc ′′α  and  )( 0xc ′′′′ α   are the given functions of  0x′   and 0x ′′  respectively. They 
characterize the point motion law in the corresponding three-dimensional spaces. These 
functions are dependent: indeed, if one excludes the variables kx  from (2.4.2.19) and (2.4.2.10), 
the following equations  can be obtained 
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where [ ] [ ])(,,)(, 000000 xcxxxcxx ′′′′=′′′′= αααα ψψ  - the solutions of system (2.4.2.19) with 
respect to 0x  and  αx  - must be identical. In other words, if the functions )( 0xc ′′  characterizing 
the point motion along the coordinates αx′  are properly selected, the functions )( 0xc ′′′′ α  must 
be determined from (2.4.2.21). 

According to (2.4.2.21) the values  cv′  and  cv ′′   determined from (2.4.2.18) depend on one 
variable, either on 0x′ , or on 0x ′′ . Excluding this variable, let's determine the velocity 
transformation law during the coordinate system transformation (2.4.2.2). 

Quite similarly, the transformation law for the velocity projection on some direction αv  is 
quite similarly determined (in the parametric form) from the following relations: 
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Similarly for the acceleration transformation law we have: 
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and for the transformation law for the acceleration projection on some direction  αv   we have: 
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In [10] the problems of kinematics of a moving point in uniformly accelerated and 
uniformly rotated coordinate system are discussed. To study these problems general results 
obtained in the present paper were used. Below, in studies of the central symmetry GEH field 
the relevant problems of kinematics will be considered.  
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CHAPTER III 
 

ELEMENTS OF RELATIVISTIC  
DYNAMICS OF MATERIAL BODY 

 
The concept "material body dynamics" makes sense if one assumes the existence of a 

concept “material body” independent of the concept "field". In many cases this classical concept 
is associated with substantial inconveniences resulting in a crisis situation in physics. 
Nevertheless, it is rather attractive because it enables one to determine (in many cases with 
very high accuracy) approximate finite solutions of complex problems allowing one to create 
definite physical models of the physical phenomenon under consideration.  

In chapter IV the basic elements of the unified GEH field theory will be given which, when 
using the Einstein’s ideas, must define the laws of material body motion, determining a material 
body by using the concept of a unified GEH field.  

The considered problems of dynamic based on the classical notion of the material body are 
one of the stages of the inductive judgment used in the present work to explain a physical 
essence of the parameters used to explain the unified GEH field and allow one to establish the 
relationship between these parameters and the usual classical parameters used in mechanics and 
electricity.  

 
3.1. THE LAW OF MATERIAL BODY MOTION 

 
3.1.1.THE LAW OF UNCHARGED MATERIAL  

BODY MOTION 
 

In the next chapter of the present work, using the GEH field concept, it will be shown that 
any material body is accompanied by electric phenomena. In some cases the total electric 
charge of a material body may appear to be equal to zero, but its separate parts have a particular 
electric charge. The concept of an uncharged material body used here is classical and means the 
absence of the total electric charge in the material body representing the point objective reality. 

Let us formulate the law of uncharged material body motion as the following principle: An 
uncharged material body moves along the nonisotropic geodesic line of the four-dimensional 
space-time variety. 

According to the results of chapter I, the equation for uncharged material body motion in  
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k

k ExSR
r

 has the form: 
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where s  is the length of geodesic line. It is covariant in all reference systems of ),(
k

k ExSR
r

- type. 

Taking into account that ds  is the invariant, the equations for uncharged material body motion 
in ),(

k

k exSR r  are defined from (3.1.1.1) using the relationship between the relevant parameters 

in ),(
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k ExSR
r

 and ),(
k

k exSR r  (here, according to the results of chapter I, transformation 

coefficients k
ia  are determined from the equities k

i
k
ia α= )  we obtain, in particular, 
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Quite similarly, the equation of geodesic line in ),(
k

k exSR ′r  has the following form 
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And here the transformation coefficients responsible for transition from ),(
k

k ExSR
r

 to ),(
k

k exSR ′r  

are equal to k
i

k
ia α ′= . It should be mentioned, that (3.1.1.2) holds not only during using of 

transformations belonging to the EH group, but also for any nonholonomic transformations. 
It follows from (3.1.1.1), (3.1.1.2) and (3.1.1.4) that geodesic line equations in the form of  

(3.1.1.2) are invariant with respect to arbitrary nonholonomic transformations, including those 
which comprise the EH group of nonholonomic transformations. 

Indeed, using the nonholonomic transformation with the coefficients k
i

k
ia α= , let us go 

back from (3.1.1.2) to (3.1.1.1) from which, using the nonholonomic transformation with the 
coefficients k

i
k
ia α ′= , we arrive at (3.1.1.4). The combination of these two nonholonomic 

transformations is also a nonholonomic transformation which transforms (3.1.1.2) into (3.1.1.4). 
i.e. (3.1.1.2) is an invariant form of the geodesic line with respect to nonholonomic 
transformations. 

If the two transformations mentioned here belong to the EH group, the resulting 
transformation also belongs to the EH group and therefore (3.1.1.2) is invariant with respect to 
the EH group of nonholonomic transformations. 

(3.1.1.2) is a general form of geodesic line equations in any ),(
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coincides with (3.1.1.1). 
To study the practical problems, it is more convenient to use equations (3.1.1.1). The 

solution of this system must satisfy the initial conditions: 
kk xx 0=     and    k

k

x
ds

dx
0&=   at    0=s         (3.1.1.5) 

where   kx0   and  kx0&    are the given numbers satisfying the condition 
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In the rational coordinate system kx′  with the definite  ),,,( 32102 xxxxψ   the conditions  

00 =′αg   and  02
00 >=′ ψg  are valid. The kx  and kx′  coordinate systems are related to the trans-

formations 
),,,( 3210 xxxxxx kk ′=′                    (3.1.1.7) 

Functions  ),,,( 3210 xxxxx k′  are defined by solving the above-mentioned differential 
equations: 
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if   particular  initial conditions are fulfilled. 0x′  is the time αx′   and     is the space coordinates. 
In the rational coordinate system a free material body moves along the geodesic line; the 
motion laws are described by solving the following Cauchi problem: 
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with 
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Let kx ′′  be another, also divided coordinate system corresponding to the function  2ψ . The 

relationship between  kx  and kx ′′  is determined by solving the system of first-order differential 
equations  
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if particular  initial conditions are fulfilled. The right-hand side of this system depends on the 
required function 0x ′′ . Therefore system (3.1.1.10) differs from that considered above in section 
§2.1,  however, as is known, the existence and uniqueness theorem of solution also is valid for 
system (3.1.1.10). And in the case under consideration the conditions ( )020

00 )( xxg ′′=′′′′ ψ  and 
00 =′′αg  are also valid. 

By solving the system (3.1.1.10), the relevant initial conditions being fulfilled, four 
functions are determined: 

),,,( 3210 xxxxxx kk ′′=′′ ,                   (3.1.1.11) 
which in totality with (3.1.1.7) determine the relationship between the  coordinates kx′  and  

kx ′′   
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In particular, if  0=s , we have: 
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One can always select initial conditions and the right-hand side of system (3.1.1.10) so as to 
meet the conditions 
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then the law of a free neutral body in the system  kx ′′  is described by the following Cauchi 
problem: 
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Taking into account that 00 =′′αg , the validity of the following equities  can easily be  
shown: 
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Therefore (3.1.1.15) can be rewritten as follows: 
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and 

,0at
)(

1,

,0

2

0
000

20
0

0
0

20
0

00

0
0

0
0

2

02

=
′′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′′
′′=′′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′′
Γ ′′+

+
′′′′

Γ ′′+
′′′′

Γ ′′+
′′

s
xgds

xdxx

ds
xd

ds
xd

ds
xd

ds
xd

ds
xd

ds
xd α

α

βα

αβ

       (3.1.1.17) 

i.e. it  is split up into  two Cauchi problems. In the Cauchi problem (3.1.1.16) 
ds
xd 0′′  should be 

replaced by its value determined from the condition 1)( 20
00 =′′′′+′′′′′′ xgxxg &&& βα

αβ . It is evident that 

if αα
0xx ′′=′′ , (3.1.1.16) is satisfied and since this Cauchi problem has the  unique solution, 

constxx =′′=′′ αα
0   is its solution. If these      values αx ′′  are substituted into (3.1.1.13) we obtain 
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The first integral of this problem has the following form: 
,)( 00

00 dsxdxg =′′′′′′                      (3.1.1.19) 



 
i.e.  cts =  ( s  is the time in the γ

0x ′′  point with the accuracy of factor c ). 
Thus, it is always possible to select such kx ′′  system of coordinates, where a neutral material 

body is at rest. If we substitute  αα
0xx ′′=′′  and )(0 sx ζ=′′  from (3.1.1.19) into (3.1.1.12), then 

(3.1.1.12) will determine the law of body motion along kx′  coordinates, in particular, 
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0 xxxsxx kk ′′′′′′′=′ ζ . The nature of the relationship between the  kx′  and kx ′′  systems in 
all points will be difficult to explain, and in the vicinity of the body itself the system γx ′′  moves 
relative to γx′  according to the above-mentioned law. When a satellite is moving in the near 
space γx′  is a system connected with the earth, and  αx ′′  - a system, connected with the 
satellite.  

 
3.1.2. THE LAW OF CHARGED  

BODY MOTION [1] 
 

When considering the EH group of transformations the functions  iϕ   and   iψ   were 
introduced. The physical meaning   (in the notions usual for us) of these parameters can be 
explained by using the equations for charged material body motion. This method is completely 
equivalent to that used by Einstein, which he used to explain the physical essence of the 
elements of the metric tensor ikg . Hereinafter similar to the relativistic theory of gravitational 
field we assume that the tensor ikg  characterizes the gravitational field. 

Let us formulate the law of charged material body motion as the following principle: a 
charged material body moves along the non-isotropic line of the four-dimensional space-time 
variety described by the equations: 
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where 
ds
xd

u
i

ei

e
= , and  ds  is the elementary line arc length. Using the notation 

,2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

∂

∂
=

ds
xd

xds
xd

x

u
u

ds
xd i

e
p

e

p
e

p

e

i

ep

e

i
e            (3.1.2.2) 

(3.1.2.1) can be rewritten in the following form: 
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This is precisely the system of equations for the charged continuous body motion 
(pseudogeodesic system of equations) with the electric and gravitational charge density ratio 
equal to: 
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is valid ( 2McQa −= ,  where Q  and  M  are the charge and the mass of a moving particle) 

system (3.1.2.4) will take the form: 
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This system coincides with the motion equation system (in nonholonomic form) for a 
charged material body in the curved space in the presence of the electromagnetic field. To be 
sure therein it is sufficient to rewrite it in ),(
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. Due to the covariance of system (3.1.2.6) 

with respect to nonholonomic transformations belonging to the EH group, it also retains its 
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This is the system of the charged material body motion equations in the external 
gravitational and electromagnetic field with the potential  iϕ  and the covariant strength tensor 
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Thus the equivalence requirement for the reference system               ),(
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covariance requirement for physical laws with respect to nonholonomic transformations has 
resulted to introduction of new functions iϕ  which can be taken as electromagnetic field 
potentials. On the other hand, in chapter I it was shown that during transition from ),(
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k exSR r  

to  ),(
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k exSR ′r  ikg  and iϕ  are transformed not as independent parameters, but as components of 

a unified value. In this connection ikg  and iϕ  can be considered as gravitational and 
electromagnetic potential components (gravitational potential, electromagnetic potential) of the 
unified gravitational-electromagnetic (GEH) field. 
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 be divided, then charged body motion equations 

(3.1.2.3) can be rewritten as: 

0

,0

0
2

02

20

00

0

0

0

02

2

=+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+++

ds
dx

ds
dxH

ds
xd

ds
dxH

ds
dx

ds
dxH

ds
dx

ds
dxH

ds
dx

ds
dxH

ds
xd

q

pq

p

γ
α

γ
α

α
γ
α

β
γ
αβ

γ α

       (3.1.2.8) 

This system, similar to the  case of the neutral body, has the solution )(, 00
0 sxxxx == αα  

satisfying the initial conditions: 
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condition (3.1.2.10) reduces to the equation: 
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These conditions are necessary and sufficient for the Cauchi problem (3.1.2.8), (3.1.2.9) to 
have the solution == αα

0xx  ,const=  )(00 sxx = , which corresponds to the motionless state of a 
charged body in  three-dimensional space. 

 
3.2. CONSERVATION LAWS 

 
3.2.1. CONSERVATION LAWS FOR 
UNCHARGED MATERIAL BODY 

 
In accord to the previous section the uncharged material body moves along the geodesic 

line of four-dimensional space-time variety the equation of which in ),(
k

k ExSR
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 has the form of  

(3.1.1.1) . As it was mentioned in chapter I, one of the integrals of motion of this system is the 
following equation: 
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Geometrically it expresses the fact that   
ds
dxi

 is a unit tangent vector of the geodesic line. 

It can be also defined other integrals of uncharged material body motion. With this aim and 
to explain the physical essence of the motion integral (3.2.1.1) we introduce a new  kx′  
coordinate system where the metric tensor  ikg ′  is divided into time and space parts.. As was 
shown in chapter II, this procedure is always feasible when defining the solutions  

),,,( 32100 xxxxϕ  and ),,,( 3210 xxxxαϕ  of the relevant differential equations in the first-order 
partial derivatives. New kx′  coordinates are determined from the equities: 

),,,( 3210 xxxxx kk ϕ=′                (3.2.1.2) 
The metric tensor in the system of kx′  coordinate will have the following form: 
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Besides, in  kx′   instead of (3.2.1.1) the equity 
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is valid. 
Hence, taking into account that 
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is the kinetic energy (at  1<<′ cv  we have  22
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is the absolute value of the motion velocity, 
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αβ ppgp                            (3.2.1.9) 
is the absolute value of the material  body momentum 
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Thus, according to (3.2.1.6), the motion integral (3.2.1.1) expresses physically the relation 
between the kinetic energy and the absolute momentum value of the moving material body. 

In the new kx′  coordinate system the geodesic line equations have the following form: 
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Let us consider the fourth equation of this system: 
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Taking this  into account, (3.2.1.12)  takes the form: 
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It is clear from the structure of the metric tensor ikg ′  that 00
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If the four-dimensional space-time variety metric does not change in time (static 
gravitational field), i.e. if  pqg ′  does not depend on  0x′ ,  (3.2.1.15)  reduces to  
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Hence, 
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where   m   is the material body rest mass (classical notion). 
Using equations (3.2.1.5) and (3.2.1.8), the latter equity takes the form: 
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In the areas of three-dimensional space with weak gravitational field, the assessment is 
valid [2] 
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 where  u  is the gravitational field potential (classical notion). Then, from (3.2.1.18) we have: 
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This is precisely the mechanical energy law in classical physics. Therefore, let us call the 
quantity  
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the total mechanical energy of a moving material body in general case. 
Thus, the equity (3.2.1.17) expresses the total mechanical energy law for a moving 

uncharged material body with allowance of relativistic effects. 
(3.2.1.17) can be rewritten in the  initial  kx  coordinate system parameters: 
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According to  (3.2.1.2), the transformation coefficients 0x
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This is precisely the sought motion integral of system (3.1.1.1) in kx  variables, expressing 
the mechanical energy law of an uncharged material body moving in the external static 
gravitational field. 

In the case when  ikg ′   depend on 0x′ ,  from (3.2.1.15) we have: 
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Thus, the change in the total mechanical energy of a moving material body is equal to the 
work 0ad ′ , fulfilled by the dynamic gravitational field. It is connected with the variation of the 

gravitational field in time ⎟⎟
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⎞
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g pq ; the gravitational field either gives the energy to the 

gravitational body (at 00 >′ad ), or does not take from it part of the mechanical energy (at 
00 <′ad ). From the viewpoint of classical physics the electromagnetic field must not participate 

in this exchange since it has no direct effect on an uncharged material body. and besides, in 
classical physics gravitational and electromagnetic fields are independent objective realities. 
From the viewpoint of a unified field, in conditions of dynamics, the electromagnetic field 
exerts an indirect effect on an uncharged material body; this is evident from the fact that the 
time change in parameters iϕ  causes the temporal change in parameters ikg , this change, 
according to (3.2.1.28), is related to the gravitational field work. 

With allowance of the structure of the ikg ′  and ikΓ′      parameters the following expression 
for 0ad ′   can easily be obtained: 
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From (3.2.11) for  3,2,1=k  we have: 
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They are components of the moving material body momentum. 
If we have such gravitational field where the condition  
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is valid, then, according to (3.2.1.31)  
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i.e. the momentum conservation law is realized. Otherwise, the infinitely small change in the 
moving material body momentum is equal to: 
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If, instead of the parameter s , we use the time t ′ , then from (3.2.1.32) for the moving 
material body momentum in             ),(
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k ExSR
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′  we will get: 
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Along with the parameter 0p′  determined according to (3.2.1.21), we can introduce the 
parameter 
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3.2.2. CONSERVATION LAWS FOR  

A CHARGED MATERIAL BODY 
 
 
If in (3.1.2.7)  a   will be replaced by value 

q
mc

a 2
1

−= ,                            (3.2.2.1) 

then the system of equations for charged material body motion will take the following form: 
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Here  q   is the charge of a material body. 

Let us multiply (3.2.2.2) by 
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ik   and summarize over the k  index, we'll obtain: 
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Since  ikF   is the antisymmetric tensor (in ),(
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), then from this we have: 
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Quite similar to the above, in the reference system with the metric tensor divided into 

time and space parts the equation of the  (3.2.2.2) system at   0=k  gives: 
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If  the unified GEH field is static - 
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and (3.2.2.4)  takes the following form: 
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the 0ϕ′q  in classical physics is the charge energy q  in the static potential field with the potential  

0ϕ′ . Then 
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is the total energy of a charged material body –  mechanical energy + electric energy and  
(3.2.2.7) represents the energy conservation law. 

In case of the dynamic GEH field from (3.2.2.4) we have: 
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i.e.  the change in the total energy  0Pd ′  of a charged material  body, moving in the dynamic 
GEH field is equal to the elementary work 0Ad ′   fulfilled by the GEH field. 

 Quite similarly to the previous one, from (3.2.2.2) in ),(
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αP′  is the total momentum of a moving charged material body. Following (3.2.2.12) the 
infinitely small change in the total momentum equals to   
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and if the GEH  field is such that 0=′αδA ,  
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i.e. the law of conservation of the  moving charged  material body momentum is realized. 
Along with  0P′   and   αP′    let us introduce, the parameters 0P′  and  αP′  determined by the 

following equities:  
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With allowance of (3.2.2.16)  the condition (3.2.2.17)  will take the form: 
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3.3. SOME COMMENTS 
 

3.3.1. BEHAVIOUR OF DYNAMIC CHARACTERISTICS 
OF A MATERIAL BODY WITH  RESPECT TO HOLONOMIC TRANSFORMATIONS 

 
In the previous section the parameters αpp ′′, and αPP ′′ ,0 ,     determined by the following 

equations were introduced: 
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From equities (3.3.1.1) it is clear that the totality of parameters  αpp
c

′′ ,1 0 constitutes a 

four-dimensional contravariant vector which we call a four-dimensional contravariant 



 
momentum of a moving uncharged material body. Taking into account the structure of the 

metric tensor ikg ′   the equations (3.3.1.2.) can be rewritten as: 
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from which it is clear that the totality of the parameters αPP
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′′ ,1 0 ,  is also a four-dimensional 

contravariant vector which we'll call a total four-dimensional contravariant momentum of a 
moving charged material body. 

The parameters  αpp ′′,   and  αPP ′′,0  are related with the above-mentioned parameters by 
the following equities: 
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Hence it is clear that  αpp
c

′′ ,1
0   and  αPP

c
′′,1

0   are four-dimensional covariant vectors; the first is 

the covariant four-dimensional momentum of an uncharged material body, and the second – 
the four-dimensional covariant momentum of a charged body. 

Hence it is easy to establish the laws of energy and momentum transformation at general 
holonomic transformations. In particular, in ),(

k

k ExSR
r

  we have: 
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- for the contravariant momentum, 
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- for the covariant momentum. 
Since the metric in ),(

k

k ExSR
r

 is not divided into time-space parts, here it is impossible to 

select a temporal component of the four-dimensional momentum which after being multiplied 
by c  would give an energy of a moving uncharged material body. Similarly, it is impossible to 
determine momentum components. If ),(

k

k ExSR
r

 is such that its metric is divided (here 00 =αg ), 

at 0=k  (3.3.1.6.) determines the energy 0p , and at 3,2,1=k – the momentum components  αp  
of the material body in ),(

k

k ExSR
r

: 
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000             (3.3.1.7) 

This form of determination of the energy and momentum coincides with that determined 
by (3.2.1.21) and (3.2.1.32). This is quite natural, since in all the reference systems with the 
divided metrics the energy and momentum must be determined identically. Quite similar 
situation is observed for  kP  and  kP   vectors. 

The equities  
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where  )(sx k   and )(sx k′   are the solutions of differential equations (3.1.1.1) and (3.2.1.1), 
respectively determine (in  parametric form) a functional relation between 0p  and 0p′ , i.e. 



 
determine the law of material body energy transformation during the transition from  

),(
k

k ExSR
r

 to ),(
k

k ExSR ′′
r

 with the divided metrics. s  is the parameter. 

In the case under consideration the last three equations of system (3.3.1.7) are the 
consequence of system (3.3.1.6) at 3,2,1=k ,  therefore 
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From (3.2.2.18) we have 
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αβ ppgcmgcp ′′′−′=′ 22000              (3.3.1.10) 
Hence, following (3.3.1.4) 
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Substituting this  value  0p′   into (3.3.1.9), we get: 
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That last equities establish the functional relation between αp   and αp′ , i.e. the law of  
momentum component conversion during transition from ),(

k

k ExSR ′′
r

 to ),(
k

k ExSR
r

 with divided 

metric tensors. 
Thus, the independent of transformation energy and momentum  is observed when 

holonomic transformation connects two reference systems with metric tensors divided into 
time and space parts. 

Here the same situation is also observed for 0P  and αP , in particular 
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determine the law of  charged material body energy transformation, whereas the equity 
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is the law of charged material 

body momentum transformation. 
Equations of uncharged material body motion (3.1.2.27) and (3.2.1.35) retain their form in 

all ),(
k

k ExSR
r

 with divided metrics; besides, 0
1 p
c

′   and αp′  constitute a four-dimensional vector, 

therefore it is clear that the totality of parameters 0
1 ad
c

′  and  αad ′  is also a four-dimensional 

vector with respect to transformations, connecting the reference system to the divided metric 

tensors. The same situation is also observed for the quantities  0
1 Ad
c

′  and  αAd ′ . 
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CHAPTER IV 

 
 EQUATIONS OF GRAVITATIONAL-ELECTROMAGNETIC (GEH) FIELD  

 
In chapter one we have considered the basic elements of nonholonomic geometry which is 

a generalization of Riemannian geometry in terms of equivalence of reference system ),(
k

k exSR r   

interrelated  by nonholonomic transformations belonging to the EH group. The results given in 
the chapter will further be used to build a GEH field system of equations. Here the well-known 
variation principle used in the Einstein’s relativistic theory of gravitational field will be applied.  

As is known, one of the main requirements of this theory consists of equivalence of all 
),(

k

k ExSR
r

. This means that the Einstein’s gravitational field equations in all ),(
k

k ExSR
r

 are equal. 

Here, instead of this requirement, we use a more general requirement consisting of equivalence 
of the reference system of ),(

k

k exSR r  selected by us. According to this requirement, GEH field 

equations in all reference systems ),(
k

k exSR r  interrelated by EH group nonholonomic 

transformations, are similar. The remaining requirements and methods used here completely 
coincide with the relevant requirements and methods used in the Einstein’s  relativistic theory 
of gravitational field.  

 
 
 

4.1. THE ACTION FUNCTION AND  
THE SYSTEM OF EQUATIONS OF GEH FIELD 

4.1.1. THE ACTION  FUNCTION OF GEH FIELD 
 

Similar to the Einstein’s relativistic theory of gravitational field the GEH equation can be 
derived using the extremal principle with respect  to the field action function 

eeee
xdLgS 4∫ −= ,                         (4.1.1.1) 

where  32104

eeeee
xdxdxdxdxd = ,   L   is the Lagrangian density and integration1 is performed in 

the whole space filled with the GEH field. Main requirements satisfied by the quantities L  and 
S  for the gravitational field consist of invariance of these quantities with regard to all the 

                                            
1 i

e
xd are not differentials of the quantities  ix , therefore the integral in the right-hand  side of this equation is 

actually the Stiltess integral. 
 



 
reference systems ),(

k

k ExSR
r

. Let us generalize this condition for our case and demand that L 

be invariant with respect to all reference systems ),(
k

k exSR r  interrelated by EH group nonholo-

nomic transformations. Since 
ee
xdg 4−  is also an invariant value, it is clear that 

e
L  the 

invariance results in invariance of the action function 
e
S   as well, in covariance of the system of 

GEH field equations with regard to nonholonomic transformations belonging to the  EH  group. 
 The Lagrangian function must be composed of the parameters ij

e
g  and  iϕ  characteristic 

for the GEH field and of their first-order derivatives. The latter requirement provides the 
second order of the system of GEH field equations, which, in its turn, is the main requirement 
ensuring the correct asymptotic behavior of this system. Indeed, for a weak field the system of 
GEH field equations must coincide with classical systems of gravitational and electromagnetic 
field equations containing second-order equations with regard to potentials. 

As has been repeatedly mentioned above, in all sections of the present chapter we use the 
methods of the general relativity theory and of the relativistic theory of gravitational field, 
generalizing them for nonholonomic transformations belonging to the EH group. In this 
connection, to determine the Lagrangian function for the GEH field, we shall try to use the 
Lagrangian function of gravitational field. It is known that [2,3,4] for the gravitational field 

RL γ−= ,                                  (4.1.1.2) 
where, γ  is the dimensional coefficient, and k  is the scalar curvature. Though  R   contains the 
second derivatives with respect to ijg , this choice of the Lagrangian function does not violate 
the main requirement. The matter is that in the action function the second derivatives under 
the integral enter as an addend Adiv

r
, which is rejected when using the extremal principle with 

allowance of boundary conditions and thus does not change the character of the system of 
equations obtained in the rest part of the Lagrangian function containing only first derivatives. 
Generalizing (4.1.1.2), in the case under consideration, the Lagrangian function can be obtained 
with the nonholonomic scalar curvature. However, since the asymptotic value of the action 
function 

eee
xdRgS 4∫ −−= γ                       (4.1.1.3) 

does not coincide with the action function of the pure electromagnetic field in the flat space, an 
additional addend should be introduced. 

By direct calculations can be easily shown that with a very weak  GEH field gravitational 
component, i.e. at 0

ijij gg ≈  where1 0,1,1 00
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0
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0
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0
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equation is valid: 
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The first addend in the right-hand side with an accuracy of the multiplier p
pψψ

η 2
1  

coincides with the Lagrangian function of the pure electromagnetic field, i.e. electromagnetic 
field in the flat space (in the classical sense), whereas the second addend  is not reduced to it. In 

                                            
1 This condition can  hold in the special  reference  system ),(

k

k ExSR
r

.  



 
this connection we determine the Lagrangian function of the GEH field from the following 

equity: 
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and demand that the function  kψ  satisfy the following condition: 
constp

p →ψψ       at     0
ijij gg →              (4.1.16) 

The invariance addend of 
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follows from the law of   transformation for the quantities  ijF   (see (1.2.2.9)), in particular, the 
following equation takes place: 
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The Lagrangian function thus selected satisfies all requirements including the asymptotic 
requirement at  0

ijij gg → . Using (4.1.1.5) the GEH field action function will take the form: 
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Using the equities 
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The first addend in the right-hand side of this equity has the form of Adiv
r

, however, since 
the derivatives in this term are generalized, the variation of the relevant integral is not zero. Let 
us transform this addend. With this aim, let us rewrite it in ),(

k

k ExSR
r

 as follows (see (1.2.1.20)): 
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the last addend in the right-hand side  of the last equity  takes the following form: 
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This equity determines the explicit form of the GEH field action function. It is very 
complex, and therefore, the system of differential equations with regard to ij

e
g   and   i

e
ϕ   is also 

complex.  In this connection, in most of cases to study the GEH field it is expedient to use 
directly the action function rather than the system of equations. Below the central symmetry 
GEH field will be investigated immediately when using the action function (2.1.1.10). 

In ),(
k

k ExSR
r

 the GEH field action function  is simplified and has the following form: 
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Here  integration is performed according to Riemann. 
 

 
 

4.1.2. SYSTEM OF EQUATIONS RELETIVE  
TO  ij

e
g    AND   i

e
ϕ  

 
Equations relative to ij

e
g  and i

e
ϕ  are obtained from the extremal principle 

0=Sδ . 
The first integral variation in the right-hand side of (4.1.1.11) is equal to zero and to define the 
variation of the subintegral expression of the second addend,  let's calculate at first the 
following values 
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Besides,  
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      Let's substitute these values into the right-hand side of the equity: 
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and allowing for the additional condition (1.2.2.5) and equating the coefficients before ij
e
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and  i
e
ϕδ , we obtain: 
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where  λ   is the Lagrangian multiplier, 
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This system of equations for ij

e
g  and i

e
ϕ  is covariant relative to nonholonomic 

transformations belonging to the EH group, i.e. it retains its form in all ),(
k

k exSR r , which are 

interrelated by nonholonomic transformations of the given type. 
With allowance that the systems (4.1.2.6) and (4.1.2.7) contain the generalized derivatives 

and today the theory of differential equations with generalized derivatives does not exist, it is 
more practical to write these systems in ),(

k

k ExSR
r

. In this case 0, === k
ij

k
i

k
i

k

i
Ee δα  and from 

(4.1.2.6) – (4.1.2.8) we obtain: 

( )

(
) ( )
( )

],
16

12

1

qnpr
nrstpq

qr
nt

pnpr
tn

nqqn
nt

pr
rspq

r
p

pstr
p

tpst
p

sprm
mr

r
p

pst

r
p

tpst
p

spr
rijst

p
qi

q
jp

p
qj

q
ip

q
qp

p
ji

q
qp

p
ij

q
qi

p
j

q
qj

p
i

p
ji

p
ijp

FFh

FHFHFHgg

FgFgFgHFg

FgFg
x

hHHHH

HHHHHHHH
x

ψψ

η
ψψψ

ψψψψ

ψψ
η

δδ

×

×++−−

−+−++

+⎢⎣
⎡ −
∂
∂

−=−−

−++−−+
∂
∂

(4.1.2.9) 

( ) ,4 i
pq

n
n

qmpi
m gFggg

x
λψηψψ −−=−

∂
∂  

kk
L λϕ
ψ

=
∂
∂ ∗

 

These equations in totality with (1.2.2.5) constitute a full system of differential equations 
relative to k

iijg ψϕ ,,  and  λ .  The parameters  iϕ  in (4.1.2.9) contain ijF ,  therefore they are 

determined with an accuracy of the addend ix
u

∂
∂ ,  where u  is the arbitrary function. However, 

since iϕ  is represented by (1.2.2.5), it is clear that  u  must satisfy  the following first-order 
equation: 
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When solving the Cauchi problem relative to parameters ijg  and  iϕ ,  for a  certain  three-
dimensional variety  

),,( 321 vvvtx ii =                       (4.1.2.11) 

the function values  ijg   and  iϕ  are specified. This means that 0=
∂
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ix
u  for  (4.1.2.11), i.e. 
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i      at     ),,( 321 vvvtx ii = , 

or              
constu =       at         ),,( 321 vvvtx ii =              (4.1.2.12) 

(4.1.2.10) and (4.1.2.12) constitute the Cauchi problem for the linear uniform first-order 
differential equation with respect to the function u . As is known (see chapter II of the present 
work), it has the solution  constu =  and this is the only possible   solution. 

Thus, the system of equations (4.1.2.9) and (1.2.2.5) and the Cauchi problem conditions for 
three-dimensional variety (4.1.2.11) with respect to ijg  and iϕ  determine unambiguously (with 
an accuracy of a constant addend) the iϕ . 

 
 

4.2. CHARACTERISTICS OF THE MATERIAL WORLD 
 

4.2.1. ENERGY-MOMENTUM TENSOR  
OF THE MATTER 

 
As has been mentioned in the Introduction of the present work, the unified GEH field, if its 

existence is possible, should form the basis of all physical phenomena known for us. In 
particular, using the concepts characterizing the GEH field, the essence of the material world 
should be explained. In other words, such classical concepts as mass, energy, momentum, 
electric field density, etc. by means of which in physics the material world is characterized 
should be expressed by the GEH field parameters. Today the establishment of this relation 
between the classical and the GEH field parameters is not limited by any fundamental 
requirements ensuring its unambiguity. The only requirement, according to which the 
asymptotic behavior of the introduced parameters must be of classical character, cannot provide 
unambiguity of relation and hence the solution of the problem under consideration has, to 
some extent, an intuitive character. The validity of the accepted solutions can be checked only 
by comparison of the obtained theoretical results with the relevant experimental data. 

Basic parameters characterizing the state the of material world, which can be determined 
experimentally, are energy-momentum tensor k

iT  and current density vector kJ . The objective 
of the present paragraph is to define these parameters through the parameters of GEH field. 

First let us discuss the energy-momentum tensor of the matter. 
To define the dependence between k

iT  and ikg   and  iϕ  we shall use the known Einstein’s 
gravitational field equation  [3,4,5]: 
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is Einstein’s tensor, χ  is a dimension coefficient ⎟
⎠
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Gπχ , and ikR  and R  - Richci’s tensor 

and scalar curvature. However, use of these equations exactly as they are is impossible since the 
constant χ  contains such classic notion as the mass, the definition of which we are trying to 
make using the parameters ikg  and iϕ . To avoid tautology it is necessary to use only the law of 
proportional dependency between k

iG  and k
iT  from the equation system (4.2.1.1); as for the 

coefficient of proportionality it shall be formed only using GEH field parameters. It is natural 
since we do not have any other parameters. 

It can be readily demonstrated, that the dimensionality of parameter 1−χ  coincides with 
the dimensionality of quadrant of length vector iϕ   i.e. 
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Basing only on this circumstance the proportionality coefficient between k
iG  and k

iT  is defined 

by following expression:  qp
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where α  - is dimensionless constant, the value of which will be defined later while comparing 
the theoretical results and experimental data. 

Thus, the energy-momentum tensor of the matter is defined by (equity): 
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In Einstein’s relativistic gravitational field theory the equation (4.2.1.1) are used to define 
parameters ijg  assuming that the energy-momentum tensor of the matter k

iT  is the prescribed 
value. In comparison to this in the case under consideration the equations (4.2.1.4) are used to 
define the parameters of k

ie
T  according to the prescribed values of ij

e
g  and  i

e
ϕ  values which are 

solutions of the system (4.1.2.6), (4.1.2.7). 

From the structure of the right part of (4.2.1.4) it is evident that k
ie

T
α
1  is a mixed tensor of 

second order relative to the non-holonomic transformations belonging to the EH group. 
Multiplying the identity (1.2.2.32) by the value (4.2.1.3) yields: 
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where 
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is a four-dimensional force density which characterizes the effect of GEH field on the matter 
[5]. From (4.2.1.6) it is evident that iF does not represent the 4-vector. Irrespective of this the 
equations (4.2.1.5) are covariant relative to non-holonomic transformations belonging to EH 
group. This is evident since (4.2.1.5) is identical to (1.2.2.32) and this latter equity is covariant. 
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In modern literature of relativistic theory of gravitational field 00T   is identified with the 
energy density, α0T - with momentum density and αβT - with the stress tensor  of the matter. It 
should be mentioned that in a general case in the random reference system ),(

k

k ExSR
r

 such 

differentiation of the energy-momentum tensor components by physical characteristics is not 
valid. It is only valid for ),(

k

k ExSR
r

 with the metric divided into spatial and temporal parts (ref. 

Chapter II). 
 

Similarly to this the components of tensor ik

e
T  defined by (4.2.1.4) in the random reference 

system ),(
k

k exSR r  cannot be differentiated in accord to the above rule; they are absolutely 

equipotent values. Using these components it is possible to define the energy and matter 
impulse density and stress tensor. Indeed, if ),(

k

k exSR ′r  is the reference system with a divided 

metric, then energy 
00′

e
T and impulse 

α0′
e
T  densities, energy flow 
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T  and stress tensor 

αβ′
e
T  are 

defined using evident equities: 
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where k
ia  are transformation coefficients providing links between the systems ),(
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k exSR r  and 
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In .0),( 0 =′′ αgExSR
k

k
r

 Method of metric division, i.e. ensuring equities 00 =′ αg , is described in 

Chapter II of the present work as well as in [8]. 
 
 
 



 
 

4.2.2. ELECTRIC CURRENT DENSITY 
 

In full analogy to the above for determination of electric current density, being one of main 
characteristics of material world. Let us use the equation of electromagnetic field in the curved 
space [5] 
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Generalization of these identical equities in the considered case is either 
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Below we shall demonstrate that tensor nature of both generalizations is identical however the 
electric current density defined by the equity (4.2.2.4) does not satisfy the charge conservation 
law even in ),(

k

k ExSR
r

. For this reason the current density is subsequently defined according to 

the equity (4.2.2.3). 
In the right part of this equity ik

e
g  and  i

e
ϕ  are the solutions of the GEH field equations 

system (4.1.2.6) and (4.1.2.7). In the classic theory of electromagnetic field [5] the equations 
(4.2.2.1) were used to define the potential of the electromagnetic field iϕ  in the curved space 
with the prescribed metric tensor ikg  for the known value of current density iJ . In contrast to 
this in the considered case the metric tensor ik

e
g  and potential i

e
ϕ  are the solutions of the 

system equations (4.1.2.6) and (4.1.2.7), which being substituted in (4.2.2.3) define the electric 
current density. 

In classic theory of electromagnetic field [5] current density defined by (4.2.2.1) complies 
with  the charge conservation law: 
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This equity is the consequence of the identity: 
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and the anti-symmetry of ikF  tensor. In ),(
k

k exSR r  the charge conservation law is not valid. 

Besides, from the structure of the right part of equity (4.2.2.2) follows that iJ   is contravariant 
vector. 

To determine the vector character i

e
J  defined by (4.2.2.3) the following identity is used: 
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In accordance with the charge conservation law pqe
F  (see (1.2.2.9)) the left part of this identity 

and the last two summands in the right part are contravariant vectors, hence i

e
J

η
1   is a 

contravariant vector. 
Similar to the energy-momentum tensor in general case, in the random ),(
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, one 

cannot claim that 01 J
c

 is the charge density and αJ  - the current density.  Such a 

differentiation of the vactor components in accord to physical properties is valid only in 
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′  with divided into space and time parts of metric tensor, i.e. if ),(
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 is such, that  

00 =αg  and 000 >g , i.e.  01 J
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′   is a charge density  and αJ ′  - is current density. These 

parameters can be expressed through the equipotent parameters iJ : 
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The method of defining of ),(
k

k ExSR
r

′  with divided metric, i.e. the method of defining the 

functional dependence =′kx  ),,,( 3210 xxxx=  is given in Chapter II. 
 
 
 

4.2.3. MATERIAL BODY 
 

In this section we shall attempt to define a material body basing on the basic notion of GEH 
field. 

In [5] Einstein wrote: "Furthermore, there is an assertion that it is impossible to 
simultaneously maintain the field and particle concepts as elements of physical description. The 
concept of field requires absence of singularities while particles concept (being elementary 
concept) requires the singularities in the field. However, the field concept seems to be 
inevitable since otherwise it is impossible to formulate the general relativistic theory. The 
General Relativistic theory is the only means to avoid such unreal "thing as inertial system". 
Apart from this in [6] Einstein and Infield are   developing the following idea: "We cannot build 
physics on the basis of the only notion – matter. But division into the matter and field on the 
background of recognition of mass and energy equivalency is somewhat artificial and vaguely 
defined. Could we rather abandon the notion of matter and build a pure field physics? What 
effects our senses in the form of matter actually is but a tremendous energy concentration in 
relatively small space. We could have considered the matter as the domains in space where the 
field is extremely strong. This would have allowed to develop the basics of a new philosophy. 
Its ultimate goal would have been to explain all events occurring in nature by structural laws, 
valid under all circumstances and everywhere. From this viewpoint a thrown stone is a 
changing field where the states of the highest field intensity move in the space with the speed 
developed by the stone". 



 
The conservation law (4.2.1.5) obtained in 4.2.1 is similar to the identity (1.2.2.32), hence 

below we shall use (1.2.2.32) to solve the problem set in this section. With allowance of the 
results obtained in this very section we shall assume that in ),(

k

k ExSR
r

 the metric tensor is 

divided into spatial and temporal parts to separate the energetic part from energy-momentum 
tensor. In such ),(

k

k ExSR
r

 00T - is matter energy density, α0T  – is the momentum density 

component, 0αT  – the energy flow component and  αβT – is a stress component. 
In three-dimensional space let's isolate a certain volume V  constx =0  and integrating the 

identity (1.2.2.32) in this volume, we shall get: 

,3
00

*

3
00

0
000

xdgGH

xdgG
dx
ddGg

V

qp

e

i
pq

v

i

e

i

S
e

∫

∫∫

−−=

=−+

γ

γσ α
α

      (4.2.3.1) 

where S  – is a surface, limiting V ,  ασd - is a surface element, 
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Multiplying the same identity by jx  and integrating it in V  we get: 
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The average value of jx  coordinate is defined from the equity: 
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and let's introduce the following definition: 
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provided 00 xx = . Using these definitions the (4.2.3.1) will receive the following form: 
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and (4.2.3.2) will get: 
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With allowance of (4.2.3.5) the latter equity can be rewritten as: 
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The value )( jj xxO −   tends to zero when αα xx →  and is equal to zero when  0=j .  

From (4.2.3.3) it is evident, that jx  depend on 0x , if only the parameters of GEH field ikg  
and iϕ  depend on variable 0x , i.e. in four-dimensional spatial-and-temporal variety )(sx j  
where the length of the arc s  forms a certain trajectory. In case when ikg  and iϕ   do not 
depend on 0x , the parameters ix  are constants, i.e. movement of the material body does not 
occur. 

Let us consider the case when v is so small domain that the symbols i
pqH *  can be expanded 

in a Taylor series in the vicinity of point jx  and one can with sufficient degree of accuracy be 
confined to the linear terms relative to jj xx −  i.e. 
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After substitution from (4.2.3.5) we get: 
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With allowance of (4.2.3.7) this equity will acquire the following form: 
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Assuming that the considered GEH field meets the following conditions:  

1. Outside of V  the GEH field falls very rapidly so that ∫
s

K  is much more significantly lower 

compared to the volume integrals; 
2. V  is so small domain that )( jj xxO −  is an arbitrary small value; 
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00∫ − γ  is much higher comparing volume integrals with other components of 

tensor ik
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G  and compared to the changing of this very value by a unit of the trajectory length. 

Such GEH field confined within the domain V  will be indicated as a material body. 
Basing on the first and second terms the equity (4.2.3.11) with a high degree of accuracy 

will have the following form: 
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When fulfilling the conditions of 1 and 2 from (4.2.3.7) with 0=i  we get: 
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After substitution from (4.2.3.13) we get: 
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where, ( ) xdgGGa
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Using the third condition the (4.2.3.15) with a high degree of accuracy is be reduced to the 
system of equations - 
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These are the equations of motion of the charged material body. 
These equations are more general than the equations of  pseudo-geodesic line (3.1.2.3) and 

coincide with them only in cases when the following conditions are valid: 

0
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=
ds

dxF
q

l
lqψ                          (4.2.3.17) 

(4.2.3.17) is a necessary and sufficient condition for compatibility of the systems (3.1.2.3) and 
(4.2.3.16).  

The pseudo-geodesic line equations (3.1.2.3) describe free motion of the charged material 
body in external GEH field, while equations (4.2.3.16), derived basing on using of energy-
momentum tensor taking into account the force and energetic interactions between the 
individual parts of the matter – the compulsory motion accompanied by dissipation of a certain 
type of energy (as viewed by classic physics), namely there occurs the radiation of the GEH 
field. Hence it follows that not all charged material body can perform free motion in the given 
GEH field; for each given GEH field there is a relevant test body which is able to move freely in 
space without radiation of own GEH field. 

This issue will be discussed more detail below when considering the motion of a charged 
test body in centrally symmetric GEH field. 

Since ijF   is an anti-symmetric tensor of second order, the condition of (4.2.3.17) is 
automatically fulfilled if the following conditions are valid along entire pseudo-geodesic line: 
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λ  can be chosen so that the validity of condition (3.1.2.5) directly follows from the condition 

1=
ds

dx
ds

dxg
qp

pq ,  which is valid for the case of free motion of the test body. 

The mandatory nature of the condition (4.2.3.18) requires special investigation. 
The system of equations of motion of uncharged material body is received from here with 
0=ijF , or from the identity 0, =k

ikG  (where ikG  is Einstein’s tensor) obtained from routine 
Bianchi’s identity: 
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                     (4.2.3.19) 

From the viewpoint of the classic physics 
ds

dx
ds

dxmH
qp

i
pq  is a summed - gravitational + 

electromagnetic - force effecting the charged material body placed in the external gravitational 



 
and electromagnetic fields with potentials ijg  and  iϕ  respectively as if the material body and 

gravitational and electromagnetic fields are absolutely independent from each other unrelated  
realities. Such differentiation of the matter and field is a basis of investigation method in classic 
physics; here it is obtained as a consequence - in the form of integral law – laws of unified field. 

From the standpoint of the unified field GEH field in V  domain and outside its limits is a 
unified phenomenon; the field outside the V  domain is an uninterrupted continuation of the 
internal field, which by definition is a material body; motion of the material body is a result of 
GEH field evolution in four-dimensional spatial-temporal variety. 
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CHAPTER V 

 
GEH FIELD OF THE CENTRAL SYMMETRY 

 
In this chapter one of the specific cases of GEH field which has high applied importance is 

considered. It is a GEH field of the central symmetry. 
Due to the extreme complexity of GEH field system of equations we shall attempt to 

investigate the raised problem directly while using the action function. It has rather simple 
form in the case in question which facilitates building up of system GEH field of equation. 

General solution of this system in parametric form is provided and energy-momentum 
tensor and current density vector of the respective material world are defined. When using 
these latter and asymptotic characteristics of GEH field potentials the values of random 
constants resulting from the integrating of the system of equations are defined. 

The issues of kinematics and dynamics in GEH field of central symmetry are also studied. 
For the calculation simplicity we shall be limited by the reference system of ),(

k

k ExSR
r

 type, 

with the system of coordinates kx  is chosen so that in the sites located at distances from the 
symmetry center it coincides with the spherical coordinates. 
 
 
 
 



 
5.1. SYSTEM OF EQUATIONS OF GEH FIELD OF CENTRAL SYMMETRY AND ITS 

GENERAL SOLUTION 
 

5.1.1. ACTION FUNCTION AND SYSTEM OF EQUATIONS OF GEH FIELD OF CENTRAL 
SYMMETRY 

 
According to (4.1.1.11) the action function depends on parameters ijg  and iϕ  and their 

partial derivatives of first order, therefore in the first turn we should define the form of these 
parameters. In the chosen reference system the components of the metric tensor ijg  have the 
form identical to the one encountered in the case of pure gravitational field of central 
symmetry: 
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where )(ra  and  )(rb  are some sought functions, which in case in question differ from 
Schwarzschild's solution. As for iϕ  and iψ   they shall be selected in the following way: 
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where  ϕ , and ψ  are also sought functions satisfying the condition (1.2.2.5) βψϕ =i
i . From this 

condition )(rψ  can be expressed through  )(rϕ , in particular 
)()( rr ϕβψ =                              (5.1.1.3) 

From (5.1.1.1) and (5.1.1.2) for covariant components iψ  we get: 
0, 3210 ==== ψψψψψ a . 

In further calculations we shall also need g−  and ikg , which according to (5.1.1.) are equal 
to: 
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The value of k
ijH  consists of two summands - k

ijΓ  and linear combination ijF , while the form of 

Christoffel’s symbol k
ijΓ  for gravitational field of central symmetry is known [1], and ijF  and j

iF  
according to (5.1.1.1) and (5.1.1.2) are defined using the following equities: 
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where 

dr
dϕϕ =′ , and in matrices ( ijF ) and ( j

iF ) index  i  is a number of the line and index j  - is 

the number of the column  ( 3,2,1,0, =ji ). 
Substituting these values of ijF  and j

iF  and known values of k
ijΓ  from [1] in (1.2.2.12) we 

shall receive the following value for k
ijH : 
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Here 
dr
dbb
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daa =′=′ , . Substituting these values into (4.1.1.11) while taking into account,  that 

the parameters do not depend on 0x  we'll get: 
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Let's introduce symbols 
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will yield the following form of (5.1.1.7): 
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Here λ,v  and f  are variable parameters. Hence for these unknown functions we have: 
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General solution of this system is defined in [5] which after its substitution into (5.1.1.8) for ba,  
and ϕ  will yield the following value: 
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where p  is some parameter from the domain ∞<≤
+
− p

n
n

1
1 , ern,,,0ϕ  and c~ - are random 

constants of integration, when 0~,0,10 0 >>≤≤ crn . From (5.1.1.11) it is evident, that +∞<≤ r0  

when  +∞<≤
+
− p

n
n

1
1 . 

 
5.1.2. ASYMPTOTIC BEHAVIOR OF ba,  AND  ϕ  

 INDICES WHEN   ∞→r  
 

When ∞→p   from the first equity of (5.1.1.11) system we get: 
∞→= ppO ),(ζ                           (5.1.2.1) 
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On the other hand, in infinity the four-dimensional spatial-and-temporal variety is flat and if 
0x  has dimension of length then the following equity is valid: 

1lim =
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a
r

 

Comparing the last equities we are getting 1~ 2 =c  and since 0~ >c , then 1~ =c  . 
After substitution the system (5.1.1.11) will acquire the following form: 
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One can use both asymptotic values of these indices representing known values in classic 
physics, and basic characteristics of material world indicated above to define the remaining 
integration constants. 

Let us at first discuss the method of asymptotic values of the parameters in question. In case 
of large values of p  decomposition of parameter a  relative to p1  yields: 
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Comparing this expression with Schwarzschild’s solution [1] we shall obtain: 
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where: 
s

cmc 10103 ⋅=  is the velocity of light, 2

3
81067,6
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⋅= −  - is gravitational constant, m  - 

is total mass of the material body in question representing GEH field of central symmetry, gr - 
gravitational radius. 

From this equity it is obvious that: 
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Equity (5.1.2.4) connects new parameters n  and er  with classic parameters M  and   G . 
 

Asymptotic behavior of parameter b   when ∞→r  is defined from the third equity of 
system (5.1.2.2), in particular: 
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This expression coincides with Schwarzschild’s solution. 

Let us calculate asymptotic value of parameter ϕ  when ∞→r . From the last equity of the 
system (5.1.2.2.) we have: 
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The right hand part of this equity with the accuracy of constant summand 
0
ϕ  coincides with 

electric field potential of point source with a charge: 
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Here Q  shall be assumed to be a full electric charge of the considered material world (ref. 

below). From (5.1.2.8) which establishes link between the new 
0
ϕ , 0r  and classic Q  parameters 

it is possible to define the value of 
0
ϕ  

er
Q
η
βϕ

4

0
−=                                 (5.1.2.9) 

It should be noted that asymptotic behavior of ϕ  potential defined by the equity (5.1.2.7) in 
contrast to classic potential of point source is characterized by that, that at infinity it has a finite 
(nonzero) constant value. According to (5.1.1.3) the same requirement is met by asymptotic 
value of ψ , and this in its turn ensures fulfillment of the requirements of (4.1.1.6). 

It should be mentioned that when 0x  has the dimension of time, the value of a defined in 
accordance with the second equity of the system (5.1.2.2) is replaced by the value: 
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At the same time instead of (5.1.2.2) one should use the system: 
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Comparing expressions for a  and ϕ  makes it evident that 2c  for gravitational field plays the 

same role as 
0
ϕ   for electric field, in particular 2c   is asymptotic value of gravitational field 

potential (in classic understanding) at infinity. Further when discussing the specific problems 

we shall demonstrate that the value of 
0
ϕ  depends on the nature of considered material world of 

central symmetry; from the classic standpoint it means that to various values of classic 

characteristics K,, MQ  correspond the various 
0
ϕ . In this connection the following hypothesis 

can be put fourth: 2c  also depends on the nature of discussed material world of central 



 
symmetry; for the Sun (for a certain GEH field of central symmetry) it has one value, for other 

heavenly objects – another. 
 
 

5.1.3. STRUCTURE OF PARAMETERS ba,  AND  ϕ   
IN THE VICINITIES OF THE CENTRAL POINT 

 
Of particular interest is behavior of the parameters a, b and ϕ in the vicinities of the central 

point 0=r , since in accordance with Einstein (ref. sector 4.2.3 of the present work) the field in 
this point shall be free from singularity [2,3]. 

From the first equity the system (5.1.2.2) due to the condition 01 ≥− n ,  we obtain: 
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From the second equity of the same system the following condition is valid: 
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i.e., 0→a    at    0→r   as   n
n

r −1
2

 . 
Quite similarly from the third and fourth equities of the systems (5.1.2.2) we obtain: 
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Below we shall assume that the parameters η  and β  satisfy the term 
0≥βη                               (5.1.3.5) 

This term will ensure the limitation of the value )(rϕ  in the vicinity of point 0=r  with 
0)( →rϕ  at ,0→r 0>βη  and const=)2(ϕ   in the vicinity of point 0=r  at 0=βη . 

From (5.1.3.2) – (5.1.3.4) it is evident that the unified (GEH) field of central symmetry is 
free from singularity in the point 0=r . 
 
 

5.2. KINEMATICS IN GEH FIELD  
OF CENTRAL SYMMETRY 

 
5.2.1. DISTANCE BETWEEN TWO POINTS [4] 

 
In accord to (5.1.1.2) the metric is divided into the spatial and temporal parts. Unlike 

Schwazschild’s metric in the considered case  0,0 ≥≥ ba  for any r  from the interval ∞<≤ r0 , 
i.e. 0x  is temporal-like and r  – spatial-like coordinate lines in entire four-dimensional spatial-



 
temporal variety. Hence the metric of three-dimensional space can be defined by the 

following equity: 
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In accordance with the results in Chapter II the distance between the two points 111 ,, φθr  
and 222 ,, φθr  of three-dimensional space is defined as the arc length of geodesic line between 
these points. With this aim it should be solved the system of equations of geodesic lines of 
considered three-dimensional space with the metric (5.2.1.1): 
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With allowance of boundary conditions 
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where  s  is a current length of arc of geodesic line and 2,1s  is the length of the arc between the 
first and second points. It is the solution of the following equation - 
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where )(),( ssr θ  and )(sφ  are the solution of the problems (5.2.1.2) and (5.2.1.3).  
In each special case the procedure indicated here can be realized with due regard to the 

nuances corresponding to a specific task. We shall consider here one special case when the 
considered points are located on one coordinate line const=θ  and const=φ , i.e. when 21 θθ =  
and 21 φφ = . The solution (5.2.1.2) and (5.2.1.3) shall be sought in the following form: 

constsrr == θ),(  and const=φ , where )(sr  is the Sought function. For this solution from 
(5.2.1.2) and (5.2.1.3) we shall obtain 
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The first integral of this equation has the following form 
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where c~  is a random constant equal to one since at ∞→r  1=
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(5.2.1.6) we get  
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From the above indicated consideration it is obvious that coordinate line const=θ  and const=φ  
is a geodesic line and arc length of this line between two points are defined in accord to 



 
(5.2.1.7). If 01 =r  (i.e. the first point of symmetry center) and 2r  is a random point ( rr =2 ), 

then (5.2.1.7) can be reduced to the following equity: 
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which defines the distance from the symmetry center 0=r  to a random point of three-
dimensional space with a coordinate r  in the presence of GEH field of central symmetry. 

By substitution of values of b  and r  from (5.1.2.2) into (5.2.1.8) we get: 
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The integrand in the point 
n
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1  has a singularity however since 12 <

n , the integral in 

the right part of the last equity converges. Integrating by parts we shall get: 
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It can be readily demonstrated that  
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i.e. the condition (5.2.1.13) is valid for every fixed value of parameter p . If the respective 
values from (5.2.1.11) will be substituted into (5.2.1.10) then the following expression will be 
obtained for R : 
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Continuing this process and considering the validity of condition (5.2.1.13) for )( pR  we finally 
get: 
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This equity in totality with the first equity of the system (5.1.2.2) defines (in parametric form) 

the functional dependence between R  and r , i.e. it defines the distance from the symmetry 
center to the point with coordinate r . 

The series in the right part of this equity uniformly converges in entire infinite region  
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is a converging series. Easy enough to calculate the value of majorizing series; indeed 
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∞→= pprpR e at )( . 

On the other hand from the first equity of (5.1.2.2) system we have: 
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Then it is evident that 
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Hence, the dimensionless number r  (a coordinate ) in the infinity coincides with the 
distance from the symmetry center to a random point.  
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Let's re-write the equity (5.2.1.14) in the following way: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+

+

+
−

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+

+

+
−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

−=

−

n
np

n
np

G

n
np

n
np

n
nprpR n

n

e

1
1
1
1

1
1
1
1

1
1)(

2

,   (5.2.1.17) 

where  

( )( ) .10,10,
212

2
)(

0
≤≤≤≤

−+−
−= ∑

∞

=

nx
nknk

xnxG
k

k

n   (5.2.1.18) 

It is evident that )(xGn  is a monotonously increasing function within the interval 10 ≤≤ x ,  
hence considering that the value 
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are similarly monotonously increasing functions of argument p , than easy enough that )(rR  is 
a monotonously increasing function of its argument r in interval ∞≤≤ r0 . 

The values of )(xGn  function for various values of argument x  and parameter n  are given 
in the Annex. 
 
 

5.2.2 TIME [4] 
 
The readings of the watch located in the point with a coordinate r  according to the results of 
Chapter II can be defined by the following equity: 
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get: 

2

0

1
1
1
1

n

n
np

n
np

c
xt

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+

+

+
−

−
= .                         (5.2.2.3) 

This equity in totality with the first equity of (5.1.2.2) system defines the time in the point with 
coordinate r ;  in various points the course of time is different. This effect is defined by 
multiplier: 
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and by functional dependence on ζ  from p . Thus, for example, in infinitely remote point 
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This result is natural since in the infinity the space is flat.  
In accord to (5.2.2.3) the time interval tΔ  in the given point of the space is equal to 
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Let us consider two points with coordinates 1r  and 2r  (or 1p  and 2p ) with 12 rr < , i.e. the 

point with coordinate 2r  lies closer to the symmetry center compared to the point with 
coordinate 1r  with 12 pp <   and hence 
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as well 
)()( 12 rtrt Δ<Δ .                            (5.2.2.5) 

Hence it follows that the course of time is faster in the points located at long distances from 
the symmetry center while as the distance between the point and symmetry center decreases 
the course of time slows down. The opposite is valid for the oscillation frequency: 

)()( 12 rvrv >                               (5.2.2.6) 
This is the effect of red shift. 

Basing on using the results of Chapter II and equity (3.1.5.13) the relation between the 
readings of the watches located in various points of three-dimensional space and coordinates 1r  
and 2r  ( 1p  and 2p ), in particular, 
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Hence 
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from which it follows, that 
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If  case, when the point with coordinate 1r  lies on the infinity ( )∞→1r , and rr =2  is a 
random point, then from (5.2.2.7), (5.2.2.8) and (5.2.2.9) we get: 
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where ∞∞ Δtt ,  and  ∞v  are the values of parameters tt Δ,  and v  on the infinity, i.e. in the regions 
where three-dimensional space is flat. 

These equities totality with the first equity of (5.1.2.2) system define the effect of red shift 
depending on the location of observation point with coordinate r . 
 
 
 
 
 

5.3. ENERGY AND CHARGE DENSITIES  
OF GEH FIELD OF CENTRAL SYMMETRY 

 
5.3.1.ENERGY DENSITY [5] 

 
Since the considered metric is divided, according to paragraph 4.2.1. 0

0T  is the energy 
density 
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In the case under consideration ( ikg  is a diagonal matrix) 
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Easy enough to show that 
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In accordance with the above from (5.3.1.4) we get: 
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After substitution for 0
0T  we get 
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This equity with allowance of (5.1.2.2) will acquire the following form: 
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Hence it is evident, that at ∞→ζ , i.e. at ∞→p , the energy density of GEH field of central 
symmetry is tending to zero and according to   (5.1.2.2), 
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With the accuracy of infinitely small high-order terms the equity (5.3.1.6) with ∞→r  will 
assume the following form: 
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Taking into account (5.1.2.8) this equity is reduced to the following equity: 
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The structure )(0
0 rT  in the vicinity of the central point 0=r , according to (5.1.2.2) is 

defined by the equity: 
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Hence it is evident. that at 
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)(0
0 rT  is free from singularity in central point 0=r . 
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the central point 0=r  for )(0
0 rT  is an isolated pole of nn −−− 1)122(2 2

β
η  order.  

When using (5.3.1.6) it is possible to define the quantity of energy of GEH field of central 
symmetry enclosed within the sphere with radius r  and center located in the point  0=r : 
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After substituting the value of 0
0T ,   g−  and dr   we shall get: 
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Full energy of GEH field of central symmetry is equal to: 
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One asymptotic character of 0
0T  parameter, defined according to (5.3.1.1) should be also 

indicated. With high values of r  it should coincide with 0
0T  from (4.2.1.1). If high values of r  

the coefficient 
π
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5.3.2. ELECTRIC CHARGE DENSITY [5] 

 
Since in the case in question metric of four-dimensional spatial-temporal variety is divided 

into spatial and temporal parts, it is evident that the density of electric charge is defined by the 
equity: 

01 J
c

=ρ , 

where 0J  is a zero component of four-dimensional current density vector. From (4.2.2.3) it is 
obvious that in the case in question 
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Considering the values of parameters ba,,ζ  and ϕ  from (5.1.2.2) the latter equity assumes the 
following form: 
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Hence it is evident that in asymptote with ρ∞→r   is estimated by the equity:  
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And in the vicinity of central point 0=r  structure of electric charge density is defined by the 
equity: 

0),( 1

2122 2

→= −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

rrO n

n
β
η

ρ .                  (5.3.2.4) 
If it is required to satisfy the condition  
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then ρ  in the point 0=r   is free from singularity. If (5.3.2.5) occurs then (5.3.1.9) is more valid. 
In case when  
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the central point 0=r  is an isolated pole of electric charge density ρ   of  
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Quantity of electric charge enclosed in the sphere with radius r  and center located in point  
0=r  is defined by the equity  
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After substitution of the respective values of parameters ba,  and ϕ  we get: 
nn

e

n
np

n
np

rrQ

−−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+

+

+
−

−
−=

212

0

1
1
1
1

22)(

β
η

η
ηϕ  

Let Q  is a full electric charge of the considered GEH field of central symmetry, then the 
following condition takes place: 
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(5.3.2.7) fully coincides with (5.1.2.8), which early was obtained through absolutely different 
way. Here it was obtained through fulfilling the condition 
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Necessity to satisfy this condition is determined by the fact that with 
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parameter )(rQ  is meaningless. On the other hand the inequity 
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is valid and if n  satisfies the condition (5.3.2.5) then condition (5.3.2.8) is automatically 
satisfied. In connection with this hereinafter we shall require that n  satisfies condition (5.3.2.5), 
which makes sense if  ηβ ≤ . 
 
 
 
 
 
 
 
 
 

5.4. MOTION OF MATERIAL BODY IN GEH FIELD  
OF CENTRAL SYMMETRY 

 
5.4.1. MOTION OF UNCHARGED BODY WITH NON-ZERO MASS IN GEH FIELD OF 

CENTRAL SYMMETRY 
 

In paragraph 4.2.3 material body was defined through using the notions of GEH field and 
from this definition as a consequence it follows that GEH field located outside of some region V  
containing material body in the form of GEH field which is characterized by certain features, is 
an external field independent of the material body. However actually GEH field external in 
relation to volume V  is a continuation of internal field (material body). 

Material body in GEH field of central symmetry from the standpoint of GEH field is a 
unified non-centrally symmetric field developing in time following a certain law and having 
some small domain V satisfying certain requirements of material body definition provided in 
4.2.3. Besides, deviation of GEH field from central symmetry is so insignificant that it can be 
ignored. Thus a complex problem of development of some complex GEH field in time shall be 
reduced to a purely classic problem on motion of the point material body in the external static 
GEH field of central symmetry. Motion of this body is described by the system of equations of 
geodesic line (or by the system (4.2.3.19)) of four-dimensional spatial-temporal variety with a 
metric (5.1.1.1). This system has the following form: 
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These equations contain exclusively characteristics ( )k
ijΓ  of gravitational field, in which the 

test body is moving. Solution of the system (5.4.1.1) under certain initial conditions allows to 
define the trajectory and motion law along this trajectory. This system does not contain 
gravitational charge (mass) of test body; various bodies with various gravitational charges but 
equal starting conditions are moving along one trajectory with a similar law. The system of 
equations considers only the gravitational impact of the gravitational field on the test body . 

The first integral of the fourth equity of this system assumes the following form (ref. 
(3.2.1.16)): 
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In (5.4.1.1) ds  is a length of elementary arc of geodesic line 
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Considering the above from (5.4.1.2) we obtain: 
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If for potential of gravitational field the values of a  defined by (5.1.2.10) are used, then in 
asymptote when the moving body is located far from the center of GEH field of central 
symmetry and its velocity of movement is low, i.e. when  
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If this equity is multiplied by rest mass of moving body we shall receive full mechanical 

energy of a moving body mE  
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defines the total mechanical energy of a moving body in the field of central symmetry if a  is 
defined in accordance with (5.1.2.10) and the equity (5.4.1.4) is a conservation law of 
mechanical energy of a moving body. 

From (5.4.1.4) it is evident that dissipation of mechanical energy of the test body does not 
occur, in particular, no gravitational waves are radiated by the test body. Obviously in the 
system consisting only of such sub-systems the dynamic phenomena cannot develop – it is dead 
and hence unreasonable. 

Since  asymptotic value of the potential of gravitational field of central symmetry is equal 
to 2c , 2mc  is an energy of a material body with mass m in gravitational field which has 
potential 2c . Such definition of energy 2mc   is more natural than currently known name of  
"energy at rest". 

When a  is defined according to (5.1.2.2) total mechanical energy of the moving body is 
defined by the equity 
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The potential of gravitational field in this case  is  ac 2 ,  not  a . 

Let us define other integrals of the system (5.4.1.1). Let us divide the third equation by 
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and rewrite it in the following form: 
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In accord to this the first and second equities of the system (5.4.1.1) will get the following form: 
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 (5.4.1.9) 

If for θ  the initial conditions are applied  
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then from the second equation of the system (5.4.1.9) θ  we shall get for  
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In such case the first equation for r  from system (5.4.1.9) can be rewritten in the following 
form: 



 

0
2

1
2
1

2
2
03

2
1

2

2

2

=+−⎟
⎠
⎞

⎜
⎝
⎛+

dr
da

ba
c

br
c

ds
dr

dr
db

bds
rd .    (5.4.1.11) 

By multiplying this equity by 
ds
dr  we shall easily get the first integral, which coincides with the 

above defined 1=
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This differential equation allows separation of the variables and its integral is defined in the 
following form: 
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where 0r  is an initial value of r , i.e. 0rr =  with 0=s . This latter equity defines the functional 
dependence of )(sr . By substitution of  )(sr  into (5.4.1.8) and (5.4.1.8) and by integration we 
get: 
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where 0
0x  and 0φ   are initial values of parameters 0x  and φ . 

The equities (5.4.1.13) and (5.4.1.14) in aggregate with solution 
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define the motion law and trajectory of moving material body in three-dimensional space. 
Arbitrary constants 0c  and 1c  are defined by these initial conditions, namely from (5.4.1.8) we 
get: 
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and from (5.4.1.12)  we get 
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From (5.4.1.13) and (5.4.1.12) the parameter s can be excluded and to receive the functional 
dependence between r  and φ  
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which determines the shape of the motion trajectory of the material body. 
The indicated here equities define the dependence of coordinates of moving point on s . To 

define the dependence of coordinates r , θ  and φ  on  time let us apply equities (5.4.1.2) and 
(5.4.1.2’) as a result of which we shall obtain: 
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Standard time will be defined by the readings of watches located infinitely far from the origin 

of coordinates, i.e. ∞= ttc . Then according to (5.2.2.10)  
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Taking into account the above from (5.4.1.13) we shall obtain: 
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which, in totality to (5.4.1.18) defines functional dependencies of )(tr  and )(tφ , i.e. the motion 
law of material body according to the standard time. 

From the practical standpoint the initial conditions (5.4.1.15) are not convenient since they 
are written for coordinates φ,r  and for the parameter s . It is more convenient to formulate the 
initial conditions in parameters φ,R  and t . Distance R  from the central point to the point with 
r  coordinate is defined by the equity (ref. (5.2.1.8)) 
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From (5.4.1.19) and (5.4.1.21) we have: 
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Thus, for R  and φ  relative to t  we have the following initial conditions: 
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From this if )(ra  is defined by the equity (5.1.2.2) we get: 
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where )(Rr  is an inverse function of function (5.4.1.21). 
Constants 10 , cc  (and also mE ) can be expressed through ,0R  000 ,, φφ &&R  in particular, from 

(5.4.1.16), (5.4.1.17)  and (5.4.1.22) we have: 
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These equities limit the initial values of the parameters R  and φ  and their derivatives in 
time, in particular motion of the material body is possible if the initial values meet the 
requirement: 
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When using the system (5.1.2.2) the law of material body motion represented by the 
equities (5.4.1.2) and (5.4.1.18) will assume the following form: 
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5.4.2. LIGHT BEAM PROPAGATION IN GEH  
FIELD OF CENTRAL SYMMETRY 

 
According to classic physics propagation of the light beam is described by the system of 

equations (5.4.1.1), in which unlike the material body with rest mass sm,  is some invariant 
parameter rather than length of geodesic line arc of four-dimensional spatial-temporal variety. 
In the case considered the light beam is propagated along the isotropic geodesic line 

0=
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ik . In this connection integral (5.4.1.12) of the system (5.4.1.1) is replaced by 

integral: 
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and equity (5.4.1.13) – by the equity:   
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In addition, instead of (5.4.1.17) we shall get: 
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and instead of (5.4.1.20) and (5.4.1.18) – the equities: 
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which define the functional dependences )(tr  and )(tφ  i.e. trajectory and law of beam 
propagation in space. 

For initial values the system (5.4.1.22) in considered case will assume the following form: 
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Constant 1c  can be defined from (5.4.1.16) with allowance of (5.4.2.5), namely 
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As for 0c  it cannot be defined from (5.4.2.3) and (5.4.2.5), as it was done in previous segment; 

indeed, if the values of 0r&  and 0

~
φ&  from (5.4.2.5) are substituted into (5.4.2.3), then 0c  is reduced 

and the following condition is obtained: 
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Thus the real initial values of parameters 00 , φR  and their derivatives in time shall satisfy 
bond condition (5.4.2.7) which limits the degree of freedom of choice of initial conditions. 



 
As it has been indicated s  is a random invariant parameter provided taking into account, 

that the system (5.4.1.1) is invariant relative to transformations ss ′=α  where α  is a random 
constant value and s′  - a new invariant parameter then according to (5.4.1.2) it will become 
evident that 0c  can be equated to one. 

Thus for the random constants 0c  and  1c  we have: 
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By using the system (5.1.2.2) the system (5.4.2.4) can be rewritten in the following form: 
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5.4.3.  MOTION OF A CHARGED MATERIAL BODY  
IN GEH FIELD OF CENTRAL SYMMETRY 

 
According to (4.2.3.17) equations of free motion of a charged material body have the 

following form: 
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They contain solely characteristics of GEH field (they contain parameters k
ijH ) and do not 

contain characteristic parameters of the test body. It is indicative of the fact that not all kinds of 
test body can perform free motion in GEH field of central symmetry.  Characteristic parameters 
of the test body shall meet certain conditions to enable free motion to take place. 

In general case these conditions are difficult to identify, that is why we shall consider the 
cases when the distance between the symmetry center and test body is much larger than er .  

For GEH field of central symmetry the third summand in the left part of the system 
(5.4.3.1) assumes the following form: 
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From this it is evident, that equations of free motion of any test body was a small m  and electric 
charge  q , which meet the condition of selectivity  
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take the following form: 
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In the case in question the (5.4.3.2) has the following form: 
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and (5.4.3.3) is reduced to the system: 
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Parameters of electron or positron satisfy condition (5.4.3.2) in cases when GEH field of 
central symmetry is proton. In case of positron the trajectory is infinite and in case of electron it 
is finite. Hence electron with proton form a stable system (hydrogen atom). It is stable since 
electron in GEH field of central symmetry being a proton performs free motion, it does not 
radiate its own GEH field. 

Similarly to previous one, these equations allow flat motion and if this plane coincides with 
the plane 2

πθ =  the system (5.4.3.5), if here we substitute the values 1
0F  and 0

1F  from (5.1.1.5) 

will get such a form: 
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Similarly to previous one (or see (3.2.2.7)) the last equity of this system has the following 
first integral: 
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where meE  is a total (mechanical and electric) energy of moving material GEH in body field of 
central symmetry. The (5.4.3.7) is a law of energy conservation (see the paragr. 3.2.2). 

Considering the fact that  
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where v  is the velocity of motion of the body in question, the following is obtained from 
(5.4.3.7): 
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Let us consider asymptote of this equity at ∞→r , i.e. at ∞→p . Considering that: 
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which according to (5.1.2.4) can be re-written in the following way: 
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This equity according to (5.1.2.8) can be rewritten in the following way 
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After substitution of values a  and  ϕ  from (5.4.3.9) we shall have: 
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Hence for lower (relative to c ) velocities we get: 
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The sum of three subsequent terms in the right part is a full energy of a moving body with mass 
m  and charge q  in the external gravitational and electric fields of point source with mass M  
and charge Q . 

Thus when performing free motion of a charged test body while satisfying the condition 
(5.4.3.2) the full energy of the test body is preserved, no dissipation of the full energy occurs or 
which is the same, the test body does not radiate the respective GEH field. This circumstance is 
a basic reason of stability, for example of hydrogen atom. With manifestation of a excitation 
factor in the form of external GEH field a GEH field of complex structure is formed in the space 
resulting in violation of the basic condition (5.4.3.2) and in the hydrogen atom start to form 
dynamic phenomena accompanied either by atom ionization or irradiation of GEH field, etc. 
These dynamic phenomena are described by equations (4.2.3.16), in which iikg ϕ,  and kψ  are 
potentials of the resulting dynamic field with a complex configuration. 

At very large distances from the field source the space is flat and if the initial velocity of the 
moving material body is equal to zero, then the body will be in a state of rest at any moment of 
time and (5.4.3.15) is reduced to the equity: 
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This is the very energy of a motionless material body with a small m  and charge q  in 

gravitational field with potential 2c  and electrostatic field with potential 
0
ϕ , i.e. rest energy. It 

differs from so far known rest energy by the value 
0
ϕq . 

Similarly to previous case in question the motion integral is an equity (5.4.1.8). Taking this 

into account the motion integral 1=
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Hence according to (5.4.3.7) we have: 
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This differential equation allows separation of variables and its integral has the following form: 
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where 0r  is an initial value r , i.e. rr =0  with 0=s . (5.4.3.18) defines functional dependence 
)(sr . By substitution of )(sr  into (5.4.3.7) and (5.4.1.8) let's define )(0 sx  and  )(sφ : 
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where 0
0x  and 0φ  are initial values (with 0=s ) of parameters 0x  and φ . The last three equities 

in the aggregate with initial conditions 
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define the law of the charged material body motion in the GEH field of central symmetry. 
Random constants of 0c  and 1c   integration are defined from the initial conditions in particular, 
from (5.4.1.8) and (5.4.3.17) we get: 
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By excluding s  from (5.4.3.18) and (5.4.3.19) we shall define the equation of the motion 
trajectory 
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Dependence of the coordinates θ,r  and φ  on the real time t  can be also defined. From 
(5.4.3.7) we get: 
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Taking this into account and similarly to previous one introducing standard time, we shall have: 
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which in aggregate with (5.4.3.22) defines the functional dependencies )(tr  and )(tφ ,  i.e. the 
law of the charged material body motion in GEH field of central symmetry. 

Similarly to previous one the initial values of the coordinates can be expressed through  
000 ,, φRR &  and  0φ& , in particular: 
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Besides, for the constants 0c  and 1c  we have: 
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According to (5.4.3.7) 
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In a given paragraph we always took into account the fact that a  is defined from equity 
(5.1.2.2). In case when  a  is defined from (5.1.2.10) in all above expressions 2mc  shall be 
replaced by mc . 

When using (5.1.2.2) the law of motion (5.4.3.22), (5.4.3.24) will acquire the following 
form: 
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In general case the motion of the charged material body is described by the system of equations 
(4.2.3.16). To use these equations in case of two charged material bodies (in the sense of classic 



 
physics) of which one is a central body and the other – a test body, it is necessary to make use 

of the GEH field, which is a model of two bodies. This is the GEH field having a dynamic 
nature with a complex spatial configuration acquires the nature of static GEH field of central 
symmetry in the vicinity of the center of the central body, while being placed near the center 
of the test body – the nature of dynamic GEH field. 

Since the equations (4.2.3.16) contain all characteristic parameters required for both central 
and test bodies some conditions of selectivity, similar to condition (5.4.3.2) become 
unnecessary. 
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CHAPTER VI 
 

SOME APPLICATIONS OF THEORY OF GEH FIELD  
OF CENTRAL SYMMETRY 

 
Here we shall try to use the results obtained in previous chapter for approximate 

description of internal structure of material world possessing the central symmetry. If material 
object is at large distances from the external world and if it consists of a large number of grains 
(in classic sense) than for accuracy can be considered high decree of centrally-symmetric 
material world. Centrally-symmetric material world are for example heavenly bodies, heavy 
atomic nuclei, elementary particles, etc. 

Approximate coincidence of the model (GEH field) with respective material world apart 
from the above mentioned reasons is also conditioned by the fact that the model is statistic and 
characteristic parameters of GEH field are regular values within entire space and do not allow 
existence of individual sub-regions with strong and weak concentrations of GEH field clearly 
demarcated by closed surfaces. 

6.1. APPLICATION OF THE THEORY  
OF GEH FIELD OF CENTRAL SYMMETRY  

IN ASTROPHYSICS 
 

6.1.1. STATIC MODEL OF THE SUN 
 



 
The world is a unified GEH field in the process of its evolution, while the Sun as the part 

of the entire world as well is GEH field changing in time, However it is changing so slowly that 
generations of people do not notice this change and the Sun seems to be a static object (for 
several generations). In this connection for creation model of the Sun we can use a static GEH 
field. Besides, in some region of the space representing a sphere with radius L  of the order of 
about half of the distance from the Sun to the nearest stars GEH field can be assumed 
(approximately) centrally-symmetrical. 

Investigation of evolution of the entire GEH field, filling entire space is practically an 
inaccessible problem for the human being and not only because that the the respective Cauchi 
problem is extremely complex but also because baseline information about the state of the 
world (GEH field) in the initial moment of time is required to solve this problem; it is 
practically impossible to collect such information. 

In this connection to develop a static model of the Sun we shall use a semi-classic method 
according to which the Sun is considered as a material body placed in some external 
gravitational and electromagnetic fields, which actually are the continuation of the Sun 
considering it as a GEH field. 

According to the above mentioned in some cases we consider the Sun as a static GEH field 
of central symmetry and in other – as a classic material body; this is the very essence of semi-
classic consideration of the problem under study. 
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