s,

280],
1003

0g. xdgoboBgommoby bsbganedol
DBOLOLOL LSLILVOBO  J603IALOBIBOL

‘A& (13350

ISSN 0976-2637

of Javakhishvili
TBILISI STATE UNIVERSITY

poggbgdoro Boogdlegy e goBBogdSasze dpghogBdebe
Applied Math i ° Comp i

voume 809 (22-23)

odomobo  Thilisi
2003




sogpbolgoenhs bobosedob
0L LSHITIVOB) FE0BIGLOGIBOL
F6 (8330

;,ma\x

39854359, 36meg.
R39BB0ma Lobeoedab adoroabol ‘“WW"W :»G«a:ﬁ‘*nm"v
b 3. N2, 0145, oogmol

Xogos 6abacho,
oRagzalol '»bavca\iw :ﬁnao‘-‘mman

. bsfsodiamo 3g6ed, sy
dogzaliob Usbgsdoro epbasate

399333039 30BLH6H06g, IGme;.
bgsbaggmal dajosgto Foggdlodase

Jotdsdy Gg3sh, ;
domabol Wbgredfoge Zlagy@bodgse
33a60modg0ma Gobsth, s,
Ragabol botgmdoro Togylosade
(B e.derore)

Bgmady 38y, Sog.
‘oRogoliol skgemdfjagn ghogattodado.
636360 doge, g,

Beagh bpsaol ooy, bgbsagm
Tbothmsdy babe6, oG,
odomaliol sbymdoge hogyilogso
60963%9) 30638, 36ong.

eoesslik] Libordagn; dvapclatado,



0g- xh;}b’bn%ﬂ@ob‘ basbgenmdols 21 ,', 0107355
odogobol Lobgadfogm 463g@bodgdob

‘d®(™M350

PROCEEDINGS

OF JAVAKHISHVILI TBILISI STATE UNIVERSITY

v 393 (22-23)

393mggbgdomo 35:mgds@ogd> o 303307 dg@gmo 3g3bogegdsbo
Applied Mathematics e Computer Sciences

Thilisi University Press
odogmobo Thilisi
2003

@ odommobol g60396Lagol 333md(3gdmmds




PROCEEDINGS

of Javakhishvili
TBILISI STATE UNIVERSITY

 EDITORIN-CHIEE

hakmadze Tamaz, Prof.

Vas|
Javakhishvili Thilisi smc University, University St. #2, 0145,
E-mail: vasha@viam hepi.cdu.ge

Babuska Ivo, Prof.
University of Texas, USA

Belotserkovski Oleg M., Acad.
CAD,Russia

State University

Ciarlet Philippe, Acad.
Piere et Marie Curie University, France

Criado Torralba Francisco, Prof.
University of Malaga, Spain

Gachechiladze Tamaz, Assits.Prof.
Tbilisi State University
Gamkrelidze Tamaz V., Acad.

Thilisi State University

Gilbert Robert P., Prof.
University of Delaware, USA

Jibuti Mouris , Assist. Prof.
Tbilisi State University

e Viadimir V., Acad.

Gordeznm Ekaterine D.

ilisi, Georgia

Jikia Nugzar, Assist. Prof.
bilisi State University

Kamkamidze Constantin, Prof.
Georgian Technical University

Kharﬂ(lshwll Guram L., Acad.
si State University

e Revaz A., Prof.
bilisi State University

Megrellsllvlll Richard, Prof.
ilisi State University.

Meladze Hamlet V., Prof.
Tbilisi State University

Naranjo Michael, prof

Blez Pascal Univeristy,
France

Skhirtladze Nugzar, Assist. Prof.
Tbi State University

Tsertsvadze Guram, Prof.
Tbilisi State University

‘Vakhania Nikoloz N. Acad.
‘Tbilisi State University

Tv. Javakhishvili Tbilisi smu Umvef.my, University St. #2, 0145, Tbilisi, Georgia
ail: egord@viam hepi.edu.ge

© Thilisi University Press, 2003




LILS S

Procedings o Javakshl ThlsState Univrsity
Applied Mather mputer Sciences
Vol 353 (22

25809996050000 350ISBO3S e APPLIED MATHEMATICS

RELATION BETWEEN 4BV, BV(p(n)10,) AND BA(p(n)T0;0) CLASSES
OF FUNCTIONS
T. Akhobadze

Tbilisi State Universi
Chair of High Mathematics

Abstract. Relations of inclusion between Waterman’s and gencralized Wiener’s classes are considered.

“The notion of a function of bounded variaion was introduced by Jordan [1]. To generalize
{his notion Wiener [2] considered class ¥, of functions. Young [3] (see also [4]) introduced the

notion of functions of @ -variation. D. Waterman [5] considered the following, concept of
ceneralized bounded variation.

DEFINITION 1. Let A= (2, :n>1)be an increasing sequence of positive numbers such that
$(1/4,) =+ Function f is said to be of A-bounded variation (f € ABV ), if for every
&

g!/’il:l

choice of no overlapping intervals {I,:n=1}we have

=[a,.b, )< 01 and 1(1,)= 1)~ f(a,)-

<+w, where

C(0,1) and B(0,1) are respectively spaces of continuous and bounded functions given on
[0,1]. In (6] (see also [7]) we introduced the notion of a class of functions B¥(p(n)p,@)-

DEFINITION 2. Let ¢ (p(1)22) be an increasing function defined on the set of natural
numbers and

lim @(n) =+ (0
Let f be a finite I periodic function defined on the interval (—o0+e0). A is said to be a
partition'with period 1, if there is a set of points 1, for which

QU S Ly <t <oty KRR R @
and ity =ty + L when k= 0142,
P(n) be an increasing sequence such that 1< p(n) < p, n— e, where 1< p(n) S@. e
say that a function f: belongs o the class BY(p(n) o, @).if.

o
Wp(n)fp.w—supwp{(zlf(z.) / rk.)l”’"'] p(A)zq‘( )} +,

Where m' is any natural number. Let ys assume that.

where p(4) =mirli ~t,.1|




4 T. Akhobadzé

If p(n)= pfor each natural number, where 1< p(n) < +c, then the class BV(p(n)Tp, @)
coincides with the Wiener’s class V. If p(n)=2", n=12,..., then the class BV(p(9)"p, @)

coincides with the class BY(p(n)1p) introduced by Kita and Yoneda [8]. These authors
investigated different propertics of this class. In [9] we considered the notion of a class of
functions BA(p()Tp, @). As above suppose that @ be an increasing sequence for which
@(1)=2 and (1) holds true.

DEFINITION 3. Let f be a measurable I-periodic function defined on (~,+). Let p(n)
be an increasing sequence for which 1< p(n) Tp,n=12,..., where 1< p(n) < +w. We say
that a function f belongs to the class BA(p(n) Tp,) if

. Viptmy
1% (m
AG, p() T, @)= sup sup {Z ﬂ £ Ge+ )= £ ’} <4
" h—— o
(m)
In papers [7] and [9] we proved the following statements.
THEOREM A If f € BV(p(n)10,p) then f is a bounded function.

THEOREM B. The class BV(p(n)%,¢) and B(0,1) coincide if and only if there is a positive
number C such that (p(n)) "™ < C is fulfilled for every natural n.

THEOREM C. If f € BA(p(n)10,g) then f is an essentially bounded function (f € L,).

THEOREM D. Classes of functions BA(p(n)0,9) and L., coincide if and only if the sequence
(5 In@(n)) is bounded.

THEOREME. If f € BV(p()T0,0) then f € BA(p(m)T,0).
1 [naz(n)) e unbounded Then therelexistsia

p(n)
continuous function f € BA(p(n)Tw,g) such that f ¢ BV(p(n)1,0).

THEOREM F. Let the sequence

The relation between different classes of generalized bounded variation was taken into
account in the works of M. Avdispahic [10], A. Kovacik [11], A. Beloy [12], Z. Chanturia [13],
M. Medvedeva [14], H. Kita and K. Yoneda [8]. In [15] U. Goginava has found necessary and
sufficient conditions for the inclusion of H* and Z. Chanturia [16] class V[v(n)] into the class
BV(p(n)T). In [17] the analogous problem for the inclusion into the class BY(p(m)T,p) is
considered.

U. Goginava [18] studied inclusion relations between ABY and BY(p(n)1e) classes. Using
the idea of the last paper [18] we prove the statements.

THEOREM 1. ABV< BV(p(n),0) if and only if




15 Between ABY, B (p (1) T20.¢) and B A(p () T20,¢) Classes of Functions

P

lim sup <———< 4. 3
= ismsnn) - $(1/2,) @)

EOREM 2. Let z(l/z )=+ then for every admissible function ¢ there exists a function

fe /Xl’@(vr)TmJ/))ﬁ C(0,1) such that f & ABV.
COROLLARY 1. BV(p(n),0) < ABV if and only if ABV= B(0,1).

ABV BV (p(n)T,9) if and only if (3) is valid.

THEOREM 4, Let i(l/z )=+ then for every admissible function p there exists a function

feBApm)Too,p)N C(0,1) such that fe ABV.

1. BA(p(m)Te2¢) < ABV " if and only if ABV = B(0,1).

For the proof of Theorem 1 the following statement is used.
. x
LEMMA L. ([19], p.111) Let 0 S ay % 0 <b, ¥ and let the relations Y a, <> b,be
=

. .

true for k = 1,2,...,m, then for a convex function ® the inequality Y ®(a,)< > @(b;)
o o

holds.

PROO!

the corresponding

proof we give it here.
Let f €ABV and 4 be any. partition (2) for. which+p(4) > 1/ p(n). Without loss of

generality we assume that ()= 7] 2 |£ltj0)= 7] 5 = 1oL A f € ABY there
exists a constant M for which

*I/(rn) f(r]+ [£(6)=f()+ +—|f(t,4) f) <M,

. Sufficiency of the condition (3) can be proved in the same way as
of U. Goginava’s Theorem 1 (see [19]), but for the completeness of the

_|/ zn)ffl,hzlf(l. .—fz,l+---+—|f(r,.,)—1(t,1s.M.
)= 1)) sl )= ) <

By summation we get

*Hre the inclusion /eBA(p(m)1,) means that there exists a function g equivalent (o,/in the Lebesgue
sense such that ge




i? T Abiobadn %/
J'JUJ‘J‘IJJ
caing’ £ E)-r) <
‘Hence
S q WM s s &
— Br)- ) =g st (Sa))

‘Now if we apply Lemma 1 for a, =|7(,,.)- 7). 5, =(Z /2, )]4 and @)=

we get

Slr)- 1Y < w‘"m/ (g(ua))m-

1/p(n) 1 p(n)
& (n) m
Bl )-rY™) ™ < s 2 ch
€ sl tsmsp(n) 5°(1/2,)
i
i £ eBV(p(n)To,g).
If the condition (3) is not satisfied then we can choose a monotone increasing sequence of
* positive integers (7, ) such that

s m(:.)"""' L @
s
¥2)
o(n,>4), ©®)
mlm )7
: gk, ! ©
it :l}g (l/l/‘) L / 3
pm)2m(n)> ¢}, B

6 i
(¢(n,_,))"\’(“)52,k=2,3,m a0 Vs




_ Relations Between ABV, BY (p () 7Te0,¢) and B A(p (n) T, @) Classes of Functions'

[%}m(n‘)sw(m), k2 k. (10)

AL first we consider the case a). Let f; be a periodic function with period 1 and let it be
determined on the interval [0,1] as follows

-2 e )

£:(6)=4a,2j+2-9(n,)x), /xc[ G @
= ms )y mr) =1,

0, otherwise on [0,1]

m(n)
where a, :[2' l), (12)

=
Let

13)

16)=3 116

As for every choice of no overlapping intervals I,

;uun <15 NZ”' Z L

we conclude that fe ABV. On the other hand we gel
| m(nz)\ 2 ) el Vel
V(f. p(m)Tec) = ] =
i ,t. CCD) 14
= (m(n) =m(m )"
Now by (9) and (5) we have.

()27 )220k zz[ 20 ] 22 (). s
o)

Hence from (14), (6), and (12) we obtain

1/ pln)
W, pl) Nen, ) > a(m(miyi2) /P04 > ”‘("r) RN (16)

(1/,1/)

Consequently f&BV(p(n) 10, ).
In the case b) (see (10)) we consider periodic functions g, with period 1 which are defined

on the interval [0, 1] as (see (12) and (7))



oo

aloln)i— mnfxe[ 2 2 *‘)

EE)
A S - i) S
[P

0, otherwise on [0,1}

HOEDWAON a8
o
By the condition (10) for no overlapping intervals we have

1A, 3
e

[om)o@] |
2 75 Z 4 Z = Z

Aol
= R 2‘-

Therefore g€ ABV. On the other hand by (5) and (7)
(& 420 | o)
o) o(n.)

{4 L

By the definition of the function g (see (18)) we get.
p(n.)}""""

¢ ) i
V(g,mnm,q»)z{ HES T, ” [ 2 ]—g[““]

Heteetrl] \PO%) o(n)

NS
o) ] Le(na)])

Hence

&0




Relations Between ABV, BY (p (n) Te0,¢) and B A(p (n) Toa,g) Classes of Functions.

1 Vp(m). 2&'"(""L
> 2 o) ( /Z,1

Consequently by (10) and (6) we conclude

o
Vg, g > %(mm»”"‘"“(? > fj 2,
,

1
=
ile. g2 BV(p(n)T 20,¢) and Theorem 1 is proved.

2. Let (1) be a monotone increasing sequence of positive integers such

P(ria) > Ik . (1)

Define a continuous function  on [0,1] and extend it periodically with period 1. Let
4
1 1 1 1
e i
\olr.) ol )] o) o)
i
1 i 1 1 1
Bl < oy | AR Sl ere
[cﬂ("m) olon, )] '(w(m) ] ¢(nk_x)] ()

k=23,
|0, otherwise on [0.1]

By the condition of Theorem 2 we assume that b, <1.
Let 4 be an arbitrary partition of the interval(0,1] defined by (2) and(4) 2 1/g(n). For
every natural number r we can choose integer k such that . <n < e and therefore
1 1

; <——=S—
o(n) o)~ o)
Thus by the definition of the function / and (21) we get

P PONZO) i 1(p(n)
(Z\ h(t)=h(t;)] ) sZ{Zb,""’} <
ot =

< 2KV < 9 VP < k= 9

ie. he BV(p(n)T,0).
Now using the monotonicity of the sequence (b;) we obtain

(e

L i 1 if_i 1 £ il fen)p
0 A S (L I
2, 1[«)%)) '[Z(q»(n‘) cz(n...)]] cmaen [E.a,] ;
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Hence by the condition of Theorem 2 we conclude h¢ ABV and Theorem 2 is proved.
Corollary 1 is a simple consequence of Theorem 2. In fact, it is sufficient to remark that

BV(p(n)T,p) < B(O,1) (see [15)) and ABV = B(0,1) if and only if i(l/L‘) <400,
=

PROOF OF THEOREM 3. Proof of the sufficiency of Theorem 3 is an casy corollary of
Theorem 1 if we provide that BV(p(n)Tw,¢) ¢ BA(p(m)T,¢) (Theorem E; sec also [9],
Theorem 3).

On the other hand if the condition (3) is not satisfied then we can choose a sequence (1) of
natural numbers such that (4) — (8) are valid. Analogously to the proof of Theorem I we
consider two cases a) and b) (sec (9) and (10) respectively).

In the case a) we construct the function f (see (11)) only with the following difference: in
this case if m(n.1) is even (odd) then j takes all even (odd) values from (i) to m(m)-1 and

later we correspondingly define (see (13)) the function f.
It is easy to prove that f € ABV (see the proof of the inclusion fe ABV). If he= (2/g(ny)) >
> (1/@(ny)) then
m(n )1 GJetn) _ - 1
0 UGt AGEY dx} s
(2)-2)e(n)
where “T’ ” denotes that the summation is performed concerning the above indicated j.
‘Therefore

A pn) T, w)z{i

Ty )

AT, p) T e0,0)2
@m(n,)-D/p(m)

o
2 {%(ﬂ(".)(m(".) =m(n,.,)) 17+ h) PP dX} 2

@mn)-2)/ ()

1 @O )-lon) o Mo
2 g‘ﬂ(".)(m("k)*m(".-x)) (3a,)™ dx =

(m(ay1)-3)/20()

Vp(m)
- %{é(m(n.)—m(n...»} > %) )"

Now we remark that the last expression is already estimated (see (15) and (16)).
In the case b) (see (10)) we consider once more the function g (see (17)) with the difference
that if [@(ni1)/. @(nk2)] is even (odd) then j takes all even (odd) values from [g(nc.)/ @(nia)] to

()] glms)] 1. S0, we denote definite function by g, and assume g(x) = ‘g @)
Jor2
Later suppose that k= 2/@(ni). We get
o
i 1 e @0 esouom il
AP Tw,0) 25— % | (cth)-g P dxy
LS LRIy P

where “3! ” denotes the summation with respect to indices j considered in the case b). Hence




Relations Between ABV, BV (p (n) 2 ¢) and B A(p (n) T25,¢) Classes of Functions

Ag, p() T eo,0) 2

Vplm)
mlfzast)
SR

(gl

L4 wm[w(n‘)] gl el
"2 2 et
[‘{';ﬁ],,),mm

e w(m[mm] 1 v [m) ]1”"‘"”4
22 Lot 2oe] %96\ vl

For the completion of the estimation of the last expression see (20).

Proof of Theorem 4 is a simple consequence of Theorem 2 and Theorem E. Correctness of
Corollary 2 follows from Theorem C and Corollary 1.
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FUZZY ANALYSIS IMAGE CONSTRUCTION) OF THE LANGUAGE
STRUCTURE ON THE FINITE SET OF INSUFFICIENT DATA

N. Jorjiashvili

Thilisi State University,
Chair of Random Process Theory

Abstract. The work is devoted to numerical modeling of fuzzy organization of various language structures. Fuzzy
distributions of language structures contain data about important regularitics controlling informational and psycho-
physiological processes, which accompany the generation of verbal language or printed texts. These distributions are
characterized by so called linguistic spectrum describing various distribution mechan
elemnts over their sequences (so called fuzzy linear structures, fuzzy bags). Models
bascd on the assumption about the superposition of two kinds of uncertaintics: probabilistic and possibilistic.

1. INTRODUTION. There are two classical approaches to investigation of uncertain data. If
empirical data are, sufficiently exact” then processing these data and cvaluating their
characteristics one must ‘use probabilistic-statistical methods. When data are presented
"sufficiently inexactly", big intervals, convenient tools may be found in the theory of errors. But
there are events when the use of probabilistic-statistical methods and that of theory of errors do
not give satisfactory results. The reason is in the nature of data and methods of their receiving,
(measurement, dcscnpuou, Scdhng, elc) In the case when data are presemed by intervals and
their distribution are "vague" and a by overlapping (i and in'the
process of re
parallels to a probabilistic-statistical \mccrlamly :xlsl also a posS|bl|Isllc unoenamty Takmg into
account the combined nature of above by
spectrum [1] describing emergence mechanisms of different language structures;

Our approach permits to study the of language
as a medium of formation in whole extent of this concept m all its temporal and territorial forms.

2. FUZZY MEASURE _CONSTRUCTION ON THE GROUP OF INSUFFICIENT
EXPERTS DATA. Let a finite set X ={¥;5.4, } represent results of some quantity ()
measurement in a certain scale, Numerical characteristics of the quantity & are identified with
data given by experimentators or experts and can be easily evaluated by the class of statistical
methods. It is known that fuzzy measure on the finite set X can be represented by the class of
associated probabilities {P, },o"€ S, [2]:' S, "is the permutation' group'and for Vo € S, the

probability distributions set
12, =B, (et} ()
is connected with the fuzzy measure in the following form:

P, (5,00) = &({katyres o) - 8oty 1= T G @)

From these formulas one can receive:
8 "amv---r"w)} = Pa(",tx))’(--4+”v(xa(:)) i=ln. 1©))
In general, for VACX subset 3reS, such that if A={v,..%,} then

(1) =i,,.7(r)

i, and

g(/i)=E({X.u)v--;‘r(rl})=;Z:;ﬁ(xru))=;z:;15‘(xl,)»‘ ey




14 N. Jorjiashvill

It is evident that to any P, on X there corresponds the statistical moment of order ¢ of the
random quantity & :

ZIP (xo o0 =0 ®)

On cach permutation the probability distribution is defined by corresponding combined
moments (based on experimentators and experts evidence), that is, ! representations are
possible.

From (5) one can find probabilities:

P, (x,0)= Za, L G=Tn), ®

ap®) coefficients are known quantities.

DEFINITION 1. The set of moments g}vﬂ', ,n—1, is called the class of associated

moments.

In the class of associated moments there are (n—1)n! clements. With the aid of (6) they
uniquely define the class of associated probabiliies and consequently one. receives the
possibility of the fuzzy measure construction on the set

£ oo, o Bl »

Parameters £, will be defined from objective statistical measurements or expert's evaluation
of quantity &. Denote

(©)
Often in (8) the experimental data are limited. In thi this case we denote:
povemn 2 fow g n )
% 7 ©
Py#ps 1% Lj=lm p<p ifk<l r<n-l.
DEFINITION 2. (9) is called i ient objective i data (evide Remainder

(n—1—7) data represent unknown moments or subjective ones, which are.received from
experts evaluations:

EEPr = {Eh (10)

It is evident that

EErinen o R 0, EB9 [ EERm

DEFINITION 3. Representation (10) is called expert's data.

With any o S,,, data (8) are connected, where experimental data-are the same for all &
and only subjective data may be different for different o If
1= B\ Ewime gy (107)




Fuzzy Analysis (Image Construction) of the Language Structure on

then the corresponding fuzzy measure (4) differs from probability measure. The cause of this
difference lies in decisions of different experts.

In E, there are known and unknown data, corresponding sets denote as follows:

N, = zmn, enle e\ (pEmE O nee))
£ {57 =, E}: v v (10”)

For complete description of E, we can use the principle of least effort [3] (principle of
maximum entropy [4]). With the aid of this principle unknown associated probabilities and
moments  can  be  cvaluated.  Evidently 37, €5, - such that

Ty() =412 = LK; Ty(411) = Gy - Tufot) = Gy - Thus the problem of evaluation reduces to

the following problem of finding an extremum:

Max{' gl’q (x0)log P, (Xam)}v
SR )=t an
( 'P,(.,‘,;) =) (f=l,_k)

=
‘The corresponding Lagrangian has the following form:

1)

X : .
L Z’L(«"am)“’g”v("um)*Z;’n[ Bl Zxa't.()'””a(xu(u)]*‘o( —Z.P”(x"("))'
= £ =
(12)
Consider the system of equations:
G ) =i, )
oP ,m)
or
S opiP (o) _ T 14)
log 2, (x,))~ A 21 x5 t=1Ln, ()
where A =1+ ,. Then
2, (x,0)= exp[—A Zz ) ] s)
Consider the generalized statistical sum
A s
= Zexp[ 7, x’1,()f)] (16)
= 1

It is known that
——an(/l., )=, N Z(Ay 2 ) = Ags a7
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are identities. Quantities &) (j=(k+1}(KI=1) are known and with respect to

ysyoeeos Ay (17) the following system of equations is given:
3 -7 )exp[ Sani)o
~nesl-Sa) sk

If j =2,(0) is any numerical solutions of (18), one can evaluate probability distributions

as)

{r{p (x, ,w)}} and according to I, experts data the class of associated probabilities {IP, },
can be evaluated.
Thus, we can construct the upper and lower Choquet's second order capacities [S]:
g.(A):mi:nIP,(A) g'(A):manyPD (4), 19)

oes,

DEFINITION 4.(g.,g") Chogquet's second order capacities are called fuzzy measures by
combined (experimental and expert) data on the set X .

REMARK L. Insufficient data induce unique pair of dual fizzy measures. They are independent
Jfiom "expert registrations"" and their number. Then two experts are needed which make different
decisions to receive auto dual capacities (6.

3. CONSTRUCTION OF FUZZY SUNSET (IMAGE). For Yo &S, the 1, expert
processes insufficient data and, as it is shown in paragraph one, corresponding {P, (x,(, )}

probability distribution induces fuzzy measure. Fuzzy measure contains information about a
body of evidence on X . This body of evidence is consonant:

K7 = ol K7 = g mople S K7 = oo} (20)
On this body of evidence one can define possibility distribution {r, } which is connected
with focal subsets and corresponding probability weights m” :

' @=0, Sme(Ks)=1
]

If for any focal subset we introduce the uniform probability distribution P, ( |K 7 ) then

the possibility distribution will be imated by associated iities [2]. For V)
. (ke
Pa("am)=Zl’u("au)le}”’(Kf)= > M‘W (Xa(r))l (1)
= Ex k! |K1 1
where [K?| = cardK; is the cardinality of the subset. K7, /., is the indicator of K7 It is

evident that associated probabil
possibility:

ies P, for VA< X will be into the limits of necessity and

(22)
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N(4)< P,(4)<T17(4).
It is casy to connect associated probabilities on the o permutation with the possibility
distribution [7]:

2]
£, ("u(:))‘27(”«(/1 i) (@)
=
‘where
1=, (x,0)2 7, (xo0)2 22 7 (o) 2 7 (o) = 0- @4

From (23) one can obtai
7: (%)= Zl min(2, (e b2y () @5)
b

Possibility distribution gives rise to a fuzzy subset F7 with the following membership
function [7]:

Zolra) =7 (5} =L (26)
DEFINITION S. /% is called the fuzzy subset induced by the activity of the I, expert.
(21 is the system of equations for focal probabilities m? (). We have:
1 (4) = max 7, le)= n:?xgmin(P,(x,(,)), P, (x.())

N (@)=1-11(a) A=x\4.

From (21)
I’,,(,\',(‘])z——m YK" +...+—'",(K:), i=in, @n
n
and for focal probabilitics.
(K7 )= (0, (o) =P o )h £=T7, ()

DEFINITION 6. The set {m?}, ., of focal probabilities is called the class of associated focal
probabilities.

Connection between m° and upper and lower capacities, g, and g* can be easily obtained.
Itis known that for VAC X 37 €, such that g"(4)=P. (4). Then, taking into account

(28) we can write:

5= 3 Smil),

(e

o g.(4)=1-g'() A=x\4.
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DEEINITION 6. The set of fizzy subsets {12}, is called the class of fuzzy subsets induced by

{1, } e, experts insufficient data.

Consider {7, },.; experts in the Kaufman's theory of expertons [8]. In the discrete case

experts table of membership functions values is presented in the following form:

Table 1"
A, x, x,
L A Z o
I % Z %
L5 z % Z
P |7 Z z

Here K =CardS, =n!, zb =7, (x,) is the value of membership function (measure of
compatibility) £ .

If ,=0<a,<a,<
corresponding experton is presented by the following table:

.<a, =1 is an increasing sequence of membership levels, the

Table 2.
a\Xx b X X
a Fa E, By,
x Ey Ey £,
En E, Ep
o Ey Ep Ey EL
Where
)
B, = 2 lli)= 7 2o l2t) ()
and

L. o
lr=—;;ZE/L i=1n, @1
J=1

which is the experton mean of the membership.

1) I the continuous case 7/, will be changed by intervals.
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FINITION 8. Fuzzy subset of x,S € X

K S w G e
=i , (2)
Z 4 Ko Ko Xn

is called fuzzy subset (image) induced by experts insufficient data.

4. FUZZY EXPECTATION VALUE (FEV) ON THE EXPERTS INSUFFICIENT DATA.
In paragraph two it was shown that nature of experts insufficient data is the source of fuzziness
which is represented by Choquet's dual pair (g.,g"). In paragraph ihree demonstrated that

experts insufficient data on the finite set § were shown (see (32).
From the decision-making point of view there are all conditions for choosing the most typical
value (MTV) 6] corresponding to S . In our case
MIV = 7 (FEV (%)), (3)
where FEV is the fuzzy expectation value:
Consider the ordered sequence of 'z °s values:

2 S X S S )
Introduce the notation:

K =t tnh &a=g &) &l =g' (&)
It is known that on the finite set X the FEV can be calculated by the formula:

= [#5()°80)= mfx{lr(.) gl 6Y)
In the case of dual pair (g, ") one can receive upper and lower FEV’s:
FEV(5)=maxz. g ng'} FEV.(15)=max{z ne.h 65)

one can receive upper and lower F. 2 F* and on [0;1] the pair (£, F'*) determines the interval
|F., F* |- Naturally (33) must be changed by
MIV ={re X: FEV.<z; <FEV'. 36)

5. CONSTRUCTION OF THE POSSIBILITY DISTRIBUTION. Let us use the formula
(21) for calculation of moments &

o +Xw;+ +x,, -
g ZZMVSI 15 &) a(z)*Z'"( W €

= J
If conditional probabilitics are distributed non uniformly, then (21) must be changed by:

A ZM( 2 Fleolks), @)

As an example consider the fuzzy linear structures [9]. In'this case () =i, K¢ is the set of

structure units in the generalized word %) The distribution (38), for example, can be pmemed in
the following form:

e, units do not participating in probabilistic process




@17)

In this formula @ = i = > wn (/). Generating function corresponding to this distribution is
=

G, ()=t~

Evidently, for moments one has the formula:

0 0 (39)
:;m[m]whz":nv(v)y(w TG ) ()

Note that the product v(v —1)..(v —k+m+1) is equal to 1 when m = k . Since the connection
of focal probabilities with possibility distribution is given by formula

m*(V)=r7 -z

(40)
there is a direct possibility of determination of values {7 } (linguistic spectrum). This linguistic

P

spectrum contains (12+1) components, among which 7z =7 =1 and so for determination of
the rest of the spectrum components (17—1) equations are necessary. According to (39) this
system is

(R GED RN SR AR

% kavz:;v(v )kt 2y 7% )+

@n

L k=Ln

+ha Y me —nz, ek, i
&
~Sles ~nta
;

= =
expressions left hand sides are experimentally determined. It is convenient to present them in the
form:

== i(lzl’") - @

=)

The parameter & must be presented in the form: &

7
where numbers ( ] ] are sums of all possible products of / natural numbers from the set

{12,...,m} and 7 are distribution moments of s-th order. The analogous expressions are in the
right hand side. Thus the system of equations with respect to 77, (V. =2,3,...,n) can be written in
the following form:
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Z[I.Z,../,k—l]’,',‘ i[k)amvn-- i(],z,_,;kq}h,(ﬂgv”il () )

i ) e

6. CONSTRUCTION OF AN IMAGE OF THE CONSTANT STRUCTURE OF
SYLLABLE. In [9] problems of modeling of probabilistic-possibilistic organization of the word
were considered. In [10] the statistical model of consonant structures of the Georgian words is
constructed. Considering the same problems we use generalized Fuck's distributions [11] [12].
Here in brief we consider the new deducing of these distributions, Empirical data were taken
from [10] and [13}-{17].

In applications of fuzzy subsets the problem of evaluation of primary membership grades is
highly important. The grade of membership is a result of expert's activity, who determines (or
creates) the fuzzy subsct. Consider the method which permits to reveal the membership grade in
a logically consistent way. It is supposed that clements of a fuzzy subset are such that
I:(@)>I,(®,).if i > j (I is a membership function, @, is the element of the universal set

Q). In our case Q consists of Bernoulli events B;~, i is the fall number of successes, v is
fixed number of successes subset B, determining the structure of the combined. event
F" =B, o Bi, [12). Considered fuzzy subsets are normalized. This permits without additional
assumptions to suppose that the membership function describes the possibility distribution and
can be easily related with focal probabilities. Consider the random experiment, in which the
notion of the level set is utilized and the Yager's algorithm of choosing the element @ € Q
[18]: at first let randomly.choose the value a & [0;1] and then also randomly the element from
corresponding subset of a-level. Now, let us calculate the probability ofithe particular element
@ e Q in the conditions of this experiment. In accordance with our assumption

0<¢ <6<

where £, are the values of the ip function of possibility distribution, or
components of so called linguistic spectrum [19]). Level scts are:
when

0<ase B ={w,.0,)

& <as<e B ={o,u0,)

b1 <@ 61 B ={0,0,0,)

&,y <@ SiE; B,
£<a:B, =2.

Since in the experiment @ randomly was chosen, the probability that the level set B, will be
chosen is equal to the length of the interval (¢,.,,, ), m(B,)=¢, —&,.,. Besides note that
since from level set element was chosen in accordance with Bernoulli scheme,

F(choose element (B, )=

:)17"“ (1=t
0,

(@3)
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Thus, via the formula of full probability
n-v

al0= ZM(B‘ { i- v}pv-y (10 e

and in the Poisson limit

(44)

()= e"gm(ﬂr)(i“—_";ﬁ. =i @)

@=i-v=const, i is the empirical average value of the random variable

E=iv= zm(zzv ). We see (45) and (38) are identical. Thus for finding the linguistic
=

spectrum we can on use the system (43). We perform numerical solution of this system by the
method of reverse spline-interpolation [20]. Results are given in tables GI-G5, where there are
data about Georgian language vocabularies. In [10] the influence of consonant structures on the
word formation process from syllables was investigated. Statistical analysis shows number of
words with consonant structures relative to the whole volume of vocabulary for Georgian
language 41%.

To the processing are subjected words with all structures (we think that their data characterize
the whole language as a medium of formation), separately words with consonant structures cc,
ce-cc, ce-cc-ce and cce. Chosen in [10] consonant structures are typical for the Georgian
language.

7. PRIMARY DATA FOR GEORGIAN LANGUAGE AND RESULTS OF PROCESSING
THE INFORMATION. Empirical distribution of the number of syllables in the Georgian
‘words

Table 1G.
cC
2 [ 2 e e S s T
p(k) | 0 | 0,1271 | 0,2800 ] 0,2833 ‘ 0,1945 \ 0,0789 ‘ 0,0240 l 0
Classical statistical characteristics
k =38923, skewness coefficient=03604
% =1.5023, curtosis=0.3878
entropy=1.2386 (unit)
cC-cC
IZ0) 00556 || O1978 | 03145 | 02418 | 0,307 | 0,0433 0
lassical statistical characteristics
k =5.2287, skewness coefficient=0.3801
o7 =1.4464, curtosis=0.1671
entropy=1.1783 (unit).
CC:CC-C
20 01636 | 03488 [ 02543 | 0.1429 | 00579 | 00122 | 0.0031
‘lassical statistical Characteristics
k_=3.5801, skewness coefficient=0.7781
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o’ =14611, curtosis=0.3035
entropy=1.2582 (unit)
[!(k) ‘ 0 \ 0.1636 0.3488 ] 0.2543 [ 0.1429. ‘ 0.0579 0.0122 | 0.0031
= classical statistical characteristics
k. =3.5801 skewness coefficient=0.7781
o’ =14611, curtosis=0.3035
entropy=1.2582(unit)
All Structures
Pk) [ O | 0.1181 [ 02757 [ 02821 [ 01932 [ 0.0873 | 0.0277 0
Classical statistical characteristics
k =3.9542 skewness coefficient=0.3310
¥ =1.5363, curtosis=0.4178
entropy=1.2298(unit)
Results of calculation on the basis of the model (43), (45)-
Table 1G>
F\k ] .1 2 3 Qo] 5| G | 8
F(k) \ 0.0002 | 0.1272 | 02803 ‘ 0.2834 ums 0.0790 | 0.0241 | 0.0001
Linguistic spectrum Focal probat

v

m, =0 8413;
m, =0: entropy=1.2371(unit)
my=0.
m, =02443;
mg=0:1235;
=00510
optimal value of 4 =0.0003; ‘number of iterations =1216

[eleXe)
F(k) |o.oooz |o.0557 0.1981 |0.3146 lo.um 0.1308 [o.om ](Luool

Linguistic spectrum Focal probabilities

& =L my =0.0039; v =37028;
£,=0.9967; m, =0.0933; entropy=1.2327(unit)
1m,=03932; i
my =03604;

£,=02497;
mg=0.073
=0.6893
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[ optimal valuc of 2=0.0004; number of itcrations =1436
CCCCCC
F) | OW‘TSW 00487 | 02034 | 02694
Linguistic spectrum Focal probabil
=15 m=0;
&=1; m, =0.1379;
£,=08621;
£,-0.8621;
£,=04732;
£,=0.2050; mg=0.1622;
£,=0.0432; 0011;
£,=0.0421 my=0.0421;
=0.7400
optimal value of 4=0.0006; ‘number of iterations =1421

F(k) | 00002 01637 [ 03491 [ 0zsa T o430

00380 [ 00123 [ 0.0032

Linguistic spectrum
&=l
£,=09831;
£,=07614;
£,=0358!

Focal probabili

=3.2002;
entropy=1.2567(unit)

£,=0; @=02899
optimal value of £=0.0002; number of iterations =1631
"All Structures
F(k) | 00002 | 01182 [ 02760 | 02822 1933 | 0.0874 278 | 0.0001
Linguistic spectrum Focal probal 5
&=l m, =0.0133; v =35171;
£,=0.9867; m, =02186; entropy=1.2283(unit)
£,-0.7681; m;=0.3894;
£,=0.3787; m =0235:
£,=0.1435; m;=0.122
£,=0.0215; mg=0.0215;
£,=0 a=04371

[ opimalvaleof 20000

number of iterations =1656
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Associated probabilities and values of fuzzy measure.

Table 1G™

cc

5 Tues of fu
PG %ot | Fol) | Kot | Fote) | Fol) | Fo@ | Xotn | Faw [ VHieeol

"(K,’)=0.3505;

l’.,(v\‘,(,)) 03505 | 03326 | 02117 | 0.0856. [ 0.0245 | .0 0 0

g

&

1’,(*‘.,4.)) 02853 | 02820 | 02353 | 0.1376 | 0.0475 0.0212 0 0 g
&

g

ce:eecee

&

g

&

"v("a(v)) 02522 | 02522 | 0.1824 | 0.1824 | 0.0860 | 0.032 0'(:05 0.(;05 g
&

&

ccc

- 0 b ] ' éK
2.(c20)| 03620 | o6t | oa1sa | ooms | ooze2 el o el

&7 (kg)=1
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Al Structures

2ofx0)| oaare | 0z | 0214 | ooses | ocaso S k)

The experton of syllabic structure for Georgian language:

Table 4G
Len\f | 00 | 01 | 02 [ 03 | 04 [ o.

0.50 | 025
050 | 0.50 | o. 0. 025
050 | 025 | 025
025 [ 025
0
0

The fuzzy number of the consonant structure phonological length of the Georgian word.

Table 3G
5 7o T (o 0 v T
o = 1 0.9318 0.7956 0.5455 [ 0.2227 | 0.1364 | 0.0909 | 0.0909
g ] o [ [
(50)
The nearest to C crisp subset is:
Table 4G
(7 o i o i T N 0 | | S |
Ty o | O e e () o] [ s | |
GO

Combined model of syllabic length distribution for Georgian language:
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+0.1412 +0.2515

(0.4371)7 (0:4371)>
(e=2) (k-3)

+0.1519

(0. 4371)
(k-

-
(0.43715) ol 0(0.43716)

8. NEW GENERAL CHARACTERISTICS OF WORD’S SYLLABIC ORGANIZATION.
On the ground of primary information processing we constructed images of word syllabic
structures (sce (44), (44)) for the Georgian Language. The main charasteristics of an image is
the word's fuzzy phonological length. It turned out that this characteristics is “identical” for the

above languages: - C = 1. Butthis fuzzy one for certain language is own.

As anew genoral chaacteristo of the language syllabic structure we suggest MIV (see (36))
of the gth. Calculations of these are carried out for the Georgian
language.

=}, Loosis =) Evmse=Bh Lasussi=8h
Sorm = 5% Eones =16} Commo ={Th Luoe =18}

T

Table 56
Upper and lower Choquet’s capacities

[ T T e T e
[0.5044 | 0.6691 0.8632 0.9552 0.9877 0.9931

0.6831 ‘ 0.8948 ‘ 0.9804 | 1 T
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WAYS OF OBTAINING ADDITIONAL (EXTRA) ELECTRIC ENERGY
BY MEANS OF A COMPUTER
K idze*), V. ichidze*), L. ili*), L ichi )

%) Polytechnical University of Georgia
*%) Institute of Informatics and Control Systems

The construction of basic and controlling hydropower station demands buildings of high
retention with high-rise dams. To realize such huge structures, while designing, many factors,
such as environment protection, biological factors and other problems have to be taken into
consideration.

Let’s consider, for example several rivers which carry solid mass into the sea. This mass
supplies the sea coast strip with gravel and also enriches pauna.

Erection of the high dam in the gorge of the river Enguri partitioned the river bed and whole
carried by the river is accumulated in the reservoir. This process can be avoided by building
auxiliary structures which naturally provide the continuous cycle of mass feeding to protect the
sea coast (area) strip from destroying.

To manage and control these processes water level measuring devices must be attached to
the automatic management systems of the hydropower station.

CPEJICTBA HOJIYYEHUSA JIONIOJHNUTEILHON
SJIEKTPOSHEPIMY 3A CYET M3MEHEHVSI YPOBHSI
BOJOXPAHWUIMIIA ¥ EXO IPOTPAMMHOE YIIPABJIEHME

K.H. ), B. . Tabpi , JI. I1. , 0. J . abpuuose**)

*) Dpysuncrut Texnusecxuit Yiusepcumem
%)) Hucmumym Hugpopmamuaxu u Cucmex Ynpasnenus

U YCKOpERA DEIBATHR SNCKTPOSHCPIETHKH CIEIYET TIOCTPOKTS MOUIbIE H BMeCTE O
e GaancHo-perymupyiomue [IC ¢ cosarmem B
6yxer orpomioe

OC momkHa GbITh CBA3AHA C. i KOMIEIOTEHOTO YIIpABCHS, KOTOpbIH TIONyHacT
CHTHaJIB! BBUIAET
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KUTANCKASI TEOPEMA OB OCTATKAX W IIPAHIIT
HOPMAJIM3AIIVH JIETOCYHCJIEHHIA B XPOHOJIOT MM
H.Kandenaxu®) , l'l,(L[)l(allDJd**)

%) Hucmumym wsH. AH Tpyu,
") Kaheopa Mamesamusecxoi Kudepnemusic

Abstract. Formulation of principle of one of the basic foundations of chronology and showing that corresponding o
that principle normalization procedure of colander uses in evident way China theorem about remainders.

B patore o6« npobrieya Hauero Oxasarocs, 4T0 ee
peueie BeHHO CBA3AHO C cieTem
HeToeHCeI, KoTOp, B CBOID OTCPCITb, GRIHPYETCR 1a KHTRHICKOM TCOpeMe 06 OCTaTRAX.
Jina ynoGeTsa npuseie ee cuavaia b cavio obuiei dopwe ( ox. [1], cTp. 82)

TEOPE!

A, Tlycms A — Korblo u @y, @, . . -, an— udeanst & A. Ilpednonodicus, 4mo arta=A
npu acex i Iycmy,

ra-TI(#)- () (o)

= Konvya A 6

omotpascenusiu A na on kaacd020 MHooicumens. Toz0a 30po omobpaxcenun [ ecme

(a, u - ciopvexmuno, wno npusodum, masus obpasox, k usoMOPYUIHY.

m“ : v'!l (V)

BaxHLIM yHKTOM B JIOKA3ATENECTBE STO 3aMEUATENLHON TEOpeMb! ABACTCH TIOCTPOCHHE
NEMCHTOB Y, V2. . - -, Y TAKHX, 4TO
i =I(mod a;)
i =0(mod a;) rpu i (@)

KiiraficKas TeopeMa 06 OCTATKaX 4ACTO MPHMEHATCA K KOMBITY ETBIX dHcen ZH K IONapHo
D3QUMHO TDOCTEIM WHCIAM 71j, M, . - . , My, OHH YIOBTETROPSIOT NPEATIOCHITKM TEOPEMbl,
NIOCKOIbKY ABIAIOTCH B3AUMKO NPOCTEIMK. OBO3HAUMM, KAK OBEIHO, Hepes (m) - TmasHbii
wrean i m, Tora waomopdis (1) npuHMEET BHL

DNy (©)

B{EpRIOKE i peTomcaaer oBpaTHax 3anata; U1 HEKOTOPOTO FTHCTA X HIBCCTHE €10
aHaueHs X, (i=1,2,. . 1) [0 MOAYIIO m (I=1,2,... ., ), T.€. W3BECTHBY

x=xi(modm) (=1,2,. . .n)
ot amachia Mt Gyien oBoaauats depes x(m) (1=, . . ). Tpebyeron BoccTanonuTs
SHACHHE X 110 MOAYITIO MPOMSBE/ICHHS 1 Mz . . * My, T.C. TPEOYTCA HAKTH X(m) - m; =
m). KiTafickas Teopena 06 OCTATKAX yTHCPKAAET, 4TO
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x(m; - )= y,x(m,) ()t .« typ(my), @
e i, Y2 Ga:ncnbxc B @)

Difitaesens 2eiSph yMApss HEKOTOpAIX ATEHZAPHO-XpOHOTOFHECKIX CHOTEM, HHEIOLLIX
BaXHOC 3HaUCAHE A XpoHOOTHH [2, 3].
Tycrs n=2 u my=19, m;=28, Tax w0 m; - m
BHI

=19 28=532. Gopmyia (4) B 5TOM CiTydae umeceT

X(532)=476 x (19)+57 x(28). 2
B camom zere,

5.19+1=1(mod19),
476=17:28+1=0(mod28),
28+1=1(mod19),
-19=0(mod19).

Tycrs ereps x(19)=18 u x(28)=4. Torna cornacto (5)
(532)=476.18+57-4-8796=53216+284=284(mod32).

19x28=53; nepion, i 3 19-NeTHETO JIYHHOTO LMK M 28~
AerHero unKna, 1o
«(Bonbuwmm nacxanshee Kpyrom» — BIIK.  LlepKobHMKH cro Hasspaior «Benukin

MHIMKTHOHOM). OH HIpaeT GONBIIYIO Poith TIPH COCTRBIICAM TaGMHIL NacXai.
cobeHROCTs aHcna 19 COCTOMT B TOM, UTO uepes kawsie 19 neT Bce (assi nyis!

PHXONATCR HA Te e “MHCTA MECALIa, & OCOGEHHOCT, HHCHa 28 COCTOWT B TOM, HTO Hepe3
KaKbie 28 JIET YHC/IA MECALIA TIPUXOJATCA OTIATH HA T€ K JIHM HElleH.
Tawum 06pasom, Hepes kxasie 19x28=532 roXa ONHMM 1 TeM e HHCaM MecALes GyAyT
COOTBETCTBOBATS OZIHH ¥ T€ e HA3BAHWSA HeH HEMleNH, & TAIKE OMHM U Te ke ha3bl nynsl. [o
3Tl e TIpHIHHE ¥epes KaxsIe 532 Fofa MACKABHEIE AHK MANAIOT Ha ONHK H T¢ Ke UHCHE
JHR HEZIenH.

BMeCTe C TeM H3BECTHO, 4TO B ApeBHeA [py3un JUIs eneHl JIETOCYHCAEHHA UCTIObI0BAICA
WHKT B 532 rOJ(a NOJ Ha3sBaHUEM <XPOHAKOH> M <KOPOHHKOH>. Ilpi JaTHpoBKe COGLITHIE
YKA3BIBATH UHCIO LEMBIX KOPOHMKOHOB, MCTCKINWX C HAWa SPEI OT (COTBOPEHHA MHP@), i

TIOPAAKOBOE MECTO JAHHOTO TOXa B TEKYLIEM KoTOpoe  TaKKe
pu 5TOM Ipy3H apa <or Mupa> Kax
5604 r-=Ir. 10 1.6 ©)
acHcrema P w3 BIIK -0, xaK
284 1. 11-ro BIK~Ir. zo K. @)
3amern, 4T0 B (6) M (7) paeHCTBO nar KaK B
a0xy 1 7. 10 5.3, Mbl 6yieM 0603HAATS Yepes A.
‘Takum o6pa3om, CHCTeMBI 3pa <oT
MAp2)> M <XPOHMKOH>, DeallbHO H o
m
5604 1.=4,
284 . 11-ro BIIK=

BaHo, OIHAKO, OTMETHTS, ¥TO (6) W (7) mges 10 Mozymo 532
CHCTeMBI ICTOCVCIICHHS. B caMoM e
10 53Z+284 =5320+284=5604.
B puMCKO#i HCTOPHOTPAdUM BXKHOE 3HAUEHHE UMEeT 9pa (0T OCHOBaHHA PyMay ¢ anoxoi
A=T53 1.,
KOTOpas JOMNY/IAPH3KPOBANack BappoHOM.




Kumaiicxan meopena o6 ocmamka u npuntyun u 3T

Buecte ¢ oToit poii B XPOHOJIOTMM NONK3YIOTCH Takke KanMTOMMACKOH apoi: «oT
octiopania Pustay ¢ 9r1oxoi
A=752 . ©)
JhioGonbitio, sT0 BapHaKT CHCTEMBI «OT ocHoBaIHs iy
COBMECTHO C <XPOHMKOHOM> M, CICAOBATENBHO, FPYSHHCKOH 9pOii  <OT «COTBOpEHMH
MUpaY>(UKCHPYET MO MOAYTO 532 Xary A B XPOHOOTHH CAHHCTBEHHOH Napok
Jpywectoennpix uicen (220, 284), AocTamueiics HaM B HACIEACTBO. OT. TpeNecKoit
uywmeponoruu [4] . Jleiicraiensio, 752=532+220=220 (m0d532).
Wa  TpeX  yHMBEPCATLHBIX . LMKIAX,

o
1. 28-nernuit i Kt
A=4(mod28). (10)
TopAAKOBOC MCCTO TOX@ B 28-/IETHEM CONHENHOM LHKIle HasbiBactcA Kpyrom Conria: Yepes
KaicL0e 28 JIET HHCIia MCCALA PHXOIATCH ONATE HA T¢ KE AHI REACH. .
Xpowonoriyeckoe (10) KaK B , TAK 1 B TPY3HHCKOM
3pe <oT «coTROpels MUpa»>. BB camon ziese,

( 3
5604=10.19.28+284=4(mod28).
it e

19-neTnuii aynibi

A=1(mod19). (1)
Jlor wict Goi coanan p 303304 L. yoUTHAMH NEATCNEH aeKCanAPHIICKOH LEpKEM.
HoMep roxa B 19-JIETHe M MYHHOM LMKIIe NOJYSi] Ha3Banye

30710700 uHCA, DTO HHENO LMPOKO HCTIONE3OBATOCH XPOHONIOTAMH TIpH AATHPOBKE COBBITHH.
Tax kak 304=16:19, 70 b 304 rOLY H.2. 30710TOC HHCIO PABHAETOR 1.
K

3. IS-nernnit

A=3(mod15). 12)
Honep MHUKUWH YKAIBIBACT HA TIONOKeHHE TORA B 15-niemsiem twuicne. [lpw STOM CanM LHKITE!
1le HyMEPYIOTCS, TaK HTO HOMep WHIMKIIMH OGBIUHO HCTIOTB3YETCA TONBKO MUIA COOTHECSHHS C
JApyroii cHCTeMOft faTHpoBari. Tako ool HCuHCTenHA BpeMern Gbin BBefien B 312 I 1.
PHMCKHM HMIEPATOPOM KOHCTAHTHHOM BENHKHM W CTan OGA3ATENGHBIM JUls NATHPOBAHHS
JIOKYMEHTOB ¢ 537 T 1.9,

C yuetom (12) Jierko yoeautses, uto 312 1. Ha. w537 ©. 2. ABNAOTCA 15N rofamH:
HHIMKTOBOTO LKA,

Jpesiie Xpy W acro oHoTeMEL
JQTHPOBOK, e GYAYSH B COCTONMHH YHHOMUWPOBATH XPOHOMOTHHECKHE - yKA3AHH) CROMX.
WCTOMHMKOB. TIpH STOM HYXHO, OTAGBATH, CeGe OTHET B TOM, HTO HCBOSMOXHO. COCTABHTE
YHOBHbIE /Ul TI0/630BAHHA XPOHONOTHYECKHE TaO/MLBI HHAYE KAk HA OCHOBE TabNHll, CHCKOB.

I npoqnx nepeuHei, camum a OHM, B CBOIO OYEpENE,
¥o -3 2 Buexcie
TONBKO 10AHAHCKOTO TOXA HE MOFO, OZHAKO,

TIOTOMY, HTO Can 10AHAHCK i PO HRYHNAIICA B K&KKOA CTPAHC B PA3HOE BPEMSL [51 q
OIIPEJIEJIEHVE, ¢ snoxoil

ecnu ez0 suavente o A no moym 15, coanacto

coomeememtio (12), pasinemea 3.

Cpasy OTMemiM, WO 3pa «OT OCHOBaHMA Puw@» B BapponoBCKOi. dope. (8)
Hopwanu3opara. B canom Keite, 753=50-15+3=3 (mod15).
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na 3pa <ot MHpa»>
onpenenera cooTReTCTBHEM
A=5508 T, (3)
TAIOKE ABJISCTCA HOPMATH3OBAHHOI 3poii. JIeACTBUTENLHO,
5508=367-15+3=3 (mod15).
LLIMpOKyYIo H3BECTHOCTH B CBOE BPEMs MONYHIIH IPBI ABYX anlexcanapuiiues —ITanonopa u
Awunnana. Dpa <ot supay> Iasionopa
4=5493 1. (4
W ABIACTCA TPHMEPOM HOPMAIH3OBAHHOM Spbi:
5493=396.15+3=3 (mod]5).
Dpa <OT (COTBOpeHI Mipay> AHHMANA ¢ SIOXOH

4=5492. 15)
He sBnAETCH onnako c 19-neTHUM TyHITBIM
LHAKIOM, T.e. ).
5492=289-19+1=1 (mod19).
3amerny, 9TO ¢ apoii %
coTTBeTCTBHEM
A=5568 ., (16)
n NHHBIM  IUAKIOM, T.C. OMPENENACTCA
coorsercrauamy (12), (11).
camowm ziere,
Taknm 0GpasoM, p: , Wn 9pEL,
LHKTOM CHEXYIOUM OGPaloM: /LA 3AfIAHHOTO , WM 9PBI, X
3naeHns x(mod19) 1 x(mod28) OCTAIOTCH HERIMEHHBIMH, MerseTcs miuts X(mod15) Tak, 4T0
x(mod15)=3. a7

Tipn Taxofi mpolieAype HOPMATHIALMI OCHOBYIO pollb WIPAeT KMTalickas TeopeMa o6

ocrakax mix cnyuaes mi=15, my=19 m m=28. Taxmm OGPaOM, OTHOCHTENLHO
it 5p ApnseTCn cuctemolt, i

KOTOOW  OCHOBHEIM BpEMCHHBIM CETMCHTOM CIYKHT T.H. JONHAHCKWH NepHOR, Obuan

NIPONONKHTENEHOCTS KOTOPOTO. CocTapiser 7980 Jer. UWGIO 9T0 He NPOWIBONBHO, @
6

coboli Tpex 28:19.15=7980  [6]. 3necn
CYIECTBeRHEIM ABIACTCA TO, 4TO 28-ETHAl COMHENHBIA 1 19-TeTyH NYHHBIC KaNCITapHEIS
LHKTB 10

28:19=532-neTHeMy NEPHOY, TONA® KaK MHIMKTOBBUA |S-TETHMA LMK HEMOCPEACTBEHHO
OCYIIECTRIIAET HX HOPMATH3ALHIO.

CydeTom BEIEN3NIONEHHOTO opMyiia (4) mmeeT B

x(7980)=6916x(15)+4299x(19)+4845x(28). (18)
erko mpoBepAercs, uTo y=6916, y;=4200 W ys=4845 YIIOBNETBODAIOT OCHOBHBIM

CoOTHOIEHHsM (2), T.€. ABNAIOTCH Ga3nCHBIMA SHCnaMi L (18).

Hacro BMecTo (18), MpA HOpMATH3AUMY JISTOCHHCIENHH, WIH 3p B KadecTse mIaMMHO
NpoCTEIX WHcen mi Y060 Gpats my=15 1 ;=532 HemocpencTaenro. Torna (18) mpwrnMacT

S x(7980)=6916x(15)+1065x(532)

19)
 6asucHBMH upcTamn y;=6916, y=1065. (19)




meopesa 06 ocmamkax u npunyun

Paccyorpu HKgTOPHIE TPIMEDLL. Cuaqana 1o Gopmyne (I8) BaHCHHM onoXy A
3pbi <oOT a»> s (12), (1) n

(10), T.e. i
X(15)=3, x=(19)=1, x(28)=4.
Takiy 0Gpason, M1 HMEeM
X(7980)=6916:3+4200-1+4845.4=44328=5-7980+4428=4428(mod7980).
Taxi 06pazon, yHHBEpCAIbHasL 9pa ¢ IMOXOH A=4428 ABNACTCH U1 XPOHONOTHH HCKORHOF
liopManIIORaRHON 9pOil. B canon nerte,

4428=28-158+4=4(mod28).
85 1 285-28- o 285 apec
a110x0fi A=4428 OCTAB/AET HCHIMEHHBINM ¢ 3HaueHnA KaK 10 mod(1S), Tax  no mod(19)-
Tlpu aToM Mewseres s ce anaveiue no mod(28) Ha 4+5=9. Taxim 06p3OM, Wi 3psi ©
X 428+285=47131. w1 unteen
4713=3 (mod15),

Tax xa 19:1

(20)

K sroff ope ¢ onoxoff A=4713r. MbI cue Bepenca. OTMETHM, OMITAKO, 3A€CH Ke, 4TO
accownnposannas ¢ apoit JLokieTHaiia 5pa (16) 113 MeXoAHOH
3put ¢ drioXoii 4=4428 I R0GaBACHIEN IpONIBEEHs 4.285:
4428+4:285-4428+1140=5568r.
TaK, 1170 NEpHOA 285, Kak NPOMIRCACHNC ABYX MHOKHTEeH 15 1 19, UTPacT CymecTBeRHYIO
poth, npit Hopanu3auwi. TIpHBCAeM el OMMH WHTEpecHbI MpUMep. HOpMamiauiy, B
KaueCTBe NETOCHIICTIENHA BObMEM <XpORIKOH> (M. (6) 1 (7)). Ero HopManu3awiio yao6Ho
niposecty Ha ocnoparmi dopuysi (19). Hirax, Mt ineen x(15)=3, x(532)=284, Tak, o Juix
HCKOMOJi HOPMATH3OBAHHOF 3Pl MBI IOy HHM:
x(7980)=6916.3+1065.284=323208=40.7980+4008=4008(mod7980).

‘Teriepb y Hac Bee rTOBO /U1 0GCYACHHS HALIETO TETOCHHCEHMA. B 525 I 1.3, Wik B 241 1.
b1 Jlokiieruana, nana pumckuii Moank I nprkasan nsocuy apXHBApHYCY W YHEHOMY MOHaXy.
Jluorniciio Maioy, i, Ha MHOFHE rOBl
BEpC, COCTABHTS HOBBIE IIACXATBHBIC TAGTHU, B aps1 JlHoKeTHaHa. Byecre
© Tew, JWMOHHCHl NONYHIN BIUIMO 3W(@HHE COIATE HOROE ) LEPKOBHOE JIETOCHHCTIEHHE, B
KOTOpOM, Kak M3RECTHO, CHET BPEMCHH BE/ICTCA OT (COTBODEHHA M¥pay. BLMHCIMB ATy
povk/CHIS XPUCTA Ha OCHOBE CROUX pactierop, JIOHHCHH Mansiil criycTs 7 ex 3aABui, 410
310 COBLITHE NPOK3OLINO S32 rojia HA3ax, T.c. B 284 r. A0 Ipsi JIHOKIETHANA, WK B 753 I. OT
«ocnopains Punay i, Kaxotel, B 284 r. 11-ro BIIK. Mo <xpouKomy>. ECTH ydects, 4To
nacxaimit JHHOHHCHS © 248 1. apst win ¢ 10-ro rona 1510
WKToBoro wkia (14.15+10=2201.), TO 3T0 JOMKHO COOTBETCTBORAT 532 . OT (POXJECTEA.
Xpicrosay. JIe/iCTBNTENBHO, B HOBOH TaGnune JIoHWCHs 532 nab. incamatione. (o1
BOWIOWGHA) ClieRoBan 32 247 T. 3pbi JLHOKIETHAHA.

Taxim 06pasos, 10 MOAIO 532 Kaxmbii 532-0M TON H3., BMeCTe C dnoXol 4,
QucipyeTca OO A P R

4r. <xpoiuona>+248 pet JOKIETHAA=532 . 1.,
234r 20r. (o
XpoHorormtieckye (21) nmeior 3HaveHNe MK
ii CyTr Hawero. 5

@1)
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CrHOXHES HATHIUPYCTCA KaTeHIApHAA NPOGIEMa HALLIErO AeTocHCneHNA. JIeNo B TOM, 4TO
JivoRvcHit Marill coCTaBWA HoBbie TaB/THuLI, KOTOpBIC oGpazom
oTnmsaiorcs ot BITK-08  €ro xc , Te. o Hamero . A nyentio,
na cBovx BITK-0p 32 octosy JTwomucuii Mansifi Geper 3py (20), T.e. 3py <OT «CoTBopenr
MHpa»> C JMOXOH

A=4713 T,
TAK 4TO ONIPEHENAIOWMMH OCTATKAMH 110 15, 19 1 28-neTiim uikiam ssioTes whena 3, 1 n 9
cooTBeTCTBERHO (cM. cooTBeTCTBHS (20)). Ienesne ocTaTkon 3 1 1 He BEISBIBACT COMHEIMH, Tak
Kax (om.
coorsercram (1) 1 (12)) BO3HHKAET BOTPOC: 3 KAKHX coospam»mﬁ Toruacnii Mans
1A 28-7ICTHCTO COTHEUHOTO LKA CROMX MACXAIBHBIX TABMMIL B KAHECTBE ONPENEIAIONIErD
ocTaTKa B HCNO 92 DTO M €CTh OCHOBHAR KATEHIAPRAA POG/IEMa HALLIETO NIETOCHACTIERHA.
B Tesieime BeKoB ¢l GbUT0 MOCBALLIEHO GOIbLIOE YHCIIO KAy SHBIX HCCTIENoBaNHH, B 3TOM paGoTe
MBI IPUBOAMM ORHO BAKHOE KATEHIAPHOE COOTHOWIERHE, KOTOOE, HA Halll B3R, MPOTMBACT
CBET Ha BEIIIIETIOCTABEHHBIT BOIIPOC.

HatHeM ¢ Toro, STO CHAWATA BOCCTAHOBHM 3Py ¢ JMOXOH A=4713 . berpaicTas ol
Gopmyne (18) ana manmbix x(mod15)=3, x( )-1 u

XOMHOH YHMBEpCATBHOH 9pbi C AMOX0H A=4428r. W KAIEHIAPHOTO NIEPHORA 235) M uveen

%(9798)=6916.3+4200.1+4845.9=80.7980=4713(mod7980),

TAK, STO JUIS ONIPERENAIOIIVX OCTATKOB TIONY4HM OKOHHETENLHO

4713=248.19+1= 1(mod19),

4713=168.28+9= 9(mod28).
B AasHeiiiiem CYIECTREHYIO POTb 3 ITHX TPeX COOTBETCTBMI HTDAET BTOPOE U3 HHX, &
HMCHHO

4713=248.19+1. @2)
CoBepILIeRHO 0uEBIAHO, HTO loMAaHCKH nepHox 7980=15.19.28 ier JUix XpHCTHAHCKOH
XPOHONOTMH  ABNACTCA OCHOBHBIM KANCHIGpHEMM meproioM. [osmhee, Bbhitaouwica
panmrysokwii yuersiit JK.Cxannrep (1540-1609 I.) OkOHHaTEIbHO 0GOCHOBAT ITOT NEPHOA B
CBOCM H3BECTHOM XPOHONOTHYECKOM TpaKTare «HOBBII TpyJ 06 yyILiCHHH CHETa BPCMCHID.
B e Canrep NPE/IOKHI B XPOHOTIOTHHECKHX PACHETAX BECTH CHCT BPEMCHH B T.H. AHAX
HONHAHCKOTO TIePHOJIa, TIPHHEM 3a HAYATO CHeTa Al NpuHMManoch | AHBaps 4713 T. 0 K.
Ten cambiM Gbu1a BBEZIERa 3pa CKaHrepa C JnOXO
A=4713T.
Ceroass, Graronaps KHTAHCKOH TOpeMe 06 OCTATKEX, MEI BIpase YTBCPAHATS, HTO 3py
anoxolf A=4713 r. Ckanrep nosaumcrsosan y JHOHHCHE Mayioro. BaxHO HalOMHHTS, 41O
BKIOHCAHE MHIUKUMH B NACXETBHBIE TAGAMISL JIMORHCHS MAIIOFO He TOBKO GHENa 3T
yxasatns [5), KO ¥t aBTOpY STHX TAGIILL NONOXHTS B ¥X
0CHOBY Ty Xe ca.My)o wye anoxof A~4713 r.

Bine
4713 =8.19.31+1. (23)

H riero opsy cemyer, “To Hapay ¢ cooTBeToTBHeM 4713=1(m0d19) mcer Meoto paxroe

cootserctare 4713=1(mod31), KoTopoc, B CBOIO OMEPENl, 03HAYACT, UTO ONHMM H TeM Xe

i pn XPOHONOTHH MOMEHT BpeMeHY —

uxcp
T
23) crenyer
Baintec TR0 i 153.31+1=1(mod31).



meopenta o6 ocmanikax w npuiun i

DTOT MOMCHT BpemeHH XOpOUIO HIBECTCH B u
<Tlacxahiof Tpuanoii>. Ero " cBA3aHO C
nmeHami Jesenct i tepwou 111 Bexa R, Amaton
Jlaomukwiickoro u Cexcra I0nus Adprxanckoro [2].

Cornacio <IMac Tpane> 2 oA 10

B nopaake: B UM OJLHOTO ¥ TOTO e rOna,

WMEHHO 23MapTa, B MATHMLLY Gbln pacsT XpHCTOC, 24 MapTa, B CYG60TY GHUIO TIONHONYHHE ~
capeiickan nacxa, 25 Mapra, B XPpHCTOC BOCKpES

DTOT MOMENT BpeMeHiI coRnaacT ¢ 15-IM TOZOM npaBiieus umnepaopa Trbepus, Koraa
npokypatopom B Hepycanuve Gbur Tlowtw#i Ilwnar. C yerow GblICTPHBCHEHHSIX
CHHXPOIH3MOB TAKO¥i, MOMEHT BPEMEHH TI0 10MHAHCKOMY KATCHAAPIO PAXORUTC TONBKO 1A
3 -1 FOA Hallieii PBL 1 IOITOMY ABIACTCH CANHCTRCHHBIM.

Taxiy 0Gpazom, COCTABNAA CBON NACKANbHbLe TaGNHUb! JIUOHKCHI Manbiii ONpenc opy
<oT «cOTROpeHMA Mupay> C rOXOfi A=4713 I. C TAKHM pACHETOM, TO TOX (POXIECTBA
Xpictonay - 4713 I 'R «BOCKpeceHis XpHoTopa» —4744 r. OTMEHATHC Gbl OMMHAKOBLIMH
OPEAEAHOILIANI COOTBETCTBIAMI

471

4744=1(mod31) @)
TaK, uT0 pasiocth 4744-4713 cocTaBnseT MMeHHO 31. TIPHHLMTMATLHOC 3HAUCHHE MMCET 1 TOT.
daxr, wro 7132331, T.c. t0

4000=12931+1=1(mod31). @5)

Virax, onpexenennas <Ilacxanbioll TpHoH> [ Xpictosay Geuia

b ABYX P CHCTeMaX CHHCIeHHS,
a UMEHHO 3 -bIM TOAOM CBOCTO JICTOCHHCIHHS 3pou  anoxoft 4=4713 T. €ro e HOBBIX
TACKATbHbIX TAGTHL.

B 3ailioueHie CICAYET OTMETHTE, STO 31-bifl CHMBON H3 YOPA/IOHEHIORO MHOXECTBA
CHMBOJIOB B HETIOIMUMOHHOM CHCTEME CHeTa ¢ OCHOBARHMEM 10 HMCET SHCTIEHHOC 3HateHHe
4000 Ta, uTo 31-ii rox 1.2, (IOPMATBHO XBPAKTEPHIYETCA STHM e YHCTIOBLIM MOKASATEIIEM,
GuGICICKOE TONIKOBAHHE KOTOPOTO B CBOKO OYEPEAb HMeeT GONBINYIO HICONOTHYECKYIO
HarpysKy
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THE CAUCHY INTEGRALS TAKEN OVER THE DOUBLE-PERIODIC
LINE AND BOUNDARY VALUE PROBLEMS CONNECTED WITH
THEM

N. Khatiashvili

Thilisi State University, VIAM.

Abstract. In this article the Cauchy type integrals taken over the infinite disconnected double-periodic line are

dofined. The boundary value problems for the sectionally holomorphic double-periodic functions are considered. The
inversion formula of the Cauchy integral taken over the double-periodic line (in case of closed contours) is obtained.

INTRODUCTION. Many problems of an applied character are naturally reduced to the singular
integral equations (1], [2], [31, [4]

‘The theory of Cauchy integrals taken over the finite piecewise smooth line was completely
investigated by N. Muskhelishvili in his book "Singular Integral Equations” [1]. The case, when
the line of integration is disconnected and periodical with one period, was investigated by N. L
Akhiezer, L. 1. Chibrikova, S. A. Freidkin [5,(617]:

In part | the Cauchy type integrals taken over the infinite disconnected double-periodic line
are defined. In paragraph 2 the boundary value problems for the sectionally holomorphic double-
periodic functions are considered. In part 3 the inversion-formula of the Cauchy integral taken
over the double-periodic line (in case of closed contours) is obtained.

1. CAUCHY TYPE INTEGRALS TAKEN OVER THE DOUBLE-PERIODIC LINE. In
the complex z plane; z = x+ iy, the double-periodic piecewise smooth line L is considered,
i.e., L is a union of countable number of smooth non-intersected closed contours L, double-
periodically distributed with periods ey and i, , where gy and ig, are the given real
constants.

e S
i
o= UL

%

A certain direction on L will be defined as positive.” The part of the plane which lies on the

left of [, will be denoted by S, on the right - by S™. By S|, We denote the rectangle with the
vertices

a.n

(0,0, 20,,0), (2,,120,),(0,2i@,) ¢
S, is called the fundamental rectangle (period rectangle), S, is rectangle congruent to o,
and the piccewise smooth line L, lying in the rectangle S, is congruent to the line L,,, lying
in the rectangle ,,,,m,n = 0,£1+2,..... The line L has two periods @, and @, .
Let ¢(t) be a function given on L satisfying the following conditions:

a) @(1) belongs to Holders class (H class) onevery L, ,j=1,2,...; m,n= 02142, .

b) (1) is bounded everywhere on: LZ,, with the possible exception ofa finite number of points
€\CarnCy3q < 2K on L, where
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le®] < (2)

—
Such a class of functions is called that of Muskhelishvili H " class.
9) (1) is a double-periodic function
At 2mont2mioy=-g(), 1€ Lg, mn=02122,.. 3)
Let us consider the integral

el (t)dt
PRET
where z is any point of z-plane not belonging to L.
The integal (1.4)is understood as the following series
sz(r)dl J ¢(1)d1 x .5
-z

(1.4)

e
Taking into account (1.3) and putting (=r'+2may+2niay, in the
rght-hand sideof (1.5) we can rewrit (1.5) n the form

IW(Y)JI S I o' (1.6)
,,«,_ .M.‘,,al +2me, +2nw, -z
The series (1.6) is not convergent for any ¢(¢). The following theorem is true:

THEOREM 1. The series (1.6) is convergent if and only if
IQ’(Y)JI =0, th(l)d:: 0. 1.7)
Lo L

BROOF. 1. Suﬁicxency Assume that the condition (1.7) is fulfilled. Taking iinto account
functi the series [8]

|+ 0,

T s

Ty =2mo); + 2010,
We can rewrite (1.6) as follows
t')dt!
3 [ 2OL - D)
""“L»' +2me, +2nw, =z
‘Thus, the series (1.6) is convergent.

2. Necessity: Assume that the conditions (1.7) are not fulfilled and the series (1.6) is convergent.
Consider the difference,
2 o(th)dt! S 1
0)5(t—z)dt.— (€
iw( )5(t=2) _J,Z_‘,it‘ +2ma, +2na, —2 P T

e =
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o> (— §w<r>d/+T— ju Ap)dr}.
R

From the theory of double-periodic functions it is known that the series
Z (_+ ), +[g|=0
is not convergent, so (1.9) is Bot convcrgem Ceither [8].Thus, if the conditions (1.7) are not

fulfilled, the scries (1.6) is not convergent.
According to the formula (1.9) we can represent the integral (1.4) s there follows

1 rp(0dt
2} -z 3
LA I_Mdf_

i 20+ 2ma, + 200,
[0

4= L fowea—2d=
Ay

(1.10)
Iaz(l)dl

fost~z)dt

Lo
with conditions (1.7).

Taking into account the properties of "zeta-function” we obtain that it is double-periodic with
the double quasi-petiodic kernel (¢ — z).

In the fundamental rectangle the first term in the right-hand of the (1.10) is the ordinary
Cauchy integral and the sccond term is the holomorphic function. Thus there exists the principal
value of this integral on Ly, . So we conclude that the function ¢(z) is sectionally holomorphic

double-periodic. It is clear that @(z) has all properties of the Cauchy integral:
- it satisfies H -condition on every L/, ;

 the Plemely formula is valid:

#00)=300) +~J“’"""
(1.11)
¢ =2 p(0) + o j“’")"’ feL,

where ¢*(t,) and ¢7(t,) are the limiting values from therleft and from the right of L,
respectively.
‘We will often use the formulas equivalent to (1.11):

¢‘(!n)—¢“(1n)=¢(lu), (1.12)
+ = 0t
0+ = I"’“
We note that Poincare-Bertrand transformation formnla oA varcl

2. THE PROBLEM ¢*—¢~ =¢p FOR SECTIONALLY-HOLOMORPHIC DOUBLE-
PERIODIC FUNCTIONS. Let L be a double-periodic line defined in previous section.
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PROBLEM 2.1. Find the sectionally holomorphic double-periodic function ¢(2) satisfying the
boundary condition

$' () =4 ) =0t;), toelL, @)
where (¢) is the given double-periodic function of H class on L, satisfying the conditions
j(v(l)d! 0, [ip(odr=0. @2)

‘We will solve this problem using Plcmcly formula (1.12). It is clear that the function,
#) = - (20

satisfies all the required conditions, wherc C is an arbitrary constant and the integral is
understood as follows

#2)= zi e gt jq;(z)g(; —2di, )
s

=S

+C, (3)

where ¢({—z) is the Weierstrass ¢ -function”. The integral (2.3) is convergent if and only if
(1) satisfies the conditions (2.2).

The Problem 2.1 has a unique solution, because if ¢,(z) and ¢,(z) are two possible
Solutions, then the function @,(2) — ¢, (z) will be holomorphic everywhere in the finite part of z
—plane except the ends of Z, but this points can only be isolated singularities of degree less than
unity.

'1Yhus ,(2)— ,(2) can be assumed holomorphic double-periodic in the entire plane with no
poles. Hence ¢, (2)~¢,(2) =C.

3. INVERSION OF THE CAUCHY INTEGRAL WITH THE DOUBLE-PERIODIC
KERNEL IN THE CASE OF CLOSED CONTOURS. Let L be a double-periodic contour.

The union of domains S, interior for every L., j =12,...k; mn=0£142,.. is denoted

by iSE, S = U Usm, , by S™ is denoted appendix of S* in z-plane. Consider the
B =
equation
St
2m
where the integral is understood as in the section 1, f(¢) is the given double-periodic function

of H ~class on L : fit2mr+2niax)=A), ¢{0) is an unknown double-periodic function also of H
class satisfying the conditions

p(t)dt
-1,

=flt), toel, @)

Jowadr=0, j to(t)dt=0. (32)
Lo Lo
Let us introduce the sectionally holomorphic doublrfperiodic fanction
) dl
#(2)= 4;( ) (33)

L=z
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As we have proed in the section 1 the integral (3.2) exists if and only if ¢(¢) satisfies the
conditions (3.2) and is given by ¢(z) = zL fows-2ar.
i
I ;
By (1.12) the function $() safisfies the following boundary condition "
. 4 3.4
# )87 = 1) L, GO

Consider a second sectionally holomorphic double-pericdic function defined by
#(2),z€S"

v(z)= 2

~#(2)z€eS:

By (3.4) this function satisfies the boundary condition

V() =¥ ()= [e), thel, &)
The solution of the problem (3.5) is given in the section 2 by the formula
w(@)= j‘”(’)d’ “C, 3.6)
t-z 3
where C is an arbitrary constant, f(t) salisﬁes |hc conditions
[f@a=0,  [fwae=o0. (&%)}
Lo Lao

From (3.4) and (1.12) we get
Pt) =" (1) =97 (o) =¥ () + Y~ () = fle)s Lo €L
So the solution of the equation (3. 1) is given by

o)== j"(')d' +2C, el (3.8)

and this solution exists if and only if f(l) snnsﬁu the conditions (3.7).
Using definition of the integral (3.3) we can writ the integral equation (3.1 inthe form

1
= [o0st=1)dt= 1@, to Lo, (9)
Loo
with the conditions (3.2) and (3.7).
According to (3.8) the solution of the integral equation (3.9) is given by
o)=L [ost-10)di+2C, Iyl EERTS
=
Loo.
with the conditions (3.2) and (3.7).
We now prove that the conditions (3.2) and (3.3) are equivalent.

Integrating the function given by (3.10) along the boundary: of the area SZ,, using the
Cauchy theorem [5,8] and integral transformation formula we get

Jowdi= [f@dr [¢@-0dt+2C [dr=-27i [f(R)dz=0,
Lo Lo Lo Lo Lo

[to@ar="[f(c)dr [t (z~dt+2C [idt ==27i [ @)dz =0.
Loo Lo Lo Loo Loo
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Hence, the conditions (3.2) and (3.3) are equivalent. So we have reached the following
conclusion:

THEOREM 3.1. The double-periodic solution of the equation (3.1) ((3.9)) satisfying the
condition (3.2) exists if and only if {9 satisfies the conditions

[roa=o, [yr@a=
Le Lo

andis given by

. _[f(z)g(z —t,)dt+2C, 1 €Ly,

where C is an arbitrary constant.
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M0 GO N6GIBHITIZN (GIRIISINRIT F06-I3BI RS
N6 RIS I0 LILIBR3@( S3MBEIB0.

6. badosdgocmo

og. qeogoboTgogmol b ol cdngpoliol bokgedFogen. gboggAbaggo.

0. gl bobgemdol godmggbadone dsagdxgageb oblgadydo

4ol Bodal obgatempde FaBgbgmegss Goml Suégrgdg dsmgdsdaggho go-
Fogob sdmpsbybol sdmbLbolal (12, 3, 4]

4080l Bodal obbgatamms mgetos, Gorgeg nsé%aaanh oo Gotdnoreagfl

‘Mﬁnﬂ 6354308 8233 \30“"*- g b §oa630
as6@omggpe” (1. .

i :ﬁmbaaaav “'wab»u oBgaGdol  Fodo  Gaadnseagbl  6:fy30d 2ol
Jghongam  Gobl  ghoo  dphommom,  Blfsgmommes  sbaglyhol,  Bodtogmgsl,
Gégorgbol dogé [5, 6, 7).

doyPgem 65360 p6bmgoRgdgmos .,mao\. @nanh nscmm,gnu Bbs erthore-
ghooggemo 6Ggge aerage Gotobsogol oo fudabs
Wsgos @G0 Lsbsbmgher odngebs  gbs6- uas ammm&mmm aboedghongmo
@Baogiolismgol.  Bompdmmos  goBols Godol obBgaGaal  Bpdégfgdal goGanms,

3,

Gogglsg  06BaGgReb  Fodo ghomegmes 8 Bgragde  bsgggmo  aEg3
6 GR0bs6.

Byl sebyare 653Grdpde dompbyimos ool Badal  ofgatemals Agdégbial

andgms, Gy 6Bl Foob 6o ahulghanegmes © BRaRs
s g3gmgboisgsb [3,4].
oo 33@‘536‘0?,3“ ammaﬁnmm 4030l Badol - abhgahemal (B, - Gogleg
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Abstract. The proximity cffect causes the existence of some transition zone with the gradual variation of the density.
of superfiuid component a the level where the hydrostatic pressure realizing the phase transition He II - He 1 is
reached. This zone has quite macroscopic width but nevertheloss is so narrow that the experimental investigation of ts
Structure has not been carried out till now. In the microgravity environment the characicristic length of his effect
increases, and more convenient conditions i
of thermodynamical potential in power ser
of the size of superfluid area are determined.

for in the t The pr P
s in the vicinity of He Il - He I interface is considered. The critical values

1. INTRODUCTION. TWO-TERM FORM OF G.-P. EQUATION AND THE
CHARACTERISTIC LENGTH .f‘,. According to the phase diagram of liquid helium the
transition He II-He I happens when the increasing pressure reaches the A-line (P = P,(T)).
The corresponding column of helium is too large (4m+2 Km depending on temperature) but
one can create the proper pressure within the limits of a vessel regulating the pressure Fyat the
top.

If we choose the level z =0 at the depth where the A -pressure is reached then the pressure at
any depth may be written down as:

P=P,—pgz. ()

The pressure at the top P, corresponds then to the level z=H, (H, being the size of
superfluid area: Py = P, — pgH.,).

In the absence of the quantum correlation effects the density of superfluid component should
be zero at z<0. The proximity effect causes the existence of the transition area, i.e. the area of
the gradual variation of the density of superfluid component 0, instead of the sharp boundary
atz = 0. The superfluidity penetrates into the normal area.

The first consideration of this situation was performed [1] by means of Ginzburg - Pitaevskii
equation [2]. We present it here at first in the two-term form valid'if ¥ is small (see below
Eq9)):

2 d¥
2m dz*

The density of superfluid component 2, =m| ¥ [? (since we do not consider any flow ¥ is
the real positive function), 77 is the mass of helium atom.

The following temperature dependence of A had been usedin [1]:

A (T,~T) at T<T;, A=0at T>T,. (©)

In our report [3] the temperature dependence A cc (T, =T))was spread also on the normal area
T>T, where A<0. Moreover, in "The note at the preparing of manuscript topublication’ the
Ref:4 (being in print at that time) was mentioned as the source of more correct dependence:

A=A, - 1|, 4y = 4) =1.11x10"erg K2, @)

+4¥=0. @




52 L. Kiknadze, Yu. Mamaladze ©

4> 0 at T <T, (the superfluid arca) and 4 <0 at T'> 7 (the normal area).
Here and in all formulae below up is the sign for the superfluid area and down is the sign for
the normal one. More general expression of A, will be given below in Egs. (11).
To substitute the temperature by the pressure onc must take into account the dependence
T, (P). According to the phase diagram the A -line is approximately straight. Therefore, we can
use the relation:

T,(P)~T =(P,(T)~P, ®)
(B)STI= (By(T) = )l Fak
Using Egs. (1,2,4) and the temperature dependence of coherence length & [4]
Y\
E=e (T -T) 8 = | —273x10%emK?”
2m4,
we obtain T,,(P)—T = oz and:
z 6)
[P =00=2 (
l¢1 =
& =gttt = o _(5:. si2 o
(o8 SR

The superfluid area s at ¢ > 0 and the normal oneisat ¢ < 0.

NB. the ratio &, / &, has the dimension of the temperature but s temperature independent.

Eq. (6) means that the characteristic length of proximity effect is & . The numerical estimation
of & in "The mote ..." [3] was 63x107cm while using Eq. (3) we had received
1.1x10%cm(1). Later &, was determined as £, =6.5x10cm [5], and £, =6.7x107cm

(6,7) (the difference between the last two terms is caused by employing in Eq. (7) different
quantities: dT}, /dP and p,dT, /dy, pi being the chemical potential).

&, determines the penetration depth of superflidity in normal arca and the width of transition
arca. It determines also the critical size H of the superfluid area (the superfluid area must
contain the superfluid component enough to entail the superfluidity in a normal area, that is why
the size of the superfluid area H, has the critical value H,) such that if H,< H,, then the

density of the superfluid component is zero in the whole vessel. If (H ,~H,, ) << H,, then
Eq.(6) is valid (W is small) and it gives the equation which determines critical sizes. The first

variant of such equation is obtained in [3]. Being corrected according to "The note ...." it has the
form (z =—H, is the level of the bottom, & =H /&,):
3 3
Jos G Ly G+ T GHE M G H) =0, ®
Eg 2.29 if h, = [3,8,6) and h, =255 if h, =0 [3,8].
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Eqs. (7) contain the relation between three characteristic lengths: 1, = (7, =T)/a, £, and &,
&, =&I3° (see more details about the meaning of cach of them in [S], note that the level

z =0 and the orientation of z -axis as well as some symbols are different here and in Ref. 5).

2. MICROGRAVITY. Thus, the width of transition zone is of the order of-10~cm This value
is quite macroscopic but nevertheless so small that nobody could carry out the experimental
study of this area. The sole attempt [9] was unsuccessful.

More convenient conditions for measurements in transition area at the boundary He I'~ He Il
are achieved in the microgravity environment since according to Eq. (7) &, o g7/  Le. the

10% times decrease of g entails the increase of the width of transition area to centimeters, and
3x10”times decrease of g is necessary to reach the width of the order of 10 cm (but'g =0
abolishes the effect at all because nothing like it happens in the absence of hydrostatic pressure).

‘This work is stimulated by The III International Workshop on Low Temperature, Physics in
Microgravity Environment. The brief message about it is published in materials of Workshop
[13], and this paper is the extended version of our report.

3. SOME MORE HISTORY. Being not informed about our publication [3] Hohenberg (the
private communication to Ahlers [9]) had noticed the necessity to alter the dependence (3).
Slusarev and Strzhemechny [10] also had not noticed our Ref3 and reproached us for using
equality A=0 in the normal area.

After publications [1,3] the proximity effect at the boundary He I-He II is considered in
Refs.6-10. We do not repeat here their contents. The following sections beginning from Sec.4
contain the unpublished results..We would like only to note that Sobianin [6] had shown that
concrete results are not very sensitive to the existence and values of B or C terms in the four-
term form of Ginzburg -Pitaevskii equation:

his (I‘P

E 4 AY-BY =¥ =0. ©)
m
Lt it donmie o e e )
d
d‘f*w»(lfM)wkMa" 4w
which was obtained using the following notations:
B,
¥, =¥,(T, ~1)0L “?*
c¥ _c¥
==t =t 1)

5

BY =3.52x10 erg xem® K.
Here ¥, is the bulk value of the wave function, 4. is determined by Eq, (4), 42, BY are the
values of 4;, B, at M =0 [4].
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M =1 corresponds to the version of the theory proposed by Slusarcv and Strzhemechny [10],
and M =0 corresponds to the three-term equation:
2 g
W d*Y (12)
— L LAY -BY =0
2m dz*

4. NUMERICAL DEFINITION OF /,,. Besides the solution of Eq. (8) the critical size /,, is
also the parameter which arises during numerical calculations to solve Eq. (12) or Eq. (9). Let us
consider Eq.(10) including both of them. One fixes the value ¢ =0 at some point ¢ . This

point acquires the sense of the initial point ¢ = —h, (the Cauchy problem is solved). Depending
on initial value @'(~, ), the function @ varies and reaches zero at some point, which acquires
the sense of the end point ¢ =, . Decreasing @'(¢) one sees the decrease of /, and general
decrease of @({) (when @'(~h,)=> 0 then @(¢) = 0,h, —> h, see Fig.1a). So the results
have been found that coincide with obtained from Eq.(8) and also following values of 4, : A, =
2.295,2.310,2.349, 2,425 that correspond to /3, = 2.0, 1.5, 1.0,0.5  respectively.

The use of Eq(6) is simpler. This equation is linear, and its solution can be multiplied by any
constant. Therefore ¥/(¢) may be not small but the equality ¥ = 0 would be exactly fulfilled

at two points: ¢ =—h, (the initial condition), and ¢ =h, . Thus, the point at which

(£ reaches the zero value, are just ¢ = h,, not depending on the initial W'(~h,) (see Fig
1b).

5. M = 0. THREE-TERM EQUATION AND THE UNIT ¥, FOR ¥ -FUNCTION. If we
want to write down Eq.(12) in the dimensionless form with no numerical coefficients

dy s z

= v=lgl Ty’ =0, ¢=—, 13

] E o
then e should use the unit of length &, , determined by Eq.(7), and the unit

a4)
ke By ¢

for ¥-function (y =¥ /%, ) would have to be used. Both &, and ¥, are temperature

independent.

When ¥, is used as the unit of ' as it is done in Eq.(10) then the following problem arises
(see for example [6,10]): ¥y s zero at T=T,; therefore, the funcion @ determined by
Eqs.(11) is infinite at 7 = 0.. Bq.(10) and the expansion of thermodynamical potential in powers
of ¢ and @', which s the source of G.-P. equation, are not valid in the vicinity of interface
=0, Even the idea arose to expand in powers of 1/¢ instead of .

This difficulty does not exist for Eq(13) and for the corresponding expansion of @<
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@, -,
TG 6 as
FIGER eI +[Z§’]

Here @, is the thermodynamical potential of He I, and @, is its value at y =0, that is the
thermodynamical potential of normal helium - He I. Both ¢ and y do not create any problems of
infinity in the vicinity of boundary He I-He II and the only problem reiains which is worth
mentioning. It is the problem of the relative magnitudes of the second and the third terms of Eq.
(12) and of the corresponding terms of Egs. (13,15). Since & —> 0and y/(0) is nonzero, the
second term (" the A -term") is less than the third ("the B -term"). It is right while ¢ <<y,
i.e. just in the vicinity of the interface. Here instead of Eq. () the two-term equation is:
o
-l =0, (16)

but the area where this equation is valid is very narrow. Really, let us trace the variation of
y beginning from initial point ¢ =—h,. The depth of normal area may be large or small,
corresponding values of 7 may be extremely small or not very small, in all cases the increase of
 can begin only when | | exceeds the value of order of 1, and ¥ cannot sufficiently increase
in the vicinity of interface though persistently increases (according to Eq. (13) the second
derivative of y is positive in the normal area, and  can only increase from zero passing y/(0)
till the flex point & ). Therefore y/(0) <y/(¢,) = &>, The last equality follows from Eq. (13)
(the point ¢ =0 is not the flex point because the sign of curyature does not change at & =0

what is clear from Egs. (13,16)). The flex point coincides with the point of intersection of the
curve y(¢) with the curve

v.£)=¢", an
that is the solution of Bq. (13) in the absence of correlation effects and simultaneously it is the
asymptotic solution of Eq. (13) in the depth of the superfluid area (§ >> &, ). Only in the area
¢ > ¢, where the A- term restores it influence, the possibility arises for ¥ to pass a
maximum and then to fall to zero according to the boundary condition at the top of the vessel,

Thus, the area of Eq. (16) validity is within the interyal |¢'[< ¢ ;. The function , has the.
infinite derivative at its initial point { = 0, and it rapidly leaves behind the function - Neither
¢ mor y have time for sufficiently increase till the point ‘of intersection. That is why: the
solution of Eq. (13) is small at the interface (what takes off.the problem of the expansion), and
that is why the arca of Eq. (16) validity is narrow (that takes off the problem of influence of Eq.
(16) on the behavior of ). The numerical calculations confirm this supposition (Fig. 2).

This area of the validity of Eq. (16) is especially narrow in the case h, —h,, << h, where
¥(0) << 1. Because of that the critical sizes h,., determined by the numerical solution of two-
term Eqs. (2,6) containing only A-term, coincide very precisely with the critical sizes,
determined by the numerical solution of the three-term Egs. (12,13), containing both the 4~ and
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the B-terms: if /3, = o all 15 digits in &, =2.29099999510800 coincide and so is when /, =0
and h“=2.5500000004613ﬂ.

If the size of superfluid area is large enough (b, >>1) then after the intersection of the
curves yand y, the former follows the latter from below. They do not intersect once more
because the point of their intersection would be the second flex point where the sign of curvature

would change again, and the boundary condition at the top would become unfulfilled. Following
this asymptote ' can increase till quite large values. Far from the boundary He I - He Il it is

reasonable to use other characteristic lengths: & near the wall and /, far from it

(d,=77x 10°(T, — T) em [5)). But now we are interested only in the smallness of our y near
the interface and it is the fact.

6. M #0.TWO -TERM EQUATION AND THE UNIT ggM . At M #0 the dimensionless

form of two-term equation Eq. (6) remains unchanged if the unit of length &, is substituted by

; 1
G T R =5,(1+5M)‘“° 8)
(&, determined in Eqs. (1) is equal to &, (T, ~T)™>”).

7. M # 0. THREE-TERM EQUATION AND THE UNIT OF . It could be possible to
keep Eq. (13) unchanged too if the quantity ¥, (1+M /3)"""* /(1-M) was used as the unit of

¥ . Butitis infinite at M =1 and we think that it is preferable to leave 1— M in the
equation and to use as the unit of ¥ the other characteristic quantity

-p(HlM)”"': (4 Gus a9
{73 B

But it is more reasonable to choose the unit of ¥ for the case M # 0 considering the four-term
equation.

8. FOUR-TERM EQUATION AND THE UNIT Y’m . The four-term equation Eq. (9) does

not determine the units of z and ¥ which give the possibility to write it as dimensionless
equation without numerical coefficients. Therefore the choice of convenient units for this
equation is not unique. It seems to us that the choice, which we would like to recommend, has
some preferences. We have chosen: &, as the unit of length and . as the unit of the wave

function where £, is determined by Eq (18) and

¥ =% 0)

Sou

With %, from Eq. (11). Then Eq, (9) takes the form:
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d? 2
DUt 4,0 11 g == M) 16 7 Wi = MY,* =060 =

dc,, s gy

that the characteristic quantities determined by Egs. (14,19,20) have
=T)*is

We would like to no
the structure of ¥, given in Eqgs. (11) (N.B. ¥ = 4,/ B, at M=0), however (T
substituted by &, /&, i.c. by the quantity having the same dimension but being temperature
and coordinate independent.

Al terms of Eq. (21) are small in the vicinity of boundary He I-He 11 s well as all terms of

expansion of potentia. The ssymptotic solution f the depth of

superfluid area again s written in the form of Eq. (17): ¥/, ="

9. ALMOST CRITICAL SIZE OF SUPERFLUID AREA (H, —H, <<H,H, =0). Let
us consider the case where /1, ~h,, <<h,, and A, = 0. Taking into account that Eq. (6) has the
exact solution ¢'/2J,3(3/5¢*" ) we look for the approximate solution of Eq. (21) having the.

form
ch\/—JM[h,,, J (22)

where ji= jy,, =2.8541 is the first zero of the Bessel function of the order of 0.3. Employing
the method of "the solutions valid in average" [11] we obtain the expression of coefficient ¢:

wsph i
& S fé) hel Lliy H%@K i
(5 e (-M) I}

y
[xs2s(x)ax=091627, @3)
b
b= signum(M -1).
The dependence of ¢ on /A, is qualitatively differentat M =0 and M =
s 13
=3V (R} P T g oy ) @9
5)\n )T

VT " .

o () s =
The function (A, ) has two branches. The first (c, ), With b= signum(M —1) exists at any
M .If M <1 then ¢— 0, when h —> h, according to the definition of A,..If M>1 then
¢, #0 at b, = h, and in this case A, is not a critical size. Nothing critical is in the behavior
of the first branch in this case until X becomes negative and the expression below the root sign
becomes equal to zero.




58 L. Kiknadze, Yu.

The second branch (c_,b=—signum(M —1)) exists only in the case M >1 and requires
K <O(h, <h,). At K=0 (h =h_) we have c.=0 but as it was mentioned above
h, = h,,_is not critical because of the existence of nonzero first branch. Again the situation
when the expression below the root sign becomes equal to zero is critical and determines the
minimal A, compatible with the superfluidity (c£[6,12], where the similar situation arose when
the critical sizes of narrow slits were considered ):

-1 BT @9

aM I,

However it is necessary to verify the thermodynamic stability of the superfluid states described
by Eq. (22) at , > h,,, . The condition of stability is [@d¢ <0 where @ is proportional to the

Pt

= Ir,{l +

difference of thermodynamical potentials of He I and He I In the units &y, %, the
magnitude @ again has the form similar to Eq. (15) but the M-terms are to be added.  [@d¢
may be simplified by the transformation J'(dy/ d¢ )¢ =ydy /ds - jw’wd;l and by
substitution of Eq. (21). The result is:
»
M
~}[;m“w+3w°]d¢<o_ @n
a2 3
If M <1 this condition is fulfilled for any solution of Eq. (21) including our Eq. (22). In this
case B, is the critical size in any sense: it is the minimal size compatible with the superfluidity,
and the superfluid state realized at A, > /i, is thermodynamically stable.
If M > 1 then the condition of stability of the solution (22) has the form:

vsr, \3
e O )
It can be fulfilled only for ¢, and determines the critical size above which the transition into
stable superfluid state becomes possible:
/10
i h"[l ,,iwi] i @
16 M I
It is easy to see that A, >, . The transition from nonzero stable density of superfluid
component to its stable zero value at /=, is not continuous, i.e. it is the first order transition

unlike the transition at A = A, , which is the second order one.
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Abstract. The properly of the Picard iteration method is studied in solving one system of nonlincar operator
cquations. This system was obtained by applying the Galerkin method and a difference scheme. of the Crank-
Nicholson type to the initial boundary problem of vibration of  beam in the Timoshenko model. The system consists
of operator cquations containing the unknown vectors on two neighboring time sets.

Itis assumed that the count is performed from layer to layer, i.c., that the iteration approximation on the preceding
ayer has aready been found. In that cae, the lgorithm accuracy is influenced by an eror ai
on the preceding layer, as well as by an error of the iteration process itself on Gt
is obtained. It is based on the a priori estimate of the norm of those terms of the considered system of equations which
form nonlinearity. The principle of compressed mappings is used. The estimate of an iteration process error is valid if
the difference scheme pitch is sufficiently small. The way how this condition can be satisfied is discusscd.

1. FORMULATION OF THE PROBLEM. This paper continues the author’s work [1], where
the system

)
=(cd—a+b J’wfdx)wﬂ_ —cdy,,
H
Vi =W —cld(y —w,), .

0<x<l, 0<t<T,
ab,c,d>0, cd—a>0,

describing vibrbation of a beam in Timoshenko’s theory [2-5] is considered.
Let us write a set of functions

wy, .oV, &2
from which the first four are defined by the formulas
u=w, v=w, f=V, 0=V, a3

Using (1.1) and (1.3) we write a system of equations with respect to functions (1.2) as

u,

)
(cd-ax+b [vidx)v, - cdp,
v

u, f,=cp,~cd(y ), a8
o =fo vi=F

0<x<], 0<z<T.

Let us complement (1.4) with the initial and boundary conditions
u(x0)=w(x), wx0)=w(x), f(x0)=y"(x),
@(x0) =y (x), w(x0)=y(x), 1)
u(0,t) =u(Lt)=0, f(0,t)=f(1,t)=0,
0<x<l, 0<¢<T.
In [1] the finite element discretization is performed with respect to the spatial element x at the
constant pitch s =1/N and also a discretization with respect to the time argument ¢ using a
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Crank-Nicholson type scheme on the grid {1, € [0,T]10=1, <t, <:-:t, =T} at a variable
pitch 7, =1, =1, , >0, n=12,...,P.

As a result problem (1.4), (1.5) is reduced to solving the system of nonlinear equations

A=) =5 (B+CO)+ COT DL+ 1), .6

n=12,..., P, with which we will be concerned below.

In (1.6) yI =(ul,v,f7.@pwi) is the vector corresponding to the n-th time
layer, ], fi € R¥,vi, 00 Wi € R¥, n=0],...,P, where

0 is given .

and pp,n21, isto be found.

Further, 4, B and C are the fifth order block square matrices determined by the formulas

2K

0 (cd-a)Q 0 -cdl 0

-20' 0 o 0 0
5 " (1.82)-(1.8¢)
B=| 0 L 0 @ -cldLf,
0 0 =g 0 0
0 0 DI A0 0
00 -0
® ®o oo
cm:%vkv e Ol e,
00---0

where 0 are rectangular zero matrices, K, L, M and 0 are respectively (N +1)x(N+1),
(N=1)x(N+1), (N=1)x(N~1) and (N—1)x(N+1) matrices of the form




/.
7
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2 1
14 0 141
0
=1 :
®lo
0 41 141
12
(1.92)-(1.9d)
(41 -101
1 0 (]
0=
0 6l o -
14 -101

The size of the zero matrices in (1.9) is determined by the following rule: the number of matrix
rows (columns) is equal to N —1 if the matrix is in the first or the third row (in the first or the
third column) of the block matrix, and to N +1 otherwise.

2. ITERATION PROCESS. Let us derive a numerical solution of problem (1.6), (1.7). Ifin
system (1.6) we count from layer to layer (from the (n-1)-th to the n-th layer) and assume.
7310 be known, then the problem can be reduced to finding ¥ from equation (1.6) and, for
this, we turn to the iteration method.

In equation (1.6), the vector y;~ cannot be given exactly for #>1 in the conditions of an
approximate algorithm and is replaced by the vector

Y 2 (g e el ElE e @

which is the final (F) iteration approximation for yj' obtained on the (-1)-th layer. Therefore
the vector

Vir = (WinsViws FirsPhns¥in)' (22)
and not yj, is a real (R) solution of the resulting equation. Thus the equation

" =1, T " n=1, " =)
AlYia =I5 ) =5 (B+Cv)+ COVE N+ 9i)
corresponds to the n-th layer, n>1.
Since, starting from the second layer, the same occurs on all layers, in the last equation it is
natural to write
YU = (U | e gttt

MO A @3)

instead of y;" .
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Thus we have obtained the cquation with respectto. yj,

AYi=2in" )= L (B+COL )+ COME N Vin + ¥

(24)

Let (2.4) hold for n=1, too. For llns it suffices to assume that y{%  is a vector which for n=/
is actually taken in equation (1.6) instead of y 5. Thus we do not exclude here the case, where
for various reasons J0 # v .

The dimensions of the components of (2.1)(23) coincide with the dimensions of the
respective components of the vectors

“land pp.
Now to solve (2.4), we choose an iteration process. We use Picard’s algorithm

+'—"(B+C(\',’": )+ COmRENIR vt )s @3)

AR = Vi

where yre = (uyn ViR, fin @ng-Whn ) is the m-th approximation of the vector Yo
m=1,2,...., and, morcover, un, fra' € R, vin, oiv.win e RN

As for process (2.5), at every iteration pitch we have to solve a system of algebraic cquations
with the block-diagonal matrix A. As follows from (1.8a), the matrices M and 2K are the nonzero
blocks of A. Hence the system splits into five independent subsystems with three-diagonal
matrices of two forms M and 2K (see (1.9a,c)). For iterated solutions of these subsystems it is
convenient to use the factorization method. For each of the above-mentioned matrices, out of
two scts of only the sets of depending on the right-hand
sides of the equation have to be renewed on each n-th time layer and at each iteration pitch m.

3. A PRIORI ESTIMATES. Let us introduce a scalar product and vector norms. If we assume
that Aand 4 are vectors of the same dimension, whose /-th components are equal to 7, and
4 then the scalar product

(ott)y =hY 2yt (3.1.2)
T
where the summation involves all components of Aand x and the norm
A, =22 (3.1.b)

If W is a symmetric positively definite matrix whose order coincides with the dimension of the
vector A, then the energetic norm

Al , =72.2); -
Note that the vector dimension does not influence the notation of the scalar product and norms.

Our problem consists in estimating an error of approximation of process (2.5) to an exact
solution of equation (1.6). In other words, we have to determine the value

b -zl
By (1.9a,c,d) and Gerschgorin's theorem [6] for the matrices K,M and 0’0 we obtain
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W kA, S, AR
%Mi S(MAA),," " AeRM (3.20)-(3:2¢)

Id, <5
We need the following property of the matrix C
LEMMA 1. The inequality
[C0nY,~COT, <ty +1vs =Tl ¢ )
+ v len 102 le) WP lls 075 )N = 22 141

is fulflled for y, = (w,v,, f,,@¥,) and Y, =(U,V,,F, @8,)'s wy, f,U Fie R,
V.o VL@, e RN, 1=12.

PROOF. By virtue of (1.8¢) we write

:
S O T =By +1 (€2 =~ CO N )<
z

lewnt - oy, <

2

(34)

| \
DUVt W QW =)l + 1 Qi i TV les +D7 Mvy i ald-
= J=0
Using (3.2a) and definition (3.1), we get
1wl =119 Heal= V2 =v s <l = v [l
=Tl SUE =Tyl v = [l Sl =221l -

Taking these inequalities together with (3.2¢) into consideration in (3.4), we obtain (3.3). The
Lemma is poved.

Let us introduce the notation. For the vectors y; and y,, where y, = (%, v, f1,9,¥,)'s
u, f; e RY, v, 0w, € R* 1

2, we define the value
a_[2] 1
() =;+{;[nu. s +edlivi=willes +55(a=bliviles)” +
p 4 (3.5)
st 2 |12, [6 X
=l len +l s |+ zedT 1202 =0v [l -
Further reasoning concerns equations (1.6) and (2.4). It enables one to estimate the
components v and vy, of these equations which form nonlinearities. Estimates can be

calculated in both cascs.
As shown in [1], for equation (1.6)




AP (.62)
n=12,...,P, where s, = 5(y;,y;) is found by means of (1.7) and, besides the norms of the

other components ., /', @5,y of the vector yj are uniformly bounded to, provided that
So is bounded from above by the constants not depending on /i. From this property the

solvability of problem (1.6), (1.7) [7] follows.
As for equation (2.4), we will see below that the estimate depends on the itcration calculus on
the preceding (n-1)-th layer and the initial value of the unknown vector.

LEMMA 2. The a priori estimate
1958 S Sacse» (3.6b)

n=12,...,P, where s, ,, = s(VisT, y35) , holds.

PROOF. We need some results obtained in [1]. First, (€X0))
IK'Q'=-QK™'L'.

Second, if the vectors y, and ¥,, where y, =, /. 0,¥,)s 4. f; € RN,

V.9, € R, =12, satisfy the equation

FB+CO+CONG, +2), (D)

AQy, =)
7> 0, then
@ 0n)=101) = =5 (O + ), 69

where

1

3 3 1
o= ﬁcd[“u' Bz +ed (1Y, = 1l oy i (3.10a)

,bl!v,lli_h)u%nmm ”W‘:llb}.
$(y)=Lp,~Qv,. (3.10b)

Let us now use these relations. The application of (3.9) to (24) which is a particular form of
(3.8),gives
" -] Tn n-1,1 " -1
EWr) - W)= “W(ﬂh.; ) uf gt U ) @.11)
Next, after replacing 7 in (2.5) by n—1, we obtain a system of equations containing the
equalities

Kpia” - = a2 T+ im0,

Z-I L(frim s g7y,

Kwin™ ~wi®
Hence, by virtue of (3.7) and (3.10b)
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O =5,

formula we get
AL F n-2,F
SRR ) =CURR")-
Using (3.12), we obtain the equality

SRR =ChR),

By substituting the number of the last iteration on the (n-1)-th layer into this

whose fulfillment is one of the reasons for choosing process (2.5). By the latter equality and

(3.11) we derive

L

Ta ), n ol
LR O ’a({(y:.:)ruhkvﬂh,:’ b
Taking into account his relation as well as (3.10a) and (3.2b), we get the inequality

L) =7, 1€ I eOne) <€ W) + 2, 1 W) s i)

“This yields
ern) < e+, 1 CORD sy n=12,..., P

‘This estimate, along with (3.10a), allows us to write

6 % 6
nlas s A\f;cde(y,\,,»s%\[;

d(e(yin )+T11¢(rhm M) C13)

Using (3.13) and notations (3.5) and (3.10), we obtain relation (3.6b). The lemmais proved.
Let us estimate the norms of the matrices 4~ and A~'B.. For this we use equality (1.8a), and
the inequalities || K~ ||, < 6and || M7 l,<3 which follow respectively from (3.2a,b). As a

result
4™ (<3 @.
and |[ 4B |, 3|| |, - BY the estimate obtained in [1] for the norm of the matrix B we can
write
Il 47 B1,< 37,
where

&
7 =max(7,1,,75)

e
:26.1*-&% W ica-a), = 4(“;;_1*]’
h:c’d1+%+%(2cz+cd—a).
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4. ERROR ESTIMATE. In this section we formulate the main result with respect to the
iteration process (2.5). First, we have to determine two sets of values 2,,Ve,V 5, and

G, TosTpy for every neth time layer, n=12,...,P. We begin with the triple of values
20V ¥ . The first of these values depends on the iteration approximations, namely, on the

last approximation on the (n-1)-th layer and on the initial one on the #-th layer; the other values
depend on the initial values and the Jast iteration approximation on the (n-)-th layer. More
exactly, let

D TR (R e o Rerd | A

it
V=27 35 [) [T S

LE
Vhe

oy
V‘m:— 7+7ZZ(~/—)" :n+s",, (.10
2| g
As for the triple of Values g7, 7 it is determined by the inequalities
0<q,<1, (429)
1
0<7z, < (4.2b)
3, 3 |2 1 -
b n-1F | n=1.F 0 n-LF
el 212 o5 b, mn(bil i, ¢
@20)

.
+ o0, ) (HYHZ i, +T,pn%” <1

From (4.1) and (4.2) it follows that the values p,,V,,,V, and ¢,,7,,,75 can be found
before calculating the iteration calculation on the n-th layer.

Finally, we introduce one more notation. By 7, we denote the number of iterations
performed on the n-th layer, n=12,..., P. Therefore 7, is the number of iterations which
yields ypg -

THEOREM 1. Iffor fixed n, 1< n < P, inequalities (4.2) are fulfilled and the pitch t, satisfies
the relation

7, Smin(z,,,7,,), (4.3)
then for the error of process (2 5) the estimate

G,
Il 7~ ywnh-%ny”—y:’,"u. uy =il G
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m=12,...,
holds.

SMARK. Some arguments concerning the fulfillment of the conditions of the theorem are
given in the Appendix.

PROOF. We use the relation
1193 = i b < Wi = Yiw s + 11 Yiig = Piz las ()

and divide the proof into two steps. In cither step. one of the terms frorm the right-hand side of
(4.5) is estimated. Note that the existence of the vector yj, will be shown while proving the
theorem.

Step 1. For simplicity, we shall use here the notation yj7s = yya" . Subtracting (2.4) from (1.6)

and applying the matrix 4™ to the obtained equality, we have.

Z[« V-2 B0y~ 6

o 'Z(av"")yh - ]

where 1 is the unit matrix.
(33)

i )yi” = C(V?I‘,Z)y"‘lL<—Z(!!V,","HK * @7
YRR G T 4 1V ) N iR P

Hence, applying (3.6) and (3.22) to (4.7), we get
WC i ~Cvin)Vig S

£ [RRe et | PRONR

Ahiz
lCvy )yi -Covppdvin s @8),

sttt et )] o

Further, we take (4.8) and analogous inequalities together with (3:14) into account in (4.6). In
addition, we also use the fact that, by condition (43), 7, <, Where 7, satisfies (4:2b). Asa
result we get "

“Yhr'

el el r"

1+7,,Y,
13 = i =T "Il.v""*Y"}!Flh- (49)
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Step2. (2.5) implies

R i = 2B OO iR
(4.10)
N el Gl ) §
Im=112,
By (3.3) we write.

e )iz ‘.VZ,‘;")ILSZL;I s sl w3k = 2™ o
NCOvmvh = COMR i lhs
T 1 \ i
SLZZII i llh [zll VZ.’.?".H..] (I GID
4higis =
I1(ChR)=COm Dia” lus

by ALE i e
<My Nl Vi Wlbis - vhe lh-
2his

‘We also need the estimates
V5 Tea SV s &5
g e I 28 L
1=0]1,

derived on the basis of (3.2a) and (3.1).
* Using (4.10)~(4.12), also (3.14) and (4.3), we get
n oSSR )
e o [
L+ I Q13 b+ 2R )+
11 ypm W R ] iR =i

(4.13)

x e
80), (4.1a) and estimates (3.14), (3.2¢), (4.3) imply.
=Dl gl 1V =DialhSow @19

wax (=)l 955 s 155 = AR s +2pu2,),
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I3RS 7l + 15 = 25 b S Oon + G- (4.16b)
Let the inequalitics
1172z =yt S au iz =20 b (4.172)
o
11957 1hS Gon +01, Y a0 (4.17b)
=

be fulfilled for 1 <m< 1.
Substituting the estimate

19557 1S 00 + 07, 22—,
1-g,

i=0,1,
obtained from (4.17b), (4.14) and (4.2a) into (4.13) for m=I; and using, in addition,
(@.15), we have
Wi = vri s g ll vk — Yig - (4.182)
From here, (4.17a) and (4.14) for I=1 we obtain the inequality

e

1125R" = yik 1W< 010dns
which, together with (4.17b) for m=1, gives
;
12" e <1yie b +RE =ik S o0+ 0 Xdn  @1sb)

"
(4.18) implies that (4.17) is fulfilled for m=F1. By (4.16) we conclude that (4.17) holds for
arbitrary mi>1. From (4.17a) follows

1957 - yia s onars &L
where &, = ||y, = via ll, and m 21
Let us verify that the sequence {y}}, m =01,
any natural number / we have

i i "
e = yam S D yae” = pie ™ e S 00 4 <0 1 q"q
] E —dn

is fundamental. By virtue of (4.19), for

and therefore

Iy -y bso,

(4.20)
m=0,..
For any I the right-hand side of (4.20) tends to zero as 1 —oo., Hence the sequence {yf}

is fundamental. It has a limit

lim yi& = Vie-
To pass to the limit in (2.5) as m — 0, we use the continuity property of the matrices 4 and
B and apply Lemmal to the matrix C. Then it is clear that yr, is a solution of equation (2.4).

Passing to the limit in (4.20) as /. —> 0, we obtain
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Wig =ik b=
If restriction (4.3) is fulfilled, then (4.5), (4.9) and (4.21) imply estimate (4.4). The theorem is

= Yl (21)

proved.
The following result is a corollary of inequality (4.4)

THEOREM 2. Assume that for arbitrary n,, 1< n, < P, inequalities (4. 2) and (4.3) are
fulfilled for n=12,

o+ then the estimate

i —viz H»SH

l+7,
“‘ Hh =il +

-7,

e,V
1-7,V,

+zny:‘:,~y:;uh o
= 1
g,
I-gq,

n=12,...n, m=12,...,
is true for the error of process (2.5).

1193k =i o

5. APPENDIX. In conclusion, we give some arguments as regards the conditions of Theorem 1.
As follows from (4.3), the pitch 7,, depends on the values 7, and 7, . According to (4.20) the

first of these values is determined by the parameter V g, which is calculated by formula (4.1¢)
before realizing the iteration process on the n-th layer. As for the choice of 7, as well as g,

satisfying conditions (4.2a,0), the situation is as follows. The latter of these conditions is
represented as

P;(T,Nqnfsq 5.1

4,(1-9,)
where P,(7,,q,) is a third order polynomial with respect to 7, and g, Here two
approaches can be taken: cither we give the parameter 0 < g,, <1 determining the convergence
rate on the n-th layer and use it to find the value 7, influencing the grid pitch, or vice versa. It
s casy to see in the first case that for any g, there always exists a sufficiently small 7, such
that (4.20) is fulfilled. To find the corresponding7,, as follows from (5.1), we have to
substitute the given value g, into P;(7y,,q, ) and after that to satisfy the cubic inequality with
respect 1o 7y,

By(74,,9,)<0.

To this end, we can use the Cardano formulas. These formulas and (5.1) are suitable for the

second case, where g, is determined by given 7, . However we should keep in mind that the
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admissible value g, does not correspond to any 7,,. When this happens, 7, has to be

decreased.
Finally, formulas (4.1a) and (4.2c) become simpler if the initial iteration approximation is

performed by the rule yjS = pia’, n=12,.
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Abstract In the present work several methods of decision making are discussed, which can be applicd o the
conerete problems in business.

The discrimination analysis is the alternative of Bayesian inference method and constructs the umerical-tabular
Knowledge base; afterwards the fuzzy analysis is performed to establish relationships between business states,

In the investment problems, the numerical-tabular knowledge base can be constructed using informational bases
of suceessfully performed investment projects, if such bases don’t exist or number of projects is very low, then the.
knowledge base can be constructed using psychometrical questioning of experienced experts, using simple paitems
which can be forwarded to experts by Infernet. After the construction of knowledge base the positive and negative
discrminatonar calclatel They ate used o etblshankings frdn agaist cact decision. The decision can be.
made by fixing the criteria of principle of maximum possib

In many situations instead of frequency LA knowledge base, the 5o called possibilistic numerical-
tabular knowledge base is constructed. Such possibilistic distribution table can be reformed 1o the probability
distribution table using transformation principle[4]. Afterwards the positive and negative possibilisic discriminations
are calculated. The correct decision is believed o be the one with maximum valuc in possibilistic distribution.
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DECISION-MAKING AIDING FUZZY INFORMATIONAL SYSTEMS IN
INVESTMENTS

PART I - DISCRIMINATION ANALYSIS IN INVESTMENT PROJECTS
G. Sirbiladze*), A.Sikharulidze**), G.Korakhashvili*)

*) Chair of Random Process Theory
*%) Computer Software and Informational Technologies chair

In the present work several methods of decision making are discussed, which can be applied to
the concrete problems in business.

The discrimination analysis is the alternative of Bayesian inference method and constructs
the numerical-tabular knowledge base; afterwards the fuzzy analysis is performed to establish




 doagdols byedpdiymdo sGodzsgocs . 93

tionships between business states, situations, factors and those possible decisions which can
in such situations.

In the investment problems, the numerical-tabular knowledge base can be constructed using,
informational bases of successfully performed investment projects, if such bases don’t exist or
number of projects is very low, then the knowledge base can be constructed using

of experts, using simple patterns which can be
forwarded to experts by Internet. After the construction of knowledge base the positive and.
negative discrimination are calculated. They are used to establish rankings for and against each
decision. The decision can be made by fixing the criteria of principle of maximum possibility.

In many situations instead of frequency numerical-tabular knowledge base, the so called
possibilistic numerical-tabular knowledge base is constructed. Such possibilistic distribution
table can be reformed to the probability distribution table using transformation principle[4].
Afterwards the positive and negative possibilistic discriminations are calculated. The correct
decision is believed to be the one with maximum value in pnsslbxllsuc distribution.

Some problems of decisi King we can represent as system:
(2,D,1,U,K), m

where, £2 is non-empty set of system’s states (situations, activities, factors, etc.) D is non-

empty st of possible decisions, 1 is the existing information about system’s states (their

distribution) K : D —> R represents the criteria of decision-making person(D.M.P.), which is

connected to some optimality of decision, and U’ s U Dx 2 = R

function, the. of advantages of decisi king person:

u, : The utility function or its alternation.

ar

u, : The expected values of variable interesting to D.M.P.
u, : the frequency distributi based on statistical it ion about states and
possible decisions
About the information / existing upon the set of states Q we can discuss following cases:
1, : The decision-making problem in definite environment, when the state which must
realized is known before making decision.
I, : The decision-making problem in risk i (the i of

uncertainty), when the state which must realized is unknown, but the probability distribution on
states is known.

I, :The decision-making problem in general uncertain environment, when no concrete
information about states can be used, but some information about distributions of some subsets
of states must exist. That is, D.M.P. must have the information about subsets of states (factors)
which will eventually bring us the problem of constructing data body [1].

NOTE. The identification pair(I;U) and criteria K always represents some concrete case or
problem, where the information I about states is fixed along with estimations U of advantages
of DM.P. and criteria. For example (7;U):= (,;u,) that the problem is performed in risk
environment with respect to situations, states and factors, and with activities of D.M.P. there
exists the utility functionz - Dx £2 — R. It is known that this classic problem can be solved:
using the utility theory of Neiman-Morgenstern(2], if we use the principle of maximum of
expected utility as the criteria K .

Note, that the trinity (7, u, K') identifies the system of decision-making (2, D, Z,u, K) .




Let 2= {w,,,..,w,} be the finite set of systems states, situation (factors), and
D =(d,,d,,...,d,,) the finite set of possible decisions.

The problem of discrimination analysis: Construct informational decision-aiding expert
system, where the numerical-tabular knowledge base is built using psychometrical questioning
of experienced experts (business expert) or based on the data taken from the existing correct
decisions made by them. By method the fuzzy analysis is performed to establish some
relationships between some states, situations or factors of business and those possible deci
which can appear in such situations.

Very often the experts don’t want or cannot represent their knowledge or experience as rules
concerning the choice of decision. The incompleteness of rules is the major problem in such
approach. Obviously, in such cases construction of decision-making system is hopeless and
priority is given to construction of numerical-tabular knowledge base. The well-known
decision-making systems using Bayes method are based on numerical-tabular bases. But here
also exists the problems of collecting information, accumulation information. Large volume of
information is needed to correctly establish relationships. The level of objectivity of experts
may be another problem.

The discrimination analysis is alternative of Bayes method. It uses the numerical-tabular
knowledge base, which can be constructed from informational bases. If this is not possible, then
by contacting known experts the psychometrical questioning is performed to organize the
gathered knowledge in numerical-tabular base.

In quarter 2 discrimination analysis is viewed as aiding instrument in decision-making in
investments. In quarter 3 one problem of investment fond is discussed, which is solved using

analysis. Its is discussed in quarter 4, where neo new
measures of positive and negative discrimination are presented.

In Appendix (quarter 5) the scheme of construction of numerical tabular knowledge base
form subjective expert information is discussed using Yager's algorithm.

To condense the expert knowledge base the main model of expertons method of E.Kaufman is
describes, where eventually the possibilistic distribution is constructed.
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defined in two steps by means of a composition of two functions.
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DECISION-MAKING AIDING FUZZY INFORMATIONAL SYSTEMS IN
INVESTMENTS

Part Il - DEMSTER-SHAPER'S EXPECTED UTILITY IN INVESTMENT
DECISIONS

G. Sirbiladze, G. Khachidze

Chair of Random Process Theory

1. A classical decision problem can be considered as given by the information system
,D,1,u,K)
where 2 is the non-empty set of the states (factors, situations) of nature; D is non-empty set of
the feasible decisions; I is the available information about £2; K is the decision-maker's
criterion, which represents some optimal principle; and u: Dx2—> R, is a valuation of the
coherent with the d

According to the kind and amount of available information, the following cases have been
distinguished:

- General Decision Problem in a Certainty Environment: when the statc of nature which will
occur is known "a priori".

- General Decision Problem in a Risk Environment: if the true state is unknown but a
probability distribution is available on £2

- General Decision Problem in a Uncertainly Environment: when no information about the
states of nature can be used.

Our aim in this paper is to study a more general model including the previous three; such a
‘model will consider the information about {2 as defined by an evidence [1].

To obtain a solution for a decision problem as defined above, an order relation should be
found on the set of decisions D; we will construct this order taking into account the utility u and
the information 1. We suppose D and £2 to be finite, in order to avoid measurability or
convergence problems. If we denote.

2={o,0,

@},  D={d,d,...d,},
the consequences of a decision d; are given in terms of a utility vector U;:
d, o T = Wyttt )R, (=1,2,0m),

which represents the decision-maker's preferences.
2. The problem is now to find an order on R". Classically the solution is obtained by mapping
each vector T; on a value of R; to build this map @:R" —> R, we will use the decision-
‘maker's opinions and the information available about 2.

Thus, we will say that a decision d; is preferred or indifferent to another dj, (and express it
as):

i Sd; © (st i) < W0 ,)  9) < ).
‘Numerous examplu of this procedure exist in the relevant htmture. as ma criteria K of the
expected value (risk Laplace, Wald etc.
In this paper we will suppose the information I is given by an evidence represemud by a basic
probability assignment (B.P.A.)-m.




dob dompdols % Jjogoer ... 107 ;-

NITIOAN 1. /1] A B.P.A. On 2 is amap
m:29 > [0;1],
fufilling the conditions
0 m@)=
@) Y m(A)
ich

In 1967, Demster [3] introduced the concepts of lower and upper expected values of &
function, with respect to a measure as a generalization of the expected mathematical value:

DEFINITION 2. /2] let h: 2 — R be any function and let m be a B.P.A. on 2. Lower and
upper expected values of hwith respect to m are defined as
E.(h/m) ="y m(4)-inf h(w),

)

E*(h/m)="Y m(A)-sup h(w).
Acn wed

In this conditions, we can map the vector %, € R" (represented as function £2— R) on
another vector of R by means of #: R” —> R?,
LUty sestty,) = (B, [ m),  E" (@, [ m)).

If we consider the composition 1o¢ =, the determination of ¢ means merely to determine

the map: A: R? — R. From this composition, one can see t contains the available information
while h must reflect the decision maker's attitude.

3. Finally, we may note: On one hand, if the evidence considered about £2. is probabilistic
(m=m,), according to proposition 10.
E.(@ [ m,)=E" @ 2m,)=
where the most outstanding ways to define i are as follows:
(a) Optimistic criterion. Based on the map h':
h=h(E,E')=E
(b) Pessimistic criterion. Based on the map h. :
h=h(E,E)=E.,
and the decision rules consisting of the maximization of the value of h (the construction of
criterion K), coincides with the classical expected value criterion for risk environment [3].
On the other hand, if we confront a problem in the absence of information, the only possible
evidenceto be considered is the so called total ignorance (7 = m,) , and in this case

@),

E; = max#, = maxu,, E,, =min#, =minu,
) J o0 i

are verified. Ifthe decision maximizing h is chosen (criterion K), we find:
(A) The max-max criterion, from A’ :
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= max E" (7, /m,) = maxmax,
as a particular case of our optimistic criterion.

(B) Wald's criterion, or max-min criterion, from /. :

max E, = max E. (7 /m,) = maxminu,

as case of our pessimistic crit

4. Conclusion: Demster-Shafer's theory of Evidence [1-2] is a powerful tool with which to build
models on investment risk or uncertainly environments. By expressing the available
‘information about states or factors of nature in a decision problem by means of an evidence and
by using the lower and upper expected values to obtain decision rules, one may generalize
classical criteria to intermediate situations between null and probabilistic sets of information.
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ON DYNAMICAL PROBLEMS FOR 3D ANISOTROPIC THEORY OF
ELASTICITY
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¢ problems of development of Kupradze methods of the potential theory for the thermo-dynamical
theory of anisotropic clastic media with initial and classical boundary conditions are discussed when time:
hal

By incomplete Fourier-Laguerre series with respect to time and Kantorovich-Yckua ve method we
construct an implicit stable scheme by which the process of solution of the initial b R ren
1 ach following member if this sequence is defined as solution of 3D boundary value problems for the
ons (DESs) using also preliminary solutions. Then, if generalized Hook's law contains no

more than thirteen independent elastic constants and sum of Poisson’s coefficients in ions arc less than one,
the operators uvru(]mnmllg 0 cach systems of EDs of this sequence as well a5 the operator corresponding (o an initial
problem (in static case) are. Z -elliptic

1. Let us consider the evolution equation of second order (initial conditions are underlined):

H(')%”’() +Au=f(:1), 1€[0,), (1.1
(D)2 a () ) 2D L), ©2)

di
a(-)20,56(:)20, a+b>0.

Out of the vast literature around the subject of special interest are the monographs [1-2] with
deep remarkable results and rich bibliographies.
Let us find the solution of (1.1, (1.2) in the form

u=c ‘Zu‘(»)L‘(l),OSysl, (1.3)
=

where L, (¢) are | Laguerre ials, 4, are unknown
Using Vekua-Kantorovoch method we have:

(4+a=7) 1+60-7)hn =
Fo =)+ + o =Sl 120 7) b

(14)

where
Ju= J L7 ()
3

If we denote the right hand side of (1.4) with @,,, we will have,
@y =yt +Qall =7)=B)0s, —aDy,..
where

@y, = fy + (b= a7, +ap, i
=l 4 by

D, =mpy, By = U,
=
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=
D, = (m=j=1)u, .
S

Thus, we obtain for the right hand side the following reccurence relation:

@, =0, +(f, ~fn)+ ago +Qa(l=7)~ b, ~a®,

The numerical process includes itself calculation of

1° functions L, (1), £,(r)=e7L,(t).
2. right parts @,, and coefficients u,,,

3°, unknown vector-function u(:, ().
The calculation of Laguerre functions is realized by program ELAG (3]. First we represent

1,(¢) in the following form:
LL (=

1,(0)=e" ]~

s L,)=0 (1.5)

i

Using recurrence relation for orthogonal polynomials we have,

a,.,P,,(0)-B,P,. )+ a,P,()=1P, (), (1.6)
Py(0)=0, 2,=0, @, #0 (n=12,..).

Let £, be one of the zeros of P, (t) polynomials. Then from (1.6) there follows

&P (16)= BB (1) + e P (t) = 1 P 0o
P (16)= BuP 1)+ @ Pa 16) = 1P 1),

tpaPorle)= By 2,2 = 1P )

For this system [, is an eigenvalue of the corresponding matrix while
P=(B(to) B(to) Pui (1)) s an eigenvector. For Laguerre polynomials @, ==n,
— B, =2n—1 and these values may be found effectively (see e.g. [4]).

Then we find (see [5]) the weights of Gauss quadrature formula:

For comparision of methods of investigation and solution of ionary problems by direct
and inverse Laplace transformation on the one hand and uncomplete series of Fourier-Laguerre
on the other hand, we shall find respectively in ch.VIII “Mixed Problems of Dynamics” [1]
(especially theorems 1.1 and 2.1) and recall two convergence theorems of a series by Laguerre
polynomials.
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THEOREM 9.1.5. (see [5] p.255) Let f(t) be a measurable in the Lebesgue sense function on
the semiaxis [0,:0) and let there exist the integrals
'

)’t“\/(t)dz. I}ﬁﬂ/(z}dt

2| f(t)dt = O[n

is satisfied and if S, (t) denote partial sums of series f{(t) by Laguerre polynomials, then

1,,,,{S” (,),,l”j’/(,z)ﬂ(zﬂﬂ))d,}zov,>0‘ (1.8)
B

If the condition

L n—>o,

T dis G

where & is a fixed number, & <t . The relation (1.8) is satisfied uniformly on. the positive
segment £ <t<w, 5 <AL

‘The following theorem is also true (see [6]):

THEQRE)

. Let the series Zkuk and. AZu, be absolutly and uniformly convergent. Then

for all & >0, there exists N =N, (e) mh mm the reduced system of (1.4) approximates the
initial problem (1.1.), (1.2) with & accuracy when n> Ny.

2. Here we consider the case when the operator A of the spatial theory of elasticity is
anisotropic. For this operator we investigated the problem of signdefinition the corresponding
bilinear form.

Let us consider anisotr materials ized by 13 i
constants. In this case generalized Hooke’s law when

Ao
& and o are strain and stress tensors correspondingly, has the following form:
&y FU, =00y + 01,

Yoz ttha ) =83.a43%a T a3 6-a953-a> @1

1l o

Here A is the symmetric mitrix and the compliance constants’may be written in terms of
engincering cocfficients:
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W= i o
ET = SV, o
Evidently, for orthotropic elastic plates these definitions of a, are same in [6], where we

have taken @, =a;s = 0. Let a(o,7):=(40,7)

Ays =03 =

J(42),7, . Then ifthis condition holds
)

a(0,0)>alolt, Voe 2, a>0
the bilinear form @ is said to be - elliptic.
In [6] it was shown that if the natural physical inequalities E, >0 (=16) and in
addition to the prior inequalities.
Vi > 2V Vi, Vs > ZVSIV“, Vay > 2"23"3\! 22)
held then (47),7, >0 and a(o,7) is Z-elliptic for the orthotropic case.
Further, in [8] we have proved that a(0,7) is 2 elliptic in an anisotropic case (see (2.1)) if
VitV Vi <1, Vg +Vg Ve <1.

We note that, in this work we also found the explicit form for 4™ by (v.E) terms.

3. In this paragraph we consider the case when A is nonlinear operator of polynomial type. The
following theorem holds:

THEOREM 3. 1. If the A is an polinomial type nonlinear operator and y =0, then from
relation (1.4) it follows that only first opproximation u,(- ) satisfies the nonlinear BVP whereas
the other approximations u,(+) for all m> 1 are defined as the solution of linear BVP.

PROOE. Let us consider the following scalar product:

[fII;(.,,)L,(:)Jz]e-q:[;(.,m,(x S T (e T, 2Ot =

i B ok

3.1)

i),

3 I O St OEOLOE= T T

=1

liyyesipm)= }AI:!L" (0L, ()t .

From (3.1), evidently, it follows that the equality
iy +iy ekl =m,

may hold only in the case when
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0. godogdodg®), . ygbacizos*®), G. xbxgs*?)
: 2 s

9 Oafoognsms. goapres

9 0. gasgob i bpapendnts gogglidoons Boaglgngob oBlioad30

Abstract. There are considered von Karman-Reissner type systems of DE for elastic plates of binary mixtures
constructing by methods of (7] In linear case these systems split into Mindlin-Reissner and Filon type refined
systems Further using Muskelishvili-Vekua methodology. there are constructing general solutions in the such
formwhich are suitable for investigation and decision basing boundary valu problems for these systems, In nonlinear
case using some rosults of [11) there is proved that von Karman-Reissner type anisotropic Systems of DE are
equivalence to Volterra second kind nonlinear systems of integro-differenial cquations.
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ON THE GENERAL SOLUTION OF REISSNER-FILON TYPE SYSTEMS
OF DIFFERENTIAL EQUATIONS FOR ELASTIC PLATES OF BINARY
MIXTURES

T. Vashakmadze, T. Meunargia, R. Janjgava
Thilisi State University, VIAM

There are consider von Karman-Reissner type systems of DE for elastic plates of binary
mixtures constructing by methods of [7]. In linear case these systems split into Mindlin-Reissner
and Filon type refined systems.Further using Muskelishvili-Vekua methodology there are
constructing general solutions in the such form,which are suitable for investigation and decision
basing boundary value problems for these systems.In nonlinear case using some results of [11]
there is proved that von Karman-Reissner type anisotropic systems of DE are equivalence to
Volterra second kind nonlincar systems of integro-differenial equations.
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TOWARDS A COMPUTER-ASSISTED SYSTEM ON THE BASIS OF
CADIAG-SYSTEMS

T. Kiseliova

Tbilisi State University,
Chair of Applied Mathematics and Computer Sciences

Abstract. CADIAG (Computer Assisted DIAGnosis) is a rule-based fuzzy medical expert system
designed for internal medicine. Several extended versions of the system (CADIAG-II, CADIAG-IV) have
been already developed at the University of Vienna. On the basis of this system there are other successful
implementations. In this paper fuzzy methodologies used in CADIAG systems. are considered an
criticized to facilitate their applications in other medical fields.

BASIC DEFINITIONS. SANCHEZ approach [16], (see also [17)-[19], [27]) is used in
CADIAG-systems to model diagnostic process. Inthis model the physician's knowledge is
represented as fuzzy relations between symptoms and diseases
Let § be the crisp set of all symptoms,

S'= ger(S1, 52,5 Sm}
Let D be the crisp set of all diseases,

D = ger{dh, oy o}

Let P be the set of patients,
P = 4et{p1, Pa,--> Pa}
Let D, be the fuzzy set of the possible diseases of the patient,
Dy:D->[0,1]
Let_ S, be the fuzzy set of symptoms observed in the patient,
Sp:8->[0,1]
Let Ry be the fuzzy relation between symptoms and diseases,
Rsp : %D ->[0,1]
Let Ry be the fuzzy relation between patients and diseases,
Rep: PxD > [0, 1]
Let Rys be the fuzzy relation between patients and symptoms,
Res 2 PxS-> [0, 1].

THE MODEL. Assume, fuzzy relations Rs and Rp are known. They can be onstructed from
the medical experience that was evidenced in the previous diagroses. Then the fuzzy relation
equation ([11], [13)
Res 0 Rsp = Rep, )
can be solved for R’
Next, the fuzzy set Dy of the possible diseases of the particular patient can be determined by
equation
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Dy = aerSyoRsp @
or (see [12], [9])
Dy(d)=max,  (min(Sy(s), Rso(s, d))) @
foralld eD.

CRITICISM. In spite of choosing the maximum solution in (1) "to avoid arriving at a relation
that is more specific than our information warrants” [11] some problems are still left. In
particular, relation Rsp can show more symptom-disease associations than they are in reality.
Therefore the interpretation of diagnoses can be more complicated

EXTENSION OF MODEL. To make the diagnostic procedure more reliable several
achivements were included in CADIAG-systems.

RELATIONSHIP BETWEEN SYMPTOMS AND DISEASES. Instead of solving the
equation (1) for Rsp, two types of Rsp are explicitly defined:
1. An occurrence relation Rsp’ that answers the question "How often does symptom s
oceur with disease 42"
2. A confirmability relation Re* that answers the question "How strongly does symptom s
confirm disease d?"
Why it is necessary to introduce at least these two kinds of symptoms-diseases relations? "The
distinction between occurrence and confirmability is useful because a symptom may be quit
likely to oceur with a given disease but may also commonly occur with several other diseases,
therefore limiting its power as a discriminating factor among them. Another symptom, on the
other hand, may be relatively rare with a given disease, but its presence may nevertheless
constitute almost certain confirmation of the presence of the disease” [11].

HOW TO DEFINE RELATIONS BETWEEN SYMPTOMS AND DISEASES. Two
relations Rsp° and Rso' can be defined

1. linguis from expert medical ion, or
2. bystatistical means, from medical database evaluation.

LINGUISTICALLY. Expert medical documentation usually takes the form of statements such
as "Symptom s seldom oceurs in disease d" or "Symptom s often indicates discase d". In [3]
symptoms dyspnoea and chorea are described. Symptom dyspnoea often occurs in patients
suffering from scleroderma, but dyspnoca has such a small discriminating value in differential
diagnosis of theumatic diseases that its confirmability. for scleroderma is low. In contrast,
symptom chorea occurs very seldom in patients suffering from rheumatic fever, but if it occurs it
confirms theumatic fever.

In simplified linguistic definition of symptoms-di relations  the hip grades
1.,.75,.5,,25 and 0 are assigned to linguistic terms (used by physicians) always, often, unspecific,
seldom and never correspondingly. If the physician says, for example, that symptom s; occurs
Very seldom in patients with disease d, and symptom s, seldom confirms the presence of disease
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dy, values .0625 and .25 take their places in th correspondent matrices of relations Rsp® and Rso',
eg,

d dy - d, dy\dy ooy
5, 0625 25

Ry =" >
s, q

To define linguistic terms such as "very seldom", for example, corresponding linguistic
modifiers are used (see [21], [8]).

Another possibility to calculate linguistically symptoms-diseases relations is to define fuzzy
subsets always, offen, unspecific, seldom, never by a function:

o, x<a
z["""], a<x<p,
fapr)={
172["’“) L B<x<y,
r-a
i %57,

x €{1,2,..., 100}. For example, alvays(x) = asf/ (597, 98, 99). If the physician belicyes that in 98
or 100 cases symptom s, always confirms d; the corresponding value for the matrix of relation
Rep* is calculated from fuzzy set always and the estimation of the physician.

BY STATISTICAL MEANS. n hospital information systems [19] there is  large amount of
medical records of paticnts including all relevant symptoms as well as final diagnoses. That can
be used to calculate symptoms-diseases relations.

Occurrence of a symptom s in the case of disease d can be defined by relative frequency of
occurrence of s with d. Assuming x, cases of dand counting a frequency of x; for s, the relative
frequency of occurrence of s with d s calculated as:

x
Xo=—- 100
*
For example [13], suppose that in 67 patients suffering from gout, tophi was found in 13 cases.
Then %

—3 100 = 19.4. Defining additionally the fuzzy set occurence as occurence(x) = f
(31,50, 99) (see Fig.1), corresponding element for Rso’ is 0.07:,
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R e T
Figure 1: An example of fuzzy sct occurence(z) =ger f(x;1,50,99)

occurence(19.4) = f (19431, 50, 99) = 0.07. The confirmability of the symptom is defined
analogously.

Symptoms-discases relationships are presented as rules in CADIAG-systems:
IF ... THEN ... WITH (occurrence, confirmation)

EXAMPLE. IF (ultrasonic of pancreas is pathological) THEN (pancreatic cancer)
WITH (0.75 ~often, 0.25 ~weak).

THE DIAGNOSTIC PROCESS. Due to i ion about and ility of
symptoms and diseases at least four fuzzy indications for diagnoses are calculated by means of a
fuzzy relation composition. "At least" means that the last versions of CADIAG-systems
incorporate not only relations between symptoms and diseases, but also between diseases
themselves, between symptoms themselves and between combinations: of symptoms and
diseases. Therefore these indications can be more (due to [14], nine)

1. symptoms-diseases occurrence indication: D'p = erSp0 Rsn”

2. symptoms-diseases confirmability indication: D% = derSpO Rsp®

3. symptoms-diseases nonoccurrence indication: D* = rSp 0 (1 - Rsp?)

4. nonsymptoms-diseases occurrence indication: D*; = gr(1 - Sp) 0 Rsp’
This list can be continued for confirmability analogously. The results of inference
process can be interpreted as:

1. confirmed

2. excluded

3. possible
diagnoses.

The membership grades of fuzzy sets ( D'y, D, D%, D', ...) denote the degree of
certainty with which each possible diagnostic label (confirmed, excluded, possible) can
be assigned to the patient.
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For example, if D?(di) = 1 a confirmed diagnosis of discase d; can be made for a patient
. An excluded diagnosis can be made if D°(di) = 1 or D*(di) = 1.

The confirmed diagnoses should explain any pathological symptom, indication, or lab test result
of the patient. Unexplained data (usually) indicate further diseases to be investigated.

EXPLANATION OF DIAGNOSTIC RESULTS, On request, confirmed, excluded, possible
diagnoses, inferred by system, can be explained. CADIAG-2, for example, gives the names of
the medical entities, their definitions, their measured and fuzzy values and their relationships to
the diagnostic output.

CONCLUSIONS. CADIAG-systems were tested for patients (about 400) from rheumatological
hospital on diseases like rheumatoid arthritis, gout, Bechterew's discase, Sjogren's disease,
systematic lupus erythematosus, Reiter's disease and Scleroderma. CADIAG-2/RHEUMA,
CADIAG-2/PANCREAS or MEDFRAME/CADIAG-4 are existing versions of these systems.
According to the American Rheumatism Association (see, for example [10]) the criteria for these
diseases (and additionally for rheumatology diseases, rheumatic fever, psoriatic arthritis,
Bechcet's disease) are clearly defined. Certain combinations of symptoms prove these diagnoses
if excluding symptoms are missing.

Partial testing of the systems on paﬁcnvs with rheumatological diseases produced an accuracy
of 94,5 % in achieving correct diagnos
The fault diagnoses could be explnmed due to the following reasons:

o the patient was in hospital only temporarily;
o the patient was in the early stages of one of diseases.

PROBLEMS OF CADIAG_SYSTEMS. In spite of the CADIAG-systems often give.
acceptable results and share the property that they can never get certainty (value 1) from
uncertain contributions several open question are still to be investigated.

o These systems during the process of inference, get a number attached to a diagnosis. The
supposive interpretation of this number as a belief on the presence d given the
knowledge and data, is not obvious.

o Consider an example [7):

EXAMPLE.
IE Sys)=1 and Rsp(si, di) = 0.7
Sp(s2)=1 and Rsp(sz, &) = 0.7
Sy(s3)= 1 and Rep'(ss, dh) = 0.7
THEN (due to (3))
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= {(d,, 0.7),(2, 0.7)}
If other conditions are considered, for cwnplc

the result is
= {(d, 0.7),(>, 0.7)}
as well. But intuitively in this case D;(d;) and Dy(ds) should be less values.
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SPACE=> TIME SEMANTIC EXTENSION AND THE ASYMMETRY OF
POSTPOSITIONS IN GEORGIAN

L Shaduri
Computer Software and Informational Technologies chair

In the linguistic conception of world a three-dimensional landmark may appear to be a two-
, one- or even a zero-dimensional object. Therefore, though time cannot be more than one-
dimensional, the Space=>Time shifting in language systems often turns to be parallel. Four out
of six Georgian basic postpositions undergo the Space=>Time extension. It seems natural, that
the latter isn’t typical for the —fan postposition, the spatial meaning of which'is “on (one) side
of”. As to —k’en, expressing direction as such, the extension is restricted: probably the idea of
one-way directed time is evident for the Georgian mentality and need no underlining.
The postpositions —dan (“from”) and —mde (“to”, “until”) form an’asymmetric pair in
semantic fields both of space and of time. That is due to the hierarchy of notions of source and
target.
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Classics of ics”, “Modern ics and Its Applications” Tbilisi-New York,
3380l (Fmdormo 3303(3dkmeds “Plenum’-ob gaooo.

Revaz Gamkrelidze

Revaz Gamkrleidze was born on January 15, 1927 in the Georgian city of Kutaisi
His father Valerian Gamkrleidze was a public figure who contributed much to the
publishing of scientific literature in Georgia. For many years, Mr. Gamkrelidze had
been the director of the Tbilisi University Press.

When Revaz Gamkrleidze was studying in a secondary school, he read Courants
excellent book ,,What is Mathematics* and aquired a permanent passion for this science.
After school, Revaz Gamkrelidze continued his education at the Tbilisi State University.
As a gifted sophomore, he was sent to Moscow to study at the Mechanics and
Mathematics faculty of Moscow State University. Here he met Lev Pontryagin, an

i y ician, who lost his eyesight at the age of 13 but
whom Fate rewarded with an insight into the world of science. Pontryagin’s maximum
principle (1956) is a fine example of this insight.

The mecting of Lev Pontryagin and Revaz Gamkrelidze was that of a teacher and a
pupil, one of those rare lucky chances which leave an indelible mark in one’s life.

Revaz Gamkrelidze’s first studies were dedicated to algebraic geometry and
algebraic topology. He determined and studied characteristic classes of complex
algebraic manifolds (1953). In the mathematical literature the according result is
referred to as Gamkrelidze’s formula.

1954, Revaz Gamkrelidze took up research into nonclassical variational problems
related to the theory of automatic control systems for the rocket industry. He achieved
remarkable results in this area. Under the Guidance of L.Pontryagin and along with

i and E.Mi he laid the ion of the modern i

theory of optimal processes. The first paper by the four authors was published in 1956
and evoked a great interest among specialists. In the paper, a general optimal control
problem was formulated for the first time and the maximum principle Was proposed as
ist solution. The maximum princile was at that time the most beautiful and sophisticated
achievement formulated as Pontryagin’s hypothesis. Its proof is presented in the
monograph ,,Mathematical Theory of Optimal Processes* which was awarded the State
Lenin Prize in 1962. The monograph was translated into several languages and in many
countries it stimulated research in this specific mathematical area.

The achievements of Pontryagin’s school were reported at the international
conference on mathematical control theory held in 1967 at the University of Southern
California (USA). This University was regarded by mathematicians as a temple of
dynamic programming with Richard Bellman as head' priest. Prior to Pontryagin’s
maximum principle, Bellman’s method of dynamic programming was the only one used
in investigating optimal control systems. R Bellmann’s school carried out research
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within the framework of the program specially developed for the US Air Forces and
financed by the gigantic RAND corporation.

Bellman’s method of dynamic programming has certainly played a very important
role, but its main disadvantage is that it can not be substantiated in general terms and
does not hold for some cases. In this respect, Pontryagin’s maximum principle has no

, the fact by the of the abi
chaired bv R.Bellman himself.

The new optimal control theory played an important role in the development of the
calculus of variations as it was demanded by David Hilbert in his famous 23-rd
problem, However, it took long years for these events to take place. In 1957 Revaz
Gamkrelidze made the initial important step; he proved the maximum principle for
time-optimal problems in the case of linear systems. This proof was generalized, that
took three years of hard work. Even in a very concise form, this proof occupied 45
typewritten pages.

To the same period belong Revaz G into the
theory of optimal processes, as well as into prob]ems with bounded phase coordinates.
The results he obtained formed a part of his dccmm] lhesxs (1959).

In the years, Revaz G and worked on opumﬂl
sliding states. He developed the notion of a quasil set in a linear
space, which underlies the general theory of extremal problems. These results were
reported at the International Congress of Mathematicians in Nice in 1970.

Revaz Gamkrleidze studied quasilinear differential games and worked out an evasion
strategy for them. Further, he d an ion of streams and
invented a technique of chronological calculus.

1969 Revaz Gamkrelidze became the member of the Georgian Academy of Sciences,
in 1981 -- the corresponding member, and in 2003 full member of the Soviet (now.
Russian) Academy of Sciences.

In 1995, he he was awarded the Alexander von Humboldt Rescarch Prize, Germany.

In recent years Revaz Gamkrelidze has been carrying out research in the USA,
Germany, France and Great Britain. Prof. Gamkrelidze pioneered and contributed much
to the development of the optimal control theory in Georgia. Under the guidance of Ilia
Vekua, the chair of control theory was founded at the faculty of Cybemetics and
Applied Mathematics at the Tbilisi State University. For a few decades Prof.
Gamkrelidze has been heading the control theory chair at Tbilisi State University. A
course of lectures he read at the university was included in his monograph
,Fundamentals of Optimal Control (1975) which was translated into English and
published in the USA. In Georgia the monograph was awarded the A. Rasmadze Prize.
Later, Prof. Gamkrelidze introduced the technique of exponential representation and
chronological calculus of streams, that laid a foundation for many important
investigations all over the world, among the authors are Georgian scientists from our
university.

Since 1991, the chair of Control Theory is led by one of the outstanding pupils of
Prof., Academician Guram Kharatishvili.

Apart from his research and teaching work, Revaz Gamkrelidze is also concerned
with publishing activity. He founded and was editor-in-chief of the 100 volume




A

a2 cukansﬁ\\ \//%/
9357

SNB=NF055

 Encyclopacdia of Mathematical Sciences® (Springer Verlag Heidelberg), is editor-in-

chief of the ,Referativnyi Zhurnal Matcmatika® (Moscow), ,Modern Mathematics and
ist Applications* (Tbilisi-New York, under the acgis of the Plenum Press), the serics
~»Modren Problems of Mathematics®, (Moscow). He is the scientific editor of the
- American-British series , Modern Sovict Mathematics*, German ,,Soviet Mathematics,
and the series ,,Russian Classics of Mathematics*.
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DISSERTATION DEFENCES DURING THE 2002-2003

HIGH DEGREE PRECISION DECOMPOSITION SCHEMES
FOR EVOLUTION PROBLE

M. Tsiklauri

L. Vekua Institute of Applied Mathematics

The dissertation has been carried out at the Chair of Computer Software
and Information Technologies of Iv. Javakhishvili Thilisi State University
and I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi
State University.
Scientific Supervisors: Jemal Rogava, Professor, Ph.D., Phys.Math.
Zurab Gegechkori, Docent, Candid: f Phys.Math
Official opponents: David Gordeziani, Professor, Ph.D., Phys.Math.
Jemal Sanikidze, Professor, Ph.D., Phys.Math.
The defense was held on January 9, 2003 at the open meeting of Aca-
ing Council Ph.M 01.05 #2 of N. Muskhelishvili institute of
Computation Mathematics of Georgian Academy of Sciences, Thilisi.
The dissertation is available at the library of N. Muskhelishvili Institute
of Computation Mathematics of Georgian Academy of Sciences, Thilisi.

INTRODUCTION. The first ition formula: for ial
matrix function was constructed by Lie in 1875. This formula was general-
ized by Trotter for exponential operator function (semigroup) in 1959. The
resolvent analog of this function firstly was constructed by Chernoff in 1968.
At the same time in the sixties of the twem.xebh century the aim to develop
numerical methods for solving idi 1 probl of
physics naturally stated the topic of constructmg decomposition schemes,
which allows to deduce the solving of multidimensional problems to the solv-
ing of onedimensional problems.

The first decomposition schemes were constructed and investigated in
the works of P Rachford, Douglas, Douglas-Rachford, N.N. Tanenko,
A.A. Samarskii, G.I. Marchuk, E.G. Diakonov, D. Gordeziani and R. Temam.
Up to date a lot of papers.are ‘dedicated to. decomposition schemes. The
schemes constructed in these works are of the first or second order precision.
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The high order precision d ition formulas for twodimensional split-
ted operators firstly were obtained by B. O. Dia and M. Schatzman in 1996
We should notice, that the formulas obtained by these authors are not au-

i stable d ition formulas. D ition formula is called
automatically stable, if the sum of modules of split coefficients is equal to
one. Q. Sheng has proved, that on the real number field there does not ex-
ist such automatically stable splitting of exponential operator function, the
precision order of which is more than two.

ding to the ab: ioned it represents the actual problem the
construction of the high order precision automatically stable split formulas
for the approximation of the semigroup and on the basis of these formulas the
construction of high order precision decomposition schemes for the solution
of evolution problem.

The aim of the work is the construction of the high order precision dif-
ferential and difference decomposition schemes for the solution of evolution
problems with constant and variable operator; receiving the explicit a pri-
ori estimates for the constructed schemes and by means of these schemes
conducting numerical calculations for various model problems.

There are obteined the following main results: 1. By introducing complex
parameter are constructed the third order precision decomposition differen-
tial schemes for two and three dimensional evolution problems with the split-
ted operator. The convergence of these schemes are investigated. 2. There
are constructed and investigated the third order precision decomposition dif-
ferential scheme for an evolution problem with the variable operator in case
when the main operator represents the sum of two addends. 3. There are
constructed the third order precision decomposition difference schemes by
means of resolvent p and is i i 1 their convergence. 4. For
the constructed schemes are obtained explicit a priori estimates. 5, There
are carried out numerical experiments, which justify the efficiency of the high
order precision decomposition schemes.

THE BRIEF CONTENT OF THE DISSERTATION PAPER.
In the INTRODUCTION there is briefly given the content of the work.

Tn the CHAPTER I there are constructed the third order precision de-
composition schemes for the homogeneous evolution equation and for these
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schemes are obtained explicit a priori estimates for solution error.

In the Paragraph 1 there is considered Cauchy problem for the homo-
gencous evolution equation in Banach space X:

d t

SO s =0, >0, wO =, )

where A is a closed linear operator with the domain D(A), which is every-

where dense in X, @ is a given element from D (A). For this problem there is

constructed the third order decomposition scheme in case when A = A;+A,.

Let, us introduce the net domain:

@ = {te: te=kr, k=1,2.}.

Decomposition scheme on each' time interval [ti—1, t] has the following
form:

d%—) +aAwi(t) =0, d“"’(‘) ALl ()=
V(1) = 1 (ten), wk(tk 1) = -1 (1),
‘h’;( ) 4 anl(H)=0, 'i’”"(‘) AR =
U (teon) = vi(ti), wk(tk—l) = wi(t),
2RO | wa2) = d";"( ) 4 sagl() =
9 (tk-1) = v (t)s w(tr) = wi(t),

here o is a complex number parameter with a positive real part, ug(0) =
The function u(t) k = 1,2,.., on each interval [t—1,t] is defined as
follows: B {
u(t) = §[”§(t) + wh(e)].

The function u(t) on each interval [ti-1,t¢] is defined asian approximated
solution of (1)

‘We imply that in general A; and A, are noncommutative operators.

It is obvious, that the domain D (A®) of operator A° represents the inter-
section of definition domains of the addends of this operator (natural powers
of A are defined as usuall).
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Let us i the following
gl = Al + ll4egll, @ € D(A);
llpll e = |43 + 436 + 4 Azl + 1Az vl € D (42);
where ||-|| is & norm in X, analogously are defined||¢[|1., (s = 3,4).

The following theorem is proved (below by U(t, A) we define strongly
continouos semigroup generated by operator (—A)):

43¢)

Theorem 1. Let the following conditions be fulfilled:

da=ixidy (i=v-1);

b) operators (—4;), (—ad;), (—@A;) (j = 1,2) and (~A) generate strongly
CONtINUOUS Semigroups;

¢) There ezists a real number w such, that

U, Al < Me*, M = const >0,

WAl <et (=12 v=Laa);

d) U (s, A) ¢ € D (A") for each fized s > 0.
Then the following estimate is valid:

[l(te) = u(t)ll < ce“*tir® sup [|U (s, A) @llga s
s€(0,ty]

‘where ¢,wqy are positive constants.
Remark, that the solving operator of the splitted problem has the follow-
ing form:

V() = 3 05U, AU () + Ul 54U AU ()]
It is seen from this formula that stability of the considered scheme on each

finite time interval ensues from the second inequality of the ¢) condition of the
theorem. In this case for the solving operator is true the following estimate:

o < e
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In the Paragraph 2 for the problem (1) is constructed the third order
precision decomposition scheme in case when A = Aj + Az + ... + Am, where

m > 2 is any natural number. This scheme on each interval [tx_1, %] has the
following form:

I ) =6,
dt
i (tk-1) = up—1(tr-1),
d“‘(” + adnR(t) =0,

%(laq) = vi(te),

dup! (c)
dt
P () = U2

5’&@

(te),
+ Anv(t) =
U (b= x) = op (t),
gy
ﬂ% +EAn v () =0,

ot (ter) = O (t),

22
——ﬂ +TAE A (t) =

zm—u(tk =),
e
D2 a9 =)

”Z"'A (te-) =i ()

Here a is a complex number parameter with a positive real part, ug(0) = ¢

+ ahmof ) =0,

dufn2(r)
dt

d":;(t) + aAnwk(t) =0,

w(tk-1) = w1 (te-1),
B 1 g yul(0) =

wE(te-1) = wi (),

e
S0 4 anrpie) =

Wi (k) = w2 (8,
dwk €. 4 ol (t) =

W (te1) = Wi ‘(tk),
—";(t) + @AW (t) —o

W (te1) = Wi (),

)Wim_z ()=

W™ (ten) = z"fs(tk)

+ TAm.

—1
(‘) W) | g i) 20,

"""‘ (ten) = w2 (t):

w(t), k =1,2,.., on each interval [t—1,t] is defined as follows:

welt) = B0+ )
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The following theorem is proved:

Theorem 2. Let the following conditions be fulfilled:
a)m:%:tz‘;‘yi i=+—1);
b) Operators (—A3), (—Ay); (—&A;) (G =1,2, .
strongly continuous semigroups;
g) There egist a real number w such that

m) and (~A) generate

[T, A)|| < Me**, M = const >0,

lUEval < et (G=12..,m 7=10aa);

4) U (s, A)p € D (A®) for each fized s > 0.
Then the following estimate s valid:

luts) — unti)ll < ce*tir® sup |[U (s, 4) @llae»
s€[0,tk]

where ¢,wy are positive constants.

In the CHAPTER II there are constructed the third order precision de-
composition schemes for the inhomogeneous evolution equation and for these
schemes are obtained explicit a priori estimates for solution error.

In the Paragraph 1 there is considered Gauchy problem for the inhomo-
geneous evolution equation in Banach space X:
duft,
”( ORI R t>0 w0)=v @)
where A is a lmea.: closed operator with the domain D(A), which is every-
where dense in X, ¢ is a given element from D (A). f(t) € C* ([0;00);X)
and f (¢) € D (A) for every fixed t. For this problem there is constructed the
third order decomposition scheme in case when A = A; + A;. Decomposition
scheme on each interval [t;1, %] has the following form:

dui(t)

+aAkt) = 3f(t) ~200(ts —OF o)

Vi(te-1) = ur-a(te-1),
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d:

”‘5( ) 4 and(t)
Vi(te-1)
"’L“ Al
U (t-1)
d“;( )
wi(tk-1)

du}(t)
e Arwii(t)
wi(te-1)
S | sanie)
wi(tr-1)

uo(0) =

55) =203 = OF (),
vi(t),

£ 1(0) = 20t — O (1) + g
”k(t’\)v

(te=t)? ﬂ) Pt

S5t = 200(t — £)f/(t0),

w (i),
37(68) = 202(6 = O 0,
wi(te),

% 1) — 2t~ 7 0 + B ),
wi(te)-

Here an, 01, 0 and @ are complex number parameters Re(a) > 0;

u(t ) e 1,2, .., on each interval [tx—1,tx] is defined as follows:

us(t) = 320 + w0

The function uk(t) on each interval [t_,x] is assumed as an approxi-
mated solution of problem (3). The following theorem is proved:

Theorem 8. Let the ollowing conditions be fulflled:

Az)a—v:tz (1—\/ 1
=1,0,@ (j = 1,2) and (—A) generate strongly

b) Operators rE )

continuous semigroups, far which the following estimates are valid:

U, 745)]| < e,

[T, Al < Me*,  M,w = const > 0;
9) U(s,A)p € D(AY) for each fized s> 0;

IS
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d) f € C3([0,00) X); f(t) € D(AY), [P €D (A“
and U (s, A) f (£) € D(A%) for ach fized t and s (t,5 > 0);
¢) Parameters oy, 01 and oz satisfy the following relations:

2-@ 2+@ 1+a 3-—2a

e At 2

Yo 2= Erw it

o1,

here 0y is any complex number.
Then the following estimate is valid:

||u(tk)—uk<tk)nScewwa(snp U (5, A) pll s + e sup 10 (s, A)F (Ol e+
sel0t] stel0t)

+ sup [|f(®)llgs + sup [If@llse+ sup [If"(O)ll4+ sup Hf”’(t)H>v
te(0,t] L€[0,te] te0.ts] te(0,tx]
where c,wy are constants.

In the Paragraph 2 for the problem (2) there is constructed the third
order precision scheme in case when A = A, + Ay + ... + An, wherem > 3 is
any natural number. This scheme on each interval [te—1,%x] has the following
form:

d";(’) +adull) = =f(t) — 20k = DF (),
Vi(tro) = wea(te-1),
i+l
B | g @) = ()= 20t = OF (),

o () = i), i=Leam=2
SO | 4 (§) = = (0) = 2om(te— O 60,
VP (tem) = WP (t),

o (°)+aAw AT = Z0) ~ Dot = O (1),

e (teo) = vi"*"_' (&),

Lm—2,
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SrA ) = L) 2t 07 G0+ B ),

v () = ()

dugm ()
dt

PO | pmul(®) = 16 = 200t = O 80,

wi(te-1) = uk=a(te=1);
PO g w0 = 2 5(6) — 2ovsa(ts = O (8
witl(teer) = wi(te);  d=1,...m=2,
i

FAOP(O) = L (0) ~ 2om(te ~ )1/
w(teo) = Wl (t),

+TA D) = (0 — 2omaalt = OF ()

opt(tem) = "*“‘(tk), d=10m =2,

duwpti(t)
dt

(t=t)?

) | i) = o f(0) — 2oame 1 = )/ () + B )

TR (). = TR

Here d,, 02, .. Oam—1 and & are complex number parameters, Re (@) > 0,

u(0) =
On each interval [te—1,t] (k =1,2,...) uk(t) is determined as follows:

) = 20O eIl

The function u(t) on each interval [tx—1, ] is assumed as an approxi-
mated solution of evolution equation. The following theorem is proved:
Theorem 4. Let the following conditions be fulfilled:

oa=txids (i=v71);
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b)Operators (—vA;), v =1l,0,@ (j=1,2,..,m) and (—A) generate
strongly continuous semigroups, for which the following estimates are valid,
respectively:

U 745)] < €,
U@, Al € Me*t, M,w = const > 0;

9) U (s, A)p € D (A%) for each fized s > 0;

4) () € C(0,00:X);  fB € D(A), [O) € D(AF), k=
1,2 and U (s, A) f (t) € D (A*) for each fized t and s (t,s > 0);

e)m>2, 0;=061, Om=02 Omy=0s (j=12..,m—1),
e 1
= 2[Om+ Da—3m]’

51=(9a—4)35, 2=

(m—1) (31— 53) .
Then the following estimate is true :

[lute) — ur(t)ll < ce*tr® ( sup [[U (s, A) @llgs +tx sup [[U(s, A)f (t)l|s +
selo] stel0 ]

+ sup [|f(&)ll4e + sup (I (B)la2 + sup [If'(©)ll4+ sup ”f'”(t)ﬂ)v
telotel o) celot) tel il

where c,wq are positive constants.

In the CHAPTER III there are constructed the third order precision de-
composition schemes for the evolution equation with variable operator and
for these schemes are obtained explicit a priori estimates of solution error.

In the Paragraph 1 there is considered Cauchy problem for the evolution
equation with variable operator in Banach space X:
du(t
B0 L apu© =0, t>0, w0 v ®
where ¢ is a given element from D (A) and operator A (t) satisfies the fol-
lowing conditions:
a) The definition domain of operator A(t) does not depend ont and is
everywhere dense in X;
b) For each fized ty,t2,s € [0;T] the following inequalities are satisfied:

A - Ae) VAR @) Sarla—tl!, g€ @1, o =const>0;
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) For every complex z, Re(2) 2 0, there exists operator (2 — A (£))™,

for which the following inequality is satisfied:

Jr-a)] < o5

¢ = const > 0.
1+|z\ 2

Then the solution of problem (3) is given by the following formula:
u(t) = U(t,0; A,

where U(t,0; A) is a solving operator of problem (3).

There is considered the case when A (£) = b (t) (A1 + Az), where Ay, (i =
1,2) are closed operators densely defined in X, function b (£) > by > 0 satisfies
Helder condition. In this case there is constructed the third order precision
decomposition scheme which on each interval [tx—1, t] has the following form:

)
L‘{A"L"'l + b (t) Al 08 d”“(t)

+ ab (t) Aswi(t) =
Vi (te-1) = wea (ten), Wi(ta 1) = U1 (te-1),
dui(t) dwk(t
il b () Asvi(t) =0, +b(t) Ajwi(t) =0,

W (temn) = vi(t), "’A(tk—x) = wi(te),
d”;( ) 4 @b (t) () = 0 d'"k(‘) b (£) Ayuid(t) =
o (ti-1) = vR(t), wk(tk—l) = wi(tx),
here a is a complex number parameter with a positive real part , uo(0) = ¢-
On each interval [t—1, %] (k = 1,2,...) the function u(t) is defined as follows:

i
wi(t) = E[Vi(t) +u(@):
The function u(t) on each interval [tx—1,¢x] is assumed as an approxi-

mated solution of continuous problem.
The powers (A3, s =2,3,4) of operator Ay = A + A, and denotations
llllag
)

(s=1,2,3,4) are introduced ly to the first h of the first
chapter.
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The following theorem is proved:

Theorem 5. Let the following conditions be fulfiled:

da=ixidy (i=v=

b) There exist operators Ut fos 75 () Ap)y 7=1,0,2 (5 =0,1,2) solo-
ing the problems

d”d“’ Fb() A () =0, t>t20, v(t)=peD(4),

and the following conditions are satisfied:
U, ta:75 () 45| < €241,
U t035() Ao)ll < Me*t=), M, w'= const > 0;
g) function b(¢) > bo > 0 satisfies Helder condition;

d) For each fized s1,52 >0 U (s1,52:b(-) Ao) 0 € D (A):
Then the following estimate is valid:

/
[lets) = ur(te)ll < ce*ter®  sup ||U (s1,52;0(:) Ao) @l a5
s1,52€(0] >
where ¢,wp are positive constants.

In the Paragraph 2 there are constructed the third order precision Cher-
noff type formulas for the evolution problem with varigble operator, which
we can call averaged symmetrized formulas. For the error of solution con-
structed on the basis of these formulas there are obtained explicit a priori
estimates. In the same paragraph for the solving operator of the problem (3)
there are constructed the fourth order precision approximation formulas by
means of resolvent polynoms. These formulas have the following form:

W (t b1 () Ao) = @il + b (T + N Ao) ™+ s (I + MirAo) ™2, (4)

W (8 tiv,b.() Ao) = (I — Mo Ao) (I MarAo) ™ (I + dairAo) ™ (5)
‘where

1k 1 \/3 Yok — 2Tk
o=k
T2k | 2v3 Tk
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2Nk | Y2k 3ne 22k P2k Mk
— ] —SILkOpaE 2R s ] = JzE Dk,
& N TaaE e e
6 + 0k 1 ’ N
S 2 IR Nk=3 (dk+i(—1) ‘/4erd,i), (i=v=1), s=12,
_ 3 = Tk 33— 2mksk

L e= )
611k — 372k 2 (62, — 32
and where

_3b(te) +0 (LL,,/a)
=

s k=0 (tez) s Yok =0 (taoaya) -

By means of formulas (1),(4) and (5) are constructed the following de-
composition formulas of the fourth order precision:

1
Viltiy tiea) = 5 (W1 (i timr,0() Ar) Wi (b, tim, D () Ao) Wa (s tins,6.(:) Ar) +
AW (i tior, b () A2) Wa (b tio1, () Ar) Wa (b tic1,0() A2)], E= 1,2

(6)
The solution of the continuous problem in the point t = t is determined

by the following formula:
w(ts) = U (ti,ti1; 0 () Ao) w (ti-a) - (@)
On basis of formulas (6) and (7) in the present paragraph there are con-
structed the following decomposition schemes of the third order precision for

solving the problem (2).

= Vit ti) (i) o=, 1=1,2, ®

where

Vit te) = 5 (W (i e, 0 () As) W (it b ) ) Wt i B0 C) )

W (s, tima, 0 (+) Ag) Wi (tiyticr, b () A1) Wi (t,tir, @0 () Ap)], = 5:‘:12‘/—
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The realization of scheme (8) is carried out by the following algorithm:
o = Wttt B () A) () s “wicaga = W12, () ) (),
s = W (i tica () A) (icags) s 'wicass = Wi (b tioa, b)) (ags)
g = W (b tic, b () A) (o) e = Wity tion, 00 () A2) (‘wicass)
il
b= [wt ', =g,
The following theorem is proved:

Theorem 6. Let the following conditions be fulfilled:
a) For every > O there ezist operators (I + YATA;) ™, j=1,2, 7=
1,a, @ and they are bounded, in addition the following inequalities are valid:
IWa (7, 74|l € €7, w=const>0, 1=12;
b) There exists the operator U(t, toi b () A;), 7=1,0,3 (j=0,1,2), solv-
ing the following problem:
dv (t]
% S () A () =0, t>te>0, v(t)=¢eD(4),
and the following inequality is valid:
([0, o3 76 () A5 < e,
lU(2, t0;b() Ao)| < M=), M,w = const > 0;
9) b(t) = bo > 0 and b(t) € C°[0;00);
) U (s1,82;b(-) Ao) p € D (A5) for each fized 51,52 > 0.
Then the following estimate is true:

[uer) — e < cetr® sup ([U(sn, 2 A)pllags L=1i2,
s1,52€(0,44] 3
where ¢,wy are positive constants.

Remark. If Ay, Az .An (m >2) and Ai+As+..+ An are
self-adjoint positively defined operators, then in the estimations of the above
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mentioned theorems (Theorem 1, 2, 5, 6) e“o will be substituted by e=**',
(wo = const > 0).

In the APPENDIX there are made numerical calculations, which are in
full accordance with theoretical results.

The results of the dissertation work are published in the following papers:

1. Gegechkori Z. G., Rogava J. L., Tsiklauri M. A. High degree preci-
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2. Gegechkori Z. G., Rogava, ] L., Tsiklauri M. A. Differential scheme
of high degree precision d of h lution problem.
AMI, Thilisi, 2001, vol. 6, No 1. p. 45-80.

3. Gegechkori Z. G., Rogava J. L., Tsiklauri M. A. High degree precision
decomposition method for the evolution problem with an operator under a
split form. - M2AN, Paris, 2002, Vol. 36, No 4, p. 693-704.

4. Tsiklauri M. High order of accuracy decomposition method for an
evolution problem with variable operator. - Proceedings of I. Vekua Institute
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5. Tsiklauri M. High order of accuracy decomposition of the evolution
problem with variable operator using resolvent polynoms. - Proceedings of L
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6. Gegechkori Z. G., Rogava J. L., Tsiklauri M. A. High degree preci-
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method of high degree precision for Cauchy abstract problem solution. Thilisi,
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INTRODUCTION. The dissertation is devoted to the investigation and numerical realization
problems of some mathematical models describing various phenomena, Considered  non-
classical mathematical models represent classical and non-local initial-boundary value problems
stated for pluri-parabolic equations, also generalized non-local initial-boundary and boundary
problems stated for some parabolic and elliptic equations. Such problems arise during the
investigation of most difficult and important problems of physics, technique and ecology and
various other branches of science. The models considered hereby mainly concer  the
description and analysis of diffusion and displacements of mixtures, particularly, pollutions in
the rivers.

Experiments for research of mentioned processes are very expensive and, in some cases,
even impossible. Application of mathematical modeling, numerical analysis and computation
technologies through creating virtual images on computers i cost effective, sometimes the only
way of studying these phenomena.

Thus, for the development and’ investigation of ccological problems application of

methods and i s the one of the most important means of

research.

To the theoretical investigation of mentioned mathematical models are dedicated the
researches of such famous mathematicians as J.-L. Lions, S.V. Vladimirov, A.Bousiani, A.A.
Samarskii, A.V. Bitsadze, A.M. II'in, M.A. Sapagovas, B.P. Paniakh, etc.

Coming out from the above said, it is evident that the theme of the dissertation is very actual,
interesting and important not only from the theoretical but also practical point of view.

The aim of the dissertation is the research of some classmal nnd nOH—ClHSSlCBl mlual-
boundary value problems stated for pluri-parabolic equatiori and i
finite-difference algorithms for their numerical resolution,’ nnnlysis and construction of solution
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in case of specific areas (71-dimensi iped, sphere, generalized cylindrical area) of
non-local problems stated for some multi-dimensional parabolic and elliptic equations.

To prove the uniqueness of solution of non-classical problems stated for pluri-parabolic and
parabolic equations the author uses special encrgetic inequalities and principle of maximum. To
study stability and convergence of explicit and implicit finite-difference schemes corresponding
to the mentioned problems there are used specific energetic norms. With help of special
encrgetic inequalities and norms there are proved convergence and stability of averaged
decomposition algorithms developed for non-classical problems with pluri-parabolic_and
parabolic equations. To construct the solution of non-local problem stated for some elliptic
equations there is used the method of Fourier.

The following results are obtained:

1. For pluri-parabolic equations there is proved the uniqueness of solutions of some non-

classical initial-boundary problems in case of generalized non-local boundary conditions.
There is constructed the iteration process which reduces the resolution of non-local
problem on the resolution of classical one. There is shown that iteration process
converges with the speed of geometrical progression.

2. For the resolution of classical initial-boundary value problems stated for pluri-parabolic
equations there are d and investigated finite-diff schemes. There arc
shown stability and convergence of difference schemes.

3. For pluri-parabolic and parabolic equations the author has built and investigated the
averaged decomposition algorithms of parallel count.

4. For the resolution of three-point difference problem with non-local boundary condition
there is constructed generalized Factorization algorithm. On the basis of these formulas
there are conducted various numerical experiments.

5. For Poisson equation in case of some generalized type non-local boundary problems

stated on a sphere there is constructed and studied the solution. In case of general
cylindrical area for certain linear elliptic equations with non-local boundary conditions
there is constructed and investigated effective solution in the form of a scries.

The dissertation contains complete study of parameterized difference analogue of linear
pluri-parabolic equations with classical initial-boundary conditions that was first suggested by
the author. There are analyzed averaged algorithms of parallel count that were constructed for
multidimensional parabolic and pluri-parabolic equations with non-local initial-boundary
conditions.

‘The numerical algorithms and research carried out in the dissertation, paticularly the method
of iteration and construction of solution in the form of series for some non-local problems,
generalizes the old results of various authors obtained through the investigation of non-local
problems stated for some linear elliptic, parabolic and pluri-parabolic equations.

BRIEF CONTENT. The ion gives hi on the
subject-matter and brief context of the work.

Chapter 1 “Awxliary assertions” gives definitions, designations and theorems used in the
following chapters.

Chapter I is devoted to the investigation of classical ‘and non-classical problems stated for
pluri-parabolic equations.

In the first paragraph there is stated the following problem: there is searched the function
u(e,t)eC(D)N (D), satisfying equation

Lu(x,0)= f(x1), (v£)eD, @1.1)

and the next initial and initial-boundary conditions:




CURRENT NEWS 161

Aol
. (212)
Uty yes 3y 130) = P (5 Lol ) X € G, 0S8, ST,
u(,t)= g, (x,1), xeT*, 01, <T,, i=Lm, @.13)
@1.4)

where

L= i}lnv (x’l)axa-;x + ’Z:b, (x,t)£+ c(x1)- IZ:: ok

in (21.2)-(2.1.4) conditions there is assumed that conditions of compatibility are fulfilled; a,
8. a, (i=0,P) are given constants; ¢, (i=Lm), @,(5,0), xe) and f(xr) are
prescribed, sufficiently smooth functions defined on the corresponding definition areas;
QB o Ony 7)o+ Pcos(Ox,,7), 7 is the normal of T boundary, (Ox,,7)
av  ox x,

(i=1) are the angles between O, axisand 7 normal vector; D — (+m)-dimensional
area in R™" space, D=GxQ, (50)=C1Xpslientn)eDi GSRL T s
sufficiently smooth boundary of G =G xT'; in addition T=T" UT"; inthe G there are
given I (i=0,P) curves crossing the G  without touching T~ and there exists
diffeomorphism 7,(-) between T curves and I~ boundary, Z,(T")=T (i=0,P);
Q=(0,7;)x--x(0,7,,), where T, (i=0,m) are known constants. There is assumed that
the following conditions are satisfied:

(A) for any (xf)eD point and real vector ¢=(¢},8,)#0  the inequality

a%¢i< 3 a¢i¢, <@y el istue, @, @ aregiven positive numbers;
i :. Al

(B) the coefficients of L operator are. continuous functions in D5
(© ¢(x.)<0in D.

For the pluri-parabolic operator there is proved the principle of maximum, which represents
the analogue of well-known principle of maximum for the parabolic operator.

In the second there is i1 i the question of uniq for the problem
stated in the previous paragraphs. Using the principle of maximum the following theorem is
proved:

Theorem 22,1, I =0, @#0, ‘)’Ea,
I3

<

in (21.4) condition and there exists. solution

of the problem (21.1)~(2.14), then the solution is unigue.
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From problem (2.11)-(214) under the assumptions, that G=(0,,)x---x(0,1,),

1, =const,

— 2 & L) rae s
Ln and LEEa”(x,l)a—_Yz'%c(x,()fEaT" in additon @ >0, £>0,

x,,1), the following problem is

obtained:

Za”(t :)—+c(\ i~ ):——/(x 1), (x1)eD, @2.1)
u(; 0,0, )= w"(x i ) xeG,OSl <T,,i=2,m,
(22)
u(x,r,, ot 10)= 01 (5 by sty ) X€ G0t ST, i=Lm—1,
U050y 1) = Py (XX t), 1€Q, 0<x, <1 0i=2m,
(X% 30,0) = P (e Xyps )y 1€, 0 x, ST i =1n—1, (223)

(s LyesXps1) = @5y (Ryseees Xy 1€ D, 0 x, SUpi=Lm, i %2,

(kg ht) = O3y (e Fpt), 1€ T, 03, S Ui =Ln=Lizn,

oully, y,1)
e

+au(ly, %y l)= _fﬂa,u(;,xz,,..,t)Jf Bty @26

10, 0<x <l,,i=2,nm,

). are sufficiently smooth prescribed functions in the corresponding

where @y, @y,
arcas, {£,}7, are given points 0< & <---< &, <I. There s proved the following theorem:
Theorem 2.2.2. If in non-local condition (2.2.4) one of the following two conditions are

5
satisfied: @) @ 20 (i=0,P), 5.2 <1; ort) @, <0 (i=0,P), ZM <1 and there exists
2 S

the solution of the problem (2.2.1)-(2.2.4), then solution is unique.
In the third paragraph for the resolution of the problem stated in paragraph one there is
suggested the iteration process,:
Lt (x,0)= f(x,1), (v,1)eD, @3.1)
(1012, o ) Gu(Gtyraty) x€ G0, sr,i:ﬂ,
o (232)

! (x byt ,,0) (B liolh 36 G, 0 < T 0
u*(x,0)=p,(x1), xeT*, 0s1,<T,, i=Lm, (2.33)
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SIo=21F10]

ﬂw e =3 etk (et o (), @34)

xel™, 0<t,<T;,
k=012,...
and the following theorem is proved:
P
>a
=]
Solution of the problem (2.L1)-(2.1.4), then the iteration process (2.3.1)-(2.3.4) converges fo

the exact solution of the problem (2.1.1)-(2.1.4) with the speed of geometrical progression.
In the fourth paragraph there is considered the following problem: there has to be found

the function u(x,t)e C*((0,4,)x(0,)x (0, 7))n C**°([0,4]x [0, ]x[0.1;]), satistying

the equation

Theorema 2.3.1. If in (2.3.4) condition =0, | and there exists the unique

e
xe(O,/,),I,E(O,T]].IIG(O,T:),

0’u(x,r) _oulx,1) au(x‘ = @4.1)

initial conditions
u(x,0,0,)= 9, (x.0,), 0Sx <1, 0S¢t Ty, (242)
u(x,1,,0)= ¢, (%,1,), 0<x <1, 0<1, sT,,}
and classical boundary limitations
u(0,11,1,) = @3 (11,1,), 054, S T;, 0<t, STzv} (243)
ully t,1,)=03(61,), 01, ST, 0< 4, < T, |
On the regular grid @, there is the following  finite-diff problem
corresponding to the differential problem (2.4.1(24.3): there has' to be found
= y(x,11,,, ) grid function, satisfying the next difference equation,
S i e s |yt % e _ ki (1-9,)"'/”" 3
T 7, 7 o

0,0,L,y"™ " +0,(1=0,) Ly +(1=6,)0,L,y/*" + (1=6,J1-6,)L,y/* +

244
SR =T N1, j=0N, =1, k=0,N; =1, )
and the following conditions
ot g 08 7 .
o =ail’s D,
=l 7 !
wr=e", 20N, k=0, (2.46)
it =0 J=0N, k=0,

where, y/* function is the grid function definedion the: @, discrete areaicorresponding to

D, which cartesponds to the u(x,t,1,) function, 0<6, <1 (f=T5) are given parameters,
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FI*, g0, @* and pJ* are respectively grid functions of [~ £(x, )] and those used in the
left side of initial and initial-boundary conditions (2.4.2), (24.3). /i, 7, 7 are steps of regular
grid ,,,, correspondingly for x, f, and 7, arguments;

= yi =2yt +yly
Wit = L .

3
The following theorem is true for the scheme (2.4.4)-(2:4.6):
Theorem 2.4.1. If the function u(x,1) is sufficiently smooth, then the scheme (2.4.4)-(2.4.6)
approximates the problem (2.4.1)-(2.4.3) with the precision of Ole, +7, +h*) order, if in the
difference equation (2.4.4),
1
9 0,=0,=0,=5, 0,+0

A

Fi*=—f; S Ofel + 22+ 1), then y!* = O(c} + 73 + *);
; e N
i 6,=06, i e AT

+0(c2 +22 +h*), then y/* =0(e? +72 +4*),

where y/* is an approximation error.

In the fifth paragraph there are considered two explicit and two implicit schemes. They are

obined by sclecting the concrete parameters 6, (i =1,5) in the problem (2.4.4)-(2.4.6).

If6=0,= % 6,=6, =0, then difference equation (2.4.4) takes the form:

1 ey
—= @G

N
2 & 2 = 2 @ 2 G
=L yl* + F*, i=LN-1, j=0,N,-1, k=0,N,-1,

. Simulation of difference equation (2.5.1) consists of five

where is assumed, that 7, =7, =
grid points. The following theorem is true:

>
Theorem 255.1. 7 < h? the finite-difference scheme (2.5.1), (2.4.5), (2.4.6) is stable and its

solution converges to the solution of the problem (2.4.1)-(2.4.3) in the sense of uniform norm.
When 6, =6, =1, 0<6, <1, 6, =0, 6, =1, there is obtained the following scheme:

JLks ek gelkel gkl
i . i - I 0Lyt (1=,), y + 14, @54
2 |
i=LN-1, j=0,N,-1, k=0,N, -1,

with simulation consisting from seven grid points. Stability and convergence issues are covered
bye the next theorem:
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2
Theorem 2.5.2. If 7, < i , the scheme (2.5.4), (2.4.5), (2.4.6) is stable and

»

20, 2(1-6,)

its solution converges to the exact solution of the problem (2.4.1)-(2.4.3) with the sense of
energetic norm.

Selecting the parameters in the following way: 6, =6, =6,

IS

=0, =1, there is obtained

the cquation,

S gl gk gk
PR iyl Sy s 255
T2 i
i=LN=1, j=0,N,~1, k=0,N, -1,
with simulation which consists of five grid points.
Theorem 2.5.3. The scheme (2.5.5), (2.4.5), (2.4.6) is absolutely stable and the solution
converges to the exact solution of the problem (2.4.1)-(2.4.3) in the sense of energetic norm.

When 0,=6,=0,=1/2, 6,=1 and 6; =0, there is obtained another implicit
scheme:
e B s T B L U
2 z 2.0 2 7 20
1

Lyt

r=t,=7,i=L,N-1, j=0,
with simulation consisting of eight grid points.
Theorem 2.5.4. The scheme (2.5.8), (2.4.5), (2.4.6) is absolutely stable and its solution
converges 1o the exact solution of the problem (2.4.1)-(2.4.3) in the sense of energetic norm
n a’
Z a2’
and G =(0,1,)x---x(0,1,). There is constructed the following decomposition algorithm of

In the sixth paragraph there is considered the problem (2.1.1)-(2.1.4), when 15

parallel count:

kbl rhoketl ()

(267

itk

LT
J"(Ey & ) o

Lo, 200, co,,(k =ON,~

Rtk o )

1101935
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kol
b4l

ks oLk o

=y

kil ket

=n =

bt =T N

0kt ka ¥l

k4t _ S Bkl Ok bk tl _
y =zo >V =

stk Kbk,
|

I =

Lk
BUTRI

kb

Kbtk
=yt =tk

& Ktk kL0
=20 >V =0

b0y, <0, i —a

oLkl 0

10,5, 1) = O (e

a “

LAk,

(AN L3 i (R
a (269)

= By Gk tin) P (E2rotin

0<x <l (=Dni=1) k =ON,

e

At (0,2, o lhr b
A

PRAAA (0,5, . 1y 1) = 9
it L ) =

S
0<x, <l [i=Lmi=2) k =0,N, 1,

(26.10)

b 0,0,)= g, e 0 )
bt )= g o O)
0<x <l [i=Tnizn) k=ON-1,

where o, =4, 1, =k7k =ON, Nyz, -1}, Gon =l

bttt o), i=ln, k=GN = ),

=Tn)s @i, =Tm

ik kot ATk kit
oo -
Rl e AT T

;
(1=Tm) andpy (1=Tm) av given functons. The following theorem takes place:
Theorem 2.6.1. If in non-local condition (2.1.4) one of the two following condiions are
e ule, =
satisfed: @) 2,20 (i=0m), $2<1 or b) @ <05l (i=0m). then @26.7)-
= %a
(2.6.10) algorithm of parallel count is stable with respect to initial conditions and right hand
Sfunction and. converges to the exact solution of th initial problem with speed of o).
Chapter III is devoted to the investigation of non-local problems stated for ‘parabolic
equations.
In the firs paragraph there is stated the following problem: there has to be found the

fanction u(x,1) € C* (17,0 <t <T) " C"*(IT, 0 <t <T) satisfying equation
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NPT EE

oulx) _ 2 9 oulx,0))_
o) 3 2 [a,,u,,)Tx, s} s 5 €Ty, 0<L<T,

and initial-boundary conditions
u(x,0)=0,(x), xeTI,, @.12)
(0, %y 00 1) = 91y ey D)0 <., <D (=) (1#1),0<0 ST,

u(x,,0, %, /}0<x,<1,,('—ln)(1:2),0<t<7‘ iy
u(xy,e .,.\—M,o,A):qp,"(x,,.,.,xn_,,o,@os;, <1,(i=1, nl(lzn) 0<1<T,
5M+au(1,,i]= auln®) o (), e, 614

=

ulx,, by, %, »XHJ) O 530,140 <5, <1, (=T ) (2 2) 051 <T,

W ¥yss 1) = Pan (e 2 000 02 3, <1, (i =L mp (% M) 00 ST,
where 1, = const (::l,n), f(x0), @ 0, (x=!,7) @,(x) are sufficiently smooth
0,m) are given constants (>0, f>0), a,(x1)

(3.1.5)

prescribed functions, @, B, @, (i
(ij=1m) are once continuously derivable  functions, - a,(x,£)>dy, =const>0 and
JED), T =08)x04)) Lo =L)x-08),  (rr)=(5.%),
(%%, )€I1, and TeIT,

Theorem 3.1.1. f in the condition (3.1.4) one of the following limitations are true: a) & =0

X

(i=0,m) }":ﬂ <1 orb) @,<0 (i=0im), S0 ot i vt asotuonofh
& Ga

problem (3.1. 1) (3.1.5), then it is unigue.
In the second paragraph there is constructed the algorithm of parallel count for the next
problem: there has to be found the function satisfying the following equation:

w8 ii[a (ot ﬂj Cle, uleat)+ £(5,1), xell,, 0<t<T,(321)
Ot = %,

and (3.1.2)-(3.1.5) initial and initial-boundary conditions, where a; > a, =const>0, i=Ln

is once continuously derivable functions with respect to!their arguments;C(£)2 0. is given

continuous function on D; £ (x,¢) € C(D) is prescribed function, The algorithm is as follows:
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new,lk=0N=1) G239

o2 conror

(3.2.4)

V2 (5t0) = 0 (%)
770
L

?(’nxz,---v'm]*HJ’f“('p-\’zv--Jk.l):
]

1) = O (xy

(325)

=Sy (6 v i)+ 0uarti)

0<x, <l ((=Tmi#1) k=0
Y37 (500, %5t ) = 01 (510, %3 1)
V37 (o0 s X3t ) = 922 (51,0, 55 )
0<x <, (i=Tni#2) k=0N

(3.2.6)

DA CRE BTN ET M CRE SR )
P C A ET S CE AT

0<x, <1, (=Lmi=n) k=0,N=1,

—kr,k=O,N,Ne=T}, yt=y(xt), i=Ln, k=0N,
ha

‘where

x

e . The following theorem

@

is true:
Theorem 3.:2.1, [fin the condition (3.2.5) one of the following two conditions are satisfied: )
e o
2,20 ((=0m), 3%<1 ort) @, <0 (1=0,m). then (3.2.3-3.26) algorithm of parallel
fa
count is stable with respect to initial conditions and right hand function, and converges o the
exact solution of nitial problem with speed of O(¢""?).

In the third paragraph there is worked out gencralized factorization method for non-local
difference problem

41 =Cyi+ By ==F, i=

LN-1, (33.1)
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Yo =R+t Yy = oI, +Ro Yy + My (332)
where 4,, C,, B, and F, are given grid functions, y, is unknown grid function defined on

{0...., N} set, 8,, g1, N, and p, are given numbers.
Generalized factorization method is:

V=Bt B 39
&=t =R, (3.3.4)
Ba= ET LN=I, B, =4, (335)

BB, +N.By + 1y 636

where

B =[Enn @Bl [ + (@Bl B
Theorem 3.3.1. There exists the unique solution of the system (3.3.3)-(3.3.6) and if

[l =[]+ (Bl ]l [Ra]< 1 [R[+R[ <2 and [R,]+ $lay| <1, then constructed
=

generalized factorization method is stable.
In the fourth paragraph there is written out generalized factorization method for the next
problem: there has to be found the function
ux,1)e C*(0<x<10<1<T)NC*(0<x<L0<t<T)
satisfying equation

ou

ot

o

7[lc(x,:)%] —Clr, )l 1)+ f(x2)s (34.1)

0<x<l,0<t<T,
initial and initial-boundary conditions

u(%,0)= @, (x), 0sx<l, (342)
u(0,)=0,,(¢). 0st<T, (3:4.3)
p%(l,z)+au(l,:)= ‘ina,u(g,,x)w,,(z), 0<t<T. (B.44)

There is constructed corresponding difference problem which is: prepared for being resolved
with the generalized factorization method.
Chapter IV contains rescarches of non-local problems for some elliptic equations.
Tn the first, second and fourth paragraphs there arc considered the private cases of the
following generalized problem:
bu(r,6,0)=0, (r,6,0)€ B, @“3.)




170 __ CURRENTNEWS,

ou(a,6,9)
B

+au(a,0,0)= Ear'(a,,9 w)‘lfﬁlu( 0,0)dr+ 1(6,9),
0<@sm, 0sp<2m,
where £20, @20, a+f>0, Sa? +5 82 #0, f(6.p)c C*(S) is given function, for
Zrie

which there arc investigated issues of uniqueness and existence of solution. Solutions are
constructed effectively in the form of series. In the first paragraph there is considered separately
cases of Bitsadze-Samarskii generalized non-local condition and integral conditions, but when
B =0. Then, in the second paragraph there are considered the same conditions separately when
B#0. In the next paragraph questions of uniqueness and existence of a solution of the
problem (4.1.1°), (4.3.1) are stated in the following theore:

Theorem 4.3.1. Ifin the boundary condition (4.3.1) @) @, <0, B, <0 (i=0,m) @0, or

b @20, 20 (i:ﬁ), >0 and Y a?+Y 7 <a,then there exists the unique
=
solution of the problem (4.1.1), (4.3.1) and it can be written out in the form of the next series:

u(rﬂ,w):é(i]{ﬂ%*—a—ga[%)n nHZﬂ[ ( )“Hly(wsuz)

In the fifth paragraph there is considered the following problem:

Lou(x)+ Lu(x)= £(), xeD, @D
u(x)=g,(x), xSy, @52
u(x)=,(x), x € Sr, 423

(45.4)

AL (7)+ aull D)= 5 ol 7) ¢ [ e e+ 4(2), 5T,

where

T e DO E RO - (R RS

a, B, a, (x:l),m) are given constants, @>0, $>0, @ €C(Sy), @, € C(S;) are
prescribed functions, @€ C?(T) is known function, D is cylindrical area, Dc R™,

=0)xQ, Qc ", x=(x0,¥)eD, 0<x, <1, T =(x,.-,%,)€ @, S =I'x(01)
is side surface of cylinder, S,={x:x=0,¥c@} is the lower base of cylinder,
Sy ={rix, =1, ) upper base of cylinder, {£) given set of  points,
0<& <&, <1, ayx,)eC'[01] is prescribed positive function, ()< C(0,1) is
known function, 4o(%)>0, f()eC?(D) are also known functions, L and L, are
uniformly elliptic operators, a, (x)& C'(D) are given cocfficients, g(x)e C!(D) is given non-

negative function.
The following theﬂrems of uniqueness and existence of solution are true:
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Theorem 4.5.1. If in the condition (4:5.4) either ) @, = 0i=0,m), 52 <1, orb) @y <0
Ea

=

solution is unique; if ) @ >0, (i=0m), 3% =1, g,(x,)=0, q(x)=0; then the
&a

<1; and there exists a solution of the problem (4.5.1')-(4.5.4)), then the

solution could be found with the precision of any constant
Theorem 4.5.2. Assume that in the problem (4.5.1)-(4.5.4") a, (x)=gq,

D al)=1, 6(n)=0, A=0, a=1, p(x)=0, series 30,0, Smown
2 2

0

3. 120, w, absolutely converge and one of the following conditions are satisfied ) @,
&

i=O0m; or b) @20 i=0,m, Sa,<1; then there exists the unique solution of the
=

problem (4.5.1')-(4.5.4) and it can be written out in the form of the next series:

(4.5.15)

where w, (n=1) functions are eigenfunctions of L aperator, 1, (n =) are cigenvalies
of Ly operator, ¢, (n=1e) are coeffcients of expansion the ¢ < C* (D) function in series in
{w, }7., basis; or

Bifa=f=a =0
00/ 1,), | =0011422), where p1,, (n=Teo) are L, operator’s eigenvatues,

m, & =0, plx,)=1 and the following conditions take place

) are solutions of the following problems:
d i
)2 )+ 2)=0. 0 <50 <1 001 a0,
(n=1).
where A, (=1 munbers are L operator’s eigenvalues; then there exists solution of the
problem (4.5.1)-(4,5,4"), it is unique and can be written in the following form:
i) e
u(x0, %)= Z—zu—%wn(x)- (45.16)
Jv": (o
where w, (n1=1,) functions are eigenfnctions of L operator, @, (n=1,%0) coefiients of
expansion of ¢ € C*(D) function in series in the {w, }7., basis.
GENERAL CONCLUSIONS. In the dissertation there are investigated non-local initial~

boundary and boundary problems for pluri-parabolic, parabolic and some elliptic equations. For
the resolution of stated problems  there are suggested and studied the iteration method, semi-
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discrete and finite-difference methods. On specific areas for certain equations in case of some
non-local conditions, there is constructed solution i the form of serics.
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INTRODUCTION. The consideration of real processes often leads to necessity of investi-
gation of two - parameter families U(t, s) having the property of evolution:

U(t,s) = U(t,n) x U(r,s), Uls,s) =e, )

where: (s,1) belongs to some subset of R? « is a binary associative operation; e is the neutral
clement with respect to *.
Indeed, in the theories of dynamic systems, ergodic and probability, various types of cascads,
flows, non - autonomous flows, Markovian processes and so on are actively being explored.
Obviously, the additive case,when * is addition in a Banach/Fréché space, lies in the frame
of classical analysis.

The multiplicative case, when x is a ition of linear/; i and the
topology on the space of operators is not uniform, is i bl icated iplicati
integral calculus is at initial stage and the lop: of iplicative di ial calculus is
not began.

The whole area of evolunon systems is, ically inexh ible, so the ies of i
systems having appli in 1 ions and optimal control theory are of special
interest. The solutions of ordinary di i i as the ions of initial values, have
got the property of evolution. So, progress in the sphere of analysis of evolution: systems is
important for us in view of the following If the technique of integr:

of the families of type (1) is elaborated, then the integral representation of the solution of
ordinary differential equation, as function of the field, means existence of solution., Thisifact
can be used in proving theorems of the existence of solutions in the theory of ordinary,differential
equations and the existence of optimal controls in the theory of extremal problems. The explicit
form of the solution can be effectively used to explore the attainable set, what is important for
ining necessary conditions of optimality. Taking into consideta(;ion, that many differential |
equations with partial derivatives can be rewritten in Banach space as a type of ordinary
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with unt ded linear for which methods of multiplicative

calculus are applicable, we again see how vast is the sphere of its applications.
The present thesis realizes the following program.

1. As the motivation of i of : systems, we have ob-
tained some important results in the well - elaborated fields of optimal control
theory. We have used the representation of Cauchy problem solution as evolution system
of functions of initial values. Using compact expressions for optimal and varied trajecto-
ries, we have given simple analytic proof for Pontryagin’s Maximum Principle with fixed

dpoints. This proof is appli even when the number of points of discontinuity of
admissible controls is uniformly bounded. Such a class of admissible controls often appears
in applications, and in this class the existence theorems for a large class of optimal prob-
lems are valid. Proving the existence theorem in Banach space for controllable object with

bounded we have i used evolutional representation of solutions.

2. D of hods of ¥ i analysis for functions of real vari-

able with values in a monoid of special type, practically in minimal algebraic

restrictions. Such an approach is applicable in both additive and multiplicative cases.

To this end, definitions of the derivative and Riemann integral are modified in such a way,

that the results of ical analysis (i i diti i and evolu-

tionary dependence on the limits of integration, differentiability with respect to the limits
of integration, the Newton - Leibnitz formula) remain valid. Consequently, the simplest
i i i can now be i in a monoid and their solution is given by

Newton - Leibnitz formula.
Development of methods of ordinary differential equations in a near - semi
- ring of special type. If we have consistent structures of additive and multiplicative
monoids, it is natural to determine differential equations and formulate the Cauchy prob-
lem. Under certain conditions the Cauchy problem is equivalent to the simplest problem
formulated in a multiplicative monoid, and it can be immediately solved by means of the
Newton - Leibnitz formula. Let us note that the definition of the near - semi - ring of spe-
cial type does not involve assumptions on linearity, finite dimensionality, commutativity
and coordinates. As a result, for ordinary differential equations in R® we have obtained
the integral representation of solution and the information about the dependence of the
solution on the initial values. For a wide class of differential equations we can obtain
estimates of higher derivatives of the Cauchy problem with respect to initial values.

5

Moreover, in the Thesis are included some important facts, which have been obtained as a
by - product.
In the thesis:
(i) For the optimal problem with fixed endpoints a new approach, actively using the evolution
system representation of solutions of Cauchy problem, is developed.
(ii) The Pontryagin Maximum Principle for the time optimal problem in the class of admissible
controls with the uniformly bounded number of points of discontinuity is proved.
(iii) An existence theorem for a class of optimal probléms with delayed argument is proved.
(iv) An existence theorem for optimal problems with a quasili differential equation in
Banach space, where the linear part contains unbounded operators, is proved.
(v)'Rays in a monoid of special type are defined and their algebro-limiting properties are
' investigated.
(vi) The uﬁldition for normability of the E:échet space is obtained.
(v“) Convergence criterion for the Whitney’s 'tc'polog.y is established.
(viii) An existence theorerm' for a class of multidimensional extremal problem is obtained.
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(ix) The Riemann’s integral in the monoid of special type is defined and the continuous and.
evolutional dependence on limits of integration are established.

(x) The integral representation of co-semigroups of of a directional derivative and
the Cauchy’s problem solutions are obtained.

(xi) For a first time a derivative in a monoid is defined and the Newton-Leibniz formula is

obtained.
(xii) For a first time ordinary differ i in a i-ring of special type are
considered and the points of the existence, uni and integral ion of a

solution are studied.
(xiii) Estimates of higher derivatives of the Cauchy problem solutions with respect to initial
values are obtained.

Practical value of the work coud be issued in the following way:

(i) As we are known, in the optimal control theory only developed in Chapter 1 approach is
applicable to optimal problems with admissible controls having uni bounded number
of points of discontinuity.

(ii) For the applications it is important to construct the space of rays in the monoid of special
type. This process does not comprise great difficulties. It must be noted, that this process
is analogical with the construction of algebra Li for the group Li.

(iif) Defined in Chapter 3 version of Riemann’s integral in a monoid is interesting for various
reasons:

a). The integral repr fon of directional derivatives is the useful and effective tool
even for the numerical calculation of derivatives of functions type g : (a,) — R.

b). Application of Riemann'’s (multiplicative) integral allows us o achieve as much clear-
ness as possible in the problem of definition and fon of cq of

operators.
(iv) For the Cauchy problem in the theory of ordinary having
about right-hand sides, we can estimates the derivatives of higher order with respect to
initial values.

CONTENTS AND MAIN RESULTS. In what follows, the definitions, formulas, theo-
rems and other results are numbered as in the dissertation.

Chapter 1 is devoted to the classical problem of optimal control theory.

Let U C Ry, be the control area, functions fi(z!,... 2" uy,... ,ux) and —[L continuously:
map R, xU into R, i=0,1,...,n, j=1,... ) [to, t1] be a fixed non - mvnal segment (i.e.
g <ty); he the set of admissible controls consi of the functions u(t) = (u(2), - ,u,‘(t))
such that u(-) : [to, 1] — U is continuous from the left, continuous at the points to, ¢, and u(:)
can have points of discontinuity, but a finite number and all these points must be of the first
kind.

Let (b, ,28) (:c ,... @) be given points in R,. Denote by [] a line, which passes
through the point (0 e ,z;‘) in Rn.41 and is parallel to axis z°. In the sequel, elements of
Ry are denoted by (a°,

Define the map f : JR,l.H >< U — ]R,.H by the rule:

@) (ot ks (R )3 (2 i it e o, )
Obviously, f does not depend on values of component z°.

deﬁnition 1.1.1 We say that the admissible control u(t), %o <t < t,, moves the point
o= (0,},... ,f) into some point of the line [], if the trajectory () corresponding to u(:),
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which is a solution of the Cauchy problem
3(8) = f(a(t),u(®), @(to) = To, (1.1)
is defined on the entire [to, t.] and ¢(t1) € [].
definition 1.1.2 The extremal problem
2%(t;) — min, (1.2)
&(t) = f(=(®),ut), z(to) =20, z(tr) €[], u()eq (1.3)

is said to be the main problem of optimal control theory. The admissible control u(-), which is
the solution of (1.2)-(1.3), and the trajectory (-) corresponding to u(-), are said to be optimal.

For any (1, 2,u) € Ruy1 X Rag1 X U suppose:
n
H(p,z,u) = > $ifilw,u),
=0
M(¥,z) = sup (9, z,u).
uel
Theorem 1.1.1 (Pontryagin's Maximum Principle) Let u(t), to <t <ti, be a admissible
control, which moves zo into some point of the line [|. In order for the control u(-) and
its corvesponding trajectory ¢(-) to be optimal it is necessary the ezistence of a non - zero

continuous vector function %(t) = Wo(t), ¥1(t), . . , ¥n(t)) such that
1). ¥(-) corresponds to u(:) and @(-) by the following rule:

b = - HeleeO)y ), )

a=0
0<i<n; tp<t<ty;
2). For each t € [to, 1] there holds the mazimum condition:

HY(R), 9 (t), u(t)) = MBE), ¢(2)-
3). o(t) is constant with respect to ¢ and Yo(t1) < 0.

Describe shortly the proof of Theorem 1.1.1, given in Chapter 1.

The following auxiliary lemmas characterize the geometric aspects of item 2) of Maximum
Principle.

By R™ we denote the set of m - dimensional vector columns

Iz = (- ,2™) € Rmand y = (¥%,--- ,u™7 € R™, then the notation zy we use for the
inner product:

=
ay =Yg
i=1
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Lemma 1.1.1. Let Y C R™ be o conves set, yo € R™, o # 0 € Y and the system of

inequalitics:
0 < Yo,
1.5
{U vy, Vyey, (2]
has only null - solution with respect to % € Ry.
Then there exists a subset {yy,... ,ym} CY such that:
1) {41,... ,Ym} is a basis of R™

2) There evist numbers a; > 0, i=1,... ,m, such that yo = Y o
Lemma 1.1.2. Let0 €Y CR™, 0#yo € R™ and the system of inequalities:
0< 7
< Yo (18)
0=>vy, Wyev,
has only null - solution with respect to Y € Rm.
Then there eist: vectors yi; € Y , numbers a; and i, i =1,... ,m, j=1,... ,m+1 such
that:

1) Jor every indez i we have: a; >0, 7 € [0,1], and ST 755 =
{Z,’; ‘7.,;,,} is a basis of R™;
3)) U0, = om0 Yog b

u(t), to < ¢ < t, denotes the optimal control, and () denotes the optimal trajectory.
Consider the set:
var = {(s,04, %)} C (to, t1] X Ry x U.

If {(s: — 0, 5))}1%, is & subset of pairwise disjoint intervals in [to, t1], then var is said to be the
variation. Besides, the admissible control uy(-), which is defined by formula:

v, tE(s1—o1,81),

sk (e
2 Uy TEE (S — TSl

u(t), t¢ULi(si—onsils
is said to be a varied control. When m=1, i.e. var = {(s,,v)}, then var is said to be a simple
variation and for the sake of simplicity is 1dent1ﬁed with its element: var = (s, 0,v).

Using the representation of Cauchy problem solution as evolution system of functions of
initial values, we obtain compact expressions for optimal and varied trajectories and on this
base we give simple analytical proof of Theorem 1.1.1.

Denote by ®;,(x) the value of the solution of Cauchy problem:

(t) = f(@(t) u(®); als) =2, (19)
at the point ¢, Vs € [to,t1], V& € Rpy1. Note, that under Lhe term ”solution” we mean non -
extendable (ma.xlma.l) solution. Obviously, L

@(t) = Buo(20), toStSt.

For every fixed parameter v € U denote by ®7_(z) the value of the solution of the Cauchy
problem: ¢

#(t) = f(=(t),0), <(s) ==,
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at the point ¢. ®}_,(z) depends on ¢ — s, only, as (1.10) is autonomous.
For a given variation var = {(s;, 0, %)}, denote by ¢var(t) the value of the solution Cauchy
problem:

(1) = @(0) war(®), (ko)
at the point t.
Determine the form of the trajectory var(-)-
For each simple variation (s, ,v), when o is small enough , the following representation
Pl (®) = (250 80 @esy) (@), <t (1.11)

is valid.
Now, let us take arbitrarily a variation var = {(si, o, %)}y, for which Y7, o; is small
enough. Then

Prac(t) =
= (®umastoe o TT [2% 0 uconer-aa] ) o), (112)

max{s:}; <t < 6.

In (1.12), As; = 5;—s, where s = max{sx | sk < s:} is the moment of time in variation previous
to 8 Amin{s;}; = min{s;}; — to; [1;, means that the multipliers are ordered ch ically
with respect to s;: min{s;}; is placed at the right, then s; monotonically increases and finally
max{s;}; is placed at the left.

Note, that the right-hand side of (1.12) is defined for o; of arbitrary sign, when 3.
small enough and max{s;}; <t < t1.
pe Using the auxiliary lemmas and the representation (1.12), we simply prove that there exists
4 # 0 such that

1 0% 18

$0<0, py<0, WeY,
where the set Y € R™t! is defined as follows:
Y =

= {20l 5(46),0) ~ 70 u)]” | V() € o) x U}

But this is the main fact in the proof and the items of Maximum Principle can be proved
now in the standard way.

Note some features of the applied method. As we have seen above, using of evolution systems
iderably simplifies the proof of i principle d with other proofs. Applying
this method, the same success can be achieved in other important problems of optimal control
theory; in Chapter 1 are considered following cases:
o an optimal problem with variable control area;
o an optimal problem in the class of controls having uniformly limited number of points of
discontinuity;
o the time optimal problem.
Between them, the second item is of special interesting; as we are known, other methods,
used to prove Pontryagin’s Maximum Principle in its standard formalization, are not applicable
_ to the problems where controls have uniformly limited number of points of discontinuity. In
pplications, such class of admissible controls appears naturally and frequently, as in many
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real processes d tinuity of an ble control means to spend some fixed dose of an

exhaustible resource. Thus, in such problems, setting of the upper limit for number of discon-
tinuities is a natural thing.

»Good mathematical properties” of the class of admissible controls, consisting of the functions
with uniformly bounded number of points of discontinuity are studied in Chapter 1, too. To
this end, are considered the following points:

o an existence theorem for a class of optimal problems with delayed argument;
o an existence theorem for one class of optimal problems in Banach space.

The goal of Chapter 2 is to investigate a monoid M(s).D\A of special type as well as the
questions of algebraic and limiting arrangement of its set of rays. In the notation M,.D\A, M
denotes a support, * is a two-place a monoid structure on M and D\A
is the convergence in M which is obtained by narrowing of a class of converging directednesses
in the metrizable space M.D (the necessity of such a narrowing takes sometimes place in
applications). Definition of the monoid M(.).D\A covers both the commutative and non-
commutative cases, due to the i ducti of a il 5

Formally, a ray is one-| b id satisfying certain iti Algebraic and
limiting structures pass naturally from M.)-D\A to its space of rays; some properties turn out
to be hereditary, including the completeness. The process of constructing a space of rays is
analogous to that of the Lie algebra for the Lie group.

In 2.1 is studied convergence with restrictions and related questions which are used in next
chapters. Let X be a set. Us usual, the function d : X x X — Ry is said to be a finite deviation
if for any z,y,z € X there take place

d(z,y) = d(y,z), d(z,y) < d(z,2)+d(z,y), (z=1y)= (d(z,y)=0).
Everywhere in what follows, by saying that X.D is a metrizable space, we will mean that the
topology on X is defined by a finite or a countable family D of finite deviations.

Definition 2.1.1. Everywhere below, the writing X.D\A will denote that X is a set, D
is a finite or countable family of finite deviations which defines a metrizable topology on X,
and A is a finite or countable set consisting of functions of the type & : X — R, (elements of
the set A are sometimes called restrictions). The sequence {z,}22; is said to be converging to
2o in X.D\A (or simply in X, if we know uniquely what kind of sets of finite deviations and
restrictions determine the convergence), if:

(i) {2n}32; converges to 2o in the metrizable space X.D;
(ii) for every 6 € A, the set {6(x,)}52, is bounded.

Clearly, due to the choice of A we can differently narrow a class of converging in :X.D
sequences. If A = @, then instead of X.D\A we will write X.D, while D = {d} and A = {8}
are one-point sets, then instead of X.{d}\{6} the use will be made of the writing X.d\6.

Example 2.1.1 gives a sample of X.D\A, which is nontopologized.

2.2 is devoted to the monoid of special type. By M) is denoted an abstract monoid whose
algebraic structure is'defined by a binary associative operation * and by unity e. If g € M
is invertible and f is its inverse, (i.e., g * f = f = e), then we write f = ~g. If the
mapping gl ~g is defined on the whole M, zhen it is called a symmetry. ' A monoid is called

, if x is the

Definition 2.2.1 Everywhere in what follows the writing M(.).D\A will denote that M.
is a monoid, M.D\A is defined correctly, and the a.lgebrmc and hmmng structuxa on: M are
‘consistent by the axioms:

MO
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(M,) There exists 6 : M — Ry, such that & transfers bounded in M.D\A sets into bounded,
and

Si(e) =1, &g *g2) < &(91)ou(92),
d(g % 91,9 % g2) < &i(9)d(g1,92), V9,91,92 € M, Yd € D.

(M) To each pair (d, My), where d € D and My is a set bounded in M.D\A, there corresponds
(not necessarily a unique)a pair (o, di) € Ry, x D, such that

d(g1% 9,92 % g) < adi(g1 % g2), V1,92 € M, Vg € My.

(Ms) If A # @, then it is renumerated by natural numbers, and there exists p € {0,1}, such
that for every 6, € A: &; € A, &(e) = 65, (with the Kronecker symbol on the right),
Vje{L,2,...,n}

1
6i(g1%92) < m(én(gx)[&(yz)]“ + [61(91))"61(92)), Vg1,92 € M,
6a(91 % 92) < 8a(91)[62(92))" + [82(91))"6n(92) +
Su(g2)1 | Ok(g2)7
B2 [53) rrinton),

Vn>2, Vgi,9:€ M,

where the sum 3 is taken with respect to the k-tuples (iy, ... , i), such that i, € Z, and
ik = n, except the two (degenerated into one index) sets, when iy = n (k = 1) and
in=1 (k=n).

The parameter p, necessary in (Ms) , is unique. Indeed, if o = 0, then §(e) = 0, V6 € A.
At the same time, if 4 = 1, then 6,(e) = 6,y = 1. Thus, for every M(,).D\A the parameter
p € {0,1} is defined uniquely, and the following definition is correct.

Definition 2.2.2. Let there be given M(,).D\A and let A # @. Then the uniquely defined
parameter s is called the level of complexity of the monoid M.D\A, while M. D\A, or
simply M), is called the monoid of complexity of y.

For A = @, Definition 2.2.1 defines traditional object, where axioms (M;) compensate the
absence of local coordinates (analogously to normed, Frechet and locally convex spaces).

For A # @, there may happen two non-simultaneous cases . = 0 or p = 1 which will be
considered in the proofs separately. If . = 0, then (M3) implies that

6(e) =0and 6(g1 *9g2) < 6(91) +68(g2), VS€A and Vgy,9: € M,
which call to mind the properties of semi-norms.

If 4 = 1, then according to (Ms), the order of elements in A is essential and the connection
between elements A is established by the formula,

nl 16, i i
Sn(91%92) < Ei» "’-k![ 15{2)] [fk-,(j—l)] Sigatin(91);
¥g1,92 € M, where to each k-tuples (i1, ... , ), such that i; € Z and Lig + -« + kix =7,
there corresponds in the sum )" one summand.

Remark. Let there be given M.D\A and also two two-place operations + and *, each of
them determining a structure of the monoid on M, such that M4)-D\A and Me).D\A are
defined. In the designation 1 and 6 we will indicate the corresponding two-place operation:
), p), 6,(') and s0/0n.

Of course, here and in the sequel we prove all propositions, which are necessary: for our
purposes.
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2.3 i devoted to the set of rays and limiting structure on them. Consider some M)
As usual, a family {g;};>0 C M, or simply g, will be said to be one-parameter submonoid in
My, if @ = ¢ and qups = qu * g5, Vst > 0. The writing o(t) or with indexes 0a(t) always
denotes the infinitesimal function of higher order then .

Definition 2.3.1. O bmonoid {g.}:z0 C M (or simply g), is said to be aray
in My.D\A, if:

(i) for every d € D there exist fz > 0 and 04(-), such that

d(qe,€) < tBa+ oa(t), VE=>0. (2.15)
(if) for every 6 € {6} UA there exist f5 > 0 and 05(), such that
6(qr) < 6(q0) + ths + 0s(t), VE2 0. (216)

Tor M. D\A, a set of all rays will be denoted by R(M.)-

Estimates (2.15) and (2.16) determine a set of rays and they bear a local character, but
global estimates which will be used in the sequel are obtained, too.

Define a limiting structure on R(M)u)). The symbol L is used for finite deviations and A for
restrictions. First we define a set A of restrictions A : R(M)) — Ri..

For every g € R(Ms) and 6 € {6} UA define an auxiliary set. As(q) as follows: if 8> 0
and o(-) are such that (2.16) holds,

8(qe) < 8(e) +tB+o(t), VE=0,
then we assume that 3 € As(q). Now
As(q) = inf{8 | B €As(@)}, Ya€R(Mu).

Thus, to every 6 € {6} UA there corresponds As : R(Mjs)) — Ry, and we denote & set of all
such As by A A = {As}eca-

Note that the trivial one-parameter submonoid in M,) denoted by 6 (i.e., 6, = e, V¢ > 0)
belongs to R(M.)) and As(0) = 0 for every § € AU {&}.

Let us agree tlmt for some specific 6, € A we denote for the sake of snmphcny the corre-
sponding to it As, by A, and the corresponding to & by Ai.

Define a set of finite deviations L on R(M.)). Let there arbitrarily be given d € D,
q',¢* € R(Ms))- There exist £ > 0, B2 > 0 and 0,("), 02(:), such that

d(gi,e) S th;+oi(t), VE20, Vie{l,2}

whence
d(gt,a?) < (B + B2) + (0a(t) + 02(t)), V& 20.
Thus, for every {¢*, 4%} C R(M,)) there exist > 0 and of-), such that
d(g}, @) < ter+oft), VE20, (2.22)

and define L(q}, ¢, d) as follows: if o > 0 and there exists o(-), such that (2.22) holds, then by
the definition we take e € L(g", g%, d). Denote { o {S)

la(¢",¢*) = inf{e| @€ L(¢!,¢%d)},
¥g¢',¢* € R(M,)), VdeD.
Hence for every d € D the ma‘pping
(@",¢") = lalg", ),
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or simply Ly, is defined like the mapping from R(Ms) X R(M(.)) = Ry Morcover, Iy
finite deviation on R(M.)), Vd € D. Denote L = {la}acp. The family L divides the elements
R(M+)) and defines a topology on R(M))-

Note some properties with pass from the monoid to rays.

Proposition 2.3.4. Let R(M.)).L\A correspond to the monoid M(.).D\A, and A consist
of lower semi-continuous functions. Then A consists of lower semi-continuous functions.

Theorem 2.3.1. Let M(,).D\A be a complete monoid, A consist of lower semi-continuous
functions, 6, = 1+61,(61 — 1), where p is the complegity level. Then R(M.)).L\A is complete.

2.4 shows that a set of rays R(M.) of the monoid M(.).D\A has non-trivial algebraic
structure, naturally connected with limiting structure. Everywhere in the sequel, R(M.)) will
be considered with the convergence L\A which we defined above.

Definition 2.4.1. Let ¢*,¢? ¢ € R(M(y)). If for every d € D

Jlim ¢7d(q} *qf,a) =0,

holds, then g will be called the sum of g* and ¢ and denoted by ¢ = ¢* + ¢*.
As is seen, the existence of the sum ¢* -+ ¢ is not expectable for every ¢',¢* € R(Ms)), but
if it does exist, then it is unique. Note some properties of the sum.
Proposition 2.4.3 Let g, q? ¢° € R(My,)) and there exist ¢* +¢2, ¢*+¢° and (¢ +¢*)+¢°.
Then there ezists ¢* + (g% + %), and
@ +a)+¢° =3¢ + (@ +d")-
Proposition 2.4.5. Let ¢*,¢* € R(M) be such that ¢} * ¢? = ¢ * ¢}, Vt,s > 0. Then
g +¢° and ¢*> + ¢* are defined and
@ +@)=(@+d) =g »q V20
Proposition 2.4.6. Let M(,).D\A be commutative. Then R(My)) considered with opera-
tions 0 (0, = e is a 0-ary operation) and + (2-ary) is a commutative monoid.
Define now the product of the ray by the scalar. Let ¢ € R(M,)) and & > 0. Clearly,
{gac}iz0 € R(IMw)-
Definition 2.4.2. For every g € R(Ms) and a > 0, their product is called the ray {gat}:>0
and denoted by a ® ¢:
(2©a)i=gu, V20
Proposition 2.4.7. The operation
{(@q) = @O} : Ry, x R(M(y) = R(M)
has the following properties:
) 1og=g;
(2) a0 (809 =(ef) O ¢
(3) (e+p)Og=a0q+LOG
(4) if there ezists g* + g%, then there ezist 0 © ¢ +20¢ and
20(@ +¢) =0 +a0d,

V', q%q € R(Mw), Yo, 8 € &, and as usual, we mean that there first takes place
iplication and then




Proposition 2.4.8. Let ¢! € R(M,)) and there ezist ¢* € R(M()), such that § = gt +q
Then gt * g2 = e, V£ > 0.

Definition 2.4.3. If for the given ¢ € R(M.)) there exists § € R(M)), such that
6=q+G=q+g, qis called an inverse to ¢ and is denoted by —g. In what follows, we will use
the writing ¢! — ¢? instead of ¢* + (—g?), and identify ¢ and +g, if necessary.

By the definition,  is invertible, and —6 = 0. It is also obvious that from the existence of —¢
follow the existence of —(—g) and the equality ¢ = —(—g). Certainly, for every g € R(M)
there is no more than one inverse.

Proposition 2.4.11. If g € R(M(.)) and q is invertible, then the system

g+z=8,
z+g=0
has @ unigue solution.

Proposition 2.4.12. If g € R(M.)) and g is invertible, then every o g is invertible, and
—(a®q)=a®(-g), Va 2 0.

Definition 2.4.4. If a € R and g € R(M,)) is invertible, then the product «®q is defined
by the rule

a©g=(signa)(lal ©q)-

Theorem 2.4.1. Let on the commutative Ms.D\A be defined the symmetry, 6 = 1 and
8(g) = 6(-9), V6 € A and Vg € M. Then R(M) which has been considered together with
the operations 0 (0-ary),multiplication by the real scalars (1-ary) and + (2-ary), is the vector
space.

Proposition 2.4.13. Let ¢ € R(M,)) and g be invertible. Then {(t © @)1 }eer s one-
parameter subgroup in M)

Calculating the sum of rays, what has certain practical interest, the analogue of Lie-Trotter
formula is obtained.

Proposition 2.4.14. Let ¢*,¢* € R(M) and there egist ¢ + g2. Then for everyt > 0.

(@ + %) = lim (gl * dlyn) %+ * (@ * @m)) (2:33)
nsoo
n~times
holds in M.D\A.

The sum (2.33) takes especially natural form in the spaces of linear operators, when ¢* are
co-semigroups of operators. In 2.4.2, this formulas are obtained and discussed.

The following results (and some others) describe the connection of algebraic and limiting
structures on the set of rays.

Theorem 2.4.2. Let M(,).D\A be such that A consists of lower semi-continuous functions.
Then the defined on R(M)) limiting structure L\A and operations {6,0,+} are connected as
follows:

(a) for every A € A

MNe©g)=aXq), Ye>0, VgeRMy)
if ¢ € R(M)) such that there ezists g+q', then
Mg +4Y) SA@) +A(@):
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(b) for everyle L vt i
l(a©qa® ) =alld,¢®), Ya>0, Va'q*eR(My);
if g € R(Mqs)) such that there exist g+ q' and g + ¢, then
Ug+q' q+4°) <Ua'a)
moreover, if q is invertible, then

Ug+4q'q+a°) = Ud" ).

When M. D\A is a commutative monoid, then the connection of algebraic and limiting
structures is more perfect and is described in Theorem 2.4.3.

In 2.5 are considered some adjacent points. Here we note only very interesting condition for
normability of the Fréchet space.

Theorem 2.5.1. Let ® be the Frechet space. For the normability ® it is necessary and
sufficient that the metric p which is invariant with respect to translations and determines the
topology of the Fréchet space, to exist, such that every i in B(yy.p 7
submonoid is of bounded variation on each finite segment.

Since every continuous in the Frechet space one-parameter submonoid has the form {t¢}e>0
(for some @), the following corollary of Theorem 2.5.1 is of special interest.

Corollary. Let ® be. the non-normable Frchet space. Then for every metric p, such that p
defines the topology of ® and is invariant with respect to translations, there exvist p € ® and
[@,8] C Ry, such that the family {tw}iso in @(4.p is not of bounded variation on [a,b].

Chapter 3 is devoted to Riemann (multiplicative) integral in a monoid and its applications.
In 3.1 one generalization of the Riemann integral is given as follows. By M(,) is denoted a
monoid formed by a set-carrier M, unity e and two-place associative operation {(g1,92) +—
g1 %92} : M x M — M. If some g € M is invertible, then its inverse will be denoted by ~g
(ie,g* g="g*g=e¢).

Denote by ) a set of all partitions of the segment:

o={0=sp<&E << SSsp=1}, 80 <: < Sn

As usual, As; = s; — $i-1, |o| = max{As;}2,, and the relation o) < o7 (i.e., 05 > 1), which
by definition means [o3| > [0/, turns ) into a directed set. By the same relation, every subset
g9 < 0 €Y is directed Voo € 3.

Frequently, the use will be made of the following notation:

b b
S of = of(rdn)

HE e o) A ) e e P2 @) Ben b= ) x---x
+f(a+&(b—a), A (b~ a)), (3.1)

where a,b€ER, VCR? f:V > Mando={0=s0<& < <& <sp=1} € ). The
order on the right-hand side of (3.1) is essential in the case of a non-commutative monoid.
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Definition 3.1.1. We shall say that g € M is the integral of the function f V - M
(V c R?) from a to b, (a,b € R), and write

g /b/(ﬂfh)v

v
if for some oy € 3 the directedness {330 f}o<oey: is defined correctly and converges to g.

The value of the integral does not depend on the choice of 0o, since 3 is a directed set, and
for any 03,07 € 3 there exists their majorant, while the converging directedness and every its
subdirectedness have one and the same limit.

If necessary (for example, when a structure of the monoid which is compatible with the
limiting structure is defined on a set-carrier M by two ways), the two-placed operation with
respect, to which we take the integral, will be indicated in our designations. For example,

L b. b b
Of swan, O stran, O35 O35k

Usually, the integral for the fixed integrand depends on two parameters; the integration
limits. In Definition 3.1.1, the possibility that the integral may be a function of one parameter,
i.e., of the difference of integration limits, is taken info account.

Let f:I— M, I C R. We can consider the constant with respect to ¢ mapping

(t;8) = f(s), V(t:s) ERXI, (32)
and to pose a question of its integrability (in the sense of Definition 3.1.1).

let us give some interesting results from 3.1

Proposition 3.1.2. Let f : V — M, V C R? and f(t,0) = e for every (¢,0) € V. Then
[ £(r,dr) = e for every (a,0) € V..

Proposition 3.1.3. Let f : V. — M, V C R? f(t,0) = e, V(t,0) € V, a,b,c € R and
b=2 ¢ [0,1]; and let there cgist [7 f(r,dr), fi f(r,dr) and [£ f(r,dr). Then

/cf(T-d“') ]f(7ad7)*if(T,dT)- (35)
@ b a

Proposition 3.1.4. Let f : V. — M, V c R% for every (t,s) € V. there take place
(t,—s) € V. and f(t,s) = ~f(¢,—3); a,b.€ R and there exﬂstf f(r,dr) and fb f(r,dr). thzyl.

/ F(rdr) = ( / f f,df))

Proposition 3.1.7. Let: I CR, f: 1 — M, 0 € I, f(0) = e; for every t > 0 thm ezxvt
fn f(dr). Then ‘Uo f(dr)}ex0 is the one-parametric submonoid in M), i.e.,
t4s t

/f dr)=e, /fd'r» n/‘jidr)*q/f(dr), Vs,t > 0.

Consider now one special case.
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For every invertible g € M, let us determine an automorphism of the monoid M:
Adyf =g»fx=g, Vf€M.
It is easily seen that Adye = e, Ady(fy * fo) = Adyfy * Adyfs, Ady("f) = ~Ad,f when f is

invertible in M and if {h} o is a one-parameter semi-group in M, then {Adgh} .o is also a
one-parameter semi-group.

Proposition 3.1.9. Let {g(t)}s0 and {h(t)}:z0 be one-parameter subgroups in M, and for
Y

b
some a,b € R let there egist the integral [ Ady—rg(—dr) . Then there exists [ Adyqh(dr),
and the equality 2 E

b b
[ Adsioptar) = o) <)« [ I Adn(ﬂm—dr)] sh-a)rg(-a)  (315)

takes place.

In 3.2 are developed conditions of integrability. Here again, our writing M(.).D\A denotes
that on the carrier set M we have the convergence with restrictions D\A which is consistent
with the structure of the monoid M) in the sense of Definition 2.2.1; if ¢ € R(M,)) and
50 € {+,—}, then 3 = q for > = + and g = —q for 5 = —, where ~¢+¢=q+(-q) =0
and 6, = e for every ¢t > 0.

Theorem 3.2.2. Let M).D\A be complete, 5 € {+,~}, 6 =1+ 61,(61 — 1), A complete
of lower semicontinuous functions and {q(t)}ieay be @ continuous family in R(M,).L\A.
Then

(t1,82) — /(dr‘@ a(n), (3.30)

is @ continuous mapping from V, = {(t1,t2) € [a,b] x [a,8]|sign(ts — t1) € {0,1}} to
M. D\A.

Theorem 3.2.3. Let M(..D\A be complete, 6 = 1+ 61,(61 — 1), A consist of lower
semicontinuous functions, and let {£q(t)}ie(ay be continuous families in R(M)).L\A. Then
for every (5,%) € [a,8] % [a,8], [£(d7 © q(r): is defined and (s,t) —> f;(dr @ q(7))1 maps
continuously [a,b] X [a,b] into M).D\A.

In 3.3, an integral ion of the co i of operators is obtained. Let A :
D(A) — X be a linear operator acting in the Banach space X. When the conditions of the
Hille-Tosida-Phillips theorem are fulfilled, then the linear (possibly unbounded) operator A in
the Banach space X a strongly i i-group of U(t) = exp(tA)-
Such a notation of the exponent is accepted and widespread, but it gives rise to a dissatisfaction:
in the general case, for calculation of exp(tA) it is impossible to use the series Y322 £4- or the

strong limit of operators of the type (I + ﬁA)" (as n — o), since the domain of definition of
AP contracts with the growth of . In our opinion, application of the Riemann (multiplicative)
integral allows us to achieve as much clearness as possible.

Theorem 3:3.1. Let a linear operator A in the Banach space X generate the strongly
continuous semi-group {U(s)}s>o. Then

U(s)=" / (I=dt- A)7, Vs>0: (3.40)
2
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The integral is taken in the monoid B(X) (which is considered to have the unity I, operation.
of and the strong )

In 3.4 an integral repres ion of a directional derivative is obtained . Let X and Y be the
Banach spaces and O be an open subset in X. By (Y, +) we denote a monoid whose algebraic
structure is defined by 0 and + and the limiting structure is defined by the norm of the space
Y. Il f:0— Y,z €0, he X then as also the limit

Jim Ao+ M) = £(@))

(if it is) is called a derivative with respect to the direction h at the point z, and we denote
it by f'(z;h). In 3.4 is shown that to calculate the derivative with respect to the direction it
is not necessary to make use of the scalar multiplication in the space Y, since f/(z; k) can be
calculated through the integral of the function s — [f(e + sh) — f(z)] in the monoid (¥;+).
Moreover, under certain conditions, the existence of such an integral implies the existence of
f'(z;h). The formula connecting these two values, has the form:

3
Fazih) = (fa+dr - h) = f(@)]. (351)
[
In 3.5, in properly selected monoid by Riemann integral the Cauchy’s problem solution as
the field function is represented:
Theorem 3.5.1. Let the field (t,z) — fu(«) has the standard Properties for the existence of
the solution. Then for every (to, ,@o) € (a,b)? X R" there egists )f;: (I +drfr) and

o) = (“’) [+ de,)) (a0)

to

is the solution of equation % = fi(z) with initial conditions (to) = Zo-

The goal of the Chapter 4 is to formulate and investigate the Cauchy problem under mini-
mal restrictions imposed on the algebraic structures. With this end in view, definitions of the
derivative is modified in such a way that the results of the mathematical analysis (differentia~
bility with respect to the limits of integration, the Newton-Leibnitz formula) which we shall
need in the sequel, remain valid. C the simplest di i i can now
be considered in a monoid of special type and their solution is given by the Newton-Leibniz
formula. If the phase space is a near-semi-ring of special type (having, in particular, consistent
structures of additive and multiplicative monoids), then it is natural matter to determine dif-
ferential equations and to formulate the Cauchy problem. Under certain conditions the Cauchy:
problem is equivalent to the simplest problem, formulated in a multiplicative monoid, and it
can be immediately solved by means of the Newton-Leibniz formula. Note that the definition of
the phase space does not involve assumptions on linearity, finite dimensionality, commutativity
and coordinates.

In 4.1, For a first time a derivative in a monoid is defined and the Newton-Leibniz formula
is obtained.

Definition 4.1.1. Given M(,).D\A, [a,8] C R, and f : [a,b] — M. We shall say that:

(i) ¢ € R(M(s)) is the right derivative of the function f at the point ¢ € [a, ), if f is continuous
on the right at ¢ and for every d € D we have: d(f(t+ At),qa, * f(t)) = o(At) (At > 0 and
t+ At € [a,b]). A set of all such g we denote by Djf f. silone

)
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(i1) g € R(Mw) is the left derivative of the function f at the point; t € (a,b] and we shall write
€ D f if  is continuous on theleft at t, and for every d € D we have: d(f(t—At), gacxf(2)) =
o(At) (At > 0 and ¢ — At € [a,b]).

(iii) "The invertible ray q € R(M(.) is the derivative of the function f at ¢ € (a,b) and we
shall write g € D,f if f is continuous at the point ¢ and for every d € D we have: d(f(t+
At), (At© g)y * £(2) = o(At) (At € R and t+ At € [a,b]).

We shall say that the function f has (the right, the left) derivative on [a,b] if it has (the
right, the left) derivative at every point of that interval.

1t follows from Definition 4.1.1 that the sets D, f, D;f f and Dy f are always defined, although
some of them may coincide with @ or consist of many elements. Every one-point set will be
identified with its element.

If on M we have two two-place operations (for example, + and -), cach forming a monoid
structure consistent with the limiting structure in the sense of Definition 2.2.1, then the nota-
tions of the derivative will always indicate the operation with respect to which it is taken (as
for the integrals), for example, ©)D, f, DDy f and so on.

In case f is a function of two (or more) variables, the emphasis in the notation is laid on
that variable with respect to which we take a derivative, for example, ) Di—, f (s, 1)

Proposition 4.1.1. Let there be given M().D\A, [a,b] C R, to € (a,b) and f : [a,8] — M.
If f(to) is invertible in M.y, then none of the sets Dy, f, Djsf and Dy f contain more than one
element.

Proposition 4.1.2. Let there be given M(,).D\A, [a,b] C R and f : (a,b] — M. Then for
any g € M and t € (a,b) we have:

Duf € D(f()*g), DffcDf(f()x9), DrfcDr(f()*g)-

Proposition 4.1.3. Let there be given M().D\A, ¢ € R(My, t > 0. Then g € Dfq

The following two itions are the i i of Definition 4.1.1.

Proposition 4.1.4. Let there be given M,.D\A; [a,b] C R; and let f : [a,b] — M be some
constant mapping g = £(t) for all t € [a,b] and for some g € M. Then

6 Dff, Vt€[ab); 6€D;f, Vi€ (a,b); 0€Dif, Vte(ab)

Proposition 4.1.5. Let f(f) = O be a constant mapping from [a,b] to

Mi»-D\A, such that g*0=0, Vg € M. Then
R(M) =Dif, Vi€[ab); R(Mw)=Dif, Vt€(ab],
and D, f consists of invertible elements of the set R(M))-

Theorem 4.1.1. Let M.).D\A be complete, & =1+ 61,(8 — 1), A consist of lower semi-
continuous functions, and let {£q(t)}cay be continuous families in R(My)-L\A. Then for
any s € [a,b] and t € (a,b)

¢
a(t) € Df / (@rogm), Yxe b=} @1)
s
~ Corollary 1. In the conditions of the theorem, q(t) € Def:(dT © (7)1, Vs € [a,b] and
‘te(a,b).

Corollary 2. Let Mi.).D\A be complete, 6i=1+61,(61=1), % & {+,=}, A consist.of lower

semi-continuous functions and {5q(t)}ea be @ continuous fomily in R(M{w)-L\A. Then for
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any s,t € (a,b) such that sign(t — s) € {0, ¢} the eapression

seqlt) € D:/(a ©4),

holds.

Theorem 4.1.2. Let there be given M. D\A, & = 1+6,(61~1), f() and g(-) continuously
map the segment [a,b] C R into M.y.D\A, f(a) = g(a) and there exist a family {q(t)}eeas ©
R(M)) such that
D} f 5 q(t) € Ditg, for all t€[a,b),
and
&1 = 61, Sup{A1(a(t)) heete) < 0-
Then the functions g(-) and f() coincide: g(t) = f(t) for allt € [a,b].

Theorem 4.1.3. Let there be given My.D\A, & = 1+ 6,,(6 — 1), f(-) and g(-) map
continuously the segment [a,b] in M(s.D\A, f(b) = g(b), and let there exist a famly {q(£)}retas)
such that

D; f>q(t) € Drg, forall te (a,b]
and
&1 = b1+ Sup{i(a(8)) }eelap) < 00-
Then g() and f() coincide, i.c., g(t) = f(t), Vt € [a,b].

Proposition 4.1.6. Let there be given M).D\A and ¢*,q* € R(M.)). Then for the
existence of q* + g2 it is necessary and sufficient that the condition @ # D, (¢; * @) (the set
Dito(qk * g?), by Proposition 4.1.1 cannot have more than one element)) be fulfilled; note that

@ +¢* = Dio(ai * @)-

On the bases of these results, we can explain why the of ded

defined by P. Chernoff is non-associated. The existence of lim (ql/n.oql /n)" (used in the definition

of sum) means in a weak sense that a derivative of the funcmon 7 +—> (gt 0 ¢?) with respect to
the direction of ¢ exists af the point 0. But the existence of a derivative at 7 = 0 with respect
to either direction # > 0 does not imply that of Dito(qt o ¢7) (as in the case of the Gateaux
and Frechet derivatives). That is why we do not succeed in proving the associativity of the
summation of operators defined by P. Chernoff.

Theorem 4.1.4. Let M(.).D\A be complete, & = 1+ 61,(6 — 1), A consist of lower
semi-continuous functions, f :'[a,b] — M, and there egist invertible continuous families
{2q(t)heete) © R(Ms)) such that q(t) € DY f for all t € [a,b). Then

¢
70=( [rodnn) @), elad (o)
a

Proposition  4.1.7. Let there be given M,).D\A. Moreover,  let

{£a®eta end {p(t)hera be continuous families in R(M())-L\A; and for any s,t € [a,8],
() +p(s) and p(s) + q(t) be defined. Then {p(t) + q(t)}ecjay) s continuous in R(.

The integrands of special type involving the symbol Ad can also be defined b&'mésns Of
invertible elements of the set R(M())-
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In 4.2.1 a near-semi-ring of special type is introduced and some examples are given.

Definition 4.2.1. The triple (M, +,0) is said to be a near-semi-ring if (M, +) is a commu-
tative monoid with 0-any operation 0 (zero), (M, o) is a monoid with 0-any operation e (unity),
0+ e, and there takes place

00g=0, (+g)og=gqiog+gog, foral g,g1,9:€ M.

The terms ”near-ring” and ”near-semi-ring” combine several types of algebraic objects, in-
cluding the above-mentioned ones which are obtained as a result of weakening the axioms for
a ring, For the sake of simplicity, a near semi-ring (M, +, ) will be denoted by M), and the
monoids (M, +) and (M, o) by My, and M), respectively; moreover, M+ will be called an
additive monoid and M(s) a multiplicative monoid. Hence, for g € M, its invertible elements
(if any) are denoted by —g in M4, and by g% in M.

Definition 4.2.2. In what follows, the writing M(;.D\A means that
My is & near-semi-ring, A # &, the commutative monoid M).D\A with the parame-
ters p) = 0 and 6() = 1 is defined correctly, the monoid M).D\A with the parameters
4® =1 and 6 = 6, is defined correctly.

Given My D\A, we can define R(Mu)Li\Awy and  R(M). L@\
A By Proposition 246, R(M(s) with the operations + and 60" (6 = 0, ¥¢ > 0) is
the ive monoid. In lar, if on My, the symmetry is defined, and 8(g) = 6(~9),
forall g € M and 6 € A, then by virtue of Theorem 2.4.1, R(M(s)) is the real vector space.
For understandable reasons, R(M()) is the space of additive rays ((+)-rays ) and R(My)) is
the space of multiplicative or (o)-rays.

4.2.2 is devoted to the correspondence belwmn additive and multiplicative rays. Here are
defined and studied ial and

Proposition 4.2.1. Let M,0)-D\A be complete. Then for any q € R(M(y)) and t > 0
there eaists the integral ©fy[e+ (d7.© q)1).

Proposition 4.2.2. Let M;,0)-D\A be complete and A consist of lower semi-continuous
functions. Then for every g € R(My)) there takes place {©)f[e + (dr ® ghi]}sx0 € R(M(g))-
Moreover,

ODi e +a) = {‘“’ [+ (dro q);]} , (17)
) 2

Corollary. Under the conditions of Proposition 4.2.2,
9€ DD (ODf (e +a))sy forall g€ R(Mg): (4.20)

Definition 4.2.3. Let M(;0).D\A be complete and A consist of lower semi-continuous
functions. Then the mapping from R(Mm) into R(M(s)), acting by the rule

4 Okt a) = (e Groambian, Voe ROK,)
0
and defined correctly by Proposition'4.2.2, is called an exponential representation.
Proposition 4.2.3. Let M(y,,)-D\A be complete and A consist of lower semvoantmuou.s
functions. Then

g+— ODE(e+a), a€ R(Mew) ‘ - (422)



is the one-to-one map onto its image, mapping continuously R(M(4y) into R(M(s))
Jor anyd € D, 6 € A and q, ¢, ¢* € R(My)

A(@ODEo(e+a)) < X (), (423)
(@D ole + a), @ Ditole + 62)) < §P(a", 4°): (4:24)

Proposition 4.2.4. Let My -D\A be complete and A consist of lower semi-continuous
Junctions. Then for any a > 0 and q, g%, ¢* € R(M(yy) the following equalities hold:

C D (e +6) =09, (4.25)
D g(e + (2@ q)) = @@ DL+ a), (4.26)
©ODE e+ (¢ + %)) = ODEo(e + af) + O Do (e + g)- (4.27)

Corollary. Let M(;,0.D\A be complete, A consist of lower semi-continuous functions and
g € R(My)) be an invertible additive ray. Then @)D} o(e+ qu) is the invertible multiplicative
ray and ©) D o(e — qc) is its inverse.

The proof follows from (4.25) and (4.27).

Proposition 4.2.5. Let M(s.¢)-D\A be complete, A consist of lower semi-continuous func-
tions and on My be defined the symmetry, f : [a,8] = M, to € [a,b) C R, f(to) = e and
q=®DEf. Then

D} f = ODE (e +a) (4.30)
(f(to) = ¢, and these sets are one-element).

Corollary. Let M(yc).D\A be complete, A consist of lower semi-continuous functions and.
on My be defined the symmetry; moreover, let g € R(Mi)) be uch that )D§q®) = g for
some g € R(M(4))- Then s

¢ = ODEq(e+q). (4:31)

4.2.3 is the conclusive item in Chapter 4. Here the points of the existence, uniqueness and
integral representation of a Cauchy problem solution are investigated:

Proposition 4.2.7. Let there be given M1.0).D\A, g € M, q € R(My)). Then {gs0g}so,
or simply q() © g, i a (+)-ray; q¢) © g € R(My)).

Proposition 4.2.8. Let there be given M,0)-D\A. Then (q,9) — g(y09 maps continuously
R(M4) x M into R(M(y))-

Proposition 4.2.9. Let there be given M(+)-D\A, (e, C R, 20 € [a,b), £ : [a,b] = M
and g€ DDEf. Then

409 € DDE,(f(t)og), foral geM.

Proposition 4.2.10. Let Miy0)-D\A be complete, A consist of lower semi-continuous func-
tions and on My be defined the symmetry, f : [a,8] = M, to € [a,b) € R; moreover, let f(to)
be invertible in M) and g = PDEf. Then

D f =D (e a o [fE)] ) b ol

Corollary. Let the functions fy and f» map [a,8] into My .D\A, satisfy the conditions
of Proposition 4210, fl (o) = falto) and g = Mk, filt) = DD, 1o fa(t). Then ©DEfi =

(o) D} fa
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1t is of interest that the equality of (+)-derivatives does not imply that of (o)-derivatives; we
need additionally the equality of initial conditions (the fact, analogous to the problem of the
uniqueness of a solution in differential equations).

Let there be given My o)-D\A and on M(;) be defined the symmetry. Then if {z(t)}refas C
M and DDz # @ for some to € [a,b), then DDfz € R(M,). On the other hand, by
Proposition 4.2.7, g() © z(t) € R(M(4)) for any g € R(M(4,)) and ¢ € (a,b].

Definition 4.2.6. Let there be given M(y)-D\A and on M) be defined the symmetry.
The correct expression

DD}z = (q(t))y o 2(t), forall te[q,b), (4.38)

where {q(t)}iciay is & given family from R(M(s)) and = : (3,5 — M ((@,5] C [a,b]) is an
unknown function which must satisfy (4.38), is called the ordinary differential equation with
the right derivative.

Theorem 4.2.1. Let M(+,0).D\A be complete, on My be defined the symmetry, A consist
of lower semi-continuous functions and {#q(t)}sc(ap be continuous families in R(My,)), a <
1 <ty < b. Then in order for the continuous function @ : [t1, ta] — M to satisfy the differential
equation

®Diz = (q))o 0 o(t), VEE [t1,ta), (4:39)
it is necessary and sufficient that the equation in M)
Dz =ODE(e+ (1)), Vi€ [t ta) (4.40)
be fulfilled.
Consider the Cauchy problem:
DD}z = (gt))) 02(t), tSto, alte) = 0. (4.43)

Proposition 4.2.11. Let the conditions of Theorem 4.2.1 be fulfilled and there be given the
initial condition (to, 7o) € [a,b) X M. Then

(0= (120 DL+ ) o, el (4
to

is the solution of problem (4.43) which is unique in @ class of continuous mappings of the
segment [to, b] into M.

Corollary. Let M(;q)-D\A be complete, on My be defined the symmetry, A consist of
lower semi-continuous functions and q € R(M(y)). Then

a(t) = (VDio(e +ar))ito 070, t2t0 20,
13 a solution of the stationary problem
Dz =gy 0x(t),  t 2 to,
{z(ta) = 2.

(V{Proposition 4.2.12. The solution (4.44)  of theCauchy problem (4.43) under the conditions
of Theorem 4.2.1 can be represented in the following equivalent form:

A (« / ((y [e+(ds®q(r)),]))'oz'o, Ve lto8).

t
)
to
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Theorem 4.2.2. Let M(4,5-D\A be complete, on My be defined the symmeiry, & consist’
of lower semi-continuous functions and {£q(t)}:cjay be continuous families in R(My). Then
Jor cvery initial condition (to, 7o) € (a,) x M, ;

g
a0 = () {wo‘"’D.:o(w<q(r>)i>1.) oz, e o,
is the unique continuous function from [a,b] to M, satisfying on (a,b) the Gauchy problem:
9Dy = (a0 2(t), . w(ts) = zo:
The maim fact in 4.3 is the following
Theorem 4.3.3. Let n € N, X = R', there ezist (a,b) C R such that [a,b] X R".C T,
{F(,2) ectos) be continuous for cach = € Y, every f(t,-) € C(RT), and

K=ol ZL@al | ze R, te o, o=} <o,

wherei € {1,...,n}, a=(a1,.. ., &) € 2 |a| = S7L; o, Bz = Oaf - .- 0.
Then, on Cj)(R") is defined the two - parameter family {s}eotele); having the following
properties:

1) for every initial values (to, Zo) € [a,b] x R”
{aw 0520 — £(t, p10.4(20)), VE € (a,0),

Pto.to(%0) = Zo;

2) for everyi € {1,... ,n— 1} andt € (a,b) there takes place:

sup | 220208 < (e o], .. 1°0) il — o

Jed=i
where: CP},(X) is a set of all functions f : X — X, such that f € C*(X) (ie, fisn

times continuously differentiable), and every £ : X — £(X; X) is the Lipschitz mapping, i €

{0,1,... ,n}. Li(X;Y) denotes the Banach space of i and the

{Pn}ng\ are defined and studied in Chapter 2.
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