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ABSTRACT. An expanded concept of state is given in 
relation to the observation system. The exact solution of the 
nonstationary Schrödinger Equation made it possible to obtain 
very important mathematical models that adequately describe 
the behavior of elementary particles at the microlevel of matter. 
To obtain an exact solution to the nonstationary Schrödinger 
equation, it was necessary to introduce the concept of an 
algorithmically predictable generalized function. An imaginary 
Riccati-type leveling is obtained. The solution to this equation 
created the prerequisites for creating models at the microlevel 
of matter. As a result, a model of an antiparticle was obtained, 
which is in the wave function together with the particle. The 
electric field gradient at which real particles are formed from 
the physical vacuum is determined. The corpuscular-wave 
dualism of particles at the microlevel of matter is substantiated. 
A gravitational wave model has been created. The important 
role played by photons – quanta of electromagnetic radiation – 
is noted. Using the example of a gravity wave, it is shown that 
gamma radiation certainly accompanies the identification of a 
gravitational wave. 

 
Key words: Schrödinger equation, microcosm, elementary 

particles, Riccati equation, dispersion, diffusion. 
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Introduction  
 

It is widely known that the solution of the stationary 
Schrödinger Equation made it possible to obtain significant 
results in relation to processes occurring at the mesolevel of 
matter. Some scientists came to the conclusion that 
Schrödinger Equation was created to serve de Broglie waves: 
<historically and logically, the Schrödinger Equation 
originated as an equation for de Broglie waves.> [1].  

The author of this work believes that the Schrödinger 
Equation has its value. The exact solution of the nonstationary 
Schrödinger Equation, which was postponed indefinitely, 
conceals very important models of the physical microcosm. 
This paper shows that the exact solution of a non-stationary 
equation makes it possible to obtain a new class of 
mathematical models that adequately describe the behavior of 
elementary particles at the microlevel of matter. This proves 
that the exact solution of the nonstationary Schrödinger 
Equation has its own value. 

Some data on optimization problems of Euler-Lagrange 
and Hamilton 

E. Schrödinger was the first to express the idea about the 
existence of the optimal properties of the elementary particles, 
when he was writing his equation for the particles of the 
physical microcosm using Hamiltonian function. After 
establishing the adequacy of modeling by means of the 
equation of stationary processes of the microcosm it became 
clear that the microcosm is organization the basis of optimal 
principles. However, existed solution of the Schrödinger 
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Equation did not allow to model the wave function of the 
elementary particles on the microlevel. The present work 
solved that problem: the results obtained allow to model the 
wave function of the elementary particles existing in the 
microlevel. 

Let us now define the essence of the optimization principle 
prevailing in the physical microcosm. According to that 
principle, under the action of conservative forces, any dynamic 
system moves in such a way as to minimize the time average 
value of the difference between kinetic and potential energies, 
i.e. 

        
2

1

0
t

t

T V dt    (0.1*) 

or taking into account the equation (0.1*), we can write 

                             
2

1

0 ,
t

t

Ldt   (0.2*) 

where ( , )T q p  – kinetic energy, ( )V q  – potential 
energy, ( , )L q p  – Lagrange function, q  – generalized 
coordinate, p q   generalized impulse. 

The variation of the Lagrange function in the integrand 
(0.2*) is 

2 2 2 2 2

1 1 1 1 1

2

1

1

2

0.

t t t t t

t t t t t

t

t

tL L L L d LLdt pdt qdt qdt q qdt
tp q q p dt p

L d L qdt
q dt p

     



     
           

   
       

    


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In the last expression it is assumed that 0q   for 1t t  

and 2 .t t  
Since the number of generalized coordinates q  is equal to 

the number of degrees of freedom and as q  does not depend 
on time, the latter equality is satisfied if the expression in 
square brackets is equal to zero, i.e. 

                0 0 ,d L L dp H Hp
dt q q dt q q

   
       

   



  (0.1) 

                0 0 0 ,d L L H Hq q
dt p p p p

   
       

   
 


 (0.2) 

where H T V   is the Hamiltonian function (Hamiltonian). 
Expressions (0.1) and (0.2) show that the Euler-Lagrange 
equations are equivalent to the Hamilton equations, 
representing the right-hand side (with respect to the 
equivalence signs <<>>) of expressions (0.1) and (0.2). 
Schrödinger used the Hamilton function H  as a basis for the 
synthesis of his equation. 

The solution of the Euler-Lagrange equation is a functional. 
This fact determines the existence of an important Euler-
Lagrange equation property of invariance to arbitrary 
transformation of coordinates. 

The optimization principles of this equation imply not only 
the property of invariance, but also the possibility of continuum 
and discrete aspects of the system modeling. 

It should be noted that the Euler-Lagrange equation belongs 
not only to physics, as noted in [3], but is the property of any 
national economic or scientific field for solving applied 
optimization problems. 
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§1. Extension of the concept of state in relation to 
the observation system 

 
From the point of view of optimality, the concept of the 

integrity of a dynamic system, i.e. its indivisibility into separate 
subsystems is very important. It is convenient to interpret the 
integrity property in terms of observations (measurements). 

Let the observation system be given by scalar equations: 
               ( ),x x t     (1) 
               ( )y x t   (2) 

of the object (1) and observation channel (2). In expressions (1) 
and (2) ( )t  and ( )t  are scalar random processes of the white 
noise type with the following stochastic characteristics: 

[ ( )] 0,    [ ( ) ( )] ( ),E t E t t t t        
[ ( ) ( )] ( ),    [ ( )] 0,E t t r t t E t        

where E  is the mathematical expectation operator,   – Dirac 
function, parameters ,  ,  r   are constant; the processes   and 
  are not correlated. 

And the following designations: 

     22
0 ˆ0 0,  0 ,  ,E x E x v v E x x              where x̂  

denotes the conditional estimation of variable x , obtained by 
the least squares method, and v  is dispersion of the variable x . 
In such a case, the equation for dispersion v will be given by [2]: 
                       2

02 1/ ,   0 .v v r v v v      1 (3) 

                                                 
1 Equation (3), where the constant term is equal to zero, i.e. 0,   we refer 
to as the Riccati equation. 
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Expression (3) is scalar form of the Riccati equation. The 
right-hand side of equation (3) can be written as a soliton [3] 

                        2sech ( ).dv A t
dt

     (6) 

Soliton solutions of the integrity dynamical systems have an 
important property. The property lies in the optimality of the 
soliton solution of the Riccati equation (3). The general 
solution of equation (3) has the following form [2]: 

                  
 

1 2
1 2

0 2 0 1

,
( ) / ( ) 1t

v vv v
v v v v e 


 

  
 (3а) 

where 

                          2 / ,r      (7) 

                            1 ,v r     (8) 

                             2 ,v r     (9) 

  1
ln ,c


  2 0

1 0

,v vc
v v





 1 0 ,v v  ,A D   1 2

2
v vD

c


  

and 0v  is the dispersion value v at the initial moment of time 

0 0t  , i.e.  0 0v v . 
Finally, solution of equation (4) allows us to determine the 

dispersion 

                       2
0sech .

o

t

t

v A t t dt           (10) 

Representation of the observation (measurement) system in 
the form of object (1) and observation channel (2) is formal. In 
natural conditions the observation system is an integrity 
formation; it cannot be divided into an object (1) and an 
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observation channel (2). The observation channel (2) is an 
integral part of the observation object (1). Representation of a 
real observation system in the form of expressions (1) and (2) 
is appropriate for mathematical processing of the results of 
indirect observations. The class of integrity dynamic systems 
includes the systems modelled simulated by the following 
Riccati equations: 
                        0 0,      z ,z mz n z z t    (11а)     

                        0 0,    .z mz n z z t z     (11b)  

The solution of equations (11a) and (11b) is given by: 

                    
0

2 2
0

1 1sech ,
4 2

t

t

z n m mn t t dt      (12а)          

                   
0

2 2
0

1 1sech .
4 2

t

t

z n m mn t t dt         (12b) 

From the parity property of the soliton it follows that the 
parameter n  can have both positive and negative signs in 
solutions (12a) and (12b). It should be noted that equations 
(11a) and (11b) are the particular forms of equation (3). 

Solutions of integrity dynamical systems (10), (12a), (12b) 
have the dissipative property. Dissipative functions are not 
invertible with respect to the corresponding argument. 
Conservative functions are invertible; their second derivative 
with respect to the argument does not reverse the sign.  

The t time derivative of both sides of solution (3a) is the 
soliton differential equation (4), whose solution (10) satisfies 
the Euler-Lagrange optimization equations. It is easy to verify 
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that the functionals  L L v and  L L z  (see (10), (12a), 

(12b)) satisfy the Euler-Lagrange equations (0.1) and (0.2). 
 The fact that the functional L satisfies the Euler-Lagrange 

equation means that the variance is zero  2ˆ 0E x x      , 

where  ˆ / ,x E x y  i.e. the object (1) and the observation 

channel (2) represent one whole: the system (1), (2) is integrity. 
Thus, soliton solutions of integrity dynamical systems have the 
following important properties: 

1. They satisfy the Euler-Lagrange optimization equations. 
2. They are dissipative in time functions, i.e. these functions 

are time irreversible. 
3. They do not allow to represent the equations of the object 

and the observation channel separately. 
Further, the solution to the problem of mathematical 

modeling of the dispersion of the elementary particle is given 
at the microlevel of the matter having those properties. 

* Denotations p  and r  given above are independent from 
those given below. 

 
§2. The Analysis of Schrödinger and Stochastic 

Mechanics Equations 
 
In the middle of the twenties of the last century, Austrian 

physicist Erwin Schrödinger using de Broglie's hypothesis of 
optico-mechanical analogy for the behavior of the micro 
particles and basing on the Hamilton optimization principle, 
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synthesized the key equation of quantum mechanics named 
after him: 

                     
2

2
2

1 ( )
2

U xj
t x m

            
,  (5) 

where 341,  / ,   1,05459 10j m       J  s is the Planck 

constant divided by  2 ,  ,   the wave function of the particle 

to be found,  U x  the potential energy of the particle with 

mass  m  and coordinate x . 
Schrödinger Equation is extraordinary. The extraordinary 

nature of the equation lies in the fact that it simultaneously 
belongs to two levels of the matter, partly to the micro-level 
(the left-hand side of the equal sign "=") and to the meso-level 
(the right-hand side); the meso-level of the matter is between 
the micro-level and the macro-level. 

The solution to the Schrödinger Equation can be found in 
three ways. 

The first way is used to solve the nonstationary equation 
(5). The second one is used to solve the stationary equation, i.e. 
for 0  . This method was used by Schrödinger himself. 
Finally, the third way of solution uses the function close to a 
generalized function.2 The latter method, applied by the author 
for solution of equation (5), allows to obtain the wave function 
of an elementary particle at the micro-level. In such a case, the 
Schrödinger Equation entirely belongs to the left-hand side of 
the plane with respect to the equal sign "=". 

                                                 
2The function close to a generalized function will hereafter referred to as a 
normalized algorithmically realizable generalized function (ARGF). 
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Consider the solutions to the Schrödinger Equation at three 
levels of the matter separately. 

1) Introduce denotations      ,x t x t   3. In such a 

case, equation (5) can be written as follows 

                     
2

2
2

1 1 1 ( )
2

U xj
t x m
  

 
 

  
 

. (6) 

Since the left-hand side of equation (6) is the function of 
time, and the right-hand side is the function of coordinates, 
equation (6) is satisfied if and only if both parts are equal to a 
constant value [1]. We denote this constant value by /W m, 
where W  is the total energy of the particle. When the above 
condition is satisfied, equation (6) is divided into two equations 

1 ,Wj
t m








 

                       
2

2 2

12 0W U
x m
 




  


.          (13) 

Thus, the solution of the non-stationary equation (5) has no 
practical value; 

2) Schrödinger solved the stationary equation (13)  0   

applied to the hydrogen atom (using a spherical coordinate 
system) and obtained a spectrum for the energy eigenvalues 
that coincides with the well-known experimental data. That 
showed that the stationary equation (13) correctly describes the 
motion of the electron in the potential electric field. Therefore, 

                                                 
3Such an approach is valid if the potential energy of the particle does not 
depend on time. 
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equation (13) was taken as the basic equation of stationary 
states of quantum mechanics; 

3) The entire Schrödinger Equation transferred to the 
micro-level was not obtained neither by Schrödinger nor other 
scientists. In this work, the solution of the Schrödinger 
Equation is transferred to the micro-level of matter. 

Such an approach to the solution of the Schrödinger 
Equation will make it possible to solve number of problems up 
to now known from heuristic considerations. 

To pass from the solution of the continuous equation (5) to 
the solution of the equation transferred to the micro-level, it is 
necessary to use the system of equations of stochastic 
mechanics transferred to the microlevel with the help of ARGF 
[4]. The ARGF is considered to transfer dispersions and 
diffusions from real areas in to imaginary areas. 

The system of equations of stochastic mechanics has the 
following form: 

                           0,P Pv
t


   


 (14) 

                    21 ,
2

v Fv v u u u
t m


      


 (15) 

                         1 ,
2

Pu P    (16)                   

where v andu are unidimensional vectors of real dispersion and 

diffusion of the elementary particle; 
x


 


, unidimensional 

vector-operator; dUF
dx

 , the gradient of the field U , i.e., 

grad ;F U  of the point “.” denotes scalar product.  
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Since in such a case the angle between the vectors equals to 
0 degrees, the point in equations (14) and (15) can be omitted, 
i.e. the scalar product can be replaced by the ordinary product. 

Equation (16) can be written as follows:  

                       1 1ln ,
2 2x

Pu P
P

       (16а) 

where  ln
x

P  , is the rate of change of continuous probability 

density P  of the real random process of the diffusion with 

coefficient 1
2
 . 

Further, equations (14)-(16) already transferred to the 
microlevel of the matter are used. And formula (16a) is used to 
transfer diffusion u  to the microlevel of the matter. 

 
§3. General Considerations for Transferring the 

Solution to the  Schrödinger Equation Mapped to 
the Micro-level of the Matter 

 
It is well known that the wave function of an elementary 

particle satisfying the Schrödinger Equation (5) can be given 
by: 

                         exp .jP vdx


    
   (17) 

Substituting the wave function (17) in equation (5), taking 
into consideration equation (16), we will have the differential 
relation 

  .j v ju      
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From that relation we can pass to the wave function which 
is solution of non-stationary Schrödinger Equation 

                        
   

0 0

1, ,

, ,
j v x t dx u x t dx

x t e

 

 
 

 
   (18)                   

where 0  is the very little time but other than zero, i.e. 0 0.   
The role of ARGF is, together with the equations of 

stochastic mechanics, to transfer the real dispersion function v  
and diffusion function u  into the class of imaginary functions. 
Such a transfer allows to transform the real wave function 
 into an imaginary wave function and, consequently, to 
obtain a solution to the Schrödinger Equation at the micro-level 
of the matter [6,7]. 

The Laplace transform from ARGF is given by 01 ,
2
sth

s
 
 
 

 

where ,s j   0 .const   

If we use the symbol   


 of correspondence 

between the Laplace transform and its original, then it will be 
possible to determine ARGF in the time domain: 

                    10

0

1 1 ,   1 ,
2

ns tth n n
s




       
 





 
(19) 

where s is the current time, 1,2,...n  
Apart from formula (19) ARGF can also be defined by the 

use of the inverse Laplace transform operator 1L :                     
 

                   11 0

0

1 1 ,   1 .
2

ns tL th n n
s




          
  

 (20) 
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 If in formula (20) we take into consideration the equality 
 2 11 ,j ke   0,1,2,...,k   then the last expression will be 

written as follows: 
          

    02 1 11 0
0 0

1 ,  1
2

j k nsL th e n t n
s

             
  

for.n»1. (21) 

Introduce designation:  
                             0 .n x    (22) 

Clearly, 0t   if 1.n   If   01 ,n t   according to (21) for 

2,3,...n  we will have 

                        2 11 01 .
2

j k tsL th e
s

       
  

 (23) 

Let us introduce the distribution function of an imaginary 
random diffusion process defining the function by the right-
hand side of expression (23). Then the density function 
 , , ,P j x t k  of the probability distribution of an imaginary 

random diffusion process will be found according to the 
expression 

                 2 11 01 2 1 , , , .
2

j k t

t

sL th j k e P j x t k
s

  
         

   
 (24) 

Further, we use the wave function of just an imaginary 
random diffusion process, i.e., solution  , , , ,j x t k  of non-

stationary Schrödinger Equation, which is the mapping of 
solution (18) to the micro-level of the matter: 
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                    
   

0 0

0 0

1, , , ,

, , , ,

n n
j v j x t k dx u j k dx

j x t k e

 

 
 

 
   (18a)          

where  , , ,v j x t k , dispersion of an imaginary random 

diffusion process mapped to the microlevel. According to 
formula (18a), it is necessary to substitute diffusion  ,u j k  in 

it. The imaginary diffusion of an elementary particle is 
determined by the formula (16a) transferred to the micro-level 
of the matter. To that end, we use the density function 
 , , ,P j x t k  of distribution of the probability of an imaginary 

random diffusion process (24) taking into consideration the 
notations (22), (23): 

                         , 2 1 .
2

u j k j k     (25)  

It can be seen from (25) that the diffusion of an imaginary 
random process for a concrete k  is constant. 

 
 

§4. Obtaining of the Dispersion Equation for the 
Elementary Particles Mapped onto the Micro-level 

of the Matter 
 
In what follows, it is assumed everywhere that the system 

of equations of stochastic mechanics (14)-(16) consists of the 
functions    , , , ,  ,P j x t k u j k  and  , , ,v j x t k  mapped4 to the 

                                                 
4Further, instead of the words "transfer to", their synonym "mapping 
to" will be used. 
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micro-level. It should be noted that  , , ,P j x t k and  ,u j k  are 

already known, they are defined by the formulae (24) and (25). 
The mapped diffusion function  ,u j k  and the dispersion 

 , , ,v j x t k  function are used to substitute them in the mapped 

wave function formula (18a). 
Below given sequence of mathematical operations allows to 

determine the equation satisfying the mapped dispersion 
 , , ,v j x t k .  

To find the equation of the dispersion v  mapped to the 
microlevel, we substitute the density  , , ,P j x t k  determined 

according to (24) into equation (14) 

       

       

2 22 1 2 12 2

2 1 2 1

2 1 2 1

2 1 : 2 1 .

j k t j k t

j k t j k t

k e v k e
vj k e j k e
x

 

 

 

 

 

 

   


  



 

The latter gives the differential equation 

                          2 1 1 .v j k v
x


   


 (26) 

If we put the diffusion value (25) into the Nelson equation 
(15) mapped to the micro-level, we will have 

                          ( )v v F xv
t x m

 
 

 
. (27) 

The joint solution of equations (26) and (27) leads to 
 2 1 0,1,2,...k k  number of Riccati-type equations mapped 

to the micro-level 

                    22 1 2 1 ( )/ .v j k v j k v F x m
t

 
    


 (28) 
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For a certain k the expression (28) is the mapped scalar 
Riccati equation with constant coefficients. 

  Consider equation (28) as equation (3) mapped to the 
micro-level of the matter. In this reflection, the parameters 

12 ,  ,
r

   and   of equations (3) are mapped to the 

parameter of equation (28), respectively. The mapping process 
can be schematically represented as follows: 
                      2 is mapped to  2 1 ,j k   (29) 

                      1
r

 is mapped to  2 1 ,j k   (30) 

                         is mapped to ( )/ .F x m  (31) 
Thus, the joint solution of the equations of stochastic 

mechanics mapped to the micro-level (14)-(16) allows to 
obtain the Riccati equation (28) mapped to the micro-level, 
satisfying the dispersion  , , ,v j x t k  of elementary particle at 

the micro-level of the matter. 
 
§5. Solution of the Equation Determining the 

Dispersion of Elementary Particle at the 
Microlevel in a Steady State 

If instead of parameters 12 ,  ,
r

   and   we take into 

consideration their mapped values (29)-(31), then the structure 
of the solution to equation (28) will be the same (see (3a)) as it 
was in solution of equation (3). In such a case, the parameters 

1 2,  ,  v v  are determined by taking into consideration the 
mappings (29)-(31), in accordance to formulae (7)-(9): 
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            
2

2 ( ), , 2 1 2 1 ,
4

F xx j x k k j k
m

         (32) 

            1
1 1 , , 2 1 2 1 ,

2
v x v j x k j k x j k 

           
 (33) 

       1
2 2 , , 2 1 ( ) 2 1 .

2
v x v j x k j k x j k 

           
 (34) 

Taking the above parameters into consideration, the 
solution of the mapped dispersion equation (28) for a certain k  
will be written as follows: 

                     
   
   

 

1 2
1

20 2

0 1

, , , ,
1x t

v x v x
v j x t v j x

v x v x
e

v x v x



 






 (35) 

where    0 , ,0v x v j x  is the imaginary dispersion for 0t  . 

Without losing generality, in solution of equation (28), we 
can assume that 0 0.v   In such a case, the soliton solution of 
equation (28) will be given by 

                       2

0

, sech ,v x t D x x x t x dt  


      (36) 

where        
      11 2 2

1

,  ,  = ln
2

v x v x v x
D x c x c

v xc



  . 

The functional determining the dispersion  ,v x t in the time 

interval  0,t   depends on the coordinates of the particle in 

a complex way; therefore, the substitution of the mapped 
dispersion  ,v x t  in formula of wave function (18a) greatly 

complicates the calculation of the function, making calculation 



21 
 

practically impossible. However, to determine the dispersion 
 ,v x t  in the stationary case, i.e. when t   and at the initial 

moment when 0t  , the calculation of the dispersion is 
possible. 

Indeed, for t  , according to formula (35), we have 

   1v x v x , and for 0,t   then from (35) we receive 

 0 0.v x   Consequently, calculation of integral (36) in the 

stationary state and at the initial moment will be given by 
                         0 1 1, 0 .v x t v x v x v x      (37) 

According to formula (33), expression (37) will be written as 

                        1
1

12 1 .
2

v x v x j k x 


       (38) 

If in formula (32) we take out the term  
2

22 1
4

k
   for 

the radical sign, then we will have 

                      42 1 1 .
2 2 1

x j k j F x
m k




  


 (39) 

If in expression (38) we take into consideration (39), then 
we get5 

                                                 
5If both sides of the formula (40) are multiplied by the expressions 

conjugate to that formula, respectively, i.e. to the  1 1 1
2

v j x      , 

we get the square of the dispersion of an elementary particle at the 

microlevel      2 1 1 1 .
4 2 1

jv j x F x
m k




      
 Hence,   24x v   

and, consequently, 2 41 1 16r      .  
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                   1 1 1 11 1 ,
2 2 2 2

v x j F x j x        (40) 

where 4
(2 1)m k




, ( ) ( )x F x  . 

With account of the formula 

               21 11 ,   1
2 2

r rj j r 
  

      
 

, (41) 

expression (39) will be written as 
      ,x j x x        

where      1 12 1 ,   ( ) 2 1 .
2 2 2 2

r rx k x k   
     

 
§6. Obtaining a Mathematical Model of an 

Antiparticle 
 
In 1930, guided by physical considerations, P. Dirac 

predicted the existence of antiparticles: each elementary 
particle corresponds to its antiparticle; the positron is the 
antiparticle for the electron. All predictions on the existence of 
antiparticles were confirmed experimentally and the 
antiprotons, antineutrons, etc. were discovered. 

The mathematical substantiation of this phenomenon is of 
interest. For mathematical confirmation of this phenomenon, it 
is reasonable to consider the wave function of the particle and 
antiparticle at the microlevel of the matter. According to 
formula (18a), mathematical operations are performed in 
exponential order; the exponential order will be obtained, if we 
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take into consideration the expressions (25) and (40) in formula 
(18а): 

                  
0 0 0

0 0 0

11 2 1 .
2 2 2

n n nj jj x dx dx j k dx
  

  

 
 

     
 (42) 

Represent the expression  1 j x  separately according 

to formula (41): the terms with the positive sign and with the 
negative sign will be considered separately. 

First, we take into consideration the plus sign (+) and then 
the minus sign (-). In such a case, expression (42) will be 
written in two variants: 

                  1 1 1 2 1 ,
2 2 2 2
jt r r jtj k


         
   

 (43) 

                 1 1 1 2 1 .
2 2 2 2
jt r r jtj k


          
   

 (44) 

Further, it is assumed that the particle and the antiparticle 
are in a constant potential energy, i.e. U const  and, 
consequently, 1r  . 

According to expressions (43) and (44), the wave function 
can be written as follows: 

                        
 2 1

2
0 ,   1,2,3,...

t
j k

e k


 
   

 
  (45) 

                          
 1 2 1

2
1,2 .

t
j k

e



     

     
  

 (46) 
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It should be noted that the wave function (45) does not 
contain the mass of the elementary particle, therefore, further, 
it will not be taken into consideration. The wave function (46) 
contains both the wave function of the particle and the wave 
function of the antiparticle. If we take into consideration 
Euler’s formula  cos sinjge g j g  , then for obtaining the 

wave function of the antiparticle it is necessary to open the 

brackets of expression  2 1
2

k
 . In such a case, the 

arguments of the sinusoidal and cosinusoidal functions will 

consist of three summands 1,  ,  :
2

k    

         

   
1

2
1 cos sin .

t
j k t

e A B C j A B C



    
 

 
           

  
 (47) 

To obtain the wave function of the particle it is not 

necessary to open the brackets of expression  2 1
2

k
 ;  

in such a case, the arguments of the sinusoidal and 
cosinusoidal functions will consist of two summands 

 1,  2 1 :
2

k    

         
 

   
1 2 1

2
2 cos sin ,

t
j k t

e a b j a b



     

            
  

 (48) 
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where 

 1 ,  , ,  2 1 ,  1,3,5,...,
2 2

A a B k C b k k 


          

for particle and 0, 2, 4,...,k   for antiparticle. 
For the antiparticle we will have 

   
 cos cos cos cos sin sin cos cos sin

1cos sin sin sin ,

A B C A B C A B C sinA B C

A B C


     

     
 

 (49) 
   

 sin sin cos cos cos sin cos cos cos sin

1sin sin sin cos .

A B C A B C A B C A B C

A B C


     

    
 

 (50) 
For the particle we will have 

            1cos cos cos sin sin sin ,a b a b a b


      
 

 (51) 

            1sin sin cos cos sin cos .a b a b a b


       
 

 (52) 

Consequently, the difference between the particle and the 
antiparticle is reduced to the group or the absence of group of 

summands k  and .
2
  

If we take the results (51) and (52) into consideration in 
formula (48), taking de Moivre formula 

 cos sin cos sintg j g tg j tg    into consideration, then we 

get the wave function of the particle  
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2 sin cos .t tj
 

        
   

                        (51a)  

If we take the results (49) and (50) into consideration in 
formula (47) there we get the wave function of the antiparticle 

1 sin cos .t tj
 

         
   

                        (49a) 

Taking into account the expression (45) for the photon, as 
well as the formulas (49a), (51a) and exponent (42), the 
solution to the non-stationary Schrödinger equation takes the 
form 

1 2 0.      
Consequently, we have the annihilation 

1 2 0.    
Taking into account annihilation, the solution to the 

nonstationary Schrödinger equation (5) will be written as 
follows: 

   2 1
2

0 .
j k t

t e



                           (18b) 

The resulting solution (18b) makes no sense. On the left 
side of the sign <=> there is a wave function Ψ (t) that changes 
over time. On the right side of the sign <=> there is a photon 

0  – quantum of electromagnetic radiation, depending on the 
imaginary unit j . To get rid of the imaginary unit j  it is 

necessary to use the inverse Laplace 1L  transform operator 

(see the formula (20) in relation to the formula 01 .
2
sth

s
 
 
 

 For 

this purpose, let us imagine the photon (45) in the following 
form: 
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       02 1 12 2 2
0

0

1 1 ,    1 ,
tj k t n te n n

 


           

where  0 1 ,   1,2,...t n n    

Let’s introduce the following notation 

  1 01 .
2
st L th

s
       
  

 

Using this notation we finally obtain a solution to the 
nonstationary equation (5) in the form 

   .t t   

 t  function is graphically depicted in Fig.1. 

 
Fig.1. Discrete linear spectrum of γ radiation. 

 
Gamma radiation is a very short-wave electromagnetic 

radiation with a wavelength not exceeding 10-2 nm. The 
discrete line spectrum of  t  radiation is confirmation of the 

existence of discrete energy levels of nuclei. 

4
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§7. Model of Emergence of Elementary Particles 
from the Vacuum 

 
The physical vacuum is teeming with virtual particles; it 

contains various kinds of virtual elementary particles. Physical 
vacuum exerts comprehensive pressure on any elementary 
particle both on the scale of the Universe and in laboratory 
conditions. It is considered that for any type of vacuum, there 
is a resonant wavelength. The data presented in show how 
sharply the concentration of elementary particles decreases 
with the change of the vacuum type. The present work shows 
how significantly the free path of neutrinos changes depending 
on the resonance wave of a certain type of vacuum. Below, a 
model is constructed based on the results of this work, which 
shows how elementary particles emerge from "nothing" in a 
strong electric field. 

To determine the gradient of the electric field, where the 
real particles emerge from virtual particles, we use formula 
(41) instead of the first term of the expression (42); and 

without taking into consideration the coefficient 
1 ,
2

 we obtain 

             
0

0

1 1 1 1 2 1 .
2 2

n r rj j k dx





 

          
   
  (53) 

 After multiplying (53) by j , in formula (53), we will have 
imaginary and non-imaginary parts separately 

    
0

0

1 1 1 2 1 .
2 2

n r j r j j k dx





  

                
     
  (54) 
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If virtual particles are absent, in expression (54) the sum of 
the coefficients for imaginary terms will be equal to zero,  

                    1 1 1 2 1 0.
2

r k
 
 
     
 

 (55) 

When the virtual particles are absent, we have only real 
particles. As 2 21r F  , from equality (55) it follows that 

                          2 21 ,F G k   (56) 

where      22 21 4 2 1 2 2 1 .G k k k        
From equality (56) we find the gradient of the electric field, 

where the real particles emerge  

                         21 1 .F k G k
k

  


 (57) 

The sign of the absolute value in formula (57) follows from 

the fact that the expression  
4
2 1
F

m k






 is positive and, 

consequently, 0.F   
If we to take into consideration (55) in expression (54) and 

also consider the formulae (18а), (25), (40) and the denotation 
 0 1n t    we obtain the final result of emergence of real 

particles from “nothing” 

 
  1

2 2, ,  const.
r kt

k t e t


    
The parameter k , where the elementary particles begin to 

emerge from the vacuum, is determined from the following 
inequality 

 
0

1
2 1.

2

r k






  
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§8. Model of Corpuscular-Wave Dualism 
 
After Planck's postulate about the discrete nature of energy 

radiation by atoms-oscillators (1900), the idea of quantization 
was developed by A. Einstein (1905). He suggested that 
quantum properties are inherent in light in general. It follows 
from Einstein's hypothesis that light must be considered not as 
a wave, but as a stream of quanta (photons) with the energy 

0 0E h 6 and impulse 0 /p c  7 each. In terms of cognition, 
this hypothesis did not accept the position in classical physics 
about the essential difference between the matter and radiation; 
it affirmed the fundamental principle of the physics of the 
microcosm of wave – a model of corpuscular-wave dualism is 
given. To obtain a mathematical model of corpuscular-wave 
dualism. The hypothesis of the great thinker was of 
considerable theoretical value. 

In this section, one of the main problems of this work is 
solved – a model of corpuscular-wave dualism is given. To 
obtain a mathematical model of corpuscular-wave dualism, 
consider the wave function of an elementary particle taking into 

consideration expression (53) and coefficient 1
2

 writing it as 

                   
 

0

0

1 1 1 1 2 1
2 2 2

, ,

n
r j r j j k dx

k t e






  

               
        


   (58) 

where 1,3,5,...k   

                                                 
6 h  is the Planck constant, 0v  – the frequency of electromagnetic radiation. 
7 c – the speed of light in emptiness, 0 – the angular frequency of 
electromagnetic radiation. 
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The potential energy in which the elementary particle is 
located is constant, i.e. const.U   This means that 1r   and 
the content in the first square brackets goes to zero. 

If we put a plus sign (+) in front of the second bracket in 
formula (58), we get a wave function without a mass particle, 
i.e., a photon 

 2 1
2

0 .
j k t

e



                               (45′) 

If we put a minus sign (-) in front of the second bracket in 
formula (58), we obtain the wave function of an elementary 
particle with mass m 

                         
 2 1

2
1 , .

tj t k
k t e



        (59) 

 We introduce the notation 

                        1 ,  2 1 .
2

a b k


     (60) 

Taking these designations into consideration, the wave 
function (59) will be written as 

                           
1 , .

tj a bk t e       (61) 

Using the Euler formula in the square brackets, the wave 
function (61) will be given by 

                      1 , cos sin .
t

k t a b j a b        (62) 

Transformation of trigonometric functions and taking into 
consideration notation (60) gives 
                 cos cos cos sin sin sin ,a b a b a b a     (63) 

               sin sin cos cos sin cos .a b a b a b a      (64) 
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Taking into consideration expressions (63) and (64) in 
formula (62), we obtain 
                         1 , sin cos .tm t a j a    (65) 

Since time is discrete   01t n   , the Moivre formula can 

be used; as a result, formula (65) will be written as 
                          1 , sin cos .m t at j at    (66) 

Taking into consideration the fact that only the real part of 
the complex function has physical meaning, with account of 
designation (60) formula (66) will be given by 

                            1
1, sin .m t t


    
 

 (67) 

 To pass from formula (67) to the wave-particle duality, it is 
necessary to use the de Broglie formula 

                            ,h h
p mV

   8 (68) 

where   is wave-length. 
Using formulas (68) and (67), the mass of an elementary 

particle can be eliminated. Replacing it with the speed of that 

particle and determining the mass
hm
V

  from (68) and 

substituting it in formula (67) we will have 

                      0
1

2, sin sin ,V t t t
V V




       
   

 (69) 

                                                 
8  is the wavelength of the elementary particle; V – the velocity of an 
elementary particle; p – the impulse of an elementary particle. 
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where 0
2


  is the angular frequency. 

As for small values   we have sin ,   formula (69) can 
be given in two expressions 

                           0
1 , sin ,V t t

V
    
 

 (69a) 

                             0
1 , .V t t

V


   (70) 

If in formulas (69a) and (70), we take into account the 
formula for photon (45′), then we get 

  0
0, sin ,V t t

V
    
 

                          (69b) 

  0
0, .V t t

V


                               (70a) 

Since formula (45′) for the photon 0  can be represented 
in unfolded in time form, i.e. in the form 

  1 1=L th ,
2
st

s
       
  

 then the wave (69 a) and corpuscular 

(70) functions of the non-stationary Schrödinger equation (5) 
will be written as follows 

   0, sin ,V t t t
V
      
 

                       (69c) 

   0, .V t t t
V
                               (70b) 

Formula (69c) corresponds to the wave motion of the 
particle, and formula (70b) to corpuscular motion. So, the 
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motion of an elementary particle can be viewed from two 
positions: waves and corpuscles. 
 

§9. Gravitational Wave Model 
 
Although the existence of gravitational waves was 

predicted by the general theory of relativity, their detection was 
possible only after a hundred years. 

In the mid-seventies of the last century, the problem of 
indirect detection of gravitational waves was solved in [5]. In 
the article, the probabilistic (correlation) relationship between 
the earthquakes and flares passing through the solar 
chromosphere was proved. The studies presented in this work 
allows: 

1) To ascertain that gravitational waves as such exist; 
2) To ascertain that the gravitational waves consist of 

neutrinos as neutrinos freely pass through the Earth; 
3) To ascertain that the flares in the solar chromosphere 

show that gravitational waves are composed of the matter, i.e. 
from neutrinos that have rest mass; 

4) To determine the velocity of gravitational wave ;  since 
the distance from the earth to the sun is well known 
( 715 10l   km), the time t  of flight of the neutrino cluster from 
the moment of the earthquake to the moment of the flares in the 

chromosphere, consequently, .l
t

   

Thus, it becomes clear that the gravitational wave is 
associated with the transfer of the matter in the form of a large 
aggregate of elementary particles of neutrino of the same type. 
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The necessity of introduction of neutrinos was determined 
by the law of conservation of energy in the process of the   – 
decay of the atomic nuclei. W. Pauli suggested a hypothesis (in 
1931-1932) about the existence of neutrinos. E. Fermi gave the 
name "neutrino" to the particle due to lack of charge and its 
very small dimensions. He also expressed the idea that the 
neutrino is not in a "ready-made form" in the nucleus of an 
atom, but in some way, it is instantly formed from the energy 
of the nucleus. 

Researchers of the composition of the cosmic rays reached 
the conclusion that all the ordinary matters in the Universe 
consists of two lightest leptons, an electron e  and an electron 
neutrino ev 9. 

For 30 years after the discovery of neutrino, it was believed 
that this particle had zero rest mass. The papers published at 
that time considered that gravitational waves carried energy 
and impulse, but they had nothing to do with the transfer of the 
matter [6]. 

It became known to cosmology that the total mass of 
neutrinos in the cosmos many times prevails the total mass of 
luminous objects and therefore the neutrino makes the main 
contribution to cosmic gravity [6]. 

Such an abundance of neutrinos in the Universe has created 
the prerequisites for creation of a new science – neutrino 

                                                 
9Further, the index e  by ev  will be omitted. In addition to the electron 
neutrino ,v  there exist  – neutrinos and  – neutrinos, but they are rare. 
We consider all neutrinos as three states of one particle. This is possible in 
the case when the laws of conservation of the lepton charges are violated. 
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astronomy. Consequently, the detection of gravitational waves 
belongs to that science. 

Finally, the time came for direct detection of the 
gravitational wave: it occurred on February 11, 2016, when 
two highly sensitive detectors of the LIGO gravitational 
observatory, located in Washington and state of Louisiana, 
simultaneously recorded the signal GW150914, lasting about 
0.2 seconds. 

The position is accepted that the structure of the 
gravitational wave exponent coincides with the structure of the 
particle-wave exponent, that is, with the structure of the wave 
function (58). The value of the constant potential energy 

constU   is the same as in the previous paragraph. However, 

the parameter   has a different meaning defined as * .
M

 


 

The gravitational wave function has the form 

                 
 

0 * *

* * *
0

1 1 1 1 2 1
2 2 2

, ,

n
r j r j j k dx

k t e






  

               
        


   (71) 

where 
 

* *2 * 41, 2,3,...,  1 ,  ,
2 1

dUk r
M k dx

 


    


 M  

– mass of neutrino beam is determined below. 
This means that * 1r r   and the content in the first square 

brackets goes to zero. 
If we put a plus sign (+) before the second bracket in 

formula (71), then we get a wave function without a mass 
particle, i.e., a photon 

 2 1
2

0 .
j k

e



                             (45′′) 



37 
 

If we put a minus sign (-) in front of the second bracket, we 
get the wave function of the gravitational wave 

                           
 * 2 1

2
1 , ,

tj t k
k t e



                             (72) 

where  1 .t n    
We introduce the notation 

                          *
*

1 ,  2 1 .
2

a b k


                         (73) 

Taking these designations into consideration, the wave 
function (72) will be written as 

                            *

1 , .
t

j a bk t e      
                        (74) 

Using the Euler formula in the square brackets, the wave 
function (74) will be given by 

                        * *
1 , cos sin .

t
k t a b j a b        (75) 

Transformation of trigonometric functions and taking into 
consideration notation (73) gives 
                * * * *cos cos cos sin sin sin ,a b a b a b a     (76) 

                * * * *sin sin cos cos sin cos .a b a b a b a      (77) 

Taking into consideration expressions (76) and (77) in 
formula (75), we obtain 

                      * *
1 , sin cos .

t
M t a j a      (78) 

Since time is discrete   01t n   , the Moivre’s formula 
can be used; as a result, formula (78) will be written as 
                        * *

1 , sin cos .M t a t j a t    (79) 
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Taking into consideration the fact that only the real part of 
the complex function has physical meaning, with account of 
designation (73) formula (79) will be given by 

                          1 *

1, sin .M t t

    
 

 (80) 

The above model of the wave function of an elementary 
particle located at the micro-level, can be used (formula (80)) 
for modeling the gravitational wave, since neutrino belongs to 
the class of elementary particles. Therefore, the gravitational 
wave model is given by the formula 

1( , ) sin .MM t t    
 

                              (81) 

If we take into account the wave function of the photon 
(45′′), then the wave function of the gravitational wave will be 
written as follows 

1 0( , ) ( , ) .M t M t                              (82) 
Formula (82) can be represented as 

 ( , ) sin ,MM t t t     
 

                         (83) 

where  t   – the gamma function having a discrete spectrum; 

M  is the relativistic mass of the neutrino beam. The neutrino 
beam consists of N – number of neutrinos of the same type; 
therefore, the relativistic mass of the neutrino beam is 
determined as follows 

                            
1

,
N

i
i

M m Nm


   (84) 
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where im  is the relativistic mass of one neutrino particle. The 
relativistic mass of one neutrino particle is determined 
according to the Lorentz transformation 

                         0
02

,

1

mm m

c




 
   
 

 (85) 

where
2

1

1
c





   
 

 is a constant parameter depending on the 

neutrino velocity, is the velocity of neutrinos; 0m , the rest 
mass of the neutrino. 

Thus, the relativistic mass M  of the neutrino beam is 
determined according to (84), taking into consideration the 
relativistic mass of the -i th particle (85): 

0.M N m  
Since for a small value   we have sin ,   then for the 

detected signal, according to formula (83), we obtain 

 ( , ) .MM t t t   


                           (86) 

What Fermi Gamma-ray Space Telescope recorded in 
11.02. 2016 should not be a <puzzle> [7], since the 
gravitational wave (86) model we obtained provides for the 
existence of gamma-ray  t   appearing when identifying a 
gravitational wave [7].  

A feature of gamma-ray      ,  ,  t t t     may be a 

different interval of discreteness  0 , , ,      i.e. quantization 
interval of these radiations. 
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*  *  * 
Interaction carriers  

 
Among the four types of fundamental interactions (strong, 

gravitational, weak and electromagnetic), only electrically 
charged particles and photons – quanta of electromagnetic 
radiation – participate in electromagnetic interaction. Photon is a 
typical representative of a new, important class of micro-objects 
– interaction carriers. The  t  radiation is a particular type of 

electromagnetic radiation. The γ radiation is emitted by excited 
atomic nuclei during radioactive transformations, nuclear 
reactions, thermonuclear fusion, as well as other processes. 

 
Results 

 

An essential achievement of §1 was the expansion of the 
concept of the integrity of the system, that is, the quantumness 
of the entire system in relation to the observation system. The 
reason for expanding the concept of quantumness was the 
soliton solution of the Riccati equation, which satisfies the 
conditional dispersion v of the observational system. The 
dubious solution of the Riccati equation (10) satisfies the 
Euler-Lagrange equation (0.1). Therefore, the found solution is 
optimal for the problem posed, in which the observation 
channel belongs entirely to the observation system. The fact of 
quantization concept extension was known, but the reason for 
the extended concept of quantization was not understandable. 
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The main result of §2 is the author's statement, according 
to which he owns the method of using a generalized function to 
obtain a wave function in solving the Schrödinger Equation, 
which belongs to the microlevel of matter. 

There are two main results in §3. The first result is the 
derivation of the structure of the solution of the non-stationary 
Schrödinger Equation (5). The second result is a mathematical 
model for the practical implementation of the generalized 
function algorithm (20). Subsequently, these results, together 
with the equations of stochastic mechanics, are used to transfer 
dispersion   and diffusion u  to the class of imaginary 
functions, in which we have a model for solving the 
nonstationary Schrödinger Equation.  

An essential result of §4 can be considered the derivation 
of an equation of the Riccati type (28) for determining the 
dispersion of an elementary particle located at the microlevel 
of matter. The solution of the imaginary Riccati equation (28), 
given in §5, became a harbinger of achieving the main goal of 
this monograph: obtaining new models of the physical 
microcosm and showing their optimality. Solution (18a) of the 
non-stationary Schrödinger Equation (5) allows creating a 
mathematical model of the antiparticle (47). This question is 
solved in §6. In the same paragraph, the process of annihilation 
that occurs when an antiparticle collides with a particle is 
shown. In addition to the antiparticle and particle, when 
solving the non-stationary Schrödinger Equation, one more 
particle is formed, whose wave function does not contain rest 
mass (45). This particle in elementary particle physics is called 
a photon: it does not participate in the process of annihilation. 
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It is well known that elementary particles are formed from 
the physical vacuum in a strong electric field. The solution 
(18a) of the non-stationary Schrödinger Equation (5) makes it 
possible to obtain a mathematical model of the process of 
formation of elementary particles from “nothing”. In §7, the 
electric field gradient is determined, at which elementary 
particles with a certain mass are born (from vacuum). This 
model uses the parameter k , which has no dimension. 
Although the process of formation of elementary particles from 
the physical vacuum is widely known, many details of this 
phenomenon remain unknown. Here is what is said in the book 
of Paul Davies “Superforce” – “The phenomenon of birth from 
“nothing” occurs in a sufficiently strong electric field”. This 
proposal does not say how the mass of the formed elementary 
particle affects the gradient of a “sufficiently strong electric 
field”. So the model of the gradient (57) obtained in §7, of a 
strong electric field, in which elementary particles are formed 
from the physical vacuum, will shed light on many questions. 

The use of the solution (18a) of the non-stationary 
Schrödinger Equation (5) together with the de Broglie formula 
(68) made it possible to obtain a mathematical model of wave-
particle duality in §8. According to this model, the speed of 
movement of an elementary particle determines the choice 
between a wave and a particle.  

An important problem of describing a gravitational wave is 
discussed in §9. The structure of the gravitational wave 
proposed in this paragraph is the same as in the wave model 
given in §8. However, this time the mass of the elementary 
particle was replaced by a beam consisting of neutrinos. To 
date, it is believed that the neutrino has a rest mass other than 
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zero. The mass of a beam consisting of individual neutrinos is 
used instead of the mass of an individual elementary particle in 
the gravitational wave model (86).  

Conclusion 

The fact that the exact method of solving the problem is 
preferable to the approximate method is an indisputable fact. In 
this case, the significance of the exact method is enhanced by 
the fact that the solution of the non-stationary Schrödinger 
Equation gives physical science four new directions in the 
knowledge of the physical microcosm (see Fig. 2). 

Fig. 5. Block diagram of new directions obtained thranks to solution (18a) 
of Schrödinger non-stationary equation (5). 

§9. Gravita- 
tional wave 
model 
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