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Abstract. This paper intends to investigate the existence and uniqueness of solutions for some
nonlinear Atangana–Baleanu fractional differential equations involving the Mittag–Leffler integral
operator. By means of Schauder’s fixed point theorem and Banach’s fixed point theorem, the existence
and uniqueness results are obtained. A generalized fractional order free electron laser equation is given
as an application.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÉ ÄÞÙÅÍÄÁÀ ÀÌÏáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÂÀÌÏÊÅËÄÅÀÓ ÆÏÂÉ-
ÄÒÈÉ ÀÒÀßÒ×ÉÅÉ ÀÔÀÍÂÀÍÀ-ÁÀËÄÀÍÖÓ ßÉËÀÃÖÒ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ, ÒÏÌ-
ËÄÁÉÝ ÛÄÉÝÀÅÓ ÌÉÔÀÂ-ËÄ×ËÄÒÉÓ ÉÍÔÄÂÒÀËÖÒ ÏÐÄÒÀÔÏÒÓ. ÛÀÖÃÄÒÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ
ÈÄÏÒÄÌÉÓÀ ÃÀ ÁÀÍÀáÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÉÓ ÓÀÛÖÀËÄÁÉÈ ÌÉÙÄÁÖËÉÀ ÀÒÓÄÁÏÁÉÓÀ
ÃÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÛÄÃÄÂÄÁÉ. ÂÀÌÏÚÄÍÄÁÉÓ ÓÀáÉÈ ÌÏÝÄÌÖËÉÀ ÈÀÅÉÓÖ×ÀË ÄËÄØÔÒÏÍÄÁÆÄ
ÌÏÌÖÛÀÅÄ ËÀÆÄÒÉÓ ßÉËÀÃÖÒÉ ÒÉÂÉÓ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÂÀÍÔÏËÄÁÀ.
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1 Introduction
In the last decades, several significant results related to the qualitative properties of fractional dif-
ferential equations have been recorded because of their ability to model real-world problems in many
fields such as science, technology and engineering [11,12,19,21–23,26,29].

Recently, the interest of many researchers interested in fractional calculus has gone to a new type of
fractional derivative with non-singular kernel introduced by Caputo and Fabrizio [10], this derivative
is based on the exponential kernel. Later, Atangana and Baleanu [7] developed another version
which used the generalized Mittag–Leffler function as non-local and non-singular kernel which appears
naturally in several physical problems and the field of science and engineering [3–6,8, 14,25,30,31].

On the other hand, the Mittag–Leffler function and its generalizations play a fundamental role in
fractional calculus and its applications such as modelling groundwater fractal flow, viscoelasticity and
probability theory [1, 13].

In [24], Prabhakar studied a singular integral equation with a general Mittag–Leffler function in
the kernel, namely,

t∫
a

(t− s)δ−1Eλ
σ,δ(ν(t− s)σ)ϕ(s) ds = g(t), t ∈ [a, b],

where

Eλ
σ,δ(z) =

∞∑
k=0

(λ)k
Γ(σk + δ)

zk

k!
(σ, δ, λ ∈ C, Re(σ) > 0).

The function Eλ
σ,δ(z) is the three-parameter Mittag–Leffler function and (λ)k is the Pochhammer

symbol defined as

(λ)k =

{
(λ)(λ+ 1) · · · (λ+ k − 1), k ∈ N,
1, k = 0, λ ̸= 0.

When λ = 1, E1
σ,δ(z) coincides with the classical two-parameter Mittag–Leffler function

Eσ,δ(z) =

∞∑
k=0

zk

Γ(σk + δ)
.

It is useful to mention that the three-parameter Mittag–Leffler function is closely connected with
the phenomenon of Havriliak–Negami relaxation [15].

In [17], Kilbas et al. investigated an integro-differential equation of the form

Dα
a+y(t) = γEλ

σ,δ,ν;a+y(t) + f(t), a < t ≤ b, (1.1)

where Eλ
σ,δ,ν;a+ is the Mittag–Leffler integral operator defined by

Eλ
σ,δ,ν;a+y(t) =

t∫
a

(t− s)δ−1Eλ
σ,δ(ν(t− s)σ)y(s) ds, (1.2)

where σ, δ, ν, λ ∈ C, Re(σ) > 0, Re(δ) > 0.
Obviously, E0

σ,δ,ν;a+ is the Riemann–Liouville fractional integral operator of order δ. Therefore,
operator (1.2) and its inverse can be considered as generalization of fractional integral and derivative
operators involving Eλ

σ,δ(z) in their kernels.
In this paper, we consider the following nonlinear Atangana–Baleanu fractional differential equation

involving the Mittag–Leffler integral operator{
ABCDα

0+x(t) = Eλ
σ,δ,ν;0+f(t, x(t)), α ∈ (0, 1], t ∈ [0, 1],

x(0) = x0 ∈ R,
(1.3)
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where ABCDα
0+ denotes the Atangana–Baleanu fractional derivative of order α in Caputo sense,

σ, δ, ν, λ ∈ R, σ, δ > 0 and f : [0, 1]× R → R is a given continuous function.
The importance of studying such equations like (1.1) and (1.3) is that they describe the unsaturated

behavior of the free electron laser [9, 27, 28], which is a kind of laser whose lasing medium consists of
very-high-speed electrons moving freely through a magnetic structure.

2 Preliminaries
In [7], Atangana and Baleanu improved the Caputo–Fabrizio fractional derivative with non-singular
kernel to another one with non-local and non-singular kernel. We present the basic definitions of the
new fractional order derivatives.

Definition 2.1 (see [7]). Let h ∈ H1(a, b), a < b, α ∈ [0, 1], then the Atangana–Baleanu fractional
derivative in Caputo sense is given by

ABCDα
a+h(t) =

B(α)

1− α

t∫
a

Eα

[
− α

(t− s)α

1− α

]
h′(s) ds, (2.1)

where B(α) denotes a normalization function such that B(0) = B(1) = 1 and Eα denotes the Mittag–
Leffler function defined by

Eα(−tα) =

∞∑
k=0

(−t)αk

Γ(αk + 1)
.

However, when α = 0, they did not recover the original function, except when at the origin the
function vanishes. To avoid this issue, they proposed the following definition.

Definition 2.2 (see [7]). Let h ∈ H1(a, b), a < b, α ∈ [0, 1], and it is not necessary differentiable,
then the Atangana–Baleanu fractional derivative in Riemann–Liouville sense is given by

ABRDα
a+h(t) =

B(α)

1− α

d

dt

t∫
a

Eα

[
− α

(t− s)α

1− α

]
h(s) ds. (2.2)

Equations (2.1) and (2.2) have a non-local kernel. Also in equation (2.1), when the function is
constant, we get zero. For more details and properties, see [7, 10].

Definition 2.3 (see [7]). Let h ∈ H1(a, b), a < b, α ∈ [0, 1], then the Atangana–Baleanu fractional
integral, associate to the new fractional derivative with non-local kernel is given by

ABIαa+h(t) =
1− α

B(α)
h(t) +

α

B(α)Γ(α)

t∫
a

(t− s)α−1h(s) ds,

where Γ( · ) denotes the well-known gamma function. The initial function is recovered when the
fractional order turns to zero. Also, when the order turns to 1, we have the classical integral.

To end this section, we collect some useful lemmas.

Lemma 2.4 (see [2]).

Iα0+E
λ
σ,δ,ν;0+(ϕ) = Eλ

σ,δ+α,ν;0+(ϕ), Eλ
σ,δ,ν;0+E

η
σ,µ,ν;0+(ϕ) = Eλ+η

σ,δ+µ,ν;0+(ϕ),

∥Eλ
σ,δ,ν;0+(ϕ)∥C ≤ Eλ

σ,δ+1(|ν|)∥(ϕ)∥C .

Lemma 2.5 (see [2]). Suppose z ≥ 0 is fixed, σ, δ, λ > 0.

(i) If 0 ≤ λ ≤ 1, then Eλ
σ,δ(z) ≤ Eσ,δ(z).
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(ii) If λ ≥ 1, then Eλ
σ,δ(z) ≥ Eσ,δ(z).

Lemma 2.6 (see [18]). Assume that σ, δ, ν, λ ∈ R, (σ, δ > 0), then for a continuous function ϕ ∈
C([0, 1]) and positive integer n, where δ > n,

dn

dtn
Eλ
σ,δ,ν;0+(ϕ) = Eλ

σ,δ−n,ν;0+(ϕ).

Lemma 2.7 (see [20]). Suppose σ, δ, ν, λ ∈ R, (σ, δ > 0, δ > α ≥ 0), then for a continuous function
ϕ ∈ C([0, 1]),

Dα
0+E

λ
σ,δ,ν;0+(ϕ) = Eλ

σ,δ−α,ν;0+(ϕ).

Lemma 2.8 (Ascoli–Arzelà theorem). Let S = {s(t)} be a function family of continuous mappings
on a closed and bounded interval [a, b], s : [a, b] → X.

If S is uniformly bounded and equicontinuous, and for any t∗ ∈ [a, b], the set {s(t∗)} is relatively
compact, then there exists a uniformly convergent function sequence {sn(t)} (n = 1, 2, . . . , t ∈ [a, b])
in S.

Lemma 2.9 (Schauder’s fixed point theorem). If U is a closed, bounded and convex subset of a
Banach space X and T : U → U is completely continuous, then T has a fixed point in U .

3 The Existence and Uniqueness Results
Let C([0, 1]) be the Banach space of all continuous functions from [0, 1] into R with the norm ∥x∥C =
max{|x(t)| : t ∈ [0, 1]}.

Definition 3.1 ([16, Theorem 3.1]). A function x ∈ C([0, 1]) is said to be a solution of equation (1.3)
with x(0) = x0 if x(t) satisfies the integral equation

x(t) = x0 +
AB Iα0+

(
Eλ
σ,δ,ν;0+f(t, x(t))

)
. (3.1)

In view of Definition 2.3, together with Lemma 2.4, equation (3.1) can be reformulated as follows:

x(t) = x0 +
AB Iα0+

(
Eλ
σ,δ,ν;0+f(t, x(t))

)
= x0 +

1− α

B(α)
Eλ
σ,δ,ν;0+f(t, x(t)) +

α

B(α)
Iα0+

(
Eλ
σ,δ,ν;0+f(t, x(t))

)
= x0 +

1− α

B(α)
Eλ
σ,δ,ν;0+f(t, x(t)) +

α

B(α)
Eλ
σ,δ+α,ν;0+f(t, x(t)). (3.2)

We introduce the following assumptions:

(A1) The function f : [0, 1]× R → R is continuous.

(A2) There exists a constant Lf > 0 such that

|f(t, x)− f(t, y)| ≤ Lf |x− y| for each t ∈ [0, 1], and all x, y ∈ R.

3.1 Existence result via Schauder’s fixed point theorem
Theorem 3.2. Assume that (A1) and (A2) are satisfied. Then the Atangana–Baleanu fractional
differential equation (1.3) has at least one solution on [0, 1].

Proof. We define the operator T : C([0, 1]) → C([0, 1]) by

(T x)(t) = x0 +
1− α

B(α)
Eλ
σ,δ,ν;0+f(t, x(t)) +

α

B(α)
Eλ
σ,δ+α,ν;0+f(t, x(t)), t ∈ [0, 1]. (3.3)

Note that the operator T is well-defined on C([0, 1]) due to (A1).
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Consider the set Br = {x ∈ C([0, 1]) : ∥x∥C ≤ r}. Clearly, the set Br is closed, bounded and
convex. The proof is divided into several steps.
Step 1. T is continuous.

Let xn be a sequence such that xn → x in Br . Then for each t ∈ [0, 1], we have

∣∣(T xn)(t)− (T x)(t)
∣∣ = ∣∣∣∣1− α

B(α)

(
Eλ
σ,δ,ν;0+f(t, xn(t))− Eλ

σ,δ,ν;0+f(t, x(t))
)

+
α

B(α)

(
Eλ
σ,δ+α,ν;0+f(t, xn(t))− Eλ

σ,δ+α,ν;0+f(t, x(t))
)∣∣∣∣

≤ 1−α

B(α)

∣∣∣Eλ
σ,δ,ν;0+(f(t, xn(t))−f(t, x(t)))

∣∣∣+ α

B(α)

∣∣∣Eλ
σ,δ+α,ν;0+(f(t, xn(t))−f(t, x(t)))

∣∣∣
≤

(1− α

B(α)
∥Eλ

σ,δ,ν;0+(1)∥+
α

B(α)
∥Eλ

σ,δ+α,ν;0+(1)∥
)∥∥f( · , xn( · ))− f( · , x( · ))

∥∥
C

≤
(1− α

B(α)
Eλ
σ,δ+1(|ν|) +

α

B(α)
Eλ
σ,δ+α+1(|ν|)

)∥∥f( · , xn( · ))− f( · , x( · ))
∥∥
C
,

which implies that

∥T xn−T x∥C≤
(1− α

B(α)
Eλ
σ,δ+1(|ν|)+

α

B(α)
Eλ
σ,δ+α+1(|ν|)

)∥∥f( · , xn( · ))−f( · , x( · ))
∥∥
C
.

By (A1), the continuity of the function f implies that T is continuous.
Step 2. T maps bounded sets into bounded sets in Br.

Indeed, it is enough to show that for any r > 0, there exists a positive constant ℓ such that
for each x ∈ Br, one has ∥T x∥C ≤ ℓ. For t ∈ [0, 1], x ∈ Br and in view of (A1), we define
Mf = sup(t,x)∈[0,1]×Br

∥f(t, x)∥ and, consequently, we have

|(T x)(t)| =
∣∣∣x0 +

1− α

B(α)
Eλ
σ,δ,ν;0+f(t, x(t)) +

α

B(α)
Eλ
σ,δ+α,ν;0+f(t, x(t))

∣∣∣
≤ |x0|+

(1− α)Mf

B(α)
∥Eλ

σ,δ,ν;0+(1)∥+
αMf

B(α)
∥Eλ

σ,δ+α,ν;0+(1)∥

≤ |x0|+
(1− α)Mf

B(α)
Eλ
σ,δ+1(|ν|) +

αMf

B(α)
Eλ
σ,δ+α+1(|ν|) := ℓ.

Hence, ∥T x∥C ≤ ℓ. This implies that T (Br) ⊂ Br.
Step 3. T maps bounded sets into equicontinuous sets of Br.

Let t1, t2 ∈ [0, 1] with t1 < t2 and for any x ∈ Br, we have∣∣(T x)(t2)− (T x)(t1
)
| ≤

∣∣∣∣1− α

B(α)

(
Eλ
σ,δ,ν;0+f(t2, x(t2)− Eλ

σ,δ,ν;0+f(t1, x(t1)
)∣∣∣∣

+

∣∣∣∣ α

B(α)

(
Eλ
σ,δ+α,ν;0+f(t2, x(t2)− Eλ

σ,δ+α,ν;0+f(t1, x(t1)
)∣∣∣∣

≤ 1− α

B(α)

∣∣∣∣
t2∫
0

(t2 − s)δ−1Eλ
σ,δ(ν(t2 − s)σ)f(s, x(s) ds

−
t1∫
0

(t1 − s)δ−1Eλ
σ,δ(ν(t1 − s)σ)f(s, x(s) ds

∣∣∣∣
+

α

B(α)

∣∣∣∣
t2∫
0

(t2 − s)δ+α−1Eλ
σ,δ+α(ν(t2 − s)σ)f(s, x(s) ds
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−
t1∫
0

(t1 − s)δ+α−1Eλ
σ,δ+α(ν(t1 − s)σ)f(s, x(s) ds

∣∣∣∣
=

1− α

B(α)
I1 +

α

B(α)
I2,

where

I1 =

∣∣∣∣
t2∫
0

(t2 − s)δ−1Eλ
σ,δ(ν(t2 − s)σ)f(s, x(s) ds−

t1∫
0

(t1 − s)δ−1Eλ
σ,δ(ν(t1 − s)σ)f(s, x(s) ds

∣∣∣∣
and

I2 =

∣∣∣∣
t2∫
0

(t2 − s)δ+α−1Eλ
σ,δ+α(ν(t2 − s)σ)f(s, x(s) ds

−
t1∫
0

(t1 − s)δ+α−1Eλ
σ,δ+α(ν(t1 − s)σ)f(s, x(s) ds

∣∣∣∣.
For I1, we have

I1 ≤
[ t2∫

0

(t2 − s)δ−1
∣∣Eλ

σ,δ(ν(t2 − s)σ)− Eλ
σ,δ(ν(t1 − s)σ)

∣∣ ∥f(s, x(s))∥ ds
+

t1∫
0

∣∣(t2 − s)δ−1 − (t1 − s)δ−1
∣∣Eλ

σ,δ(ν(t1 − s)σ)∥f(s, x(s))∥ ds

+

t2∫
t1

(t2 − s)δ−1Eλ
σ,δ(ν(t1 − s)σ)∥f(s, x(s))∥ ds

]

≤ Mf

[ 1∫
0

(t2 − s)δ−1
∣∣Eλ

σ,δ(ν(t2 − s)σ)− Eλ
σ,δ(ν(t1 − s)σ)

∣∣ ds
+

1∫
0

∣∣(t2 − s)δ−1 − (t1 − s)δ−1
∣∣Eλ

σ,δ(ν(t1 − s)σ) ds

+

1∫
0

∣∣(t2 − s)δ−1 − (t1 − s)δ−1
∣∣Eλ

σ,δ(ν(t1 − s)σ) ds

]

≤ Mf

[( 1∫
0

∣∣(t2 − s)δ−1
∣∣2 ds)1/2( 1∫

0

∣∣Eλ
σ,δ(ν(t2 − s)σ)− Eλ

σ,δ(ν(t1 − s)σ)
∣∣2 ds)1/2

+ 2

( 1∫
0

∣∣(t2 − s)δ−1 − (t1 − s)δ−1
∣∣2 ds)1/2( 1∫

0

∣∣Eλ
σ,δ(ν(t1 − s)σ)

∣∣2 ds)1/2]
.

Similarly, I2 can be estimated as

I2 ≤ Mf

[( 1∫
0

∣∣(t2 − s)δ+α−1
∣∣2 ds)1/2( 1∫

0

∣∣Eλ
σ,δ+α(ν(t2 − s)σ)− Eλ

σ,δ+α(ν(t1 − s)σ)
∣∣2 ds)1/2



8 Mohamed I. Abbas

+ 2

( 1∫
0

∣∣(t2 − s)δ+α−1 − (t1 − s)δ+α−1
∣∣2 ds)1/2( 1∫

0

∣∣Eλ
σ,δ+α(ν(t1 − s)σ)

∣∣2 ds)1/2]
.

Hence, we get

∣∣(T x)(t2)− (T x)(t1)
∣∣ ≤ (1− α)Mf

B(α)

[( 1∫
0

∣∣(t2 − s)δ−1
∣∣2 ds)1/2

×
( 1∫

0

∣∣Eλ
σ,δ(ν(t2 − s)σ)− Eλ

σ,δ(ν(t1 − s)σ)
∣∣2 ds)1/2

+ 2

( 1∫
0

∣∣(t2 − s)δ−1 − (t1 − s)δ−1
∣∣2 ds)1/2( 1∫

0

∣∣Eλ
σ,δ(ν(t1 − s)σ)

∣∣2 ds)1/2]

+
αMf

B(α)

[( 1∫
0

∣∣(t2 − s)δ+α−1
∣∣2 ds)1/2

×
( 1∫

0

∣∣Eλ
σ,δ+α(ν(t2 − s)σ)− Eλ

σ,δ+α(ν(t1 − s)σ)
∣∣2 ds)1/2

+ 2

( 1∫
0

∣∣(t2 − s)δ+α−1 − (t1 − s)δ+α−1
∣∣2 ds)1/2( 1∫

0

∣∣Eλ
σ,δ+α(ν(t1 − s)σ)

∣∣2 ds)1/2]
.

As a result, we immediately find that the right-hand side of the above inequality tends to zero as
t2 → t1. Therefore, T (Br) is an equicontinuous set. It is also uniformly bounded.

Consequently, from Steps 1−3 together with the Ascoli–Arzelà theorem (Lemma 2.8), we show that
the operator T is completely continuous. Hence, by Schauder’s fixed point theorem (Lemma 2.9), we
conclude that the operator T has at least one fixed point which is a solution of the Atangana–Baleanu
fractional differential equation (1.3) on [0, 1]. The proof is completed.

3.2 Uniqueness result via the Banach fixed point theorem
Theorem 3.3. If the assumptions (A1) and (A2) hold, then the Atangana–Baleanu fractional differ-
ential equation (1.3) has a unique solution on [0, 1], provided that

Λ :=
(1− α

B(α)
Eλ
σ,δ+1(|ν|) +

α

B(α)
Eλ
σ,δ+α+1(|ν|)

)
Lf < 1. (3.4)

Proof. Consider the operator T defined in (3.3). In what follows, we show that the operator T is
a contraction. Repeating the same procedure as in Step 2 of the proof of Theorem 3.2, we obtain
T (Br) ⊂ Br.

Now, for x, y ∈ C([0, 1]) and for each t ∈ [0, 1], by using (A2), we have

∣∣(T x)(t)− (T y)(t)
∣∣ = ∣∣∣∣1− α

B(α)

(
Eλ
σ,δ,ν;0+f(t, x(t))− Eλ

σ,δ,ν;0+f(t, y(t))
)

+
α

B(α)

(
Eλ
σ,δ+α,ν;0+f(t, x(t))− Eλ

σ,δ+α,ν;0+f(t, y(t))
)∣∣∣∣

≤ 1− α

B(α)

∣∣Eλ
σ,δ,ν;0+(f(t, x(t))− f(t, y(t)))

∣∣+ α

B(α)

∣∣Eλ
σ,δ+α,ν;0+(f(t, x(t))− f(t, y(t)))

∣∣
≤

(1− α

B(α)
∥Eλ

σ,δ,ν;0+(1)∥+
α

B(α)
∥Eλ

σ,δ+α,ν;0+(1)∥
)
Lf∥x− y∥C
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≤
(1− α

B(α)
Eλ
σ,δ+1(|ν|) +

α

B(α)
Eλ
σ,δ+α+1(|ν|)

)
Lf∥x− y∥C .

Hence,
∥T x− T y∥C ≤ Λ∥x− y∥C .

If condition (3.4) is satisfied, then, as a consequence of the Banach fixed point theorem, we conclude
that the operator T has a unique fixed point. Thus, the Atangana–Baleanu fractional differential
equation (1.3) has a unique solution. The proof is completed.

4 An application
In this section, we consider the following generalized fractional order free electron laser equation as
an application of the Atangana–Baleanu fractional differential equation (1.3).

Example 4.1. 
ABCD

1
2

0+x(t) = E
2
5

1, 12 ,2;0
+

|x(t)|
50(1 + et)(1 + |x(t)|)

, t ∈ [0, 1],

x(0) = 0.

(4.1)

Here, t is a dimensionless time ranging from 0 to 1 and x(t) is a complex-field amplitude which is
assumed dimensionless and satisfies the initial condition x(0) = 0.

Set α = 1
2 , σ = 1, δ = 1

2 , ν = 2, λ = 2
5 and f(t, x) = x

50(1+et)(1+x) . Since

|f(t, x)− f(t, y)| =
∣∣∣ x

50(1 + et)(1 + x)
− y

50(1 + et)(1 + y)

∣∣∣
≤ |x− y|

50(1 + et)(1 + x)(1 + y)
≤ 1

50(1 + et)
|x− y| ≤ 1

100
∥x− y∥C ,

we get the assumption (A2) with Lf = 1
100 .

Moreover, using Lemma 2.5 and the fact that Γ(k + 2) ≤ Γ(k + 5
2 ), the condition (3.4) gives

Λ =
(1− α

B(α)
Eλ
σ,δ+1(|ν|) +

α

B(α)
Eλ
σ,δ+α+1(|ν|)

)
Lf

=
1

100

(1− 1
2

B( 12 )
E

2
5

1, 12+1
(|2|) +

1
2

B( 12 )
E

2
5

1, 12+
1
2+1

(|2|)
)
=

1

100

(1
2
E

2
5

1, 52
(|2|) + 1

2
E

2
5
1,2(|2|)

)
≤ 1

100

(1
2
E1, 52

(|2|) + 1

2
E1,2(|2|)

)
=

1

100

(1
2

∞∑
k=0

2k

Γ(k + 5
2 )

+
1

2

∞∑
k=0

2k

Γ(k + 2)

)
≤ 1

100

(1
2

∞∑
k=0

2k

Γ(k + 2)
+

1

2

∞∑
k=0

2k

Γ(k + 2)

)
=

1

100

(1
2

∞∑
k=0

2k

(k + 1)!
+

1

2

∞∑
k=0

2k

(k + 1)!

)
=

1

100

(1
2

e2 − 1

2
+

1

2

e2 − 1

2

)
=

e2 − 1

200
= 0.03194528049 < 1.

Therefore, all the assumptions of Theorem 3.3 are satisfied. Hence, the Atangana–Baleanu fractional
differential equation (4.1) has a unique solution on [0, 1].

Finally, according to formula (3.2), we can obtain a unique solution x(t), which is the complex-
field amplitude of the generalized fractional order free electron laser equation (4.1), from the following
Volterra integral equation:

x(t) =
1

100(1 + et)

[ t∫
0

(t− s)−
1
2E

2
5

1, 12
(2(t− s))

x(s)

1 + x(s)
ds+

t∫
0

E
2
5
1,1(2(t− s))

x(s)

1 + x(s)
ds

]
,
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where
E

2
5

1, 12
(2(t− s)) =

∞∑
k=0

2k( 25 )k

Γ(k + 1
2 )

(t− s)k

k!

and
E

2
5
1,1(2(t− s)) =

∞∑
k=0

2k( 25 )k

Γ(k + 1)

(t− s)k

k!
.
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TWO EXPLICIT NON-ALGEBRAIC CROSSING LIMIT CYCLES
FOR A FAMILY OF PIECEWISE LINEAR SYSTEMS



Abstract. For a given family of planar piecewise linear differential systems, it is a very difficult
problem to determine an upper bound for the number of its limit cycles and its explicit expressions.
In this paper, we give a family of planar discontinuous piecewise linear differential systems formed by
two regions separated by a straight line and having only one focus whose limit cycles can be explicitly
described by using the first integrals. We show that these systems may have at most two explicit
non-algebraic limit cycles.
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ÒÄÆÉÖÌÄ. ÁÒÔÚÄËÉ ÖÁÀÍ-ÖÁÀÍ ßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÌÏÝÄÌÖËÉ ÏãÀáÉÓ-
ÈÅÉÓ ÞÀËÆÄ ÒÈÖËÉÀ ÌÉÓÉ ÆÙÅÒÖËÉ ÝÉÊËÄÁÉÓ ÒÉÝáÅÉÓ ÆÄÃÀ ÓÀÆÙÅÒÉÓ ÂÀÍÓÀÆÙÅÒÀ ÃÀ
ÝáÀÃÉ ÓÀáÉÈ ÌÏÝÄÌÀ. ÍÀÛÒÏÌÛÉ ÌÏÝÄÌÖËÉÀ ßÒ×ÉÈ ÂÀÚÏ×ÉËÉ ÏÒÉ ÀÒÉÈ ÂÀÍÓÀÆÙÅÒÖËÉ
ÁÒÔÚÄËÉ ßÚÅÄÔÉËÉ ÖÁÀÍ-ÖÁÀÍ ßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÓÉÓÔÄÌÄÁÉ, ÒÏÌËÄÁÓÀÝ ÀØÅÓ ÌáÏ-
ËÏÃ ÄÒÈÉ ×ÏÊÖÓÉ ÃÀ ÒÏÌÄËÈÀ ÆÙÅÒÖËÉ ÝÉÊËÄÁÉ ÛÄÉÞËÄÁÀ ÝáÀÃÀÃ ÀÙÉßÄÒÏÓ ÐÉÒÅÄËÉ
ÉÍÔÄÂÒÀËÄÁÉÓ ÓÀÛÖÀËÄÁÉÈ. ÍÀÜÅÄÍÄÁÉÀ, ÒÏÌ ÀÌ ÓÉÓÔÄÌÄÁÓ ÛÄÉÞËÄÁÀ äØÏÍÃÄÓ ÀÒÀ ÖÌÄÔÄÓ
ÏÒÉ ÝáÀÃÉ ÀÒÀÀËÂÄÁÒÖËÉ ÆÙÅÒÖËÉ ÝÉÊËÉ.
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1 Introduction
The study of piecewise linear differential systems goes back to Andronov, Vitt and Khaikin [1] and still
continues to receive attention by researchers. Piecewise linear systems often appear in the descriptions
of many real processes such as dry friction in mechanical systems or switches in electronic circuits
(see, e.g., [5, 15, 18, 19]). This kind of systems is generally modeled by ordinary differential equations
with discontinuous right-hand sides which can exhibit very complicated dynamics and rich bifurcation
phenomena.

A limit cycle is a periodic orbit of a differential system in R2 isolated in the set of all periodic
orbits of that system. There are two types of limit cycles in the planar discontinuous piecewise linear
differential systems, the crossing and sliding ones. The “sliding limit cycles” contain some arc of the
lines of discontinuity that separate the different linear differential systems (more precise definition can
be found in [17]). The “crossing limit cycles” contain only isolated points of the lines of discontinuity.
In this paper, we consider only the crossing limit cycles of some planar discontinuous piecewise linear
differential systems separated by one straight line.

Limit cycles of discontinuous piecewise linear differential systems separated by a straight line have
been studied by many authors (see, e.g., [2, 7, 8, 10, 11, 13] and the references therein). There are
examples of such systems exhibiting three limit cycles (see [3, 4,9, 12,14]), but at present moment we
do not know whether discontinuous piecewise linear differential systems separated by a straight line
may have more than three limit cycles.

On the other hand, it seems intuitively clear that “most” limit cycles of discontinuous piecewise
linear differential systems have to be non-algebraic. Nevertheless, in all these papers devoted to the
study of the crossing limit cycles of piecewise linear differential systems, explicit non-algebraic limit
cycles do not appear, their existence is proved by using different methods as the first integrals, the
averaging theory, the Poincaré map, the Newton–Kantorovich Theorem, the Melnikov function.

The goal of this paper is to give a discontinuous piecewise linear differential systems separated by
a straight line for which we can get two explicit limit cycles which are not algebraic. As far as we
know, there are no examples of this situation in the literature.

We consider planar piecewise linear systems with two linearity regions separated by a straight line
Σ = {(x, y) ∈ R2 : x = 0}, where we assume that the two linearity regions in the phase plane are the
left and right half-planes

Σ− =
{
(x, y) ∈ R2 : x < 0

}
, Σ+ =

{
(x, y) ∈ R2 : x > 0

}
.

We suppose that one of the two linear differential systems has no equilibria, neither real nor virtual,
and the other one has a focus at the origin. We prove that these two systems are integrable. Moreover,
we determine sufficient conditions for a discontinuous piecewise linear differential systems to possess
two or one explicit non-algebraic limit cycles. Concrete examples exhibiting the applicability of our
result are introduced.

2 Preliminaries
The following normal form for the linear differential system in R2 and its first integral will help us to
prove our main result.

Lemma 2.1. A linear differential system having a focus at the origin can be written as

ẋ = (2λ− δ)x+ βy, ẏ = − 1

β

(
(λ− δ)2 + ω2

)
x+ δy (2.1)

with ω > 0. Moreover, this system has the first integral

H1(x, y) =
((

(λ− δ)2 + ω2
)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+βy
).

Proof. Consider a general linear differential system

ẋ = αx+ βy, ẏ = ηx+ δy. (2.2)
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The eigenvalues of this system are

λ1,2 =
1

2

(
α+ δ ±

√
(α− δ)2 + 4βη

)
.

We know that system (2.2) has a real focus if 1
2 (α + δ) = λ, and (α − δ)2 + 4βη = −4ω2, for some

ω > 0, βη < 0 and λ ∈ R, then

α = 2λ− δ, η = − 1

β

(
(λ− δ)2 + ω2

)
.

Therefore, we obtain system (2.1).
Since the unique equilibrium is located at the origin O(0, 0) and is of focus type, any orbit of

system (2.1) crosses the straight line x = 0 at least at one point, namely, (0, C), C ∈ R, thus the
general solution of (2.1) is given by

x(t) =
β

ω
Cetλ sin tω, y(t) =

1

ω
Cetλv(ω cos tω + (δ − λ) sin tω

)
, (2.3)

where C ∈ R. So, from the first equation of (2.3), we obtain

etλ sinωt =
ω

βC
x.

Substituting this last expression into the second equation, we get

etλ cosωt = 1

Cβ

(
(λ− δ)x+ βy

)
.

Therefore,
tanωt =

ωx

(λ− δ)x+ βy
.

From the last equation, we obtain

t =
1

ω
arctan

( ωx

(λ− δ)x+ βy

)
.

Substituting the previous expressions in the first equation of (2.3) and simplifying, we obtain((
(λ− δ)2 + ω2

)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+yβ
) = h,

where h = (βC)2 ∈ R.

It is known that if the vector field has no equilibrium points, it can be written as

ẋ = ax+ by + c, ẏ = µax+ µby + d, (2.4)

where a, b, c, µ and d are real constants such that d ̸= µc and µ ̸= 0.
The following Lemma provides a first integral for an arbitrary linear differential system without

equilibrium points.

Lemma 2.2. For system (2.4), the following statements hold.

(i) If a+ bµ = 0, then system (2.4) is Hamiltonian and all its solutions are algebraic and given by
parabolas. Moreover, this system has the first integral

H2(x, y) = bµ2x2 − 2bµxy − 2 dx+ by2 + 2cy.

(ii) If a + bµ ̸= 0, the only algebraic invariant curve of (2.4) is an invariant line. Moreover, this
system has the first integral

H3(x, y) =
(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y).
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Proof.
(i) Via the change of variables x = v, u = 1

d−cµ (y − µx), where d − cµ ̸= 0, system (2.4) is
transformed into

v̇ = (a+ bµ)v + b(d− cµ)u+ c, u̇ = 1. (2.5)

If a+ bµ = 0, the last system is Hamiltonian and it has the first integral

H2(v, u) = v − b(d− cµ)

2
u2 − cu,

and statement (i) follows.
(ii) If a+ bµ ̸= 0, the general solution of (2.5) is

v(t) =
1

(a+ bµ)2

(
(a+ bµ)2(C2 + eat+btµC1)− ac− bd+ b(cµ− d)(a+ bµ)t

)
,

u(t) = − 1

b(d− cµ)

(
(a+ bµ)C2 + b(cµ− d)t

)
,

(2.6)

where C1 and C2 are real constants. So, from the second equation of (2.6), we obtain

t =
(a+ bµ)C2 + bu(d− cµ)

b(d− cµ)
.

Substituting the expression of t into the first equation of (2.6), we get(
b(d− cµ)(a+ bµ)u+ (a+ bµ)2v + ac+ bd

)
e−(a+bµ)u = C1(a+ bµ)2e

C2(a+bµ)2

bd−bcµ .

Going back through the changes of variables, we obtain(
(a+ bµ)(ax+ by) + ac+ bd

)
e

(a+bµ)
d−cµ (µx−y) = h, (2.7)

where h = C1(a+ bµ)2e
C2(a+bµ)2

bd−bcµ ∈ R. From (2.7), we define a first integral of (2.4) as follows:

H3(x, y) =
(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y),

statement (ii) holds.

Suppose that we have a discontinuous piecewise linear differential system separated by Σ. We
assume, without loss of generality, that the left half-system has no equilibria, neither real nor virtual,
and the right half-system is of focus type at the origin. By Lemma 2.1, and using the normal form
(2.4), we can write such a discontinuous piecewise linear differential system as

ẋ = (2λ− δ)x+ βy, ẏ = − 1

β

(
(λ− δ)2 + ω2

)
x+ δy in Σ+,

ẋ = ax+ by + c, ẏ = µax+ µby + d in Σ−.

(2.8)

In order to state precisely our results, we introduce first some notations and definitions. Consider
the piecewise differential system (2.8) defined in Σ±. We use the techniques and approaches presented
by Filippov in [6] and by di Bernardo et al. in [5] to establish these notations. An equilibrium point is
called a real (resp. virtual) singular point of the right system of (2.8) if this point locates in the region
Σ+ (resp. Σ−). A similar definition can be done for the left system of (2.8). Otherwise it is called a
virtual equilibrium point. In order to extend the definition of a trajectory to Σ = {(x, y) ∈ R2 : x =
0}, we split Σ into three parts depending on whether or not the vector field points towards it:

1. Crossing region:
Σc =

{
(0, y) ∈ Σ : β(by + c)y > 0

}
,
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2. Attractive sliding region:

Σas =
{
(0, y) ∈ Σ : βy < 0, by + c > 0

}
,

3. Repulsive sliding region:

Σrs =
{
(0, y) ∈ Σ : βy > 0, by + c < 0

}
.

These three regions are relatively open in Σ and may have several connected components. There-
fore, their definitions exclude the so-called tangency points, that is, points where one of the two vector
fields is tangent to Σ, which can be characterized by{

(0, y) ∈ Σ : y = 0 or by + c = 0
}
.

These points are on the boundary of the regions Σc, Σas and Σrs.
Periodic orbits that have neither sliding part nor tangent points are called crossing periodic orbits,

otherwise, they are called sliding periodic orbits. We say that an isolated periodic orbit Γ is an
algebraic limit cycle if all its points are contained in the level sets of polynomials. Otherwise, they
are called non-algebraic limit cycles.

3 Main result
Our main result is contained in the following

Theorem 3.1. The discontinuous piecewise linear differential system (2.8) may have at most two
non-algebraic crossing limit cycles. Moreover, there are the systems in this class having one or two
non-algebraic crossing limit cycles.

Theorem 3.1 is proved in Section 4.
The next Propositions show that there are discontinuous piecewise linear differential systems of

the form (2.8) (in case the left half-linear system of (2.8) is non-Hamiltonian) with two, or one
(respectively) non-algebraic crossing limit cycles.

Proposition 3.1. For a = µ+1, c = −1, d = −µ−3, b = −1, µ ̸= 0 and λ = − 1
2 ω, the discontinuous

piecewise linear differential system (2.8) defined by

ẋ = −(ω + δ)x+ βy, ẏ = − 1

β

(
δ2 + δω +

5

4
ω2

)
x+ δy in Σ+,

ẋ = (µ+ 1)x− y − 1, ẏ = µ(µ+ 1)x− µy − (µ+ 3) in Σ−,

(3.1)

when ω > 1.7525, µ ̸= 0 and β < 0, has exactly two nested crossing limit cycles. Moreover, these limit
cycles are hyperbolic, non-algebraic and given by

Γ1 =

{
(x, y) ∈ Σ+ :

((
δ2 + δω +

5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
e− arctan( 2ωx

(2δ+ω)x−2βy
) = 50.971β2

}
∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 0.846 03
}
,

Γ2 =

{
(x, y) ∈ Σ+ :

((
δ2 + δω +

5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
e− arctan( 2ωx

(2δ+ω)x−2βy
) = 19.825β2

}
∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 1.462 7
}
.

This proposition will be proved in Section 5.
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Proposition 3.2. For a = µ − 1, c = −3, d = −(3µ + 10), b = −1, λ = −ω and µ ̸= 0, the
discontinuous piecewise linear differential system (2.8) defined by

ẋ = −(2ω + δ)x+ βy, ẏ = − 1

β

(
(ω + δ)2 + ω2

)
x+ δy in Σ+,

ẋ = (µ− 1)x− y − 3, ẏ = µ(µ− 1)x− µy − (3µ+ 10) in Σ−,

(3.2)

when ω > 5.315, µ ̸= 0 and β < 0, has exactly one explicit hyperbolic non-algebraic crossing limit
cycle given by

Γ =
{
(x, y) ∈ Σ+ :

((
(ω + δ)2 + ω2

)
x2 − 2β(ω + δ)xy + β2y2

)
e−2 arctan( ωx

(δ+ω)x−βy
) = 32.1β2

}
∪
{
(x, y) ∈ Σ− : (x+ y − µx+ 13)e

µ
10x−

1
10y = 12.925

}
.

This proposition will be proved in Section 6.
The next proposition shows that there are discontinuous piecewise linear differential systems of the

form (2.8) (in case the left half-linear system of (2.8) is Hamiltonian) with one crossing non-algebraic
limit cycle.

Proposition 3.3. For a = µ, λ = −ω
2 , c = −3, b = −1, d = −(1+ 3µ) and µ ̸= 0, the discontinuous

piecewise linear differential system defined by

ẋ = −(δ + ω)x+ βy, ẏ = − 1

β

(
δ2 + δω +

5

4
ω2

)
x+ δy in Σ+,

ẋ = µx− y − 3, ẏ = µ2x− µy − (1 + 3µ) in Σ−,

(3.3)

when ω > 0.34337, µ ̸= 0 and β < 0, has exactly one explicit hyperbolic non-algebraic crossing limit
cycle given by

Γ =

{
(x, y) ∈ Σ+ :

((
δ2 + δω +

5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
earctan( −2xω

(2δ+ω)x−2βy
) = 57.375β2

}
∪
{
(x, y) ∈ Σ− : −µ2x2 + 2µxy + 2(1 + 3µ)x− y2 − 6y = −11.927

}
.

This proposition will be proved in Section 7.

Remark 3.1. The assumption β < 0 in Propositions 3.1, 3.2 and 3.3 is a necessary condition for the
existence of crossing limit cycles of system (3.1) (resp. (3.2) and (3.3)). Effectively, if the crossing
region of (3.1) (resp. (3.2) and (3.3)) exists with β > 0, then the inequality y(−y − 1) > 0 (resp.
y(−y−3) > 0) implies that the crossing region is an open interval (−1, 0) (resp. (−3, 0)) of the line Σ.
Since the right half-system is of focus type at the origin, any orbit starting at the point (0, y0) with
y0 < 0 goes into the left zone Σ− under the flow of the left linear differential systems. If these orbits
can reach Σ again at some point (0, y1) after some time t > 0, must be y1 > 0 and so, the condition
β > 0 precludes the existence of crossing limit cycles.

4 Proof of Theorem 3.1
Suppose that we have a discontinuous piecewise linear differential system (2.8). In order to investigate
the crossing limit cycles of this system, we use the first integrals for the right and the left side systems
of (2.8). Due to Lemmas 2.1 and 2.2, these first integrals are

H1(x, y) =
((

(λ− δ)2 + ω2
)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+βy
),

H2(x, y) =

{(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y) if a+ bµ ̸= 0,

bµ2x2 − 2bµxy − 2 dx+ by2 + 2cy if a+ bµ = 0
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in Σ+ and Σ−, respectively. Suppose that this discontinuous piecewise differential system has some
limit cycles intersecting Σ at two points, namely, (0, y0) with y0 < 0, and (0, y1) with y1 > 0. Then
the first integrals H1 and H2 must satisfy the following two equations:

H1(0, y0)−H1(0, y1) = 0,

H2(0, y0)−H2(0, y1) = 0,
(4.1)

it is easy to see that the implicit form of the orbit arc of (2.8) in Σ+ which starting at the point
(0, y0), where y0 < 0 when t = 0, is given by H1(x, y)− β2y20 = 0, this last orbit can be given also by
the analytic curves (x+(t), y+(t)), where

x+(t) =
β

ω
y0e

λt sinωt,

y+(t) =
1

ω
y0e

λt(ω cosωt+ (δ − λ) sinωt).

Denote by t+ the minimum positive time such that x(t+) = x(0) = 0, then t+ = π
ω . Since the orbits

starting at the point (0, y0) go into the left zone Σ− under the flow of the left linear differential systems
and since these orbits can reach Σ again at some point (0, y1) after the time t+ = π

ω , we have

y1 = y(t+) = −y0e
λπ
ω ,

which is proves that H1(0, y0) − H1(0, y1) = 0. Now, it is easy to see that the existence of cross-
ing periodic solutions of discontinuous piecewise linear differential system (2.8) is equivalent to the
existence of negative values of y0 satisfying

H2(0, y0) = H2(0,−y0e
λπ
ω ). (4.2)

Here, we have to separate the proof of Theorem 3.1 in two cases.
Case 1. a+ µb = 0.

In this case (4.2) becomes

y0
(
b(1− e

2λπ
ω )y0 + 2c(1 + e

λπ
ω )

)
= 0. (4.3)

It is easy to see that when b = 0 or c = 0, the unique solution of (4.3) is y0 = 0. So, in this case, the
discontinuous piecewise linear differential system (2.8) has no limit cycles.

When b ̸= 0 and c ̸= 0, equation (4.3) has two roots: y01 = 0, which cannot contribute a limit cycle
and y0 = 2c(e

λπ
ω +1)

b(e
2λπ
ω −1)

̸= 0. Moreover, we can choose the appropriate parameters b, c, λ and ω in such

a way that (4.3) has exactly one real negative root y0 = 2c(e
λπ
ω +1)

b(e
2λπ
ω −1)

, thus obtaining at most one limit
cycle for the discontinuous piecewise linear differential system (2.8). Using the first integrals of both
linear differential systems and knowing that the non-algebraic crossing periodic orbit passes through
the point (0, y0) when t = 0 and through the point (0,−y0e

λπ
ω ) when t = π

ω , where y0 = 2c(e
λπ
ω +1)

b(e
2λπ
ω −1)

< 0,
we get the expression

Γ =
{
(x, y) ∈ Σ+ :

((
(λ− δ)2 + ω2

)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+βy
) = β2y20

}
∪
{
(x, y) ∈ Σ− : bµ2x2 − 2bµxy − 2 dx+ by2 + 2cy = (2c+ by0)y0

}
So, Theorem 3.1 is proved in Case 1.
Case 2. a+ µb ̸= 0.

In this case (4.2) becomes(
ac+ bd− b(a+ bµ)eπ

λ
ω y0

)
e

a+bµ
d−cµ y0e

λπ
ω

= (b(a+ bµ)y0 + ac+ bd)e−
a+bµ
d−cµy0 . (4.4)
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Then the existence of crossing periodic solutions of discontinuous piecewise linear differential system
(2.8) is equivalent to the existence of zeros for equation (4.4) with respect to the variable y0. On the
other hand, this equation can be rewritten as

(
ac+ bd− b(a+ bµ)e

λπ
ω y0

)
e

(a+bµ)(e
λπ
ω +1)

d−cµ y0 − b(a+ bµ)y0 − ac− bd = 0.

For convenience, we use the notation

f(y) =
(
ac+ bd− b(a+ bµ)e

λπ
ω y

)
e

(a+bµ)(e
λπ
ω +1)

d−cµ y − b(a+ bµ)y − ac− bd. (4.5)

Now, solving (4.4) is equivalent to finding the solutions y0j of the equation f(y) = 0. In order to
investigate a number of solutions of f(y) = 0, and since f is a differentiable function in R, we use the
first two derivatives of the function f . Simple calculations yield

f ′(y) =
a+ bµ

cµ− d

(
be

λπ
ω (1 + e

λπ
ω )(a+ bµ)y − ac− bd− c(a+ bµ)e

λπ
ω

)
e

(e
λπ
ω +1)(a+bµ)

d−cµ y

− b(a+ bµ)(d− cµ)

d− cµ
,

f ′′(y) = −
(
beπ

λ
ω (1 + eπ

λ
ω )(a+ bµ)y − eπ

λ
ω (ac− bd+ 2bcµ)− bd− ac

)
(eπ

λ
ω + 1)

× (a+ bµ)2

(d− cµ)2
e

(e
λ
ω

π
+1)(a+bµ)
d−cµ y.

It is easy to see that f ′ and f ′′ are continuous functions in R.
It is obvious that f

′′
(y) = 0 has at most one root y0, thus the equation f ′(y) = 0 has at most two

zeros y0j , j = 1, 2, and the equation f(y) = 0 has at most three roots y0i, i = 1, 2, 3.
Note that the equation f(y) = 0 has the solution y0 = 0, which cannot contribute a limit cycle.

So, in this case, the equation f(y) = 0 may have eventually two real solutions, y0j ̸= 0 for j = 1, 2
that can provide at most 2 limit cycles for the discontinuous piecewise linear differential system (2.8).
Moreover, we can choose the appropriate parameters a, b, c, d, λ, δ, µ and ω in such a way that
f(y) = 0 has exactly 2 real negative roots y0i, i = 1, 2, that can provide 2 limit cycles for the
discontinuous piecewise linear differential system (2.8).

Using the first integrals of both linear differential systems and knowing that the non-algebraic
crossing periodic orbits pass through the points (0, y0i) when t = 0, and through the point (0,−y0ie

λπ
ω )

when t = π
ω , where y0i, i = 1, 2, are the zeros of f(y) = 0. Thus the expressions for these orbits are:

Γi =
{
(x, y) ∈ Σ+ :

((
(λ− δ)2 + ω2

)
x2 + 2β(λ− δ)xy + β2y2

)
e−

2λ
ω arctan( ωx

(λ−δ)x+βy
) = β2y20i

}
∪
{
(x, y) ∈ Σ− :

(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y) =

(
b(a+ bµ)y0i + ac+ bd

)
e

a+bµ
cµ−dy0i

}
.

This completes the proof of Theorem 3.1 in Case 2.

Remark 4.1. The orbit arc passing through the crossing point (0,−y0e
λπ
ω ) is H1(x, y)−β2(y0e

λπ
ω )2=

0, this orbit, when (λ− δ)x+βy ̸= 0 and ((λ− δ)2+ω2)x2+2β(λ− δ)xy+β2y2 ̸= 0, can be rewritten
as

tan
(−ω

2λ
ln β2y20(

((λ− δ)2 + ω2)x2 + 2β(λ− δ)xy + β2y2
) − π

)
=

ωx

(λ− δ)x+ βy
,

thus
tan

(−ω

2λ
ln β2y20(

((λ− δ)2 + ω2)x2 + 2β(λ− δ)xy + β2y2
)) =

ωx

(λ− δ)x+ βy
,

this last equation is equivalent to
H1(x, y)− β2y20 = 0,

and shows that H1(0, y0)−H1(0,−y0e
λπ
ω ) = 0.
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5 Proof of Proposition 3.1
We prove that the discontinuous piecewise linear differential system (3.1) has exactly two hyperbolic
non-algebraic limit cycles. It is easy to see that the left half-system has no equilibria, neither real nor
virtual, and since − 1

2 ± iω, ω > 0 are the eigenvalues of the matrices of the right half-system of (3.1),
this system has its equilibria as focus type at the origin.

The two linear differential systems of (3.1) have the following first integrals:

H1(x, y) =
((

δ2 + δω +
5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
e− arctan( 2ωx

(2δ+ω)x−2βy
),

H2(x, y) = ((1 + µ)x− y + 2)e
1
3 y−µ

3 x

in Σ+ and Σ−, respectively. The parametric solution of the right half-system of (2.8) starting at the
point (0, y0) with y0 < 0 when t = 0, is

x+(t) =
β

ω
y0e

−ω
2 t sinωt,

y+(t) =
1

ω
y0e

−ω
2 t

(
ω cosωt+

(
δ +

ω

2

)
sinωt

)
.

Let t+ denote the minimum positive time such that x(t+) = x(0) = 0, then t+ = π
ω . Since the orbits

starting at the point (0, y0) go into the left zone Σ− under the flow of the left linear differential systems
and since these orbits can reach Σ again at some point (0, y1) after the time t+ = π

ω , we have

y1 = y(t+) = −y0e
−π

2 .

Then, for the discontinuous piecewise linear differential system (3.1), the function (4.5) becomes

f(y) = (ye
−π
2 + 2)e−

1
3 (e

−π
2 +1)y + y − 2.

The graphic of this function is given in Figure 5.1.

Figure 5.1. The graphic of the function f(y).

The equation f(y) = 0 has exactly three zeros y00 = 0, y01 = −4.4522 and y02 = −7.1392. From these
values of y0i, i = 0, 1, 2, we get the values y10 = 0, y11 = 0.92558 and y12 = 1.4841.

Straightforward computations show that the solution passing through the crossing points (0, y01)
and (0, y11) corresponds to

Γ1=

{
(x, y) ∈ Σ+ :

((
δ2+δω+

5

4
ω2

)
x2−β(2δ+ω)xy+β2y2

)
e− arctan 2ωx

(2δ+ω)x−2βy =19.825β2

}
∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 1.4627
}
,
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and the solution passing through the crossing points (0, y02) and (0, y12) corresponds to

Γ2=

{
(x, y) ∈ Σ+ :

((
δ2+δω+

5

4
ω2

)
x2−β(2δ+ω)xy+β2y2

)
e− arctan 2ωx

(2δ+ω)x−2βy =50.971β2

}
∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 0.84603
}
.

Moreover, Γ1 and Γ2 are non-algebraic and travel in a counterclockwise sense around the sliding
segment Σrs = {(0, y) ∈ Σ : −1 ≤ y ≤ 0}. Clearly, Γ1 and Γ2 are nested, and Γ1 is the inner one and
Γ2 is the outer one. Now we prove that these non-algebraic crossing periodic orbits are the hyperbolic
limit cycles.

Let T be the period of the periodic solution

Γ :
{
(x(t), y(t)), t ∈ [0, T ]

}
.

To see that Γ is, in fact, a limit cycle, we recall a classic result characterizing limit cycles among other
periodic orbits for a smooth differential system in the plane (see, e.g., Perko [16] for more details),
which means that Γ(t) is a hyperbolic limit cycle when

T∫
0

div(Γ(t) dt ̸= 0, (5.1)

stable if
T∫
0

div(Γ(t)) dt < 0, and instable if
T∫
0

div(Γ(t)) dt > 0.

Using the form parametric (x−i(t), y−i(t)) of the curve H2(x, y) = (−y1i + 2)e
1
3y1i starting at the

point (0, y1i) in the half-plane Σ−

x−i(t) = y1i − 3t+ (2− y1i)e
t − 2,

y−i(t) = y1i − 2µ− (3µ+ 3)t+ (2µ− µy1i)e
t + µy1i,

where i = 1, 2 and y1i = −y0ie
−π

2 , it is easy to check that the periodic orbits Γ1 and Γ2 have periods
T1 = 1.7926 and T2 = 2.8745, respectively.

Formula (5.1) can be extended to the discontinuous piecewise linear differential systems considered
here, then for the discontinuous piecewise linear differential system, we have

Γ1 :
{
(x+1(t), y+1(t)), t ∈

[
0,

π

ω

]}
∪
{
(x−1(t), y−1(t)), t ∈

[π
ω
, T

]}
,

Γ2 :
{
(x+2(t), y+2(t)), t ∈

[
0,

π

ω

]}
∪
{
(x−2(t), y−2(t)), t ∈

[π
ω
, T

]}
,

where

x+i(t) =
β

ω
y0ie

− 1
2 ωt sinωt,

y+i(t) =
1

ω
y0ie

− 1
2 ωt

(
ω cosωt+

(
δ +

1

2
ω
)

sinωt
)
.

Thus
T1∫
0

div(Γ1(t)) dt =

π
ω∫

0

−ω dt+

1.7926∫
π
ω

dt = 1.7926− π

ω
− π,

T2∫
0

div(Γ2(t)) dt =

π
ω∫

0

−ω dt+

2.8745∫
π
ω

dt = 2.8745− π

ω
− π.

Since ω > 1.7525, we have π
ω < 1.7926, thus

T1∫
0

div(Γ1(t)) dt ̸= 0 and
T2∫
0

div(Γ2(t)) dt ̸= 0, so we obtain

two hyperbolic non-algebraic crossing limit cycles.
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Example 5.1. When µ = 2, β = −1, ω = 2 and δ = 1, system (3.1) reads as

ẋ = −3x− y, ẏ = 8x+ y in Σ+,

ẋ = 3x− y − 1, ẏ = 6x− 2y − 5 in Σ−.
(5.2)

This system has exactly two explicit hyperbolic and non-algebraic crossing limit cycles Γi, i = 1, 2.
The smallest one Γ1 intersects the switching line Σ at two points

y01 = −4.4522, y11 = 0.92558

and is given by

Γ1 =
{
(x, y) ∈ Σ+ : (8x2 + 4xy + y2)e− arctan 2x

2x+y = 19.825
}

∪
{
(x, y) ∈ Σ− : (3x− y + 2)e

1
3 y− 2

3 x = 1.4627
}
.

The biggest limit cycle Γ2 intersects the switching line Σ at two points

y02 = −7.1392, y12 = 1.4841.

and the expression of this limit cycle is given by

Γ2 =
{
(x, y) ∈ Σ+ : (8x2 + 4xy + y2)e− arctan 2x

2x+y = 50.971
}

∪
{
(x, y) ∈ Σ− : ((1 + µ)x− y + 2)e

1
3 y−µ

3 x = 0.84603
}

(see Figure 5.2).

Figure 5.2. The two crossing non-algebraic limit cycles of the discontinuous piecewise linear differ-
ential systems (5.2).

6 Proof of Proposition 3.2
We consider the planar piecewise linear system (3.2), for this system it is easy to check that the left
linear differential system has neither real nor virtual equilibria and the right linear differential system
is a focus with eigenvalues −1± ωi, ω > 0. In order to prove that the discontinuous piecewise linear
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differential system (3.2) has exactly one hyperbolic non-algebraic limit cycle, we use the first integrals
for the right and the left side systems of (3.2).

The first integrals of the two linear differential systems of (3.2) are

H1(x, y) =
(
(ω2 + (δ + ω)2)x2 − 2β(δ + ω)xy + β2y2

)
e2 arctan( ωx

(δ+ω)x−βy
),

H2(x, y) = (x+ y − xµ+ 13)e
µ
10 x− 1

10 y

in Σ+ and Σ−, respectively. The solution (x+(t), y+(t)) of right half-system of (3.2) such that
(x+(0), y+(0)) = (0, y0) with y0 < 0 is

x+(t) =
β

ω
y0e

−ωt sinωt,

y+(t) =
1

ω
y0e

−ωt
(
ω cosωt+ (δ − λ) sinωt

)
.

The time t+ that the solution (x+(t), y+(t)) contained in Σ+ needs to reach the point (0, y1) is t+ = π
ω .

Therefore,
y1 = y(t+) = −y0e

−π.

Then, for the discontinuous piecewise linear differential system (3.2), the function (4.5) becomes

f(y) = −(e−πy − 13)e
1
10 (e

−π+1)y − y − 13.

The graphic of this function is given in Figure 6.1.

Figure 6.1. The graphic of the function f(y).

The unique solution y0 ̸= 0 of the equation f(y) = 0 is y0 = −5.6657. From this value of y0, we get
the value of y1 = 0.24484.

Thus, the solution passing through the crossing points (0, y0) and (0, y1) corresponds to

Γ =
{
(x, y) ∈ Σ+ :

(
((ω + δ)2 + ω2)x2 − 2β(ω + δ)xy + β2y2

)
e−2 arctan( ωx

(δ+ω)x−βy
) = 32.1β2

}
∪
{
(x, y) ∈ Σ− : (x+ y − µx+ 13)e

µ
10 x− 1

10 y = 12.925
}
.

Moreover, Γ is non-algebraic and travels in a counterclockwise sense around the sliding segment
Σrs = {(0, y) ∈ Σ : −3 ≤ y ≤ 0}.

Using the form parametric (x−(t), y−(t)) of the curve H2(x, y) = (y1 + 2)e
−1
10 y1 starting at the

point (0, y1) in the half-plane Σ−

x−(t) = 10t− y1 + e−t(y1 + 13)− 13,

y−(t) = y1 − 13µ+ 10(µ− 1)t− µy1 + µ(13 + y1)e
−t,
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where y1 = −y0e
−π, it is easy to check that the periodic orbit Γ has period T = 0.59108.

Then, for the discontinuous piecewise linear differential system (3.2), we have

Γ :
{
(x+(t), y+(t)), t ∈

[
0,

π

ω

]}
∪
{
(x−(t), y−(t)), t ∈

[π
ω
, T

]}
,

and
T∫

0

div(Γ(t)) dt =

π
ω∫

0

−2ω dt−
0.59108∫

π
ω

dt =
π

ω
− 2π − 0.59108.

Since ω > 5.315, π
ω < 0.59108 which leads to

T∫
0

div(Γ(t)) dt < 0, hence the non-algebraic crossing

periodic orbit Γ is a stable and hyperbolic limit cycle. This completes the proof of Proposition 3.2.

Example 6.1. When µ = −2, β = −1, δ = 1 and ω = 8, system (3.2) reads as

ẋ = −17x− y, ẏ = 145x+ y in Σ+,

ẋ = −3x− y − 3, ẏ = 6x+ 2y − 4 in Σ−.
(6.1)

Then, this system has exactly one explicit hyperbolic and non-algebraic crossing limit cycle Γ. This
limit cycle intersects the switching line Σ at two points

y0 = −5.6657, y1 = 0.24484

and is given by

Γ =
{
(x, y) ∈ Σ+ : (145x2 + 18xy + y2)e−2 arctan( 8x

9x+y ) = 32.1
}

∪
{
(x, y) ∈ Σ− : (x+ y + 2x+ 13)e

−1
5 x− 1

10 y = 12.925
}
.

Figure 6.2. The unique crossing non-algebraic limit cycle of system (6.1).

7 Proof of Proposition 3.3
Suppose that we have a discontinuous piecewise linear differential system (3.3). It is easy to see that
the left half-system is Hamiltonian without equilibrium points and, since − 1

2 ± iω, ω > 0 are the
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eigenvalues of the matrices of the right half-system, this system has its equilibria as focus type at
the origin. In order for the piecewise linear differential system (3.3) to have exactly one hyperbolic
non-algebraic limit cycle, it must intersect the discontinuous curve Σ at two points. Let (0, y0) with
y0 < 0, and (0, y1) with y1 > 0 be two intersecting points. Then, taking into account that

H1(x, y) =
((

δ2 + δω +
5

4
ω2

)
x2 − β(2δ + ω

)
xy + β2y2)earctan( −2xω

(2δ+ω)x−2βy
),

H2(x, y) = −µ2x2 + 2µxy + 2(1 + 3µ)x− y2 − 6y

are first integrals of the two linear differential systems of (3.3) in Σ+ and Σ−, respectively, these two
points satisfy equations (4.1).

The solution of the right half-system of (3.3) starting at the point (0, y0), y0 < 0 when t = 0, is

x+(t) =
β

ω
y0e

−ω
2 t(sinωt),

y+(t) =
1

ω
y0e

−ω
2 t
(
ω cosωt+

(
δ +

ω

2

)
sinωt

)
.

The time t+ that the solution (x+(t), y+(t)) contained in Σ+ needs to reach the point (0, y1) is t+ = π
ω .

Since the orbits starting at the point (0, y0) go into the left zone Σ− under the flow of the left linear
differential systems and since these orbits can reach Σ again at some point (0, y1) after the time
t+ = π

ω , we have
y1 = y(t+) = −y0e

−π
2 .

This proves that H1(0, y0) − H1(0, y1) = 0. Then, for the discontinuous piecewise linear differential
system (3.3), equation (4.2) becomes(

(e−π − 1)y0 − 6(1 + e
−π
2 )

)
y0 = 0.

The unique solution y0 ̸= 0 of this last equation is

y0 =
6(e−

π
2 + 1)

e−π − 1
= −7.5746.

From this value of y0, we get the value of y1 = 1.5746.
Therefore, the solution passing through the crossing points (0, y0) and (0, y1) is written as

Γ =

{
(x, y) ∈ Σ+ :

((
δ2 + δω +

5

4
ω2

)
x2 − β(2δ + ω)xy + β2y2

)
earctan( −2xω

(2δ+ω)x−2βy
) = 57.375β2

}
∪
{
(x, y) ∈ Σ− : −µ2x2 + 2µxy + 2(1 + 3µ)x− y2 − 6y = −11.927

}
.

Moreover, Γ is non-algebraic and travels in a counterclockwise sense around the sliding segment
Σrs = {(0, y) ∈ Σ : −3 ≤ y ≤ 0}.

Now, we prove that this non-algebraic crossing periodic orbit is a hyperbolic limit cycle. From the
analytical form (x−(t), y−(t)) of the curve H2(x, y) = −(6 + y1)y1 starting at the point (0, y1) in the
half-plane Σ−, we have

x−(t) = −1

2
t2 − t(y1 + 3),

y−(t) =
1

2
µt2 − (3µ+ 1)t+ y1,

where y1 = −y0e
−π, it is easy to check that the periodic orbit Γ has period T = 9.1492.

Then, for the discontinuous piecewise linear differential system (3.3), we have

Γ :
{
(x+(t), y+(t)), t ∈

[
0,

π

ω

]}
∪
{
(x−(t), y−(t)), t ∈

[π
ω
, T

]}
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and
T∫

0

div(Γ(t)) dt =

π
ω∫

0

−ω dt = −π < 0,

hence, the non-algebraic crossing periodic orbit Γ is a stable and hyperbolic limit cycle. This completes
the proof of Proposition 3.3.

Example 7.1. When β = −1, µ = −2, δ = 1 and ω = 1, system (3.3) reads as

ẋ = −2x− y, ẏ =
13

4
x+ y in Σ+,

ẋ = −2x− y − 3, ẏ = 4x+ 2y + 6 in Σ−.
(7.1)

Then, this system has exactly one explicit hyperbolic, non-algebraic crossing limit cycle Γ. This limit
cycle intersects the switching line Σ at two points

y0 = −7.5746, y1 = 1.5746

and is given by

Γ =
{
(x, y) ∈ Σ+ :

1

4
(13x2 + 12xy + 4y2)e− arctan( 2x

3x+2y ) = 57.375
}

∪
{
(x, y) ∈ Σ− : −4x2 − 4xy − y2 − 10x− 6y = −11.927

}

Figure 7.1. The unique crossing non-algebraic limit cycle of system (7.1).
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Abstract. We present the connection between Hartley transform (HT) and a one-dimensional real-
ization by difference-differential operator of N = 1

2 -supersymmetric quantum mechanics elaborated
by S. Post, L. Vinet and A. Zhedanov. The key feature of our approach is that the Hartley transform
commutes with the supercharge and provides the overcomplete bases of the HT eigenvectors.
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ÒÄÆÉÖÌÄ. ßÀÒÌÏÂÉÃÂÄÍÈ äÀÒÔËÉÓ ÂÀÒÃÀØÌÍÉÓ (HT) ÊÀÅÛÉÒÓ N = 1
2 ÓÖÐÄÒÓÉÌÄÔÒÉÖËÉ

ÊÅÀÍÔÖÒÉ ÌÄØÀÍÉÊÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒ-ÓáÅÀÏÁÉÀÍÉ ÏÐÄÒÀÔÏÒÉÓ ÄÒÈÂÀÍÆÏÌÉËÄÁÉÀÍ ÒÄÀËÉÆÀ-
ÝÉÀÓÈÀÍ, ÒÏÌÄËÉÝ ÛÄÌÖÛÀÅÄÁÖËÉÀ Ó. ÐÏÓÔÉÓ, Ë. ÅÉÍÄÔÉÓ ÃÀ À. ÑÄÃÀÍÏÅÉÓ ÌÉÄÒ. äÀÒÔËÉÓ
ÂÀÒÃÀØÌÍÀ ÊÏÌÖÔÉÒÄÁÓ ÓÖÐÄÒÌÖáÔÈÀÍ ÃÀ ßÀÒÌÏØÌÍÉÓ HT ÓÀÊÖÈÒÉÅÉ ÅÄØÔÏÒÄÁÉÓ ÆÄÓÒÖË
ÁÀÆÉÓÓ - ÓßÏÒÄÃ ÄÓ ÀÒÉÓ ÜÅÄÍÉ ÌÉÃÂÏÌÉÓ ÌÈÀÅÀÒÉ ÃÀÌÀáÀÓÉÀÈÄÁÄËÉ ÈÅÉÓÄÁÀ.
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1 Preliminaries
The Fourier transform of a suitable function f is defined by the formula

(Ff)(λ) = 1√
2π

∫
R

f(x)eiλt dx.

Recently, the one-dimensional harmonic oscillator has been approached by the Fourier transform
method (see [9,13,15,17]). Let us recall some remarks related to the Fourier transform and harmonic
oscillator. In one-dimension coordinates, the representation of the creation and annihilation operators
a†, a and the harmonic oscillator H are given by

a =
1√
2
(x+ ipx), a† =

1√
2
(x− ipx), H = −1

2
p2x +

1

2
x2, px = −i d

dx
. (1.1)

They satisfy
[a, a†] = 1, [H, a] = −a, [H, a†] = a†,

where [A,B] = AB −BA denotes the usual commutator of A and B.
The wave functions ψn(x) of the linear harmonic oscillator,

∞∫
−∞

ψn(x)ψm(x) dx = δnm, n,m = 0, 1, 2, . . . ,

are explicitly given as

ψn(x) =
(√

π n!2n
)− 1

2

e−x
2
2Hn(x),

where Hn(x) is the Hermite polynomial of degree n, which is orthogonal over the real line R with
respect to the weight function w(x) = e−x2 [14]. In quantum mechanics, the wave functions emerge
as eigenfunctions of the Hamiltonian H,

Hψn(x) =
(
n+

1

2

)
ψn(x), n = 0, 1, 2, . . . . (1.2)

The Fourier transform simply changes the basis from the coordinate basis x to the momentum basis
px and, consequently, commutes with the harmonic oscillator H. Namely, we have

FH = HF . (1.3)

Form (1.3) in the standard algebraic way expresses the fact that the Hamiltonian H and the Fourier
transform F have a common set of eigenfunctions ψn(x). More precisely, the wave functions ψn(x)
are eigenfunctions of the Fourier transform associated with the eigenvalues in, that is,

F(ψn)(x) = in ψn(x).

The one-dimensional harmonic oscillator was also studied by Schrödinger via Laplace transform when
discussing the radial eigenfunction of the hydrogen atom [19], and later, Englefield approached the
Schrödinger equation with Coulomb, oscillator, exponential, and Yamaguchi potentials [10].

The fundamental purpose of the present work is to extended the integral approach of the harmonic
oscillator to the setting of supersymmetric quantum mechanics “SUSY QM”. Let us first recall some
mathematical aspects of the supersymmetric quantum mechanics. The “SUSY QM”, introduced by
Witten [23], may be generated by three operators Q−, Q+ and H satisfying

Q2
± = 0, [Q±,H] = 0, {Q−, Q+} = H,

with {A,B} = AB +BA denoting the anti-commutator of A and B.
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For a complete correspondence with the quantum mechanical oscillator problem, the supersym-
metric quantum mechanics models need an analogue of the Fourier transformation. In the present
work we fill this gap. Indeed, we propose the Hartley transform as an alternative of the Fourier
transform approach to the SUSY quantum mechanics.

Recall that the Hartley transform of a suitable function f(x) is defined by

(Hf)(λ) = 1√
π

∫
R

f(x) cas(λx) dx,

where the kernel of the integral, known as cas function, is defined as cas(x) = cos(x) − sin(x). The
relation between the Hartley transform and the Fourier transform is given by

(Hf)(λ) =
√
2
(
ℜ((Ff)(λ))−ℑ((Ff)(λ))

)
,

where ℜ and ℑ denote, respectively, the real and imaginary parts of the Fourier transform. Compared
to the Fourier transform, the Hartley transform has the advantages of transforming real functions
to real functions (as opposed to requiring complex numbers), also this transform has complementary
symmetry properties with respect to their real and imaginary axis and of being its own inverse.

The paper is organized as follows. In Section 2, we recall general properties of the supersymmetric
quantum mechanics with reflection. In Section 3, we give some details related to the Hartley transform
and difference-differential operator. Finally, in Section 4, we develop the connection between HT
and SUSY Quantum Mechanics and exploit it to obtain overcomplete bases for Hartley transform
eigenvectors.

2 The Hartley transform
Our first observation in this section is the following representation of the function cas(x) defined in
(2.2) by the power series:

cas(x) =
∞∑

n=0

(−1)(
n+1
2 )

n!
xn, (2.1)

where
(
n
2

)
is the binomial coefficient given by(

n

2

)
=
n(n− 1)

2
.

Theorem 2.1. For λ ∈ C, the function cas(λx) is the unique analytic solution of the problem{
(∂xR)u(x) = λu(x),

u(0) = 0.

Proof. From the well known identity for binomial coefficients(
n+ 1

2

)
=

(
n

1

)
+

(
n

2

)
= n+

(
n

2

)
,

we have

∂x cas(λx) = λ

∞∑
n=1

(−1)(
n+1
2 )

(n− 1)!
(λx)n−1 = λ

∞∑
n=0

(−1)(
n+2
2 )

n!
(λx)n = −λ cas(−λx).

Hence (∂xR)u(x) = λu(x).
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Since
(−1)(

2n
2 ) = (−1)n, (−1)(

2n+1
2 ) = (−1)n,

the sum in (2.1) turns to be
cas(x) = cos(x)− sin(x). (2.2)

The Hartley transform pair for f in a suitable functions class is given by (see [4, 12])
(Hf)(λ) = 1√

π

∫
R

f(x) cas(λx) dx,

f(x) =
1√
π

∫
R

(Hf)(λ) cas(λx) dλ.

Accordingly,
H2 = I.

The function cas(x) satisfies the product formula

cas(x) cas(y) = 1

2
((1−R) cas)(x+ y) +

1

2
((1 +R) cas)(x− y).

This allows us to define the generalized translation operator related to the differential-difference op-
erator ∂R by

τyf(x) =
1

2
((1−R)f)(x+ y) +

1

2
((1 +R)f)(x− y),

and the convolution product by
f ∗ g(x) =

∫
R

f(y)τxg(y) dy.

The Hartley transform has the following properties:

H(τxf)(λ) = cas(λx)H(f)(λ), H(f ∗ g)(λ) = H(f)(λ)H(g)(λ).

3 SUSY QM with reflection
Let us first recall some mathematical aspects of the supersymmetric quantum mechanics. The “SUSY
QM” introduced by Witten [23] can be generated by three operators Q−, Q+ and H satisfying

Q2
± = 0, [Q±,H] = 0, {Q−, Q+} = H (3.1)

(with {A,B} = AB+BA denoting the anti-commutator of A and B) to facilitate the comparison with
the usual harmonic oscillator. The minimal version of N = 1 supersymmetric quantum mechanics is
achieved by taking the supercharges Q+ and (Q−) as product of the bosonic operator a (a†) defined
in (1.1) and the fermionic operator ψ (ψ†). Namely, we have

Q = aψ†, Q† = a†ψ,

where the matrix fermionic creation and annihilation operators are defined via

ψ = σ+ =

[
0 1
0 0

]
, ψ† = σ− =

[
0 0
1 0

]
.

Thus, ψ and ψ† obey the usual algebra of the fermionic creation and annihilation operators, namely,

{ψ†, ψ} = 1, {ψ†, ψ†} = {ψ,ψ} = 0.
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They also satisfy the commutation relation

[ψ†, ψ] = σ3 =

[
1 0
0 −1

]
.

The SUSY Hamiltonian can be rewritten in the form

H = QQ† +Q†Q = − d2

dx2
+

1

4
x2 − 1

2
[ψ,ψ†].

Note that if the supercharge Q in (3.1) is self-adjoint, i.e., Q† = Q. Then H = 2Q2, and the model is
said to be N = 1

2 supersymmetric.
In [18], the authors developed several realizations of N = 1

2 supersymmetric quantum mechanics in
one-dimension by taking the supercharge as the following Dunkl-type difference-differential operator:

Q =
1√
2
(∂xR+ UR+ V ),

where U(x) is even, V (x) is odd, and the operator R is the reflection operator which acts as Rf(x) =
f(−x). In this case, the SUSY Hamiltonian takes the form

Ĥ = Q2 = −1

2

d2

dx2
+

1

2
(U2 + V 2) +

1

2

dU

dx
− 1

2

dV

dx
R.

The wave functions for such systems have been obtained in [18], where it was shown that they define
orthogonal polynomials, expressed in terms of Hermite and Jacobi polynomials.

Consider the supercharge

Q =
1√
2
(∂xR+ x). (3.2)

Note that this supercharge corresponds to the case U(x) = 0 and V (x) = x in (3). Upon computing
Q2, we readily find that

Ĥ = Q2 = −1

2

d2

dx2
+

1

2
x2 − 1

2
R.

The spectrum of the supersymmetric Hamiltonian Ĥ is easily obtained by observing that

Ĥ = H − 1

2
R,

where

H = −1

2

d2

dx2
+

1

2
x2.

Since
Rψn(x) = (−1)nψn(x),

it follows from (1.2) that
Ĥψn = Enψn,

where

En = n+
1− (−1)n

2
, n = 0, 1, . . . .

Therefore, the spectrum will only consist of even numbers. Each level is degenerate, except for the
ground state, which is unique.
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4 Eigenfunctions of the Hartley transform
Now, we are interested in finding all eigenfunctions of the Hartley transform operator explicitly. Since
mutually commuting operators have the same set of eigenfunctions, one can solve this problem by
defining such a self-adjoint operator with a simple spectrum of distinct eigenvalues, which commutes
with the Hartley transform.

In what follows, the following lemma is needed.

Lemma 4.1. For α, β ∈ R such that α ̸= −β, the problem{
−u′(−x) + x(u(x)− u(−x)) + αu(−x) = βu(x),

u(0) = 1.
(4.1)

has a unique analytic solution given by

u(x) = 1F1


α2 − β2

4

1

2

;x2

+ (α− β)x 1F1


2 + α2 − β2

4

3

2

;x2

 .

where

1F1

(
a
b
; z

)
=

∞∑
n=0

(a)n
(b)n

zn

n!

is Kummer’s confluent hypergeometric function (see [14]).

Proof. Note that one can always write u as the superposition u = ue + uo of an even function ue and
of an odd function uo by the formulae

ue(x) =
u(x) + u(−x)

2
, uo(x) =

u(x)− u(−x)
2

.

Further, this decomposition is unique. This allows us to rewrite the eigenvalue equation (4.1) equiv-
alently as a system of two linear differential equations of first order:{

u′e = (α+ β)uo,

u′o − 2xuo = −(α− β)ue.
(4.2)

We can eliminate the function uo(x) from system (4.2) and obtain for ue(x) a second-order differential
equation

u′′e (x)− 2xu′e(x) = −(α2 − β2)ue(x). (4.3)
We choose t = x2 as a new variable and reduce equation (4.3) to

tv′′ +
(1
2
− t

)
v′ = −α

2 − β2

4
w,

so that the general solution of (4.3) can be written in the form

ue(x) = A 1F1


α2 − β2

4

1

2

;x2

+Bx 1F1


2 + α2 − β2

4

3

2

;x2

 ,

where A and B are constants depending on λ, α and β. Since the function ue(x) is even, we have

ue(x) = A 1F1


α2 − β2

4

1

2

;x2

 .



38 F. Bouzeffour, M. Garayev

From (4.2), for the function uo(x) we obtain

uo(x) = A
α− β

2
x 1F1

1 +
α2 − β2

4

3

2

;x2

 .

We have the general solution of (4.5)

u(x) = A 1F1


α2 − β2

4

1

2

;x2

+A(α− β)x 1F1

1− α2 − β2

4

3

2

;x2

 .

From the initial condition in (4.1), we get A = 1.

The following theorem states that the Hartley transform commutes with the supercharge Q defined
in (3.2).

Theorem 4.2. We have
HQ = QH.

Proof. Using integration by parts, we can show that the Hartley transform satisfies the following
intertwining relations:

HR = RH, H∂xR = xH, Hx = ∂xRH.

The two last intertwining relations provide the proof of the theorem.

The ground state wave function ψ0(x) is given by ψ0(x) = e−x
2
2 and satisfies Qψ0 = 0. Let us

now carry out the gauge transformation of Q with the ground state ψ0. Let

Q̃ = ψ−1
0 Qψ0. (4.4)

It is not difficult to see that
Q̃ =

1√
2

d

dx
R+

1√
2
x(1−R).

From Theorem 4.2, we see that the eigenfunctions of the Hartley transform can be obtained by
finding the eigenvalues of the supercharge Q. So, in this way, one reduces the problem of funding
the eigenfunctions of the Hartley transform into one of solving the following difference-differential
equation

−u′(−x) + x(u(x)− u(−x)) =
√
2λu(x). (4.5)

From Lemma (4.1), the general solution of (4.5) is given by

u(x) = A

 1F1

−λ
2

2

1

2

;x2

−
√
2λx 1F1

1− λ2

2

3

2

;x2


 . (4.6)

It can be is easily seen that polynomial solutions are possible only if λ = ±
√
2n , n = 0, 1, 2, . . . .

If λ = ±
√
2n , then the first term in (4.6) is a polynomial of degree 2n and the second term is a

polynomial of degree 2n− 1.
Let us by ψ̂±,n(x) denote the eigenfunction of Q corresponding to the eigenvalue λn = ±

√
2n .

Then we have the following explicit expressions:

ψ̂±n(x) = κ±n e
−x

2
2


1F1

−n
1

2

;x2

± 2
√
nx 1F1

1− n

3

2

;x2

 .
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The normalized constants κ±n are also chosen so that
∞∫

−∞

|ψ̂±n| ds = 1.

A simple computation shows that κ−1
n = κ−1

−n = π
1
4 2n+

1
2 (2n!)−

1
2n!, n = 0, 1, 2, . . . . We denote by

Ĥn(x), n ∈ Z, the orthogonal polynomial extracts that form the orthogonal function ψ̂±n(x). That is,

ψ̂n(x) = κne
−x

2
2 Ĥn(x).

Using the well known explicit expressions of Hermite polynomials in terms of the Confluent hyperge-
ometric series

H2n(x) = (−1)n
(2n)!

n!
1F1

−n
1

2

;x2

 ,

H2n+1(x) = (−1)n
(2n+ 1)!

n!
2x 1F1

−n
3

2

;x2

 ,

we obtain
Ĥ±n(x) =

(−1)nn!

(2n)!

(
H2n(x)∓ 2

√
nH2n−1(x)

)
, n = 0, 1, 2, . . . .

They satisfy the orthogonality relations∫
R

Ĥn(x)Ĥm(x)e−x2

dx =
√
π 22|n|+1 (|n|!)2

(2|n|)!
δnm, n,m ∈ Z.

The system {ψ̂±n(x)}n∈Z is an orthonormal set in L2(R, dx) and it is complete by the same argument
which was used to prove that the classical Hermite functions form a complete orthogonal set in
L2(R, dx). Further, the operator Q with domain D(Q) = S(R) (S(R) is the Schwartz space) is
essentially self-adjoint; the spectrum of its closure is discrete and, by (4.4), we easily obtain that

Qψ̂±n(x) = ±
√
2n ψ̂±n(x), n = 0, 1, 2, . . . .

Theorem 4.3. For n ∈ Z, we have
∞∫

−∞

cas(xy)Ĥn(x)e
−x

2
2 dx = (−1)nĤn(x)e

−x
2
2 .
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A BICUBIC SPLINES METHOD FOR SOLVING
A TWO-DIMENSIONAL OBSTACLE PROBLEM



Abstract. The objective of this paper is to develop a numerical method for solving a bidimensional
unilateral obstacle problem. This is based on the bicubic splines collocation method and the generali-
zed Newton method. In this paper, we obtain an approximate expression for solving a bidimensional
unilateral obstacle problem. We show that the approximate formula obtained by the bicubic splines
collocation method is effective. Next, we prove the convergence of the proposed method. The method is
applied to some test examples and the numerical results have been compared with the exact solutions.
The obtained results show the computational efficiency of the method. It can be concluded that
computational efficiency of the method is effective for the two-dimensional obstacle problem.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÉÓ ÌÉÆÀÍÉÀ ÒÉÝáÅÉÈÉ ÌÄÈÏÃÉÓ ÛÄÌÖÛÀÅÄÁÀ ÏÒÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÝÀËÌáÒÉÅÉ
ÃÀÁÒÊÏËÄÁÉÓ ÀÌÏÝÀÍÉÓ ÀÌÏÓÀáÓÍÄËÀÃ. ÉÂÉ Ä×ÖÞÍÄÁÀ ÁÉÊÖÁÖÒÉ ÓÐËÀÉÍÄÁÉÓ ÊÏËÏÊÀÝÉÉÓ
ÌÄÈÏÃÓ ÃÀ ÍÉÖÔÏÍÉÓ ÂÀÍÆÏÂÀÃÄÁÖË ÌÄÈÏÃÓ. ÍÀÛÒÏÌÛÉ ÌÉÙÄÁÖËÉÀ ÌÉÀáËÏÄÁÉÈÉ ÂÀÌÏÓÀ-
áÖËÄÁÀ ÏÒÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÝÀËÌáÒÉÅÉ ÃÀÁÒÊÏËÄÁÉÓ ÐÒÏÁËÄÌÉÓ ÂÀÃÀÓÀàÒÄËÀÃ. ÅÀÜÅÄÍÄÁÈ,
ÒÏÌ ÌÉÀáËÏÄÁÉÈÉ ×ÏÒÌÖËÀ, ÒÏÌÄËÉÝ ÌÉÙÄÁÖËÉÀ ÁÉÊÖÁÖÒÉ ÓÐËÀÉÍÄÁÉÓ ÊÏËÏÊÀÝÉÉÓ ÌÄ-
ÈÏÃÉÈ, Ä×ÄØÔÖÒÉÀ. ÛÄÌÃÄÂ ÃÀÅÀÌÔÊÉÝÄÁÈ ÛÄÌÏÈÀÅÀÆÄÁÖËÉ ÌÄÈÏÃÉÓ ÊÒÄÁÀÃÏÁÀÓ. ÌÄÈÏÃÉ
ÂÀÌÏÚÄÍÄÁÖËÉÀ ÆÏÂÉÄÒÈ ÓÀÔÄÓÔÏ ÌÀÂÀËÉÈÆÄ ÃÀ ÒÉÝáÅÉÈÉ ÛÄÃÄÂÄÁÉ ÛÄÃÀÒÄÁÖËÉÀ ÆÖÓÔ
ÀÌÏáÓÍÄÁÈÀÍ. ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉ ÀÜÅÄÍÄÁÓ ÌÄÈÏÃÉÓ ÂÀÌÏÈÅËÉÈ Ä×ÄØÔÖÒÏÁÀÓ. ÛÄÉÞËÄÁÀ
ÃÀÅÀÓÊÅÍÀÈ, ÒÏÌ ÌÄÈÏÃÉÓ ÂÀÌÏÈÅËÉÈÉ Ä×ÄØÔÖÒÏÁÀ ÞÀËÀÛÉÀ ÏÒÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÀÌÏÝÀÍÄ-
ÁÉÓÈÅÉÓ ÃÀÁÒÊÏËÄÁÉÈ.
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1 Introduction
In this paper, we consider the following unilateral obstacle problem:

Find u ∈ K such that
∫
Ω

∇u · ∇(v − u) dx+

∫
Ω

f(v − u) dx ≥ 0, ∀ v ∈ K, (1.1)

where Ω ⊂ Rn is a bounded open domain with n ≥ 2, with a smooth boundary ∂Ω, f is an element
of L2(Ω) and K = {v ∈ H1

0 (Ω) | v ≥ ψ a.e. in Ω}. The main point here is that we are considering
an irregular obstacle function ψ which is an element of H1(Ω) with ψ ≤ 0 on ∂Ω. It is well known
that problem (1.1) admits a unique solution u, and if ∆ψ ∈ L2(Ω), then u is an element of H2(Ω)
(see [10,14]), and the solution u of problem (1.1) is an element of H2(Ω) that can be characterized as
(see [10], for instance) 

−∆u+ f ≥ 0 a.e. on Ω,

(−∆u+ f)(u− ψ) = 0 a.e. on Ω,

u− ψ ≥ 0 a.e. on Ω,

u = 0 on ∂Ω.

As a classical subject in the field of partial differential equations, the obstacle problem is aimed to
find a solution which is constrained by a given obstacle to some extent. It has numerous applications
in various fields including economics, engineering, biology, computer science, etc. There are several
numerical solution methods of the obstacle problem (see, e.g., [1,6,9–11,13,17,26]). Numerical solution
by penalty methods have been considered, e.g., in [9,24]. In this paper, we develop a numerical method
for solving a two-dimensional obstacle problem by using the generalized tension splines collocation
method and the generalized Newton method. First, problem (1.1) is approximated by a sequence
of nonlinear equation problems by using the penalty method given in [14, 16]. Then we apply the
GB-spline collocation method to approximate the solution of a boundary value problem of second
order. The discret problem is formulated as to find the generalized tension splines coefficients of a
nonsmooth system φ(Y ) = Y , where φ : Rm → Rm. In order to solve the nonsmooth equation, we
apply the generalized Newton method (see, e.g., [4,5,25]). We prove that the generalized tension splines
collocation method converges quadratically provided a property, coupling the penalty parameter ε and
the discretization parameter h is satisfied.

Numerical methods to approximate the solution of boundary value problems have been considered
by several authors. We only mention the papers [3, 15] and the references therein, which use the
bicubic spline collocation method for solving the boundary value problems.

The present paper is organized as follows. In Section 2, we present the penalty method to approx-
imate the obstacle problem by a sequence of second order boundary value problems, we also construct
a bicubic spline to approximate the solution of the boundary problem, and we present the general-
ized Newton method. In Section 3, we show the convergence of the generalized tension spline to the
solution of the boundary problem and provide an error estimate. Some numerical results are given in
Section 4 to validate our methodology. The study ends with conclusions and remarks in Section 5.

2 Bicubic spline collocation method
In this section, we construct a bicubic spline which approximates the solution uε of problem (2.1),
with Ω being the interval I×J = (a, b)2 ⊂ R2. We denote by ∥ · ∥ the Euclidean norm on R(n+1)(n+1),
by ∥ · ∥∞ the uniform norm, by ⊗ Kronecker product (tensor product) and by ⊙ the biproduct of
matrices.

By using the penalty method (see [14, p. 110], [16]), an approximate solution uε of problem (1.1)
can be characterized as the following boundary value problem (see [14, p. 107], [16]):{

−∆uε = max(−∆ψ + f, 0)θε(uε − ψ)− f in Ω,

uε = 0 on ∂Ω,
(2.1)
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where θε is a sequence of Lipschitz functions which tend to the function θ defined by

θε(t) =


1, t ≤ 0,

1− t

ε
, 0 ≤ t ≤ ε,

0, t ≥ ε.

(2.2)

If we put
Jε(x, y, uε(x, y)) = max(−∆ψ(x, y) + f(x, y), 0)Θε

with
Θε = θε(uε(x, y)− ψ(x, y))− f(x, y),

then problem (2.1) becomes {
−∆uε = Jε( · , uε) on Ω,

uε(a, y) = uε(x, b) = 0, x, y ∈ (a, b).
(2.3)

It is easy to see that Jε is a nonlinear continuous function on uε; and for any two functions uε and
vε, Jε satisfies the following Lipschitz condition:∣∣Jε(x, y, uε(x, y))− Jε(x, y, vε(x, y))

∣∣ ≤ Lε|uε(x, y)− vε(x, y)| a.e. on (x, y) ∈ Ω, (2.4)

where
Lε =

1

ε
∥ −∆ψ + f∥∞ =

1

ε
max

(x,y)∈Ω
| −∆ψ(x, y) + f(x, y)|.

Now, let

Πx =
{
a = x−3 = · · · = x0 < x1 < · · · < xn+1 = · · · = xn+3 = b

}
,

Πy = {a = y−3 = · · · = y0 < y1 < · · · < yn+1 = · · · = yn+3 = b
}

be the subdivisions of the intervals I and J , respectively, with xi = a + ih and yj = a + jh, where
0 ≤ i, j ≤ n and h = (b− a)/n. The partition Πxy = Πx ⊗Πy subdivides Ω into smaller rectangles in
the plane:

T =
{
(x, y) : xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1, i, j = −3, . . . , n− 1

}
.

Denote by
Sbicu
4 (Ω,Πxy) = Scub

4 (I,Πx)⊗ Scub
4 (J,Πy)

a bicubic spline with respect to the partition Πxy with Scub
4 (I,Πx) (resp. Scub

4 (J,Πy)), the space of
piecewise polynomials of degree 3 over the subdivision Πx (resp. Πy) and of class C2 everywhere on I
(resp. J).

Moreover, let {Bx
−3, B

x
−2, . . . , B

x
n−1} (resp. {By

−3, . . . , B
y
n−1}) be a B-spline basis of Scub

4 (I,Πx)
(resp. Scub

4 (J,Πy)). By applying the tensor product method (see [19]), we obtain the following bicubic
spline interpolation.

Proposition 2.1 (see [19]). Let uϵ be a solution of problem (2.3). Then there exists a unique bicubic
spline interpolant Sϵ ∈ Sbicu

4 (Ω,Πxy) of uϵ which satisfies

Sϵ(τ
x
i , τ

y
j ) = uϵ(τ

x
i , τ

y
j ), i, j = 0, . . . , n+ 2,

where

τx0 = x0, τxi =
xi + xi−1

2
, 1 ≤ i ≤ n, τxn+1 = xn−1, τxn+2 = xn,

τy0 = y0, τyj =
yj + yj−1

2
, 1 ≤ j ≤ n, τyn+1 = yn−1, τyn+2 = yn.
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If we put

Sε(x, y) =

n−1∑
p,q=−3

cp,q,εB
x
p (x)B

y
q (y),

then by using the boundary conditions of problem (2.3) we obtain

c−3,q,ε = Sε(a, y) = uε(a, y) = 0, q = −3, . . . , n− 1,

and
cp,n−1,ε = Sε(x, b) = uε(x, b) = 0, p = −3, . . . , n− 1.

Hence

Sε(x, y) =

n−2∑
p,q=−2

cp,q,εB
x
p (x)B

y
q (y).

Furthermore, for any uε ∈ H4(Ω), where H4(Ω) = {u ∈ L2(Ω); ∂αu ∈ L2(Ω), |α| ≤ 4} is the Sobolev
space (see [8]), we have

−∆Sε(τ
x
i , τ

y
j ) = Jε(τ

x
i , τ

y
j , uε) +O(1), i, j = 1, . . . , n+ 1. (2.5)

The bicubic spline collocation method, presented in this paper, constructs numerically a bicubic spline

S̃ε =
n−1∑

p,q=−3
c̃p,q,εB

x
pB

y
q which satisfies equation (2.3) at the points (τxi , τ

y
j ), i, j = 0, . . . , n + 2. It is

easy to see that
c̃−3,q,ε = c̃p,n−1,ε = 0 for p, q = −3, . . . , n− 1

and the coefficients c̃p,q,ε, p, q = −2, . . . , n − 2, satisfy the following nonlinear system with (n + 1)2

equations:

n−2∑
p,q=−2

c̃p,q,ε∆B
x
p (τ

x
i )B

y
q (τ

y
j ) = −Jε(τxi , τ

y
j ,

n−2∑
p,q=−2

c̃p,q,εB
x
p (τ

x
i )B

y
q (τ

y
j )) for i, j = 1, . . . , n+ 1. (2.6)

Since
∆Bx

p (τ
x
i )B

y
q (τ

y
j ) = Bx

p (τ
x
i )∆B

y
q (τ

y
j ) +By

q (τ
y
j )∆B

x
p (τ

x
i ),

relations (2.5) and (2.6) can be written in the matrix form, respectively, as follows:

2(Ah ⊙Bh)Cε = −Fε − Êε,

2(Ah ⊙Bh)C̃ε = −FC̃ε
,

(2.7)

where

Ah ⊙Bh =
1

2
(Ah ⊗Bh +Bh ⊗Ah),

Cε =
[
(c−2,q,ε)−2≤q≤n−2, . . . , (cn−2,q,ε)−2≤q≤n−2

]T
,

C̃ε =
[
(c̃−2,q,ε)−2≤q≤n−2, . . . , (c̃n−2,q,ε)−2≤q≤n−2

]T
,

for any integer i such that 1 ≤ i ≤ n+ 1,

Fε =
[
Jε
(
τxi , τ

y
1 , uε(τ

x
i , τ

y
1 )
)
, . . . , Jε

(
τxi , τ

y
n+1, uε(τ

x
i , τ

y
n+1)

)]T
,

FC̃ε
=

[
Jε
(
τxi , τ

y
1 , S̃ε(τ

x
i , τ

y
1 )
)
, . . . , Jε

(
τxi , τ

y
n+1, S̃ε(τ

x
i , τ

y
n+1)

)]T
,
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and Êε is a vector, where each component is of order O(1). It is well known that Ah = 1
h2 A and

Bh = B, where A and B are the matrices independent of h given as follows:

A =



−15

4

1

4

1

2
0 . . . 0

3

4

−3

4

−1

2

1

2
0 . . . 0

0
1

2

−1

2

−1

2

1

2
0 . . . 0

... . . . . . . . . . . . . . . . . . . ...

0 . . . 0
1

2

−1

2

−1

2

1

2
0

0 . . . 0
1

2

−1

2

−3

4

3

4

0 . . . 0
1

2

1

4

−15

4

0 . . . 0 1
−5

2

3

2



B =



57

96

25

96

1

48
0 . . . 0

3

96

45

96

23

48

1

48
0 . . . 0

0
1

48

23

48

45

96

3

96
0 . . . 0

... . . . . . . . . . . . . . . . . . . ...

0 . . . 0
1

48

23

48

45

96

3

96
0

0 . . . 0
1

48

25

96

57

96

0 . . . 0
1

6

7

12

1

4



.

Then relation (2.7) becomes

(A⊙B)Cε = −1

2
h4Fε − Eε,

(A⊙B)C̃ε = −1

2
h2FC̃ε

(2.8)

with Eε being a vector, where each of its components is of order O(h2).
As the matrices A and B are invertible (see [18]), then A⊙B is invertible (see [12]) and

(A⊙B)−1 = A−1 ⊙B−1. (2.9)

Proposition 2.2. Assume that the penalty parameter ε and the discretization parameter h satisfy the
following relation:

h2∥ −∆ψ + f∥∞∥A−1 ⊙B−1∥∞ < 2ε. (2.10)

Then there exists a unique bicubic spline which approximates the exact solution uε of problem (2.3).
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Proof. From relation (2.8), we have

C̃ε = −1

2
h2A−1 ⊙B−1FC̃ε

.

Let φ : R(n+1)(n+1) → R(n+1)(n+1) be a function defined by

φ(Y ) = −1

2
h2A−1 ⊙B−1FY .

To prove the existence of bicubic spline collocation, it suffices to prove that φ admits a unique fixed
point. Indeed, let Y1 and Y2 be two vectors of R(n+1)(n+1). Then we have

∥φ(Y1)− φ(Y2)∥ ≤ 1

2
h2∥A−1 ⊙B−1∥∞∥FY1

− FY2
∥∞. (2.11)

Using relation (2.4) and the fact that
n−2∑

p,q=−2
Bx

pB
y
q ≤ 1, we get

∣∣∣Jε(τxi , τyj , SY1
(τxi , τ

y
j )
)
− Jε

(
τxi , τ

y
j , SY2

(τxi , τ
y
j )
)∣∣∣

≤ Lε

∣∣SY1(τ
x
i , τ

y
j )− SY2(τ

x
i , τ

y
j )
∣∣ ≤ Lε∥Y1 − Y2∥∞,

where Lε =
1
ε ∥ −∆ψ + f∥∞. Then we obtain

∥FY1
− FY2

∥∞ ≤ Lε∥Y1 − Y2∥∞.

From relation (2.11), we conclude that

∥φ(Y1)− φ(Y2)∥ ≤ Lε
1

2
h2∥A−1 ⊙B−1∥∞∥Y1 − Y2∥∞.

Thus we have
∥φ(Y1)− φ(Y2)∥ ≤ k∥Y1 − Y2∥∞,

with k = 1
2 h

2∥A−1⊙B−1∥∞, by relation (2.10). Hence the function φ admits a unique fixed point.

In order to calculate the coefficients of the generalized tension spline collocation given by the
nonsmooth system

C̃ε = φ(C̃ε),

we propose the generalized Newton method defined by

C̃(k+1)
ε = C̃(k)

ε − (In+1 − Vk)
−1

(
C̃(k)

ε − φ(C̃(k)
ε )

)
,

where I(n+1)(n+1) is the unit matrix of order (n+ 1)(n+ 1) and Vk is the generalized Jacobian of the
function C̃ε 7→ φ(C̃ε) (see, e.g., [4, 5, 25]).

3 Convergence of the method
Theorem 3.1. If we assume that the penalty parameter ε and the discretization parameter h satisfy
the relation

h2∥ −∆ψ + f∥∞∥A−1 ⊙B−1∥∞ < ε. (3.1)

then the bicubic spline S̃ε converges to the solution uε. Moreover, the error estimate ∥uε − S̃ε∥∞ is of
order O(h2).
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Proof. From (2.8) and (2.9), we have

Cε − C̃ε = −1

2
h4A−1 ⊙B−1(Fε − FC̃ε

)−A−1 ⊙B−1Eε.

Since Eε is of order O(h2), there exists a constant K1 such that ∥Eε∥∞ ≤ k1h
2. Hence, we get

∥Cε − C̃ε∥∞ ≤ 1

2
h2∥A−1 ⊙B−1∥∞∥Fε − FC̃ε

∥∞ +K1∥A−1 ⊙B−1∥∞h2. (3.2)

On the other hand, we have∣∣∣Jε(τxi , τyj , uε(τxi , τyj ))− Jε
(
τxi , τ

y
j , S̃(τ

x
i , τ

y
j )
)∣∣∣

≤ Lε

∣∣uε(τxi , τyj )− S̃ε(τ
x
i , τ

y
j )
∣∣ ≤ Lε

∣∣uε(τxi , τyj )− Sε(τ
x
i , τ

y
j )
∣∣+ Lε

∣∣Sε(τ
x
i , τ

y
j )− S̃ε(τ

x
i , τ

y
j )
∣∣.

Since Sε is the bicubic spline interpolation of uε, there exists a constant K2 such that

∥uε − Sε∥∞ ≤ K2h
2. (3.3)

Using the fact that

|Sε − S̃ε| ≤ ∥Cε − C̃ε∥∞
n−2∑

p,q=−2

Bx
pB

y
q ≤ ∥Cε − C̃ε∥∞, (3.4)

we obtain
|Fε − FC̃ε

| ≤ Lε∥Cε − C̃ε∥∞ + LεK2h
4.

By using relation (3.2) and assumption (3.1), it is easy to see that

∥Cε − C̃ε∥∞ ≤
1
2 h

2∥A−1 ⊙B−1∥∞
1− Lε

1
2 h

2∥A−1 ⊙B−1∥∞
(K2Lεh

2 + 2K1)

≤ h2∥A−1 ⊙B−1∥∞(K2Lεh
2 + 2K1). (3.5)

Thus
∥uε − S̃ε∥∞ ≤ ∥uε − Sε∥∞ + ∥Sε − S̃ε∥∞.

Therefore, from relations (3.3), (3.4) and (3.5), we deduce that ∥uε − S̃ε∥∞ is of order O(h2). Hence,
the proof is complete.

Remark 3.1. Theorem 3.1 provides a relation coupling the penalty parameter ε and the discretization
parameter h, which guarantees the quadratic convergence of the bicubic spline collocation S̃ε to the
solution uε of the penalty problem.

We have the interesting properties.

Theorem 3.2 ([14, p. 110], [16]). Let u denote the solution of the variational inequality problem (1.1)
and uε, ε > 0, denote the solution of the penalty problem (2.1) with θε defined by relation (2.2). Then
{uε} is a nondecreasing sequence and

u(x, y) ≤ uε(x, y) ≤ u(x, y) + ε, (x, y) ∈ Ω, for ε > 0.

Theorem 3.3. Suppose that u(x, y) is the solution of (1.1) and ubc(x, y) is the approximate solution
by our presented method. Then we have

∥u(x, y)− ubc(x, y)∥∞ ≤ ϵ+ kh2, (x, y) ∈ Ω, for ε > 0,

where k is a finite constant. Therefore, for sufficiently small ϵ and h, the solution of presented scheme
(2.8) converges to the solution of the variational inequality problem (1.1) in the discrete L∞-norm and
the rates of convergence are O(ϵ+ h2).
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4 Numerical examples
In this section, we give the numerical experiments in order to validate the theoretical results presented
in this paper. We report numerical results for solving a two-dimensional obstacle problem by using the
bicubic spline method to approximate the solution of the penalty problem (2.3), and the generalized
Newton method [23] to determine the coefficients of the bicubic spline collocation.

As a numerical experiment, the example by Bartels and Carstensen [2] with Ω = (−1.5, 1.5)2 is
considered, however, with an additional mass term. For the obstacle ψ = 0 and volume force f = 2,
the exact solution is

u(x, y) =

−r
2

2
− ln(r)− 1

2
if r = |x|2 ≥ 1,

0 otherwise.

As a stopping criteria for the generalized Newton iterations, we have considered that the absolute
value of the difference between the input coefficients and the output coefficients is less than 10−5.

Figure 1. Exact and Approximate solution.

Table 1 shows, for different values of the discretization parameter h, the error between the bicubic
spline collocation S̃ε and the true solution u. We note that the convergence of the solution S̃ε to
the function u depends on the discretization parameter h and the penalty parameter ε. Theorem 3.1
implies that for a fixed h, this convergence is guaranteed only if there exists εh > 0 such that ε ≥ εh.
Some experimental values of εh are given in Table 1.
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Theorem 3.3 implies that we have the error estimate between the exact solution and the discrete
penalty solution given by ∥u(x, y)−ubc(x, y)∥∞ ≤ ϵ+kh2. The obtained results show the convergence
of the discrete penalty solution to the solution of the original obstacle problem as the parameters h
and ε get smaller provided they satisfy relation (3.1). Moreover, the numerical error estimates behave
like ε+ kh2 which confirms what we were expecting.

Table 1. Numerical results

ϵ 10−2 10−3 5× 10−4 2× 10−4 = εh

For h = 0.05

∥u− S̃ε∥∞ 5× 10−3 10.61× 10−4 10.12× 10−4 9.84× 10−4

For h = 0.02

∥u− S̃ε∥∞ 4.7× 10−3 7.21× 10−4 2.34× 10−4 2.03× 10−4

For h = 0.01

∥u− S̃ε∥∞ 4.63× 10−4 7.03× 10−5 3.15× 10−6 1.84× 10−6

5 Concluding remarks
In this paper, we have considered an approximation of a bidimensional unilateral obstacle problem
by a sequence of penalty problems, which are nonsmooth equation problems, presented in [14, 16].
Then we have developed a numerical method for solving each nonsmooth equation, based on a bicubic
collocation spline method and the generalized Newton method. We have shown the convergence of the
method provided that the penalty and discret parameters satisfy relation (3.1). Moreover, we have
provided an error estimate of order O(h2) with respect to the norm ∥ · ∥∞. The obtained numerical
results show the convergence of the approximate penalty solutions to the exact one and confirm the
error estimates provided in this paper.
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ANALYSIS OF A FRICTIONAL UNILATERAL CONTACT
PROBLEM FOR PIEZOELECTRIC MATERIALS
WITH LONG-TERM MEMORY AND ADHESION



Abstract. This paper deals with the study of a mathematical model that describes a frictional
contact between a piezoelectric body and an obstacle. The material behavior is described with an
electro-elastic constitutive law with long memory and the contact is modelled with Signorini conditions
associated with the non-local friction law in which the adhesion between the contact surfaces is taken
into account. We establish a variational formulation of the model in the form of a system involving the
displacement, stress, electric displacement, electric potential and adhesion field. Under the assumption
that the coefficient of friction is small enough, we prove the existence of a unique weak solution to the
problem. The proof is based on arguments of variational inequalities, nonlinear evolutionary equations
with monotone operators, differential equations and the Banach fixed-point theorem.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÉ ÄÞÙÅÍÄÁÀ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÓ ÛÄÓßÀÅËÀÓ, ÒÏÌÄËÉÝ áÀáÖÍÉÓ ÂÀÈÅÀ-
ËÉÓßÉÍÄÁÉÈ ÀÙßÄÒÓ ÐÉÄÆÏÄËÄØÔÒÖË ÓáÄÖËÓÀ ÃÀ ÃÀÁÒÊÏËÄÁÀÓ ÛÏÒÉÓ ÊÏÍÔÀØÔÓ. ÓáÄÖËÉÓ
ÌÀÓÀËÉÓ ÚÏ×ÀØÝÄÅÀ ÀÙßÄÒÉËÉÀ ÄËÄØÔÒÏ-ÃÒÄÊÀÃÉ ÞÉÒÉÈÀÃÉ ÈÀÍÀ×ÀÒÃÏÁÉÈ, ÒÏÌÄËÉÝ
áÀÍÂÒÞËÉÅ ÌÄáÓÉÄÒÄÁÀÓ ÖÆÒÖÍÅÄËÚÏ×Ó. ÊÏÍÔÀØÔÉÓ ÌÏÃÄËÉÒÄÁÀ áÃÄÁÀ ÀÒÀËÏÊÀËÖÒ áÀ-
áÖÍÈÀÍ ÀÓÏÝÉÒÄÁÖËÉ ÓÉÍÉÏÒÉÍÉÓ ÐÉÒÏÁÄÁÉÈ, ÒÏÌËÄÁÛÉÝ ÂÀÈÅÀËÉÓßÉÍÄÁÖËÉÀ ÀÃÂÄÆÉÀ
ÊÏÍÔÀØÔÖÒ ÆÄÃÀÐÉÒÄÁÓ ÛÏÒÉÓ. ÜÀÌÏÚÀËÉÁÄÁÖËÉÀ ÌÏÃÄËÉÓ ÅÀÒÉÀÝÉÖËÉ ×ÏÒÌÖËÉÒÄÁÀ
ÓÉÓÔÄÌÉÓ ÓÀáÉÈ, ÒÏÌÄËÉÝ ÛÄÉÝÀÅÓ ÂÀÃÀÀÃÂÉËÄÁÀÓ, ÞÀÁÅÀÓ, ÄËÄØÔÒÖË ÞÅÒÀÓ, ÄËÄØÔÒÖË
ÐÏÔÄÍÝÉÀËÓ ÃÀ ÀÃÂÄÆÉÖÒ ÅÄËÓ. ÉÌ ÃÀÛÅÄÁÉÈ, ÒÏÌ áÀáÖÍÉÓ ÊÏÄ×ÉÝÉÄÍÔÉ ÓÀÊÌÀÒÉÓÀÃ
ÌÝÉÒÄÀ, ÜÅÄÍ ÅÀÌÔÊÉÝÄÁÈ ÀÌÏÝÀÍÉÓ ÄÒÈÀÃÄÒÈÉ ÓÖÓÔÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀÓ. ÃÀÌÔÊÉÝÄÁÀ
ÄÌÚÀÒÄÁÀ ÅÀÒÉÀÝÉÖË ÖÔÏËÏÁÄÁÓ, ÀÒÀßÒ×ÉÅ ÄÅÏËÖÝÉÖÒ ÂÀÍÔÏËÄÁÄÁÓ ÌÏÍÏÔÏÍÖÒÉ ÏÐÄÒÀ-
ÔÏÒÄÁÉÈ, ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÄÁÓÀ ÃÀ ÁÀÍÀáÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÀÓ.
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1 Introduction
Contact problems involving deformable bodies are common in industry and in everyday life and play an
important role in structural and mechanical systems, especially, the so-called piezoelectric materials,
which consider the interaction of mechanical and electrical properties. Contact processes involve com-
plicated surface phenomena and are modeled with highly nonlinear initial boundary value problems.
Taking into account various conditions associated with more and more complex behavior laws lead to
introducing new and nonstandard models, expressed by the aid of evolution variational inequalities.
An early attempt to study contact problems within the framework of variational inequalities is due to
Duvaut and Lions [5], to find the state of mathematical, mechanical, and numerical art (see [22,26]).
Several authors have studied unilateral frictional contact problems involving the Signorini state with
or without adhesion (see, e.g., the references in [7, 9, 18, 26, 28]), as well as the models of viscoelastic
adhesive materials and piezoelectric effect models (see [6, 12,13,15,20]).

In this paper, we study a mathematical model that describes a problem of frictional and adhesive
contact between a supposed long-memory electro-elastic body and a foundation. Recall that a friction-
less contact problem with short memory has been studied in [25]. In the present work, we assume that
the contact is modeled with a unilateral constraint and the law of non-local friction with adhesion.
The bonding field evolution is described by a first-order differential equation. As in [10,11], we use it
as an internal surface variable with values between zero and one to describe the fractional density of
active bonds. We refer the reader to the extensive bibliography on the subject in [4, 17,22,25].

The present paper aims to extend the results established in the study of a unilateral and frictional
contact problem with adhesion. Novelty is the introduction of a non-local friction law in unilateral
adhesive contact problem for an elastic body with long memory. We contribute to the solution of
this problem by proposing a variational formulation for this model, then, we prove that under the
assumption of the smallness of the coefficient of the friction and suitable regularity assumptions on
the data, the problem admits a unique weak solution where we specify its regularity. The proof of this
result requires proving several technical lemmas by arguments on variational inequalities, monotone
operators, differential equations, and Banach’s fixed-point theorem.

The paper is organized as follows. In Section 2, we state the mechanical model; we list the as-
sumption on the problem data; we present some notations and give a variational formulation. Finally,
in Section 3, under the assumption of the smallness of the coefficient of friction, we state and prove
our main existence and uniqueness result.

2 Problem statement and variational formulation
First, we explain some notations used in this paper. We denote by Sd the space of second order
symmetric tensors on Rd(d = 2, 3), while ‘ · ’ and ∥ · ∥ represent the inner product and the Euclidean
norm on Sd and Rd, respectively. Thus, for every u, v ∈ Rd, u ·v = uivi, ∥v∥ = (v ·v) 1

2 and for every σ,
τ ∈ Sd, σ · τ = σijτij , ∥τ∥ = (τ · τ) 1

2 . Here and below, the indices i and j run between 1 and d and the
summation convention over repeated indices is adopted. We also use the usual notation for the normal
components and the tangential parts of vectors and tensors, respectively, given by vν = v · ν = viνi,
vτ = v − vνν, σν = σν · ν and στ = σν − σνν.

We consider the following physical setting. An electro-elastic body occupies a bounded domain
Ω ⊂ Rd (d = 2, 3) with the Lipschitz boundary ∂Ω = Γ. The boundary Γ is partitioned into three
disjoint measurable parts Γ1, Γ2, Γ3 on the one hand, and on two disjoint measurable parts Γa and Γb

on the other hand, such that meas(Γ1) > 0, meas(Γa) > 0 and Γ3 ⊂ Γb. Let T > 0 and let [0, T ] denote
the time interval of interest. We assume the body is clamped on Γ1 and therefore the displacement
field vanishes there. A volume forces of density φ0 act in Ω and surface tractions of density φ2 act on
Γ2. The body is submitted to electrical constraints for which we assume the electric potential is zero
on Γa, the body is subjected to an electric charge of density q0 act on Ω and a surface electric charge
of density q0 act on Γb. On Γ3, the body is in unilateral contact with adhesion following the nonlocal
friction law with an insulator obstacle, the so-called foundation.

Thus, the formulation of the mechanical problem is written as follows.
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Problem (P ). Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ : Ω × [0, T ] → Sd, an
electric potential φ : Ω× [0, T ] → R, an electric displacement field D : Ω× [0, T ] → Rd and a bonding
field β : Γ3 × [0, T ] → R such that for all t ∈ [0, T ],

σ(t) = Bε(u(t)) +
t∫

0

F(t− s)ε(u(s)) ds− E∗E(φ(t)), (2.1)

D(t) = Eε(u(t)) + CE(φ(t)), (2.2)
Divσ(t) + φ0(t) = 0 in Ω, (2.3)
divD(t) + q0(t) = 0 in Ω, (2.4)

u(t) = 0 on Γ1, (2.5)
σν(t) = φ2(t) on Γ2, (2.6)

uν(t) ≤ 0, σν(t)− γνβ
2Rν(uν(t)) ≤ 0, uν(t)(σν(t)− γνβ

2(t)Rν(uν(t))) = 0 on Γ3, (2.7)
β̇(t) = −[β(t)((γνRνuν(t))

2 + γτ∥Rτ (uτ (t))∥2)− ϵa]+ on Γ3, (2.8)
φ(t) = 0 on Γa, (2.9)

Dν(t) = q2(t) on Γb, (2.10)
β(0) = β0 on Γ3, (2.11)

∥∥στ (t) + γτβ
2(t)Rτ (uτ (t))

∥∥ 6 µ|Rσν(u(t))|,∥∥στ (t) + γτβ
2(t)Rτ (uτ (t))

∥∥ < µ|Rσν(u(t))| =⇒ uτ = 0∥∥στ (t) + γτβ
2(t)Rτ (uτ (t))

∥∥ = µ|Rσν(u(t))| =⇒ ∃λ > 0 such that

στ (t) + γ2τβ
2(t)Rτ (uτ (t)) = −λuτ (t)

on Γ3. (2.12)

We now describe the equations and conditions involved in our model above.
First, equations (2.1) and (2.2) present an elastic constitutive law with long memory in which

u is the displacement field, D = (D1, . . . , Dd) is the electric displacement field, σ = (σij) is the
stress tensor, ε(u) denote the linearised deformation tensor defined by ε(u) = (εij(u)), εij(u) =
1
2 (∂jui + ∂iuj); B is an operator of elasticity, F is the tensor of relaxation, E = (eijk) is the third
order piezoelectric operator, E∗ = (e∗ijk) is its transpose. E(φ) = −∇φ is the electric field, where
∇ψ = (∂iψ) and C = (Cij) is a positive definite symmetric tensor, called the electric permittivity.
More details on the constitutive equations of forms (2.1) and (2.2) can be found in [1] and [2]. Next,
(2.3) is the equation of motion describing the evolution of the displacement u where Divσ = (∂jσij)
and (2.4) is the equation describing the evolution of the electric displacement D. Conditions (2.5) and
(2.6) are the displacement and traction boundary conditions, whereas (2.7) are the Signorini contact
conditions with adhesion, with zero gap, in which γν denotes an adhesion coefficient which may be
dependent on x ∈ Γ3. Rν and Rτ are the truncation operators defined by

Rν(s) =


L if s < L,

−s if − L ≤ s ≤ 0,

0 if s > L,

Rτ (s) =

s if |s| ≤ L,

L
s

|s|
if |s| > L,

where L > 0 is the characteristic length of the bond.
The differential equation (2.8) describes the evolution of the bonding field β. Here, γν , γτ and ϵa

are positive coefficients of adhesion, where [r]+ = max{0, r}. In (2.9), we assume that the potential
vanishes on Γa, and we express the fact that the electric charge density q2 is imposed on Γb by (2.10).
Finally, (2.11) is the initial condition and (2.12) represent Coulomb’s law of dry friction with adhesion,
where µ denotes the coefficient of friction.

Now, to obtain a variational formulation of Problem (P ), we will use the spaces

H = L2(Ω)d, Q =
{
τ = (τij); τij = τji ∈ L2(Ω)

}
,

H1 =
{
u = (ui) : ui ∈ H1(Ω), i = 1, d}, Q1 =

{
σ ∈ Q : Divσ ∈ H

}
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H, Q, H1, Hd are the real Hilbert spaces endowed with the respective inner products

(u, v)H =

∫
Ω

uivi dx, ⟨σ, τ⟩Q =

∫
Ω

σijτij dx,

(u, v)H1
= ⟨u, v⟩H + (ε(u), ε(v))Q, (σ, τHd

) = ⟨σ, τ⟩Q + (Divσ,Div τ)H .

We denote respectively the norms associated with ∥ · ∥H , ∥ · ∥Q, ∥ · ∥H1
and ∥ · ∥Hd

.
Recall that the following Green’s formula holds:

⟨σ, ε(v)⟩Q + (Divσ, v)H =

∫
Γ

σν · v da, ∀ v ∈ H1 (2.13)

where da is the measure surface element.
The displacement fields will be sought in the space V = {v ∈ H1 : γv = 0 a.e. on Γ1}.
Since meas(Γ1) > 0, the Korn inequality holds, i.e., there exists a constant C0 > 0 such that

∥ε(v)∥Q > C0∥v∥H1
, ∀ v ∈ V,

and V is a Hilbert space with the inner product (u, v)V = (ε(u), ε(v))Q and the associated norm
∥ · ∥V .

For v ∈ H1, we use the same symbol v for its trace on Γ. Given the Sobolev trace theorem, there
is a constant CΩ > 0 such that

∥v∥(L2(Γ3))d 6 CΩ∥v∥V , ∀ v ∈ V. (2.14)

We use the set of admissible displacements fields given by Uad = {v ∈ V : vν ≤ 0 a.e. on Γ3}.
For the electric displacement field, we need the following two Hilbert spaces:

W =
{
ψ ∈ H1 : γψ = 0 a.e on Γa

}
, Wa =

{
D = (Di) : Di ∈ L2(Ω), divD ∈ L2(Ω)

}
endowed, respectively, with the inner products

(ψ, ϕ)W = (∇ψ,∇ϕ)H , (D,E)Wa = (D,E)H + (divD, divE)L2(Ω),

and we denote the norms associated with ∥ · ∥W and ∥ · ∥Wa .
Since meas(Γa) > 0, the Friedrichs–Poincaré inequality holds and we have a constant CF > 0 such

that
∥∇ψ∥W ≥ CF ∥ψ∥H1(Ω), ∀ψ ∈W.

Moreover, if D ∈Wa is sufficiently regular, the following Green’s formula holds:

(D,∇ψ)H + (divD,ψ)L2(Ω) =

∫
Γb

Dν · ψ da, ∀ψ ∈W. (2.15)

We will also need the space Q∞ of fourth order tensors defined by

Q∞ =
{
A = (Aijkh); Aijkh = Ajikh = Akhij ∈ L∞(Ω)

}
.

Q∞ is a Banach space with the norm defined by

∥A∥Q∞ = max
0≤i,j,k,h≤d

∥Aijkh∥L∞(Ω).

Let T > 0. For every real Hilbert space X, we use the usual notation for the spaces Lp(0, T ;X),
k ∈ [0,∞] and W 1,∞(0, T ;X). Recall that the norm of the space W 1,∞(0, T ;X) is defined by
∥u∥W 1,∞(0,T ;X) = ∥u∥L∞(0,T ;X) + ∥u̇∥L∞(0,T ;X), where u̇ denotes the first derivative of u with respect
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to time. We also use the space of continuous functions C([0, T ];X) with the norm ∥x∥C([0,T ];X) =
max
t∈[0,T ]

∥x(t)∥X .

Finally, we introduce the space of bonding field denoted as B by

B =
{
β : [0, T ] → L2(Γ3); 0 ≤ β(t) ≤ 1, ∀ t ∈ [0, T ], a.e. on Γ3

}
.

For the study of Problem (P ) we adopt the following assumptions on the data.
The operator B and the tensors F , C, E and E∗ satisfy the following hypotheses:

(a) B : Ω× Sd → Sd,

(b) B ∈ Q∞ and there exists a constant MB > 0 such that
∥B(x, ξ1)− B(x, ξ2)∥ ≤MB∥ξ1 − ξ2∥, ∀ ξ1, ξ2 ∈ Sd, a.e. in Ω,

(c) There exists a constant mB > 0 such that Bξ · ξ > mB∥ξ∥2, ∀ ξ ∈ Sd a.e. in Ω,

(d) The function x→ B(x, ξ) is measurable on Ω a.e ξ ∈ Sd;

(2.16)

F ∈ C([0, T ];Q∞); (2.17)
(a) C : Ω× Rd → Rd,

(b) C(x,E) = (cij(x)Ej), ∀E = (Eij) ∈ Rd a.e. in Ω, cij = cji ∈ L∞(Ω),

(c) There exists a constant mC > 0 such that
cij(x)EiEj > mC∥E∥2 ∀ ξ ∈ Sd a.e. in Ω;

(2.18)


(a) yE : Ω× Sd → Rd,

(b) E(x, ξ) = (eijk(x)ξij), ∀ ξ = (ξij) ∈ Sd a.e. in Ω,

(c) eijk = eikj ∈ L∞(Ω);

(2.19)

Eσ · v = σ · E∗υ, ∀σ ∈ Sd, ∀ v ∈ Rd. (2.20)

where the components of the tensor E∗ are given by e∗ijk = ekij .
In addition, we assume that adhesion coefficients satisfy

γτ , γν , ϵa ∈ L∞(Γ3), ϵa ∈ L2(Γ3), γτ , γν , ϵa > 0 a.e. x ∈ Γ3, (2.21)

and the following regularity on φ0 and q0:

φ0 ∈ C([0, T ];H), φ2 ∈ C([0, T ];L2(Γ2)
d), (2.22)

q0 ∈ C([0, T ];H), q2 ∈ C([0, T ];L2(Γb)
d). (2.23)

To reflect that the foundation is isolated, we assume

q0(t) = 0 on Γ3, ∀ t ∈ [0, T ]. (2.24)

The initial data β0 satisfy
β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a. e. on Γ3. (2.25)

The friction coefficient µ is such that

µ ∈ L∞(Γ3), µ(x) ≥ 0 a. e. on Γ3. (2.26)

Finally, R is linear and continuous mapping, where

R : H− 1
2 (Γ) → L2(Γ3). (2.27)

By the representation theorem of Riesz–Fréchet, for all t ∈ [0, T ], we define f(t) ∈ V and q(t) ∈W as
follows:

(f(t), v)V =

∫
Ω

φ0(t) · v dx+

∫
Γ2

φ2(t) · v da, ∀ v ∈ V,

(q(t), ψ)V =

∫
Ω

q0(t) · ψ dx+

∫
Γ2

q2(t) · ψ da, ∀ψ ∈W,
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which imply that f ∈ C([0, T ];H) and q ∈ C([0, T ];W ). Next, we consider V0, the subset of regularity
defined by V0 = {v ∈ H1 : Divσ(v) ∈ H}. Let us denote by jad : L∞(Γ3) × V0 × V → R and
jfr : V0 × V → R, respectively, the functionals given by

jad(β, u, v) =

∫
Γ3

(
− γνβ

2Rν(uν)vν + γτβ
2Rτ (uτ ) · vτ

)
da,

jfr(u, v) =

∫
Γ3

µ|Rσν(u)|∥vτ∥ da, ∀ (u, v) ∈ V0 × V.

If (v, φ) is a solution of Problem (PV ) stated below, then σ(t) = σ(u(t), φ(t)) ∈ Q a.e. t ∈ [0, T ] and
therefore

jfr(u(t), v) =

∫
Γ3

µ|Rσν(u(t))|∥vτ∥ da, ∀ v ∈ V.

Using the Green’s formula (2.13) and (2.15), we prove that if u, σ, φ and D are regular and satisfy
equations and conditions (2.1)–(2.12), then

(σ(t), ε(u(t)))Q + jad(β(t), u(t), v) + jfr(u(t), v)− jfr(u(t), u(t)) ≥ (f(t), v − u(t))V , (2.28)
∀ v ∈ V, t ∈ [0, T ],

(D(t),∇ψ)H + (q(t), ψ)W = 0, ∀ψ ∈W. (2.29)

Taking σ(t) in (2.28) by the expression given by (2.1), and D(t) by the expression given by (2.2) , we
derive the following variational formulation of Problem (P ).

Problem (PV ). Find a displacement field u ∈ C([0, T ];V ), an electric potential φ ∈ C([0, T ];W ) and
a bonding field β ∈W 1,∞([0, T ];L2(Γ3)) ∩ B such that u(t) ∈ Uad ∩ V0 for all t ∈ [0, T ] and

(
Bε(u(t)), ε(v − u(t))

)
Q
+

( t∫
0

F(t− s)ε(u(s)) ds, ε(v − u(t))

)
Q

+
(
E∗∇φ(t), ε(v − u(t))

)
Q
+ jad(β(t), u(t), v − u(t))

+jfr(u(t), v)− jfr(u(t), u(t)) ≥ (f(t), v − u(t))V , ∀ v ∈ Uad, t ∈ [0, T ], (2.30)
(C∇φ(t),∇ψ)H − (Eε(u(t),∇ψ)H = (q(t), ψ)W , ∀ψ ∈W, t ∈ [0, T ], (2.31)

β̇(t) = −
[
β(t)((γνRνuν(t))

2 + γτ∥Rτ (uτ (t))∥2)− ϵa

]
+
, t ∈ [0, T ], (2.32)

β(0) = β0. (2.33)

3 Existence and uniqueness
Our main existence and uniqueness result that we state and prove is the following

Theorem 3.1. Assume that assumptions (2.16)–(2.27) hold. Then there exists a constant µ0 > 0
such that if ∥µ∥L∞(Γ3) < µ0, then Problem (PV ) has a unique solution (u, φ, β).

We carry out the proof of Theorem 3.1 in several steps. We define intermediate problems and prove
their unique solvability, and then we construct a contraction mapping whose unique fixed point is the
solution of Problem (PV ). First, we consider the closed subset Z = {θ ∈ C([0, T ]; L2(Γ3))∩B; θ(0) =
β0}, where the Banach space C([0, T ];L2(Γ3)) is endowed with the norm

∥θ∥k = max
t∈[0,T ]

[
e−kt∥θ∥L2(Γ3)

]
, k > 0.

For a given β ∈ Z, we consider the following auxiliary problem.
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Problem (P β
V ). Find a displacement field uβ ∈ C([0, T ];V ) and an electric potential φβ ∈ C([0, T ];W )

such that uβ(t) ∈ Uad ∩ V0 for all t ∈ [0, T ] and

(
Bε(uβ(t)), ε(v − uβ(t))

)
Q
+

( t∫
0

F(t− s)ε(uβ(s)) ds, ε(v − uβ(t))

)
Q

+
(
E∗∇φβ(t), ε(v − uβ(t))

)
Q
+ jad(β(t), uβ(t), v − uβ(t))

+jfr(uβ(t), v)− jfr(uβ(t), uβ(t)) ≥ (f(t), v − uβ(t))V , ∀ v ∈ Uad, t ∈ [0, T ], (3.1)(
C∇φβ(t),∇ψ

)
H
−
(
Eε(uβ(t),∇ψ)

)
H

= (q(t), ψ)W , ∀ψ ∈W, t ∈ [0, T ]. (3.2)

We have the following result.

Theorem 3.2. Problem (P β
V ) has a unique solution (uβ , φβ) ∈ C([0, T ];V ×W ).

We consider the product Hilbert space X = V ×W with the inner product defined by

⟨x, y⟩ =
⟨
(u, φ), (v, ψ)

⟩
= ⟨u, v⟩+ ⟨φ,ψ⟩, x, y ∈ X,

and the associated norm ∥ · ∥X . In the sequel, let X1 = Uad ×W .
To prove Theorem 3.2 for all η ∈ C([0, T ];Q) and t ∈ [0, T ], we consider the following problem.

Problem (P 1
η ). Find xβη ∈ C([0, T ];X) such that xβη(t) ∈ X1 for all t ∈ [0, T ] and

(
Bε(uβη(t)), ε(v−uβη(t))

)
Q
+
(
E∗∇φβη(t), ε(v−uβη(t))

)
Q
+
(
C∇φβη(t),∇ψ

)
H
−
(
Eε(uβη(t),∇ψ)

)
H

+ (η(t), ε(v − uβη(t)))Q + jad
(
β(t), uβη(t), v − uβη(t)

)
+ jfr(uβη(t), v)− jfr(uβη(t), uβη(t))

≥ (f(t), v − uβη(t))V + (q(t), ψ)W , ∀v ∈ Uad, ∀ψ ∈W, t ∈ [0, T ]. (3.3)

Since Riesz’s representation theorem implies that there exists an element fη(t) ∈ X defined for all
x = (u, φ) by

⟨fη(t), x⟩ = (f(t), u)V + (q(t), φ)W − (η(t), ε(v))Q,

we introduce the operator Λβ : [0, T ]×X → X defined as

⟨Λβ(t)x,X⟩ = (Bε(u), ε(v))Q + (E∗∇φ, ε(v))Q
+ (C∇φ,∇ψ)H − (Eε(u),∇ψ)H + jad(β(t), u, v), for all x = (u, φ), y = (v, ψ) ∈ X

denoted by X̃ = X ×X, we introduce j̃fr : X̃ → R defined by

j̃fr(y, x) = jfr(u, v) for all x = (u, φ), y = (v, ψ) ∈ X.

Then Problem (P 1
η ) is equivalent to

Problem (P 2
η ). Find xβη : [0, T ] → X1 such that

⟨
Λβ(t)xβη(t), y − xβη(t)

⟩
+ j̃fr(y, xβη(t))− j̃fr(xβη(t), xβη(t))

≥ ⟨fη(t), y − xβη(t)⟩, ∀ y ∈ X, t ∈ [0, T ]. (3.4)

Remark. The two precedent Problems (P 1
η ) and (P 2

η ) are equivalent in the way that if xβη =
(uβ , φβη) ∈ C([0, T ];X) is a solution of one of the problems, it is also a solution of the other problem.

We now have the following

Lemma 3.1. There exists a constant µ0 > 0 such that if ∥µ∥L∞(Γ3) < µ0, Problem (P 2
η ) has a unique

solution xβη ∈ C([0, T ];X).
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We prove Lemma 3.1 by steps. The functional jad is linear over the third term and therefore

jad(β, u,−v) = −jad(β, u, v). (3.5)

Using the properties of truncation operators, we deduce that there exists c > 0 such that

jad(β1, u1, u2 − u1) + jad(β2, u2, u1 − u2) ≤ c

∫
Γ3

|β1 − β2| ∥u1 − u2∥V ds. (3.6)

Taking β = β1 = β2 in the last inequality, we obtain

jad(β, u1, u2 − u1) + jad(β, u2, u1 − u2) ≤ 0. (3.7)

Choosing u1 = v and u2 = 0 in (3.7) and using (3.5) and the equality Rν(0) = Rτ (0) = 0, we obtain

jad(β, v, v) ≥ 0. (3.8)

Similar computations based on the properties of Rν and Rτ show that there exists a constant c > 0
such that

|jad(β, u1, v)− jad(β, u2, v)| ≤ c∥u1 − u2∥V ∥v∥V . (3.9)
For t ∈ [0, T ] and for all x1 = (u1, φ1) and x2 = (u2, φ2), using (3.4), we have⟨
Λβ(t)x1 − Λβ(t)x2, x1 − x2

⟩
=

(
Bε(u1)− Bε(u2), ε(u1)− ε(u2)

)
Q

+
(
E∗∇φ1 − E∗∇φ2, ε(u1)− ε(u2)

)
Q
+

(
C∇φ1 − C∇φ2,∇φ1 −∇φ2

)
H

−
(
Eε(u1)− Eε(u2),∇φ1 −∇φ2

)
H
+ jad(β, u1, u2)− jad(β, u2, u1),

and, by (2.20), we have(
E∗∇φ1 − E∗∇φ2, ε(u1)− ε(u2)

)
Q
=

(
Eε(u1)− Eε(u2),∇φ1 −∇φ2

)
H
.

Then, by (3.8), (2.16)(c) and (2.18)(c) we deduce⟨
Λβ(t)x1 − Λβ(t)x2, x1 − x2

⟩
≥

(
Bε(u1)− Bε(u2), ε(u1)− ε(u2)

)
Q

+
(
C∇φ1 − C∇φ2,∇φ1 −∇φ2

)
H

≥ mB∥u1 − u2∥2V +mC∥φ1 − φ2∥2W .

Then the operator Λβ(t) is strongly monotone, and for Cm = min(mB,mC) it satisfies⟨
Λβ(t)x1 − Λβ(t)x2, x1 − x2

⟩
≥ Cm∥x1 − x2∥2X , ∀x, y ∈ X. (3.10)

For y = (v, ψ), using (2.14), (2.16)(b), (2.18) and (3.9), we get⟨
Λβ(t)x1 − Λβ(t)x2, y

⟩
≤ c

(
∥u1 − u2∥V

(
∥v∥V + ∥ψ∥W

)
+ ∥φ1 − φ2∥W

(
∥v∥V + ∥ψ∥W

))
,

thus, Λβ(t) is a Lipschitz continuous operator and there exists a constant L0 > 0 such that

∥Λβ(t)x1 − Λβ(t)x2∥ ≤ L0∥x1 − x2∥X , ∀x, y ∈ X.

Next, let the non-empty subset L2
+(Γ3) be defined by

L2
+(Γ3) =

{
g ∈ L2(Γ3); g > 0 a.e. on Γ3

}
.

For each g ∈ L2
+(Γ3), we define the functional h(g, · ) : X → R by

h(g, y) =

∫
Γ3

µg∥wτ∥ da, ∀ y = (w,φ) ∈ X,

and introduce an intermediate problem as follows.
Problem (P g

1 ). Find xβη : [0, T ] → X1 such that⟨
Λβ(t)xβηg(t), y − xβηg(t)

⟩
+ h(g, y)− h(g, xβηg(t)) > (f, y − xβηg(t))V , ∀ y ∈ X. (3.11)
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Lemma 3.2. Problem (P g
1 ) has a unique solution.

Proof. The functional h(g, · ) is convex and lower semi-continuous, Λβ is Lipschitz continuous and
strongly monotone, we deduce that Problem (P g

1 ) has a unique solution (see [13]).

Now, to prove Lemma 3.1, for each t ∈ [0, T ] we define on L2
+(Γ3) the map Ψt : g 7−→ Ψt(g) =

|Rσν(uβηg
(t))|. Then we show the following

Lemma 3.3. There exists a constant µ1 > 0 such that if ∥µ∥L∞(Γ3) < µ1, the mapping Ψ has a
unique fixed point g∗, and xβηg∗ is a unique solution to Problem (P 2

η ).

Proof. For i = 1, 2, define the following

Problem (P 2
ηgi). Find xβηgi = (u

βηgi
, φ

βηgi
) ∈ X1 such that

⟨Λβ(t)xβηgi, y⟩+ h(gi, y)− h(gi, xβηgi) > (f, y − xβηgi)V , ∀ y ∈ V.

Take y = xβηg2 in inequality (3.11) written for g = g1, then take y = xβηg1 in (3.11) written for
g = g2, by adding the resulting inequalities, we get⟨

Λβ(t)(xβηg1 − xβηg2), xβηg1 − xβηg2
⟩
≤ h(g1, xβηg1)− h(g1, xβηg2) + h(g2, xβηg2)− h(g2, xβηg1).

Then using (2.14) and (3.10), we have

Cm∥xβηg1(t)− xβηg2(t)∥2X 6 CΩ∥g1 − g2∥L2(Γ3)

∫
Γ3

µ
(
|uβηg1τ (t)| − |uβηg2τ (t)|

)
da. (3.12)

Using (2.27), it follows that there exists a constant c0 such that

∥Ψ(g1)−Ψ(g2)∥L2(Γ3) 6 c0
∥∥σν(uβηg1

(t))− σν(uβηg2
(t))

∥∥
H− 1

2 (Γ)
. (3.13)

Moreover, using (2.16), we prove that there is a constant c1 > 0 such that∥∥σν(uβηg1
(t))− σν(uβηg2

(t))
∥∥
H− 1

2 (Γ)
≤ c1∥xβηg1

(t)− x
βηg2

(t)∥X . (3.14)

Hence, taking into account (2.14) and combining (3.12), (3.13) and (3.14), after some calculus we find

∥Ψ(g1)−Ψ(g2)∥L2(Γ3) 6
c0c1CΩ

Cm
∥µ∥L∞(Γ3)∥g1 − g2∥L2(Γ3).

Let µ1 = Cm

c0c1CΩ
, then we deduce that if ∥µ∥L∞(Γ3) < µ1, Ψ is a contraction and, so, it admits a

unique fixed point denoted by g∗.
Keeping in mind that there is a unique element xβηg∗ satisfying the inequality⟨

Λβ(t)xβηg∗ , y − xβηg∗
⟩
+ h(Ψ(g∗), y)− h(Ψ(g∗), xβηg∗) > (f, y − xβηg∗)V , ∀ y ∈ X,

and h ◦Ψ = j, we prove that xβη(t) = xβηg∗ is a unique solution of Problem (P 2
η ). We shall now see

that xβη ∈ C([0, T ];X). Indeed, let t1, t2 ∈ [0, T ], take y = xβη(t2) in (3.3) written for t = t1 and
take y = xβη(t1) in the same inequality written for t = t2. Using (2.16), (2.27) and the properties of
Rν and Rτ , we prove that there exists a constant c > 0 such that

∥xβη(t1)− xβη(t2)∥X ≤ c
(
∥β(t1)− β(t2)∥L2(Γ3) + ∥f(t1)− f(t2)∥H + ∥η(t1)− η(t2)∥Q

)
.

Then, as f ∈ C([0, T ];H), η ∈ C([0, T ];Q) and β ∈ C([0, T ];L2(Γ3)), we immediately conclude that
xβη ∈ C([0, T ];X). We also have that uβη(t) ∈ Uad∩V0, ∀ t ∈ [0, T ]. Indeed, for each t ∈ [0, T ], denote
σ(u

βη
(t)) = Bε(u

βη
(t))−E∗E(φ

βη
(t))+ η(t) and using Green’s formula with the regularity φ0(t) ∈ H,

we get divσ(u
βη
(t))) ∈ H and then uβη(t) ∈ V0.
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Now, we define the operator zβ : C([0, T ];Q) → C([0, T ];Q) by

z
β
η(t) =

t∫
0

F(t− s)ε(uβη(s)) ds, ∀ η ∈ C(0, T ;Q), t ∈ [0, T ].

We have the following

Lemma 3.4. The operator zβ has a unique fixed point ηβ.

Proof. Let η1, η1 ∈ C([0, T ];Q). By a standard computation based on (2.17) and (3.3), we prove that
there exists a constant c2 > 0 such that

∥z
β
η1(t)−z

β
η2(t)∥Q ≤ c2

t∫
0

∥η1(t)− η2(t)∥Q ds, ∀ t ∈ [0, T ].

By iteration, for any positive integer n we deduce the estimate

∥zn
βη1 −zn

βη2∥C([0,T ];Q) ≤
cn2T

n

n!
∥η1 − η2∥C([0,T ];Q).

As lim
n→+∞

cn2 T
n

n! = 0, it follows that for a positive integer n sufficiently large, zn
β is a contraction on

the space C([0, T ];Q). Then, by using the Banach fixed point theorem, zn
β has a unique fixed point

ηβ ∈ C([0, T ];Q) which is also a unique fixed point of zβ , i.e.,

zβηβ(t) = ηβ(t), ∀ t ∈ [0, T ].

Next, we denote uβ = uβη and φβ = φβη and deduce that the couple (uβ , φβ) is a solution of
Problem (P β

V ). The uniqueness follows from the fixed point of the operator z, which completes the
proof of Theorem 3.2.

In the following step, we use uβ , the solution obtained by Theorem 3.2, to state the following
Cauchy problem.
Problem (Pad). Find a bonding field θβ : [0, T ] → L∞(Γ3) such that

θ̇β(t) = −
[
θβ(t)

(
(γνRνuβν(t))

2 + γτ∥Rτ (uβ∗τ (t))∥2
)
− ϵa

]
+

a.e. t ∈ [0, T ], (3.15)

θβ(0) = β0. (3.16)

Lemma 3.5. Problem (Pad) has a unique solution θβ which satisfies θβ ∈W 1,∞([0, T ];L∞(Γ2))∩Z.

Proof. Consider the mapping F : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Fβ(t, θ) = −
[
θ
(
(γνRνuβν(t))

2 + γτ∥Rτ (uβτ (t))∥2
)
− ϵa

]
.

For all t ∈ [0, T ] and θ ∈ L2(Γ3), it follows from the properties of the truncation operators Rν and Rτ

that Fβ is Lipschitz continuous uniformly in time with respect to β. Moreover, for any θ ∈ L2(Γ3),
the mapping t→ Fβ(t, θ) belongs to L∞(0, T ;L2(Γ3)). Using now a version of the Cauchy–Lipschitz
theorem (see [15]), we obtain a unique function θβ ∈W 1,∞(0, T ;L2(Γ3)) satisfying (3.15) and (3.16).
We note that the restriction 0 ≤ θβ ≤ 1 is implicitly included in the variational Problem PV and,
therefore, from the definition of the sets B and Z, we find that θβ ∈ Z, which concludes the proof of
lemma.

Consider the mapping Φ : Z → Z defined by Φβ = θβ .
The third step consists in the following result.

Lemma 3.6. There exists a unique element β∗ ∈ Z such that Φβ∗ = β∗.
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Proof. Indeed, let βi, i = 1, 2, be two elements of Z. Denote by uβi , φβi , θβi the functions obtained
in Theorem 3.2 and Lemma 3.5 and denote θβi

= θi. It follows from (3.15) that

θi(t) = β0 −
t∫

0

[
βi(s)

(
(γνRνuβiν(s))

2 + γτ∥Rτ (uβiτ (s))∥2
)
− ϵa

]
+
ds

and there exists a constant c > 0 such that

∥θ1(t)− θ2(t)∥L2(Γ3) ≤ c

t∫
0

∥∥∥β1(s)Rν(uβ1ν
(s))2 − β2(s)Rν(uβ2ν

(s))2
∥∥∥
L2(Γ3)

ds

+

t∫
0

∥∥∥β1(s)∥Rτ (uβ1τ
(s))∥2 − β2(s)∥Rτ (uβ2τ

(s))∥2
∥∥∥
L2(Γ3)

ds.

Using the properties of the operators Rν and Rτ , we get

∥θ1(t)− θ2(t)∥L2(Γ3) ≤ c3

( t∫
0

∥β1(s)− β2(s)∥L2(Γ3) ds+

t∫
0

∥uβ1
(s)− uβ2

(s)∥L2(Γ3)d ds

)
(3.17)

for some constant c3 > 0.

Now, to continue the proof, we need to prove the following
Lemma 3.7. There exists a constant µ2 > 0 such that if ∥µ∥L∞(Γ3) < µ2, we have

∥uβ1
(t)− uβ2

(t)∥L2(Γ3)d ≤ c∥β1(t)− β2(t)∥L2(Γ3), ∀t ∈ [0, T ].

Proof. Let t ∈ [0;T ]. We take ψ = ψ − φβ(t) in (3.2) and by adding with (3.1) we get

(
Bε(uβ(t)), ε(v − uβ(t))

)
Q
+

( t∫
0

F(t− s)ε(u(s)) ds, ε(v − u(t))

)
Q

+
(
E∗∇φβ(t), ε(v − uβ(t))

)
Q
+ jad(β(t), uβ(t), v − uβ(t)) +

(
C∇φβ(t),∇ψ −∇φβ(t)

)
H

−
(
Eε(uβ(t),∇ψ −∇φβ(t))

)
H
+ jfr(uβ(t), v)− jfr(uβ(t), uβ(t))

≥ (f(t), v − uβ(t))V + (q(t), ψ − φβ(t))W , ∀ v ∈ Uad, ∀ψ ∈W, t ∈ [0, T ]. (3.18)
Taking v=uβ2(t) and ψ=φβ2 in (3.18) satisfied by (uβ1(t), φβ1), and then taking v=uβ1(t) and ψ=φβ1

in the same inequality satisfied by (uβ2(t), φβ2), by adding the resulting inequalities and using (2.20),
we obtain(

Bε(uβ1
(t))−Bε(uβ2

(t)), ε(uβ1
(t))−ε(uβ2

(t))
)
Q
+
(
C∇φβ1

(t)−C∇φβ2
(t),∇φβ1

(t)−∇φβ2
(t)

)
H

≤
( t∫

0

F(t− s)
(
ε(uβ1(t))− ε(uβ2(t))

)
ds, ε(uβ2(t))− ε(uβ1(t))

)
Q

+ jad
(
β1(t), uβ1

(t), uβ2
(t)− uβ1

(t)
)
+ jfr(uβ1

(t), uβ2
(t)) + jad

(
β2(t), uβ2

(t), uβ1
(t)− uβ2

(t)
)

+ jfr(uβ2
(t), uβ1

(t))− jfr(uβ1
(t), uβ1

(t))− jfr(uβ2
(t), uβ2

(t)).

Using (2.16)(c) and (2.18)(c), we deduce

mB∥uβ1(t)− uβ2(t)∥2V +mC∥φβ1(t)− φ2(t)∥W

≤
( t∫

0

F(t− s)
(
ε(uβ1(s))− ε(uβ2(s))

)
ds, ε(uβ2(t))− ε(uβ1(t))

)
Q

+ jad
(
β1(t), uβ1

(t), uβ2
(t)− uβ1

(t)
)
+ jfr(uβ1

(t), uβ2
(t)) + jad

(
β2(t), uβ2

(t), uβ1
(t)− uβ2

(t)
)

+ jfr(uβ2
(t), uβ1

(t))− jfr(uβ1
(t), uβ1

(t))− jfr(uβ2
(t), uβ2

(t)),
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thus

mB∥uβ1
(t)− uβ2

(t)∥2V ≤
( t∫

0

F(t− s)
(
ε(uβ1

(s))− ε(uβ2
(s))

)
ds, ε(uβ2

(t))− ε(uβ1
(t))

)
Q

+ jad
(
β1(t), uβ1(t), uβ2(t)− uβ1(t)

)
+ jad

(
β2(t), uβ2(t), uβ1(t)− uβ2(t)

)
+ jfr(uβ1(t), uβ2(t))− jfr(uβ1(t), uβ1(t)) + jfr(uβ2(t), uβ1(t))− jfr(uβ2(t), uβ2(t)). (3.19)

Hence, we have

( t∫
0

F(t− s)
(
ε(uβ1(s))− ε(uβ2(s))

)
ds, ε(uβ2(t))− ε(uβ1(t))

)
Q

≤
( t∫

0

∥F(t− s)∥Q∞∥uβ1
(s)− uβ2

(s)∥V ds
)
∥uβ1

(t)− uβ2
(t)∥V

≤ c4

( t∫
0

∥uβ1
(s)− uβ2

(s)∥V ds
)
∥uβ1

(t)− uβ2
(t)∥V

for some positive constant c4. Using Young’s inequality, we find that

( t∫
0

F(t− s)
(
ε(uβ1

(s))− ε(uβ2
(s))

)
ds, ε(uβ2

(t))− ε(uβ1
(t))

)
Q

≤ c24
mB

( t∫
0

∥uβ1
(s)− uβ2

(s)∥2V ds
)
+
mB

4
∥uβ1

(t)− uβ2
(t)∥2V . (3.20)

Using (3.6) and Young’s inequality, we deduce that there exists a positive constant c5 such that

jad(β1, u1, u2 − u1) + jad(β2, u2, u1 − u2) ≤ c5∥β1(t)− β2(t)∥2L2(Γ3)
+
mB

4
∥uβ1

(t)− uβ2
(t)∥2V . (3.21)

Moreover, we have

jfr(uβ1
(t), uβ2

(t))− jfr(uβ1
(t), uβ1

(t)) + jfr(uβ2
(t), uβ1

(t))− jfr(uβ2
(t), uβ2

(t))

≤
∫
Γ3

µR|σν(uβ1ν
(t))− σν(uβ2ν

(t))| ∥uβ1
(t)− uβ2

(t)∥ da.

Keeping in mind (3.14) and using (2.14), we get

jfr(uβ1
(t), uβ2

(t))− jfr(uβ1
(t), uβ1

(t)) + jfr(uβ2
(t), uβ1

(t))− jfr(uβ2
(t), uβ2

(t))

≤ c1C
2
Ω∥µ∥L∞(Γ3)∥uβ1

(t)− uβ2
(t)∥2V . (3.22)

We now combine inequalities (3.19), (3.20), (3.21) and (3.22) to deduce

mB∥uβ1
(t)− uβ2

(t)∥2V
≤ c5∥β1 − β2∥2L2(Γ3)

+
mB

4
∥uβ1

(t)− uβ2
(t)∥2V + c1C

2
Ω∥µ∥L∞(Γ3)∥uβ1

(t)− uβ2
(t)∥2V

+
c24
mB

( t∫
0

∥uβ1(s)− uβ2(s)∥V ds
)2

+
mB

4
∥uβ1(t)− uβ2(t)∥2V .
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Hence, we have(mB

2
− c1C

2
Ω∥µ∥L∞(Γ3)

)
∥uβ1

(t)− uβ2
(t)∥2V

≤ c5∥β1(t)− β2(t)∥2L2(Γ3)
+

c24
mB

t∫
0

∥uβ1
(s)− uβ2

(s)∥2V ds.

Further, if
∥µ∥L∞(Γ3) < µ2 =

mB

2c1C2
Ω

,

we deduce that there exists a constant c8 > 0 such that

∥uβ1
(t)− uβ2

(t)∥2V ≤ c8

(
∥β1(t)− β2(t)∥2L2(Γ3)

+

t∫
0

∥uβ1
(s)− uβ2

(s)∥2V ds
)
.

Hence, using Cornwall’s argument, it follows that there exists a constant c9 > 0 such that

∥uβ1
(t)− uβ2

(t)∥2V ≤ c9∥β1(t)− β2(t)∥2L2(Γ3)
, ∀ t ∈ [0, T ]. (3.23)

Now, to end the proof of Lemma 3.6 we use (3.17) and (3.23) to obtain

∥Φβ1(t)− Φβ2(t)∥L2(Γ3) ≤ c9

t∫
0

∥β1(s)− β2(s)∥L2(Γ3) ds, ∀ t ∈ [0, T ],

where c7 > 0. We have

e−kt∥Φβ1(t)− Φβ2(t)∥L2(Γ3) ≤ c9e
−kt

t∫
0

ekse−ks∥β1(s)− β2(s)∥L2(Γ3) ds,

then

∥Φβ1(t)− Φβ2(t)∥k ≤ c9e
−kt∥β1(t)− β2(t)∥k

t∫
0

eks ds, ∀ t ∈ [0, T ].

So, we deduce that

∥Φβ1(t)− Φβ2(t)∥k ≤ c10
k

∥β1(t)− β2(t)∥k, ∀ t ∈ [0, T ], (3.24)

where c10 > 0. Inequality (3.24) shows that for k > c10, Φ is a contraction on Z. Then Φ has a unique
fixed point which satisfies (3.15) and (3.16).

Thus, we have all the ingredients to prove Theorem 3.1.

Existence. Consider β∗, the fixed point of the operator Φ, and x∗ = (u∗, φ∗), the solution of Prob-
lem (P β∗

V ), i.e., u∗ = uβ∗ and φ∗ = φβ∗ .
By (3.1), (3.2), (3.15) and (3.16), we conclude that the triple (u∗, φ∗, β∗) is a solution to Prob-

lem (PV ).

Uniqueness. The uniqueness arises from the uniqueness of the fixed point of the operator Φ, which
completes the proof of Theorem 3.1.

Indeed, let (u, φ, β) be a solution of Problem (PV ), it follows from (3.1) and (3.2) that u is a
solution of Problem (P β

V ) and, by Theorem 3.2, this problem has a unique solution (uβ , φβ), where
uβ = u and φβ = φ.
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Taking u = uβ and φ = φβ in Problem (PV ), we deduce that β is a solution of Problem (Pad).
From the result of Lemma 3.5, Problem (Pad) has a unique solution β∗, so we find β∗ = β, and then
we conclude that (u∗, φ∗, β∗) is a unique solution to Problem (PV ).

Let now σ∗ and D∗ be the functions defined by (2.1) and (2.2), respectively, which correspond to
(u∗, φ∗). Then it results from (2.16)–(2.20) that σ∗ ∈ C([0, T ];Q) and D∗ ∈ C([0, T ];H). Using also
a standard argument, it follows from (2.30) and (2.31) that

Divσ∗(t) + φ0(t) = 0 in Ω,

divD∗(t) + q0(t) = 0 in Ω.

Therefore, using (2.22) and (2.23), we deduce that Divσ∗(u∗(t), φ∗(t)) ∈ H for each t ∈ [0, T ] and
divD∗ ∈ C([0, T ];L2(Ω)), which implies that σ∗ ∈ C([0, T ];Q1) and D∗ ∈ C([0, T ];Wa). The triple
(u∗, φ∗, β∗) which satisfies (2.30)–(2.33) is called a weak solution of Problem (P ). We conclude
that under stated assumptions, Problem (P ) has a unique weak solution (u∗, φ∗, β∗, σ∗, D∗) with
the regularity u∗ ∈ C([0, T ];V ), φ∗ ∈ C([0, T ];W ), β∗ ∈W 1,∞((0, T ;L2(Γ3)))∩B, σ∗ ∈ C([0, T ];Q1)
and D∗ ∈ C([0, T ];Wa).
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A FAMILY OF PLANAR DIFFERENTIAL SYSTEMS
WITH EXPLICIT EXPRESSION FOR ALGEBRAIC
AND NON-ALGEBRAIC LIMIT CYCLES



Abstract. This paper is devoted to the study of a family of planar polynomial differential systems.
First, we prove that the considered family has invariant algebraic curves which are given explicitly.
Then, we introduce an explicit expression for their first integral. Moreover, we provide sufficient
conditions for the systems to possess two limit cycles explicitly given: one is an algebraic and the other
is shown to be non-algebraic. The applicability of our result was illustrated by concrete examples.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÉ ÄÞÙÅÍÄÁÀ ÁÒÔÚÄËÉ ÐÏËÉÍÏÌÉÀËÖÒÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÓÉÓÔÄÌÄÁÉÓ ÏãÀáÉÓ
ÛÄÓßÀÅËÀÓ. ÈÀÅÃÀÐÉÒÅÄËÀÃ ÃÀÅÀÌÔÊÉÝÄÁÈ, ÒÏÌ ÂÀÍáÉËÖË ÏãÀáÓ ÂÀÀÜÍÉÀ ÝáÀÃÉ ÓÀáÉÈ ÌÏ-
ÝÄÌÖËÉ ÉÍÅÀÒÉÀÍÔÖËÉ ÀËÂÄÁÒÖËÉ ßÉÒÄÁÉ. ÛÄÌÃÄÂ ÛÄÌÏÂÅÀØÅÓ ÌÀÈÉ ÐÉÒÅÄËÉ ÉÍÔÄÂÒÀËÉÓ
ÂÀÌÏÓÀáÖËÄÁÀ ÝáÀÃÉ ÓÀáÉÈ. ÀÌÉÓ ÂÀÒÃÀ, ÌÏÅÞÄÁÍÉÈ ÓÀÊÌÀÒÉÓ ÐÉÒÏÁÄÁÓ, ÒÀÈÀ ÓÉÓÔÄÌÄÁÓ
äØÏÍÃÄÓ ÝáÀÃÉ ÓÀáÉÈ ÌÏÝÄÌÖËÉ ÏÒÉ ÆÙÅÒÖËÉ ÝÉÊËÉ: ÄÒÈÉ - ÀËÂÄÁÒÖËÉ, áÏËÏ ÌÄÏÒÄ
- ÀÒÀÀËÂÄÁÒÖËÉ. ÛÄÃÄÂÉÓ ÓÀÉËÖÓÔÒÀÝÉÏÃ ÌÏÚÅÀÍÉËÉÀ ÊÏÍÊÒÄÔÖËÉ ÌÀÂÀËÉÈÄÁÉ.
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1 Introduction
One of the main problems in the qualitative theory of differential equations is the study of limit cycles
of planar differential systems and especially of the planar polynomial differential systems of the form

x′ =
dx

dt
= P (x, y),

y′ =
dy

dt
= Q(x, y),

(1.1)

where P (x, y) and Q(x, y) are real polynomials in the variables x and y. The degree of the system is
the maximum of the degrees of the polynomials P and Q.

Recall that:

• A limit cycle of system (1.1) is an isolated periodic orbit in the set of its periodic orbits and is
said to be algebraic if it is contained in the zero set of an invariant algebraic curve of the system.

• An algebraic curve defined by U(x, y) = 0 is an invariant curve for (1.1) if there exists a
polynomial K(x, y) (called the cofactor) such that

P (x, y)
∂U(x, y)

∂x
+Q(x, y)

∂U(x, y)

∂y
= K(x, y)U(x, y).

• System (1.1) is integrable on an open set Ω of R2 if there exists a non-constant analytic function
H : Ω → R, called a first integral, such that

dH(x, y)

dt
= P (x, y)

∂H(x, y)

∂x
+Q(x, y)

∂H(x, y)

∂y
≡ 0.

Among the important and attractive problems in the qualitative theory of differential equations
[8, 14] is the study of limit cycles of system (1.1) related to the Hilbert’s 16th problem [11]; several
works and papers in this field investigate their number, stability and location in the phase plane [1,12].

The notion of integrability of (1.1) is based on the existence of a first integral [5, 16]. There is
a strong relationship between the integrability of polynomial systems and the number of invariant
algebraic curves they have [7], and questions about the existence of a first integral, determining its
expression explicitly, when it exists, are always presents.

The results and examples [2–4, 9, 10] about algebraic and non-algebraic limit cycle are given, but
it is not easy work to decide whether a limit cycle is algebraic or not. Thus, the well-known limit
cycle of the van der Pol differential system exhibited in 1926 (see [15]), was not proved until 1995
by Odani [13] that it was non-algebraic. An invariant algebraic curve is a principal topic for several
authors and researchers because of its importance in understanding the dynamics of a system (we
refer to [6] for an exhaustive survey on this topic).

In this paper, we give an explicit expression of invariant algebraic curves, then we prove that these
systems are integrable, and we introduce an explicit expression of a first integral of a multi-parameter
planar polynomial differential system of thirteenth degree of the form

x′ =
dx

dt
= x+ (x2 + y2)2

(
P3(x, y)− x(x2 + y2)3R2(x, y)

)
,

y′ =
dy

dt
= y + (x2 + y2)2

(
Q3(x, y)− y(x2 + y2)3R2(x, y)

)
,

(1.2)

where

P3(x, y) = ax3 + bx2y + cxy2 − dy3,

Q3(x, y) = ax2y + dx3 + (b+ 2 d)xy2 + cy3,

R2(x, y) = (a+ 1)x2 + (b+ d)xy + (c+ 1)y2,
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in which a, b, c, d are the real constants.
Moreover, we provide sufficient conditions for a polynomial differential system to possess two limit

cycles explicitly given: one is algebraic and the other is shown to be non-algebraic. Concrete examples
exhibiting the applicability of our result are introduced.

We define the trigonometric functions

G(θ) =
a+ c

2
+

a− c

2
cos 2θ + b+ d

2
sin 2θ,

A(θ) =

θ∫
0

6 + 6G(t)

d
exp

( t∫
0

−12− 6G(ω)

d
dω

)
dt,

B(θ) = exp
( θ∫

0

−12− 6G(ω)

d
dω

)
.

Our main result is contained in the following theorem.

Theorem 1.1. For system (1.2), the following statements hold.

(1) If d ̸= 0, then the origin of coordinates O(0, 0) is the unique critical point of system (1.2) at a
finite distance.

(2) The curve U(x, y) = x6+3x4y2+3x2y4+ y6− 1 is an invariant algebraic curve of system (1.2)
with a cofactor

K(x, y) = −6(x2 + y2)3
(
1 + (x2 + y2)2

(
(a+ 1)x2 + (b+ d)xy + (c+ 1)y2

))
.

(3) System (1.2) has the first integral

H(x, y) =
(1− (x2 + y2)3)A(arctan y

x ) +B(arctan y
x )

(x2 + y2)3 − 1
.

(4) System (1.2) has an explicit limit cycle, given in Cartesian coordinates by

(Γ1) : x
6 + 3x4y2 + 3x2y4 + y6 − 1 = 0.

(5) If d < 0, −2− (a+ c) > |b+ d|+ |c− a| and 4 + a+ c > |b+ d|+ |c− a|, then system (1.2) has
non-algebraic limit cycle (Γ2), explicitly given in the polar coordinates (r, θ) by

r(θ, r∗) =

(
(B(θ) +A(θ))(B(2π)− 1) +A(2π)

A(θ)(B(2π)− 1) +A(2π)

) 1
6

.

Moreover, the algebraic limit cycle (Γ1) lies inside the non-algebraic limit cycle (Γ2).

2 Proof of Theorem 1.1
Proof of Statement (1). By definition, A(x0, y0) ∈ R2 is a critical point of system (1.2) if{

x0 + (x2
0 + y20)

(
P3(x0, y0)− x0(x

2
0 + y20)

3R2(x0, y0)
)
= 0,

y0 + (x2
0 + y20)

(
Q3(x0, y0)− y0(x

2
0 + y20)

3R2(x0, y0)
)
= 0,

and we have
(x2

0 + y20)
2(y0P3(x0, y0)− x0Q3(x0, y0)) = −d(x0

2 + y0
2)4.

Since d ̸= 0, we have that (x0, y0) = (0, 0) is the unique solution of this equation. Thus the origin is
the unique critical point at a finite distance.
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This completes the proof of Statement (1) of Theorem 1.1.

Proof of Statement (2). A computation shows that

U(x, y) = x6 + 3x4y2 + 3x2y4 + y6 − 1

satisfies the linear partial differential equation

∂U(x, y)

∂x
P (x, y) +

∂U(x, y)

∂y
Q(x, y) = U(x, y)K(x, y),

the associated cofactor being

K(x, y) = −6(x2 + y2)3
(
1 + (x2 + y2)2

(
(a+ 1)x2 + (b+ d)xy + (c+ 1)y2

))
.

This completes the proof of Statement (2) of Theorem 1.1.

Proof of Statement (3). To prove Statement (3), we need to convert system (1.2) in polar coordinates
(r, θ) given by x = r cos θ and y = r sin θ, then system (1.2) takes the form

r′ =
dr

dt
= r +G(θ)r7 + (−G(θ)− 1)r13,

θ′ =
dθ

dt
= dr6.

(2.1)

Taking θ as an independent variable, we obtain the equation

dr

dθ
=

1

d
r−5 +

G(θ)

d
r +

−G(θ)− 1

d
r7. (2.2)

Using the change of variables ρ = r6, equation (2.2) is transformed into the Riccati equation

dρ

dθ
=

6

d
+

6G(θ)

d
ρ+

−6G(θ)− 6

d
ρ2. (2.3)

This equation is integrable, since it possesses the particular solution ρ = 1.
By introducing the standard change of variables z = ρ− 1, we obtain the Bernoulli equation

dz

dθ
=

−6− 6G(θ)

d
z2 +

−12− 6G(θ)

d
z. (2.4)

We note that z = 0 is the solution for (2.4), and by introducing the standard change of variables
y = 1

z , we obtain the linear equation

dy

dθ
= −6 + 6G(θ)

d
− 12 + 6G(θ)

d
y. (2.5)

The general solution of linear equation (2.5) is

y(θ) =
α+A(θ)

B(θ)
,

where α ∈ R. Then the general solution of equation (2.4) is

z(θ) = 0, z(θ) =
B(θ)

α+A(θ)
, where α ∈ R.

The general solution of equation (2.3) is

ρ(θ) = 1, ρ(θ) =
α+A(θ) +B(θ)

α+A(θ)
, where α ∈ R.
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Consequently, the general solution of (2.2) is

r(θ) = 1, r(θ) =
(α+A(θ) +B(θ)

α+A(θ)

) 1
6

, where α ∈ R.

From this solution we obtain a first integral in the variables (x, y) of the form

H(x, y) =
(1− (x2 + y2)3)A(arctan y

x ) +B(arctan y
x )

(x2 + y2)3 − 1
.

Hence, Statement (3) of Theorem 1.1 is proved.

Proof of Statement (4). The curves H = h with h ∈ R, which are formed by trajectories of the
differential system (1.2), in Cartesian coordinates are written as

x2 + y2 = 1, (x2 + y2)3 =
α+A(θ) +B(θ)

α+A(θ)
,

where α ∈ R.
Notice that system (1.2) has a periodic orbit if and only if equation (2.2) has a strictly positive

2π-periodic solution. This, moreover, is equivalent to the existence of a solution of (2.2) that fulfils
r(0, r∗) = r(2π, r∗) and r(θ, r∗) > 0 for any θ in [0, 2π].

The solution r(θ, r0) of the differential equation (2.2) such that r(0, r0) = r0 is

r(θ, r0) =

( 1
r60−1

+A(θ) +B(θ)

1
r60−1

+A(θ)

) 1
6

,

where r0 = r(0).
We have the particular solution ρ(θ) = 1 of the differential equation (2.3); from this solution we

obtain r6(θ) = 1 > 0 for all θ in [0, 2π], which is a particular solution of the differential equation (2.2).
This is an algebraic limit cycle for the differential systems (1.2), corresponding, of course, to an

invariant algebraic curve U(x, y) = 0.
More precisely, in Cartesian coordinates r2 = x2+ y2 and θ = arctan( yx ) the curve (Γ1) defined by

this limit cycle is (Γ1) : x
6 + 3x4y2 + 3x2y4 + y6 − 1 = 0.

Hence, Statement (4) of Theorem 1.1 is proved.

Proof of Statement (5). A periodic solution of system (1.2) must satisfy the condition r(0, r∗) =
r(2π, r∗), which leads to a unique value r0 = r∗ given by

r∗ =
(A(2π) +B(2π)− 1

A(2π)

) 1
6

.

The value r∗ is the intersection of the periodic orbit with the OX+ axis. After the substitution of this
value r∗ into r(θ, r0), we obtain

r(θ, r∗) =

(
(B(θ) +A(θ))(B(2π)− 1) +A(2π)

A(θ)(B(2π)− 1) +A(2π)

) 1
6

.

In what follows, it is proved that r(θ, r∗) > 0. Indeed,

A(2π)−A(θ) =

2π∫
θ

6 + 6G(t)

d
exp

( t∫
0

−12− 6G(ω)

d
dω

)
dt.

According to d < 0, −2− (a+ c) > |b+ d|+ |c− a| and 4+ a+ c > |b+ d|+ |c− a|, hence −2−G(θ)
d

and 1+G(θ)
d > 0 for all θ in [0, 2π], then we have A(2π)−A(θ) > 0 and B(2π) > 1; therefore, we have
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r∗ > 0 and r(θ, r∗) > 0 for all θ in [0, 2π]. This is the second limit cycle for the differential system
(1.2), we denote it by (Γ2). This limit cycle is not algebraic, due to the expression

B(θ) = exp
( θ∫

0

−12− 6G(ω)

d
dω

)
.

More precisely, in the Cartesian coordinates r2 = x2 + y2 and θ = arctan( yx ), the curve defined by
this limit cycle (Γ2) is F (x, y) = 0, where

F (x, y) = (x2 + y2)3 −
(
B(arctan y

x ) +A(arctan y
x )
)
(B(2π)− 1) +A(2π)

A(arctan y
x )(B(2π)− 1) +A(2π)

.

If the limit cycle is algebraic, this curve should be given by a polynomial, but a polynomial F (x, y)

in the variables x and y satisfies that there is a positive integer n such that ∂nF (x,y)
∂xn = 0, but this is

not the case, therefore, the curve (Γ2) : F (x, y) = 0 is non-algebraic and the limit cycle will also be
non-algebraic.

According to d < 0, −2− (a+ c) > |b+ d|+ |c− a| and 4 + a+ c > |b+ d|+ |c− a|, we get

r∗ = (1 +
B(2π)− 1

A(2π)
)

1
6 > 1,

and

r(θ, r∗) =

(
1 +

B(θ)
1

r6∗−1 +A(θ)

) 1
6

> 1.

We conclude that system (1.2) has two limit cycles, the algebraic (Γ1) lies inside the non-algebraic
one (Γ2).

This completes the proof of Statement (5) of Theorem 1.1.

3 Examples
Example 3.1. We take a = c = − 6

5 , d = −5 and b = 51
10 , then system (1.2) reads as

x′=x+(x2+y2)2
(
− 6

5
x3+

51

10
x2y− 6

5
xy2+5y3

)
−x(x2+y2)5

(
− 1

5
x2+

1

10
xy− 1

5
y2
)
,

y′=y+(x2+y2)2
(
− 6

5
x2y−5x3− 49

10
xy2− 6

5
y3
)
−y(x2+y2)5

(
− 1

5
x2+

1

10
xy− 1

5
y2
)
.

(3.1)

In this case, we get

A(θ) = − 3

50

θ∫
0

(sin(2t)− 4) exp
( 3

100
+

24

25
t− 3

100
cos(2θ)

)
dt,

B(θ) = exp
(
− 3

100
cos(2θ) + 24

25
θ +

3

100

)
.

The intersection of the non-algebraic limit cycle (Γ2) with the OX+ axis is the point

r∗ =
(116.8 + exp( 48π25 )− 1

116.8

) 1
6 ≃ 1.2876.
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Figure 3.1. Limit cycles of system (3.1).

Example 3.2. We take a = −11
10 , c = −115

100 , d = −7 and b = 141
20 , then system (1.2) reads as

x′ = x+ (x2 + y2)2
(−11

10
x3 +

141

20
x2y − 23

20
xy2 + 7y3

)
−x(x2 + y2)5

(
− 1

10
x2 +

1

20
xy − 3

20
y2
)
,

y′ = y + (x2 + y2)2
(
− 11

10
x2y − 7x3 − 139

20
xy2 − 23

20
y3
)

−y(x2 + y2)5
(
− 1

10
x2 +

1

20
xy − 3

20
y2
)
.

(3.2)

In this case, we get

A(θ) = − 3

140

θ∫
0

(cos(2t) + sin(2t)− 5) exp
( 3

280
+

3

280
sin(2t)− 3

280
cos(2t) + 3

4

)
dt,

B(θ) = exp
(
− 3

280
sin(2θ)− 3

280
cos(2θ) + 3

4
θ +

3

280

)
.

Figure 3.2. Limit cycles of system (3.2).

The intersection of the non-algebraic (Γ2) limit cycle with the OX+ axis is the point

r∗ =
(16.509 + exp( 2π3 )− 1

16.509

) 1
6 ≃ 1.4047.
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Example 3.3. We take a = −101
100 , c = −105

100 , d = −1 and b = 151
150 , then system (1.2) reads as

x′ = x+ (x2 + y2)2
(
− 101

100
x3 +

151

50
x2y − 21

20
xy2 + y3

)
−x(x2 + y2)5

(
− 1

100
x2 +

1

50
xy − 1

20
y2
)
,

y′ = y + (x2 + y2)2
(
− 101

100
x2y − x3 +

149

150
xy2 − 21

20
y3
)

−y(x2 + y2)5
(
− 1

100
x2 +

1

150
xy − 1

20
y2
)
.

(3.3)

In this case, we get

A(θ) = − 1

50

θ∫
0

(6 cos(2t) + sin(2t)− 9) exp
( 1

100
+

3

50
sin(2t)− 1

100
cos(2t) + 291

50
t
)
dt,

B(θ) = exp
( 3

50
sin(2θ)− 1

100
cos(2t) + 291

50
θ +

1

100

)
.

The intersection of the non-algebraic limit cycle (Γ2) with the OX+ axis is the point

r∗ =
(1.019× 1014 + exp( 291π25 )− 1

1.019× 1014

) 1
6 ≃ 2.0566.

Figure 3.3. Limit cycles of system (3.3).

Example 3.4. We take a = −107
100 , c = −109

100 , d = −5 and b = 507
100 , then system (1.2) reads as

x′ = x+ (x2 + y2)2
(
− 107

100
x3 +

507

100
x2y − 109

100
xy2 + 5y3

)
−x(x2 + y2)5

(
− 7

100
x2 +

7

100
xy − 9

100
y2
)
,

y′ = y + (x2 + y2)2
(
− 107

100
x2y − 5x3 − 493

100
xy2 − 109

100
y3
)

−y(x2 + y2)5
(
− 7

100
x2 +

7

100
xy − 9

100
y2
)
.

(3.4)

In this case, we get

A(θ) = − 3

500

θ∫
0

(2 cos(2t) + 7 sin(2t)− 16) exp
( 21

1000
+

3

500
sin(2t)− 21

1000
cos(2t) + 138

125
t
)
dt,

B(θ) = exp
( 3

500
sin(2θ)− 21

1000
cos(2t) + 138

25
θ +

21

1000

)
.
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Figure 3.4. Limit cycles of system (3.4).

The intersection of the non-algebraic limit cycle (Γ2) with the OX+ axis is the point

r∗ =
(104.804 + exp( 276π125 )− 1

104.804

) 1
6 ≃ 1.4870.
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Abstract. This paper mainly focuses on the Birkhoff normal form theorem for the Born–Oppenheimer
Hamiltonians. Normal forms are accessible via those of the effective Hamiltonian obtained by the
Grushin reduction method and the pseudodifferential calculus with operator-valued symbols. Res-
onance situations are discussed; the theoretical computations of Birkhoff normal form in the 1 : 1
resonance are written explicitly. Our approach gives compatible numerical results while using a com-
puter program.

2010 Mathematics Subject Classification. 58J40, 58K50, 47A55.

Key words and phrases. Birkhoff normal form, Born–Oppenheimer approximation, effective Hamil-
tonian, resonance.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÉ, ÞÉÒÉÈÀÃÀÃ, ÄáÄÁÀ ÁÉÒÊäÏ×ÉÓ ÍÏÒÌÀËÖÒÉ ×ÏÒÌÉÓ ÈÄÏÒÄÌÀÓ ÁÏÒÍ-
ÏÐÄÍäÀÉÌÄÒÉÓ äÀÌÉËÔÏÍÉÀÍÄÁÉÓÈÅÉÓ. ÍÏÒÌÀËÖÒÉ ×ÏÒÌÄÁÉ áÄËÌÉÓÀßÅÃÏÌÉÀ Ä×ÄØÔÖÒÉ äÀ-
ÌÉËÔÏÍÉÀÍÄÁÉÓ ÓÀÛÖÀËÄÁÉÈ, ÒÏÌËÄÁÉÝ ÌÉÙÄÁÖËÉÀ ÂÒÖÛÉÍÉÓ ÃÀÚÅÀÍÉÓ ÌÄÈÏÃÉÈ ÃÀ ÏÐÄ-
ÒÀÔÏÒ-ÌÍÉÛÅÍÄËÏÁÄÁÉÀÍÉ ÓÉÌÁÏËÏÄÁÉÓ ×ÓÄÅÃÏÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÀÙÒÉÝáÅÉÈ. ÂÀÍáÉËÖËÉÀ
ÒÄÆÏÍÀÍÓÖËÉ ÓÉÔÖÀÝÉÄÁÉ; ÁÉÒÊäÏ×ÉÓ ÍÏÒÌÀËÖÒÉ ×ÏÒÌÉÓ ÈÄÏÒÉÖËÉ ÂÀÌÏÈÅËÄÁÉ 1 : 1
ÒÄÆÏÍÀÍÓÛÉ ÝáÀÃÀÃ ÀÒÉÓ ÜÀßÄÒÉËÉ. ÜÅÄÍÉ ÌÉÃÂÏÌÀ ÉÞËÄÅÀ ÈÀÅÓÄÁÀÃ ÝÉ×ÒÖË ÛÄÃÄÂÄÁÓ
ÊÏÌÐÉÖÔÄÒÖËÉ ÐÒÏÂÒÀÌÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÃÒÏÓ.
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1 Introduction
The question of the stability of the multi-body problems dates back to the 18th century. The problem
was analyzed by means of series expansions and the canonical approach. The method of normal forms
is one of the main tools for studying this stability. The idea of the method is to transform a differential
operator into a simpler one by a change of the variables.

The Poincaré theory of normal forms has a counterpart in the Hamiltonian formalism, due to
Birkhoff and then extended to the resonant case by Gustavson. Thus, by carefully choosing trans-
formations, one changes a Hamiltonian system into a form with a well understood part, integrable
part, under a sufficiently small perturbation, such a transformation will conserve the Hamiltonian
structure [2, 8]. Precisely, the well-known Birkhoff theorem states that, in some neighbourhood of
the origin, there exists a canonical transformation under which a smooth semiclassical Schrödinger
operator −h2∆x + V , for energies close to a non-degenerate minimum of V , can be replaced by a
suitable perturbation of a harmonic oscillator.

Some results on Birkhoff normal forms have been proved by Birkhoff [2], Ghomari and Messirdi [5,6]
and Ghomari, Messirdi and Vu Ngoc [7] for Schrödinger operators. Nevertheless, no result of the
existence, constructions and applications of Birkhoff normal forms was known up to now, for Born–
Oppenheimer Hamiltonians. In [9], one can find a description of the question without theoretical
details and numerical analysis.

The main objective of this work is the construction of a Birkhoff normal forms method for the
Born–Oppenheimer Hamiltonians in the semiclassical limit of type P = −h2∆x+Q(x), where Q(x) is
an operator in the electronic y variables that depends only parametrically on the nuclear x variables,
and h2 stands for the ratio between the electronic and nuclear masses, h→ 0+. Q(x) is referred to as
the electronic Hamiltonian, its spectrum is typically discrete in the low energy region and continuous
above the threshold energy. Since Q is an operator, it becomes necessary to use the pseudodifferential
calculus with operator-valued symbols. We are typically interested in the relationship between the
spectrum of the operator P and the classical dynamics of its principal operator-valued symbol.

The main novelty in this work is the introduction of the Birkhoff normal form theorem for Born–
Oppenheimer Hamiltonians. The idea is to combine the usual Birkhoff normal forms method with
the reduction process to an effective Hamiltonian. If Q(x) and λ1(x), the lowest eigenvalue of Q(x),
are smooth and, under suitable assumptions, the Grushin operator associated with P and λ1(x) is
invertible as a pseudodifferential operator near the bottom of λ1(x), then, in particular, we get a
reduction result, namely, the spectral study of P is close, at least modulo O(h2), to one of Pe =
−h2∆x + λ1(x), the effective Hamiltonian in the Born–Oppenheimer approximation. This allows to
get asymptotic expansions of the discrete spectrum and the eigenfunctions of P (see, e.g., [6,10–12]) In
fact, Pe can explain the complete spectral picture of P modulo errors in h. We first present in Section
2 the general framework of normal forms for semiclassical Schrödinger operators −h2∆x + V (x),
where we give a rigourous proof of the Birkhoff normal form theorem. Furthermore, in Section 3, we
explain the core of the mathematical form of the Born–Oppenheimer approximation and describe the
construction of the effective Hamiltonian. Namely, the possibility to approximate, for large nuclear
masses, the true molecular Hamiltonian, a Schrödinger operator with an operator-valued potential, by
some effective Hamiltonian. The effective Hamiltonian is a good approximation to the true molecular
Hamiltonian with error-terms of order h∞ concerning smooth interaction potentials only.

Thanks to the reduction of P to its effective Hamiltonian Pe in x variables, it is now possible
to define the Birkhoff normal forms of the full Hamiltonian P by those of Pe. Consequently, in
Section 4, we introduce the Birkhoff normal form theorem for P , near an equilibrium point in the
Born–Oppenheimer approximation, via the effective Hamiltonian Pe, using the results of Section 2,
where the function λ1(x) plays the role of an effective potential function and h tends to zero. Our main
ingredient is the use successively two reductions, first the reduction to an effective Hamiltonian and
then the classical Birkhoff normal form reduction. We show that one can recover the Birkhoff normal
form for the Born–Oppenheimer operator near an equilibrium point and we give a connection the
between Birkhoff normal form and resonances that occurs in terms of frequencies of the corresponding
harmonic oscillator. As an application, we study the dynamics near a local extremum of the effective
Hamiltonian, for which the frequencies are in 1 : 1 resonance. Our mathematical results are of physical
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or chemical relevance, up to some controlled error depending on the semiclassical parameter h. In
Section 5, we use a computer program to compute easily the Birkhoff normal form for a given effective
Schrödinger Hamiltonian in 1 : 1 resonance. Our numerical results are compatible with the theoretical
ones.

2 Generalities on Birkhoff normal forms
The purpose of this section is to apply the fundamental results on the quantum Birkhoff normal forms
for semiclassical Schrödinger operators. In the classical setting, the operator to be discussed is of the
type P = −h2∆+ V , where V is the multiplication operator by a smooth potential function. In the
molecular case, the corresponding object is Q. Q is neither a multiplication operator, nor smooth if
V is a non-smooth potential. The general philosophy consists in finding adequate transformations in
which P can be written as a commuting perturbation of the harmonic oscillator. Precisely, there exists
a formal real canonical transformation generated by a power series such that P is transformed into a
Hamiltonian which is a power series in one-dimensional uncoupled harmonic oscillator Hamiltonians.
The procedure for transforming to Birkhoff’s normal form is reviewed and enriched here.

Let V ∈ C∞(RN ), N ∈ N, N ≥ 1, and assume that the Hessian matrix V ′′(0) is diagonal, let
(ν21 , . . . , ν

2
N ) be its eigenvalues, with νj > 0 and ν = (ν1, . . . , νN ). The rescaling xj → √

νjxj , x =

(x1, . . . , xN ), transforms P into P = H+W (x), whereH is the harmonic oscillator
N∑
j=1

νj
2 (−h

2 ∂2

∂x2
j
+x2j )

and W (x) is a smooth function such that W (x) = O(|x|3) as |x| → 0. In general, W does not commute
with H, on the other hand, we do not have enough information on this perturbation, for that we will
use the Birkhoff normal form of P which is a transformation of the previous type, but more adapted
and less restrictive.

Let m, d ∈ R, and Sm,d be the space of smooth functions a(x, ξ;h) : RNx × RNξ × ]0, 1] → C such
that for all α ∈ N2N , |∂α(x,ξ)a(x, ξ;h)| ≤ Cαh

d(1 + |x|2 + |ξ|2)m/2 uniformly with respect to x, ξ and
h, Cα > 0. Sd(m) is called the semiclassical space of symbols of order d and degree m. For a ∈ Sm,d

and u ∈ C∞
0 (R2N ), we set

(Opw(a)u)(x) = (2πh)−N
∫

R2n

eih
−1⟨x−x′,ξ⟩a

(x+ x′

2
, ξ;h

)
u(x′) dx′ dξ. (2.1)

Opw(a) is an unbounded linear operator on L2(RN ) with domain C∞
0 (R2N ), the space of infinitely

differentiable functions on R2N with a compact support. Opw(a) : C∞
0 (R2N ) → C∞(R2N ) is called a

semiclassical pseudodifferential operator (or h-Weyl quantization) with h-Weyl symbol a of order d and
degree m. Different classes of symbols can also be defined, but for our purpose this class is enough. For

example, the h-Weyl symbol of the harmonic oscillator H is the polynomial H(x, ξ) =
N∑
j=1

νj
2 (x2j +ξ

2
j ).

Now, we introduce the space S to be the set of formal series:

S =

{ ∑
α,β∈NN , ℓ∈N

tα,β,lx
αξβhℓ : tα,β,l ∈ C

}
,

where the degree of xαξβhℓ is defined by |α|+|β|+2ℓ, for technical reasons that of h is double-counted.
Let M ∈ N and DM be the finite-dimensional vector space spanned by monomials xαξβhℓ of degree M
and let OM be the subspace of S consisting of formal series, whose coefficients of degree < M vanish,

DM =

{ ∑
α,β∈NN , ℓ∈N; |α|+|β|+2ℓ=M

tα,β,lx
αξβhℓ : tα,β,l ∈ C

}
,

OM =

{ ∑
α,β∈NN , ℓ∈N

tα,β,lx
αξβhℓ : tα,β,l = 0 if |α|+ |β|+ 2ℓ < M

}
.



Theoretical and Numerical Results on Birkhoff Normal Forms and Resonances 87

Note that (OM )M∈N is a filtration, S = O0 ⊃ O1 ⊃ · · · ,
∩
M∈N

OM = {0}.

Let ⟨f, g⟩W = f̂ ĝ − ĝf̂ be the Weyl bracket on S, where f̂ and ĝ are the h-Weyl quantizations of
symbols f and g, respectively. Precisely,

⟨fT , gT ⟩W = σW (f̂ ĝ − ĝf̂),

where fT and gT are the formal Taylor series at the origin of f and g in S, respectively, and σW
denotes the h-Weyl symbol. Then ⟨ · , · ⟩W is antisymmetric satisfying the Jacobi identity

⟨⟨fT , g⟩W , hT ⟩W +
⟨
⟨hT , fT ⟩W , gT

⟩
W

+
⟨
⟨gT , hT ⟩W , fT

⟩
W

= 0

and the Leibniz identity

⟨fT , gThT ⟩W = ⟨fT , gT ⟩WhT + gT ⟨fT , hT ⟩W .

Thus, the space S equipped with the Weyl bracket is a Lie algebra such that if x = (x1, . . . , xN ) and
ξ = (ξ1, . . . , ξN ) ∈ RN , then

⟨h, xj⟩W = ⟨h, ξj⟩W = 0 and ⟨ξj , xj⟩W = −ih for every j = 1, . . . , N.

The filtration of S has a nice behaviour with respect to the Weyl bracket, if M1 +M2 ≥ 2, f ∈ OM1

and g ∈ OM2 , then h−1⟨f, g⟩W ∈ OM1+M2−2. For any S ∈ S, we define the map adS , called the
adjoint action:

adS : S −→ S
S′ 7−→ adS(S

′) = ⟨S, S′⟩W .

Let us consider the important special case of this concept, which is the adjoint action adS for S ∈ D2

and, especially, adH(x,ξ). Let C[z, z, h] be the C-linear space of polynomials spanned by zαz βhℓ

of degree |α| + |β| + 2ℓ; α, β ∈ NN , ℓ ∈ N, where z = (x1 + iξ1, . . . , xN + iξN ) ∈ CN and z =
(x1 − iξ1, . . . , xN − iξN ) is the complex conjugate of z. Then B = {zαz β : z ∈ CN , α, β ∈ NN} is
a natural basis of C[z, z, h]. We are particularly interested in the adjoint action of elements of the
subspace D2 of S. Such elements are of the form hH0 +H, where H0 ∈ C and H is a quadratic form
in (x, ξ). Furthermore, when H is positive, it can be written as harmonic oscillators in some canonical
coordinates.

The next proposition gives some important properties and results on adH(x,ξ) denoted by adH for

short, where H(x, ξ) =
N∑
j=1

νj
2 (x

2
j + ξ2j ).

Proposition 2.1 ([5, 6]).

(1) ih−1adH(S) = {H(x, ξ), S}, where S ∈ S and {H(x, ξ), S} =
N∑
j=1

∂H
∂ξj

∂S
∂xj

− ∂H
∂xj

∂S
∂ξj

is the classical

Poisson bracket.

(2) adH is diagonal on B, in the sense that adH(zαz β) = h⟨β − α, ν⟩zαz β, α, β ∈ NN .

We say that an element G in D2 is admissible when the algebraic sum ker(adG) + Im(adG) of the
kernel of adG and the image of adG coincides with DM , M ∈ N. A typical example is the harmonic
oscillator H(x, ξ).

Example. H(x, ξ) =
N∑
j=1

νj
2 (x

2
j + ξ2j ) is admissible on DM for all M ∈ N. Indeed, let S ∈ DM , then

S =
∑

α,β∈NN , ℓ∈N; |α|+|β|+2ℓ=M

tα,β,lz
αz βhℓ

=
∑

|α|+|β|+2ℓ=M ; ⟨β−α,ν⟩=0

tα,β,lz
αz βhℓ +

∑
|α|+|β|+2ℓ=M ; ⟨β−α,ν⟩̸=0

tα,β,lz
αz βhℓ,
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where tα,β,l ∈ C and ν = (ν1, . . . , νN ). By using Proposition 2.1, we obtain

⟨β − α, ν⟩ = 0 ⇐⇒ zαz β ∈ ker(adH),

thus ∑
|α|+|β|+2ℓ=M ; ⟨β−α, ν⟩=0

tα,β,lz
αz βhℓ ∈ ker(adH),

⟨β − α, ν⟩ ̸= 0 ⇐⇒ zαz β =
h−1

⟨β − α, ν⟩
adH(zαz β) ⇐⇒ zαz β ∈ Im(adH),

and hence ∑
|α|+|β|+2ℓ=M ; ⟨β−α,ν⟩̸=0

tα,β,lz
αz βhℓ ∈ Im(adH).

The Birkhoff normal form theorem can be expressed as follows.

Theorem 2.1. Let H ∈ D2 be the harmonic oscillator and L ∈ O3. Then there exist S and K in the
subspace O3 such that

eih
−1adS (H + L) = H +K,

where K = K3 + K4 + · · · and Kj ∈ Dj commutes with H : ⟨H,K⟩W = 0. Notice that the sum
eih

−1adS (H +L) =
∑
l

1
l! (

i
h adS)

l(H +L) is convergent on S because i
h adS(OM ) ⊂ OM+1. Moreover,

if L has real coefficients, then S and K can be chosen to have real coefficients, as well.

Proof. We construct S and K by successive approximations. Let M ≥ 1, we show that there exist
SM ∈ O3 and K ∈ O3 such that

eih
−1adSM (H + L) = H +K3 + · · ·+KM+1 +RM+2 +OM+3, (2.2)

where SM = B3 + B4 + · · · + BM+1, Bi ∈ Di, Ki ∈ Di, Ki commutes with H and RM+2 ∈ DM+2.
Indeed, if M = 2, find S2 = B3 ∈ D3 and K3 ∈ D3 which commutes with H and R4 ∈ D4 such that

eih
−1adB2 (H + L) = H +K3 +R4 +O5 = H +K3 +O4, (2.3)

(2.3) ⇐⇒ H + L+ ih−1⟨B3,H + L⟩W + · · · = H +K3 +O4.

As L ∈ O3, then L = L1 + L2 with L1 ∈ D3 and L2 ∈ O4. So,

(2.3) ⇐⇒ H2 + L1 + L2 + ih−1⟨B3,H⟩W + ih−1⟨B3, L⟩W + · · · = H +K3 +O4.

Since H is admissible, it follows that D3 = ker(ih−1adH)⊕Im(ih−1adH) and L1 = L′
1+ih

−1⟨H,L′′
1⟩W ,

where L′
1 ∈ D3 and commutes with H, L′′

1 ∈ D3. Thus, since ih−1⟨B3, L⟩W ∈ O4, we have

(2.3) ⇐⇒ H2 + L′
1 + ih−1⟨H,L′′

1⟩W − ih−1⟨H,B3⟩W +O4 = H +K3 +O4.

So, it suffices to take K3 = L′
1 and S2 = B3 = L′′

1 .
If M = 3, we need to find B4 ∈ D4 and K4 ∈ D4, K4 commutes with H, such that

eih
−1adS3 (H + L) = H +K3 +K4 +O5, (2.4)

where S3 = S2 +B4 = B3 +B4. Using again the fact that H is admissible, we find

(2.4) ⇐⇒ eih
−1adB4 (eih

−1adB3 (H + L)) = H +K3 +K4 +O5

⇐⇒ eih
−1adB4 (H +K3 +R4 +O5) = H +K3 +K4 +O5

⇐⇒ H +K3 +R4 +O5 + ih−1⟨B4,H +K3 +R4 +O5⟩W + · · · = H +K3 +K4 +O5

⇐⇒ R′
4 + ih−1⟨H,R′′

4 ⟩W − ih−1⟨H,B4⟩W +O5 = K4 +O5
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with R4 = R′
4 + ih−1⟨H,R′′

4 ⟩W .
We then take K4 = R′

4 ∈ D4 and B4 = R′′
4 ∈ D4. Assume that the statement (2.2) holds for

some arbitrary natural number M ≥ 1, and prove that (2.2) holds for M + 1. Thus, we want to find
BM+2 ∈ DM+2, where SM+1 = SM +BM+2, and KM+2 ∈ DM+2, KM+2 commutes with H, so that

eih
−1adSM+1 (H + L) = H +K3 + · · ·+KM+1 +KM+2 +OM+3; (2.5)

(2.5) ⇐⇒ eih
−1adBM+2 (eih

−1adSM (H + L)) = H +K3 + · · ·+KM+1 +KM+2 +OM+3

⇐⇒ eih
−1adBM+2 (H +K3 + · · ·+KM+1 +RM+2 +OM+3)

= H +K3 + · · ·+KM+1 +KM+2 +OM+3

⇐⇒ H +K3 + · · ·+KM+1 +RM+2 − ih−1⟨H,BM+2⟩W +OM+3

= H +K3 + · · ·+KM+1 +KM+2 +OM+3

⇐⇒ RM+2 − ih−1⟨H,BM+2⟩W +OM+3 = KM+2 +OM+3

⇐⇒ R′
M+2 + ih−1⟨H,R′′

N+2⟩W − ih−1⟨H,BM+2⟩W +OM+3 = KM+2 +OM+3.

We can therefore take KM+2 = R′
M+2 and BM+2 = R′′

M+2.
Now, if we assume that L and Kj , j ≤ M + 1, have real coefficients, then RM+2 is real, too.

ih−1adH is a real endomorphism on each D4, hence (2.5) can be solved with real coefficients.

Remark 2.1. The Birkhoff normal form theorem remains valid for any element of the subspace D2

of S and in a neighborhood of the origin, via similar canonical transformations defined near 0.

3 Born–Oppenheimer approximation
The Born–Oppenheimer approximation is based on the fact that the mass of the nucleus is much
greater than that of the electron [3]. This principle is exploited in order to approximate the complete
molecular Schrödinger operator by a reduced Hamiltonian, acting on the positions of the nuclei only,
and in which the electrons are involved through the effective electric potential they create only. The
Born–Oppenheimer approximation shows how the electronic motions can be approximately separated
from the nuclear motions. Let us explain the results on the Born Oppenheimer reduction for diatomic
molecules with singular Coulomb-type interactions.

Consider a molecule system composed of two atomic nuclei A and B whose positions are defined
by the vectors xA and xB and one electron of position xe. The nuclei are assumed to be heavy with
a mass of order M ≫ 1 and the electron is light with a mass one. The Hamiltonian of the system is
given by

P = − 1

2M
∂2xA

− 1

2M
∂2xB

− 1

2
∂2xe

+ V (xA − xe) + V (xB − xe) +W (xA − xB),

where V and W represent the Coulomb interactions V (x) = − α
|x| and W (x) = β

|x| ; α and β are real
constants, α > 0, β > 0. P is the sum of kinetic energy of the atomic nuclei − 1

2M ∂2xA
− 1

2M ∂2xB
, kinetic

energy of the electrons − 1
2 ∂

2
xe

, internuclear repulsion W (xA − xB), and electronic-nuclear attraction
V (xA − xe) + V (xB − xe). Removing the center of mass motion of this system and choosing properly
the coordinates, one can correctly describe this approximation. Indeed, we consider the center of a
mass coordinate system

R =
MxA +MxB + xe

2M + 1
, x = xA − xB , y = xe −

xA + xB
2

.

In these coordinates, the Hamiltonian P becomes

P = − 1

2(2M + 1)
∂2R + P,

P = − 1

M
∂2x −

1

2

(
1 +

1

2M

)
∂2y + V

(x
2
− y
)
+ V

(x
2
+ y
)
+W (x).
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If we remove the center of mass motion, the study of P is reduced to that of the operator P on
L2(R6), where the spectrum of P defines the energy levels of the molecule. The Born–Oppenheimer
approximation is a very important method for analyzing this spectrum when M , the mass of nuclei,
tends to infinity. In general, molecular systems of n + p + 1 particles (n + 1 nuclei and p electrons)
in the semiclassical limit, where the mass ratio h2 of electronic to nuclear mass tends to zero, are
described by the many-body Hamiltonians of the type

P = −h2∆x −∆y + V (x, y),

where V is the sum of all interactions between the particles, x ∈ RN , N = 3n, denote the relative
positions of the nuclei, and y ∈ RN ′ , N ′ = 3p, those of the electrons. P is defined on L2(RNx × RN ′

y ),
we denote by Q(x) the electronic Hamiltonian −∆y + V (x, y) on L2(RN ′

y ). Then, one can define the
so-called electronic levels being the discrete eigenvalues λ1(x) < λ2(x) ≤ · · · of the operator Q(x).
Born and Oppenheimer [3] realized that the study of P can be approximately reduced, when h is
small, to the diagonal matrix diag(−h2∆x + λj(x)), j = 1, 2, . . . on

⊕
j

L2(RNx ). In particular, when,

for example, the first simple eigenvalue λ1(x) admits a non-degenerate point well at some energy level
E, the eigenvalues of P near E should admit a complete asymptotic expansion in half-powers of h
(WKB expansions). This principle has been widely used by chemists, but the mathematically rigorous
justifications of this reduction and WKB expansions for eigenfunctions and eigenvalues of a diatomic
molecule are more recent. Such a result was proved for smooth interactions (see, e.g., [4]), it was
generalized later by Belmouhoub and Messirdi to singular Coulombic potentials where they introduced
some x-dependent changes in the y-variables that will regularize the associated eigenfunctions, localize
in a compact region the x-dependent singularities with respect to y in the interactions and construct
a kind of semiclassical pseudodiffcrcntial calculus, adapted to these changes [1].

3.1 Pseudodifferential calculus with operator-valued symbols
In the literature, there exist several versions of operator-valued pseudodifferential calculus, each
adopted to some particular, more or less general, situation. We recall here the constructions made
mainly in [10]. Let Ω be a bounded open subset of RNx , and H, K, L be complex Hilbert spaces.
B(H,K) is the algebra of all continuous linear operators from H into K. We denote by C∞(Ω,Λ) the
set of all infinitely differentiable functions from Ω to Λ = H,K,L. Given ψ ∈ C∞(Ω,R) and V a
neighborhood of 0 in RNx , we set

Ω∗ =
{
(x, ξ) ∈ Ω× CN : ξ − i∇ψ(x) ∈ V

}
.

Pseudodifferential operators can be considered in the following more general context. For m ∈ R,
consider the spaces of formal power series

Sm(Ω,H) =

{ ∞∑
j=0

h−m+j/2sj(x) : sj ∈ C∞(Ω,H)

}
,

e−ψ(x)/hSm(Ω,H) =

{ ∞∑
j=0

h−m+j/2e−ψ(x)/hsj(x) : sj ∈ C∞(Ω,H)

}
,

S0(Ω∗,B(H,K)) =

{ ∞∑
j=0

hjaj(x, ξ) : aj ∈ C∞(Ω∗,B(H,K))

}
.

The operator-valued functions in S0(Ω∗,B(H,K)) are called symbols. For any symbol a = a(x, ξ;h)
in S0(Ω∗,B(H,K)), one can define an operator Op(a) from e−ψ(x)/hSm(Ω,H) into e−ψ(x)/hSm(Ω,K)
by the formula

Op(a)(e−ψ(x)/hs(x, h)) = e−ψ(x)/h
∑
α∈NN

h|α|

i|α|α!
∂αξ a(x, i∇ψ(x);h)∂αy (eχ(x,y)/hs(y, h))y=x,
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χ(x, y) = ψ(y) − ψ(x) − (y − x).∇ψ(x) = O(|x − y|2), s ∈ Sm(Ω,H). Op(a) is called an h-
pseudodifferential the operator with operator-valued symbol a(x, ξ;h) =

∞∑
j=0

hjaj(x, ξ). The function

a0(x, ξ) (coefficient of h0) is called principal symbol of Op(a). Furthermore, such operators verify
eψ(x)/hOp(a)(e−ψ(x)/hs(x, h)) ∈ Sm(Ω,H) and can be composed by using the formula

Op(b) ◦Op(a) = Op(b ♯ a), (3.1)

b ♯ a(x, ξ;h) =
∑
α∈NN

h|α|

i|α|α!
∂αξ b(x, ξ;h)∂

α
x a(x, ξ;h) ∈ S0(Ω∗,B(H,K)).

where a ∈ S0(Ω∗,B(H,K)), b ∈ S0(Ω∗,B(K,L)) and the range of Op(a) is contained in the domain
of Op(b). This formula makes it possible to inverse asymptotically operators Op(a), whose principal
symbol a0(x, ξ) is invertible as a linear operator from H into K.

3.2 Representation of the effective Hamiltonian
Let Ω ⊂ RNx be an open neighborhood of 0 and V ∈ C∞(Ω,B(H2(RN ′

y ), L2(RN ′

y ))) be ∆y-compact:

V (x, y)(−∆y + 1)−1 ∈ C∞(Ω,B(L2(RN
′

y ))). (3.2)

Thus, P is self-adjoint on L2(RNx × RN ′

y ) with domain the Sobolev space H2(RNx × RN ′

y ), as well as
the operator Q(x) is self-adjoint on L2(RN ′

y ) with domain H2(RN ′

y ).
For the sake of simplicity, we take into account only the first electronic level λ1(x) = inf(σ(Q(x))

and call u1(x, y) the first eigenfunction of Q(x) associated to λ1(x) and normalized,
∥u1(x, · · · )∥L2(RN′

y ) = 1 in L2(RN ′

y ) for any x ∈ RN . We also assume that λ1(x) is separated by
a constant gap from the rest of the spectrum σ(Q(x)), i.e.,

inf
x∈RN

(
inf
(
σ(Q(x)) \ {λ1(x)}

))
> 0, (3.3)

and λ1(x) has a unique and non-degenerate minimum at 0:

λ1(x) ≥ 0, λ−1
1 (0) = {0}, λ′1(0) = 0, λ′′1(0) > 0. (3.4)

It can be shown that λ1 ∈ C∞(Ω,R) and u1 ∈ C∞(Ω,H2(RN ′

y )) (cf. [10]). In particular, the assump-
tions (3.2) and (3.3) imply that the orthogonal projection Π(x) on the subspace of L2(RN ′

y ), spanned
by u1(x, · · · ), x ∈ Ω, is C2-regular with respect to x (see [4]). To construct the effective Hamiltonian
of P , the idea here is to use the pseudodifferential calculus with operator-valued symbols developed
previously.

For λ ∈ C, Reλ < inf(σ(Q(x)) \ {λ1(x)}), we consider the Grushin operator

Pλ =

(
P − λ u1
⟨ · , u1⟩y 0

)
acting on L2(RNx ×RN ′

y )⊕L2(RN ′

y ), where ⟨ · , u1⟩y is the inner product in L2(RN ′

y ). It follows from the
assumptions that Pλ = Op(aλ) is an h-pseudodifferential operator in x, from e−ψ(x)/hSm(Ω,H2(RN ′

y ))

into e−ψ(x)/hSm(Ω, L2(RN ′

y )), with the operator-valued symbol aλ,

aλ(x, ξ) =

(
ξ2 +Q(x)− λ u1

⟨ · , u1⟩y 0

)
∈ S0(Ω∗,B(H2(RN

′

y )⊕ C, L2(RN
′

y )⊕ C)),

where ψ(x) is the Agmon distance associated to the metric λ1(x) dx2. We show that Pλ is invertible
and describe a method for finding its inverse. Using the fact that (∇ψ)2(x) = λ1(x) and the gap
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assumption (3.3), one can easily show that for |λ| small enough and ξ close enough to i∇ψ(x),
Re(Π̂(x)Q(x)Π̂(x)− λ) > 0 and thus aλ is invertible with inverse

b0(x, ξ;λ) =

(
Π̂(x)(ξ2 + Π̂(x)Q(x)Π̂(x)− λ)−1Π̂(x) u1

⟨ · , u1⟩y λ− ξ2 − λ1(x)

)
,

where Π̂(x) = 1−Π(x) (see, e.g., [1]). In particular, b0(x, ξ;λ) ∈ S0(Ω∗,B(L2(RN ′

y )⊕C,H2(RN ′

y )⊕C)).
Then using the composition formula (3.2), it is easy to construct a symbol

bλ(x, ξ;h) = b0(x, ξ;λ) + hb1(x, ξ;λ) + h2b2(x, ξ;λ) + · · ·

bλ(x, ξ;h) ∈ S0(Ω∗,B(L2(RN
′

y )⊕ C,H2(RN
′

y )⊕ C)),

such that aλ ♯ bλ(x, ξ;h) = 1 and Op(aλ) ◦ Op(bλ) = I, where I is the identity operator on
e−ψ(x)/hSm(Ω, L2(RN ′

y )⊕ C). Let us pose

Op(bλ) =

(
E(λ) E+(λ)
E−(λ) E∓(λ)

)
.

By Lemma 3.1 in [1], we know that E∓(λ) = Op(eλ(x, ξ;λ)) is h-pseudodifferential operator with the
symbol eλ(x, ξ;λ) ∈ S0(Ω∗,C) and its principal symbol is e0(x, ξ;λ) = λ− ξ2 − λ1(x). In particular,
λ − E∓(λ) is a scalar h-pseudodifferential operator with the principal symbol ξ2 + λ1(x). Moreover,
we have the following fundamental spectral reduction:

λ ∈ σ(P ) ⇐⇒ λ ∈ σ(λ− E∓(λ)).

Hence, the spectral study of the Hamiltonian P on L2(RNx × RN ′

y ) is reduced to that of the h-
pseudodifferential operator λ − E∓(λ) on L2(RNx ), the so-called effective Hamiltonian of P . In fact,
one can show in many situations that λ − E∓(λ) = Pe + O(h2), which makes it easy to compare
(using, for example, the maximum principle) the eigenvalues of P and those of Pe = −h2∆x + λ1(x),
and then identify them when h decays to zero fast enough [4]. In the next section, this reduction will
justify our definition of the normal Birkhoff forms for P as those of the effective Hamiltonian Pe.

4 The Birkhoff normal forms for the Born–Oppenheimer
Hamiltonian and resonances

In the previous section, it has been established that the Born–Oppenheimer Hamiltonian P can be
reduced to the effective Hamiltonian Pe = −h2∆x + λ1(x) on L2(RNx ), modulo O(h2). Thus, it is
natural to define the Birkhoff normal forms of P as those of Pe modulo O(h2).

Definition 4.1. We call normal forms of the Born–Oppenheimer Hamiltonian P the Birkhoff normal
forms of the associated effective Hamiltonian Pe when the semiclassical parameter h tends to zero.

Assumption (3.4) implies that λ1(x) ∈ O3, and since H+λ1(x) ∈ D2, one can obtain the quantum
Birkhoff normal forms for Pe as a direct consequence of the Birkhoff normal form theorem (Theorem
2.1), when the potential energy operator V (x) = λ1(x) is regular and the Hessian matrix λ′′1(0)
is diagonal with the eigenvalues (ν21 , . . . , ν

2
N ), νj > 0. The complicated behavior of the dynamics

and spectrum of a molecular system happens under a resonance. In this case, to decide wether the
Hamiltonian has resonance frequencies or not, we need the following definitions.

Definition 4.2. The frequencies vector ν = (ν1, . . . , νN ) is non-resonant if k · ν =
N∑
j=1

kjνj ̸= 0 for all

k ∈ ZN \{0}. ν is resonant if ν1, . . . , νN are dependent over Z, i.e., there exist integers k1, . . . , kN ∈ Z,

not all zero, such that k1ν1 + · · · + kNνN = 0. The number r =
N∑
j=1

|kj | is called the degree of

resonance of Pe. In the particular resonant case, where νj = νckj for every j = 1, . . . , N , with νc > 0
and k1, . . . , kN ∈ N, the frequencies vector ν is said to be completely resonant.
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For a theoretical definition of resonances, the interested reader may consult the excellent paper [10].
As an application we study the dynamics near a local extremum of the effective Hamiltonian, for

which the frequencies are in 1 : 1 Darling–Dennison resonance (νj , νj). This is a well-known effect
in the overtone spectroscopy of molecules such as water molecule H2O, acetylene C2H2, methyli-
dynephosphane (phosphaethyne) HCP, . . . .

In what follows, we explicitly give the computations of Birkhoff normal forms in the 1 : 1 resonance
for P , therefore, for the effective Hamiltonian Pe of P , the situation which can be encountered in
physical models, like small molecules. So, all the following computations are valid modulo O(h2).

Consider the semiclassical harmonic oscillator with the resonant frequencies vector ν = (1, 1):

H =
1

2

(
− h2

∂2

∂x21
+ x21

)
+

1

2

(
− h2

∂2

∂x22
+ x22

)
and the symbol H(z1, z2) =

1
2 |z1|

2 + 1
2 |z2|

2, where zj = xj + iξj , j = 1, 2.
To find a Birkhoff normal form for P , we construct a formal series K3 in D3 such that ⟨H2,K3⟩W =

0. Thus, K3 =
∑

α,β∈N2, 2ℓ+|α|+|β|=3

hℓzαz β and we should verify the resonance relation ⟨ν, β − α⟩ = 0.

Let α = (α1, α2), β = (β1, β2) ∈ N2,

⟨ν, β − α⟩ = 0 ⇐⇒ β1 − α1 + β2 − α2 = 0 ⇐⇒ α1 + α2 = β1 + β2. (4.1)

We then look for all monomials of order 3 of type zα1
1 zα2

2 z β1

1 z β2

2 satisfying the resonance relation (4.1).
The system {

α1 + α2 + β1 + β2 = 3,

α1 + α2 = β1 + β2

does not admit solutions in N. Thus, there is no monomial in D3 verifying |α| + |β| = 3 and the
resonance relation (4.1), K3 = 0, but one can calculate K4 ∈ D4. The couples α = (α1, α2) ∈ N2 and
β = (β1, β2) ∈ N2 which verify the system α1 + α2 + β1 + β2 = 4 and α1 + α2 = β1 + β2, are

α = β = (1, 1); α = β = (2, 0); α = β = (0, 2);

α = (2, 0) and β = (0, 2); α(0, 2) and β = (2, 0).

Therefore, K4 is generated by the monomials |z1|4; |z2|4; |z1|2|z2|2; z21z 2
2 ; z 2

1 z
2
2 and h2. Since K4 is

real, we have

K4 = a1|z1|4 + a2|z2|4 + a3|z1|2|z2|2 + a4 Re(z21 z 2
2 ) +O(h2); a1, a2, a3, a4 ∈ R.

We can use Taylor series for λ1(x) to determine the coefficients a1, a2, a3 and a4. Remember that
Pe = H + λ

(3)
1 (x) + λ

(4)
1 (x) + · · · ,

λ
(3)
1 (x) =

1

12
√
2

∂3λ1
∂x31

(0)x31 +
1

4
√
2

∂3λ1
∂x21∂x2

(0)x21x2 +
1

4
√
2

∂3λ1
∂x1∂x22

(0)x1x
2
2 +

1

12
√
2

∂3λ1
∂x32

(0)x32.

By setting yj = 1√
2
(zj + zj), j = 1, 2, and after a long but straightforward calculation, we can

determine all monomials that are in K4,

− 5

48

[(∂3λ1
∂x31

(0)
)2

+
( ∂3λ1
∂x21∂x2

(0)
)2]

|z1|4 −
5

48

[(∂3λ1
∂x32

(0)
)2

+
( ∂3λ1
∂x1∂x22

(0)
)2]

|z2|4

+
1

8

[
∂3λ1
∂x31

(0)
∂3λ1
∂x21∂x2

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x22∂x1

(0)

+
∂3λ1
∂x31

(0)
∂3λ1
∂x22∂x1

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x21∂x2

(0)

]
|z1|2|z2|2

+
1

6

[(( ∂3λ1
∂x21∂x2

(0)
)2

+
( ∂3λ1
∂x22∂x1

(0)
)2)]

|z1|2|z2|2
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− 1

192

[
∂3λ1
∂x31

(0)
∂3λ1
∂x21∂x2

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x1∂x22

(0)

+
∂3λ1
∂x31

(0)
∂3λ1
∂x1∂x22

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x21∂x2

(0)

]
Re(z21z 2

2 ).

The fourth degree Taylor polynomial for λ1(x) at 0 is given by

λ
(4)
1 (x1, x2) =

1

4!

∂4λ1
∂x41

(0)x41 +
1

4!

∂4λ1
∂x42

(0)x42 +
1

6

∂4λ1
∂x31∂x2

(0)x31x2

+
1

6

∂4λ1
∂x1∂x32

(0)x1x
3
2 +

1

4

∂4λ1
∂x21∂x

2
2

(0)x21x
2
2.

It is easy to see that only 1
4!
∂4λ1

∂x4
1
(0)x41, 1

4
∂4λ1

∂x2
1∂x

2
2
(0)x21x

2
2 and 1

4!
∂4λ1

∂x4
2
(0)x42 contain the terms of K4,

the remainder terms are absorbed by the rest of the Taylor series

y41 =
1

4
(z1 + z1)

4 =
1

4

(
z41 + 4z21 |z1|2 + 6|z1|4︸ ︷︷ ︸

∈K4

+4z 2
1 |z1|2 + z 4

1

)
,

y42 =
1

4
(z2 + z2)

4 =
1

4

(
z42 + 4z22 |z2|2 + 6|z2|4︸ ︷︷ ︸

∈K4

+4z 2
2 |z2|2 + z 4

2

)
,

y21y
2
2 =

1

4
(z1 + z1)

2(z2 + z2)
2 =

1

4
z21z

2
2 +

1

4
z21z

2
2︸︷︷︸

∈K4

+
1

2
z 2
1 |z2|2

+
1

4
z 2
1 z

2
2︸︷︷︸

∈K4

+
1

4
z 2
1 z

2
2 +

1

2
z 2
1 |z2|2 +

1

2
z22 |z1|2 +

1

2
|z1|2z 2

2 + |z1|2|z2|2︸ ︷︷ ︸
∈K4

.

Therefore,

a1 =
1

16

∂4λ1
∂x41

(0)− 5

48

[(∂3λ1
∂x31

(0)
)2

+
( ∂3λ1
∂x21∂x2

(0)
)2]

, (4.2)

a2 =
1

16

∂4λ1
∂x42

(0)− 5

48

[(∂3λ1
∂x32

(0)
)2

+
( ∂3λ1
∂x1∂x22

(0)
)2]

,

a3 =
1

4

∂4λ1
∂x21∂x

2
2

(0) +
1

8

[(∂3λ1
∂x31

(0)
∂3λ1
∂x21∂x2

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x22∂x1

(0)
)

+
(∂3λ1
∂x31

(0)
∂3λ1
∂x22∂x1

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x21∂x2

(0)
)]

+
1

6

[(( ∂3λ1
∂x21∂x2

(0)
)2

+
( ∂3λ1
∂x22∂x1

(0)
)2)]

,

a4 =
1

8

∂4λ1
∂x21∂x

2
2

(0)− 1

192

[
∂3λ1
∂x31

(0)
∂3λ1
∂x21∂x2

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x1∂x22

(0)

+
∂3λ1
∂x31

(0)
∂3λ1
∂x1∂x22

(0) +
∂3λ1
∂x32

(0)
∂3λ1
∂x21∂x2

(0)

]
.

The Weyl quantization Opw(K4) of K4 is given by

Opw(K4) = a1Opw
(
|z1|4

)
+ a2Opw

(
|z2|4

)
+ a3Opw

(
|z1|2|z2|2

)
+ a4Opw

(
Re(z21z 2

2 )
)
+O(h2).

Furthermore,

|z1|4 = x41 + ξ41 + 2x21ξ
2
1 ,

|z2|4 = x42 + ξ42 + 2x22ξ
2
2 ,

|z1|2|z2|2 = x21x
2
2 + x21ξ

2
2 + x22ξ

2
1 + ξ21ξ

2
2 ,
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Re(z21z 2
2 ) = x21x

2
2 − x21ξ

2
2 − x22ξ

2
1 + ξ21ξ

2
2 + 4x1x2ξ1ξ2,

then the Weyl quantization of every monomial gives

Opw
(
|z1|4

)
= x41 + h4

∂4

∂x41
− h2

[
2x21

∂2

∂x21
+ 1
]
,

Opw
(
|z2|4

)
= x42 + h4

∂4

∂x42
− h2

[
2x22

∂2

∂x22
+ 1
]
,

Opw
(
|z1|2|z2|2

)
= x21x

2
2 − h2

[
x21

∂2

∂x22
+ x22

∂2

∂x21
− h2

∂4

∂x21∂x
2
2

]
,

Opw(Re(z21z 2
2 )) = x21x

2
2 − h2

[
− x21

∂2

∂x22
− x22

∂2

∂x21
− h2

∂4

∂x21∂x
2
2

+ 2x1x2
∂2

∂x1∂x2
+ 2
]
.

Finally, we obtain the following Birkhoff normal form in the 1 : 1 resonance of the Hamiltonian P
with the electronic energy level λ1(x):

H +Opw(K4) =
1

2

(
− h2

∂2

∂x21
+ x21

)
+

1

2

(
− h2

∂2

∂x22
+ x22

)
+ a1

[
x41 + ~4

∂4

∂x41
− h2

(
x21

∂2

∂x21
+ 2
)]

+ a2

[
x42 + h4

∂4

∂x42
− h2

(
x22

∂2

∂x22
+ 2
)]

+ a3

[
x21x

2
2 − h2

(
x21

∂2

∂x22
+ x22

∂2

∂x21
− h2

∂4

∂x21∂x
2
2

)]
+ a4

[
x21x

2
2 + h2x21

∂2

∂x22
+ h2x22

∂2

∂x21
+ h4

∂4

∂x21∂x
2
2

− 4h2x1x2
∂2

∂x1∂x2
+ 2h2x1

∂

∂x1
+ 2h2x2

∂

∂x2

]
+O(h2).

Remark 4.1. To study just a small neighborhood of some fixed energy level, it suffices to take the
first electronic level λ1(x) of Q(x). However, in order to study a larger range of energy, we shall as well
treat the case of several electronic levels λ1(x), . . . , λN (x) (N arbitrary), and assume that there exists
a gap between them and the rest of the spectrum of Q(x). In such a case, the effective Hamiltonian is
an N ×N matrix of pseudodifferential operators; does this general situation lead to the same Birkhoff
normal form theorem? We hope to investigate this interesting question in a future work.

5 Numerical results for the 1 : 1 resonance
The 1 : 1 symbol H(x, ξ) = 1

2 (x
2
1 + ξ21) +

1
2 (x

2
2 + ξ22), x = (x1, x2), ξ = (ξ1, ξ2), of the harmonic

oscillator is defined by using the Maple notation as follows:

| let H =Maple. to−poly ”0.5 ∗ x[1]^2+0.5 ∗ xi[1]^2+0.5 ∗ x[2]^2+0.5 ∗ xi[2]^2”;;

H is converted in the complex coordinates to H(z1, z2) =
1
2 |z1|

2+ 1
2 |z2|

2, zj = 1√
2
(xj + iξj), j = 1, 2.

In order to deal with harmonic oscillators in real variables (xj , ξj), we need to use the new variables
x′j =

1√
2
(xj + iξj), ξ′j = 1√

2
(xj − iξj), j = 1, 2. The harmonic oscillator has now the required form

H = x′1ξ
′
1 + x′2ξ

′
2.

| let Hz = coordz H;;
| Maple. of−poly Hz;;
| − : string = ”1 ∗ x[1]^1 ∗ xi[1]^1+1 ∗ x[2]^1 ∗ xi[2]^1”
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We add now a simple perturbation λ1(x1, x2) = x21x
2
2, which we convert to complex coordinates:

| let λ1 = Maple.to−poly ”x[1]^2 ∗ x[2]^2”;;
| let λ1z = coordz λ1;;
| Maple.of−poly vz;;
| − : string =

| ”1.0606601810596428 ∗ x[2]^1 ∗ xi[2]^2+0.3535533936865476 ∗ x[2]^3+
| 1.0606601810596428 ∗ x[2]^2 ∗ xi[2]^1+0.3535533936865476 ∗ xi[2]^3”

Thus, in the complex coordinates (x′j , ξ
′
j) we have

λ1 = x21x
2
2 = 0, 25x′21 x

′2
2 + 0, 5x′21 x

′
2ξ

′
2 + 0, 25x′21 ξ

′2
2 + 0, 5x′1x

′2
2 ξ

′
1

+ x′1x
′
2ξ

′
1ξ

′
2 + 0, 5x′1ξ

′
1ξ

′2
2 + 0, 25x′22 ξ

′2
1 + 0, 5x′2ξ

′2
1 ξ

′
2 + 0, 25 ξ′21 ξ

′2
2 .

We consider now the Hamiltonian Pe = H + λ1:

| let Hz = Weyl . add Hz vz;;

Define the frequency vector [1; 1] and apply Birkhoff procedure at order 4:

| let freq = [ | one; of−int 1 | ]; ;
| let kz = birkhoff freq hz 4;;

Then we get the normalized Hamiltonian kz, which we convert in the real coordinates and print the
result:

| let k = coordx kz;;
| Maple. of−poly k;;
| − : string =

| ”0.5 ∗ x[1]^2+0.5 ∗ xi[1]^2+0.5 ∗ x[2]^2+0,5 ∗ xi[2]^2+1,5 ∗ x[1]^2 ∗ x[2]^2
| +0,5 ∗ x[1]^2 ∗ xi[2]^2+0,5 ∗ x[2]^2 ∗ xi[1]^2+1,5 ∗ xi[1]^2 ∗ xi[2]^2
| +2 ∗ x[1] ∗ x[2] ∗ xi[1] ∗ xi[2]

We see from formula (4.2) that a1 = a2 = 0, a3 = 1
4

∂4λ1

∂x2
1∂x

2
2
(0) = 1 and a4 = 1

8
∂4λ1

∂x2
1∂x

2
2
(0) = 1

2 . Hence,

K4 = a3|z1|2|z2|2 + a4 Re(z21z2 2) +O(h2)

= x21x
2
2 + x21ξ

2
2 + x22ξ

2
1 + ξ21ξ

2
2 +

1

2

(
x21x

2
2 − x21ξ

2
2 − x22ξ

2
1 + ξ21ξ

2
2 + 4x1x2ξ1ξ2

)
+O(h2)

=
3

2
x21x

2
2 +

1

2
x21ξ

2
2 +

1

2
x22ξ

2
1 +

3

2
ξ21ξ

2
2 + 2x1x2ξ1ξ2 +O(h2)

and

H +K4 =
1

2
x21 +

1

2
ξ21 +

1

2
x22 +

1

2
ξ22 +

3

2
x21x

2
2 +

1

2
x21ξ

2
2 +

1

2
x22ξ

2
1 +

3

2
ξ21ξ

2
2 + 2x1x2ξ1ξ2 +O(h2).

These results are qualitatively identical to those obtained above over a Maple module, the Birkhoff
module and the normal form algorithm.
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Abstract. In this paper, the existence and uniqueness of solutions for a nonlinear generalized pro-
portional fractional functional integro-differential Langevin equation involving variable coefficient via
nonlocal multi-point integral conditions are investigated by using Banach’s, Schaefer’s and Krasnosel-
skii’s fixed point theorems. Different types of Ulam–Hyers stability are also established. Finally, an
example is given to demonstrate applicability to the theoretical findings.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÁÀÍÀáÉÓ, ÛÄ×ÄÒÉÓÀ ÃÀ ÊÒÀÓÍÏÓÄËÓÊÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÄÁÉÓ
ÂÀÌÏÚÄÍÄÁÉÈ ÂÀÌÏÊÅËÄÖËÉÀ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀ ÀÒÀßÒ×ÉÅÉ ÂÀÍÆÏÂÀÃÄ-
ÁÖËÉ ÐÒÏÐÏÒÝÉÖËÉ ßÉËÀÃ-×ÖÍØÝÉÏÍÀËÖÒÉ ÉÍÔÄÂÒÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ËÀÍÑÄÅÀÍÉÓ ÂÀÍÔÏ-
ËÄÁÉÓÈÅÉÓ ÝÅËÀÃÉ ÊÏÄ×ÉÝÉÄÍÔÉÓ ÛÄÌÝÅÄËÉ ÀÒÀËÏÊÀËÖÒÉ ÌÒÀÅÀËßÄÒÔÉËÉÀÍÉ ÉÍÔÄÂ-
ÒÀËÖÒÉ ÐÉÒÏÁÄÁÉÈ, ÀÂÒÄÈÅÄ ÃÀÃÂÄÍÉËÉÀ ÓáÅÀÃÀÓáÅÀ ÔÉÐÉÓ ÖËÀÌ-äÀÉÄÒÓÉÓ ÌÃÂÒÀÃÏÁÀ.
ÍÀÛÒÏÌÉÓ ÁÏËÏÓ ÌÏÝÄÌÖËÉÀ ÈÄÏÒÉÖËÉ ÃÀÓÊÅÍÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÌÀÂÀËÉÈÉ.
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1 Introduction
Fractional differential equations have used to be an excellent instrument in the mathematical mod-
elling of dynamical systems and real world problems, such as aerodynamics, polymer science, frac-
tals and chaotic, nonlinear control theory, signal and image processing, bioengineering and chemical
engineering, etc. However, a number of various definitions of fractional derivative and integral op-
erators of non-integer order can be found in literature. For more details, we refer the reader to
the books [20, 24, 29, 32]. Recently, Jarad et al. [22] introduced a new type of fractional derivative
operator, the so-called generalized proportional fractional (GPF) derivatives extended by local deriva-
tives [9]. The characteristic of the new derivative is that it involves two fractional orders, preserves the
semigroup property, possesses nonlocal character and upon limiting cases it converges to the original
function and its derivative. The GPF derivative is well behaved and has a various helpful over the
classical derivatives in the sense that it generalizes previously defined derivatives in the literature.
We list some recent papers which have been refined in frame of GPF derivative and other related
works [2, 7, 8, 37].

Several interesting and important areas of investigation fractional differential equations are devoted
to the existence theory and stability analysis of the solutions. In recent years, many authors have
discussed the questions on existence, uniqueness and different types of Ulam–Hyers (UH) stability
of solutions of initial and boundary value problems for fractional differential equations. The UH
stability is the essential and special type of stability analysis that researchers studied in the field of
mathematical analysis. The concept of Ulam stability of functional equations was firstly initiated by
Ulam [40, 41] and Hyers [21] who presented the partial answer to the Ulam question in the case of
Banach space. Thereafter, this type of stability is called the UH stability. In 1950, the Hyers stability
was generalized by Aoki [10]. Rassias [33,34] provided an interesting generalization of the UH stability
of linear and nonlinear mappings. The UH stability was initially applied to a linear differential equation
by Obloza [31]. We refer the reader to the recent works [1,5,11,12,14,17,23,28,36,42,43]. It should be
noted that the above-said areas of interest (existence and stability) have been fabulously deliberated
within the Riemann–Liouville, Caputo, Hilfer or Hadamard derivatives.

In 1908, Paul Langevin [26] introduced a concept of Langevin equation in a sense of ordinary deriva-
tive which is an important equation of mathematical physics. It is well known that a Langevin equation
have been widely used to describe the dynamical processes of various fluctuating environments such
as physics, chemistry and electrical engineering [16, 30, 44]. However, for a system in complex media,
the ordinary Langevin equation does not provide the correct representation of dynamical systems.
One of the possible ways of the ordinary Langevin equation is to replace the ordinary (integer-order)
derivative by the fractional-order derivative. The fractional Langevin equation was studied by various
researchers (for some recent works on fractional Langevin equations, see [6,13,15,18,27,38,39,45]). It is
to be noted that most exiting in literature results dealt with a fractional Langevin equation, have been
reported in the case of a constant coefficient H(t). However, the paper [4] has first discussed fractional
Langevin equation containing variable coefficient and supplemented with nonlocal-terminal fractional
boundary conditions. On the other hand, we claim that our approach in this paper is totally different
from paper [4] in the sense that different fractional derivative is accommodated, different boundary
conditions are associated, different fixed point theorems are used and UH stability is discussed which
has not studied in [4].

Motivated by [4, 15, 38, 39], in this paper we study th existence, uniqueness and different types of
UH stability for a nonlinear GPF functional integro-differential Langevin equation involving a variable
coefficient via nonlocal multi-point integral conditions:

C
a D

β,ρ(C
a D

α,ρ
+H(t)

)
x(t) = f(t, x(t), x(θ(t)), (Sx)(t)), t ∈ (a, T ], a > 0,

x(a) = γ, x(η) =

m∑
i=1

δiaIµi,ρx(ξi) + κ,
(1.1)

where C
a Dq,ρ denotes the GPF derivative operator of Caputo type of order q ∈ {α, β}, 0 < α, β ≤ 1,

1 < α+ β ≤ 2, ρ > 0, aIµi,ρ denotes the GPF integral opertator of order µi > 0, ρ > 0, i = 1, . . . ,m,
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H ∈ C([a, T ],R), f ∈ C([a, T ]× R3,R), θ : [a, T ] → [a, T ],

(Sx)(t) =
t∫

a

ϕ(t, s, x(s)) ds, t ∈ [a, T ],

ϕ : [a, T ]2 × R → [a,∞) is a continuous function. γ, κ, δi ∈ R and η, ξi ∈ (a, T ), i = 1, 2, . . . ,m.
The manuscript is structured as follows. In Section 2, we give some definitions and lemmas. In

Section 3, we establish some appropriate conditions for the existence results of solutions of problem
(1.1) by applying a variety of fixed point theorems due to Banach, Schaefer and Krasnoselskii. In
Section 4, we set up applicable results for different types of Ulam–Hyers stability to the solution of
problem (1.1). An example illustrating our results is given in Section 5.

2 Preliminaries
This section is devoted to definitions and lemmas that will be used throughout the paper. For their
justifications and proofs, we refer the reader to [22].

Definition 2.1 ([22]). For 0 < ρ ≤ 1, α ∈ C and Re(α) > 0, the GPF integral of f of order α is

(aIα,ρf)(t) =
1

ραΓ(α)

t∫
a

e
ρ−1
ρ (t−s)(t− s)α−1f(s) ds = ρ−αe

ρ−1
ρ t

aIα(e
1−ρ
ρ sf)(t),

where aIα is the Riemann–Liouville fractional integral [24].

Definition 2.2 ([22]). For 0 < ρ ≤ 1, α ∈ C with Re(α) ≥ 0, the Caputo type GPF derivative of f
of order α is

(Ca Dα,ρf)(t) =
1

ρn−αΓ(n− α)

t∫
a

e
ρ−1
ρ (t−s)(t− s)n−α−1(Dn,ρf)(s) ds,

where n = [Re(α)] + 1 and [Re(α)] represents the integer part of the real number α.

Lemma 2.1 ([22]). For 0 < ρ ≤ 1 and n = [Re(α)] + 1, we have (Ca Dα,ρ
aIα,ρf)(t) = f(t), and

(aIα,ρ C
a Dα,ρf)(t) = f(t)− e

ρ−1
ρ (t−a)

n−1∑
k=0

(Dk,ρf)(a)

ρkk!
(t− a)k.

Lemma 2.2 ([22]). Let α, β ∈ C be such that Re(α) ≥ 0 and Re(β) > 0. Then, for any 0 < ρ ≤ 1
and n = [Re(α)] + 1, we have

(i) (
aIα,ρe

ρ−1
ρ s(s− a)β−1

)
(t) =

Γ(β)

ραΓ(β + α)
e

ρ−1
ρ t(t− a)β+α−1, Re(α) > 0.

(ii) (
C
a Dα,ρe

ρ−1
ρ s(s− a)β−1

)
(t) =

ραΓ(β)

Γ(β − α)
e

ρ−1
ρ t(t− a)β−α−1, Re(β) > n.

(iii) (
C
a Dα,ρe

ρ−1
ρ s(s− a)k

)
(t) = 0, Re(α) > n, k = 0, 1, . . . , n− 1.

Lemma 2.3 (Arzelá–Ascoli theorem [3]). A subset M in C([a, b],R) with norm

∥f∥ = sup
t∈[a,b]

|f(t)|

is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b].
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Lemma 2.4 (Banach’s fixed point theorem [19]). Let M be a non-empty closed subset of a Banach
space E. Then any contraction mapping T from M into itself has a unique fixed point.

Lemma 2.5 (Schaefer’s fixed point theorem [19]). Let M be a Banach space and T : M → M be a
completely continuous operator and let the set G = {x ∈ M : x = κTx, 0 < κ ≤ 1} be bounded. Then
T has a fixed point in M.

Lemma 2.6 (Krasnoselskii’s fixed point theorem [25]). Let M be a closed, bounded, convex and
nonempty subset of a Banach space X. Let A, B be the operators such that

(i) Ax+ By ∈ M whenever x, y ∈ M;

(ii) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

For the sake of computational convenience, we make use of the following constants:

Λ :=
(η − a)αe

ρ−1
ρ (η−a)

ραΓ(α+ 1)
−

m∑
i=1

δi(ξi − a)α+µie
ρ−1
ρ (ξi−a)

ρα+µiΓ(α+ µi + 1)
̸= 0, (2.1)

Ω1 :=
(T − a)α+β

ρα+βΓ(α+ β + 1)

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)
, (2.2)

Ω2 :=
(T − a)α+β+1

ρα+βΓ(α+ β + 2)

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+ β + µi + 2)
+

(η − a)α+β+1

ρα+βΓ(α+ β + 2)

)
, (2.3)

Ω3 := aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)
, (2.4)

Ω4 :=
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|. (2.5)

Let E = C([a, T ],R) be the Banach space of all continuous functions from [a, T ] into R equipped
with the norm ∥x∥E = sup

t∈[a,T ]

{|x(t)|}. In order to transform the main problem into a fixed point

problem, problem (1.1) must be converted to an equivalent Volterra integral equation. Next, we
provide the following lemma.

Lemma 2.7. Let h : [a, T ] → R be a continuous function, 0 < α, β ≤ 1, 1 < α+β ≤ 2, and ρ, µi > 0,
i = 1, 2, . . . ,m. Then the function x ∈ E is the solution to the following linear GPF Langevin equation
equipped with the nonlocal integral conditions

C
a Dβ,ρ

(
C
a Dα,ρ +H(t)

)
x(t) = h(t), t ∈ (a, T ],

x(a) = γ, x(η) =

m∑
i=1

δiaIµi,ρx(ξi) + κ,
(2.6)
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if and only if x satisfies the following Volterra integral equation:

x(t) = aIα+β,ρh(t)− aIα,ρH(t)x(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρh(ξi)− aIα+β,ρh(η)

−
m∑
i=1

δiaIα+µi,ρH(ξi)x(ξi) + aIα,ρH(η)x(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a), (2.7)

where Λ is given by (2.1).

Proof. Let x be a solution of problem (2.6). By using Lemma 2.1 with Lemma 2.2(i), the first equation
of (2.6) can be written as an equivalent integral equation

x(t) = aIα+β,ρh(t)− aIα,ρH(t)x(t) + c1
(t− a)αe

ρ−1
ρ (t−a)

ραΓ(α+ 1)
+ c2e

ρ−1
ρ (t−a), (2.8)

where c1, c2 ∈ R.
From the first condition, x(a) = γ, we get c2 = γ. Taking the GPF integral operator aIµi,ρ into

both sides of (2.8), we have

aIµi,ρx(t) = aIα+β+µi,ρh(t)− aIα+µi,ρH(t)x(t) + c1
(t− a)α+µie

ρ−1
ρ (t−a)

ρα+µiΓ(α+ µi + 1)
+

γ(t− a)µie
ρ−1
ρ (t−a)

ρµiΓ(µi + 1)
.

From the second condition, we obtain c1 as follows:

c1 =
1

Λ

( m∑
i=1

δiaIα+β+µi,ρh(ξi)− aI
α+β,ρh(η)−

m∑
i=1

δiaIα+µi,ρH(ξi)x(ξi)

+ aIα,ρH(η)x(η) +

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
,

where Λ is defined by (2.1). Substituting c1 and c2 into (2.8), we get the Volterra integral equa-
tion (2.7).

Conversely, it is easily shown by direct calculation that the solution x(t) is given by (2.7) and
satisfies problem (2.6) under the given boundary conditions.

3 Main results
In this section, we establish the existence results of solutions for problem (1.1), which is studied by
applying Banach’s, Schaefer’s and Krasnolselskii’s fixed point theorems. Throughout this paper, the
expression aIb,ρf(s, x(s), x(θ(s)), (Sx)(s))(c) means that

aIb,ρFx(s)(c) :=
1

ρbΓ(b)

c∫
a

e
ρ−1
ρ (c−s)(c− s)b−1Fx(s) ds, c ∈ [a, T ],

where b ∈ {α, α+ µi, α+ β, α+ β + µi} and c ∈ {t, T, η, ξi}, i = 1, 2, . . . ,m. For simplicity, we set

Fx(t) = f
(
s, x(s), x(θ(s)), (Sx)(s)

)
(t).
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In view of Lemma 2.7, an operator A : E → E is defined by

(Ax)(t) = aIα+β,ρFx(s)(t)− aIα,ρH(s)x(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi) + aIα,ρH(s)x(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a), (3.1)

where Λ is defined by (2.1).
To proceed further, we introduce the following assumptions:

(H1) The functions f : [a, T ]× R3 → R and H : [a, T ] → R are continuous.

(H2) There exist the positive constants L1, L2 such that∣∣f(t, u1, u2, u3)− f(t, v1, v2, v3)
∣∣ ≤ L1

(
|u1 − v1|+ |u2 − v2|

)
+ L2|u3 − v3|,

for each t ∈ [a, T ] and ui, vi ∈ R, i = 1, 2, 3.

(H3) The function ϕ : [a, T ]2 × R → R is continuous and there exists a constant ϕ0 > 0 such that

|ϕ(t, s, u)− ϕ(t, s, v)| ≤ ϕ0|u− v|,

for each t, s ∈ [a, T ] and u, v ∈ R.

(H4) There exist the functions σ, τ , φ, ω ∈ C([a, T ],R+) such that

|f(t, u, v, w)| ≤ σ(t) + τ(t)|u|+ φ(t)|v|+ ω(t)|w|, u, v, w ∈ R, t ∈ [a, T ],

with
σ∗ = sup

t∈[a,T ]

σ(t), τ∗ = sup
t∈[a,T ]

τ(t), φ∗ = sup
t∈[a,T ]

φ(t), ω∗ = sup
t∈[a,T ]

ω(t).

(H5) |f(t, u, v, w)| ≤ g(t), ∀ (t, u, v, w) ∈ [a, T ]× R3 and g ∈ C([a, T ],R+).

3.1 Existence and uniqueness result via Banach’s fixed point theorem
The existence and uniqueness result of a solution for problem (1.1) will be proved by using Banach’s
fixed point theorem (Banach contraction mapping principle).

Theorem 3.1. Assume that (H1)–(H3) hold. If L < 1, where

L := 2L1Ω1 + L2ϕ0Ω2 +Ω3, (3.2)

and Ωi, i = 1, 2, 3, are given by (2.2)–(2.4), respectively, then (1.1) has a unique solution in E.

Proof. Firstly, we transform problem (1.1) into a fixed point problem, x = Ax, where A is defined
as in (3.1). Observe that the fixed points of the operator A are solutions of problem (1.1). Applying
Banach’s fixed point theorem, we show that A has a fixed point which is a unique solution of problem
(1.1).

Let sup
t∈[a,T ]

|f(t, 0, 0, 0)| := M1 < ∞. Next, we define a set Br1 := {x ∈ E : ∥x∥E ≤ r1} with

r1 ≥ Ω1M1 +Ω4

1− [2L1Ω1 + L2ϕ0Ω2 +Ω3]
.
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Notice that Br1 is a bounded, closed and convex subset of E. The proof is divided into two steps.
Step 1. We show that ABr1 ⊂ Br1 .

For any x ∈ Br1 , we have

|(Ax)(t)| ≤ aIα+β,ρ|Fx(s)|(T ) + aIα,ρ|H(s)| |x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)|(ξi) + aIα+β,ρ|Fx(s)|(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)|(ξi) + aI
α,ρ|H(s)| |x(s)|(η)

+

m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

≤ aIα+β,ρ
(
|Fx(s)− f(s, 0, 0, 0)|+ |f(s, 0, 0, 0)|

)
(T ) + aIα,ρ|H(s)| |x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ
(
|Fx(s)− f(s, 0, 0, 0)|+ |f(s, 0, 0, 0)|

)
(ξi)

+ aIα+β,ρ
(
|Fx(s)− f(s, 0, 0, 0)|+ |f(s, 0, 0, 0)|

)
(η) +

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)|(ξi)

+ aIα,ρ|H(s)| |x(s)|(η) +
m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|.

By using the property 0 < e
ρ−1
ρ (u−s) ≤ 1 for a ≤ s < u < t ≤ T and (H2)–(H3), we obtain

|(Ax)(t)| ≤ 1

ρα+βΓ(α+ β)

T∫
a

(T − s)α+β−1
(
(2L1 + L2ϕ0(s− a))r1 +M1

)
ds+ r1aI

α,ρ|H(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|
ρα+β+µiΓ(α+ β + µi)

×
ξi∫
a

(ξi − s)α+β+µi−1
(
(2L1 + L2ϕ0(s− a))r1 +M1

)
ds

+
1

ρα+βΓ(α+ β)

η∫
a

(η − s)α+β−1
(
(2L1 + L2ϕ0(s− a))r1 +M1

)
ds+ r1aIα,ρ|H(s)|(η)

+ r1

m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) +
m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

= (2L1r1 +M1)

[
(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
+ L2ϕ0r1

[
(T − a)α+β+1

ρα+βΓ(α+ β + 2)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+ β + µi + 2)
+

(η − a)α+β+1

ρα+βΓ(α+ β + 2)

)]

+ r1

[
aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]
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+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

≤ (2L1r1 +M1)Ω1 + L2ϕ0Ω2r1 +Ω3r1 +Ω4 ≤ r1,

then ∥Ax∥E ≤ r1, which implies that ABr1 ⊂ Br1 .
Step 2. We show that the operator A : E → E is a contraction mapping.

Let x, y ∈ E. Then for t ∈ [a, T ], we have

|(Ax)(t)− (Ay)(t)| ≤ aIα+β,ρ|Fx(s)− Fy(s)|(T ) + aIα,ρ|H(s)| |x(s)− y(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)− Fy(s)|(ξi) + aIα+β,ρ
(
|Fx(s)− Fy(s)|

)
(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)− y(s)|(ξi) + aIα,ρ|H(s)| |x(s)− y(s)|(η)
)

≤

{
2L1

[
(T − a)α+β

ρα+βΓ(α+β+1)
+

(T − a)α

|Λ|ραΓ(α+1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+β+µi + 1)
+

(η − a)α+β

ρα+βΓ(α+β+1)

)]

+ L2ϕ0

[
(T − a)α+β+1

ρα+βΓ(α+β+2)
+

(T − a)α

|Λ|ραΓ(α+1)

( m∑
i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+β+µi+2)
+

(η − a)α+β+1

ρα+βΓ(α+β+2)

)]

+ aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)}

∥x− y∥E

=
[
2L1Ω1 + L2ϕ0Ω2 +Ω3

]
∥x− y∥E = L∥x− y∥E,

which implies that ∥Ax − Ay∥E ≤ L∥x − y∥E. As L < 1, hence, by Banach’s fixed point theorem
(Lemma 2.4), the operator A is a contraction mapping. Therefore, A has only one fixed point, which
implies that problem (1.1) has a unique solution in E.

3.2 Existence result via Schaefer’s fixed point theorem
Next, the second existence result is based on Schaefer’s fixed point theorem.
Theorem 3.2. Assume that (H1) and (H4) hold. Then problem (1.1) has at least one solution on
[a, T ].
Proof. To show that A has at least a fixed point in E, the proof is divided into four steps.
Step 1. We show that the operator A is continuous.

Let {xn} be a sequence such that xn → x in E. Then, for each t ∈ [a, T ], we get

|(Axn)(t)− (Ax)(t)| ≤ aIα+β,ρ|Fxn(s)− Fx(s)|(T ) + aIα,ρ|H(s)| |xn(s)− x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fxn
(s)− Fx(s)|(ξi) + aIα+β,ρ|Fxn

(s)− Fx(s)|(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |xn(s)− x(s)|(ξi) + aIα,ρ|H(s)||xn(s)− x(s)|(η)
)

≤
[

(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)

+
(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
∥Fxn − Fx∥E +

[
aIα,ρ|H(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]

∥xn − x∥E

= Ω1∥Fxn
− Fx∥E +Ω3∥xn − x∥E.
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Since f and H are continuous, by the Lebesgue dominated convergent theorem, we have

|(Axn)(t)− (Ax)(t)| −→ 0 as n → ∞.

Hence,
∥Axn −Ax∥E −→ 0 as n → ∞.

Therefore, the operator A is continuous.
Step 2. We show that the operator A maps a bounded set into the bounded set in E.

Indeed, we show that for any r2 > 0, there exists a constant M2 > 0 such that for each x ∈ Br2 =
{x ∈ E : ∥x∥E ≤ r2}, we have ∥Ax∥E ≤ M2.

Then, for any t ∈ [a, T ] and x ∈ Br2 , we have

|(Ax)(t)| ≤ aIα+β,ρ|Fx(s)|(T ) + aIα,ρ|H(s)| |x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)|(ξi) + aIα+β,ρ|Fx(s)|(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)|(ξi) + aIα,ρ|H(s)| |x(s)|(η)

+

m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

≤ aIα+β,ρ
(
σ(s) + τ(s)|x(s)|+ φ(s)|x(θ(s))|+ ω(s)|(Sx)(s)|

)
(T ) + aIα,ρ|H(s)| |x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ
(
σ(s) + τ(s)|x(s)|+ φ(s)|x(θ(s))|+ ω(s)|(Sx)(s)|

)
(ξi)

+ aIα+β,ρ
(
σ(s) + τ(s)|x(s)|+ φ(s)|x(θ(s))|+ ω(s)|(Sx)(s)|

)
(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)|(ξi) + aIα,ρ|H(s)| |x(s)|(η) +
m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

≤ (σ∗ + τ∗r2 + φ∗r2)

[
(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
+ ω∗r2

[
(T − a)α+β+1

ρα+βΓ(α+ β + 2)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+ β + µi + 2)
+

(η − a)α+β+1

ρα+βΓ(α+ β + 2)

)]

+ r2

[
aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

= (σ∗ + τ∗r2 + φ∗r2)Ω1 + (ω∗Ω2 +Ω3)r2 +Ω4,

and we get the estimate

∥Ax∥E ≤
[
(τ∗ + φ∗)Ω1 + ω∗Ω2 +Ω3

]
r2 + σ∗Ω1 +Ω4 := M2,

where Ωi, i = 1, 2, 3, 4, are given by (2.2)–(2.5), respectively.
Step 3. We show that the operator A is equicontinuous.
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Let Br2 be a bounded set of E as defined in Step 2, then, for x ∈ Br2 and t1, t2 ∈ [a, T ] with
t1 < t2, we have

|(Ax)(t2)− (Ax)(t1)|

≤ 1

ρα+βΓ(α+ β)

t1∫
a

∣∣∣e ρ−1
ρ (t2−s)(t2 − s)α+β−1 − e

ρ−1
ρ (t1−s)(t1 − s)α+β−1

∣∣∣ |Fx(s)| ds

+
1

ρα+βΓ(α+ β)

t2∫
t1

e
ρ−1
ρ (t2−s)(t2 − s)α+β−1|Fx(s)| ds

+
1

ραΓ(α)

t1∫
a

∣∣∣e ρ−1
ρ (t2−s)(t2 − s)α−1 − e

ρ−1
ρ (t1−s)(t1 − s)α−1

∣∣∣ |H(s)| |x(s)| ds

+
1

ραΓ(α)

t2∫
t1

e
ρ−1
ρ (t2−s)(t2 − s)α−1|H(s)| |x(s)| ds+ |γ|

∣∣∣e ρ−1
ρ (t2−a) − e

ρ−1
ρ (t1−a)

∣∣∣
+

∣∣(t2 − a)αe
ρ−1
ρ (t2−a) − (t1 − a)αe

ρ−1
ρ (t1−a)

∣∣
|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|
ρα+β+µiΓ(α+ β + µi)

×
ξi∫
a

e
ρ−1
ρ (ξi−s)(ξi − s)α+β+µi−1

∣∣f(s, x(s), x(θ(s)), (Sx)(s))∣∣ ds
+

1

ρα+βΓ(α+ β)

η∫
a

e
ρ−1
ρ (η−s)(η − s)α+β−1

∣∣f(s, x(s), x(θ(s)), (Sx)(s))∣∣ ds
+

m∑
i=1

|δi|
ρα+µiΓ(α+ µi)

ξi∫
a

e
ρ−1
ρ (ξi−s)(ξi − s)α+µi−1|H(s)| |x(s)| ds

+
1

ραΓ(α)

η∫
a

e
ρ−1
ρ (η−s)(η − s)α−1|H(s)| |x(s)| ds+

m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)

≤ 1

ρα+βΓ(α+ β)

t1∫
a

∣∣∣e ρ−1
ρ (t2−s)(t2 − s)α+β−1 − e

ρ−1
ρ (t1−s)(t1 − s)α+β−1

∣∣∣
×
(
σ∗ + τ∗r2 + φ∗r2 + ω∗r2(s− a)

)
ds+

1

ρα+βΓ(α+ β)

t2∫
t1

e
ρ−1
ρ (t2−s)(t2 − s)α+β−1

×
(
σ∗ + τ∗r2 + φ∗r2 + ω∗r2(s− a)

)
ds

+
r2

ραΓ(α)

t1∫
a

∣∣∣e ρ−1
ρ (t2−s)(t2 − s)α−1 − e

ρ−1
ρ (t1−s)(t1 − s)α−1

∣∣∣ |H(s)| ds

+
r2

ραΓ(α)

t2∫
t1

e
ρ−1
ρ (t2−s)(t2 − s)α−1|H(s)| ds

+ |γ|
∣∣e ρ−1

ρ (t2−a) − e
ρ−1
ρ (t1−a)

∣∣+ ∣∣(t2 − a)αe
ρ−1
ρ (t2−a) − (t1 − a)αe

ρ−1
ρ (t1−a)

∣∣
|Λ|ραΓ(α+ 1)
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×
( m∑

i=1

|δi|
ρα+β+µiΓ(α+ β + µi)

ξi∫
a

(ξi − s)α+β+µi−1
(
σ∗ + τ∗r2 + φ∗r2 + ω∗r2(s− a)

)
ds

+
1

ρα+βΓ(α+ β)

η∫
a

(η − s)α+β−1
(
σ∗ + τ∗r2 + φ∗r2 + ω∗r2(s− a)

)
ds

+ r2

m∑
i=1

|δi|
ρα+µiΓ(α+ µi)

ξi∫
a

e
ρ−1
ρ (ξi−s)(ξi − s)α+µi−1|H(s)| ds

+
r2

ραΓ(α)

η∫
a

e
ρ−1
ρ (η−s)(η − s)α−1|H(s)| ds+

m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
,

which implies that
|(Ax)(t2)− (Ax)(t1)| −→ 0, as t1 → t2,

As a result of Steps 1–3 together with the Arzelá–Ascoli theorem (Lemma 2.3), we conclude that
the operator A : E → E is completely continuous.
Step 4. We show that the set D = {x ∈ E : x = εAx, 0 < ε < 1} is bounded (A priori bounds).

Let x ∈ D, then x = εAx. For any t ∈ [a, T ], one can get the estimate

(Ax)(t) = ε

[
aIα+β,ρFx(s)(t)− aI

α,ρH(s)x(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi) + aI
α,ρH(s)x(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a)

]
.

It follows from (H3)-(H4) and 0 < ε < 1 that for any t ∈ [a, T ],

|x(t)| = |ε(Ax)(t)| ≤ (σ∗ + τ∗r2 + φ∗r2)

[
(T − a)α+β

ρα+βΓ(α+ β + 1)

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
+ ω∗r2

[
(T − a)α+β+1

ρα+βΓ(α+ β + 2)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+ β + µi + 2)
+

(η − a)α+β+1

ρα+βΓ(α+ β + 2)

)]

+ r2

[
aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

= (σ∗ + τ∗r2 + φ∗r2)Ω1 + (ω∗Ω2 +Ω3)r2 +Ω4.

Thus,
∥x∥E ≤

[
(τ∗ + φ∗)Ω1 + ω∗Ω2 +Ω3

]
r2 + σ∗Ω1 +Ω4 := N < ∞.
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This implies that D is bounded.
Hence, as a consequence of Schaefer’s fiexd point theorem (Lemma 2.5), the operator A has at

least one fixed point which is the solution of problem (1.1).

3.3 Existence result via Krasnoselskii’s fixed point theorem
By using Krasnoselskii’s fixed point theorem, we obtain the last existence theorem.

Theorem 3.3. Assume that (H1), (H3), (H5) hold. Then problem (1.1) has at least one solution on
[a, T ] if Ω3 < 1, where Ω3 is defined by (2.4).

Proof. Let sup
t∈[a,T ]

|g(t)| = ∥g∥E. By choosing a suitable Br3 = {x ∈ E : ∥x∥E ≤ r3}, where

r3 ≥ Ω1∥g∥E +Ω4

1− Ω3

with ∥g∥E = sup
t∈[a,T ]

|g(t)|, we define the operators A1 and A2 on Br3 by

(A1x)(t) = aIα+β,ρFx(s)(t) +
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)
)
,

(A2x)(t) =
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

(
aIα,ρH(s)x(s)(η)−

m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a) − aIα,ρH(s)x(s)(t).

To show that A1x+A2y ∈ Br3 , let x, y ∈ Br3 . Then we have

∥A1x+A2y∥E ≤ sup
t∈[a,T ]

{
aIα+β,ρ|Fx(s)|(t) + aIα,ρ|H(s)| |y(s)|(t)

+
(t− a)αe

ρ−1
ρ (t−a)

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)|(ξi) + aIα+β,ρ|Fx(s)|(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |y(s)|(ξi) + aIα,ρ|H(s)| |y(s)|(η)

+

m∑
i=1

|γ| |δi|(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
+ |γ|e

ρ−1
ρ (η−a) + |κ|

)
+ |γ|e

ρ−1
ρ (t−a)

}

≤ ∥g∥E
[

(T − a)α+β

ρα+βΓ(α+β+1)
+

(T − a)α

|Λ|ραΓ(α+1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+β+µi+1)
+

(η − a)α+β

ρα+βΓ(α+β+1)

)]

+ ∥x∥E
[
aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ||δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ| ≤ Ω1∥g∥E +Ω3r3 +Ω4 ≤ r3.

This implies that A1x+A2y ∈ Br3 , which satisfies assumption (i) of Lemma 2.6.
Show that assumption (ii) of Lemma 2.6 is satisfied, the continuity of f and H implies that the

operator A1 is continuous. For x ∈ Br3 , we obtain ∥A1x∥E ≤ Ω1∥g∥E. This means that the operator
A1 is uniformly bounded on Br3 . Next, we show that the operator A1 is equicontinuous. Setting

sup
(t,z1,z2,z3)∈[a,T ]×B3

r3

|f(t, z1, z2, z3)| = f∗ < ∞,



112 S. Pleumpreedaporn, W. Sudsutad, C. Thaiprayoon, S. A. Jose

for a ≤ t1 < t2 ≤ T , we have

|(A1x)(t2)− (A1x)(t1)| ≤
∣∣
aIα+β,ρFx(s)(t2)− aIα+β,ρFx(s)(t1)

∣∣
+

∣∣(t2 − a)αe
ρ−1
ρ (t2−a) − (t1 − a)αe

ρ−1
ρ (t1−a)

∣∣
|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)|(ξi) + aIα+β,ρ|Fx(s)|(η)
)

≤ f∗
[

1

ρα+βΓ(α+ β + 1)

(∣∣(t2 − a)α+β − (t1 − a)α+β − (t2 − t1)
α+β

∣∣+ (t2 − t1)
α+β

)
+

∣∣(t2 − a)αe
ρ−1
ρ (t2−a) − (t1 − a)αe

ρ−1
ρ (t1−a)

∣∣
|Λ|ρα+βΓ(α+ 1)

(
(η − s)α+β

ραΓ(α+ β + 1)
+

m∑
i=1

|δi|(ξi − s)α+β+µi

ρα+µiΓ(α+ β + µi + 1)

)]
,

which is independent of x and |(A1x)(t2) − (A1x)(t1)| → 0 as t1 → t2. Therefore, the operator A1

is equicontinuous. So, the operator A1 is relatively compact on Br3 . Then, by the Arzelá–Ascoli
theorem, the operator A1 is compact on Br3 , and assumption (ii) of Lemma 2.6 is satisfied. It is easy
to see that, using Ω3 < 1, we come to the conclusion that the operator A2 is a contraction mapping,
and also assumption (iii) of Lemma 2.6 holds. Hence, the operators A1 and A2 satisfy all assumptions
of Krasnoselskii’s fixed point theorem (Lemma 2.6). Therefore, problem (1.1) has at least one solution
on [a, T ].

4 Ulam–Hyers stability results
In this section, we investigate some necessary and sufficient conditions for Ulam–Hyers (UH) stabil-
ity, generalized Ulam–Hyers (GUH) stability, Ulam–Hyers–Rassias (UHR) stability, and generalized
Ulam–Hyers–Rassias (GUHR) stability of problem (1.1).

Definition 4.1 ([35]). Problem (1.1) is UH stable if there exists a real number Φ > 0 such that for
ϵ > 0 and solution z ∈ E1 = C1([a, T ],R) of the inequality∣∣∣Ca Dβ,ρ

(
C
a Dα,ρ +H(t)

)
z(t)− f

(
t, z(t), z(θ(t)), (Sz)(t)

)∣∣∣ ≤ ϵ, t ∈ [a, T ], (4.1)

there exists a solution x ∈ E1 of problem (1.1) with

|z(t)− x(t)| ≤ Φϵ, t ∈ [a, T ].

Definition 4.2 ([35]). Problem (1.1) is GUH stable if there exists Φf ∈ C(R+,R+) with Φf (0) = 0
such that for each solution z ∈ E1 of inequality (4.1) there exists a solution x ∈ E1 of problem (1.1)
such that

|z(t)− x(t)| ≤ Φf ϵ, t ∈ [a, T ].

Definition 4.3 ([35]). Problem (1.1) is UHR stable with respect to Φf ∈ C([a, T ],R+) if there exists
a real number Cf,Φ > 0 such that for ϵ > 0 and for each solution z ∈ E1 of the inequality∣∣∣Ca Dβ,ρ

(
C
a Dα,ρ +H(t)

)
z(t)− f

(
t, z(t), z(θ(t)), (Sz)(t)

)∣∣∣ ≤ ϵΦf (t), t ∈ [a, T ], (4.2)

there exists a solution x ∈ E1 of problem (1.1) with

|z(t)− x(t)| ≤ Cf,ΦϵΦf (t), t ∈ [a, T ].

Definition 4.4 ([35]). Problem (1.1) is GUHR stable with respect to Φf ∈ C([a, T ],R+) if there
exists a real number Cf,Φ > 0 such that for each solution z ∈ E1 of the inequality∣∣∣Ca Dβ,ρ

(
C
a Dα,ρ +H(t)

)
z(t)− f

(
t, z(t), z(θ(t)), (Sz)(t)

)∣∣∣ ≤ Φf (t), t ∈ [a, T ],

there exists a solution x ∈ E1 of problem (1.1) such that

|z(t)− x(t)| ≤ Cf,ΦΦf (t), t ∈ [a, T ].
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Remark 4.1. It is clear that

(i) Definition 4.1 =⇒ Definition 4.2;

(ii) Definition 4.3 =⇒ Definition 4.4;

(iii) Definition 4.3 for Φf ( · ) = 1 =⇒ Definition 4.1.

Remark 4.2. A function z ∈ E1 is a solution of inequality (4.1) if and only if there exists a function
v ∈ C([a, T ],R) (dependent on z) such that

(i) |v(t)| ≤ ϵ, ∀ t ∈ [a, T ].

(ii) C
a Dβ,ρ(Ca Dα,ρ +H(t))z(t) = f(t, z(t), z(θ(t)), (Sz)(t)) + v(t), t ∈ [a, T ].

By Remark 4.2, the solution of the problem

C
a Dβ,ρ(Ca Dα,ρ +H(t))z(t) = f

(
t, z(t), z(θ(t)), (Sz)(t)

)
+ v(t), t ∈ [a, T ],

can be written by

z(t) = aIα+β,ρFz(s)(t)− aIα,ρH(s)z(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFz(s)(ξi)− aIα+β,ρFz(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)z(s)(ξi) + aIα,ρH(s)z(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a) + aIα+β,ρv(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρv(s)(ξi)− aIα+β,ρv(s)(η)
)
.

Firstly, we present an important lemma that will be used in the proofs of the first stability theorem.

Lemma 4.1. If z ∈ E1 satisfies (4.1), then the function z is a solution of the inequality

|z(t)− (Az)(t)| ≤ Ω1ϵ, 0 < ϵ ≤ 1, (4.3)

where Ω1 is given by (2.2).

Proof. From Remark 4.2, we obtain the inequality

|z(t)− (Az)(t)| ≤
∣∣∣∣aIα+β,ρv(s)(t) +

(t− a)αe
ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

×
( m∑

i=1

δiaIα+β+µi,ρv(s)(ξi)− aIα+β,ρv(s)(η)
)∣∣∣∣

≤
[

(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
ϵ = Ω1ϵ,

where Ω1 is given by (2.2), from which inequality (4.3) follows.

Now, we present the UH and GUH results.
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Theorem 4.1. Assume that (H1), (H2), (H3) are satisfied with L < 1, where L is defined by (3.2).
Then problem (1.1) is both UH stable and GUH stable on [a, T ].
Proof. Let z ∈ E1 be a solution of (4.1) and let x be the unique solution of problem (1.1),

C
a Dβ,ρ(Ca Dα,ρ +H(t))x(t) = f

(
t, x(t), x(θ(t)), (Sx)(t)

)
, t ∈ (a, T ]

x(a) = γ, x(η) =

m∑
i=1

δiaI
µi,ρx(ξi) + κ.

By applying the triangle inequality |u− v| ≤ |u|+ |v| and Lemma 4.1, we have

|z(t)− x(t)| =
∣∣∣∣z(t)− aIα+β,ρFx(s)(t) + aIα,ρH(s)x(s)(t)

− (t− a)αe
ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi) + aIα,ρH(s)x(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
− γe

ρ−1
ρ (t−a)

∣∣∣∣
=

∣∣z(t)− (Az)(t)+(Az)(t)− (Ax)(t)
∣∣ ≤ |z(t)− (Az)(t)|+ |(Az)(t)− (Ax)(t)| ≤ Ω1ϵ+L|z(t)−x(t)|.

This yields
|z(t)− x(t)| ≤ Ω1ϵ

1− L
.

By setting Φ = Ω1

1−L and L < 1, we end up with
|z(t)− x(t)| ≤ Φϵ.

Hence, problem (1.1) is UH stable. Moreover, if we set Φf (ϵ) = Φϵ, with Φf (0) = 0, then problem
(1.1) is GUH stable.

Remark 4.3. A function z ∈ E1 is a solution of inequality (4.2) if and only if there exists a function
w ∈ C([a, T ],R) (dependent on z) such that

(i) |Θ(t)| ≤ ϵΨΘ(t), ∀ t ∈ [a, T ].

(ii) C
a D

β,ρ(Ca D
α,ρ + λ(t))z(t) = f(t, z(t), z(θ(t)), (Sz)(t)) + Θ(t), t ∈ [a, T ].

By Remark 4.3, the solution of the problem
C
a Dβ,ρ(Ca Hα,ρ +H(t))z(t) = f

(
t, z(t), z(θ(t)), (Sz)(t)

)
+Θ(t), t ∈ [a, T ],

can be written by

z(t) = aIα+β,ρFz(s)(t)− aIα,ρH(s)z(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFz(s)(ξi)− aIα+β,ρFz(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)z(s)(ξi) + aIα,ρH(s)z(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a) + aIα+β,ρw(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρw(s)(ξi)− aIα+β,ρw(s)(η)
)
.

Next, we construct lemma that will be used in the proofs of the second stability theorem.
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Lemma 4.2. Let z ∈ E1 be a solution of inequality (4.2). Then the function z satisfies the inequality

|z(t)− (Az)(t)| ≤ Ω1ΨΘ(t)ϵ, 0 < ϵ ≤ 1, (4.4)

where Ω1 is given by (2.2).

Proof. From Remark 4.3, we obtain the inequality

|z(t)− (Az)(t)| ≤
∣∣∣∣aIα+β,ρΘ(s)(t) +

(t− a)αe
ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

×
( m∑

i=1

δiaIα+β+µi,ρΘ(s)(ξi)− aIα+β,ρΘ(s)(η)

)∣∣∣∣
≤

[
(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
ΨΘ(t)ϵ

= Ω1ΨΘ(t)ϵ,

where Ω1 is given by (2.2), which leads to inequality (4.4).

Next, we are ready to prove UHR and GUHR stability results.

Theorem 4.2. If assumptions (H1), (H2), (H3) are satisfied, L < 1, where L is defined by (3.2), then
problem (1.1) is both UHR stable and GUHR stable on [a, T ].

Proof. Let z ∈ E1 be a solution of inequality (4.2) and let x be the unique solution of problem (1.1).
By applying the triangle inequality and Lemma 4.1, we get

|z(t)− x(t)| =
∣∣∣∣z(t)− aIα+β,ρFx(s)(t) + aIα,ρH(s)x(s)(t)

− (t− a)αe
ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi) + aIα,ρH(s)x(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
− γe

ρ−1
ρ (t−a)

∣∣∣∣
=

∣∣z(t)− (Az)(t) + (Az)(t)− (Ax)(t)
∣∣∣

≤ |z(t)− (Az)(t)|+ |(Az)(t)− (Ax)(t)|
≤ Ω1ΨΘ(t)ϵ+ L|z(t)− x(t)|,

where L is defined by (3.2), which implies that

|z(t)− x(t)| ≤ Ω1ΨΘ(t)ϵ

1− L
.

By setting Cf,Φ = Ω1

1−L with L < 1, we get the inequality

|z(t)− x(t)| ≤ Cf,ΦϵΨΘ(t).

Hence, problem (1.1) is UHR stable. Moreover, if we set Φf (t) = ϵΨΘ(t), with Φf (0) = 0, then
problem (1.1) is GUHR stable.
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5 An example
In this section, we present an example which illustrates the validity and applicability of the main
results.
Example. Consider the following boundary value problem for the nonlinear GPF integro-differential
Langevin equation

C
0 D

√
π
2 ,

√
2

2

(
C
0 D

√
3

2 ,
√

2
2 +

1

16
(t− a)2e

ρ−1
ρ (t−a)

)
x(t) = f

(
t, x(t), x(θ(t)), (Sx)(t)

)
, t ∈ [0, 2],

x(0) = 0, x(1) =
√
2 0I

1
2 ,

√
2

2 x
(1
2

)
− 1

2
0I

3
2 ,

√
2

2 x
(4
3

)
− 0I

5
2 ,

√
2

2 x
(3
2

)
+

1

10
.

(5.1)

Here,

α =

√
3

2
, β =

√
π

2
, ρ =

√
2

2
,

a = 0, T = 2, m = 3, γ = 0, η = 1,

κ =
1

10
, µ1 =

1

2
, µ2 =

3

2
, µ3 =

5

2
,

ξ1 =
1

2
, ξ2 =

4

3
, ξ3 =

3

2
,

δ1 =
√
2 , δ2 = −1

2
, δ3 = −1, θ(t) =

t

2

and
H(t) =

1

16
(t− a)2e

ρ−1
ρ (t−a).

Obviously, the function H satisfies the assumption (H1) for all t ∈ [a, T ]. From the all given all data,
we obtain that Λ ≈ 1.49603 ̸= 0, Ω1 ≈ 8.26497, Ω2 ≈ 4.17132, Ω3 ≈ 0.17389 and Ω4 ≈ 0.17303.

(i) Let f : [a, T ]× R3 → R be a function defined by

f(t, x(t), x(θ(t)), (Sx)(t))= 1

4
+
1

9
t3+

2 sin2(πt)

(t+5)2
|x|

1+|x|
− x(1.5t)

(t+5)2
+
(t+1)3

et+2

t∫
a

cos2(πt)
(es2+3)2

x(s) ds.

For x1, x2, y1, y2, z1, z2 ∈ R and t ∈ [a, T ], we have∣∣f(t, x1, y1, z1)− f(t, x2, y2, z2)
∣∣ ≤ 1

25

(
|x1 − y1|+ |x2 − y2|

)
+

1

3
|z1 − z2|,

|ϕ(t, s, x1)− ϕ(t, s, y1)| ≤
1

16
|x1 − y1|.

The assumptions (H1)–(H3) are satisfied with L1 = 1
25 , L2 = 1

3 , and ϕ0 = 1
16 . Hence

L := 2L1Ω1 + L2ϕ0Ω2 +Ω3 ≈ 0.92199 < 1.

This ensures the existence of the unique solution for (5.1) according to Theorem 3.1. Further, we
compute

Φ :=
Ω1

1− L
≈ 105.95156 > 0.

Thus, by Theorem (4.1), problem (5.1) is UH stable and, consequently, GUH stable.

(ii) Let f : [a, T ]× R3 → R be a function defined by

f
(
t, x(t), x(θ(t)), (Sx)(t)

)
=

e−t

(t+ 8)2
+

6e−2t

(t+ 8)2
|x|

2 + |x|

+
5

4(2 + t)2
|x(0.25t)|

|x(0.25t)|+ 9
+

(t+ 3)3 cos2(πt)
(et + 2)2

t∫
a

sin2(t− s)

(et−s + 2)2
x(s) ds.
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It is easy to see that for all x1, x2, y1, y2, z1, z2 ∈ R and t ∈ [a, T ], we get∣∣f(t, x1, y1, z1)− f(t, x2, y2, z2)
∣∣ ≤ 1

32

(
|x1 − y1|+ |x2 − y2|

)
+

1

3
|z1 − z2|,

|ϕ(t, s, x1)− ϕ(t, s, y1)| ≤
1

9

∣∣x1 − y1|.

The assumptions (H1)–(H3) are satisfied with L1 = 1
32 , L2 = 1

3 , and ϕ0 = 1
9 . Hence

L := 2L1Ω1 + L2ϕ0Ω2 +Ω3 ≈ 0.84495 < 1.

Furthermore, for x, y, z ∈ R and t ∈ [a, T ], it follows that

|f(t, x, y, z)| ≤ e−t

(t+ 8)2
+

2e−2t

(t+ 8)2
|x|+ 1

8(2 + t)2
|y|+ 27

(et + 2)4
|z|.

The hypothesis (H4) is also valid with

σ(t) =
e−t

(t+ 8)2
, τ(t) =

2e−2t

(t+ 8)2
, φ(t) =

1

8(2 + t)2
, ω(t) =

27

(et + 2)4

and
σ∗ =

1

64
, τ∗ =

1

32
, φ∗ =

1

32
, ω∗ =

1

3
.

Therefore, all the assumptions of Theorem (3.2) are fulfilled, which allow to conclude that system
(5.1) has at least one solution on [a, T ]. Moreover, we obtain

Cf,Φ :=
Ω1

1− L
≈ 53.30408555 > 0.

Thus, by Theorem 4.2, system (5.1) is UHR stable and, consequently, GUHR stable.

6 Conclusion
In this paper, we construct the equivalence between problem (1.1) and the Volterra integral equation.
We prove the existence results of solutions for the GPF integro-differential Langevin equation via a
variable coefficient with nonlocal integral conditions (1.1) using a variety of fixed point theorems due
to Banach, Schaefer and Krasnoselskii. Moreover, we discuss the stability analysis of UH, GUH, UHR
and GUHR for the proposed problem (1.1). In addition, an example was given to illustrate our main
results. We believe that the all results of this paper will provide considerable potential to interested
researchers to develop relevant results concerning qualitative properties of nonlinear GPF differential
equations. In a forthcoming work, we shall focus on studying the different types of existence results
and stability analysis to an impulsive GPF differential equation with nonlocal integral multi-point
conditions.

Acknowledgments
This paper acknowledge the financial support provided by the Navamindradhiraj University Research
Fund (NURF), Navamindradhiraj University, Thailand. The authors thank the referees for their
careful reading of the article and insightful comments.

References
[1] S. Abbas, M. Benchohra, J. E. Lagreg, A. Alsaedi and Y. Zhou, Existence and Ulam stability

for fractional differential equations of Hilfer–Hadamard type. Adv. Difference Equ. 2017, Paper
No. 180, 14 pp.



118 S. Pleumpreedaporn, W. Sudsutad, C. Thaiprayoon, S. A. Jose

[2] T. Abdeljawad1, F. Jarad, S. F. Mallak and J. Alzabut, Lyapunov type inequalities via fractional
proportional derivatives and application on the free zero disc of Kilbas–Saigo generalized Mittag–
Leffler functions. Eur. Phys. J. Plus 134 (2019), 247.

[3] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory for Second Order Linear, Half-
Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht,
2002.

[4] B. Ahmad, A. Alsaedi and S. K. Ntouyas, Nonlinear Langevin equations and inclusions involv-
ing mixed fractional order derivatives and variable coefficient with fractional nonlocal-terminal
conditions. AIMS Math. 4 (2019), no. 3, 626–647.

[5] B. Ahmad, M. M. Matar and O. M. El-Salmy, Existence of solutions and Ulam stability for
Caputo type sequential fractional differential equations of order α ∈ (2, 3). Int. J. Anal. Appl. 15
(2017), no. 1, 86–101.

[6] B. Ahmad and J. J. Nieto, Solvability of nonlinear Langevin equation involving two fractional
orders with Dirichlet boundary conditions. Int. J. Differ. Equ. 2010, Art. ID 649486, 10 pp.

[7] J. Alzabut, T. Abdeljawad, F. Jarad and W. Sudsutad, A Gronwall inequality via the generalized
proportional fractional derivative with applications. J. Inequal. Appl. 2019, Paper No. 101, 12
pp.

[8] J. Alzabut, W. Sudsutad, Z. Kayar and H. Baghani, A new Gronwall–Bellman inequality in frame
of generalized proportional fractional derivative. Mathematics 7 (2019), no. 8, 747–761.

[9] D. R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative
controller. Comm. Appl. Nonlinear Anal. 24 (2017), no. 1, 17–48.

[10] T. Aoki, On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2
(1950), 64–66.

[11] A. Aphithana, S. K. Ntouyas and J. Tariboon, Existence and Ulam–Hyers stability for Caputo
conformable differential equations with four-point integral conditions. Adv. Difference Equ. 2019,
Paper No. 139, 17 pp.

[12] S. Asawasamrit, W. Nithiarayaphaks, S. K. Ntouyas and J. Tariboon, Existence and stabil-
ity analysis for fractional differential equations with mixed nonlocal conditions. Mathematics 7
(2019), no. 2, 117.

[13] H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two
fractional orders. J. Fixed Point Theory Appl. 20 (2018), no. 2, Paper No. 63, 7 pp.

[14] M. Benchohra and S. Bouriah, Existence and stability results for nonlinear boundary value prob-
lem for implicit differential equations of fractional order. Moroccan Journal of Pure and Applied
Analysis 1 (2015), no. 1, 22–37.

[15] A. Berhail, N. Tabouche, M. M. Matar and J. Alzabut, On nonlocal integral and derivative
boundary value problem of nonlinear Hadamard Langevin equation with three different fractional
orders. Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 303–318.

[16] W. T. Coffey, Yu. P. Kalmykov and J. T. Waldron, The Langevin Equation. With Applications
to Stochastic Problems in Physics, Chemistry and Electrical Engineering. Second edition. World
Scientific Series in Contemporary Chemical Physics, 14. World Scientific Publishing Co., Inc.,
River Edge, NJ, 2004.

[17] E. C. de Oliveira, J. V. da C. Sousa, Ulam–Hyers–Rassias stability for a class of fractional
integro-differential equations. Results Math. 73 (2018), no. 3, Paper No. 111, 16 pp.

[18] H. Fazli and J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions.
Chaos Solitons Fractals 114 (2018), 332–337.

[19] A. Granas and J. Dugundji, Fixed Point Theory. Springer Monographs in Mathematics. Springer-
Verlag, New York, 2003.

[20] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
[21] D. H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27

(1941), 222–224.



Qualitative Analysis of Generalized Proportional Fractional Functional Integro-Differential Langevin Equation 119

[22] F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated by a class
of local proportional derivatives. Eur. Phys. J. Spec. Top. 226 (2017), 3457–3471.

[23] A. Khan, M. I. Syam, A. Zada, et al. Stability analysis of nonlinear fractional differential equations
with Caputo and Riemann–Liouville derivatives. Eur. Phys. J. Plus 133 (2018), 264.

[24] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[25] M. A. Krasnosel’skiǐ, Two remarks on the method of successive approximations. (Russian) Uspehi
Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123–127.

[26] P. Langevin, On the Theory of Brownian Motion. Comptes Rendus de Academie Bulgare des
Sciences 10 (1908), 140–154.

[27] S. C. Lim, M. Li and L. P. Teo, Langevin equation with two fractional orders. Phys. Lett. A 372
(2008), no. 42, 6309–6320.

[28] K. Liu, M. Fečkan, D. O’Regan and J. Wang, Hyers-–Ulam stability and existence of solutions for
differential equations with Caputo–-Fabrizio fractional derivative. Mathematics 7 ( 2019), no. 4,
333.

[29] R. L. Magin, Fractional Calculus in Bioengineering. Begell House, 2006.
[30] R. M. Mazo, Brownian Motion. Fluctuations, Dynamics, and Applications. International Series

of Monographs on Physics, 112. Oxford University Press, New York, 2002.
[31] M. Obłoza, Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat.

No. 13 (1993), 259–270.
[32] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Frac-

tional Differential Equations, to Methods of their Solution and some of their Applications. Math-
ematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[33] T. M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc.
72 (1978), no. 2, 297–300.

[34] T. M. Rassias, On a modified Hyers–Ulam sequence. J. Math. Anal. Appl. 158 (1991), no. 1,
106–113.

[35] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J.
Math. 26 (2010), no. 1, 103–107.

[36] W. Sudsutad, J. Alzabut, S. Nontasawatsri and C. Thaiprayoon, Stability analysis for a gen-
eralized proportional fractional langevin equation with variable coefficient and mixed integro–
differential boundary conditions. J. Nonlinear Funct. Anal. 2020, Article ID 23, 24 pp.

[37] W. Sudsutad, J. Alzabut, C. Tearnbucha and C. Thaiprayoon, On the oscillation of differential
equations in frame of generalized proportional fractional derivatives. AIMS Math. 5 (2020), no. 2,
856–871.

[38] W. Sudsutad and J. Tariboon, Nonlinear fractional integro-differential Langevin equation involv-
ing two fractional orders with three-point multi-term fractional integral boundary conditions. J.
Appl. Math. Comput. 43 (2013), no. 1-2, 507–522.

[39] J. Tariboon, S. K. Ntouyas and C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-
Caputo type fractional derivatives with nonlocal fractional integral conditions. Adv. Math. Phys.
2014, Art. ID 372749, 15 pp.

[40] S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New
York, 1964.

[41] S. M. Ulam, A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied
Mathematics, no. 8 Interscience Publishers, New York–London, 1960.

[42] J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential
equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, No. 63, 10 pp.

[43] J. Wang, Y. Zhou and M. Medved’, Existence and stability of fractional differential equations
with Hadamard derivative. Topol. Methods Nonlinear Anal. 41 (2013), no. 1, 113–133.



120 S. Pleumpreedaporn, W. Sudsutad, C. Thaiprayoon, S. A. Jose

[44] N. Wax, J. L. Doob, S. Chandrasekhar, S. O. Rice, G. E. Uhlenbeck, M. Kac and L. S. Ornstein,
Selected Papers on Noise and Stochastic Processes. Dover Publications, New York, 1954.

[45] H. Zhou, J. Alzabut and L. Yang, On fractional Langevin differential equations with anti-periodic
boundary conditions. Eur. Phys. J. Spec. Top. 226 (2017), 3577–3590.

(Received 11.09.2020)

Authors’ addresses:

Songkran Pleumpreedaporn
Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat Uni-

versity, Chanthaburi 22000, Thailand.
E-mail: songkran.p@rbru.ac.th

Weerawat Sudsutad
1. Department of General Education, Faculty of Science and Health Technology, Navamindradhiraj

University, Bangkok 10300, Thailand.
2. Department of Applied Statistics, Faculty of Applied Sciences, King Mongkut’s University of

Technology North Bangkok, Bangkok 10800, Thailand.
E-mail: weerawat@nmu.ac.th, wrw.sst@gmail.com

Chatthai Thaiprayoon
Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
E-mail: chatthai@buu.ac.th

Sayooj Aby Jose
1. Ramanujan Centre for Higher Mathematics, Alagappa University, Karaikudi 630 004, India.
2. Department of Mathematics, Alagappa University, Karaikudi 630 004, India.
E-mail: sayooaby999@gmail.com



Memoirs on Differential Equations and Mathematical Physics
Volume 83, 2021, 121

C o n t e n t s

Mohamed I. Abbas

Nonlinear Atangana–Baleanu Fractional Differential Equations Involving
the Mittag–Leffler Integral Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Aziza Berbache

Two Explicit Non-Algebraic Crossing Limit Cycles for a Family
of Piecewise Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

F. Bouzeffour, M. Garayev

The Hartley Transform Via Susy Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Abdelmajid El Hajaji, Abdelhafid Serghini, Said Melliani,
 El Bekkaye Mermri, Khalid Hilal

A Bicubic Splines Method for Solving a Two-Dimensional Obstacle Problem . . . . . . . . . . . . . . 43

Rachid Guettaf, Arezki Touzaline

Analysis of a Frictional Unilateral Contact Problem for Piezoelectric Materials
with Long-Term Memory and Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Saad Eddine Hamizi, Rachid Boukoucha

A Family of Planar Differential Systems with Explicit Expression
for Algebraic and Non-Algebraic Limit Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Nawel Latigui, Kaoutar Ghomari, Bekkai Messirdi

Theoretical and Numerical Results on Birkhoff Normal Forms and Resonances
in the Born–Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Songkran Pleumpreedaporn, Weerawat Sudsutad, Chatthai Thaiprayoon,
Sayooj Aby Jose

Qualitative Analysis of Generalized Proportional Fractional Functional
Integro-Differential Langevin Equation with Variable Coefficient and
Nonlocal Integral Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99


