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NONLINEAR ATANGANA-BALEANU
FRACTIONAL DIFFERENTIAL EQUATIONS
INVOLVING THE MITTAG-LEFFLER INTEGRAL OPERATOR



Abstract. This paper intends to investigate the existence and uniqueness of solutions for some
nonlinear Atangana—Baleanu fractional differential equations involving the Mittag—Leffler integral
operator. By means of Schauder’s fixed point theorem and Banach’s fixed point theorem, the existence
and uniqueness results are obtained. A generalized fractional order free electron laser equation is given
as an application.
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1 Introduction

In the last decades, several significant results related to the qualitative properties of fractional dif-
ferential equations have been recorded because of their ability to model real-world problems in many
fields such as science, technology and engineering [11,12,19,21-23,26, 29].

Recently, the interest of many researchers interested in fractional calculus has gone to a new type of
fractional derivative with non-singular kernel introduced by Caputo and Fabrizio [10], this derivative
is based on the exponential kernel. Later, Atangana and Baleanu [7] developed another version
which used the generalized Mittag—Leffler function as non-local and non-singular kernel which appears
naturally in several physical problems and the field of science and engineering [3-6,8, 14,25, 30, 31].

On the other hand, the Mittag—Leffler function and its generalizations play a fundamental role in
fractional calculus and its applications such as modelling groundwater fractal flow, viscoelasticity and
probability theory [1,13].

In [24], Prabhakar studied a singular integral equation with a general Mittag—Leffler function in

the kernel, namely,
t

/ (t— ) B 5 ((t — 8)7)o(s) ds = g(t), t € [a,b],

a

where

= A 2k
E;5(2) = kZ r(ék)ia) = (0.00€C, Re(0) >0).
=0

The function E§,6(z) is the three-parameter Mittag—Leffler function and (A)j is the Pochhammer
symbol defined as
(W) = AMNA+1)---(A+Ek-1), keN,

1, k=0, X#0.

When A =1, ]E}, 5(2) coincides with the classical two-parameter Mittag-Leffler function

Sk

Eg,(;(Z) = m .

M8

=
Il

0

It is useful to mention that the three-parameter Mittag—Leffler function is closely connected with
the phenomenon of Havriliak-Negami relaxation [15].
In [17], Kilbas et al. investigated an integro-differential equation of the form

Dgey(t) = VB s e y(8) + F(1), a <t <, (1.1)
where IE:} s.v.a+ 15 the Mittag—Leffler integral operator defined by

t

]Eg,ﬁ,u;a"'y(t) = /(t - 5)671E;6(V(t - S)U)y(s) dS? (12)

a

where 0,9, v, A € C, Re(o) > 0, Re(d) > 0.

Obviously, Eg St 1S the Riemann—Liouville fractional integral operator of order §. Therefore,
operator (1.2) and its inverse can be considered as generalization of fractional integral and derivative
operators involving Eg 5(z) in their kernels.

In this paper, we consider the following nonlinear Atangana—Baleanu fractional differential equation
involving the Mittag—Lefller integral operator

{ABCDg+x(t) =E) 50 f(tz(t), a€(0,1], teo,1], 13)

x(0) = zp € R,
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where ABCD(‘)ﬁ denotes the Atangana—Baleanu fractional derivative of order « in Caputo sense,
0,0,v,A€ER, 0,0 >0and f:[0,1] x R — R is a given continuous function.

The importance of studying such equations like (1.1) and (1.3) is that they describe the unsaturated
behavior of the free electron laser [9,27,28], which is a kind of laser whose lasing medium counsists of

very-high-speed electrons moving freely through a magnetic structure.

2 Preliminaries

In [7], Atangana and Baleanu improved the Caputo—Fabrizio fractional derivative with non-singular
kernel to another one with non-local and non-singular kernel. We present the basic definitions of the
new fractional order derivatives.

Definition 2.1 (see [7]). Let h € H'(a,b), a < b, a € [0, 1], then the Atangana-Baleanu fractional
derivative in Caputo sense is given by

¢
B(e) (t—s)*
ABC na _ _ /
D, h(t) = 1_a/Ea[ i }h (s) ds, (2.1)
where B(a) denotes a normalization function such that B(0) = B(1) = 1 and E,, denotes the Mittag—
Leffler function defined by

(et

Ea(=t%) = ok +1)

NE

ES
I

0

However, when a = 0, they did not recover the original function, except when at the origin the
function vanishes. To avoid this issue, they proposed the following definition.

Definition 2.2 (see [7]). Let h € H'(a,b), a < b, « € [0,1], and it is not necessary differentiable,
then the Atangana—Baleanu fractional derivative in Riemann-Liouville sense is given by

t

B(a) d (t—s)™
ABR N«
Dy = B 4 [ 10 22
o h(t) 1_adt/ o=V s (2.2)

Equations (2.1) and (2.2) have a non-local kernel. Also in equation (2.1), when the function is
constant, we get zero. For more details and properties, see [7,10].

Definition 2.3 (see [7]). Let h € H'(a,b), a < b, « € [0,1], then the Atangana—Baleanu fractional
integral, associate to the new fractional derivative with non-local kernel is given by

t
1l -« «@

h(t) + Blo)l(a) /(t —8)* " h(s)ds,

a

ABIngh(t) =

where I'(-) denotes the well-known gamma function. The initial function is recovered when the
fractional order turns to zero. Also, when the order turns to 1, we have the classical integral.

To end this section, we collect some useful lemmas.

Lemma 2.4 (see [2]).
« 7 A+
IOJFJE;(S,V;OJr ((b) = Eg,éJroz,u;OJr (¢)7 E§,57V;0+E;’#’V;O+ (¢) = Eg:gi#’y;(fr (¢)a
IS 5,00+ (D)lle <EZ 51 (WDl (@)le -
Lemma 2.5 (see [2]). Suppose z > 0 is fized, 0,0, > 0.
(i) If0 < A < 1, then Egé(z) <E,s(2).
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(ii) If A > 1, then E} 5(2) > Eo,5(2).

Lemma 2.6 (see [18]). Assume that o,0,v,A € R, (0,6 > 0), then for a continuous function ¢ €
C([0,1]) and positive integer n, where 6 > n,

"
dtin Eg,&u;OJr (¢) = Eg,zifn,u;OJr (¢)

Lemma 2.7 (see [20]). Suppose o,6,v,\ € R, (0,6 >0, § > a > 0), then for a continuous function
o€ Clo.1)), A A
Dg+Ea,5,v;O+ (¢) = ]Ea',zsfoz,uqoJr (¢>

Lemma 2.8 (Ascoli-Arzela theorem). Let S = {s(t)} be a function family of continuous mappings
on a closed and bounded interval [a,b], s : [a,b] — X.

If S is uniformly bounded and equicontinuous, and for any t* € [a,b], the set {s(t*)} is relatively
compact, then there exists a uniformly convergent function sequence {s,(t)} (n=1,2,..., t € [a,b])

n S.

Lemma 2.9 (Schauder’s fixed point theorem). If U is a closed, bounded and convex subset of a
Banach space X and T : U — U is completely continuous, then T has a fized point in U.

3 The Existence and Uniqueness Results

Let C(]0, 1]) be the Banach space of all continuous functions from [0, 1] into R with the norm ||z||¢c =
max{|z(t)| : t € [0,1]}.

Definition 3.1 ([16, Theorem 3.1]). A function x € C([0, 1]) is said to be a solution of equation (1.3)
with x(0) = zo if x(¢) satisfies the integral equation

a(t) = xo +P ISy (B 5.0+ f (1, 2(1))). (3.1)
In view of Definition 2.3, together with Lemma 2.4, equation (3.1) can be reformulated as follows:

x(t) = Zo +AB g+ (1[4:275,1/;0+ f(t7 x(t)))
]_ _
=2 + Wj ED 500 f(t2(t)) + ﬁ 0 (B g0+ £ (1 2(2)))

l—a ., « A

= xo + M Eg’é"y;()‘*’f(t’ z(t)) + m B 5 4av0t f(t,x(t)). (3.2)

We introduce the following assumptions:
(A1) The function f : [0,1] x R — R is continuous.
(A2) There exists a constant Ly > 0 such that

|f(t,z) — f(t,y)] < L¢lx —y| for each ¢t €[0,1], and all z,y € R.

3.1 Existence result via Schauder’s fixed point theorem

Theorem 3.2. Assume that (Al) and (A2) are satisfied. Then the Atangana—Baleanu fractional
differential equation (1.3) has at least one solution on [0, 1].

Proof. We define the operator T : C([0,1]) — C([0,1]) by

(T)(t) = @0 + ;[—Of; E) 500 f (8 a(t)) + % E) sramor [(La(0), t€[0,1].  (33)

Note that the operator 7 is well-defined on C([0, 1]) due to (Al).
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Consider the set B, = {z € C([0,1]) : ||z|]lc < r}. Clearly, the set B, is closed, bounded and
convex. The proof is divided into several steps.

Step 1. T is continuous.
Let x,, be a sequence such that x,, —  in B, . Then for each ¢t € [0, 1], we have

|(Tea)(t) = (Ta)(0)] = ];@;‘ (B3 5.0+ (2 (8) = B3 5+ (1 (1))

«

+ W (Egﬁ-l—a,z/;o-%— f(t7 I’n(t)) — Eé,é—i—a,y;o*'f(t? Q?(t))) ’

1 «

E 5.0+ (f (twn (1)) = f (1, x(t)))‘-yﬁ

< (—) 2 50+ (1 >||+ﬁu1€og+wo+ DINIFC@a(-) = £ 2Dl
= (13(701) ‘75+1(‘ V) + ( ) §6+a+1("/|))”f("mn('))_f("x('))HC’

ED g (F (b 2n(8) = £t 2(0))

which implies that

(%

HTLUTL_T‘THCS (1Bz7a)E§,5+l(‘y|) B( ) EU 5+a+1 V|)) ||f( : 711?”( : ))_f( : >‘T( : ))HC

By (A1), the continuity of the function f implies that 7 is continuous.
Step 2. T maps bounded sets into bounded sets in B,..

Indeed, it is enough to show that for any r > 0, there exists a positive constant ¢ such that
for each € By, one has |Tz||c < ¢. For t € [0,1], z € B, and in view of (Al), we define
My = supy s)ep0,1)x B, IIf (¢, 2)|| and, consequently, we have

(Ta)0)] = [0+ Frog b saeo S (6. 2(0) + Gy b srensio F(0:2(0)
< ool + S5 N su0r DI+ 5 1B (D]
(1— )My aMy

< |@o| + WEU sVl + Blo) E) 5tari(V]) =

Hence, ||Tz||c < ¢. This implies that 7(B,) C B;.

Step 3. T maps bounded sets into equicontinuous sets of B,..
Let t1,to € [0,1] with ¢; < t5 and for any © € B,., we have

B(a)

\(Tx><t2>—<m<t1)|s\ 2 (B F(t2n() = B 00,500
B()

B a) ( o,0+a,v;0t f(t2> (t2) - Ec/,\',6+a,u;0+f(t1’x<tl))‘
to

/ 5 1IE s(w(ta —35)7)f(s,2(s)ds
0

11—«

\ N

B(«)

/ t —s)° 1E375(V(t1 —35)7)f(s,x(s)ds

+B?a)] / (12 — )B4, (s — 8)7) (s, 2(s) ds
0
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- / (ty — 5B o, (vl — 5)°) (5, 2(s) ds
_l-a, ia I
" Bla) ' Bla)™”
where
L= ] / (b2 — ) UED 5 (v(t2 — )7) (s, 2(s) ds — / (tr — )" 'ED (vt — 5)°) (5, 2(s) ds
0 0
and

L= ‘ / PR L (0t — 8)°) (5, 2(s) ds

t1

= [t = s (vt 97 (sl |

0
For I;, we have

to

hs[/(tz SRR (s — 8)7) — B2 5 (w(ts — )7)]| | (s, 2(s)) ds
0

ty

+ / [(t — 51 — (t1 — 5P~ E 5 (v(ts — )71 £ (5, 2(5)) | ds
0

+ / (b2 — 5) B 5 (v(ts — )7)I| (5. 2(s))|| ds

t1

1
<Mf|:/t255 1|E v(ta —s)7) — Eg,é(’/(tlf*s)gﬂds
0

+ [ [tz =) = (t = 8)° T EG 5 (vt — 5)7) ds

o O~ _

+ ’(152—3)‘S — (t1 — 8)°~ 1|]E v(t; —s)° )ds]

F i 12, & . . N
<M —5)° 7 ds E) s(v(tao —s)?) —EZ s(v(ty —s)7)| ds
< f[(o/w? o as) (0/’”’5( (1= 917) ~ EX5(v(03 — 917" ds)

+ 2(/1 [(ta —5)°7! = (t1 — s)‘*—l\st)l/g(/l ) 5(v(t1 — 5)7)° ds>1/2}
0 0

Similarly, I can be estimated as

IQ<MfK/| 5)F+o- 1| d) (/]EUMQ (ta — 8)7) — Eaém( (tl—s)”)|2ds>1/2
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+2</1|(t2—s)6+a—1 — (t —s)“a_lfds)lm(/l|E§’5+a(u(t1 —s)")|2ds)1/2}
0 0

Hence, we get

(Ta)(e2) -~ (Toien)] < S0 {(0/1|<t2 - as)

1

’ </ (B3 5 (v(t2 = 8)7) = Eg 5t = 5)°)[° d5> N

0

! ) B 12 , 7 . 1/2
+2(0/|<t2s>5 SRR (O/|E§,5<u<tls> Ias) |
S et

“( / a0~ %)~ B0t = ) as)

, 12 , L , 1/2
—|—2</| g)ota-t (t1—5)5+°‘_1‘ ds) (/’E;Ha(u(tl—s)”ﬂ ds) }
0

As a result, we immediately find that the right-hand side of the above inequality tends to zero as
to — t1. Therefore, T(B,) is an equicontinuous set. It is also uniformly bounded.

Consequently, from Steps 1—3 together with the Ascoli-Arzela theorem (Lemma 2.8), we show that
the operator T is completely continuous. Hence, by Schauder’s fixed point theorem (Lemma 2.9), we
conclude that the operator 7 has at least one fixed point which is a solution of the Atangana—Baleanu
fractional differential equation (1.3) on [0,1]. The proof is completed. O

1/2

3.2 Uniqueness result via the Banach fixed point theorem

Theorem 3.3. If the assumptions (Al) and (A2) hold, then the Atangana—Baleanu fractional differ-
ential equation (1.3) has a unique solution on [0, 1], provided that

A= (G5 Ban (V) + 5o Ehsran () Ly < L (3.9

Proof. Consider the operator 7 defined in (3.3). In what follows, we show that the operator T is
a contraction. Repeating the same procedure as in Step 2 of the proof of Theorem 3.2, we obtain
T(B,) C B,.

Now, for z,y € C(]0,1]) and for each ¢ € [0, 1], by using (A2), we have

T2)0) = (T)0] = [ (B Ss2(0) ~ B g 10300

+ % (E()‘T’(;Jra’u;oJrf(t,ﬂf(t)) - Eg,éJra,V;O*f(t’y(t))) ‘

11—«

< B(Oé) |]Eg,§,u;0+ (f(t,iﬂ(t)) - f(t7y(t)))| + % Eg,5+a,u;0+ (f(t,l‘(t)) _ f(t,y(t)))|

)
<()

B} suwor O+ ey 1B svaor (I Lol =yl
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l—a_ a \
= Bl(a) Bl(n) - .
< (B(a) Ea,6+1(|VD + Blo) Ecr,6+a+1(|y‘))LfH$ ylle

Hence,
1Tz = Tyllc < Allz —yllc.

If condition (3.4) is satisfied, then, as a consequence of the Banach fixed point theorem, we conclude
that the operator 7 has a unique fixed point. Thus, the Atangana—Baleanu fractional differential
equation (1.3) has a unique solution. The proof is completed. O

4 An application

In this section, we consider the following generalized fractional order free electron laser equation as
an application of the Atangana—Baleanu fractional differential equation (1.3).

Example 4.1.

ABC 3 2 |z (¢)]
D? =E? 1
o0 =B oo o v ent+ e €0 (41)

z(0) = 0.

Here, t is a dimensionless time ranging from 0 to 1 and z(t) is a complex-field amplitude which is
assumed dimensionless and satisfies the initial condition x(0) = 0.

Set o = %, c=1,§= %, v=2 A= % and f(t,x) = 750(1+e”f)(1+1) . Since
T Y
t — f(t = _
£t @) = f(tw)l 50(1+et)(1+x) 50(1+et)(1+y)

|z —y|
<
T 50(14+et)(14+2)(1+y) — 50(1+et

2~y < — ||z — y]
) yilOO Yilc

we get the assumption (A2) with Ly = 35 .

Moreover, using Lemma 2.5 and the fact that I'(k +2) < T'(k + 2), the condition (3.4) gives

_ 1—a_y o 2
A= (mEa,éﬂﬂV\) + mEo,6+a+1(|V‘)>Lf
1

_ 1 2 1 2 1_2 1_.2
_ 2 5 2 5 —_ _ 5 _ &5
100 (B(%) By (2D + B( )E17%+%+1(|2|)> 100 (2 Erg(2)+3 Elﬂ(lz”)

IA

0
S R L 1o 2k 1 /1 2 o= 2
100(2;F(1§+2)+2]§F(1f+2)):1()()(2;_0(k+1)!+22(k+1)!)
_ 1 1e2-1 1e2—-1 _62—1
_ﬁ<§ 25 T3 3 )_ 200

= 0.03194528049 < 1.

Therefore, all the assumptions of Theorem 3.3 are satisfied. Hence, the Atangana—Baleanu fractional
differential equation (4.1) has a unique solution on [0, 1].

Finally, according to formula (3.2), we can obtain a unique solution x(t), which is the complex-
field amplitude of the generalized fractional order free electron laser equation (4.1), from the following
Volterra integral equation:

! (s [er o als)
x(t)_W[/(t_s> ErL Q2 S))1+$(S)dS+O/E1,1(2(t 5))1+x(s)d87
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where Lo .
2 > 2 (£)k (t—s)
Ef,(2(t—s)) = °
L3 I;O L'k + %) k!
and Lo i
— 2" (t—s)
E,(2(t—s)) = i
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TWO EXPLICIT NON-ALGEBRAIC CROSSING LIMIT CYCLES
FOR A FAMILY OF PIECEWISE LINEAR SYSTEMS



Abstract. For a given family of planar piecewise linear differential systems, it is a very difficult
problem to determine an upper bound for the number of its limit cycles and its explicit expressions.
In this paper, we give a family of planar discontinuous piecewise linear differential systems formed by
two regions separated by a straight line and having only one focus whose limit cycles can be explicitly
described by using the first integrals. We show that these systems may have at most two explicit
non-algebraic limit cycles.
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1 Introduction

The study of piecewise linear differential systems goes back to Andronov, Vitt and Khaikin [1] and still
continues to receive attention by researchers. Piecewise linear systems often appear in the descriptions
of many real processes such as dry friction in mechanical systems or switches in electronic circuits
(see, e.g., [5,15,18,19]). This kind of systems is generally modeled by ordinary differential equations
with discontinuous right-hand sides which can exhibit very complicated dynamics and rich bifurcation
phenomena.

A limit cycle is a periodic orbit of a differential system in R? isolated in the set of all periodic
orbits of that system. There are two types of limit cycles in the planar discontinuous piecewise linear
differential systems, the crossing and sliding ones. The “sliding limit cycles” contain some arc of the
lines of discontinuity that separate the different linear differential systems (more precise definition can
be found in [17]). The “crossing limit cycles” contain only isolated points of the lines of discontinuity.
In this paper, we consider only the crossing limit cycles of some planar discontinuous piecewise linear
differential systems separated by one straight line.

Limit cycles of discontinuous piecewise linear differential systems separated by a straight line have
been studied by many authors (see, e.g., [2,7,8,10,11,13] and the references therein). There are
examples of such systems exhibiting three limit cycles (see [3,4,9,12,14]), but at present moment we
do not know whether discontinuous piecewise linear differential systems separated by a straight line
may have more than three limit cycles.

On the other hand, it seems intuitively clear that “most” limit cycles of discontinuous piecewise
linear differential systems have to be non-algebraic. Nevertheless, in all these papers devoted to the
study of the crossing limit cycles of piecewise linear differential systems, explicit non-algebraic limit
cycles do not appear, their existence is proved by using different methods as the first integrals, the
averaging theory, the Poincaré map, the Newton—Kantorovich Theorem, the Melnikov function.

The goal of this paper is to give a discontinuous piecewise linear differential systems separated by
a straight line for which we can get two explicit limit cycles which are not algebraic. As far as we
know, there are no examples of this situation in the literature.

We consider planar piecewise linear systems with two linearity regions separated by a straight line
Y = {(z,y) € R?: 2 =0}, where we assume that the two linearity regions in the phase plane are the
left and right half-planes

E,:{(x,y)GRQ: x<0}, E+:{(x,y)€R2: x>0}.

We suppose that one of the two linear differential systems has no equilibria, neither real nor virtual,
and the other one has a focus at the origin. We prove that these two systems are integrable. Moreover,
we determine sufficient conditions for a discontinuous piecewise linear differential systems to possess
two or one explicit non-algebraic limit cycles. Concrete examples exhibiting the applicability of our
result are introduced.

2 Preliminaries

The following normal form for the linear differential system in R? and its first integral will help us to
prove our main result.

Lemma 2.1. A linear differential system having a focus at the origin can be written as
= (27— O)x + By, y:—% (A= 6)2 +w?)a + 6y (2.1)
with w > 0. Moreover, this system has the first integral
Hy(x,y) = (((A — 6> +w?)a® +28(\ — d)zy + BQyQ)e_% arctan(x=35a75y)
Proof. Consider a general linear differential system

& =oax+ By, Y=nx+oy. (2.2)
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The eigenvalues of this system are

)\17223(O&+5ﬂ:\/((){—5)2+4ﬁ77>.

We know that system (2.2) has a real focus if 3 (a +6) = A, and (o — 6)% + 48y = —4w?, for some
w >0, fn<0and X\ € R, then

_ !

a=2\A-9, 7 3

(A=6) +w?).
Therefore, we obtain system (2.1).

Since the unique equilibrium is located at the origin O(0,0) and is of focus type, any orbit of
system (2.1) crosses the straight line z = 0 at least at one point, namely, (0,C), C' € R, thus the
general solution of (2.1) is given by

1
z(t) = gC’et’\ sintw, y(t) = - Cev(wcostw + (6 — ) sintw), (2.3)

where C' € R. So, from the first equation of (2.3), we obtain

e sinwt = ﬂ% x.
Substituting this last expression into the second equation, we get
e coswt = = (A= 08)z + By).
cp
Therefore,
tanwt = R
(A =8z + By’
From the last equation, we obtain
' 1 ¢ ( wx )
= — arctan { ——— ).
w A=0)z+ By

Substituting the previous expressions in the first equation of (2.3) and simplifying, we obtain

2

(A= )+ w?)a? + 28 = )y + 22 e~ = enloifizmm) — p,
where h = (3C)? € R. O
It is known that if the vector field has no equilibrium points, it can be written as
t=ar+by+ec, y=pax+ puby+d, (2.4)

where a, b, ¢, p and d are real constants such that d # uc and p # 0.
The following Lemma provides a first integral for an arbitrary linear differential system without
equilibrium points.

Lemma 2.2. For system (2.4), the following statements hold.

(i) If a + bu = 0, then system (2.4) is Hamiltonian and all its solutions are algebraic and given by
parabolas. Moreover, this system has the first integral

Ho(x,y) = bu’x? — 2buzy — 2dx + by? + 2cy.

(ii) If a 4+ bu # 0, the only algebraic invariant curve of (2.4) 4s an invariant line. Moreover, this
system has the first integral

a+bu

Hs(z,y) = ((a+ bp)(az + by) + ac + bd)eaen "4,
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Proof.
(i) Via the change of variables x = v, u = d%cu(y — px), where d — cu # 0, system (2.4) is
transformed into
0= (a+bu)v+bd—cp)ut+c, u=1. (2.5)

If a + b = 0, the last system is Hamiltonian and it has the first integral

b(d —
Hy(v,u) =v — % u? — cu,
and statement (i) follows.

(ii) If @ + bu # 0, the general solution of (2.5) is

1
v(t) = CENTE ((a + bu)?(Cy + e CY) — ac — bd + b(ep — d)(a + bp)t),
0 (2.6)
)= ———— bu)Co + bep — d)t),
where C7 and Cy are real constants. So, from the second equation of (2.6), we obtain
(@ +bu)Cy + bu(d — cp)
B b(d — cp) '
Substituting the expression of ¢ into the first equation of (2.6), we get
2 —(atbp)u 2 Calatbum)?
(b(d —cp)(a+bp)u+ (a+bp) v+ ac+ bd)e e = C(a+ bu)“e va=ven .
Going back through the changes of variables, we obtain
A0 (i —y)
((a + bp)(az + by) + ac + bd)e a==n =h, (2.7)
Ca(a+bp)?
where h = Cy(a + bu)?e vi—ten € R. From (2.7), we define a first integral of (2.4) as follows:
Hj(z,y) = ((a + bu)(az + by) + ac + bd)e%zﬁ(’“*y),
statement (ii) holds. O

Suppose that we have a discontinuous piecewise linear differential system separated by X. We
assume, without loss of generality, that the left half-system has no equilibria, neither real nor virtual,
and the right half-system is of focus type at the origin. By Lemma 2.1, and using the normal form
(2.4), we can write such a discontinuous piecewise linear differential system as

b= @A=da+ By, i=—g

T =azr + by +c, y=pax + pby +d in X_.

(A=08)? +w)z+ 6y in Oy, (2.8)

In order to state precisely our results, we introduce first some notations and definitions. Consider
the piecewise differential system (2.8) defined in ¥1. We use the techniques and approaches presented
by Filippov in [6] and by di Bernardo et al. in [5] to establish these notations. An equilibrium point is
called a real (resp. virtual) singular point of the right system of (2.8) if this point locates in the region
¥+ (resp. ¥_). A similar definition can be done for the left system of (2.8). Otherwise it is called a
virtual equilibrium point. In order to extend the definition of a trajectory to ¥ = {(z,y) € R? : x =
0}, we split ¥ into three parts depending on whether or not the vector field points towards it:

1. Crossing region:
Se={(0,y) €2+ Blby +c)y >0},
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2. Attractive sliding region:

Yas ={(0,y) €X: By <0, by+c>0},

3. Repulsive sliding region:

Ss ={(0,y) €X: By >0, by+c<0}.

These three regions are relatively open in ¥ and may have several connected components. There-
fore, their definitions exclude the so-called tangency points, that is, points where one of the two vector
fields is tangent to 3, which can be characterized by

{(0,y)ex: y=0 or by+c=0}.

These points are on the boundary of the regions ., ¥, and %,..

Periodic orbits that have neither sliding part nor tangent points are called crossing periodic orbits,
otherwise, they are called sliding periodic orbits. We say that an isolated periodic orbit I' is an
algebraic limit cycle if all its points are contained in the level sets of polynomials. Otherwise, they
are called non-algebraic limit cycles.

3 Main result

Our main result is contained in the following

Theorem 3.1. The discontinuous piecewise linear differential system (2.8) may have at most two
non-algebraic crossing limit cycles. Moreover, there are the systems in this class having one or two
non-algebraic crossing limit cycles.

Theorem 3.1 is proved in Section 4.

The next Propositions show that there are discontinuous piecewise linear differential systems of
the form (2.8) (in case the left half-linear system of (2.8) is non-Hamiltonian) with two, or one
(respectively) non-algebraic crossing limit cycles.

Proposition 3.1. Fora=pu+1,c=—-1,d=—p—-3,b=—-1, u#0and A = f%w, the discontinuous
piecewise linear differential system (2.8) defined by

1 5

t=—(w+d0r+8y, y=—(62+0w+>w?)z+dy inXy,
( Jr+ By, Y ﬁ( 1 ) Yy + (3.1)

t=p+r—y-1, yg=pp+lz—py—(u+3) in3X_,

when w > 1.7525, u # 0 and B < 0, has exactly two nested crossing limit cycles. Moreover, these limit
cycles are hyperbolic, non-algebraic and given by

5 _ 2wz
Iy = {(w, y)eT, : ((52 + 0w+ 5 w2)m2 — B(26 + w)ay + fry? e~ MrernmTES=) = 50.97162}

Iy = {(a:,y) S ((52 + dw + Zw2>z2 — B(20 + w)xy + By?

u {(x,y) €Y (1+pz—y+2eivhe= 0.84603},
)67 arctan(wﬁ) _ 1982552}
)

U {(x,y) eX_: (1+pz—y+2eivha= 1.4627}.

This proposition will be proved in Section 5.
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Proposition 3.2. Fora = p—1, ¢ = -3, d = —(3u+10), b = =1, A = —w and u # 0, the
discontinuous piecewise linear differential system (2.8) defined by

1

t=—-Quw+dz+Py, J=—(w+06*+wH)z+dy in X,

( )+ By, ﬂ(( ) ) y + (32)
t=(p—1)r—y—3, y=p(p—1x—py— Bp+10) in X_,

when w > 5.315, p # 0 and B < 0, has exactly one explicit hyperbolic non-algebraic crossing limit
cycle given by

r= {(% y) €3y : ((<w +0)? +w?)2® —28(w + O)zy + 52y2)e‘“m“<i<6+w“3hy> = 32.1/32}
U {(:c,y) €EY_: (z+y—px+13)efo® 1Y = 12.925}.

This proposition will be proved in Section 6.

The next proposition shows that there are discontinuous piecewise linear differential systems of the
form (2.8) (in case the left half-linear system of (2.8) is Hamiltonian) with one crossing non-algebraic
limit cycle.

Proposition 3.3. Fora=pu, \=—-%,c=-3,b=—1,d=—(1+3u) and p # 0, the discontinuous

piecewise linear differential system defined by

1 5
&= —(6 +w)z+ Py, Q:*B <52+5w+1w2)x+5y in Yy,

b=pr—y—3, y=plr—py—(1+3p) in3_,

(3.3)

when w > 0.34337, 1 # 0 and B < 0, has exactly one explicit hyperbolic non-algebraic crossing limit
cycle given by

5 — 1 —
= {(az, pevy: ((2+aw+ - W?)a? = B(26 + w)ay + By? ) ) — 57-375ﬁ2}
U {(Jc,y) €Y —pPr? + 2uzy + 2(1 4 3p)z — y* — 6y = —11.927}.

This proposition will be proved in Section 7.

Remark 3.1. The assumption 8 < 0 in Propositions 3.1, 3.2 and 3.3 is a necessary condition for the
existence of crossing limit cycles of system (3.1) (resp. (3.2) and (3.3)). Effectively, if the crossing
region of (3.1) (resp. (3.2) and (3.3)) exists with S > 0, then the inequality y(—y — 1) > 0 (resp.
y(—y—3) > 0) implies that the crossing region is an open interval (—1,0) (resp. (—3,0)) of the line .
Since the right half-system is of focus type at the origin, any orbit starting at the point (0, yo) with
yo < 0 goes into the left zone ¥ under the flow of the left linear differential systems. If these orbits
can reach ¥ again at some point (0,y;) after some time ¢ > 0, must be y; > 0 and so, the condition
B > 0 precludes the existence of crossing limit cycles.

4 Proof of Theorem 3.1

Suppose that we have a discontinuous piecewise linear differential system (2.8). In order to investigate
the crossing limit cycles of this system, we use the first integrals for the right and the left side systems
of (2.8). Due to Lemmas 2.1 and 2.2, these first integrals are

Hi(2,y) = (A= 0)2 +w?)a? + 28 — O)ay + 2% ) e~ ¥ eten(oiiiem),

((a+ bu)(az + by) + ac + bd)e%(“zfy) if a+bu#0,
bulx? — 2bpxy — 2dz + by? + 2cy if a+bu=0

Hy(z,y) = {
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in X4 and ¥_, respectively. Suppose that this discontinuous piecewise differential system has some
limit cycles intersecting 3 at two points, namely, (0,y) with yo < 0, and (0, y;) with y; > 0. Then
the first integrals H; and Hs must satisfy the following two equations:

Hl(oayo) - Hl(oayl) = Oa

H(0,90) — Ha(0,91) =0, (4.1)

it is easy to see that the implicit form of the orbit arc of (2.8) in ¥ which starting at the point
(0,90), where yo < 0 when t = 0, is given by H;(x,y) — 8?y3 = 0, this last orbit can be given also by
the analytic curves (x4 (t),y+(¢t)), where

xq(t) = " yoe ! sinwt,

1
y4(t) = = yoe (wcoswt + (6 — \) sinwt).

Denote by ¢, the minimum positive time such that z(t,) = 2(0) = 0, then t; = T . Since the orbits
starting at the point (0, yo) go into the left zone ¥_ under the flow of the left linear differential systems
and since these orbits can reach ¥ again at some point (0,y;) after the time t; = T, we have

A

AT
w

y1 =y(ty) = —yoe' ,

which is proves that H7(0,y0) — H1(0,y1) = 0. Now, it is easy to see that the existence of cross-
ing periodic solutions of discontinuous piecewise linear differential system (2.8) is equivalent to the
existence of negative values of yg satisfying

Hy(0,y0) = Ha(0, —yoe= ). (4.2)

Here, we have to separate the proof of Theorem 3.1 in two cases.

Case 1. a+ ub=0.
In this case (4.2) becomes

227

Yo (b(1 — €% )yo + 2¢(1 + %)) = 0. (4.3)

It is easy to see that when b = 0 or ¢ = 0, the unique solution of (4.3) is yo = 0. So, in this case, the
discontinuous piecewise linear differential system (2.8) has no limit cycles.
When b # 0 and ¢ # 0, equation (4.3) has two roots: yo; = 0, which cannot contribute a limit cycle

AT
and yg = % =# 0. Moreover, we can choose the appropriate parameters b, ¢, A and w in such
e w —1
AT
a way that (4.3) has exactly one real negative root yg = %, thus obtaining at most one limit
e w —1

cycle for the discontinuous piecewise linear differential system (2.8). Using the first integrals of both
linear differential systems and knowing that the non-algebraic crossing periodic orbit passes through
A
the point (0, yp) when ¢t = 0 and through the point (0, fyoe%r) when t = T, where yo = % <0,
eTe —1
we get the expression

= {(amy) SN ((()x —6)? +w?)a® +28(A — 0)zy + Bng)e_%ar“an(;ufﬁiﬁwy) = 52y§}
U {(x,y) €X_: bulx? — 2buxy — 2dx + by® + 2cy = (2c + byo)yo}

So, Theorem 3.1 is proved in Case 1.
Case 2. a+ ub # 0.
In this case (4.2) becomes

a+bu AT'" _a+bu

(ac+ bd — b(a + bu)e” %yo)ed*w voe ¥ = (b(a+ bu)yo + ac + bd)e™ a=en¥0, (4.4)
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Then the existence of crossing periodic solutions of discontinuous piecewise linear differential system
(2.8) is equivalent to the existence of zeros for equation (4.4) with respect to the variable yy. On the
other hand, this equation can be rewritten as

A
(atbu)(e @ +1)

(ac+bd — b(a + bu)e%yo)e d=en Y0 —bla+bu)yo — ac — bd = 0.
For convenience, we use the notation

A
(atbu)(e @ +1)

fly) = (ac +bd —b(a + bl‘)e%ﬂy)e d=ch Y —bla+ bu)y — ac — bd. (4.5)

Now, solving (4.4) is equivalent to finding the solutions yg; of the equation f(y) = 0. In order to
investigate a number of solutions of f(y) = 0, and since f is a differentiable function in R, we use the
first two derivatives of the function f. Simple calculations yield

b ™ i T e% 1)(a
Fly) = ;jj; (e (14 ¥)(a+ by — ac — bd — cla+ b)e ¥ ) e
b(a + bp)(d — cp)

d—cp
7 w2 w2 w2 T
f (y):—(be w(l+e"«)a+bu)y—e w(ac—bd+2bc,u)—bd—ac)(e w +1)

)

(a+ bu)? . (e%”jjiLaeru)y
(d—cp)? '

It is easy to see that f’ and f” are continuous functions in R.

It is obvious that f”(y) = 0 has at most one root yo, thus the equation f’(y) = 0 has at most two
zeros Yo;, j = 1,2, and the equation f(y) = 0 has at most three roots yo,, ¢ = 1,2, 3.

Note that the equation f(y) = 0 has the solution yo = 0, which cannot contribute a limit cycle.
So, in this case, the equation f(y) = 0 may have eventually two real solutions, yo; # 0 for j = 1,2
that can provide at most 2 limit cycles for the discontinuous piecewise linear differential system (2.8).
Moreover, we can choose the appropriate parameters a, b, ¢, d, A, §, p and w in such a way that
f(y) = 0 has exactly 2 real negative roots yg;, ¢ = 1,2, that can provide 2 limit cycles for the
discontinuous piecewise linear differential system (2.8).

Using the first integrals of both linear differential systems and knowing that the non-algebraic
crossing periodic orbits pass through the points (0, yo;) when ¢t = 0, and through the point (0, —ine%)
when ¢ = T, where yo;, i = 1,2, are the zeros of f(y) = 0. Thus the expressions for these orbits are:

r;= {(a?,y) €3, (((A —6)* +w’)a® +28(A — 0)zy + 52y2)6_%mcwn(“*m+5y) = /62?/&‘}

atbu

U {(m, y) €S- : ((a+bp)(az + by) + ac + bd)ei=<u “=Y) = (b(a + bu)yo; + ac + bd)e%yo" }

This completes the proof of Theorem 3.1 in Case 2.

Remark 4.1. The orbit arc passing through the crossing point (0, —yge%r) is Hy(z,y)— 3? (yoe%)2 =
0, this orbit, when (A — &)z + By # 0 and (A —6)? +w?)x? +2B(\—§)xy + B2y # 0, can be rewritten

) tan (521 CaT -
TN (=0 w1 28— 0wy + B2) ) (A=) + By
h 1
thus t (21 B2y2 ) B o
U (V02 r et 12808 — dyay + 522)) T (A= 0z + By

this last equation is equivalent to
Hl(zvy) - 52%2) = 07

and shows that H(0,y0) — Hy (0, —yoe™s ) = 0.
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5 Proof of Proposition 3.1

We prove that the discontinuous piecewise linear differential system (3.1) has exactly two hyperbolic
non-algebraic limit cycles. It is easy to see that the left half-system has no equilibria, neither real nor
virtual, and since —3 + iw, w > 0 are the eigenvalues of the matrices of the right half-system of (3.1),
this system has its equilibria as focus type at the origin.

The two linear differential systems of (3.1) have the following first integrals:

5 _ _ 2wa
Hi(z,y) = (((52 + dw + 1 w?)a? — B(26 + w)zy + 62y2)e arctan( oSy 2y ),
Hy(z,y) = (1+p)z —y +2)es v 5"

in ¥4 and X_, respectively. The parametric solution of the right half-system of (2.8) starting at the
point (0,yp) with yo < 0 when ¢t =0, is

Lt

x4 (t) = —yoe™ 2 'sinwt,
w
1 _wy AN
y+(t) = —yoe 2 (w coswt + (5 + 5) smwt).
w
Let ¢, denote the minimum positive time such that x(¢; ) = 2(0) = 0, then ¢, = T . Since the orbits
starting at the point (0, yo) go into the left zone ¥_ under the flow of the left linear differential systems
and since these orbits can reach 3 again at some point (0,y;) after the time ¢, = Z, we have

w3

y1 =y(ty) = —yoe~
Then, for the discontinuous piecewise linear differential system (3.1), the function (4.5) becomes

-
2

F) = (e +2)e5 7 T gy -,
The graphic of this function is given in Figure 5.1.
2 ——
1 -
I I /I\ I I I
-10 -8 -6 -4 -2 2
X
1T
2+

Figure 5.1. The graphic of the function f(y).
The equation f(y) = 0 has exactly three zeros yoo = 0, yo1 = —4.4522 and ypo = —7.1392. From these
values of yp;, i = 0,1,2, we get the values y190 = 0, y11 = 0.92558 and y1o = 1.4841.

Straightforward computations show that the solution passing through the crossing points (0, yo1)
and (0,y11) corresponds to

5 — « - wxT
Plz{(m)emz (0240w w?)a? = B20+w)ay+5%* ) ‘““‘*"@wawy:19.82552}

U {(m,y) €Yt (1+pa—y+2edv o= 1.4627},
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and the solution passing through the crossing points (0, yo2) and (0, y12) corresponds to

5  arctan 28
Ib-{@my)ez+: (Q¢+&¢+4wﬁx2—505+wﬁw+6%ﬁ)eammnﬁwiwwy—5&9ﬂﬂ2}

U {(x,y) €Y (1+pz—y+2)eivhe= 0.84603}.

Moreover, I'; and I's are non-algebraic and travel in a counterclockwise sense around the sliding
segment X5 = {(0,y) € ¥ : —1 <y < 0}. Clearly, I'y and I'; are nested, and T'; is the inner one and
T'; is the outer one. Now we prove that these non-algebraic crossing periodic orbits are the hyperbolic
limit cycles.
Let T be the period of the periodic solution
L {(x(),y(t)), t € [0,T]}.

To see that I is, in fact, a limit cycle, we recall a classic result characterizing limit cycles among other
periodic orbits for a smooth differential system in the plane (see, e.g., Perko [16] for more details),
which means that I'(¢) is a hyperbolic limit cycle when

T

/ div(D(t) dt £ 0, (5.1)

0

T T
stable if [div(I'(t))dt < 0, and instable if [ div(I'(¢))dt > 0.
0 0

Using the form parametric (x_;(t), y_i(t)) of the curve Hy(x,y) = (—y1; 4+ 2)e3¥" starting at the
point (0,y;) in the half-plane %_

x_i(t) =y, — 3t + (2 — yli)et — 2,
y-i(t) = yri — 2p — Bp + 3)t + (2p — pyui)e’ + pyii,

I
2

where i = 1,2 and y; = —yg;e” 2, it is easy to check that the periodic orbits I'y and I'; have periods
Ty = 1.7926 and Ty = 2.8745, respectively.

Formula (5.1) can be extended to the discontinuous piecewise linear differential systems considered
here, then for the discontinuous piecewise linear differential system, we have

Pu { @@y @), te 0. 2 u{@a®.ya@), te |21] )
L {(esa). 1208, t€ [0, 2]} U {@oa(t) (), te [I.7]},
where
T4i(t) = " yoie "2 ' sinwt,
y+i(t) = %yol-e_%‘”t (w coswt + ((5 + %w) Sinwt).

Thus
1.7926
T
—wdt + / dt =1.7926 — — — 7,
w

T

/ div(Ty (8)) dt =

b/ -
T3 = 2.8745
/diV(Fz(t)) dt = /—w dt + / dt = 2.8745 — g o
0 0 ks

T1 T2
Since w > 1.7525, we have £ < 1.7926, thus [ div(I'y(t))dt # 0 and [ div(T'y(t)) dt # 0, so we obtain
0 0

two hyperbolic non-algebraic crossing limit cycles.
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Example 5.1. When =2, 5 =—1, w =2 and 6 = 1, system (3.1) reads as

T=-3r—y, y=8r+y ind,, (5.2)
t=3x—y—1, y=6x—2y—> in X_. '

This system has exactly two explicit hyperbolic and non-algebraic crossing limit cycles I';, ¢ = 1, 2.
The smallest one I'; intersects the switching line ¥ at two points

yor = —4.4522,  y1; = 0.92558

and is given by

U {(a:,y) eX_: Br—y+ 2)6%3’7%:’3 = 1.4627}.
The biggest limit cycle I'y intersects the switching line ¥ at two points
Yoo = —7.1392, y1o = 1.4841.
and the expression of this limit cycle is given by
Ty = {(x, y) €Dyt (82 + day +y?)e Metn iy = 50.971}
U {(x,y) €Y (1+p)a—y+2edvhe= 0.84603}

(see Figure 5.2).

oL

Figure 5.2. The two crossing non-algebraic limit cycles of the discontinuous piecewise linear differ-
ential systems (5.2).

6 Proof of Proposition 3.2

We consider the planar piecewise linear system (3.2), for this system it is easy to check that the left
linear differential system has neither real nor virtual equilibria and the right linear differential system
is a focus with eigenvalues —1 + wi, w > 0. In order to prove that the discontinuous piecewise linear
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differential system (3.2) has exactly one hyperbolic non-algebraic limit cycle, we use the first integrals
for the right and the left side systems of (3.2).
The first integrals of the two linear differential systems of (3.2) are

Hi(z,) = (@ + (6 +w)?)a® = 28(6 + w)ay + B2 ) wrfims),

Hy(z,y) = (z +y — op+ 13)efi =30 Y
in ¥; and ¥_, respectively. The solution (x4(t),y+(¢)) of right half-system of (3.2) such that
(24(0),9+(0)) = (0,90) with yo <0 is

x4 (t) = gyoe*‘”t sin wt,

1
yi(t) = —yoe “ (wcoswt + (6 — A) sinwt).
w

The time ¢ that the solution (2 (t), y(t)) contained in ¥, needs to reach the point (0,y;) ist = = .

Therefore,

y1=y(ty) = —yoe ™
Then, for the discontinuous piecewise linear differential system (3.2), the function (4.5) becomes
fly) = —(e7 Ty —13)eto TFIY —y 13,

The graphic of this function is given in Figure 6.1.

2+

Figure 6.1. The graphic of the function f(y).

The unique solution yo # 0 of the equation f(y) = 0 is yo = —5.6657. From this value of yy, we get
the value of y; = 0.24484.
Thus, the solution passing through the crossing points (0, yo) and (0,y1) corresponds to

P={@yes: ((w+0)?+w)a? = 28w+ day + B2y? )e M orfiom) = 32,162}
U {(aay) €X_: (z+y—px+13)efioHy = 12.925}.

Moreover, I' is non-algebraic and travels in a counterclockwise sense around the sliding segment
Ys={0,y) eX: -3<y<0}
Using the form parametric (z_(t),y_(t)) of the curve Ha(z,y) = (y1 + 2)eT Y! starting at the
point (0,y) in the half-plane % _
x_(t) =10t —y; + e H(ys +13) — 13,
y—(t) = y1 — 13p +10(p — 1)t — pyr + p(13 + y1)e™",
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where y; = —yge™ ™, it is easy to check that the periodic orbit I' has period T = 0.59108.
Then, for the discontinuous piecewise linear differential system (3.2), we have

™

L {@e@u ) te [0, 2] fu{@-.p-0), te |Z.7]},

and

0.59108

T
/div(F(t))dt - /—Qw dt — / dt = g — 27 — 0.59108.
0

0

T

Since w > 5.315, T < 0.59108 which leads to [ div(I'(t))dt < 0, hence the non-algebraic crossing
0

periodic orbit IT" is a stable and hyperbolic limit cycle. This completes the proof of Proposition 3.2.

Example 6.1. When y=—2, 8= -1, =1 and w = 8, system (3.2) reads as

T=—-17Tx —y, y=145x+y in X,

: . . (6.1)
T=-3r—y—3, y=6r+2y—4 inX_.

Then, this system has exactly one explicit hyperbolic and non-algebraic crossing limit cycle I'. This
limit cycle intersects the switching line ¥ at two points

Yo = —5.6657, y; = 0.24484
and is given by
I'= {(:c,y) €Xy: (14522 + 18y + y?)e 2 ueton(aty) = 32.1}

U {(:c,y) €EX_: (xty+2c+13)eT I HY = 12.925}.

Figure 6.2. The unique crossing non-algebraic limit cycle of system (6.1).

7 Proof of Proposition 3.3

Suppose that we have a discontinuous piecewise linear differential system (3.3). It is easy to see that
the left half-system is Hamiltonian without equilibrium points and, since —% + iw, w > 0 are the
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eigenvalues of the matrices of the right half-system, this system has its equilibria as focus type at
the origin. In order for the piecewise linear differential system (3.3) to have exactly one hyperbolic
non-algebraic limit cycle, it must intersect the discontinuous curve ¥ at two points. Let (0,yo) with
yo < 0, and (0,y1) with y; > 0 be two intersecting points. Then, taking into account that

Hy(z,y) = ((52 + dw + ng)xQ — B(20 + w)xy + 52y2)eama“(<25fw2>+wy),
Hy(z,y) = —p*a® 4 2pay + 2(1 + 3p)x — y* — 6y

are first integrals of the two linear differential systems of (3.3) in X and X_, respectively, these two
points satisfy equations (4.1).
The solution of the right half-system of (3.3) starting at the point (0,4o), yo < 0 when ¢t =0, is

B

T4 (t) = o yoe 2 (sinwt),

1 _wy wy .
y+(t) = o Yoe 2 (wcoswt + (5+ 5) smwt).
The time ¢ that the solution (x4 (¢),y4(t)) contained in ¥, needs to reach the point (0,y1) ist; = = .
Since the orbits starting at the point (0,yo) go into the left zone ¥_ under the flow of the left linear
differential systems and since these orbits can reach X again at some point (0,y1) after the time
ty =7, we have

ks
2

y1 =y(ty) = —yoe

This proves that Hy(0,y9) — H1(0,y1) = 0. Then, for the discontinuous piecewise linear differential
system (3.3), equation (4.2) becomes

((e7™ = 1)yo —6(1 47 ))yo = 0.

The unique solution yg # 0 of this last equation is

From this value of y, we get the value of y; = 1.5746.
Therefore, the solution passing through the crossing points (0,yo) and (0,y;) is written as

5 arctan( ———2%w ___
r= {(ag, y) €3y (((52 + dw + 1 w2>x2 — B(20 + w)xy + 62y2>e tan(mra)so2ey) — 57.375&2}
U {(I,y) €Y —pPa? 4 2ury +2(1 4 3p)x —y? — 6y = 711.927}.
Moreover, I'" is non-algebraic and travels in a counterclockwise sense around the sliding segment
s ={0,y) eX: =3<y<0}.
Now, we prove that this non-algebraic crossing periodic orbit is a hyperbolic limit cycle. From the

analytical form (z_(¢),y—(t)) of the curve Ha(z,y) = —(6 4+ y1)y1 starting at the point (0,y;) in the
half-plane ¥_, we have

1
v (t) = =51 —tn +3),
1
y-(t) = §Mt2 = (Bu+ 1)t + 1,

where y; = —ype™ ", it is easy to check that the periodic orbit I' has period T = 9.1492.
Then, for the discontinuous piecewise linear differential system (3.3), we have

L {@@0), te [0, 2] u{@-@0.y-0) te [Z.7]}
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and

—wdt = -7 <0,

O\E\:

T
/ div(T (1)) dt =
0
hence, the non-algebraic crossing periodic orbit I is a stable and hyperbolic limit cycle. This completes
the proof of Proposition 3.3.

Example 7.1. When 8= -1, u = -2, 6 =1 and w = 1, system (3.3) reads as

. .13 .
T = -2z —y, y:Zx—Fy in ¥4, (7.1)

T=-2x—y—3, y=4r+2y+6 inX_.

Then, this system has exactly one explicit hyperbolic, non-algebraic crossing limit cycle I'. This limit
cycle intersects the switching line 3 at two points

Yo = —7.5746, 1y = 1.5746
and is given by

2x

(1322 + 122y + 4y2)e~ etan(ain) = 57.375}

| =

r= {(x,y) €%,
U {(x,y) eX_: —da? —dxy—y? — 100 — 6y = —11.927}

-10 —

Figure 7.1. The unique crossing non-algebraic limit cycle of system (7.1).
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Abstract. We present the connection between Hartley transform (HT) and a one-dimensional real-

ization by difference-differential operator of N = %—supersymmetric quantum mechanics elaborated
by S. Post, L. Vinet and A. Zhedanov. The key feature of our approach is that the Hartley transform

commutes with the supercharge and provides the overcomplete bases of the HT eigenvectors.
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1 Preliminaries

The Fourier transform of a suitable function f is defined by the formula
FHO) = == [ e da,
V2T J

Recently, the one-dimensional harmonic oscillator has been approached by the Fourier transform
method (see [9,13,15,17]). Let us recall some remarks related to the Fourier transform and harmonic
oscillator. In one-dimension coordinates, the representation of the creation and annihilation operators
af, a and the harmonic oscillator H are given by

. 1 ) 1 1 . d
(z +ips), al = — (x —ips), H= —fpi + 5332, Py = —1— . (1.1)

V2

a =

Sl

They satisfy
[a,a']=1, [H,a]=—a, [H,d']=adT,

where [A, B] = AB — BA denotes the usual commutator of A and B.
The wave functions 1, (z) of the linear harmonic oscillator,

/ Un () Y () dx = bppmy, nym=0,1,2,...,

are explicitly given as
1,
() = (\/EnIQ") Y " Hy (),

where H,(z) is the Hermite polynomial of degree n, which is orthogonal over the real line R with
respect to the weight function w(z) = e’ [14]. In quantum mechanics, the wave functions emerge
as eigenfunctions of the Hamiltonian H,

Hip(z) = (n—l—%)wn(:ﬂ), n=0,1,2,.... (1.2)

The Fourier transform simply changes the basis from the coordinate basis « to the momentum basis
p. and, consequently, commutes with the harmonic oscillator H. Namely, we have

FH =HF. (1.3)

Form (1.3) in the standard algebraic way expresses the fact that the Hamiltonian H and the Fourier
transform F have a common set of eigenfunctions v, (x). More precisely, the wave functions 1, ()
are eigenfunctions of the Fourier transform associated with the eigenvalues ™, that is,

The one-dimensional harmonic oscillator was also studied by Schrodinger via Laplace transform when
discussing the radial eigenfunction of the hydrogen atom [19], and later, Englefield approached the
Schrodinger equation with Coulomb, oscillator, exponential, and Yamaguchi potentials [10].

The fundamental purpose of the present work is to extended the integral approach of the harmonic
oscillator to the setting of supersymmetric quantum mechanics “SUSY QM?”. Let us first recall some
mathematical aspects of the supersymmetric quantum mechanics. The “SUSY QM”, introduced by
Witten [23], may be generated by three operators Q_, Q4 and H satisfying

Q1 =0, [Q:.H =0, {Q-,Q:}=H,

with {A, B} = AB + BA denoting the anti-commutator of A and B.
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For a complete correspondence with the quantum mechanical oscillator problem, the supersym-
metric quantum mechanics models need an analogue of the Fourier transformation. In the present
work we fill this gap. Indeed, we propose the Hartley transform as an alternative of the Fourier
transform approach to the SUSY quantum mechanics.

Recall that the Hartley transform of a suitable function f(z) is defined by

(HI)(N) = % / f() cas(\z) d,
R

where the kernel of the integral, known as cas function, is defined as cas(xz) = cos(z) — sin(z). The
relation between the Hartley transform and the Fourier transform is given by

(RN = V2 (R(FHN) = S(FNHN)),

where R and & denote, respectively, the real and imaginary parts of the Fourier transform. Compared
to the Fourier transform, the Hartley transform has the advantages of transforming real functions
to real functions (as opposed to requiring complex numbers), also this transform has complementary
symmetry properties with respect to their real and imaginary axis and of being its own inverse.

The paper is organized as follows. In Section 2, we recall general properties of the supersymmetric
quantum mechanics with reflection. In Section 3, we give some details related to the Hartley transform
and difference-differential operator. Finally, in Section 4, we develop the connection between HT
and SUSY Quantum Mechanics and exploit it to obtain overcomplete bases for Hartley transform
eigenvectors.

2 The Hartley transform

Our first observation in this section is the following representation of the function cas(z) defined in
(2.2) by the power series:
) n41
(—1)("3)
cas(z) = Z o ", (2.1)
n=0

n

2) is the binomial coefficient given by

()=

Theorem 2.1. For A € C, the function cas(Ax) is the unique analytic solution of the problem

where (

u(0) =

{(a R)u(z) = \u(z),
) =0.

Proof. From the well known identity for binomial coefficients
n+1 n n n
("2 () () =+ )

n+1)

> (—1)("3 > (—1)("37)
Oy cas(Az) = A Z ((1)_1)‘()@)"1 = Z %()\x)” = —Acas(—Az).
n=1 . n=0 :

n

we have

Hence (0, R)u(x) = Au(x). O
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Since

the sum in (2.1) turns to be
cas(z) = cos(z) — sin(x). (2.2)

The Hartley transform pair for f in a suitable functions class is given by (see [4,12])
1
AN = o= [ S@)casha) da,
R

1
flx)= 7= R/(’Hf)()\) cas(Az) dA.

Accordingly,
H =1

The function cas(z) satisfies the product formula
1 1
cas(x) cas(y) = 3 (1=R)cas)(z+y)+ 3 ((14+ R)cas)(z — y).

This allows us to define the generalized translation operator related to the differential-difference op-
erator OR by

(1= B+ ) + 5 (1 + R — ),

DN =

Tyf(x) =
and the convolution product by

frgla) = / F()rea(y) dy.
R

The Hartley transform has the following properties:

H(7o f)(A) = cas(Ax)H(f)(A), - H(f +g)(A) = H(SHA)H(g)(A)-

3 SUSY QM with reflection

Let us first recall some mathematical aspects of the supersymmetric quantum mechanics. The “SUSY
QM” introduced by Witten [23] can be generated by three operators @Q_, Q4+ and H satisfying

Qi = 07 [Qi7H] = 07 {Q77Q+} = H (31)

(with {A, B} = AB+ BA denoting the anti-commutator of A and B) to facilitate the comparison with
the usual harmonic oscillator. The minimal version of N = 1 supersymmetric quantum mechanics is
achieved by taking the supercharges Q4 and (Q_) as product of the bosonic operator a (a') defined
in (1.1) and the fermionic operator v (1'). Namely, we have

Q=ayf, QN =adly,

where the matrix fermionic creation and annihilation operators are defined via

¢=U+:[8 é} wT:o:[(f 8}

Thus, v and 9T obey the usual algebra of the fermionic creation and annihilation operators, namely,

whyt=1, {who!}={y.y}=0
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They also satisfy the commutation relation
1 0
[wtw] =03 = |:0 _1:| .

The SUSY Hamiltonian can be rewritten in the form

1 1
H=QO0f TQ=——— 4 222 = 1.
QR +QIQ =~ + ya* = 5 [V ]
Note that if the supercharge @ in (3.1) is self-adjoint, i.e., Q" = Q. Then H = 2Q?, and the model is
said to be N = % supersymmetric.
In [18], the authors developed several realizations of N = % supersymmetric quantum mechanics in
one-dimension by taking the supercharge as the following Dunkl-type difference-differential operator:

1

V2

where U(z) is even, V() is odd, and the operator R is the reflection operator which acts as Rf(z) =
f(—=). In this case, the SUSY Hamiltonian takes the form

Q (0.R+UR+V),

ﬁ:Q2:_*7+*(U2+V2)+*7_*

The wave functions for such systems have been obtained in [18], where it was shown that they define
orthogonal polynomials, expressed in terms of Hermite and Jacobi polynomials.

Consider the supercharge
1
V2

Note that this supercharge corresponds to the case U(z) = 0 and V(z) = z in (3). Upon computing
Q?, we readily find that

N 1 a2 1 1
A== 12 g
@ sz 2% T3

The spectrum of the supersymmetric Hamiltonian His easily obtained by observing that

~ 1
H=H—--R
2 b
where
1 42 1
H=—->—"—+ =2
2dr? 2"
Since

Ripn (z) = (=1)"¢n (),
it follows from (1.2) that
j_-\h/)n = Enwnv

where

(="

1_
E,=n+ 5 , n=0,1,....

Therefore, the spectrum will only consist of even numbers. Fach level is degenerate, except for the
ground state, which is unique.
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4 Eigenfunctions of the Hartley transform

Now, we are interested in finding all eigenfunctions of the Hartley transform operator explicitly. Since
mutually commuting operators have the same set of eigenfunctions, one can solve this problem by
defining such a self-adjoint operator with a simple spectrum of distinct eigenvalues, which commutes
with the Hartley transform.

In what follows, the following lemma is needed.

Lemma 4.1. For o, € R such that « # —, the problem

{—u’(—z) +(u(z) — u(~x)) + ou(—) = fu(x). (1)
u(0) = 1.

has a unique analytic solution given by
042 _ 52 2+ 042 _ 52
u(z) = 11 s2? [+ (a =Bz 1 Fy

DO =
N W

where

a > (a)n 2"
1F1 ( ;Z) = Z —
!
b — (b)n n!
is Kummer’s confluent hypergeometric function (see [14]).

Proof. Note that one can always write u as the superposition v = u, + u, of an even function u. and

of an odd function u, by the formulae
u(r) +ul—x
ue(x) = ( ) 2 ( ) ,

Further, this decomposition is unique. This allows us to rewrite the eigenvalue equation (4.1) equiv-
alently as a system of two linear differential equations of first order:

{u:e =(a+ é)uo, (4.2)

We can eliminate the function u,(x) from system (4.2) and obtain for u.(x) a second-order differential
equation

u () — 2zul(2) = —(a® — B)ue(z). (4.3)
We choose t = 22 as a new variable and reduce equation (4.3) to

1 2 _ 2
tv" + (5 —t)v' = —%u&

so that the general solution of (4.3) can be written in the form
O42 _ ﬁZ 2 + 042 _ ,82

2

ue(z) = A 1 F 211 ;22 | + Bx 1By g 2|,
2 2
where A and B are constants depending on A, o and . Since the function ue(z) is even, we have
a? — B2
ue(x) = A 1 Fy 4 ;2
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From (4.2), for the function u,(z) we obtain

2 _ 32
oa—f 1+ 4 ’
uo(xz) = A 5t 1 Fy 5 s
2
We have the general solution of (4.5)
042 162 - 0&2 ;62
u(r) = A1 Fy ) 22 | + Ala — B)x 1 Fy ;2
2 2
From the initial condition in (4.1), we get A = 1. O

The following theorem states that the Hartley transform commutes with the supercharge @ defined
in (3.2).

Theorem 4.2. We have
HOQ = QH.

Proof. Using integration by parts, we can show that the Hartley transform satisfies the following
intertwining relations:

HR=RH, HOO,R=zH, Hx=0,RH.

The two last intertwining relations provide the proof of the theorem. O

2
The ground state wave function ¥y(x) is given by o(x) = e~ and satisfies Q9 = 0. Let us
now carry out the gauge transformation of @) with the ground state vy. Let

Q = g ' Qibo. (4.4)

It is not difficult to see that L 4 )

Q=—=-—R+—z(1-R).

Q=5 g Bt =all-R)
From Theorem 4.2, we see that the eigenfunctions of the Hartley transform can be obtained by
finding the eigenvalues of the supercharge (). So, in this way, one reduces the problem of funding
the eigenfunctions of the Hartley transform into one of solving the following difference-differential

equation
—/ (—z) + z(u(z) — u(—x)) = V2 Iu(z). (4.5)
From Lemma (4.1), the general solution of (4.5) is given by
A\? A2
-5

u(z)=A| 1k ) 22 | = V2 By T . (4.6)

It can be is easily seen that polynomial solutions are possible only if A = +v2n, n = 0,1,2,... .
If A\ = +v/2n, then the first term in (4.6) is a polynomial of degree 2n and the second term is a
polynomial of degree 2n — 1.

Let us by ¥4 ,(z) denote the eigenfunction of @) corresponding to the eigenvalue A, = +v2n.
Then we have the following explicit expressions:

-n 1—n
YVin(z) = KEe ™ Pl o e? | 22 Fy 3 a2
2 2
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The normalized constants x4, are also chosen so that

/ |'(Zin|d3 =1

L — ragnta(2n)) =20l n = 0,1,2,.... We denote by

simple computation shows that s, ! = k)

A
H, (z), n € Z, the orthogonal polynomial extracts that form the orthogonal function {/J\:i:n (z). That is,

@n(x) = mne_m% ﬁn(a:)

Using the well known explicit expressions of Hermite polynomials in terms of the Confluent hyperge-
ometric series

—N
Hon(z) = (—1)" (273)! B o),
2
n
Hapia(z) = (=1)" (271;'_ & 20107 3 sa |
2
we obtain .
Han(z) = ((2171)'" (Hgn(z) ¥ 2\/RH2n_1(x)), n=012,....

They satisfy the orthogonality relations

Onm, M, m € 7.

/lLAlrn(ﬂ?)ffm(ac)e_“c2 d = /7 2217 +1
R

The system {zzin(x)}nez is an orthonormal set in L?(R, dx) and it is complete by the same argument
which was used to prove that the classical Hermite functions form a complete orthogonal set in
L?(R,dr). Further, the operator Q with domain D(Q) = S(R) (S(R) is the Schwartz space) is
essentially self-adjoint; the spectrum of its closure is discrete and, by (4.4), we easily obtain that

Qvoan(z) = V20 1hsin(z), n=0,1,2,....

Theorem 4.3. For n € Z, we have

[ eastana@e = do = (-1 By
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Abstract. The objective of this paper is to develop a numerical method for solving a bidimensional
unilateral obstacle problem. This is based on the bicubic splines collocation method and the generali-
zed Newton method. In this paper, we obtain an approximate expression for solving a bidimensional
unilateral obstacle problem. We show that the approximate formula obtained by the bicubic splines
collocation method is effective. Next, we prove the convergence of the proposed method. The method is
applied to some test examples and the numerical results have been compared with the exact solutions.
The obtained results show the computational efficiency of the method. It can be concluded that
computational efficiency of the method is effective for the two-dimensional obstacle problem.
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1 Introduction

In this paper, we consider the following unilateral obstacle problem:

Find u € K such that /Vu-V(U—u)dx—!—/f(v—u)deO, Vv e K, (1.1)
Q Q

where 2 C R™ is a bounded open domain with n > 2, with a smooth boundary 92, f is an element
of L?(Q) and K = {v € H}(Q) | v > 1 a.e. in Q}. The main point here is that we are considering
an irregular obstacle function ¢ which is an element of H!(Q) with 1 < 0 on 9Q. It is well known
that problem (1.1) admits a unique solution u, and if Ay € L?(Q), then u is an element of H?((2)
(see [10,14]), and the solution u of problem (1.1) is an element of H?(£2) that can be characterized as
(see [10], for instance)

—Au+f>0 a.e. on €,
(—Au+ f)(lu—1) =0 a.e. on
u—1 >0 a.e. on £,
u=0 on Jf).

As a classical subject in the field of partial differential equations, the obstacle problem is aimed to
find a solution which is constrained by a given obstacle to some extent. It has numerous applications
in various fields including economics, engineering, biology, computer science, etc. There are several
numerical solution methods of the obstacle problem (see, e.g., [1,6,9-11,13,17,26]). Numerical solution
by penalty methods have been considered, e.g., in [9,24]. In this paper, we develop a numerical method
for solving a two-dimensional obstacle problem by using the generalized tension splines collocation
method and the generalized Newton method. First, problem (1.1) is approximated by a sequence
of nonlinear equation problems by using the penalty method given in [14,16]. Then we apply the
GB-spline collocation method to approximate the solution of a boundary value problem of second
order. The discret problem is formulated as to find the generalized tension splines coefficients of a
nonsmooth system ¢(Y) =Y, where ¢ : R™ — R™. In order to solve the nonsmooth equation, we
apply the generalized Newton method (see, e.g., [4,5,25]). We prove that the generalized tension splines
collocation method converges quadratically provided a property, coupling the penalty parameter € and
the discretization parameter h is satisfied.

Numerical methods to approximate the solution of boundary value problems have been considered
by several authors. We only mention the papers [3,15] and the references therein, which use the
bicubic spline collocation method for solving the boundary value problems.

The present paper is organized as follows. In Section 2, we present the penalty method to approx-
imate the obstacle problem by a sequence of second order boundary value problems, we also construct
a bicubic spline to approximate the solution of the boundary problem, and we present the general-
ized Newton method. In Section 3, we show the convergence of the generalized tension spline to the
solution of the boundary problem and provide an error estimate. Some numerical results are given in
Section 4 to validate our methodology. The study ends with conclusions and remarks in Section 5.

2 Bicubic spline collocation method

In this section, we construct a bicubic spline which approximates the solution w. of problem (2.1),

with Q being the interval I x J = (a,b)? C R?. We denote by || - || the Euclidean norm on R+ (n+1)

by || - |lec the uniform norm, by ® Kronecker product (tensor product) and by ® the biproduct of
matrices.

By using the penalty method (see [14, p. 110], [16]), an approximate solution u. of problem (1.1)

can be characterized as the following boundary value problem (see [14, p. 107], [16]):

{Aus = max(—Av + f,0)0(ue — ) — f in Q,
(2.1)
u: =0 on 012,
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where 6. is a sequence of Lipschitz functions which tend to the function 6 defined by

1, t<0,
b.()=41-L, o<t<e, (2.2)
0, s
If we put
Je(,y, ue(z,y)) = max(—A(z,y) + f(z,y),0)0:
with

65 = GE(UE(CCay) - d)(I,y)) - f(x7y)a
then problem (2.1) becomes

(2.3)

—Aue = Jo (-, ue) on €,
ue(a,y) = ue(z,b) =0, =,y € (a,b).

It is easy to see that J. is a nonlinear continuous function on u.; and for any two functions u. and
ve, Je satisfies the following Lipschitz condition:

|J5(x,y,u5(x,y)) — Je(x,y,vg(a:,y))’ < Le|ue(z,y) — ve(x,y)| a.e. on (z,y) € Q, (2.4)
where
Le= 2= A0+ fllo = 7 max |~ Ad(a,) + Flz,0)l
Now, let
sz{a:x_3=~-~:mo<x1 <--~<xn+1:-~-:xn+3:b},
Hy:{a:y_gz...:y0<y1 <"'<yn+1:"':yn+3:b}

be the subdivisions of the intervals I and J, respectively, with x; = a + ¢h and y; = a + jh, where
0<i,j <nandh=(b—a)/n. The partition II,, = II, ® IL, subdivides 2 into smaller rectangles in
the plane:

T = {(x7y): i S < Tig1, Y5 S Y S Yjrts iaj=—37~-~,n—1}~

Denote by
Sy, TLay) = S5 (1,11,) ® S§*°(J, 1)

a bicubic spline with respect to the partition I, with S{*¢(I,I1,) (resp. S§*(J,11,)), the space of
piecewise polynomials of degree 3 over the subdivision II, (resp. II,) and of class C? everywhere on I
(resp. J).

Moreover, let {B®5, B®,,...,B%_} (resp. {B";,...,BY_,}) be a B-spline basis of S{“*(I,11,)
(resp. S§“b(J,11,)). By applying the tensor product method (see [19]), we obtain the following bicubic
spline interpolation.

Proposition 2.1 (see [19]). Let u, be a solution of problem (2.3). Then there exists a unique bicubic
spline interpolant S. € Sy (Q, ) of ue which satisfies

Se(Tiz:Ty) :ue(T‘z 7—9)’ i’j :0""7n+2’

J v
where
Ti+ X1
x x ® ? - x x
7—O = JJO, Ti = 2 ] 1 S 7 S n) Tn-l,-l = xn—la Tn+2 = 'T’ru
y _ y _ YitYi—1 ; v o _ y o _
o =Y, T; = , 1<j<n, Tnt+1 = Yn—15 Tpyo = Yn.

J 2
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If we put
n—1
Se(z,y) = Z Cp.q.e By () BY (),
P,q=—3

then by using the boundary conditions of problem (2.3) we obtain
c_3,4e=95:(a,y) =u:(a,y) =0, ¢q=-3,...,n—1,

and
Cpmn—1,e = S:(2,0) = us(x,0) =0, p=-3,...,n—1.

Hence

n—2
Se(w,y) = Z cp,q,st;(x)Bg(y)'
Pq=—2

Furthermore, for any u. € H*(Q), where H*(Q) = {u € L?(Q);0%u € L%*(Q),|a| < 4} is the Sobolev
space (see [8]), we have

—AS (7)) = Je(r 1 ue) + O(1), d,j=1,...,n+1. (2.5)

The bicubic spline collocation method, presented in this paper, constructs numerically a bicubic spline

~ n—1

Se = > ¢pqeByBY which satisfies equation (2.3) at the points (77,7/), 4,j = 0,...,n+ 2. It is
P,q=—3

easy to see that

C-3,e =Cpn-1, =0 for pg=-3,....n—-1
and the coefficients ¢, 4., p,q¢ = —2,...,n — 2, satisfy the following nonlinear system with (n + 1)?

equations:

n—2 n—2
> G ABI(T)BY(rY) = —J(r, 7Y, Y GpaeBi(r)BY(7Y)) for i, j=1,...,n+1. (2.6)

P,q=—2 p,g=—2

Since
AB(m")BY (1)) = By (7)) ABY(1}) + By (7] )AB, (7)),

relations (2.5) and (2.6) can be written in the matrix form, respectively, as follows:

Q(Ah O] Bh)cs = 7Fs - Esa

2(An © Bh)és = 7F5€,

(2.7)

where

1
AhGBh = 5(Ah®Bh+Bh®Ah)a
T
Ce = [(c-2,4c)—2<g<n—2, -+ (Cn-2,9.c)—2<g<n 2]
~ - - T
C. = [(C—Z,q,s)—2§q§n—27 s (Cn—Q,q,s)—2§q§n—2}

)

7

for any integer ¢ such that 1 <i <n+1,

T
F. = [JE(Tf,T{’,uE(TﬁT{’)),...,JE(Tf,Tg+1,u€(Tf,Tg+1))} ,

- ~ T
Fz = [JE(Tf,Tf,S’E(Tf,Tf’)),...,JE(TﬁTgH,S’E(Tf,TﬁH))} ,

€
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and Ea is a vector, where each component is of order O(1). It is well known that A, = ,712 A and
By, = B, where A and B are the matrices independent of h given as follows:

r—15 1 1 0 0 b
4 4 2
3 -3 -1 1
i 1 2 3 0© 0
0 1 -1 -1 1 0 0
2 2 2 2
A= 1 1
— —1 1
0 0 53 3 5 3 0
1 -1 -3 3
1 1 —15
0 O 5 1 T
-5 3
0 0 1 — —
L 2 2 J
(57 25 1 ]
% o6 48 0
3 45 23 1
9% 06 48 a3 0
1 23 45 3
" ® ® 9% 96 0
B =
1 23 45 3
0 0o — = = = 9
48 48 96 96
1 25 57
0 O % 9% 9%
0 0 1 1
L 6 12 4 |

Then relation (2.7) becomes

(A© B)C. =~ WF. ~ B,

_ 1 (2.8)
(A® B)C. = -5 h?Fg
with E. being a vector, where each of its components is of order O(h?).
As the matrices A and B are invertible (see [18]), then A ® B is invertible (see [12]) and
(AoB)'=A1teoB™" (2.9)

Proposition 2.2. Assume that the penalty parameter € and the discretization parameter h satisfy the
following relation:

R =AY + fllool|A™H © B™ oo < 2. (2.10)

Then there exists a unique bicubic spline which approximates the exact solution u. of problem (2.3).
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Proof. From relation (2.8), we have
C.= LwatoBF
== "5 © .-
Let o : RO+ Rn4+D(n+1) he o function defined by
Lo, —1

To prove the existence of bicubic spline collocation, it suffices to prove that ¢ admits a unique fixed
point. Indeed, let ¥; and Y5 be two vectors of R+ Then we have

1 _ _
le(¥1) — ()l < 5 W A™ 0 B™ oo Fyy — Frs llco- (2.11)

n—2
Using relation (2.4) and the fact that ) BjBY <1, we get
Pg=—2

JE(Tf,ij,Syl(Tf,TJy)) — Je(Tf,Tf,Sy2(Tf,Tf))’

< L€|SY1(7_2'I37_]?'J) - SYQ(TiZ?ij)‘ < LEHYl - Y2||007
where L. = 1 || = At + f|o. Then we obtain
1Fy, = Fyalloo < Lel|Y1 — Y2 oo

From relation (2.11), we conclude that

1 _ _
le(1) —o(Y2)]l < Le 5 WA O B ao|Y1 = Ya oo
Thus we have
(Y1) — (Y2)[| < k[[Y1 — Y2 oo,
with k = 3 h%|A='©B~!||, by relation (2.10). Hence the function ¢ admits a unique fixed point. [

In order to calculate the coefficients of the generalized tension spline collocation given by the
nonsmooth system

CE = SD(CE)7
we propose the generalized Newton method defined by
CUHD = O — (Inga = Vi) H (W = p(C)),

where I, 1)(n+1) is the unit matrix of order (n +1)(n 4+ 1) and Vj is the generalized Jacobian of the
function C. — ¢(C.) (see, e.g., [4,5,25]).

3 Convergence of the method

Theorem 3.1. If we assume that the penalty parameter € and the discretization parameter h satisfy
the relation

Rl =AY + fllool|A™H @ B |o <ce. (3.1)

then the bicubic spline §5 converges to the solution u.. Moreover, the error estimate ||ue — §€||OO s of
order O(h?).



50 A. El hajaji, A. Serghini, S. Melliani, E. B. Mermri, K. Hilal

Proof. From (2.8) and (2.9), we have
~ 1 B B B B
CE—CE:_§h4A '"OB NF.-Fs)- A" 0B E..
Since E. is of order O(h?), there exists a constant K; such that ||E.||o < k1h?. Hence, we get

~ 1
[C: = Celloo < = P2|A™ @ B Yool Fx — F5 ||oo + K1||A™ @ B7Y|| oo h?. (3.2)
2 Ce

On the other hand, we have

J J LAV J

Jo (787w (7F 7)) — Je (77, 7 5(7},73)))

< Lglug(rf,rjy) — SE(T;E,T]Z-}H < Lglug(rf,rf) — Sa(Ti‘"”,T;-’)’ + LE‘SE(T;E,TJZ/) — SE(Tf,Ty)’.

Since S; is the bicubic spline interpolation of u., there exists a constant K5 such that

||'LL5 - Se”oo S K2h2~ (33)
Using the fact that
n—2
|Ss - Ss| S ||Cs - CsHoo BwBy S ||C5 - Cf-:”ooa (34)
pPT4q
P,q=—2

we obtain B
|F. — F55| < L |C: — Celoo + L.K5h.

By using relation (3.2) and assumption (3.1), it is easy to see that
sPPAT O B |w

Le 3 h?|[A71 © B~
< WA © B7Y|oo (Ko Loh? + 2K7Y). (3.5)

(KL h? 4 2Ky)

Hcs - 6'5”00 < 1—

Thus B B
lue = Sclloo < lltte — Selloo + [1Se — Sc|loo-

Therefore, from relations (3.3), (3.4) and (3.5), we deduce that ||us — S: ||« is of order O(h2). Hence,
the proof is complete. O

Remark 3.1. Theorem 3.1 provides a relation coupling the penalty parameter € and the discretization
parameter h, which guarantees the quadratic convergence of the bicubic spline collocation S. to the
solution u. of the penalty problem.

We have the interesting properties.

Theorem 3.2 ([14, p. 110], [16]). Let u denote the solution of the variational inequality problem (1.1)
and u, € > 0, denote the solution of the penalty problem (2.1) with 6. defined by relation (2.2). Then
{uc} s a nondecreasing sequence and

u(r,y) < ue(w,y) <ulz,y) +e, (v,y) €, for e>0.

Theorem 3.3. Suppose that u(x,y) is the solution of (1.1) and up.(x,y) is the approzimate solution
by our presented method. Then we have

w(z,y) — wbe(,y)||loo < €+ kR?, (z,y) €Q, for >0,

where k is a finite constant. Therefore, for sufficiently small € and h, the solution of presented scheme
(2.8) converges to the solution of the variational inequality problem (1.1) in the discrete Loo-norm and
the rates of convergence are O(e + h?).
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4 Numerical examples

In this section, we give the numerical experiments in order to validate the theoretical results presented
in this paper. We report numerical results for solving a two-dimensional obstacle problem by using the
bicubic spline method to approximate the solution of the penalty problem (2.3), and the generalized
Newton method [23] to determine the coefficients of the bicubic spline collocation.

As a numerical experiment, the example by Bartels and Carstensen [2] with Q = (—1.5,1.5)% is
considered, however, with an additional mass term. For the obstacle ¥» = 0 and volume force f = 2,
the exact solution is

,’,2

1
) — = i =z, > 1
w(z,y) = 5 n(r) 5 if r=lz|2>1,

0 otherwise.

As a stopping criteria for the generalized Newton iterations, we have considered that the absolute
value of the difference between the input coefficients and the output coefficients is less than 107°.

Exac:f solution.

Figure 1. Exact and Approximate solution.

Table 1 shows, for different values of the discretization parameter h, the error between the bicubic
spline collocation S. and the true solution u. We note that the convergence of the solution S. to
the function v depends on the discretization parameter h and the penalty parameter €. Theorem 3.1
implies that for a fixed h, this convergence is guaranteed only if there exists €, > 0 such that € > ¢,.
Some experimental values of €5, are given in Table 1.
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Theorem 3.3 implies that we have the error estimate between the exact solution and the discrete
penalty solution given by |lu(z, y) — upe(, y)||oo < €+kh2. The obtained results show the convergence
of the discrete penalty solution to the solution of the original obstacle problem as the parameters h
and e get smaller provided they satisfy relation (3.1). Moreover, the numerical error estimates behave
like € + kh? which confirms what we were expecting.

Table 1. Numerical results

€ 102 1073 5x 1074 2x 1074 =¢p
For h = 0.05

= S2|los 5x 1073  10.61 x 107* 10.12x 107*  9.84 x 1074
For h = 0.02

= S2||oe 4.7x107%  721x107*  234x107%*  2.03x107?
For h = 0.01

Ju—S)loe  4.63x107%* 7.03x1075 3.15x107¢  1.84x 1076

5 Concluding remarks

In this paper, we have considered an approximation of a bidimensional unilateral obstacle problem
by a sequence of penalty problems, which are nonsmooth equation problems, presented in [14, 16].
Then we have developed a numerical method for solving each nonsmooth equation, based on a bicubic
collocation spline method and the generalized Newton method. We have shown the convergence of the
method provided that the penalty and discret parameters satisfy relation (3.1). Moreover, we have
provided an error estimate of order O(h?) with respect to the norm || - ||o. The obtained numerical
results show the convergence of the approximate penalty solutions to the exact one and confirm the
error estimates provided in this paper.
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ANALYSIS OF A FRICTIONAL UNILATERAL CONTACT
PROBLEM FOR PIEZOELECTRIC MATERIALS
WITH LONG-TERM MEMORY AND ADHESION



Abstract. This paper deals with the study of a mathematical model that describes a frictional
contact between a piezoelectric body and an obstacle. The material behavior is described with an
electro-elastic constitutive law with long memory and the contact is modelled with Signorini conditions
associated with the non-local friction law in which the adhesion between the contact surfaces is taken
into account. We establish a variational formulation of the model in the form of a system involving the
displacement, stress, electric displacement, electric potential and adhesion field. Under the assumption
that the coefficient of friction is small enough, we prove the existence of a unique weak solution to the
problem. The proof is based on arguments of variational inequalities, nonlinear evolutionary equations
with monotone operators, differential equations and the Banach fixed-point theorem.
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1 Introduction

Contact problems involving deformable bodies are common in industry and in everyday life and play an
important role in structural and mechanical systems, especially, the so-called piezoelectric materials,
which consider the interaction of mechanical and electrical properties. Contact processes involve com-
plicated surface phenomena and are modeled with highly nonlinear initial boundary value problems.
Taking into account various conditions associated with more and more complex behavior laws lead to
introducing new and nonstandard models, expressed by the aid of evolution variational inequalities.
An early attempt to study contact problems within the framework of variational inequalities is due to
Duvaut and Lions [5], to find the state of mathematical, mechanical, and numerical art (see [22,26]).
Several authors have studied unilateral frictional contact problems involving the Signorini state with
or without adhesion (see, e.g., the references in [7,9, 18,26, 28]), as well as the models of viscoelastic
adhesive materials and piezoelectric effect models (see [6,12,13,15,20]).

In this paper, we study a mathematical model that describes a problem of frictional and adhesive
contact between a supposed long-memory electro-elastic body and a foundation. Recall that a friction-
less contact problem with short memory has been studied in [25]. In the present work, we assume that
the contact is modeled with a unilateral constraint and the law of non-local friction with adhesion.
The bonding field evolution is described by a first-order differential equation. As in [10,11], we use it
as an internal surface variable with values between zero and one to describe the fractional density of
active bonds. We refer the reader to the extensive bibliography on the subject in [4,17,22,25].

The present paper aims to extend the results established in the study of a unilateral and frictional
contact problem with adhesion. Novelty is the introduction of a non-local friction law in unilateral
adhesive contact problem for an elastic body with long memory. We contribute to the solution of
this problem by proposing a variational formulation for this model, then, we prove that under the
assumption of the smallness of the coefficient of the friction and suitable regularity assumptions on
the data, the problem admits a unique weak solution where we specify its regularity. The proof of this
result requires proving several technical lemmas by arguments on variational inequalities, monotone
operators, differential equations, and Banach’s fixed-point theorem.

The paper is organized as follows. In Section 2, we state the mechanical model; we list the as-
sumption on the problem data; we present some notations and give a variational formulation. Finally,
in Section 3, under the assumption of the smallness of the coefficient of friction, we state and prove
our main existence and uniqueness result.

2 Problem statement and variational formulation

First, we explain some notations used in this paper. We denote by S; the space of second order
symmetric tensors on R%(d = 2,3), while ‘-’ and || - || represent the inner product and the Euclidean
norm on Sy and R%, respectively. Thus, for every u,v € R, u-v = uv;, ||v]| = (v~v)% and for every o,
T €Sy, 0-T=0yTij, |7l = (7-7)2. Here and below, the indices i and j run between 1 and d and the
summation convention over repeated indices is adopted. We also use the usual notation for the normal
components and the tangential parts of vectors and tensors, respectively, given by v, = v - v = v;y;,
Vv =0V —V,V, 0, =0V -vand o, =ov —o,V.

We consider the following physical setting. An electro-elastic body occupies a bounded domain
Q c R? (d = 2,3) with the Lipschitz boundary 92 = I'. The boundary I is partitioned into three
disjoint measurable parts I'1, I's, I'3 on the one hand, and on two disjoint measurable parts I', and Ty,
on the other hand, such that meas(I'y) > 0, meas(I';) > 0 and I's C I';. Let 7' > 0 and let [0, 7] denote
the time interval of interest. We assume the body is clamped on I'; and therefore the displacement
field vanishes there. A volume forces of density ¢q act in Q2 and surface tractions of density @2 act on
T'5. The body is submitted to electrical constraints for which we assume the electric potential is zero
on I'y, the body is subjected to an electric charge of density gy act on 2 and a surface electric charge
of density qo act on I'y. On I's, the body is in unilateral contact with adhesion following the nonlocal
friction law with an insulator obstacle, the so-called foundation.

Thus, the formulation of the mechanical problem is written as follows.
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Problem (P). Find a displacement field u : Q x [0,T] — R%, a stress field o : Q x [0,T] = Sq, an
electric potential ¢ : Q x [0,T] — R, an electric displacement field D : Q x [0,T] — R? and a bonding
field B : T3 x [0,T] = R such that for allt € [0,T],

—~
DN
—_

~—

o(t) = )+ [ F(t—s)e(u(s)) ds — EXE(p(t)),
o [

D(t) = Ee(u(t)) + CE(p(t)),

(2.2)
Divo(t) + ¢o(t) =0 in Q, (2.3)
div D(t) + qo(t) =0 in €, (2.4)
u(t) =0 on Iy, (2.5)
ov(t) = pa(t) on Ta, (2.6)
U(8) 0, (1) — B R (£) <0, u(D)(ou(t) — B R(w() =0 onTs,  (27)
B(t) = =[B) (v R (1)) + 7+l Br (ur (1) [|*) — €] 4 on T, (2.8)
o) =0 on Ty, (2.9)
Du(t) = ga2(t) on Ty, (2.10)
B(0) =By onTs, (2.11)
o+ (8) + 12 B2(0) B s ()] < il R (),
o (8) 4+ 70 82() Br ()] < | Rer, ()] =, =
on I's. (2.12)
o (t) + v+ B2(t) )|l = plRow (u(t))| = IX =0 such that

o-(t )+%52( )Br(ur(t)) = —Aur(t)

We now describe the equations and conditions involved in our model above.
First, equations (2.1) and (2.2) present an elastic constitutive law with long memory in which
u is the displacement field, D = (D,...,Dy) is the electric displacement field, o = (o;;) is the

stress tensor, €(u) denote the linearised deformation tensor defined by e(u) = (g;;(u)), €i;(u) =
(8 u; + 0; u]) B is an operator of elasticity, F is the tensor of relaxation, & = (e;;) is the third
order piezoelectric operator, £* = (e};;,) is its transpose. E(p) = —V is the electric field, where

Vi = (0;) and C = (C;;) is a positive definite symmetric tensor, called the electric permittivity.
More details on the constitutive equations of forms (2.1) and (2.2) can be found in [1] and [2]. Next,
(2.3) is the equation of motion describing the evolution of the displacement u where Divo = (9;0;;)
and (2.4) is the equation describing the evolution of the electric displacement D. Conditions (2.5) and
(2.6) are the displacement and traction boundary conditions, whereas (2.7) are the Signorini contact
conditions with adhesion, with zero gap, in which ~, denotes an adhesion coefficient which may be
dependent on x € I's. R, and R, are the truncation operators defined by

L if s<L, s 1f|8|§L7
R,(s)=<—s if —L<s<0, R.(s)= 15 1| > L,
0 if s>1L, |s]

where L > 0 is the characteristic length of the bond.

The differential equation (2.8) describes the evolution of the bonding field 8. Here, 7, v, and ¢,
are positive coeflicients of adhesion, where [r];+ = max{0,7}. In (2.9), we assume that the potential
vanishes on T',, and we express the fact that the electric charge density ¢ is imposed on T', by (2.10).
Finally, (2.11) is the initial condition and (2.12) represent Coulomb’s law of dry friction with adhesion,
where p denotes the coefficient of friction.

Now, to obtain a variational formulation of Problem (P), we will use the spaces

H=1*)" Q={r=(r); mj = € L*(V},
H, = {u:(uz) u; € HY(Q), i=1,d}, Q= {UEQ DIVO'EH}
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H, Q, Hi, Hy are the real Hilbert spaces endowed with the respective inner products

(w,V)g = | wvide, {(o,7)g= [ 0iTi;dx,
/ /
(u, V)i, = (u,vyg + (e(u),e(v))q, (o,7a,) = (0,7)g + (Dive,Divr)y.

We denote respectively the norms associated with || - |la, || - o, || - |&y and || - ||&,-
Recall that the following Green’s formula holds:

(0,e(v))g + (Dive,v)g = /01/ -vda, Vv € H; (2.13)
r

where da is the measure surface element.
The displacement fields will be sought in the space V. .={v € Hy;: yv =0 a.e. on I';}.
Since meas(I';) > 0, the Korn inequality holds, i.e., there exists a constant Cy > 0 such that

lle()llo = Collvl|a,, YveV,

and V is a Hilbert space with the inner product (u,v)y = (e(u),e(v))q and the associated norm
I .

For v € Hy, we use the same symbol v for its trace on I'. Given the Sobolev trace theorem, there
is a constant Cq > 0 such that

||'U||(L2(1"3))d < CQ”U”V, YveV. (214)

We use the set of admissible displacements fields given by U,q = {v € V' : v, <0 a.e. on I's}.
For the electric displacement field, we need the following two Hilbert spaces:

W={ypeH": y=0aeonl,}, W,={D=(D;): D; € L*(Q), divD € L*(Q)}
endowed, respectively, with the inner products
W, 0w = (V,Vo)u, (D, E)wa = (D, E)g + (divD,div E)r2q),

and we denote the norms associated with || - ||y and || - ||w,-

Since meas(T',) > 0, the Friedrichs—Poincaré inequality holds and we have a constant Cr > 0 such
that

IVYllw > CrllYll gy, Vv e W.

Moreover, if D € W, is sufficiently regular, the following Green’s formula holds:

(D, V) gt + (div D, o)) 120y = /Dz/ pda, Vb EW. (2.15)
Iy

We will also need the space QQ of fourth order tensors defined by
Qoo = {A = (Aijrn); Aijkn = Ajikn = Agnij € LOO(Q)}-
(D is a Banach space with the norm defined by

||A||Qoo = ng%l,%ﬁgd ||~AijthL°€(Q)~

Let T' > 0. For every real Hilbert space X, we use the usual notation for the spaces LP(0,T; X),
k € [0,00] and Wh*(0,T;X). Recall that the norm of the space W1>°(0,T;X) is defined by
llullwroe0,m;x) = |l oo (0,75x) + ||l o< (0,75 x), Where % denotes the first derivative of u with respect
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to time. We also use the space of continuous functions C([0,T]; X) with the norm ||z|c(0,77;x) =
max [l2(t)]1x-

te[0,T)

Finally, we introduce the space of bonding field denoted as B by

B— {5: [0,7] — L*(T3); 0 < B(t) < 1, YVt € [0,T], a.e. on rg}.

For the study of Problem (P) we adopt the following assumptions on the data.
The operator B and the tensors F, C, £ and £* satisfy the following hypotheses:

(a)
(b)

—
ET

==
SIS

AA
Lze

B:OQx85; — Sd,
B € Qs and there exists a constant Mg > 0 such that

I1B(x,&1) — B(z,&2)|| < Mg||&1 — &, V&1,& € Sq, ae. in Q, (2.16)
There exists a constant mp > 0 such that BE- & = mg| €|, VE€ Sy ae. in Q,

The function = — B(z,£) is measurable on  a.e £ € Sy;
F e C([0,T]; Quo); (2.17)
C: QxR — RY,
C(z,E) = (cij(x)E;), VE = (E;;) € R? ae. inQ, ¢ =cj; € L®(Q),
There exists a constant m¢ > 0 such that
cij(x)E;E; = me||E||? VE€ Sy ae. in Q;
yE 1 QA x Sg — R,
E(x, &) = (esjk(2)&i5), YE=(&;) € Sq a.e. in 0, (2.19)
eijk = €ik; € L=(Q);

(2.18)

Eo-v=0-E%, Yo €8y, VveRL (2.20)

*

where the components of the tensor £* are given by €iik = Ckij-
In addition, we assume that adhesion coefficients satisfy

The initial data [y satisfy

Yrs Vv €a € L(T3), €4 € LQ(Fg)7 Yy Yy €a = 0 ae. x €13, (2.21)
and the following regularity on g and gg:
o € C((0,T]; H), @2 € C((0,T]; L*('2)?), (2.22)
0 € C((0,T); H), g2 € C([0,T); L*(Ts)?). (2.23)
To reflect that the foundation is isolated, we assume
q(t) =0 on T3, Vtel0,T]. (2.24)
Bo € L*(I's), 0<fy <1 a.e. onls. (2.25)

The friction coefficient pu is such that

we€ L>®(T3), p(z) >0 a. e onls. (2.26)

Finally, R is linear and continuous mapping, where

R:H 3(T) — L*(T3). (2.27)

By the representation theorem of Riesz—Fréchet, for all t € [0,T], we define f(¢t) € V and ¢(t) € W as

follows:

(00 = [ olt) vdot [ oa®)-vda, Vo,
Q

I

<q<t),w>v=/qo(t>-wdm+/q2<t)-wda, Vi e W,

Q 1Y
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which imply that f € C([0,T); H) and q € C([0,T]; W). Next, we consider Vy, the subset of regularity
defined by Vy = {v € Hy : Divo(v) € H}. Let us denote by juq : L>®(I's) x Vo x V — R and
Jer : Vo x V. — R, respectively, the functionals given by

Jua(Bo,v) = / (= B Ry ()0 + 7o B Ry (1r) - 07 da,

s

Jpr(u,v) = / wl Ry ()| [vr | da, ¥ (u,0) € Vo x V.
I's

If (v, ) is a solution of Problem (Py) stated below, then o(t) = o(u(t), ¢(t)) € Q a.e. t € [0,T] and
therefore

Jpe(u(t), v) = / u| R, (u(t))| o] da, ¥v € V.

'3

Using the Green’s formula (2.13) and (2.15), we prove that if u, 0, ¢ and D are regular and satisfy
equations and conditions (2.1)—(2.12), then

(o(t),e(u(t))q + Jaa(B(t), u(t), v) + jer(u(t), v) = Jpr(u(t), u(t)) = (f(t),v —u@))v,  (2.28)
VveV,tel0,T],
(D), VY)u + (q(t), ¥)w =0, Vipe W. (2.29)

Taking o(t) in (2.28) by the expression given by (2.1), and D(t) by the expression given by (2.2) , we
derive the following variational formulation of Problem (P).

Problem (Py). Find a displacement field u € C([0,T]; V), an electric potential ¢ € C([0,T]; W) and

a bonding field 3 € WH°([0,T]; L*(T'3)) N B such that u(t) € Uyq N Vo for all t € [0,T] and
(B=Cult),eo — u(t) o + / Ft - s)e(uls)) ds e(v—u(t»)Q
H(EVe(t),e(v —ult)) , + JaalBt), u(t), v — u(t))

Higr(ut),v) = jpr(u(t),u(t)) = (f(t),0 —u(t))v, Vo €U, t€[0,T],  (2.30)

(CV<P(t)7V1/J)H (55( ( )7V¢)H - ( (t)a'l/})Wv VpeW, te [OvT]v (231)

B(t) = *[5(15)((%31/%(15))2 + 92| R (ur (D)%) = €a o telnT], (2.32)

B(0) = Bo. (2.33)

3 Existence and uniqueness
Our main existence and uniqueness result that we state and prove is the following

Theorem 3.1. Assume that assumptions (2.16)—(2.27) hold. Then there exists a constant pg > 0
such that if ||pl| oo (ry) < po, then Problem (Py) has a unique solution (u, @, ().

We carry out the proof of Theorem 3.1 in several steps. We define intermediate problems and prove
their unique solvability, and then we construct a contraction mapping whose unique fixed point is the
solution of Problem (Py ). First, we consider the closed subset Z = {6 € C([0,T]; L*(T'3))NB; 6(0) =
Bo}, where the Banach space C([0,T7]; L*(T'3)) is endowed with the norm

101 = Hfax] [e_ktH‘9||L2(I‘3)]» k> 0.

For a given 8 € Z, we consider the following auxiliary problem.
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Problem (P‘é) Find a displacement field ug € C([0,T]; V) and an electric potential ¢z € C([0,T]; W)
such that ug(t) € Ugqg NV for all t € [0, 7] and

(Beus(t). (0 = us(t) o + / F = s)e(up(s) ds. (0 5 (0)

Q

+(EVp(t), <v—uﬁ< ) + Jad(B(1), ug(t), v — us(t))
+ipr(up(t), >—yfr(uﬂ(> (>>z< (t),v —us(t))v, Yv €U, t€[0,T], (3.1)
(CV@s(t), V) — (Ec(us(t), V) ; = (a(t),d)w, Yo € W, t€[0,T]. (3.2)

We have the following result.
Theorem 3.2. Problem (P‘é) has a unique solution (ug,pg) € C([0,T];V x W).

We consider the product Hilbert space X =V x W with the inner product defined by

(z,y) = ((u,9), (v,9)) = (u,v) + (&, ¥), z,y € X,

and the associated norm || - ||x. In the sequel, let X1 = Uyg x W.
To prove Theorem 3.2 for all n € C([0,T]; Q) and ¢ € [0,T], we consider the following problem.

Problem (P)). Find x5, € C([0,T]; X) such that z,(t) € X, for all ¢ € [0,T] and

(Be(upn (1), e(v—upy(1)) o +(E"Vopn(t), e(v—upy(t)) o+ (CVesy(t), Vi) ;= (Ee(ugy (1), Vi)

+ (1), e(v = ugy (1))@ + Jad (B(E), upy (t), v — wgy () + jrr(upy(t),v) = jr(upy(t), ugy(t))
> (f(t),v—ugy(t))v + (¢(t), V)w, Yv € Uga, Yo € W, t€[0,T]. (3.3)

Since Riesz’s representation theorem implies that there exists an element f,(t) € X defined for all
z = (u,¢) by
(fn(t),z) = (f(£), w)v + (q(t), L)w — (n(t),e(v))q,

we introduce the operator Ag : [0,T] x X — X defined as
(Ap(t)z, X) = (Be(u),(v))q + (£"Vip,2(v))q
+ (CVe, Vi) g — (Ee(u), V) + jaa(B(t),u,v), for all z = (u,p), y=(v,9) € X

denoted by X =X x X, we introduce }fr : X — R defined by

Jgr(y,x) = jpe(u,v) forall @ = (u,0), y=(0,9) € X
Then Problem (P,) is equivalent to
Problem (P?2). Find g, : [0,7] — X, such that

(A2 (t),y — (1)) + Jpr (Y a9 (1) = Jpr(@an(t), 2y (1)
> <fn(t)ay*1'ﬁn(t)>v Vye X, te [O,T}. (3'4)

Remark. The two precedent Problems (P)) and (P2) are equivalent in the way that if g, =
(ug, ppy) € C([0,T]; X) is a solution of one of the problems, it is also a solution of the other problem.

We now have the following

Lemma 3.1. There exists a constant po > 0 such that if ||l Lo (ry) < po, Problem (P?) has a unique
solution xg, € C([0,T]; X).
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We prove Lemma 3.1 by steps. The functional j,4 is linear over the third term and therefore
jad(ﬁauv _U) = _jad(ﬂ7uav)' (35)
Using the properties of truncation operators, we deduce that there exists ¢ > 0 such that
jad(ﬂ17u17u2 - ul) +jad(ﬂ2, Uz, Uy — U’Q) < C/ |Bl - 52| ||’Z,L1 - u2||V ds. (36)
s

Taking 6 = 1 = B2 in the last inequality, we obtain

Jad(Bs s u2 — ur) + Jaa(B, uz, ur —uz) < 0. (3.7)
Choosing u; = v and ug = 0 in (3.7) and using (3.5) and the equality R, (0) = R(0) = 0, we obtain
jad(ﬂvvvv) 2 0 (38)

Similar computations based on the properties of R, and R, show that there exists a constant ¢ > 0
such that
Jad(B;u1,v) = Jad (B, u2,v)| < cllur — uallv||v]|v. (3.9)
For t € [0,T] and for all 1 = (u1,¢1) and x2 = (uz, ¢2), using (3.4), we have
(Ag(t)zr — Ag(t)wa, 21 — m2) = (Be(ur) — Be(ug), e(ur) — s(ug))Q
+ (E*Vpr — Vg, e(ur) — 5(“2))Q + (CVp1 = CVy, Vo — Vi),
— (Ee(w) — Ee(uz), Vior — V@z)H + Jad(B,u1,u2) — jaal(B, uz, ur),
and, by (2.20), we have
(€*V<p1 —E*Vpa,e(ur) — a(ug))Q = (Ea(ul) — Ee(uz), V1 — V(pg)H.
Then, by (3.8), (2.16)(c) and (2.18)(c) we deduce
(Ag(t)rr — Ap(t)wa, 1 — 22) > (Be(ur) — Be(uz), e(ur) — e(uz2))
+ (CVp1 = CV @2, Vipr = Vo) > m|lur — us||F + mellor — @2l
Then the operator Ag(t) is strongly monotone, and for C,, = min(mg, m¢) it satisfies
(Ag(t)zy — Ag(t)xo, 21 — 2) > Chp |21 — zo|%, Va,ye X. (3.10)
For y = (v,v), using (2.14), (2.16)(b), (2.18) and (3.9), we get

(Ap(t)rr — Ap(t)za,y) < C(Hul —uzllv ([vllv + 19llw) + ller = @2llw ([vllv + ||¢HW)>,
thus, Ag(t) is a Lipschitz continuous operator and there exists a constant Ly > 0 such that
IAs()a1 — As(B)all < Lollar — aallx, Vay € X

Next, let the non-empty subset L2 (T'3) be defined by

L3(T3) = {g€ L*(T'3); g > Oae. onls}.
For each g € L2 (I'3), we define the functional h(g, -) : X — R by

o) = [ nglerllda, ¥y =(w.g) € X,

I3

and introduce an intermediate problem as follows.

Problem (P}/). Find xg, : [0,7] — X; such that

<Aﬂ(t>xb’ng(t)>y - x,@ng(t» +h(g,y) — h(g,2png(t) = (f,y — 2pye(t))v, Yy € X. (3.11)
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Lemma 3.2. Problem (P{) has a unique solution.

Proof. The functional h(g, -) is convex and lower semi-continuous, Ag is Lipschitz continuous and
strongly monotone, we deduce that Problem (P{) has a unique solution (see [13]). O

Now, to prove Lemma 3.1, for each ¢ € [0,7] we define on L? (I's) the map ¥, : g — Uy(g) =
|Ro, (u,, (t))]. Then we show the following

Bng

Lemma 3.3. There exists a constant jiy > 0 such that if ||ul|per,) < p1, the mapping ¥ has a
unique fized point g*, and xg,4- is a unique solution to Problem (P,?)

Proof. For ¢ = 1,2, define the following

Problem (P2

gi)- Find Tgng = (ug, ., ) € X1 such that

<Aﬁ(t)xﬁ779iay> + h(giay) - h(giaxﬁngi) = (fvy - xﬁngi)\/a Vy eV.

Take y = 23,4, in inequality (3.11) written for g = g1, then take y = 23,4, in (3.11) written for
g = g2, by adding the resulting inequalities, we get

<A5(t)(xﬂng1 — ZBngs)s Thng, — xﬂng2> < h(91, Tpng,) — P91, Tpng,) + 192, Tang,) — h(g2, Tang, )-
Then using (2.14) and (3.10), we have
ConllTpng, (t) = Tpng, D13 < Callgr — g2l L2(ry) /u(luﬂnglf(t)\ — |upngar (t)]) da. (3.12)
s

Using (2.27), it follows that there exists a constant ¢y such that

19(01) — W(92) 2203y < 0[]0 1, () = 000ty D] (313)
Moreover, using (2.16), we prove that there is a constant ¢; > 0 such that

o0 (g, (8 = 00 (g, O] -3y < CllT0, () = T, D) x- (3.14)

Hence, taking into account (2.14) and combining (3.12), (3.13) and (3.14), after some calculus we find

coc1Cq
W (g1) — ¥(g2)ll2(rs) < = 1l o vy 191 — 921l 22(1s) -

Let py = Cog”éﬁ , then we deduce that if ||/JHLOC(1"3) < p1, ¥ is a contraction and, so, it admits a
unique fixed point denoted by g*.
Keeping in mind that there is a unique element xg,,~ satisfying the inequality

<Aﬁ(t)xﬁng*vy - $6n9*> +h(¥(g9"),y) — h(¥(g"), mﬁng*) = (f,y— xﬁng*)v» Vye X,

and ho W = j, we prove that xs,(t) = T,y is a unique solution of Problem (P?). We shall now see
that zg, € C([0,T]; X). Indeed, let t1, t2 € [0,T], take y = x3,(t2) in (3.3) written for ¢ = ¢; and
take y = xg,(t1) in the same inequality written for ¢ = ¢,. Using (2.16), (2.27) and the properties of
R, and R, we prove that there exists a constant ¢ > 0 such that

2y (t) — sy (t2)llx < c(IB(t1) = B(t2)llL2qry) + 1F (1) = f(t2)lla + lIn(t1) — n(t2)llQ)-

Then, as f € C([0,T]; H), n € C([0,T);Q) and 8 € C([0,T]; L?(I'3)), we immediately conclude that
zgy € C([0,T]; X). We also have that ug, (t) € U.aNVy, Vt € [0,T]. Indeed, for each ¢t € [0, T], denote
o(ug, (t) = Be(u,, (t)) —E*E(p,, (t)) +n(t) and using Green’s formula with the regularity ¢o(t) € H,
we get divo(uy,, (t))) € H and then ug,(t) € Vo. O
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Now, we define the operator F g : C([0,T]; Q) — C([0,T7; Q) by

:/F(t—s)E(Ugn(s))ds, VneC0,T;Q), te|0,T].

We have the following
Lemma 3.4. The operator F g has a unique fized point ng.

Proof. Let n1,m € C([0,T]; Q). By a standard computation based on (2.17) and (3.3), we prove that
there exists a constant ¢ > 0 such that

1Fsm(t) = Fame(t)lle < Cz/llm(t) —m(t)llqds, Vte[0,T].

By iteration, for any positive integer n we deduce the estimate

nrrn

n n Co
||Fﬁ771 - F;3772||C([0,T];Q) = ]

[l *Uz\\c([O,T];Q)'

As lir_~r_1 g = 0, it follows that for a positive integer n sufficiently large, F 5 is a contraction on
n—-+oo °

n!
the space C([0,T]; Q). Then, by using the Banach fixed point theorem, Fj has a unique fixed point
ng € C([0,T7; Q) which is also a unique fixed point of F g, i.e.,

Fﬁnﬁ(t) = nﬂ(t)7 Vi e [OvT]‘ O

Next, we denote ug = ug, and g = g, and deduce that the couple (ug,pg) is a solution of
Problem (Pg) The uniqueness follows from the fixed point of the operator f, which completes the
proof of Theorem 3.2.

In the following step, we use ug, the solution obtained by Theorem 3.2, to state the following
Cauchy problem.

Problem (P,4). Find a bonding field 05 : [0,T] — L*>°(T's) such that

B (t) = ~[0500) (4 Burts ()7 + 32 1B e O)IP) — ] w1 0,71, (315)

03(0) = Bo. (3.16)

Lemma 3.5. Problem (Pnq) has a unique solution 0 which satisfies 05 € W1°°([0,T]; L>=(I'2)) N Z.
Proof. Consider the mapping F : [0,T] x L?(I'3) — L?(I'3) defined by

Folt,0) = = [6((w Ruugy (£)* + 7| B (s (5)]%) — eal.

For all t € [0,T] and 6 € L?(I'3), it follows from the properties of the truncation operators R, and R,
that Fz is Lipschitz continuous uniformly in time with respect to 3. Moreover, for any 6§ € L?*(T'3),
the mapping t — Fp(t,0) belongs to L>°(0,T; L*>(I'3)). Using now a version of the Cauchy-Lipschitz
theorem (see [15]), we obtain a unique function 85 € W'>°(0,T; L?(I'3)) satisfying (3.15) and (3.16).
We note that the restriction 0 < 6 < 1 is implicitly included in the variational Problem Py and,
therefore, from the definition of the sets B and Z, we find that g € Z, which concludes the proof of
lemma. O

Consider the mapping ® : Z — Z defined by ®3 = 3.
The third step consists in the following result.

Lemma 3.6. There exists a unique element 8* € Z such that ®5* = 3*.



66 Rachid Guettaf, Arezki Touzaline

Proof. Indeed, let f3;, i = 1,2, be two elements of Z. Denote by ug,, ¢g,, 03, the functions obtained
in Theorem 3.2 and Lemma 3.5 and denote 65, = ;. It follows from (3.15) that

t
0:(t) = fo - / [B:(5) (0 Rutap(9)* + 32l| R (g (D)) = ] s
0
and there exists a constant ¢ > 0 such that

ds
L2(T3)

161(6) — Ba(t)z2cr < ¢ / [81(5) R (s, (5))2 — () B, (5))7]

/ 516N DI = 5o(6) 1Rt 51

LZ(Fg

Using the properties of the operators R, and R., we get

10:(8) — 0(1) | ey < ( [ 1)~ saMaaieny s + [ s () —Uﬁz(S)Lz(rs)ddS> (3.17)
0 0

for some constant ¢z > 0. O

Now, to continue the proof, we need to prove the following
Lemma 3.7. There exists a constant p > 0 such that if ||p|| e (ry) < p2, we have
[ug, () = ug, (W)l L2(r)2 < cllBr(t) = Ba(B)l|L2(rs), VE € [0,T].
Proof. Let t € [0;T]. We take ¢ = ¢ — ¢g(t) in (3.2) and by adding with (3.1) we get

(Beuslt): (0 = us(®) o + / Fit = s)2(u(s)) dsy (o~ () )

Q
+(E"Vp(t),e(v — U,B(t)))Q +Jad(B(1), up(t), v — up(t)) + (CVps(t), Vib = Vips(t))
— (Eelup(t), Vo = Vs (1)) y + dpr(us(t),v) = jr(ua(t), us(t))
> (f(t),?] - U’B(t))V + (Q(t)ﬂ/J - (pﬁ(t))Wa Vv e Uad7 V’(/J € Wa te [O’T] (318)

Taking v=ug, (t) and ¢ =g, in (3.18) satisfied by (ug, (), ¥, ), and then taking v=wug, (t) and Y=g,
in the same inequality satisfied by (ug, (¢), ¢3,), by adding the resulting inequalities and using (2.20),
we obtain

(B2, (1))~ B, (1)), s, () (s (1)) + (€05, (1)=-CVi5, (1), Vi, (1) =V (1))

< F(t—s ug, (t)) —e(up,(t))) ds,e(ug, (t)) — e(up, (t

_</< ) (e, (1)) — ey (1)) ds, (g (1)) 8(5()))@

+ Jaa(Br(t), up, (t),up, (t) — up, (£)) + jfr(ug, (), ug, () + jaa(Ba(t), up, (t), ug, (t) — up,(t))
g (s (8), s, (8)) — e g (8), s, (1)) — m(% (1), us (1)):

Using (2.16)(c) and (2.18)(c), we deduce

1
m|ug, (t) —ug, (D[} +melles (£) — p2(t)llw

< ( / F(t— 5)(e(ug, () — eug, ())) ds, (g, (1) — (ug, <t>>)

Q

+ Jad (61 (t)a Up, (t)v Up, (t) —Up, (t)) + jfT'(uBI (t)7 U, (t)) + Jad (/82 (t)7 U, (t) uﬂl uﬂ’z )
+ jfT(ufJ)z (t)’ Uy (t)> - jfT (uﬁl (t)7 Up, (t)) JfT (uﬂz (t) Ug, (t))
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thus

msllus, (1) — usy (1) < ( / Flt— s)( Uﬁl())6(“52(5)))d5,5(uﬁ2(t))6(“51(75)))

Q

+ Jad (B1(t), up, (1), up, (t) — up, (t) + jad (B2(t), up, (1), up, () — up, (t))
+ jfT’ (U’ﬁl (t)a UB,y (t)) - jfr(uﬁl (t)v Up, (t)) + jfT (u52 (t)v Up, (t)) - jfT’ (U‘ﬁz (t)a UB,y (t)) (319)

Hence, we have

(] 7t o (1) ) . s ) s, ()

< ( / 17— )l lus, (5) —u@2<s>||vds)||uﬂl<t> s @)l

< ( / g, () — s (5 )||vd5>||uﬁl(t) s (0l

for some positive constant c4. Using Young’s inequality, we find that

Q

( [ = 5) (s (5) = s () s, s () — <l (t)))
0

< / () = a9 d5) + 2 s 0 usa O (320

Using (3.6) and Young’s inequality, we deduce that there exists a positive constant c5 such that

. . m
Jad(B1, w1, uz = ur) + Jaa(Ba, ug, w1 — ug) < ¢5)|B1(t) = Ba(t)|72ry) + TB [up, (t) —ug, ()7 (3.21)

Moreover, we have

jfT(uBI (t>7u52 (t)) - jf”‘(uﬁl (t)vuﬂl (t)) +jfr(U62 (t)7u31 (t)) - jfT(U‘ﬁQ (t>7u52 (t))
< /MR|UV(UBM(t)) — oy (ug,, ()] lug, (t) — us, (1) da.

T3
Keeping in mind (3.14) and using (2.14), we get
jfT(ul‘h (t)7 UBs, (t)> - jf”‘(uﬁl (t)7 Up, (t)) + jfr(uﬁ2 (t)v Ug, (t)) - jfT(u»32 (t)7 UBs, (t)>
< e1Cllpll o= g llup, () = ug, )7 (3.22)
We now combine inequalities (3.19), (3.20), (3.21) and (3.22) to deduce

m||ug, (t) —ug, ()]}
< csllBr = Boll3aqry) + 2 IIU/al( ) = ug, (W15 + L Callpll e 0y g, (1) — ug, (DT

2
mg
o / 5, ()= a9y d) -+ 72 s, ()~ us O}
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Hence, we have
mg
(%52 = crCallulam ) s, () = s, (DI
t
2 4 2
< c5[1B1(t) = Ba(O)L2(ry) + lup, (5) — s, ()l ds.
ma

0

Fur(her, if
||“H[ r < MZ — m b}
( ) QC]CQ ’

we deduce that there exists a constant cg > 0 such that

lug, (£) — us, (D)5 < Cs<51(t) = Bl Z2 ) +/Hu51(5) —up, ()17, d5>-
0

Hence, using Cornwall’s argument, it follows that there exists a constant cg > 0 such that

lug, (t) = ug, W)} < coll B1(t) = Ba(®)F2ryy, VEEO,T]. (3.23)

Now, to end the proof of Lemma 3.6 we use (3.17) and (3.23) to obtain

t
[@51(t) = @Ba(t)L2(rs) < 09/||B1(S) = Ba(8)ll L2 (ry) ds, Yt €[0T,
0

where ¢; > 0. We have

t
e @B (t) — @B (t) || 2 (ry) < 0967“/6“6%5”51(5) — Ba(s)l|2(rs) ds,
0

then
t
1851 (t) — ®Ba(t) ||k < coe™ |81 (t) — BQ(t)IIk/eks ds, Vte€[0,T].
0
So, we deduce that

[@1(t) = ®B2(1) [k < %Hﬂl(t) — B2(t)l[k, Vit e€[0,T], (3.24)

where c¢19 > 0. Inequality (3.24) shows that for k > ¢19, ® is a contraction on Z. Then ® has a unique
fixed point which satisfies (3.15) and (3.16). O

Thus, we have all the ingredients to prove Theorem 3.1.

Ezistence. Consider 8*, the fixed point of the operator @, and z* = (u*, ¢*), the solution of Prob-

*

lem (P‘[; ), L.e., u* = ug« and ©* = pp-.
By (3.1), (3.2), (3.15) and (3.16), we conclude that the triple (u*,¢*, *) is a solution to Prob-
lem (Py).

Uniqueness. The uniqueness arises from the uniqueness of the fixed point of the operator ®, which
completes the proof of Theorem 3.1.

Indeed, let (u,p,B) be a solution of Problem (Py), it follows from (3.1) and (3.2) that u is a
solution of Problem (Pg) and, by Theorem 3.2, this problem has a unique solution (ug, pg), where
ug = u and pg = .
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Taking u = ug and ¢ = @g in Problem (Py), we deduce that § is a solution of Problem (Pgq).
From the result of Lemma 3.5, Problem (P,4) has a unique solution 8*, so we find * = 3, and then
we conclude that (u*, ¢*, 8*) is a unique solution to Problem (Py).

Let now o* and D* be the functions defined by (2.1) and (2.2), respectively, which correspond to
(u*, ©*). Then it results from (2.16)—(2.20) that oc* € C([0,T];Q) and D* € C([0,T]; H). Using also
a standard argument, it follows from (2.30) and (2.31) that

Divo*(t) + ¢o(t) =0 in Q,
div D*(t) + qo(t) = 0 in Q.

Therefore, using (2.22) and (2.23), we deduce that Divo*(u*(t), ¢*(t)) € H for each t € [0,7T] and
div D* € C([0,T]; L?(2)), which implies that o* € C([0,T]; Q1) and D* € C([0,T]; W,). The triple
(u*, p*, f*) which satisfies (2.30)—(2.33) is called a weak solution of Problem (P). We conclude
that under stated assumptions, Problem (P) has a unique weak solution (u*,¢*, 8%, o*, D*) with
the regularity u* € C([0,T]; V), ¢* € C([0,T}; W), B* € WL>°((0,T; L*(T'3))) N B, o* € C([0,T); Q1)
and D* € C([0,T]; W,,).
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Abstract. This paper is devoted to the study of a family of planar polynomial differential systems.
First, we prove that the considered family has invariant algebraic curves which are given explicitly.
Then, we introduce an explicit expression for their first integral. Moreover, we provide sufficient
conditions for the systems to possess two limit cycles explicitly given: one is an algebraic and the other
is shown to be non-algebraic. The applicability of our result was illustrated by concrete examples.
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1 Introduction

One of the main problems in the qualitative theory of differential equations is the study of limit cycles
of planar differential systems and especially of the planar polynomial differential systems of the form

a' = dj = P(amy),

dt (1.1)
y = W _ Q(z,y)

dt 9y )

where P(z,y) and Q(z,y) are real polynomials in the variables z and y. The degree of the system is
the maximum of the degrees of the polynomials P and Q.
Recall that:

o A limit cycle of system (1.1) is an isolated periodic orbit in the set of its periodic orbits and is
said to be algebraic if it is contained in the zero set of an invariant algebraic curve of the system.

o An algebraic curve defined by U(z,y) = 0 is an invariant curve for (1.1) if there exists a
polynomial K (x,y) (called the cofactor) such that

oU(z,y)
ox

+ Q(ﬂc,y)M = K(z,y)U(x,y).

P(z,y) oy

« System (1.1) is integrable on an open set 2 of R? if there exists a non-constant analytic function
H: Q — R, called a first integral, such that

dH (z,y)
a P(z,y)

OH (z,y)
ox

0H (z,y)

By 0.

+ Q(z,y)

Among the important and attractive problems in the qualitative theory of differential equations
[8,14] is the study of limit cycles of system (1.1) related to the Hilbert’s 16th problem [11]; several
works and papers in this field investigate their number, stability and location in the phase plane [1,12].

The notion of integrability of (1.1) is based on the existence of a first integral [5,16]. There is
a strong relationship between the integrability of polynomial systems and the number of invariant
algebraic curves they have [7], and questions about the existence of a first integral, determining its
expression explicitly, when it exists, are always presents.

The results and examples [24,9,10] about algebraic and non-algebraic limit cycle are given, but
it is not easy work to decide whether a limit cycle is algebraic or not. Thus, the well-known limit
cycle of the van der Pol differential system exhibited in 1926 (see [15]), was not proved until 1995
by Odani [13] that it was non-algebraic. An invariant algebraic curve is a principal topic for several
authors and researchers because of its importance in understanding the dynamics of a system (we
refer to [6] for an exhaustive survey on this topic).

In this paper, we give an explicit expression of invariant algebraic curves, then we prove that these
systems are integrable, and we introduce an explicit expression of a first integral of a multi-parameter
planar polynomial differential system of thirteenth degree of the form

,_dm_ 2 2\2 2 2
= = v+ @+ (Ps(w,y) — o(e® + 9%’ Ra(w, 1)), 12)

y' = % =y+ (@ + ) (Qs(z,y) — y(2® + y*)’ Ra(,y)),

T

where
Py(z,y) = ax® + b’y + cay® — dy?,
Qs(z,y) = ax’y + da® + (b+ 2d)zy® + i,
Ry(z,y) = (a + 1)a” + (b+ d)ay + (¢ + 1)y?,
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in which a, b, ¢, d are the real constants.

Moreover, we provide sufficient conditions for a polynomial differential system to possess two limit
cycles explicitly given: one is algebraic and the other is shown to be non-algebraic. Concrete examples
exhibiting the applicability of our result are introduced.

We define the trigonometric functions

a—+c a—c

b+d
cos 260 + + sin 26,

t

40) - /G‘jf” o ([ )

Our main result is contained in the following theorem.
Theorem 1.1. For system (1.2), the following statements hold.

(1) If d # 0, then the origin of coordinates O(0,0) is the unique critical point of system (1.2) at a
finite distance.

(2) The curve U(x,y) = 25+ 3aty? + 3 2%y* +y5 — 1 is an invariant algebraic curve of system (1.2)
with a cofactor

K(e,y) = =6(a® + ) (1+ (22 + )% ((a + Da® + (b + d)ay + (e + 1)y?) ).

(3) System (1.2) has the first integral

Hir.y) = (1 — (2 +y*)?)A(arctan £) + B(arctan £)
ny)= (22 + y2)3 — 1 :

(4) System (1.2) has an explicit limit cycle, given in Cartesian coordinates by
(Ty) : 2% +32%% +32%y* +4° —1=0.

(5) Ifd< 0, —=2—(a+c)>|b+d|+|c—a|l and4d+a+c > |b+d|+ |c— al, then system (1.2) has
non-algebraic limit cycle (I's), explicitly given in the polar coordinates (r,0) by

r(0,7.) = <<B(9) +A0)(B(2r) — 1) + A(%))é
o AB)(B(27) — 1) + A(27)

Moreover, the algebraic limit cycle (') lies inside the non-algebraic limit cycle (Ts).

2 Proof of Theorem 1.1

Proof of Statement (1). By definition, A(xq,yo) € R? is a critical point of system (1.2) if

zo + (23 + y3) (P3(wo, yo) — zo(d + y3)*Ra(x0,y0)) =0,

yo + (23 + 13) (Q3(z0, yo) — yo(23 + y3)*Ra (w0, 10)) = 0,
and we have

(28 + ¥3)? (Yo Ps (0, o) — 0Q3(w0,Y0)) = —d(x0® + yo?)™.

Since d # 0, we have that (xg,y0) = (0,0) is the unique solution of this equation. Thus the origin is
the unique critical point at a finite distance.
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This completes the proof of Statement (1) of Theorem 1.1.
Proof of Statement (2). A computation shows that
Uz,y) =25 +32ty? + 327y + 45 - 1
satisfies the linear partial differential equation

oU (x,y)
o P(z,y) +

the associated cofactor being
K(z,y) = —6(z* + y*)* (1 + (@ + 9y ((a+ 12 + (b + d)zy + (c + 1)y2)).

This completes the proof of Statement (2) of Theorem 1.1.

Proof of Statement (3). To prove Statement (3), we need to convert system (1.2) in polar coordinates
(r,0) given by & =rcosf and y = rsinf, then system (1.2) takes the form

r = % =r+GO)r" + (—G(H) — 1)r'3,
, b (2.1)

Y _ s
a Y

Taking 6 as an independent variable, we obtain the equation

ar 1 5 GO) GO -1 -
a0 a" tTg "t " (2.2)

Using the change of variables p = 75, equation (2.2) is transformed into the Riccati equation

dp _ 6 6G()  ~6GO)-6 ,

a0 dta "’ d

This equation is integrable, since it possesses the particular solution p = 1.
By introducing the standard change of variables z = p — 1, we obtain the Bernoulli equation
dz —6-6G(#) , —12—-6G(0)

0 pi z°+ 7 z. (2.4)

We note that z = 0 is the solution for (2.4), and by introducing the standard change of variables
Yy = %, we obtain the linear equation

dy  6+6G(6) 12+6G(6) 25)
o~ d d '

The general solution of linear equation (2.5) is

y<0>—“;(‘2)("),

where @ € R. Then the general solution of equation (2.4) is

z(0) =0, z(0)= af(j)(ﬁ)’ where a € R.

The general solution of equation (2.3) is

a+ A(0) + B(0)

h R.
a+A(9) , where o €

p(0) =1, p(0) =
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Consequently, the general solution of (2.2) is

a+ A(9) + B(9)
a+ A(9)

r(@)=1, r(0) = ( )%, where a € R.

From this solution we obtain a first integral in the variables (z,y) of the form

(1 — (2 +y?)*)A(arctan ¥) + B(arctan £)

H =
Hence, Statement (3) of Theorem 1.1 is proved.

Proof of Statement (4). The curves H = h with h € R, which are formed by trajectories of the
differential system (1.2), in Cartesian coordinates are written as
a+ A(f) + B(9)

a+ A(9) ’

$2+y2:1, (x2+y2)3:

where o € R.

Notice that system (1.2) has a periodic orbit if and only if equation (2.2) has a strictly positive
2m-periodic solution. This, moreover, is equivalent to the existence of a solution of (2.2) that fulfils
r(0,7r.) = r(2m,r.) and r(6,r.) > 0 for any ¢ in [0, 27].

The solution r(8,ry) of the differential equation (2.2) such that r(0,rg) = rq is

oo +AW) + BO)\ ¢
7"(9,7“0) = ( ,,,8%14_14(9) ) ’

where 7o = r(0).

We have the particular solution p(f) = 1 of the differential equation (2.3); from this solution we
obtain 7%(f) = 1 > 0 for all § in [0, 27|, which is a particular solution of the differential equation (2.2).

This is an algebraic limit cycle for the differential systems (1.2), corresponding, of course, to an
invariant algebraic curve U(z,y) = 0.

More precisely, in Cartesian coordinates r? = 224 y? and 6 = arctan(¥) the curve (I';) defined by
this limit cycle is (I'1) : 25 + 324y + 32%y* +9° — 1 = 0.

Hence, Statement (4) of Theorem 1.1 is proved.

Proof of Statement (5). A periodic solution of system (1.2) must satisfy the condition r(0,7.) =
r(2m,r.), which leads to a unique value 7o = r, given by

o <A(27r) Z(ZSW) - 1)7

The value r, is the intersection of the periodic orbit with the O X axis. After the substitution of this
value 7, into r(6,ry), we obtain

r(0.7.) = <(B(9)—|—A(9))(B(2ﬂ') -1) +A(27T)>é
o A(0)(B2m) — 1)+ A(27) '

In what follows, it is proved that (6, 7,.) > 0. Indeed,

2w t

6+ 6G(t —-12 - 6G
A(2m) — A(9) = /‘LTU exp (/d(w) dw) dt.
0 0
According tod < 0, =2 — (a+c¢) > |b+d| + |c—a] and4+a+c>|b+d|+|cfa|,henceﬂfTG(0)

and id(e) > 0 for all # in [0, 27], then we have A(27) — A(f) > 0 and B(27) > 1; therefore, we have
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r« > 0 and r(0,7.) > 0 for all § in [0,2x]. This is the second limit cycle for the differential system
(1.2), we denote it by (I'2). This limit cycle is not algebraic, due to the expression

0
-1
) = exp (/ 2= 6G dw).
0

More precisely, in the Cartesian coordinates 72 = 2% + 32 and 6 = arctan(¥), the curve defined by
this limit cycle (I'z) is F'(z,y) = 0, where

Fla.y) = (2% + ) — (B(arctan £) + A(arctan £))(B(27) — 1) + A(27r).
A(arctan 2)(B(2m) — 1) + A(27)
If the limit cycle is algebraic, this curve should be given by a polynomial, but a polynomial F'(z,y)
in the variables x and y satisfies that there is a positive integer n such that anFi(f’y) = 0, but this is
not the case, therefore, the curve (I'y) : F(x,y) = 0 is non-algebraic and the limit cycle will also be
non-algebraic.
According tod <0, =2 —(a+¢) > |b+d|+|c—aland 4 +a+c> |b+d| + |c — a|, we get

B(2m) -1

re=(1+ A(27)

and

r(6,7.) = (1 + %)é 1,

We conclude that system (1.2) has two limit cycles, the algebraic (I';) lies inside the non-algebraic

one (T'g).
This completes the proof of Statement (5) of Theorem 1.1.

3 Examples

Example 3.1. We take a = ¢ = —g ,d=—-5and b= % , then system (1.2) reads as

1 1
x’:x+(x2+y2)2( 6x3+5—x y— ny2+5y3) (x +y2)5< 2+—xy77y2),
5 10 5 ) 10 5 (3.1)
y':y+(ﬂc2+y2)2( 8 a2y—5at— 2 gy —gy) y(x2+y2)5(—lz2+ixy—ly2)
) 10 5 ) 10 ) ’

In this case, we get

6
3 3 24 3
S (2t) ( S 2 20)
o/sm Hexw (355 + 55 ¢~ 700 529
0

3 3
B(0) = exp ( ~ 100 cos(20) + % 9 + 100)

O’!

The intersection of the non-algebraic limit cycle (I'y) with the OX, axis is the point

(116 8+ exp(£r) —1
Ty =

1
6
s ) ~ 1.2876.
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Example 3.2. We take a = =i c=

In this case, we get

B(6) = exp (

R il
S a w a e e |
g
LSS

PP S S A

Figure 3.1. Limit cycles of system (3.1).

T 100 5 d= 7andb—%,then system (1.2) reads as
x’:x+(x2+y2)<1gl 3+% yfﬁ y+7y)
_x@?+ff( iﬂ:+ﬁiy_§ﬁ> 62)
M=y+@3+ff(—%%ﬁy—hﬁ—%?wf—ggf) |
—Mﬁ+ffﬂﬁ%ﬁ+%jy—%y>

0
3 3 3 3 3
A(0) = ——— [ (cos(2t) + sin(2t) — 5) ex (——i——sm2t——cos2t+ )dt,
() 140/(() (2) = 5) exp (555 + 555 $1(20) ~ 555 o520 + 7
0
5 in(20) (26) + o2,

— —— sin ——cos —

280 280 280
N VA VA S A RV
N T T T A A Eal e e
R T T T e g e
N
NN
NNy~
\"\m\?/d “
At L
NS
~n 4t =
EULIR § -

LA RALY

Figure 3.2. Limit cycles of system (3.2).

The intersection of the non-algebraic (I's) limit cycle with the OX . axis is the point

16.509 + exp(2F) — 1
= (

1
s
~ 1.4047.
16.509 ) 047
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Example 3.3. We take a = 552t , c = 59>, d = —1 and b = 12}, then system (1.2) reads as
101 151 21
r_ 2, . 2\2 191 _ 2
o=t @y g+ gy g+ )
1 1
2 2\ L L L
o+ ( - 100m+50 o= 55 9): (33)
y’=y+(x2+y2)2(—f 2y 0¥ 4 iy 2—Ey3) |
100 150 20
*y(l'eryQ)‘r’( 2+ = y*iy)
100 150 20
In this case, we get
1 ; 1 3 1 291
%/ 6 cos(2t) + sin(2t) — 9) exp (m + 0 sin(2t) — 100 cos(2t) + Et) dt,
0
291 1
B(0) = (7 20) — == cos(2t) + =0+ ).
(6) = exp {55 sin(20) 100008( )T 500 100
The intersection of the non-algebraic limit cycle (I'y) with the OX axis is the point
1.019 x 10 + exp(22T) — 1\ §
ro=( b g5") )" =~ 2.0566.
1.019 x 1014
A U i
SRR
CERORCR MR
SR Y
SN
Ry 2
WP
AN % Pl
Y A
N P
Y T
N A
~AP
=N T T
—e—mhE 4
R P el -
A A Py
R
Figure 3.3. Limit cycles of system (3.3).
Example 3.4. We take a = %%7 , ¢ = _1%)%9 ,d=—-5and b= %, then system (1.2) reads as
107 507 109
r_ 2, oy2f LU0 3 22— 2
v=rt () ( 100" T 1007 Y " 00 T )
7 9
DTS R - ¥ A A _ 7
2z +y)( 100" 100" 1ooy> 3.4
107 493 109 '
/ 2, . 2\2 2 3 2 %
v =yt @+ ( = g ety =58 - pp vt = 5
7 7 9
2, . 2\5 2
v+ (= 3057+ 1067 ~ 100 V')
In this case, we get
0
21 3 21 138
A(9) = — 2 cos(2t 2) — 1 (7 = sin(2t) — ot —t)dt
(6) 500 ) (2 cos(26) + Tsin(2t) = 16) exp { 555 + 55 sn(2) = 3555 cos(2) + 755
3 21 138 21
B(6) = (—'207 2t 9—)
(6) = exp { 555 5in(26) = 1550 cos0) + 550+ 1555
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~w2f g N
R 4y
R 4oh
R $ohowe
N b ow
e \]\q\a\
PRI N, \q\\\
o o e e et a— e |a g Yo% S
S MR
EA A A A S v 4 v oh

Figure 3.4. Limit cycles of system (3.4).

The intersection of the non-algebraic limit cycle (I's) with the OX axis is the point

104.804 276my _ 14 &
. = ( +exp( 555 ) )" ~ 1.4870.
104.804
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Abstract. This paper mainly focuses on the Birkhoff normal form theorem for the Born—Oppenheimer
Hamiltonians. Normal forms are accessible via those of the effective Hamiltonian obtained by the
Grushin reduction method and the pseudodifferential calculus with operator-valued symbols. Res-
onance situations are discussed; the theoretical computations of Birkhoff normal form in the 1 : 1
resonance are written explicitly. Our approach gives compatible numerical results while using a com-
puter program.
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1 Introduction

The question of the stability of the multi-body problems dates back to the 18th century. The problem
was analyzed by means of series expansions and the canonical approach. The method of normal forms
is one of the main tools for studying this stability. The idea of the method is to transform a differential
operator into a simpler one by a change of the variables.

The Poincaré theory of normal forms has a counterpart in the Hamiltonian formalism, due to
Birkhoff and then extended to the resonant case by Gustavson. Thus, by carefully choosing trans-
formations, one changes a Hamiltonian system into a form with a well understood part, integrable
part, under a sufficiently small perturbation, such a transformation will conserve the Hamiltonian
structure [2,8]. Precisely, the well-known Birkhoff theorem states that, in some neighbourhood of
the origin, there exists a canonical transformation under which a smooth semiclassical Schrédinger
operator —h?A, + V, for energies close to a non-degenerate minimum of V/, can be replaced by a
suitable perturbation of a harmonic oscillator.

Some results on Birkhoff normal forms have been proved by Birkhoff [2], Ghomari and Messirdi [5,6]
and Ghomari, Messirdi and Vu Ngoc [7] for Schrédinger operators. Nevertheless, no result of the
existence, constructions and applications of Birkhoff normal forms was known up to now, for Born—
Oppenheimer Hamiltonians. In [9], one can find a description of the question without theoretical
details and numerical analysis.

The main objective of this work is the construction of a Birkhoff normal forms method for the
Born-Oppenheimer Hamiltonians in the semiclassical limit of type P = —h2A, + Q(z), where Q(x) is
an operator in the electronic y variables that depends only parametrically on the nuclear x variables,
and h? stands for the ratio between the electronic and nuclear masses, h — 0. Q(x) is referred to as
the electronic Hamiltonian, its spectrum is typically discrete in the low energy region and continuous
above the threshold energy. Since @ is an operator, it becomes necessary to use the pseudodifferential
calculus with operator-valued symbols. We are typically interested in the relationship between the
spectrum of the operator P and the classical dynamics of its principal operator-valued symbol.

The main novelty in this work is the introduction of the Birkhoff normal form theorem for Born—
Oppenheimer Hamiltonians. The idea is to combine the usual Birkhoff normal forms method with
the reduction process to an effective Hamiltonian. If Q(z) and A;(z), the lowest eigenvalue of Q(x),
are smooth and, under suitable assumptions, the Grushin operator associated with P and A;(x) is
invertible as a pseudodifferential operator near the bottom of A;(z), then, in particular, we get a
reduction result, namely, the spectral study of P is close, at least modulo O(h?), to one of P, =
—h2A, + M\ (2), the effective Hamiltonian in the Born-Oppenheimer approximation. This allows to
get asymptotic expansions of the discrete spectrum and the eigenfunctions of P (see, e.g., [6,10-12]) In
fact, P. can explain the complete spectral picture of P modulo errors in h. We first present in Section
2 the general framework of normal forms for semiclassical Schrodinger operators —h2A, + V(z),
where we give a rigourous proof of the Birkhoff normal form theorem. Furthermore, in Section 3, we
explain the core of the mathematical form of the Born—Oppenheimer approximation and describe the
construction of the effective Hamiltonian. Namely, the possibility to approximate, for large nuclear
masses, the true molecular Hamiltonian, a Schréodinger operator with an operator-valued potential, by
some effective Hamiltonian. The effective Hamiltonian is a good approximation to the true molecular
Hamiltonian with error-terms of order h* concerning smooth interaction potentials only.

Thanks to the reduction of P to its effective Hamiltonian P, in x variables, it is now possible
to define the Birkhoff normal forms of the full Hamiltonian P by those of P.. Consequently, in
Section 4, we introduce the Birkhoff normal form theorem for P, near an equilibrium point in the
Born—Oppenheimer approximation, via the effective Hamiltonian P,, using the results of Section 2,
where the function A (x) plays the role of an effective potential function and h tends to zero. Our main
ingredient is the use successively two reductions, first the reduction to an effective Hamiltonian and
then the classical Birkhoff normal form reduction. We show that one can recover the Birkhoff normal
form for the Born-Oppenheimer operator near an equilibrium point and we give a connection the
between Birkhoff normal form and resonances that occurs in terms of frequencies of the corresponding
harmonic oscillator. As an application, we study the dynamics near a local extremum of the effective
Hamiltonian, for which the frequencies are in 1 : 1 resonance. Our mathematical results are of physical
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or chemical relevance, up to some controlled error depending on the semiclassical parameter h. In
Section 5, we use a computer program to compute easily the Birkhoff normal form for a given effective
Schrodinger Hamiltonian in 1 : 1 resonance. Our numerical results are compatible with the theoretical
ones.

2 Generalities on Birkhoff normal forms

The purpose of this section is to apply the fundamental results on the quantum Birkhoff normal forms
for semiclassical Schrodinger operators. In the classical setting, the operator to be discussed is of the
type P = —h2A 4+ V, where V is the multiplication operator by a smooth potential function. In the
molecular case, the corresponding object is (). @ is neither a multiplication operator, nor smooth if
V' is a non-smooth potential. The general philosophy consists in finding adequate transformations in
which P can be written as a commuting perturbation of the harmonic oscillator. Precisely, there exists
a formal real canonical transformation generated by a power series such that P is transformed into a
Hamiltonian which is a power series in one-dimensional uncoupled harmonic oscillator Hamiltonians.
The procedure for transforming to Birkhoff’s normal form is reviewed and enriched here.

Let V € C®°(RM), N € N, N > 1, and assume that the Hessian matrix V" (0) is diagonal, let

(vi,...,v%) be its eigenvalues, with v; > 0 and v = (v4,...,vn). The rescaling x; — /Tjz;, ©* =
N

(1,...,zN), transforms P into P = H+W (z), where H is the harmonic oscillator Zl Y (—h? %—&—x?)
J:

and W (z) is a smooth function such that W (x) = O(|z|?) as |x| — 0. In general, W does not commute
with H, on the other hand, we do not have enough information on this perturbation, for that we will
use the Birkhoff normal form of P which is a transformation of the previous type, but more adapted
and less restrictive.

Let m,d € R, and S™9 be the space of smooth functions a(x,&;h) : RY x ]Révx 10,1] — C such
that for all o € N2V, |06, eya(z, & h)| < Cohd(1 4+ |z|? + [£]?)™/? uniformly with respect to z, & and
h, Co > 0. S%(m) is called the semiclassical space of symbols of order d and degree m. For a € S™¢
and u € C§°(R?Y), we set

z+ 2
2 b

(Opu(@u)(a) = (2a) ™ [

R2n

13 h)u(x’) dz’ de. (2.1)

Opw(a) is an unbounded linear operator on L?(RY) with domain C5°(R2Y), the space of infinitely
differentiable functions on R*V with a compact support. Op,(a) : C§°(R2Y) — C°°(R2Y) is called a
semiclassical pseudodifferential operator (or h-Weyl quantization) with h-Weyl symbol a of order d and
degree m. Different classes of symbols can also be defined, but for our purpose this class is enough. For

N
example, the h-Weyl symbol of the harmonic oscillator H is the polynomial H(z,§) = Y. 4 (m? —1—5?).

j=1
Now, we introduce the space S to be the set of formal series:

S= { Z ta’g’libag’@h[ D tagl € (C},

a,BeNN | LeN

where the degree of z*¢Ph is defined by ||+ | 8| +2¢, for technical reasons that of h is double-counted.
Let M € N and Dy, be the finite-dimensional vector space spanned by monomials z*¢°h? of degree M
and let Oy be the subspace of S consisting of formal series, whose coefficients of degree < M vanish,

-]

Om = { Z tayg,lfl,‘af’ghe D otapr =0 1if |a|+ (8] +20 < M}
a,BeNN, LeN

ta7571xa§ﬁhf : o tapl € (C},
a,BENN | LeN; |a|+|B|+20=M
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Note that (Opr)aren is a filtration, S =0y D O1 D -+, [ On ={0}.
MEN

Let (f,9)w = fﬁ — §f be the Weyl bracket on S, where fand g are the h-Weyl quantizations of
symbols f and g, respectively. Precisely,

(frogr)w = ow (f§—31),

where fr and gp are the formal Taylor series at the origin of f and ¢ in S, respectively, and o
denotes the h-Weyl symbol. Then (-, - )y is antisymmetric satisfying the Jacobi identity

((fr, 9w, heyw + ((hr, fryw, gr)y, + (9o, hr)w, fr)y, =0
and the Leibniz identity

(fr,grhr)w = (fr,97)whr + 97 (fr, hr)W .

Thus, the space S equipped with the Weyl bracket is a Lie algebra such that if x = (z1,...,2x) and
€= (&,...,6n) € RN then

(h,zj)w = (h,&)w =0 and (&;,z;)w = —ih for every j=1,...,N.

The filtration of S has a nice behaviour with respect to the Weyl bracket, if M + My > 2, f € Oxyy
and g € Oy, then h=Y{(f, g)w € Ony+n,—2. For any S € S, we define the map adg, called the
adjoint action:

adg: § — S
S — ads(S/) = <S, S/>W.

Let us consider the important special case of this concept, which is the adjoint action adg for S € Do
and, especially, adp(y¢). Let C[z,Z,h] be the C-linear space of polynomials spanned by 2078 pt
of degree |a| + 8| + 20; o, € NV, ¢ € N, where z = (11 + ify,...,2nx +iy) € CVN and z =
(1 —i&,...,oN —ify) is the complex conjugate of z. Then B = {2z : 2 € CN, o, 8 € NV} is
a natural basis of C[z,Z,h]. We are particularly interested in the adjoint action of elements of the
subspace Dy of S. Such elements are of the form hHy + H, where Hy € C and H is a quadratic form
in (z,€). Furthermore, when H is positive, it can be written as harmonic oscillators in some canonical
coordinates.

The next proposition gives some important properties and results on adp, ¢) denoted by ady for

N
short, where H(z,&) = > % (a3 +&2).
j=1
Proposition 2.1 ([5,6]).

N
(1) ih~tady(S) = {H(x,£), S}, where S € S and {H (z,£),S} = > % 25 _oH % is the classical
j:1 J J J J

Poisson bracket.
(2) ady is diagonal on B, in the sense that ady (2°Z%) = h{B — a,v)2°Z", a, B € NV,

We say that an element G in D, is admissible when the algebraic sum ker(adg) + Im(adg) of the
kernel of adg and the image of adg coincides with Dy;, M € N. A typical example is the harmonic
oscillator H(z,§).

N
Example. H(z,£) = Y 5 (23 +£2) is admissible on Dy for all M € N. Indeed, let S € Dy, then
j=1
S = Z ta’g’lzaf’ghé
o,BENN | LeN; |a|+|B|+2(=M
= Z ta,ﬁ)lzazﬁhe + Z ta,,@,lzazﬁhga

lee|+|B|+26=M; (B—cr,v)=0 lee|+|B|+26=M; (B—cr,v)F#0
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where t, g; € C and v = (11, ...,vy). By using Proposition 2.1, we obtain

(B—a,v) =0<= 2z" € ker(adp),

thus
Z tap12°Z°h € ker(ady),
la|+|B]+26=M; (B—a, v)=0
h—l
(B—a,v) #0227 = ———ady(2°z") <= 2°2z" € Im(adp),
<B - Q, V>
and hence
Z ta757lza25hl € Im(adg).

lae|+B8]+2¢=M; (B—ar,v)#0
The Birkhoff normal form theorem can be expressed as follows.

Theorem 2.1. Let H € Dy be the harmonic oscillator and L € Os. Then there exist S and K in the
subspace Oz such that
eih—lads(H+L) — H+ K,

where K = Ks+ K4+ -+ and K; € D; commutes with H : (H,K)w = 0. Notice that the sum
ethlads (4 ) = > 4 (+ ads)'(H + L) is convergent on S because + ads(Orr) C Opr41. Moreover,

1
if L has real coefficients, then S and K can be chosen to have real coefficients, as well.

Proof. We construct S and K by successive approximations. Let M > 1, we show that there exist
Sy € Oz and K € O3 such that

e adsy (H+L)=H+ K3+ -+ Kyq1 + Ryrv2 + Oy, (2.2)

where Syy = B3+ By + -+ + Byy1, B € Dy, K; € D;, K; commutes with H and Ry;12 € Dprya.
Indeed, if M = 2, find S; = B3 € D3 and K3 € D3 which commutes with H and R4 € D4 such that

e tadmy (4 L) = H + K3 + Ry + O3 = H + K3 + Oy, (2.3)
(23) <= H+L+ih " (Bs,H+ L)yw +---=H + K3 + O4.

As L € O3, then L = Ly + Lo with L1 € D3 and Ly € O4. So,
(2.3) <= Hy + Ly + Ly +ih (B3, H)w +ih (B3, L)w + --- = H + K3 + Oy4.

Since H is admissible, it follows that D3 = ker(ih~tady)®Im(ih~tady) and Ly = L} +ih =Y (H, L})w,
where L) € D3 and commutes with H, L] € D3. Thus, since ih~1(Bs, L)y € Oy4, we have

(2.3) <= Hy + L} +ih "(H,L))w — ih ™" (H, Bs)w + Oy = H + K35 + O,.

So, it suffices to take K3 = L} and Sy = B3 = LY.
If M = 3, we need to find By € Dy and K4 € Dy, K4 commutes with H, such that

e ldss (1 4 L) = H + Ky + Ky + Os, (2.4)
where S3 = Sy + By = B3 + By. Using again the fact that H is admissible, we find
(2.4) = ¢t adna(gihNedns (4 L)) = H + Ky + K4 + O
s ¢ih ladsy (H+ K3+ Ry+0O5) =H+ K3z + K4+ Os

= H+ K3+ Ry +O05+ih ' (By, H+ Kz + Ry + Os)w + - = H + K3+ K4+ O3
= R) +ih " (H,R)w —ih ' (H,B))w + Os = K4 + Os



Theoretical and Numerical Results on Birkhoff Normal Forms and Resonances &9

with Ry = R} +ih='(H, R)w .

We then take Ky = R) € D4y and By = R] € Dy. Assume that the statement (2.2) holds for
some arbitrary natural number M > 1, and prove that (2.2) holds for M + 1. Thus, we want to find
Bpryo € Dypyo, where Spypi1 = Sy + Basao, and Kpyyo € Darya, Kpyrio commutes with H, so that

et adsn (H+L)=H+Ks+--+ Ky + Kpyqo + Onrys: (2.5)
(2.5) <= eihfladBMH(eih*ladsM (H+L)=H+Ksz+-+Kyi1+Kyio+ Onys

e M B (H+Kz+-+ Ky + Rute + Onmys)
=H+Ks+ -+ Kyy1+Kyrpo+Onrgs

= H+Kz+ -+ Kyp1+ Ryyo — ih ™Y H, Byra)w + Onras
=H+Ks+ -+ Kyt1+EKyi2+Omys

< Ryq2 — ih ' (H, Byg2)w + Onrgs = Kngo + Oy

= Ry p +ih ™ (H, Ry o)w — ih™ (H, By2)w + Onrss = Knro + O

We can therefore take Ko = Ry, and Baryo = R/ ,.
Now, if we assume that L and Kj;, j < M + 1, have real coefficients, then Rj;42 is real, too.
ih~'adg is a real endomorphism on each Dy, hence (2.5) can be solved with real coefficients. O

Remark 2.1. The Birkhoff normal form theorem remains valid for any element of the subspace Dy
of § and in a neighborhood of the origin, via similar canonical transformations defined near 0.

3 Born—Oppenheimer approximation

The Born-Oppenheimer approximation is based on the fact that the mass of the nucleus is much
greater than that of the electron [3]. This principle is exploited in order to approximate the complete
molecular Schrédinger operator by a reduced Hamiltonian, acting on the positions of the nuclei only,
and in which the electrons are involved through the effective electric potential they create only. The
Born—-Oppenheimer approximation shows how the electronic motions can be approximately separated
from the nuclear motions. Let us explain the results on the Born Oppenheimer reduction for diatomic
molecules with singular Coulomb-type interactions.

Consider a molecule system composed of two atomic nuclei A and B whose positions are defined
by the vectors x4 and zp and one electron of position x.. The nuclei are assumed to be heavy with
a mass of order M > 1 and the electron is light with a mass one. The Hamiltonian of the system is
given by

1 1 1
P= —m[)ﬁA — maﬁB — 5326 +V(ra—2x)+V(zg —xe) + W(za —zB),
where V' and W represent the Coulomb interactions V(z) = —1o7 and W(z) = ‘% ; o and 3 are real

constants, a > 0, § > 0. P is the sum of kinetic energy of the atomic nuclei —ﬁ 92 — ﬁ 8%3, kinetic
1

energy of the electrons —35 8&, internuclear repulsion W (x4 — zg), and electronic-nuclear attraction
V(zxa—xe)+ V(g — x.). Removing the center of mass motion of this system and choosing properly
the coordinates, one can correctly describe this approximation. Indeed, we consider the center of a

mass coordinate system

R_MIA—FM.Z‘B-FI@ . Yy _ZEA+CCB
- oM +1 0 T AT IR Y= e 2
In these coordinates, the Hamiltonian P becomes
P= ! of + P
To22M 1) BT

P=—t (14 )R+ V(E ) + v (5 ) + W),
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If we remove the center of mass motion, the study of P is reduced to that of the operator P on
L?(R%), where the spectrum of P defines the energy levels of the molecule. The Born-Oppenheimer
approximation is a very important method for analyzing this spectrum when M, the mass of nuclei,
tends to infinity. In general, molecular systems of n + p + 1 particles (n + 1 nuclei and p electrons)
in the semiclassical limit, where the mass ratio h? of electronic to nuclear mass tends to zero, are
described by the many-body Hamiltonians of the type

P=—h?A, — Ay +V(z,y),

where V is the sum of all interactions between the particles, z € RY, N = 3n, denote the relative
positions of the nuclei, and y € RN | N’ = 3p, those of the electrons. P is defined on L?(RY x R?]f ),

we denote by Q(z) the electronic Hamiltonian —A, + V(z,y) on Lz(RéV'). Then, one can define the
so-called electronic levels being the discrete eigenvalues Aj(z) < Az(x) < --- of the operator Q(x).
Born and Oppenheimer [3] realized that the study of P can be approximately reduced, when h is
small, to the diagonal matrix diag(—h?A, + A\;(z)), j = 1,2,... on @ L*(RY). In particular, when,

J
for example, the first simple eigenvalue A; (x) admits a non-degenerate point well at some energy level
E, the eigenvalues of P near E should admit a complete asymptotic expansion in half-powers of h
(WKB expansions). This principle has been widely used by chemists, but the mathematically rigorous
justifications of this reduction and WKB expansions for eigenfunctions and eigenvalues of a diatomic
molecule are more recent. Such a result was proved for smooth interactions (see, e.g., [4]), it was
generalized later by Belmouhoub and Messirdi to singular Coulombic potentials where they introduced
some z-dependent changes in the y-variables that will regularize the associated eigenfunctions, localize
in a compact region the x-dependent singularities with respect to y in the interactions and construct
a kind of semiclassical pseudodiffcrential calculus, adapted to these changes [1].

3.1 Pseudodifferential calculus with operator-valued symbols

In the literature, there exist several versions of operator-valued pseudodifferential calculus, each
adopted to some particular, more or less general, situation. We recall here the constructions made
mainly in [10]. Let © be a bounded open subset of RY, and H, K, £ be complex Hilbert spaces.
B(H, K) is the algebra of all continuous linear operators from A into K. We denote by C>° (€2, A) the
set of all infinitely differentiable functions from Q to A = H,K, L. Given v € C*°(Q,R) and V a
neighborhood of 0 in RY, we set

O = {(2,6) eQx CN : £ —iVi(x) € V}.

Pseudodifferential operators can be considered in the following more general context. For m € R,
consider the spaces of formal power series

H) = {iherj/zsj(z) L 55 € COO(Q,H)},

j=0

—v@)/hgm(Q), M) {Zh m+i2e=v @)/ hg (1) ;s GCOO(Q,H)},

7=0
SO B(H,K)) = {Zhjaj(x,g) :a; € COO(Q*,B(H,/C))}.
§=0
The operator-valued functions in S°(Q*, B(#H,K)) are called symbols. For any symbol a = a(x,&; h

in S°(Q*, B(H,K)), one can define an operator Op(a) from e~*®)/"§™(Q H) into e~**)/h§™(Q, K)
by the formula

Op(@)e™ s, 1)) = = 3 (e i) IO (X sy, )
a€eNN
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x(@,y) = ¥y —¥(@) = (y — 2).Ve(z) = O(lz —yl?), s € S™(QH). Op(a) is called an h-

pseudodifferential the operator with operator-valued symbol a(z,&;h) = > hia;(x,€). The function
7=0

ao(z, &) (coefficient of hY) is called principal symbol of Op(a). Furthermore, such operators verify

e?@/hOp(a)(e=?®)/hs(x, h)) € S™(Q,H) and can be composed by using the formula

Op(b) 0 Op(a) = Op(bta), (3:1)
lex]
bha(e. )= Y2 O, & WOale, € ) € SO B, K)).

aeNN

where a € S°(Q*, B(H,K)), b € S°(Q*, B(K, L)) and the range of Op(a) is contained in the domain
of Op(b). This formula makes it possible to inverse asymptotically operators Op(a), whose principal
symbol ag(z, £) is invertible as a linear operator from H into K.

3.2 Representation of the effective Hamiltonian

Let Q € RY be an open neighborhood of 0 and V € C>(Q, B(H2(R5ﬂ), L? (Ré\’/))) be A,-compact:
V(@ y)(=0y + 171 € C=(Q BIL*(R]"))). (32)

Thus, P is self-adjoint on L?(RY x R?JJV/) with domain the Sobolev space H?(RY x R?JJV/), as well as
the operator Q(x) is self-adjoint on L? (Ré\],) with domain H? (Ré\’/).

For the sake of simplicity, we take into account only the first electronic level A\;(x) = inf(o(Q(x))
and call wj(x,y) the first eigenfunction of Q(z) associated to Aj(z) and normalized,
[Juq (2, -~-)||L2(R£w) =1in LQ(R{/V/) for any z € RY. We also assume that \;(x) is separated by
a constant gap from the rest of the spectrum o(Q(z)), i.e.,

inf (mf (0(Q(x)) \ {)\1(3:)})) >0, (3.3)

zeRN

and A;(z) has a unique and non-degenerate minimum at 0:

M(x) 20, ATH(0) = {0}, A1(0) =0, N/(0)>0. (34)

It can be shown that A\; € C*°(Q,R) and u; € C™(Q, H2(RZIJV')) (cf. [10]). In particular, the assump-

tions (3.2) and (3.3) imply that the orthogonal projection II(z) on the subspace of L? (Ré\ﬂ), spanned
by ui(z, -+ ), x € Q, is C?-regular with respect to x (see [4]). To construct the effective Hamiltonian
of P, the idea here is to use the pseudodifferential calculus with operator-valued symbols developed
previously.

For A € C, Re A < inf(o(Q(z)) \ {\1(2)}), we consider the Grushin operator

P—-A U1l
P =
A << : ’U'1>y 0 )
acting on L2(RY xR )@ L2(R)"), where (-, u1), is the inner product in L2(RY"). It follows from the
assumptions that Py = Op(ay) is an h-pseudodifferential operator in z, from e~¥(*)/hgm(Q H? (Rflv/))
into e~ ¥@)/hgm(Q, I (R?]IV/)), with the operator-valued symbol ay,

E4+Q(x) -\ w

ax(x,€) = ( (i), o) e S, B(H*(RY ) @ C, L*(RY) @ ©)),

where 1 (z) is the Agmon distance associated to the metric A\ (z) dz?. We show that Py is invertible
and describe a method for finding its inverse. Using the fact that (Vi)2?(x) = A\i(z) and the gap
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assumption (

3.3), one can easily show that for |A| small enough and & close enough to iV (z),
Re(I1(2)Q(x)TI(

) — A) > 0 and thus a) is invertible with inverse
Ti(2)(€2 + T(2)Q(2)T(x) — \) T (x) Uy
(,&A) = ) :
(" u1)y A== \i(z)

where [I(z) = 1—II(z) (see, e.g., [1]). In particular, by(z, &; \) € SO(€*, l’)’(LQ(IR?]j/)EB(C7 HZ(R?JJV,)@(C)).
Then using the composition formula (3.2), it is easy to construct a symbol

ba(@, & h) = bo(w, & A) + hby (2, & X) + h2ba (2, M) +

ba(w,&5h) € S°(, BLA(RY") & C, HA(R)) & C)),

) = 1 and Op(ax) o Op(bn) = I, where I is the identity operator on
@ C). Let us pose

E()\ EL (A
oron = (0 T2(h)-

such that ayfbx(z,&h
e~ Vv@/hgm(Q, L2(R)")

By Lemma 3.1 in [1], we know that E+(X) = Op(ex(z,&; N)) is h-pseudodifferential operator with the
symbol ey (z,&;N) € SO(Q*,C) and its principal symbol is eg(z,&;A) = A — €2 — A\i(z). In particular,
A — E=()) is a scalar h-pseudodifferential operator with the principal symbol 2 + A (z). Moreover,
we have the following fundamental spectral reduction:

A€ o(P) < e oA —E(N).

Hence, the spectral study of the Hamiltonian P on L?(RY x R?]JV l) is reduced to that of the h-
pseudodifferential operator A — Ex()\) on L?(RY), the so-called effective Hamiltonian of P. In fact,
one can show in many situations that A — Ex(\) = P. + O(h?), which makes it easy to compare
(using, for example, the maximum principle) the eigenvalues of P and those of P, = —h%A, + A1 (),
and then identify them when h decays to zero fast enough [4]. In the next section, this reduction will
justify our definition of the normal Birkhoff forms for P as those of the effective Hamiltonian P.,.

4 The Birkhoff normal forms for the Born—Oppenheimer
Hamiltonian and resonances

In the previous section, it has been established that the Born—-Oppenheimer Hamiltonian P can be
reduced to the effective Hamiltonian P, = —h2A, + A(z) on L?(RY), modulo O(h?). Thus, it is
natural to define the Birkhoff normal forms of P as those of P, modulo O(h?).

Definition 4.1. We call normal forms of the Born—Oppenheimer Hamiltonian P the Birkhoff normal
forms of the associated effective Hamiltonian P, when the semiclassical parameter h tends to zero.

Assumption (3.4) implies that A\ (z) € Os, and since H + A;(x) € Da, one can obtain the quantum
Birkhoff normal forms for P, as a direct consequence of the Birkhoff normal form theorem (Theorem
2.1), when the potential energy operator V(z) = Ai(x) is regular and the Hessian matrix A/ (0)
is diagonal with the eigenvalues (v%,...,v%), v; > 0. The complicated behavior of the dynamics
and spectrum of a molecular system happens under a resonance. In this case, to decide wether the

Hamiltonian has resonance frequencies or not, we need the following definitions.

N

Definition 4.2. The frequencies vector v = (v1,...,vy) is non-resonant if k-v = > k;jv; # 0 for all
j=1

k € ZN\{0}. v is resonant if vy, ..., vy are dependent over Z, i.e., there exist integers ki, ..., ky € Z,

N
not all zero, such that ki1 + -+ + kyvy = 0. The number r = ) |k;| is called the degree of
j=1

resonance of P.. In the particular resonant case, where v; = v k; for every j =1,..., N, with v, > 0
and k1,...,kny € N, the frequencies vector v is said to be completely resonant.
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For a theoretical definition of resonances, the interested reader may consult the excellent paper [10].

As an application we study the dynamics near a local extremum of the effective Hamiltonian, for
which the frequencies are in 1 : 1 Darling-Dennison resonance (v;,v;). This is a well-known effect
in the overtone spectroscopy of molecules such as water molecule HyO, acetylene CyHs, methyli-
dynephosphane (phosphaethyne) HCP, ... .

In what follows, we explicitly give the computations of Birkhoff normal forms in the 1 : 1 resonance
for P, therefore, for the effective Hamiltonian P, of P, the situation which can be encountered in
physical models, like small molecules. So, all the following computations are valid modulo O(h?).

Consider the semiclassical harmonic oscillator with the resonant frequencies vector v = (1, 1):

b (R e )+ (- )

and the symbol H(z1,22) = % |21|> + 3 |22|%, where z; = z; +1i¢;, j = 1,2.
To find a Birkhoff normal form for P, we construct a formal series K3 in D5 such that (Hy, K3)w =

0. Thus, K3 = > h'z*Z” and we should verify the resonance relation (v, 8 — ) = 0.
a,BEN?, 20+|a|+|B]=3

Let a = (041,042), ﬁ: (51,/32) GNQ,
<1/,57a>:0<:>51—a1+52—a2:0<:>a1+a2:51+62. (41)

We then look for all monomials of order 3 of type 22 2927/ 2} satisfying the resonance relation (4.1).
The system

oy + o+ 1+ B2 =3,
oy +ag = f1+ B2

does not admit solutions in N. Thus, there is no monomial in D5 verifying |a| + || = 3 and the
resonance relation (4.1), K3 = 0, but one can calculate K4 € Dy. The couples a = (ay,az) € N and
B = (B1, B2) € N? which verify the system oy + g + 1 + B2 = 4 and a1 + ag = 31 + B9, are

a=pg=(11); a=F=(20); a=p5=(0,2)
a=(2,0) and 8=(0,2); «(0,2) and B =(2,0).

Therefore, K, is generated by the monomials |z1|*; |22|%; |21]?|22|?; 22%23; Z222 and h2. Since Ky is
real, we have

Ky = ay|z|* + ag|z|* + as|z1)?|22|* + as Re(22 22) + O(h?); ai,az,as,a4 € R.

We can use Taylor series for A;(z) to determine the coefficients aj, as, az and a4. Remember that
Po=H+ 27 @) + M (@) +--)

1 93N 1 N

A @)= — T )ad 4 L _%h
! 12v2 0z3 1T 42 92301,

1 93\
27" (0 2
4\/§ 8:E18:C§ ( )1’133

0)z2zy + +—— 22 (0)2.
(0)z7z2 212\/581:3()2

By setting y; = % (z; + %), 7 = 1,2, and after a long but straightforward calculation, we can
determine all monomials that are in Ky,

5 (PN V2L (PN VT e B[P 0N L P Ve
T8 {( 93 ©) + (azfaxz ©) } =l - 55 {( 923 ) + (axlaxg ) } 22|

LIPA g 0N Pa O
T8 | oa7 ( )axfazz (0)+ 073 (0) 92202, ¥
83)\1 a3>\1 63)\1 83)\1 ) ,
+M)(0)8$%a$1(0)+3$3(0)5$%31‘2(0)] |z1| |22|
1 93\, 2 BN 9 .
NG _(<az§ax2 ©) + (m@)) )} |21/ ||
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1 [03M 3\ 03\ SN
192 | 043 ( )81‘%8@( ) oz ©) 01013 ()
93N\ 03\ I3\ P\ 2-2

The fourth degree Taylor polynomial for A\;(x) at 0 is given by

(4) - 1 ({94/\1 4 1 (94/\1 4 1 84)\1 3
AL (1, m0) = 1 Tx‘{ (0)z] 1 ng( )Ty + 6 02305 (0)zyx2
1 o'\ . 1 ' )

15 +

6 dx,0x3 ©) 4 922022 (O)zy>.

It is easy to see that only % 8;;13 (0)z, L atz;g;g (0)z%23 and 5 ‘9;;251 (0)z3 contain the terms of Ky,
the remainder terms are absorbed by the rest of the Taylor series

1 1
yr="(an+z)' == (2’1l + 422 21| + 6] 21|t +422|21)? —|—§14),
——

4 4
€K,
471( N % ST TIRT B IR TSRp e TIr g
y2 = 3 (2 +722)" = 7 (22 +dzleel” + blzaf” +4z5]f" +27),
€K,
20 1 = )2 st oo 1 oo 1 o o
Y12 = 5 (z1+71) (22 +72)" = 4 172 + g 172 +2 Z1 |2
€K,
1 1 1 1 1
+ 1A+ S EH Il S sl + 5 alE + [l
—— _
€Ky EK4
Therefore,
1 0%\ 5 [0\ 2 P\ 2
“T 16 oxi 0~ 48 {( oz} (O)> + (896%8962 (O)) }’ (42)
1 0%\ 5 [0\ 2 B\ 2
2= 16 oxj 0~ 48 [( ox3 (O)) + (8x18$§ (0)) }’
1 0%\ 1793\ B\ D3N\ D3N\
BT Ox30x3 0+ 8 [( ox? © 0x30xo 0)+ oz © dx30xq )
PN\ D3N\ 03N\ D3N\
* ( ox? © 3&0%8&01( )+ ox3 © 0x30xy 0 )]
1 D3N\ 2 PN\ 2
"% K(aﬁam ) + (axgaxl ) )]
1 0%\ 1 [03) D3N\ B\ AN
“=3 0z3023 0)- 192 {Bx:f () 023022 (0)+ oz} ) 0z1023 (©)

3 3 3 3
aa:%l () ail?);g 0)+ 83;?31 ©0) aifg;@ }
The Weyl quantization Op,,(K,) of Ky is given by
Opuw(K4) = a10py (|21]*) + a20py (|22]*) + az0pu (|21°|22]%) + aaOpy (Re(2173)) + O(h?).
Furthermore,
21|t = 21 + &1 + 20767,
22" = 23 + &5 + 20363,

|21 |eaf® = 2¥a3 + 2763 + 2387 + €163,
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Re(2773) = zial — 2165 — 2387 + 6165 + 4w12261 6o,

then the Weyl quantization of every monomial gives

o4 0?
Opw(|z1| ) —x‘f+h4? —h? [23:? 922 —|—1},

Oz} Ox?
64 2
4\ _ 4 4 _p2 2~
Opu (|22*) =25+ h a2 h [2332 922 —|—1},
0? 0? , 04 }

Opu 2,12\ — B2 —h
P (|21 *[22]) = 2iz; — [ 022 " 92202

OpulRe(s3a) = atad — w2 —at 2 -3 D ygem D)
w 172 142 1 ax% 2 ax% 8$%81’% 8$13x2

2
b 0x3

Finally, we obtain the following Birkhoff normal form in the 1 : 1 resonance of the Hamiltonian P
with the electronic energy level A\ (x):

H+Opw(K4):1(fh2 ” +xl>+%(—h aa

2 02 T
ot , 02
4 4 Y9 49 o
+ap _:clJrh e h 8 )]
o* , 02
+a2_$%+h467x%* 7% ):|
[ 0? 0 ot
+%?%€**Qﬁéﬁ*’ amaﬁ&@ﬂ
[ 0? 0? o*
ool + R G W g Y G
— 4h%z 2o i + 2h%x, 9 +2h%xy — 0 + O(h?)
0x10x2 oy Oy .

Remark 4.1. To study just a small neighborhood of some fixed energy level, it suffices to take the
first electronic level A1 (z) of Q(x). However, in order to study a larger range of energy, we shall as well
treat the case of several electronic levels A1 (z), ..., Ay (z) (N arbitrary), and assume that there exists
a gap between them and the rest of the spectrum of Q(z). In such a case, the effective Hamiltonian is
an N x N matrix of pseudodifferential operators; does this general situation lead to the same Birkhoff
normal form theorem? We hope to investigate this interesting question in a future work.

5 Numerical results for the 1: 1 resonance

The 1 : 1 symbol H(z,§) = 1 (23 +&3) + 3(23 + &), © = (z1,22), { = (&,&), of the harmonic
oscillator is defined by using the Maple notation as follows:

| let H=Maple. to_poly "0.5  x[1]72+0.5 * xi[1]"240.5 * x[2]"240.5 * xi[2]"2"};

H is converted in the complex coordinates to H (21, 22) = % 212+ § |22]%, zj = % (xj+15), j=1,2.
In order to deal with harmonic oscillators in real variables (z;,&;), we need to use the new variables

T = % (zj +1i5), § = % (x; — i), 7 = 1,2. The harmonic oscillator has now the required form

H = 848 + 2,
| let Hz = coordz H;;
| Maple. of _poly Hz;;
| —:string = 71 % x[1]71 * xi[1] 7141 % x[2] "1 * xi[2]"1”
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We add now a simple perturbation \;(z1,22) = x323, which we convert to complex coordinates:
| let Ay = Maple.to_poly "x[1]72 * x[2]27;;
| let A1z = coordz Ag;;
| Maple.of_poly vz;;
| —:string =
| 71.0606601810596428  x[2] "1 * xi[2] "2+0.3535533936865476 * x[2] "3+
| 1.0606601810596428 * x[2]"2 * xi[2]"14-0.3535533936865476 * xi[2]"3”

Thus, in the complex coordinates (7,¢;) we have

A = 2223 = 0,25 222 + 0,5 22aheh + 0,25 2262 + 0,5 2, 22€,
+ 215861 &5 + 0,5 218165 + 0,25 05€% + 0, 5236776 + 0,25 %67,
We consider now the Hamiltonian P, = H + A;:
| let Hz = Weyl . add Hz vz;;
Define the frequency vector [1; 1] and apply Birkhoff procedure at order 4:

| let freq =[] one; of_int 1 |];;
| let kz = birkhoff freq hz 4;;

Then we get the normalized Hamiltonian kz, which we convert in the real coordinates and print the
result:

| let k = coordx kz;;

| Maple. of _poly k;;

| — :string =

| 70.5 % x[1]72+40.5 % xi[1]"240.5 * x[2]"2+0,5 % xi[2] 2+1,5 * x[1]"2 * x[2] "2

| 40,5 * x[1]72 % xi[2]2+0,5 * x[2]72 * xi[1] 72415 * xi[1]72 x xi[2] 2

| 42 % x[1] * x[2] * xi[1] * xi[2]

We see from formula (4.2) that a1 = az =0, ag = + %(0) =1and ay = § %(0) = 1. Hence,
1 2 1 2

Ky = as|z1*|22]? + as Re(25732) + O(h?)
1
= 2iah + 016 + 258 + G + ;5 (2128 - 21€ — 258 + G + dnma&i&) + O(h7)

3 1 1 3
=3 ziwy + 3 T365 + B x367 + 3 £33 + 2212261 & + O(RP)

and
1 1 1 1 3 1 1 3
H+K,= §x§ + 55? + §x§ + 553 + §x§x§ + §m§§§ + §x§§% + 55?53 + 2x13061 65 + O(R?).

These results are qualitatively identical to those obtained above over a Maple module, the Birkhoff
module and the normal form algorithm.
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Abstract. In this paper, the existence and uniqueness of solutions for a nonlinear generalized pro-
portional fractional functional integro-differential Langevin equation involving variable coefficient via
nonlocal multi-point integral conditions are investigated by using Banach’s, Schaefer’s and Krasnosel-
skii’s fixed point theorems. Different types of Ulam—Hyers stability are also established. Finally, an
example is given to demonstrate applicability to the theoretical findings.
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1 Introduction

Fractional differential equations have used to be an excellent instrument in the mathematical mod-
elling of dynamical systems and real world problems, such as aerodynamics, polymer science, frac-
tals and chaotic, nonlinear control theory, signal and image processing, bioengineering and chemical
engineering, etc. However, a number of various definitions of fractional derivative and integral op-
erators of non-integer order can be found in literature. For more details, we refer the reader to
the books [20, 24,29, 32]. Recently, Jarad et al. [22] introduced a new type of fractional derivative
operator, the so-called generalized proportional fractional (GPF) derivatives extended by local deriva-
tives [9]. The characteristic of the new derivative is that it involves two fractional orders, preserves the
semigroup property, possesses nonlocal character and upon limiting cases it converges to the original
function and its derivative. The GPF derivative is well behaved and has a various helpful over the
classical derivatives in the sense that it generalizes previously defined derivatives in the literature.
We list some recent papers which have been refined in frame of GPF derivative and other related
works [2,7,8,37].

Several interesting and important areas of investigation fractional differential equations are devoted
to the existence theory and stability analysis of the solutions. In recent years, many authors have
discussed the questions on existence, uniqueness and different types of Ulam—Hyers (UH) stability
of solutions of initial and boundary value problems for fractional differential equations. The UH
stability is the essential and special type of stability analysis that researchers studied in the field of
mathematical analysis. The concept of Ulam stability of functional equations was firstly initiated by
Ulam [40,41] and Hyers [21] who presented the partial answer to the Ulam question in the case of
Banach space. Thereafter, this type of stability is called the UH stability. In 1950, the Hyers stability
was generalized by Aoki [10]. Rassias [33,34] provided an interesting generalization of the UH stability
of linear and nonlinear mappings. The UH stability was initially applied to a linear differential equation
by Obloza [31]. We refer the reader to the recent works [1,5,11,12,14,17,23,28,36,42,43]. It should be
noted that the above-said areas of interest (existence and stability) have been fabulously deliberated
within the Riemann—Liouville, Caputo, Hilfer or Hadamard derivatives.

In 1908, Paul Langevin [26] introduced a concept of Langevin equation in a sense of ordinary deriva-
tive which is an important equation of mathematical physics. It is well known that a Langevin equation
have been widely used to describe the dynamical processes of various fluctuating environments such
as physics, chemistry and electrical engineering [16, 30,44]. However, for a system in complex media,
the ordinary Langevin equation does not provide the correct representation of dynamical systems.
One of the possible ways of the ordinary Langevin equation is to replace the ordinary (integer-order)
derivative by the fractional-order derivative. The fractional Langevin equation was studied by various
researchers (for some recent works on fractional Langevin equations, see [6,13,15,18,27,38,39,45]). It is
to be noted that most exiting in literature results dealt with a fractional Langevin equation, have been
reported in the case of a constant coefficient H(t). However, the paper [4] has first discussed fractional
Langevin equation containing variable coefficient and supplemented with nonlocal-terminal fractional
boundary conditions. On the other hand, we claim that our approach in this paper is totally different
from paper [4] in the sense that different fractional derivative is accommodated, different boundary
conditions are associated, different fixed point theorems are used and UH stability is discussed which
has not studied in [4].

Motivated by [4,15,38,39], in this paper we study th existence, uniqueness and different types of
UH stability for a nonlinear GPF functional integro-differential Langevin equation involving a variable
coefficient via nonlocal multi-point integral conditions:

SOV (CD™ + A1) (t) = F(tx(t),2(6(), (S2)(1). t€ (aT], a>0,

m (1.1)
z(a) =7, z(n) = Z i P (&) + K,

where D?? denotes the GPF derivative operator of Caputo type of order ¢ € {a, 3}, 0 < o, 8 < 1,
l<a+5<2,p>0, P denotes the GPF integral opertator of order p; >0, p>0,i=1,...,m,
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H € C(la, T],R), f € C([a,T] x R3,R), 0 : [a,T] — [a,T],

t) = /qb(t,s,:c(s)) ds, t € la,T],

¢ :[a,T)?> x R — [a,00) is a continuous function. ~,x,d; € R and n,&; € (a,T),i=1,2,...,m

The manuscript is structured as follows. In Section 2, we give some definitions and lemmas. In
Section 3, we establish some appropriate conditions for the existence results of solutions of problem
(1.1) by applying a variety of fixed point theorems due to Banach, Schaefer and Krasnoselskii. In
Section 4, we set up applicable results for different types of Ulam—Hyers stability to the solution of
problem (1.1). An example illustrating our results is given in Section 5.

2 Preliminaries

This section is devoted to definitions and lemmas that will be used throughout the paper. For their
justifications and proofs, we refer the reader to [22].

Definition 2.1 ([22]). For 0 < p <1, a € C and Re(«) > 0, the GPF integral of f of order « is

(I D)) = ar‘ j/ T 5T () ds = p70e T T e T ()

where ,Z% is the Riemann—Liouville fractional integral [24].

Definition 2.2 ([22]). For 0 < p <1, a € C with Re(a) > 0, the Caputo type GPF derivative of f
of order « is

t
(ED0f)(t) = m / ¢TIt — )" (DM f) (s) ds

where n = [Re(«)] + 1 and [Re(a)] represents the integer part of the real number a.
Lemma 2.1 ([22]). For 0 < p <1 and n = [Re(a)] + 1, we have ({D*? ,ZPf)(t) = f(t), and

(I FDVPf)(E) = f(t) =" (7 “)Z chi, (t—a)*.

Lemma 2.2 ([22]). Let a, 8 € C be such that Re(a) > 0 and Re(8) > 0. Then, for any 0 < p <1
and n = [Re(a)] + 1, we have

(i)

a,pe%s s—a B—1 _ F(IB) G%t —a B+a—1 ela
(e (5 = ) 1) (1) = s 5 = )P, Rela) > .
W “T'(B)
Cpape5 s (5 — q)B1 =L\ bt — )1 e n.
(ED2e s = P )0 = L = @ Re(9) >

(iii)
(acDo"pepTils(s - a)k)(t) =0, Re(a) >n, k=0,1,...,n—1.

Lemma 2.3 (Arzeld—Ascoli theorem [3]). A subset M in C([a,b],R) with norm
If[I' = sup |f(?)]
t€la,b]

is relatively compact if and only if it is uniformly bounded and equicontinuous on [a,b].
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Lemma 2.4 (Banach’s fixed point theorem [19]). Let M be a non-empty closed subset of a Banach
space E. Then any contraction mapping T from M into itself has a unique fized point.

Lemma 2.5 (Schaefer’s fixed point theorem [19]). Let M be a Banach space and T : M — M be a
completely continuous operator and let the set G = {x € M : & = kTx, 0 < k < 1} be bounded. Then
T has a fized point in M.

Lemma 2.6 (Krasnoselskii’s fixed point theorem [25]). Let M be a closed, bounded, conver and
nonempty subset of a Banach space X. Let A, B be the operators such that

(i) Az + By € M whenever z,y € M;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

For the sake of computational convenience, we make use of the following constants:

A= U2 e T i 8i(&i — a)*trie" 7 G

peTl(a+1) po i (a + pug + 1) # 0, (2.1)
Oy = (T — a)a+5
P et T (a+ B+ 1)
(T (O ol — )P (1= a)o+”
+ |A|paF(a—|— 1) (Z pa+ﬁ+ﬂir(a+6 Tt 1) + pO‘+BF(a+B n 1)> (22)
(T _ a)a+ﬁ+1
e potAT (o + B 4 2)
(T — a)“ m 16: (& — a)a+ﬁ+m+1 (n — a)a+5+1 )
+ [AlpeT (a4 1) (Z Pt (o + B+ pi +2) | po Pl (a+ B+ 2) (2.3)

Qg 1= TP |H(s)|(T) + m (Z 16:|a TP | H ()] (&) + aIa’p|’H(s)|(n)>, (2.4)
__ (T 7] 195 | —a)t
e = |A|p0‘F a—|— 1) (2_; (1) Iyl + |f€|> + - (2.5)

Let E = C([a, T],R) be the Banach space of all continuous functions from [a,T] into R equipped

with the norm ||z||g = sup {|]z(¢)|}. In order to transform the main problem into a fixed point
tela,T)

problem, problem (1.1) must be converted to an equivalent Volterra integral equation. Next, we
provide the following lemma.

Lemma 2.7. Let h: [a,T] = R be a continuous function, 0 < o, 3 <1, 1 < a+ <2, and p,p; > 0,
1=1,2,...,m. Then the function x € E is the solution to the following linear GPF Langevin equation
equipped with the nonlocal integral conditions

Ephe(CDN £ :(t))2(t) = h(t), t€ (a,T),

m (2.6)
.T(CL) =7 50(77) = Z(Siazm’px(f
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if and only if x satisfies the following Volterra integral equation:

o(0) = T POhE) = TP HE)2(0)

(t —a)¥e7 (=)
ApeT(a+1)

(X duzsmeonie) -z onio)
i=1

=Y 5L H(E) e (&) + oI H(n)a(n)
=1

m 5 — a #16 b (51 a) p;l(’r]—a) (t a)
Z —ye » + 5| +ye T (2.7)
P pril (i + 1)

where A is given by (2.1).

Proof. Let x be a solution of problem (2.6). By using Lemma 2.1 with Lemma 2.2(i), the first equation
of (2.6) can be written as an equivalent integral equation

(t—a)e T ),

— Oé+5,p — P P
z(t) = T h(t) — oZUPH(t)x(t) + 1 T(a 1 1) + coe , (2.8)

where cq,c3 € R.
From the first condition, z(a) = v, we get co = 7. Taking the GPF integral operator ,ZH* into
both sides of (2.8), we have

R
potiil (o + p; + 1) pril(p; + 1)

JIHP(t) = JLOTPTRPR(t) — (TOTHPH ()3 (t) +

From the second condition, we obtain ¢; as follows:

= % <Z5mla+ﬂ+““ph(f ) = oI * TP h(n Z 0iaT P H (&) (6:)

i=1 i=1

: 79§
+ I H(y 2; plﬁ it D)

where A is defined by (2.1). Substituting ¢; and ¢y into (2.8), we get the Volterra integral equa-

tion (2.7).
Conversely, it is easily shown by direct calculation that the solution z(t) is given by (2.7) and
satisfies problem (2.6) under the given boundary conditions. O

3 Main results

In this section, we establish the existence results of solutions for problem (1.1), which is studied by
applying Banach’s, Schaefer’s and Krasnolselskii’s fixed point theorems. Throughout this paper, the
expression ,Z%? f(s,z(s), z(8(s)), (Sx)(s))(c) means that

WIPPFy(s)(c) := bl" / e (e — )P R, (s) ds, c € [a, T,

where b € {o,a + pj,a+ B,a+ B8+ p;} and c € {¢,T,n,&}, i =1,2,...,m. For simplicity, we set

Fy(t) = f(s,2(s), 2(0(s)), (Sz)(s)) (1).
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In view of Lemma 2.7, an operator A : E — E is defined by

(Az)(t) = TP Fy(s)(1) — oI H(s)2(5)(1)

(t— a)o‘ep*;l(t_a)
ApeT(a+ 1)

(Z 5T B ()(6) — IO, (5) ()
i=1

=Y STV H(s)a(s) (&) + oTPH () (5) (1)

=1

where A is defined by (2.1).
To proceed further, we introduce the following assumptions:

(Hy) The functions f: [a,T] x R* - R and H : [a,T] — R are continuous.

(Hz) There exist the positive constants L1, Lo such that
‘f(t,UhUQ,Us) - f(t,Ul,UQ,U3)| < L1(|u1 — 1| + ug — U2|) + Lolus — vs],
for each t € [a,T] and u;, v; € R, i =1,2,3.
(H3) The function ¢ : [a,T]?> x R — R is continuous and there exists a constant ¢g > 0 such that
o(t, s,u) — @, 5,v)| < olu —vl,
for each ¢, s € [a,T] and u, v € R.

(H4) There exist the functions o, 7, ¢, w € C([a, T],R") such that
£t w,0,0)] < o(t) + 7Ol + O] + w(B)w], wo,weR, te T,

with
*

o= sup o(t), 7= sup 7(t), ¢* = sup p(t), w'= sup w(t).
tela,T] tela,T] te(a,T] tela,T]

(Hs) |f(t,u,v,w)| < g(t), ¥V (t,u,v,w) € [a,T] x R and g € C([a, T],RT).

3.1 Existence and uniqueness result via Banach’s fixed point theorem

The existence and uniqueness result of a solution for problem (1.1) will be proved by using Banach’s
fixed point theorem (Banach contraction mapping principle).

Theorem 3.1. Assume that (Hy)—(Hg) hold. If £L < 1, where
L:=2L1Q1 + Loy + N3, (32)
and Q;, i =1,2,3, are given by (2.2)—(2.4), respectively, then (1.1) has a unique solution in E.

Proof. Firstly, we transform problem (1.1) into a fixed point problem, x = Az, where A is defined
as in (3.1). Observe that the fixed points of the operator A are solutions of problem (1.1). Applying
Banach’s fixed point theorem, we show that A has a fixed point which is a unique solution of problem
(1.1).
Let sup |f(¢,0,0,0)| := M; < co. Next, we define a set B, :={z € E: ||z|g < ri1} with
t€la,T]

Qi My + Q4
(20184 4+ Lagoe + Q3]

7”121_
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Notice that By, is a bounded, closed and convex subset of E. The proof is divided into two steps.

Step 1. We show that AB,, C B,,.
For any z € B,,, we have

(A)(0)] < T P0BL(I(T) + Z0[H(5) ()] (T)
(T — a)a G e iy .
D (2 BT R )]0
DTG )I(E) + oI (o) )

i=1

(1163 — a)
+; TG el ) +h

< TP (|Fa(s) = f(5,0,0,0) + [£(5,0,0,0)[)(T) + oZ%7|H(s)| |2(s)|(T)

+ AT (Z BT H50 (|Eo(s) — £(5,0,0,0)] + |£(s,0,0,0)[) (&)
=1

+ o0 (|Fp(s) — f(5,0,0,0)] + | (5,0,0,0)] +ZI5'| TP [ H(s)] |2 (s)](€)

Iv116:](& — a)t
+ oZUP|H(s)| |z(s)](n) + + v+ 18] ) + -
[H(s)] z; T +1) |

By using the property 0 < 5 (u=s) <lfora<s<u<t<T and (He)-(Hs), we obtain

T
[(A)(1)] < m / (T — 5)"*=1((2L1 + Lago(s — a)rs + My) ds + 11 [H(s)|(T)

(T —a) - |3
" [Alp*T(a+1) <; po Bt (o + B+ )
&i
X /(fi — ) TPt (2L) + Lago(s — a))r1 + M) ds

a
n

1
a+p—1 a,
+ m /(7’] — S) + ((2L1 + L2¢0(S — a))r1 + M1) ds + 11,1 p|H(S)|(77)
a4 ,p |'7| |5 ‘ )
+nZI5I T H(s) (&) Z (a1 T Is)
=1 =1

(T _ a)a-i—,B " (T — a)a
PPl (a+B+1) * |AlpeT(a+1)
- |6:](& — a)@+PHri (n—a)**’ )]
X <; PPt (o + B+ p; + 1) i ptPl(at B +1)
(T _ a)oz+5+1 (T — a)a
+ Lagor Lwﬂf(a +8+2) AT (a+1)

B L e U s
L ot BT (a+ B+ i +2) | ptPT(a+ B 1 2)

= (2L1T1 + Ml) |:

, ap s (T - a)a - ) atpi,p s ) a,p S
TR + O (S T e ) + T ) ) |

=1
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(( [7[10:](& — @)™ )
|A\paI‘oz+ Z ot (s + 1) + [+ 18l ) +

i=1
< (2Lyry + My) + LadoQry + Q311 + Q4 <1q,
then || Az||g < 71, which implies that AB,, C B,,.
Step 2. We show that the operator A : E — E is a contraction mapping.
Let z,y € E. Then for t € [a,T], we have
[(Az)(t) = (Ay) ()] < TP F(s) = Fy()[(T) + TP [H(s)] |2(s) — y(s)|(T)

(T —a)* S a Hisp ) a+f8,p
+|A|pap(a+1)(;l5mf FOTOP Fy(s) = Fy(s)](&0) + o222 (|Fa(s) — Fy(s)]) ()

+ Z [0iaZ TP [H ()] (s) — y()](&) + oL [H(s)] [(s) — y(S)I(??))

(T — a)>*h (T —a) o~ 0i|(& — a)titm (n —a)>*?
- {2L1 {pa+ﬂF(a+ﬁ+1)+|AP“F(a+1) (;wﬁw(wmm + 1)+pa+BF(a+ﬁ+1)>}

+ Lyo { (T - a)a+ﬁ+l (T — a)* (i |6:](& — a)a+,8+u,;+1 (n— a)o‘+ﬁ+1 )]
290 pa+ﬁ1“(a+ﬁ+2) [AlpeT (a+1) — pa+ﬂ+ﬂir‘(a+ﬁ+ui+2) pa+,81'\(a_’_5+2)

+ aICYvP

(T'—a)* S atpi,p . a,p _
M) + e s (ST o)) + T |H<s>|<n>)}||x yle

i=1
= [2L1Q1 + LagoS + sl [lz — ylle = Lllz — ylle,

which implies that | Az — Ay|lg < L||z — y||g. As £ < 1, hence, by Banach’s fixed point theorem
(Lemma 2.4), the operator A is a contraction mapping. Therefore, .4 has only one fixed point, which
implies that problem (1.1) has a unique solution in E. O

3.2 Existence result via Schaefer’s fixed point theorem

Next, the second existence result is based on Schaefer’s fixed point theorem.

Theorem 3.2. Assume that (Hy) and (Hy) hold. Then problem (1.1) has at least one solution on
[a,T7].

Proof. To show that A has at least a fixed point in E, the proof is divided into four steps.

Step 1. We show that the operator A is continuous.
Let {z,} be a sequence such that z,, — = in E. Then, for each ¢ € [a,T], we get

|(Az) (1) = (A2) ()] < TP\ Fy, (5) = Fo()(T) + oL [H(5)| |2 (5) = 2(s)|(T)

w N | qoatBtiui.p s) — I(E: s) — s
+|A|PQF(04+1)(;|6’|“I [P (5) = Fa(s)|(&) + o (5) = Fu(s)| ()

+ Y 10T [H(s) [on(s) — 2(9)I(&) + oL H(s)l[@n(s) — x(8)|(77)>

=1

(T — a)ot? (T — a)® m 103 (&5 — a)o+B+m
< {paJrﬁI‘(a +5+1) + |A|poT (a + 1) (Z pe Bl (a4 B+ pi + 1)

(77 _ a)a+ﬁ ,p
T (ot B+ M |Fa,, = Felle + [af H(s)|(T)

s (B ) + T ) ) o - ol

= W||Fy, — Fellg + Qal|zn — 2||&-
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Since f and H are continuous, by the Lebesgue dominated convergent theorem, we have
[(Azy,)(t) — (Ax)(t)] — 0 as n — oo.

Hence,
|Az, — Az||g — 0 as n — oo.

Therefore, the operator A is continuous.

Step 2. We show that the operator A maps a bounded set into the bounded set in E.

Indeed, we show that for any 7, > 0, there exists a constant M, > 0 such that for each z € B,.,, =
{z €E: ||z|lg < ra}, we have ||Azx||g < Mo.

Then, for any ¢ € [a,T] and = € B,.,, we have

[(Az)(t)] < a

w($)[(T) + oZP[H(s)] |2(s)[(T)

v eEsy (ZW TTHEIIE(5)](6) + o

x(5)|(n)

+ Z |0iaZoF 1P [H(3)| (5)[(&) + o7 |H(s)] |2 () (n)

=1

+g DI b+ 1) + 1
< 27 (o(s) + 7(8)a(s)] + P((0(3))| + w(5)|(S2) ()] ) (T) + T [H(5) [2()|(T)

+ mff;(a)m (Z 0:laTo 0150 ((s) + 7(5) a(s)| + (5)(8(5)) | + w(s)|(S2)(5)]) (&)

+ IO (o(s) + 7(s)|z(s)] + @(s)|z(0(s))[ + w(s)l(Sx)(s)l) (n)
+ ; 8l ZOHHPIH(s)] |2(8)[(&) + TP [H(s)| (s) 2 vaf & (s + 1)) + v+ |f<> + 17l
(T —a)**? (T —a)”
ptB(a+ B +1)  |AlpeT(a+1)
- [0i] (& — @)@+ oHm (n—a)**?
g (2_; I T (ot B+ 1) | prAT(at B+ 1)”
(T — a)**+o+! (T —a)"
po T+ B+2)  |ApoT (a4 1)
m |5Z|(£z _ a)a+6+m+1 (77 _ a)a+ﬂ+1
* (Z; PR T(a+ B+ +2) | pol(a +B+2))}

P (s (T —a)* S | ot | (g . 0|1 (g
b D)+ (s (ST 6 + s )

<(c*+T1ra+ 4,0*7’2)[

+w*r2[

i (
+|A|(p°‘Fa+1 (; W))L & T (1 +1)) + 7|+|n> + 17l
= (0" 4+ 7 re + ©"1r2) % + (W' Qg + Q3)7r2 + 4,
and we get the estimate
[Az||g < [(7% 4 @) + w* Qo + Q3re + 001 + Qy = Mo,

where ;, i = 1,2, 3,4, are given by (2.2)—(2.5), respectively.
Step 3. We show that the operator A is equicontinuous.
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Let B,, be a bounded set of E as defined in Step 2, then, for x € B,, and t;,ts € [a,T] with
t1 < to, we have

[(Az)(t2) — (Az)(t1)]

ty
1 —1., adf— =1y a+B—
S ot E)/ |57 (1 — ) = T (4 )t |y ()] ds
1 7
221 (ty—s) a+p-1
+——— e to — s F,(s)|ds
po‘+5f(a+ﬂ) ( 2 ) | ( )l

ty
t1

L1 /p,
e r
p°L(a)

2]
1 =1 —S o—
,M@z)/e o (b2 )(tg—s) 1|H(S)||x(s)|ds+|y|
t

2

k2 — )" =T O 0 = )77 M) a(s)] ds

=1y =1y
e (t2—ma) _ = (ti—a)

to —a g5 (t2=a) _ ti—a gty (=) - J;
>
[AlpT (e +1) potAtI T (o + B+ p7)

i=1

+

&

x / T (g, — )t £ (s, n(s), 2(0(s), (S)(s)) | ds

a

1 [ e=lip_ g atB—
+ TR / 55— T (s, (), 2(009)), (52 (5)) | ds

5 == s @ P —
+Z W' C'kw / 7 ET (g — ) T ()] |a(s)] ds

1 e=1 Y[ 10:](&: — @)™
o= (n—>s) a—1
M(a)/e (1~ 5)° 1 [H(s)] ()] ds +§i:1j e i+ I

ty

1 bt -

——— PG (R T el (e s)‘”ﬁ*l’
= AL (a + f) / |

to

1
X (0" +7're + @ *ro + w'ra(s —a ds—i-i/ep(t2 ) (ty — 5) -1
( 2 @Y T2 2( )) pa+5F(o¢+B) ( )

X (U* + 7y + @ re +wira(s — a)) ds

ty

" palr“z(a) /

a

71y — ) = T O — ) ()] ds

to
T2 221 (4y—5) a-1
+ er (ta — 8)* | H(s)| ds
(o /
p ()tl
to—a a
by [e55 eme) _ BR )] (82 — a)2e"T 270 — () — a)oe" 7 (170

[AJp"T(a + 1)
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&

- |63 ot Btpi—1 (gx 4 ¥ * *
X (;p“"‘ﬁ‘*‘“if(a—i—ﬂ—l—ui) (& —9) (0 + 7 + 9y +w T2(sfa))ds
n
1

/(77 - s)"”rﬁ*l (0* + 7y + @ ro +wira(s — a)) ds

a

* e a1 B)

6| L=2 s) a ;i —
+T22 a+#1‘ (o + ) / 7 ETI(g — )y (s) ds

wi ]
=1 P

2 %(nfs _ a1 |’YH5| )
a>/€ s + 30 MGl ),

which implies that
[(Az)(t2) — (Az)(t1)| — 0, as t — t,

As a result of Steps 1-3 together with the Arzeld—Ascoli theorem (Lemma 2.3), we conclude that
the operator A : E — E is completely continuous.

Step 4. We show that the set D ={z € E: 2 =cAzx, 0 < e < 1} is bounded (A priori bounds).
Let x € D, then « = e Az. For any ¢ € [a,T], one can get the estimate

(Az)(t) = € [“Iﬁﬁ’pr(S)(f) — ol (s)2(s)(1)

(t—a)¥e 25t (t-a)
ApoT(a+1)

(3 bz e )6 = TR )0
=1

=3 BT P H()a(s)(€) + T H(5)(5) ()

=1

It follows from (H3)-(H4) and 0 < € < 1 that for any ¢ € [a, T},

* * * (T - a)a+6
0] = E(AD)0)] < (0" 4 7772+ 7ra) |
T-a) (&6l a)y (- a)**"
T AT+ 1) <Z P (a+ B+ +1) | p o (a+ B+ 1) ﬂ
(T a1 (T ap

+ *
©r LMM +6+2) AT+ 1)

x i |65 (& — a)otPrritt + (n — a)>tAt1
2 paABrm (ot B+ +2) | p Tt B+ 2)

. a,p s (T - a)a - i o+ ,p s . «@,p s
72 {THONT) + ity (25 T HOE) + T )

i=1

(T - ( o 13l (& — ) )
_(T-a .
+|A|para+1 2 gy )

= (0" +7"re + ¢©"1r2) Q1 + (W' Qo + Q3)7r2 + Q4.

Thus,
||.CL'||E S [(T* + (P*>Ql +UJ*QQ =+ 93]7“2 =+ O'*Ql + Q4 =N < 0.
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This implies that D is bounded.
Hence, as a consequence of Schaefer’s fiexd point theorem (Lemma 2.5), the operator A has at
least one fixed point which is the solution of problem (1.1). O

3.3 Existence result via Krasnoselskii’s fixed point theorem
By using Krasnoselskii’s fixed point theorem, we obtain the last existence theorem.

Theorem 3.3. Assume that (Hy), (Hs), (Hs) hold. Then problem (1.1) has at least one solution on
[a,T) if Q3 < 1, where Q3 is defined by (2.4).

Proof. Let sup |g(t)| = ||g|lz- By choosing a suitable Br, = {x € E: ||z||g < T3}, where
t€la,T]

—s Shllglle +
g > —LIIE T 4
1-0Q3
with ||g|le = sup |g(t)|, we define the operators A; and Ay on By, by
t€la,T]

(All')(t) :aIa+5,pFZ(S)(t)+ (t—a) e p 221 (t—a)

( Z S;aZOTBTHP R (5)(&) — aI(X*B’pFI(s)(n)) ,
i=1

ApeT(a+ 1)
() = 0T e gals)o - 3 BT M se(e)E)
2 Apal“(a—kl) a n pat ia %
Z’}/(S -_a “Le pl(&‘,—a) e = e=lp_ a)-l—li) _"_,ye - =L(t—a) _ Ia’p’;‘-[(s)x(s)(t).
pD(p; 4+ 1)

i=1

To show that Ayxz + Ay € Br,, let z,y € Br,. Then we have

[ A1z + Asylle < sup {aIa+B’p|Fx(8)(t)+aI°"”|H(8)IIy(S)I(t)

t€la,T]

(t — a)e 7 (=)
|A|pa1"(a +1)

(ZMI TOHEHRL|Fy(5)](&) + 00| Fu(s)] ()

+ Z |5| Tattip

H(s)[ ly()[(&) + oZP|H(s)| [y(s)|(n)

_ a Hze ) (&1_a)

7] 104] (& 2=1(p—a) > 2=1(t—a)
+yle e Y k| ) 4 |yvle
I Rl ) +

Tty ($ Bl g ]
po T (a+B+1)  [AlpoT(a+1) \ & po Pt (a+B+pi+1) - potPT(a+B+1)

< ||g||E[

P (s (T —a)* - | ot s ) P (s
el [T D)+ e s (ST ) + o))

Y[0:|(§i — a) _ _
b (5 IO O ) + o < g+ 7+ 0 < 7

This implies that Az + Agy € By, which satisfies assumption (i) of Lemma 2.6.

Show that assumption (ii) of Lemma 2.6 is satisfied, the continuity of f and A implies that the
operator A, is continuous. For « € By, we obtain ||A1:1:H]E < Q|g|lg. This means that the operator
A; is uniformly bounded on Bg,. Next, we show that the operator 4; is equicontinuous. Setting

sup |f(t, 21, 22, 23)] = [* < o0,
(t721722,23)6[a,T]><B-73.3
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for a <t; <ty <T, we have

(A1) (t2) = (Aiz)(t)] < [ TP Fy(s)(t2) — P Fa(s) (1)

to —a)® L;l(@_a)i t —a)® pf;l(tl—a) m
1 Lo AlpaF(oE ina) : | (Z5iIaI“+"+““PIFz(s>|(&>+aI°“+5’P|Fx(s>(77>)
i=1
</ pa+ﬁr(a1+ 1) (|(t2 — @)t = (= @) = (b — )| 4 (g — t1)°“+5>

+!<t2—a>ae”f“2‘”—(tl—a)ae”ﬂ““>|( (=9 N (& =9 )

[Alp*+AT(a + 1) poT(a+B+1) & prtul(a+ B+ pi+1)

1=

which is independent of z and |(A1z)(t2) — (A1x)(t1)| — 0 as t1 — to. Therefore, the operator A;
is equicontinuous. So, the operator A; is relatively compact on Br,. Then, by the Arzeld—Ascoli
theorem, the operator A, is compact on Br,, and assumption (ii) of Lemma 2.6 is satisfied. It is easy
to see that, using Q23 < 1, we come to the conclusion that the operator A is a contraction mapping,
and also assumption (iii) of Lemma 2.6 holds. Hence, the operators A; and As satisfy all assumptions
of Krasnoselskii’s fixed point theorem (Lemma 2.6). Therefore, problem (1.1) has at least one solution
on [a,T]. O

4 Ulam—Hyers stability results

In this section, we investigate some necessary and sufficient conditions for Ulam—Hyers (UH) stabil-
ity, generalized Ulam-Hyers (GUH) stability, Ulam-Hyers-Rassias (UHR) stability, and generalized
Ulam-Hyers-Rassias (GUHR) stability of problem (1.1).

Definition 4.1 ([35]). Problem (1.1) is UH stable if there exists a real number ® > 0 such that for
€ > 0 and solution z € E! = C1([a, T],R) of the inequality

’C?DB»P(GCDW +H(E))2(t) — f(t,2(t),2(0(1)), (Sz)(t))' <e tela,T), (4.1)
there exists a solution z € E' of problem (1.1) with
|2(t) — z(t)] < Pe, t € [a,T].

Definition 4.2 ([35]). Problem (1.1) is GUH stable if there exists @y € C(RT,RT) with ®;(0) =0
such that for each solution z € E! of inequality (4.1) there exists a solution z € E! of problem (1.1)
such that

|z(t) —x(t)] < Pye, tea,T).

Definition 4.3 ([35]). Problem (1.1) is UHR stable with respect to @y € C([a, T],R™) if there exists
a real number Cf ¢ > 0 such that for ¢ > 0 and for each solution z € E! of the inequality

‘gpw(gpa»p FHE) () — (£ 2(1), 2(0(2)), (Sz)(t))‘ < edy(t), telaT), (4.2)
there exists a solution z € E! of problem (1.1) with
|2(t) — x(t)] < CroePy(t), te la,T].

Definition 4.4 ([35]). Problem (1.1) is GUHR stable with respect to @5 € C([a,T],R") if there
exists a real number Cf¢ > 0 such that for each solution z € E! of the inequality

SDA (DM 4+ (W) 2(t) — (1 2(8), 2(0(0)), (S2)(B) | < (), t€ [a,T],

there exists a solution z € E! of problem (1.1) such that

|2(t) — x(t)] < Cra®y(t), tela,T].
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Remark 4.1. It is clear that
(i) Definition 4.1 = Definition 4.2;
(ii) Definition 4.3 = Definition 4.4;
(iii) Definition 4.3 for ®;(-) =1 == Definition 4.1.

Remark 4.2. A function z € E! is a solution of inequality (4.1) if and only if there exists a function
v € C([a,T],R) (dependent on z) such that

(i) [v(@)| <€ Vit € a,T).
(i) §DPP (DY +H(1)2(t) = f(t, 2(t), 2(0(1)), (S2) (1)) + v(t), t € [a, T].
By Remark 4.2, the solution of the problem
SDIP(TDNP + H(t))2(t) = f (1, 2(8), 2(8(1)), (S2)(t)) + (1), € [a, T,
can be written by

2(t) = ITPPEL(5)(t) — TP H(5)2(s) (1)

a E(t—a) m
t—a)% »r ) o
: Apﬁnw ) (Z&aﬂ*ﬁ”l’%(s)(&) — IUPE () ()
i=1

=D G TP H(s)2(8) (&) + TP H(5)2(s) (1)

=1
m =l (e _
¥0i(& — a)ries G =10y _q) > =1 (t—q) +6
+ —ve» +K|+vyer + TP Pu(s)(t)
; pHil (i +1)
1
(t— a)o‘epT(tfa) n o . o
T D) (Do P (5) (€)= TP Pu(s))).
=1

Firstly, we present an important lemma that will be used in the proofs of the first stability theorem.
Lemma 4.1. If z € E! satisfies (4.1), then the function z is a solution of the inequality
|2(t) — (A2)(t)] < e, 0<e<, (4.3)
where Q1 is given by (2.2).
Proof. From Remark 4.2, we obtain the inequality

t— a)o‘epT_l(t*a)
ApeT(a+1)

12(6) — (A2)(0)] < 'GIM%(S)“) i

(BT 86 — T () )|

=1
{ (T—a)*? = (T-a)?
T Lpeth(a+ B +1)  [AlpeT(a+1)

G — ) (1= @)+ ﬂ
) (Z P+ Bt 1) | T+ A1) ) O T

i=1
where 5 is given by (2.2), from which inequality (4.3) follows. O

Now, we present the UH and GUH results.
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Theorem 4.1. Assume that (Hy), (Hs), (Hs) are satisfied with £ < 1, where L is defined by (3.2).
Then problem (1.1) is both UH stable and GUH stable on [a,T).

Proof. Let z € E! be a solution of (4.1) and let z be the unique solution of problem (1.1),
S DIP(IDNP + H())a(t) = f(t (t), 2(0(1)), (S2)(1)), t € (a,T]

(@) =7 o) =3 Gl Pa(&) + 5
i=1
By applying the triangle inequality |u — v| < |u| + |v| and Lemma 4.1, we have
|2(t) = 2(t)] = |2(t) = I PP FL () (1) + oI H(s)a(s)(t)

t—a ae”;pl(tfa) m . ‘ §
- Apa)r(a+ 1) (ZW PP F(8)(&) = TP Fa(s) (m)
i=1

=D i TP H(s)2(5) (&) + oL H(5)a(s) (1)
i=1
'-)/6 —a 'u'le P (51 ll) (77 a) P— 1(t a)
+Z p“l"ul—i-l) 'ye + K| —ne

= |Z(t)—(AZ)(t)+(AZ)( )= (Az)(t)] < [2(t) = (A2) (1) +[(A2) (1) — (Az)(8)] < Que+L]2(t) —z(2)].
This yields

By setting ® =
|2(t) — z(t)] < Pe.

Hence, problem (1.1) is UH stable. Moreover, if we set ®¢(e) = Pe, with ®¢(0) = 0, then problem
(1.1) is GUH stable. O

Remark 4.3. A function z € E! is a solution of inequality (4.2) if and only if there exists a function
w € C([a, T],R) (dependent on z) such that

(i) 1©()] < ePe(t), Vi € [a,T].
(ii) §DPP(F DN +X(t))=(t) = f(t, 2(t), 2(0(1)), (S2)(8)) + O(1), t € [a, T).
By Remark 4.3, the solution of the problem
e DPP(THNP + H(D)2(t) = f(t,2(1), 2(0(1)), (S2)(1) + O(1), t € [a,T],

can be written by

2(t) = ITPPEL(5)(t) — TP H(5)2(s) (1)

—a (t—a)
+(tApa)r<a+ <Zf5 TP E, (8)(&) — o TP FL(s) ()

=Y ST H(5)2(s) (&) + o TP H(5)2(5) (1)

=1

~1(¢,—a)
¥8i(& —a)tie" 221 () =l(—a) | Tatp,
+ Z sz M + 1) —ne p tr|+ e # + I pw( )(t)

(t—a)%e 5 (t=a)
ApT(a+1)

( Z 6iaIa+,8+“i7pw(5)<§i) - aI(l"erPw(s) (77)) .

Next, we construct lemma that will be used in the proofs of the second stability theorem.
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Lemma 4.2. Let z € E! be a solution of inequality (4.2). Then the function z satisfies the inequality
[2(t) — (A2)(t)] < Q1 Te(t)e, 0<e<1, (4.4)
where Q1 is given by (2.2).

Proof. From Remark 4.3, we obtain the inequality

(t— a)ae%l(t_a)

ApeT(a+1)

2(0) — (A=) (1) < ‘azwﬁ»ﬂ@(sm T

< (L suz i mrete) - e )|

=1
{ (T —a)>*F L (T
P BT (a+ B +1)  |A|poT (a4 1)
- |6:](& — a)otPHmi (n — a)o+P
’ (; T (ot B+ 1) | (et BT 1)” Tolt)e
=M Ue(t)e,

where 25 is given by (2.2), which leads to inequality (4.4). O
Next, we are ready to prove UHR and GUHR stability results.

Theorem 4.2. If assumptions (Hy), (Hs), (H3) are satisfied, L < 1, where L is defined by (3.2), then
problem (1.1) is both UHR stable and GUHR stable on [a,T).

Proof. Let z € E! be a solution of inequality (4.2) and let x be the unique solution of problem (1.1).
By applying the triangle inequality and Lemma 4.1, we get

|2(t) = 2(t)] = |2(t) = PP Fu(s)(1) + oI H(s5)2(5)(1)

(t—a)ee T
ApeT(a+1)

(Z 5ia TP, (5) (€) — TP Fy(s) ()
i=1

=D 81T TP H(s)a(s) (&) + oL H(s)2(s) ()

i=1
m i o 25E (&i—a)
V6i(§ —a)tie @ =1 (y—q) £=1(4—q)
+; Pl (i + 1) e + K e

= |2(t) — (A2)(t) + (A2)(t) — (Az)(?)

< [2(8) = (A2)(D)] + [(A2)(t) — (Az)(D)|
< We(t)e+ LIz(t) — z(1)],

where L is defined by (3.2), which implies that

Qll:[/@(t)ﬁ
t)—x(t) < ————.
J2(6) = a(t)] < =27
By setting C't0 = ﬁlﬁ with £ < 1, we get the inequality

|2(t) — z(t)] < CroePe(t).

Hence, problem (1.1) is UHR stable. Moreover, if we set ®f(t) = e¥g(t), with ®;(0) = 0, then
problem (1.1) is GUHR stable. O
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5 An example
In this section, we present an example which illustrates the validity and applicability of the main
results.

Example. Consider the following boundary value problem for the nonlinear GPF integro-differential
Langevin equation

§DFF (D5 + 1i6< — a2 T )a(t) = f(t2(t), 2(0(1)), (S2)(®)). t € [0,2],

©=0. 20 = vEorbFa(l) L gt fa(H) _rifa(?) s L &)
T =V, x{l)= 0 T 5 50 T 3 0 T 3 0
Here
a3 g VT V2
- 2’ - ) y P = 27
a=0, T=2 m=3, v=0, n=1,
B L3 .2
K 107/*61 27M2_27M3_2a
1 4 3
51_57 62 57 53_§a
1
5 =V2, br=—5, Ga=-1 0(t)=;
and .
H(t) = < (t— a)e’s (=)

Obviously, the function H satisfies the assumption (H;) for all ¢ € [a, T]. From the all given all data,
we obtain that A ~ 1.49603 # 0, Q; =~ 8.26497, s ~ 4.17132, Q3 ~ 0.17389 and Q4 ~ 0.17303.

(i) Let f:[a,T] x R® = R be a function defined by

t
5 2sin®(mt) x| x(1.5t) t+13/ cos?

1
R - I W P R A S R 692+3

[t 2(t),2(0(1)), (Sz)(1)) =

For x1,x9,y1,Y2, 21,22 € R and t € [a, T], we have

1
‘f(t7x1ay1721) - f(t7$27y2522)‘ S %

1
|¢(t,8,$1) - ¢(t785y1)| = TG ‘xl - Z/1|

The assumptions (H;)—(Hgs) are satisfied with L; =

1
(Jz1 — ya| + |22 — yal) + 3 |21 — 2],

25 , Ly = %, and ¢9 = 7= . Hence

L:=2L,0Q1 + L2¢QQQ + Q3 ~ 0.92199 < 1.
This ensures the existence of the unique solution for (5.1) according to Theorem 3.1. Further, we
compute

d = ~ 105.95156 > 0.

1-L
Thus, by Theorem (4.1), problem (5.1) is UH stable and, consequently, GUH stable.

(ii) Let f:[a,T] x R® — R be a function defined by

et 6e 2t |z

f(t7x(t)7x(0(t))v (Sl‘)(t)) = (t+ 8)2 + (t+8)2 2+ |{,13|

+

¢
5 0.25¢ t+3)3 (t—
x( )| (t + 3)3 cos? /mn s) +(s) ds.

|
4(2+t)? |2(0.25¢)| + 9 (et +2)2 (et=s +2)2
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It is easy to see that for all x1, 22, y1,Y2, 21,22 € R and t € [a,T], we get
1
32
1
|¢(t,5,$1> - (b(tasayl)' < 5‘371 - y1|

1
|f(t, 21,91, 21) — f(t, @2, 2, 22)| < o= (Jo1 — wu] + |w2 — w2]) + 3 |21 — 22|,

The assumptions (Hy)—(Hs) are satisfied with Ly = 35, Ly = %, and ¢ = § . Hence
L:=2L:01 + L2¢OQQ + Q3 ~ 0.84495 < 1.

Furthermore, for z,y,z € R and t € [a,T], it follows that

13,2 € s+ 2 el b ey
R (F ) PR TSI E stz YT (et oy P
The hypothesis (Hy) is also valid with
et 2e~ 2 1 27
)= ——, 7(t) = )=, wt)= ————
0=y "= e W= s Y0 @y
and
R S L SRR |
T T T T3 ¥ Ty Y Ty

Therefore, all the assumptions of Theorem (3.2) are fulfilled, which allow to conclude that system
(5.1) has at least one solution on [a,T]. Moreover, we obtain

Q
Cro = ﬁ ~ 53.30408555 > 0.

Thus, by Theorem 4.2, system (5.1) is UHR stable and, consequently, GUHR stable.

6 Conclusion

In this paper, we construct the equivalence between problem (1.1) and the Volterra integral equation.
We prove the existence results of solutions for the GPF integro-differential Langevin equation via a
variable coefficient with nonlocal integral conditions (1.1) using a variety of fixed point theorems due
to Banach, Schaefer and Krasnoselskii. Moreover, we discuss the stability analysis of UH, GUH, UHR
and GUHR for the proposed problem (1.1). In addition, an example was given to illustrate our main
results. We believe that the all results of this paper will provide considerable potential to interested
researchers to develop relevant results concerning qualitative properties of nonlinear GPF differential
equations. In a forthcoming work, we shall focus on studying the different types of existence results
and stability analysis to an impulsive GPF differential equation with nonlocal integral multi-point
conditions.
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