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Abstract. In this paper, we consider the existence of solutions and some properties of the set
of solutions, as well as the solution operator for a system of differential inclusions with impulse
effects. For the Cauchy problem, under various assumptions on the nonlinear term, we present several
existence results. We appeal to some fixed point theorems in vector metric spaces. Finally, we prove
some characterizing geometric properties about the structure of the solution set such as AR, Ry,
contractibility and acyclicity, with these properties corresponding to Aronszajn—Browder—Gupta type
results.
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1 Introduction

Differential equations with impulses were considered for the first time by Milman and Myshkis [41]
and then followed by a period of active research which culminated with the monograph by Halanay
and Wexler [31]. The dynamics of many processes in physics, population dynamics, biology, medicine,
and so on, may be subject to abrupt changes such as shocks or perturbations (see, e.g., [1, 39, 40]
and the references therein). These perturbations may be seen as impulses. For instance, in the
periodic treatment of some diseases, impulses correspond to the administration of a drug treatment.
In environmental sciences, impulses correspond to seasonal changes of the water level of artificial
reservoirs. Their models are described by impulsive differential equations and inclusions. Important
contributions to the study of the mathematical aspects of such equations have been undertaken in
[25,37,50] among others.

In this work, we consider the following problem:

x'(t) € Fi(t,z(t),y(¢)), a.e. t€10,1],

y'(t) € Fa(t, z(t), y(t)), a.e. t€[0,1],

() = a(ty) + (o) y(te), k=1,...,m, (1.1)
D) =ylty) + Lop(a(ty), y(te), k=1,...,m,

where 0 = tg < t; < -+ <ty <1, F; : [0,1]] x Rx R — P(R), i = 1,2, is a multifunction and
L, Ir € C(R x R,R). The notations z(t]) = hlir(r)l+ x(ty + h) and z(t;) = hli%lJr x(ty, — h) stand for
the right and the left limits of the function y at ¢ = t;, respectively.

For single valued framework, the above system was used to analyze initial value and boundary value
problems for nonlinear competitive or cooperative differential systems from mathematical biology [42]
and mathematical economics [34]; this can be set in the operator form (1.1).

Recently, Precup [48] proved the role of matrix convergence and vector metric in the study of
semilinear operator systems. In recent years, many authors studied the existence of solutions for

systems of differential equations and impulsive differential equations by using vector version of fixed
point theorems (see [11,12,26,32,35,44-46,49] and in the references therein).

In general, for the ordinary Cauchy problems, the uniqueness property does not hold. Kneser [36]
proved in 1923 that the solution set is a continuum, i.e., closed and connected. For differential
inclusions, Aronszajn [7] proved in 1942 that the solution set is, in fact, compact and acyclic, and he
even specified this continuum to be an Rs-set.

An analogous result was obtained for differential inclusions with upper semi-continuous (u.s.c.)
convex valued nonlinearities by several authors (we cite [2-4, 6,24, 30, 33]).

The topological and geometric structure of solution sets for impulsive differential inclusions on
compact intervals, which were investigated in [18,27-29, 53], are a contractibility, AR, acyclicity and
Rs-sets. Also, the topological structure of solution sets for some Cauchy problems without impulses
posed on non-compact intervals were studied by various techniques in [4,10,16,17].

The goal of this paper is to study the existence of solutions and solution sets for systems of impulsive
differential inclusions with initial conditions. The paper is organized as follows. In Section 2, we recall
some definitions and facts which will be needed in our analysis. In Section 3, we prove some existence
results based on a nonlinear alternative of Leray—Schauder type theorem in generalized Banach spaces
in the convex case, and a multivalued version of Perov’s fixed point theorem (Theorem 2.3) for the
nonconvex case. Finally, we present some topological and geometric structures for solution sets of (1.1).

2 Preliminaries

In this section, we introduce notations and definitions which are used throughout this paper.
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Denote by

(X)

(X) ): Y closed};
Py(X) ={Y € P(X): Y bounded};
(X) ): Y convex};
Pep(X) ={Y € P(X): Y compact};

)

Definition 2.1. Let X be a nonempty set. By a vector-valued metric on X we mean a map d :
X x X — R" with the following properties:

(i) d(u,v) >0 for all u,v € X, if d(u,v) = 0 if and only if u = v;
(i) d(u,v) =d(v,u) for all u,v € X;
(iii) d(u,v) < d(u,w) + d(w,v) for all u,v,w € X.
We call the pair (X, d) a generalized metric space. For r = (ry,...,r,) € R, we denote by
B(zg,r) ={z € X : d(zo,x) <1}
the open ball of radius r centered at xy and by
B(xzo,7) = {zeX: dwo,z)<r}

the closed ball of radius r centered at xg.

We mention that for a generalized metric space, the notation of an open subset, closed set,
convergence, Cauchy sequence and completeness are similar to those in usual metric spaces. If,
z,y € R x = (z1,...,2,),y = (Y1,---,Yn), by x < y we mean x; < y; for all i = 1,... ,n. Also,
x| = (|z1],...,|zn]) and max(z,y) = (max(x1,y1),. .., max(T,, yn)). If ¢ € R, then z < ¢ means
x; <cforeachi=1,...,n.

Definition 2.2. A square matrix of real numbers is said to be convergent to zero if and only if its
spectral radius p(M) is strictly less than 1. In other words, this means that all the eigenvalues of M
are in the open unit disc (i.e., |A| < 1 for every A € C with det(M — AI) = 0, where I denotes the
unit matrix of M,,x,(R)).

Theorem 2.1 ( [51]). Let M € Myuxn(Ry). The following assertions are equivalent:
(i) M is convergent towards zero;
(ii) M* -0 as k — oo;

(iii) the matriz (I — M) is nonsingular and

(I-M)y ' =T4+M+M* -+ M-

(iv) the matriz (I — M) is nonsingular and (I — M)~ has nonnegative elements.

Definition 2.3. We say that a non-singular matrix A = (a;j)1<ij<n € Mnxn(R) has the absolute
value property if
ATNA < T,

where
|A| = (|aij|)197j§n € Myuxn(R).
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Definition 2.4. Let (X,d) be a generalized metric space. An operator N : X — X is said to be
contractive if there exists a convergent to zero matrix M such that

d(N(z),N(y)) < Md(z,y), Vz,y € X.

Theorem 2.2 ([23,47]). Let (X,d) be a complete generalized metric space and N : X — X be a
contractive operator with Lipschitz matriz M. Then N has a unique fixed point x, and for each
xog € X we have

d(N*(z0), ) < M*(I — M)~ Yd(zo,n(x0)), VEk €N.

Let (X, d) be a metric space. We denote by H,, the Pompeiu-Hausdorff pseudo-metric distance
on P(X) defined as

Hy, : P(X)xP(X) —RyU{cx}, Hy (A B)= max{ sup dy«(a, B), supd.(A, b)},
acA beB

where d.(A,b) = inf1 d.(a,b) and d.(a, B) = binlg d.(a,b). Then (Pp(X), Hq,) is a metric space and
a€ S

(Pa(X),Ha,) is a generalized metric space. In particular, Hgy, satisfies the triangle inequality.
Let (X, d) be a generalized metric space with

dl ($7 y)
d(z,y) = :
dn (2, y)
Notice that d is a generalized metric space on X if and only if d;, ¢ = 1,...,n, are metrics on X.

Consider the generalized Hausdorff pseudo-metric distance
Hy:P(X) xP(X) — R} U{oo}

defined by
Ha, (A, B)

Hd(AaB) = .
H; (A, B)

Definition 2.5. Let (X, d) be a generalized metric space. A multivalued operator N : X — Py (X)
is said to be contractive if there exists a metrix M € M,,«,(R4) such that

MF 50 as k— oo

and
Hy(N(u), N(v)) < Md(u,v), Yu,v e X.

Theorem 2.3 ([23]). Let (X,d) be a generalized complete metric space, and let N : X — Py(X) be
a multivalued map. Assume that there exist A, B,C € My xn(Ry) such that

Hy(N(z), N(y)) < Ad(z,y) + Bd(y, N(z)) + Cd(z, N(z)), (2.1)
where A+ C converges to zero. Then there exists x € X such that x € N(z).

Definition 2.6. Let E be a vector space on K = R or C. By a vector-valued norm on F we mean a
map || - || : E — R™ with the following properties:

(i) ||z|| > 0 for all x € E; if ||z|| = 0, then = = (0,...,0);
(ii) |[Az]| = |A|||z] for all x € E and X € K;

(i) [lz +yll < [lz]| + [lyll for all z,y € E.
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The pair (E,|| - ||) is called a generalized normed space. If the generalized metric generated by || - ||
(i.e., d(z,y) = ||z — y|) is complete, then the space (E, || - ||) is called a generalized Banach space.

Lemma 2.1 ([43, Theorem 19.7]). Let Y be a separable metric space and F : [a,b] — P(Y) be a
measurable multi-valued map with nonempty closed values. Then F has a measurable selection.

Lemma 2.2 ([38]). Let X be a Banach space. Let F : [a,b] x X — Pep cp(X) be an L'-Carathéodory
multifunction with Sg,, # @, and let T be a continuous linear operator from L' ([a,b], X) to C([a,b], X).
Then the operator

ToSk:C([0,0], X) — Pepeu(C(la, 0], X)),
y — (I'oSp)(y) == T(Sry)
has a closed graph in C([a,b], X) x C([a,b],X), where
Spy={veL'([0,0],X): v(t) € F(tyt)); te€lab]}.

Lemma 2.3 ([23,47]). Let X be a generalized Banach space and F : X — Py p(X) be an w.s.c.
compact multifunction. Moreover, assume that the set

A={zeX: zeAN(x) for some X (0,1)}
is bounded. Then N has at least one fized point.

Theorem 2.4 ([23]). Let X be a generalized Banach space and N : X — X be a continuous compact
mapping. Moreover, assume that the set

K={xeX: z=AN(z) for some A€ (0,1)}
is bounded. Then N has a fixed point.

Definition 2.7. Let X be a Banach space. A is called £L® B measurable if A belongs to the o-algebra
generated by all sets of the form I x D, where I is Lebesgue measurable in [a,b] and D is Borel
measurable in X.

Definition 2.8. A subset B C L'([a,b], X) is decomposable if for all u,v € A and for every Lebesgue
measurable set I C [a, b], we have
ux; + X, 0 € B,

where x, stands for the characteristic function of the set I.

Let F': J x X — Py(X) be multi-valued. Assign to F' the multi-valued operator F : C(J, X) —
P(L'([a,b], X)) defined by F(y) = Sg,. The operator F is called the Nemyts’kil operator associated
to F.

Definition 2.9. Let F : J x X — P,,(X) be multi-valued. We say that F' is of lower semi-continuous
type (Ls.c. type) if its associated Nemyts'kil operator F is lower semi-continuous and has nonempty
closed and decomposable values.

Lemma 2.4 ([19]). Let F : [a,b] x R x R — P, (R) be an integrable bounded multi-valued map such
that

(a) (t,x,y) = F(t,z,y) is L ® B measurable;
(b) (z,y) = F(t,z,y) is Ls.c. a.e. t € [a,b].
Then F' is lower semi-continuous.
Next, we state a classical selection theorem due to Bressan and Colombo.

Theorem 2.5 ([13,20]) (Theorem of “Bressan-Colombo” selection). Let X be a metric separable
space, and let E be a Banach space. Then each l.s.c. operator N : X — Py (L ([a,b], X)) which has
a decomposable closed value, also has a continuous selection.
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2.1 o-selectionable multi-valued maps

The following four definitions and the theorem can be found in [22,30] (see also [8, p. 86]). Let (X, d)
and (Y,d’) be two metric spaces.

Definition 2.10. We say that a map F : X — P(Y)) is o-Ca-selectionable if there exists a decreasing
sequence of compact-valued u.s.c. maps Fj, : X — Y satisfying:

(a) F,, has a Carathédory selection for all n > 0 (F,, are called Ca-selectionable);

(b) F(z)= (| Fu(z) for all x € X.

n>0

Definition 2.11. A single-valued map f : [0,a] x X — Y is said to be measurable-locally-Lipschitz
(mLL) if f(-,z) is measurable for every z € X, and for every € X there exist a neighborhood
Vz C X of  and an integrable function L, : [0, a] — [0, c0) such that

d'(f(t,z1), f(t,22)) < Ly(t)d(z1,22) for every t € [0,a], z1,22 € V.

Definition 2.12. A multi-valued mapping F : [0,a] x X — P(Y) is mLL-selectionable if it has an
mLL-selection.

Definition 2.13. We say that a multi-valued map ¢ : [0,a] x E — P(E) with closed values is
upper-Scorza—Dragoni if, given § > 0, there exists a closed subset As C [0,a] such that the measure
1([0,a] \ As) < § and the restriction ¢5 of ¢ to As x E is u.s.c.

Theorem 2.6 (see [22, Theorem 19.19]). Let E, E; be two separable Banach spaces and let F :
[a,b] X E — Pep.cv(Er) be an upper-Scorza—Dragoni map. Then F is o-Ca-selectionable, the maps
F, :]a,b] x E — P(F1), n € N, are almost upper semicontinuous, and we have

Fo(t,e) C @( U F(t,x)).
rck
Moreover, if F' is integrably bounded, then F is o-mLL-selectionable.

Lemma 2.5 ([9]). For an u.s.c. multifunction F: X — P, (Y), we have

Vao € X, lim sup F(x) C F(xo).
Tr—To

Lemma 2.6 ([9]). Let (K,), C K such that K is a compact subset of X, and X is a separable Banach

space. Then
@(nlirréosupK,L> = ﬂ @( U Kn),
N>0 n>N

where co is the convexr envelope.
Lemma 2.7 ([21]). Let X be a metric compact space. If X is Rs-set, then X is an acyclic space.

Theorem 2.7 ([22]). Let E be a normed space, X be a metric space, and let f : X — E be a
continuous map. Then ¥ e > 0 there is a locally Lipschitz function f. : X — E such that

If(z) = fe(z)[| <&, VaeX. (2.2)

Theorem 2.8 (Theorem of Browder and Gupta, [14]). Let (E,|| - ||) be a Banach space, f : X — E
be a proper map, and suppose that for every € > 0, we have a proper map f. : X — E satisfying:

(i) [Ife(z) = f(2)]| <& for allz € X;

(ii) for allu € E such that ||u|| < e, the equation f.(x) =u has a unique solution.

Then the set S = f=1(0) is Rs.
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3 Existence results

Let J :=[0,1]. In order to define a solution for problem (1.1), consider the space PC(J,R) x PC(J,R),
where

PCO(J,R) = {y: JoR, ye CU\{t:},R): k=1,....m,
y(ty) and y(t) exist and satisfy y(t,) = y(tk)}

Endowed with the norm
lylpe = sup {lly(@®)ll: te T},

PC is a Banach space.

3.1 Convex case

Theorem 3.1. Assume there exist a continuous nondecreasing map ¥ : [0,+00) — (0,+00) and
p € LY(J,Ry) such that

| E; (¢, u, )| < p(t)z/J(||u|| + ||v||) a.e. t€J, i€{l,2}, (u,v)€ R2.

Assume also that Fy, Fy : J X R X R — Py o (R) are Carathéodory. Then problem (1.1) has at least
one solution.

Proof. Consider the operator N : PC x PC — P(PC x PC) defined by

$0+/f1 ds—+ Z Il tk tk)) teJ
O<trp<t

ha(t
ho(t

N(z,y)=4 (h1,h2) e PC x PC : (

~— —
\_/

yo+/f2 dS—‘r Z IQ tk tk)) teJ

0<trp<t

where f; € Sp, = {f € LY (J,R) : f(t) € Fi(t,z(t),y(t)), a.e. t € J}. Fixed points of the operator N
are the solutions of problem (1.1).

We are going to prove that N is u.s.c. compact and that N has convex compact values. The proof
is given by the following steps.

Step 1. N(x,y) is convex for all (z,y) € PC x PC.
Let (hy,ha), (hs, ha) € N(x,y). So, there exist f1,f3 € Sp (. a(-)y(-)) and f2, f1 € Spy(- 2()y(-))
such that for all t € J, we have

_LEO—I—/fl ds + Z Il tk tk))

0<tp<t

—yo+/f2 ds+ Y D(a(ty),y(t))

0<tp<t

and

ha(®) =20+ [ fals)ds+ 30 el o),

h4(t)*yo+/f4 )ds + Z Ir(z (tr))-
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Let I € [0, 1]. For each t € J, we have

(s + (1= D) fs)(s) ds S et y(t)

0<tp<t
+

L(x(ty),y(t
Ut D ds | \gom, 200D

T~
N
> >
N =
"
_|_
—~
—
|
=
TN
o> S
~ W
N~
N———
—
—
SN~—
I
TN
< 8
o o
N~
_|_
O\uo\ﬁ

As Sp, and S, are convex (since F; and F» have convex values),

! (Z;) +(1-1) <Zi) € N(z,y).

Step 2. N transforms every bounded set to a bounded set in PC x PC.
It suffices to show that

/0 .= <£1> > (0 such that

Y(ag) € B, i {@c,y)echPc: e pllrexre <a. 0= (%) >o},

if (h,g) € N(z,y), then we have ||(h,g)|lpcxpc <.

Let (h,g) € N(x,y), then there exist fi € Sp (. 2(.)y(.)) and fo € Sp,(. 2(.).y(.)) such that for all
teJ,

ht) =0+ [ Ailo)dst Y Dl uitn),
0

0<trp<t

0<tp<t

h
(s g) e = (” PC) |

o) =+ [ fals)ds+ 37 Da(alt)y).
0

lgllpc

For all t € J, we have

0<trp<t

[R()] < ||a?o||+/||f1(8)||d5+ Y (i) y(t)]
0

< Jlaoll + / |Fu(s,2(5), y(s) | ds + 3 sup ()]
0

k=1 (z,y)€Bq

< lzoll +v(ar +g)lplles + Y sup |1z y)ll =¢

k=1 (z,y)€Bq

and

Lol < llvoll + / 1@ lds+ 3 [Ea), yw)]
0

0<tr<t

k=1 (xvy)qu

b m
<Ml + [ 1FaCs.os)p(s)lds + Y sup La(e.w)]
0
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< lwoll + (@ + @)llplr + > sup  [La(z,y)]| = L.

k=1 (z,y)€B,

(llhllpc> (Z)

<[=]|: ="~

lgllpc ¢

Step 3. N transforms every bounded set to an equicontinuous set in PC x PC.

Let 71,72 € J, 71 < T2, and let B, be as above in Step 2. For each (x,y) € B, and (h,g) € N(z,y),
there exist f1 € Sp (. 2(.),y(-)) and f2 € Spy(. 2(.),y(.)) such that for all ¢ € J, we have

Then

71’0+/f1 )ds + Z I g (z(tn), y(te)),

O<tr<t

*yoJr/fz ) ds + Z I (x(tr), y(tr)).

0<tp<t

Then

(=) — h(r)ll < / @+ Y Rty

T <t <To
T2

< Y(q —|—q2)/p(s) ds + Z sup |1 k(z,y)]] — 0 as 7o = 7

n T1 <t <T2 (z.y)€B,

and

T2

lg(72) — g(m1)l S/Hfz(S)IIdSJr Y zwa(tn), ytn)]]

- 71 <tp<T2

T2

<vlata) [po)dst 3 s ()] 0 as o

" T1 <t <T2 (z.y)€B,

So, by Step 2 and Step 3, N is compact.

Step 4. The graph of N is closed.
Let (xn,yn) = (@x,Ys)y (hnygn) € N(Tpn,yn), and h, — h, and g, — g.. It suffices to show that
there exist f1 € Sp (. 2.(.)y.(-)) and f2 € Sp,(. 2.(.),y.(.)) such that for all ¢t € J, we have

t
h.(t) = xo +/f1(8) ds + Z I g (4 (th), y+ (tr)),
0 0<tp<t

0.0 =w+ [ folo)ds+ 3 Lanlen).vn)

With (hn, gn) € N(zn,yn), there exist fi , € SF1(~7wn(-)7yn(-)) and fo, € SF2(';$n('),yn(')) such that
forall t € J,

hat) _xo+/f1n ds+ S Ta(wn(t) v (te)),

0<tp<t
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an® =0+ [ Fen)ds+ 37 Taplon(te)mtr)).
0

O<tp<t

Since I; 1, k=1,...,m, i = 1,2, are continuous,

— 0
PC

0<tp<t 0<tp<t

[CACEETED S FCH TSRS B (XURERD S AR SRR )
and

(@030 3 Do) = (00 -0 Ym0

0<tp <t 0<tp <t PC
as n — 0o.
Let T' be a continuous linear operator defined as
I:LY(J,R) — PC(J,R),
r— T'(r)

such that ,

P(r)(t) = / r(s)ds, Vte .
0
By Lemma 2.2, the operator I" o Sp has a closed graph and, moreover, we have

(hn(t) —xo— Y Il,k(:cn(tk),yn(tk))) € L(Sh (- an()wn())
O<tp<t

and
(gn(t) — Yo — Z I2,k(xn(tk)7yn(tk))> € F(SFz(wa’n('),yn(')))'

0<tp <t
So,

t

(hett) =20~ 3 Batanltn)vn) = [ fi(5)ds

0<tp<t 0
t

(60 -w = Y Boaloatt)(t)) = [ alo) s,

0<ty<t 0

and then f; € Spl(.yr*(.))y*(.)) and fy € SFQ(.yz*(.),y*(.)).

Step 5. A priori estimation.
Let (x,y) € PC(J,R) such that (z,y) € AN(z,y), and 0 < A < 1. So, 3 f1 € Sp (. o(-),y(.)) and
dfs € SFz(»,w(~),y(~)) such that for all t € [O,tl],

x(t) = Axg + )\/fl(s,x(s),y(s)) ds,
0

u(t) = Mo + A / fols,2(s), 4(s)) ds.

Then

@I < llzoll + /p(S)@b(l\w(S)H +lly())) ds, t € 10,1],
0
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lyI < llyoll +/p(8)w(||(fc(8)\| +lly())) ds, t € [0,14].
0

Consider the functions ¢, W, defined by

t

D1 (t) = |lzoll +/p(5)1/1(||(x(8)|\ +ly(s)Il) ds, t €0, ta],
0

Wi(t) = IIyoH+/p(8)¢(ll(x(8)ll+Hy(5))ll)d& t€0,t1].
0

So,
(91(0),W1(0)) = (llzoll. llyoll). @ < 91(t), Iy <Wa(t), te[0,t],

and
Wi (t) = 91(t) = p)¢ (Il )] + ly®)), t € [0,t].
As 1 is a nondecreasing map, we have

91(t) < p(t)Y(91(1)), Wi(t) < p()p(WL(E)), t € [0,1a].

This implies that for every t € [0, t1],

91(t) d t1 Wi (t) d ty
u u
—— < [ p(s)ds, —— < [ p(s)ds.
P(u / Y(u /
91(0) () 0 W1 (0) ) 0
The maps Tg(z) = [ % and I'3(z) = [ % are continuous and increasing. Then (I'})~! and
91(0) Wi (0)

(I'2)~1 exist and are increasing, and we get

ty1 t1

o)< @) [aas) =, it <@ ([ ois)as) =t

0
As for every t € [0, 1], ||z(¢)]] < 91(¢) and ||y(t)]] < Wi (t), so,

sup [ly(t)|| <o,  sup [z(t)]| < Mo.

te(0,t1] te[0,t1]
Now, for t € (t1, 2], we have
@) < ([T (e(t), y(t)|| + x| < _sup (e B)|[ + Mo = Ny,
(a,B)EB(0,Mo)x B(0,£0)
lyEDI < [[T2,1(2(t2), y(t0) || + ly(E)| < sup (12,1 (cx, B)|| + Lo == Dx.

(a, B)EB(0,Mo) x B(0,£0)

Also,

t

2(t) = Ma(tr) + Lo (@(t), y(t))) + A/fl(syilf(S),y(S))d&

y(t) = Ay(tr) + T (2(t1), y(12)) + A / fols,2(s), 4(s)) ds,

t1
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and so,

t

le@)] < Ny + / p(s))

t1
t

()l + ly(s)l) ds, ¢ € [ta, ta],

Iy < Dy + /p(S)w(II(l‘(S)H +ly())) ds, t € [t1, t2].

ty

Let us consider the maps ¥ and W- defined by

t

02(0) =N+ [P0 ()] + )] ds,

t1

Then

and
Da(t) = p) (@) + ly @)
As 1 is nondecreasing,

Da(t) < p(t)e(Va(t)),
This implies that for every ¢ € [t1, t2],

t

Wa(t)= Dy + / p(s)% (|2 (3)[|+ [y (s)Il) ds

t1

@ < 02(t), t € [tr,ta],
[y <Wa(t), € [t,ta],
Wa(t) = p&)¢ (I @) + ly0))]), te

[t1, t2].

Wh(t) < p(t)p(Wa(t)), t € [tr,ta].

F2(t) 12 Wa(t)
s.
[ s from [ / Sk
92(tF) Wa ()
z z
If we consider the maps I'}(z) = [ W and I'{(z) = [ JEZ) , we get
Da2(t]) Wa(t])
Va(t) < (T (/ ) = My,
09 ) o
For all t € [t1,ta], |lz(t)]] < 92(¢t) and ||y(t)]] < Wh(t), and then
sup =) <My, sup [ly(@)]| < 41
te[tl,tQ] tE[tl,tz]

We continue the process to the interval (¢,

1

()] < (1% ([roras):

m

1]. We get the existence of M, and £, such that

o 0] < (1) ( / o) ds ) = b,

M,

m

As we chose y arbitrarily, then for all solutions of problem (1.1), we get

M *
||(x7y)||PC><PC Smax{ (gkk> : kzoala"'am} =b"

€ [thtg}.
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Then the set
A= {(x,y) € PC x PC: (z,y) € AN(z,y), A€ (0,1)}

is bounded. So, N : PC x PC — P.,(PC x PC) is compact and u.s.c. Then, by Lemma 2.3, we
obtain that problem (1.1) has at least one solution. O

3.2 Nonconvex case

Assume that the following conditions hold:
(H1) Fi: J xRXxR = Pg,(R), t = Fi(t,u,v) are measurable for each u,v € R, i =1,2.
(Hz2) There exist the functions I; € L'(J,R*), i = 1,...,4, such that

Hy(Fi(t,u,v), Fi(t,5,0) <L (0)||u—a| +Lt)|v—7], teJ, YVuuvveR,
Hy(Fa(t,u,v), Fo(t,u,0)) < I3(t)||u — | + Lu(t)||lv -1, t€J, YVuuv,veR

and

Hy(0, Fy(t,0,0)) <14(t) forae. teJ, Hg0,Fy(t,0,0)) <lI3(t) for ae. t€J.

(H3) There exist the constants a;,b; > 0, i = 1,2, such that
HIl(’U,,U) - Il(ﬂ 76” < al‘lu 7ﬂH + a2||’U 7§H’ Vu,ﬁ,v,@ eR

and
T2 (u, v) = Ix(@ — ]| < bilu =@l + bellv =7, Yu,@, 0,7 €R.

Theorem 3.2. Assume that (H1)—(Hs) are satisfied and the matriz

3 <||11||L1 +ar ol +a2>

sl +01 |llallzr + b2
converges to zero. Then problem (1.1) has at least one solution.

Proof. Consider the operator N : PC x PC — P(PC x PC) defined by

x0—|—/f1 dS—l— Z I(x tk tk)) teJ

N(2,y)={ (1, ha) € PC x PC (Zlgg) ot 7
yo+/f2 ds+ > D(a(ty),y(t)), teJ
0<tp<t
where

fi€Sp = {f LY (JR): f(t) € Fit,z(t),y(t)), ae. te J}.

Fixed points of the operator N are the solutions of problem (1.1).
Let, for i = 1,2,

Ni(x,y):{hePC: h(t) /fz yds+ 3 I y(te), teJ},

O<tp<t

where r1 = ¢ and x5 = yg. We show that IV satisfies the assumptions of Theorem 2.3.
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Let (z,y),(Z,7) € PC x PC and (hy,h2) € N(z,y). Then there exist f; € Sg,,i = 1,2,, such that

xo—l—/fl ds + Z Il tk tk)) teJ
hi(t) 0<tr<t
() =

y0+/f2 d5+ Z IQ tk tk)) teJ

0<tp<t
(H2) implies that

Ha, (Fu(t,2(t), y(t)), Fr(t,2(8),5(1))) < L()|z(t) — (@) + L)]y(t) -], teJ,

and
Ha, (Fa(t, x(t),y(t)), Fa(t,2(t), 5(t))) < l3(t)|z(t) — T(t)| + La(®)]y(t) —y(@t)|, teJ
Yy

Hence, there is some (w,@) € F1(¢,Z(t),5(t)) x Fo(t,Z(t),y(t)) such that

[f1(t) = wl <L (@)z(t) —Z(0)] + 0)]y(@) = Y1), e,

and
|fa(t) — @l < Is(t)|x(t) —2()] + La(@)]y(t) —y(t)], teJ
Consider the multi-valued maps U; : J — P(R), i = 1,2, defined by

U1(t) = {w e A3, 50) : 1A(t) - wl < L@)e(t) - 5] + LOWE - 5@, ae te}
and

Ua(t) = {w € Bt (0, 5() + 1/1(t) = wl < L(®)]a(t) = 7(0)] + LOy() =T, ae. te ).
Then each U, (t) is a nonempty set and Theorem I11.4.1 in [15] implies that U; is measurable. Moreover,

the multi-valued intersection operator V;(-) := U;(- )N F;(-,%(-),y(-)) is measurable. Therefore, for
each i = 1,2, by Lemma 2.1, there exists a function ¢ — f,(¢), which is a measurable selection for V;,

that is, f,(t) € F;(¢,2(t),5(t)) and

) = T2 ()] < L0t - 30 + LEOlyE) - 5@, ae. ted,
and
|f2(t) = Fo(t)] < Ia(t)]2(t) — (1) + La()|y(t) = H(t)], ae. teJ.
Define h; and hsy by
Tt = / syds+ Y L(@t),5t), te
0 0<tp <t
and .
ha(t) = / s)ds+ > LT (tr), te ..
4 0<tp<t

Then for ¢t € J,

[P (t) = ()] < (1]l + a1)le = Z|pe + (llallzr + a2)lly — Tl pe-

Thus ~
[h1 = hallpe < (o + a1)lx =T pe + (ll2]l2r + a2)lly — Fllpo-
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By an analogous relation, obtained by interchanging the roles of y and 7, we finally arrive at the
estimate

Ha, (Mi(2,9), Ni(@,7)) < (llller +ar)llz = Zl|pe + (llallzr + az2)lly = Fllpe-
Similarly, we get
Ha, (N2(2,y), N2(7, 7)) < (Ilsller + b1)lle = Zllpc + (llallpr + b2)ly — 7l pe-
Therefore,
Hd(N($7y)7N(jay>) < M(HJJ _fllPCH Hy _y”PC)a V(Q?,y), (E7y) € PC x PC.
Hence, by Theorem 2.3, the operator N has at least one fixed point which is a solution of (1.1). O

Theorem 3.3. Assume, for each i = 1,2, that there exist a continuous nondecreasing map V; :
[0, +00[— (0, +00) and p; € L*(J,Ry) such that

1Fs(t,u,0)| < pi(O)vi(lull + [[v]]) ace. teJ, (u,v) € R
Assume also that Fi, Fy : J X R X R = Pgp oo (R) are Carathéodory, and
(a) (t,z,y) = Fi(t,x,y) is L® B measurable fori=1,2.
(b) (x,y) = Fi(t,x,y) is Ls.c. a.e. t € J.
Then problem (1.1) has at least one solution.

Proof. For each i = 1,2, since F; is l.s.c., by Theorem 2.5, there exists a continuous function f; :
PC — L'(J,R) such that f;(z,y) € Sp,(. 4, for all (z,y) € PC(J,R) x PC(J,R). Consider the
impulsive system

2 (t) = fi1(t, 2, y), ae. t el

y'(t) = fat,z,y), a.e. t € J,

z(t)) —z(ty) = Li(x(te),y(te)), k=1,2,...,m, (3.1)
y(ty) —y(ty) = L(z(te),y(tr), k=1,2,...,m,

2(0) = zo, ¥(0) = yo.

It is clear that if (z,y) is a solution of problem (3.1), then (x,y) is also a solution of problem (1.1).
When the proof of Theorem 3.1 is applied to the operator N, : PC' x PC — P(PC x PC) defined by

l‘o—i—/fl )ds+ Z Ii(x tk tk)) teJ

N.(z,y)={ (h1,h2) €PC x PC : (218 - ostist :
1/0+/f2 ds+ > D(a(ty),y(ts)), teJ
0<trp<t
there is a solution of problem (1.1). O

4 Structure of solutions sets

Consider the first-order impulsive single-valued problem

2'(t) = f1(t, z(t), y(¢)), a.e. t€l0,1],

y/(t) :fQ(t7z(t)7y(t))7 a.e. te [07 ]-L

f(tﬁ) - x(t];) = Il(x(tk)’y(tk))» k= L, , T, (4'1)
D) = y(ty) = La(te),y(te), k=1,...,m,
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where f1, fo € L'(J x R?,R) are te given functions and 0 = tg < t; < -+ < t;y < tyy1 = 1. Then
(z,y) is a solution of (4.1) if and only if (z,y) is a solution of the impulsive integral system

J:(t):x0+/f1(s,x(s),y(s))ds+ Z I(z(tg),y(tk)), a.e. teEJ,
0

0<ty<t (4 2)
y(t) :y0+/f2(57$(8),y(8))ds+ > L(z(t) ytr), ae. tel.
0 O<tr<t

Denote by S(f1,2, (x0,yo)) the set of all solutions of problem (4.1).
Theorem 4.1. Suppose that there are the functions {; € L*(J,R,), i = 1,2, such that

|filtsxr,y1) = filtswa,y2)| < La(t)(Jor — 22| + |y1 — v2]), ¥ (21,01), (22,2) € R
Then problem (4.1) has a unique solution.

Proof.
1. The existence:

e We consider problem (4.1) on [0, 4],

a'(t) = filt,z(t),y(t), ' (t) = falt,2(t),y(t), ae te[0,t],

2(0) = 20, 3(0) = yo. (43)

We consider the operator Ny defined by
Ny : C([0,t1],R) x C([0,t1],R) — C([0,#1],R) x C([0,t1],R),
—

t

Ni(z,y)(t) = (wo+/f1(8,w(3),y(8))d8;yo+/f2(8,x(8),y(8))d8>, t € [0,t1].
0

0

Let (xlayl)v ($27y2) € C([Oatl}aR) X C([Ovtl}’R)a te [O’tl]a and

Mo, 10)(6) — Moz )0 = ||—<:'§:|>7
where .

@ = [ (a6 (s) = filssma(s). 2 (5)) ds
and Ot

5= [ (falos.oa(6)n(9)) ~ Fols,a(s).pals) d.
Then 0

1
_ = e‘rL(t)
T

(“‘“) () Gi=3)
Y1 — Y2 Y1 =92/ ||gc Y1 —Y2) ||gc

1 /1 1
= = mEO ((lay — | + llys = 3ell) = 75O (= s = wall + = yn — wall ),

0
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where .
L(t) = /ﬁ(s) ds, and T > 2.
0
Similarly,
1 1
181 < €0 (= oy = wall + = s — ell).
T T
Thus L1
_r ; ; €Tl — T2
€ L(t)HNl(xl?yl)(t) - N1($27y2)(t)H < H ! || , t € [O,tl}.
11 U el
T T
Then
1 /1 1\ [llz1— a2
Ni(z1,91) — Ni(z2,y2) < - ( ) ,
H HBC T 1 1 Hy1 o y2||
where
|G, = zm | GEDI
Y/ e teo.t] y(?)
Let

1 /1 1
B_T(l 1)'

det(B — AI) = (1 - )\)2 L

b
T T2

Then we have

hence p(B) = % . For 7 € (2,4+00), N; is contractive, so there exists a unique
(2%, y%) € C([0,t1],R) x C([0,1],R) such that Ni(z%4%) = (2%, ¢%).
Then (2°,4°) is the solution of (4.3).
e We consider problem (4.1) on (¢y, t3],
a'(t) = fi(t,z(t),y(t), o' (t) = falt,x(t),y(t), ae te€ 1= (ts,ta],
a(t]) = 2"(t) + Li(2°(t), 5 (1), y(t) =" (t) + Li(2°(t), 5° (1)

Consider the space C, = {(z,9) € C(J1,R) x C(J1,R) : (x(t]),y(t])) exist}, (Cs, || - ||.1,) is a
Banach space.

(4.4)

Let
N2 : C* — C*,
(l',y) —>N2(:c,y)7

t

No(z,y)(t) = (300(751) + I(2°(t1), 4" (1)) +/f1(87$(8)7y(8))d3a

yO(t1) + Lo (2°(t), 4" (1)) + /f2(57$(3)7y(3))d5), t € (t,t2].
ty
Let (z1,y1), (x2,y2) € Cy x Oy, and t € (t1, 2],

HN2(3:1,:U1)(75) — N2($2,y2)(t)” = ||(a, B)|| = <||01||> 7
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where

ol < / £06) 151, (5)) = (za(s) () s < - / rtge s (527 )

BC
1

1 T —T
< L 7L (1 2) :eTL(t)( 21 — 2ol 4 = llyy — )
<z ’ —l [y — 22| Hy1 yo
and \
:/E(s)ds
t1
Similarly,
181 < O (2l — wall + -l — 3l ).
So,
T 1 T1— X2
L@ ||N2 (x1,91)(t) — Na(z2,12)(t)]| < ( 1) | | , t e (t1,ta].
ly1 — w2l
Then
1 /1 1 21 — 22
Na(z1,y1) — Na(22,92) < - ( ) .
| e 7\ 1)\l = well
Then for 7 € (2,4+00), Na is a contraction and, so, there exists a unique (z',y') € C((t1,t2],R) such
that
NQ(:Eluyl) = (‘r17y1)'
We have

(@) = Nalal o) = (29(0) + Ba2(e0).0”00) + Jimp [ s a(e).a9) s,

(t) + B (00),°(00)) + Jmm [ fals.o(5), () ds).

Then (2!, y') is the solution of problem (4.4). As a consequence, arguing inductively, the solution of
problem (4.1) is given by

(@, y")(t), te€(0,t],

(@' y")(t), e (tta],

2. The uniqueness:
Let (z*,y*), (z**,y**) be two solutions of problem (4.1). We are going to show that

(=%, y")(t) = (=™, y™)(t), VieJ=][0,1].

Again, the process is inductive.

If t € Jo = [0,¢1], then (z*,y*)(t) = (z* 7y**)(t), Vit e [0,t1].

Now, suppose that if t € J; = (tz,tHl] then (z*,y*)(t) = (2™, y*)(t), Vt € (ti, ti+1]. It is enough
to show that (z*,y*)(t{) = (=**,y**)(t{), k € {1,2,...,m}. To that end, we have

(@ y") () = (", y") () = (Tua(@™ (t:), " (), Taa (@™ (1), " (1)),
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which implies that
(@, y") () = (=", y") (&) + D" (), y* (1))
and

Log(a*(t:), 4" (t:)) = (@™, y* ) (t:) + (Lis (@™ (t:), ™ (t3)), Los(2* (:), y** (t:))) = (™, ") (). O

Theorem 4.2. Suppose there exist a continuous function v : [0,00) — (0, 00) which is nondecreasing,
and a function p € L*(J,R,) such that

177t 2 )l < p@¢(llll + lyll), Vte, Yoy eR,

with .
d
/p(s) ds < / WZ)
0 llzoll

Then problem (4.1) has at least one solution.

Proof. For the proof we use “the nonlinear alternative of Leray—Schauder”. Consider the operator
N : PC(J,R) x PC(J,R) — PC(J,R) x PC(J,R)
defined by

t

Ni@p)(t) = <x + [ Aol ds+ 3 hate(n).u).

0 O<tp<t

nt [ Rtsa@ae)ds+ Y Bl ).
0

O<tp<t

The fixed points of N are the solutions of problem (4.1). It is enough to prove that N is completely
continuous. This is established in the following steps.

Step 1. N is continuous.
Let (zn,Yn)n be a sequence in PC(J,R) x PC(J,R) such that (z,,yn) — (z,y). It is enough to
prove that N(z,,y,) = N(z,y). For all t € J, we have

0<tp<t

N (0, y) (8) = (xo+ [ Alson@ () ds+ Y Duloat) on(b),
0

t

nt [ Rasen( s+ ¥ Tanlen(t) (o).

/ o<t <t
Then

et Misaol = ol = (1),
where

”O‘”H JU106:2006), a6 o (6), D) s+ Y- (Il,mn(tk),yn(tk))Il,k<x<tk>,y<tk>>)H

0 O<tr<t
t

0 O<tp<t
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As I, k =1,...,m, are continuous functions, and f! and f? are L'-Carathéodory functions, by the
Lebesgue dominated convergence theorem, we have

b
ol < [ 113652050 30(5)) = Fa(s,(5).w() s
0
) Ik @n (), yn(tr) = Lok(@(t), y(t:))|| — 0 as n — oo,
k=1
Similarly,
b
181 < [ 120500 (5).0m (5) = fals, (). () ds
0
+ Z "IQ}k(.’I/'n(tk), Yn(tr)) — Ig’k(x(tk),y(tk))H — 0 as n — co.
k=1
So,

1N (20, y0) = Nz, p)|| — (8) as 1 o0,

Then N is continuous.

Step 2. N transforms every bounded set into a bounded set in PC(J,R) x PC(J,R).
It suffices to show that

Vq= (Ch) >0, 3/ = <€1> > 0 such that
q2 lo

V(z,y) € By = {(z,y) € PCx PC: ||(2,y)| < q}, wehave [|N(z,y)|| < ¢
Let (z,y) € B;. We have

3Gl < (Jlool + / (s, (). (s s+ 3 1o t) wte))
k=1

b
lyoll + / | fals.2(s), y ||d8+2||12k tk»n) ~ (@, 8),
0

where

b m
[l < ol +/p(t)w(||$||pc +llyllpe) dt+ Y I (e(te), y(te)l

k=1

b m
< [|zo| +/p(t)w(||prc +lyllpe) dt+ Y sup L,y = 6.
0 k=1 (z,y)€Bq

Similarly,

b
181 < Hyoll+/p() (lzlpc + Iyl pc) dt+z sup |12, 5 (2, y)[| = La.
0 —1 (z,y)€B,

Step 8. N transforms every bounded set into an equicontinuous set to PC(J,R) x PC(J,R).
Let 71, 72 € J, 71 < 72 and let B, be as in Step 2.
Let (z,y) € By. Then:
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1. If 7y # t (or 2 #t), VE € {1,2,...,m}, we have

T2

[N (,5)(r2) = N(z,y)(r)]| < (/p(S)w(ql ta)ds+ Y s |yl

T1 71 <t <T2 (z,y)€Bq

T2

[rvaraast 3 sw lsenl) — (g) w0

- T <trp<T2 (:Jc,y)GB

2. If ™ = t.
we have

we consider 61 > 0 such that {tx, &k £ i} N [t; — 61,8t + 01] = &, so, for 0 < h < 4y,

7 )

IV (@, ) (ts) = N(a,y) (1 = b)|

<( [ st + a)as / et +an)ds) — () as hvo.

ti—h t;—h

3. If 79 = t;, we consider d; > 0 such that {tx, k # i} N [t; — 82,t; + 2] = @, so, for 0 < h < 5o,
we have

IN (2, y) (¢ + h) = Nz, ) () |

ti+h ti+h
< ( / p()(q1 + g2) ds, / p(s>w(q1+q2>ds> . (8) as I 0.
t; t;

So by Steps 1, 2 and 3, and by Arzela-Ascoli’s theorem, N is completely continuous.

Step 4. A Priori Estimates.
Let (z,y) € PC(J,R) x PC(J,R) such that (x,y) = AN(z,y), and 0 < A < 1. Then for all
t € [0,t1], we have

z(t) = Axo + )\/fl(s,m(s)w(s)) ds,
0

y(t) = Ayo + A / fols,2(s), y(s)) ds,
0

and so,

1z, y)( ||<<||wo||+/p (lz()lI+lly(s)ll) ds, IIyo||+/p(s)w(||:c(s)|+||y(s)|)ds)7 te0,t].

Consider the map ¥ = (¥1,92) such that

t

D1 (t) = Jlzoll + /p(S)w(llw(S)ll +lly(s)ll) ds, € [0, 1],
0

Da(t) = llyoll +/p(8)¢(\|ﬂf(8)|| +ly(s)ll) ds, t € [0, 1]

0
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Then we have

9(0) = (llzoll, llvoll), (=, m) (Bl < 9(t), ¢ € [0,t],
and

9i(t) = pw(les)l + ly®), ¥Yi=12, te0,t].
As 1 is a nondecreasing map, we have

ﬁz(t) Sp(t)¢(191(t))7 Vi= 1727 te [O,tl],

which implies that for every ¢ € [0, 1],

197,(t) d t1
u
— < s)ds, Yi=1,2.
'(/)(U) — /p( ) ) ¢ 9
9:(0) 0
z
The map [ 0(2) = [ %, 1 =1, 2, is continuous and increasing. Then F;& exists and is increasing,
9;(0)
and we get
t1

9i(t) < F;&(/p(s) ds> = Mo, i=1,2.
0
As for all ¢t € [0,1], ||(z,y)(t)|| < I(t), and so,

Mi o
sup z,y)()| < ( ’ )
N CHICTES G

Now, for ¢ € (t1,t2], we have

2O < 17 (@(t), y(@)) | + 2@ < sup [Tz, y)] + Mo == Ny,

ly(t)| < Mo ((t), y(t)] + ly(t)] < :SZ))E): 12,1 (%, y)|| + M2, := Na,
where
o= ()
y(t) = Ma(t) + I (z(t), y(t))) + )\/tfl(sax(s),y(S)) ds,
y(t) = AMy(tr) + L (x(t1),y(t1))) + )\/tfz(8793(5)7y(5)) ds.
Then |

t

()]l < N +/p(8)¢(||x(5)ll +lly(s)ll) ds, t € [ta, 2],

t1

ly(D)I < N2 +/p(8)¢(||$(8)|| +lly()l) ds, t € [t ta]-
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Consider the map W = (W7, Wa) such that

t

Wi(t) = N+ /p(S)l/)(lll‘(S)ll +lly(s)ll) ds, t € [tr, 2],

¥%®=M+/MWMWM+M@W®tGM@L

So,
W(t) = (N1, Na),  [[(z,9) ()] S W (1), te ft,ta],

and

Wit) = p) (lz(s) | + ly@)), Vi=1,2, te [t ta].

Since 1) is nondecreasing, we get

Wi(t) < p(t)p(Wi(t)), Vi=1,2, t€ [t1,t2],

what implies that for every t € [t1,t2], we have

Wi(t) d to
u
—— < [ p(s)ds, i=1,2.
i =</
Wi () 2

If we consider the map T';1(z) = [ d(':L) ,1=1,2, we get

W
LAC)
Wi(t) < r;%( p(s) ds) =My, i=1.2
For all t € [t1,1s],
ot — (1O~ (m
) <mw><a%w)
S0,
M4
el < ()

We continue this process to the interval (¢, 1], and (2,%)],,,1] is the solution of the problem (z,y) =
AN (z,y) for 0 < A < 1. There exists M; ,,, i = 1,2, such that

b
Su)M%M@ISUE</M@%>:Aﬁm
tE[tm,b]

As we choose (z,y) arbitrarily, for all solution of problem (4.1) we have

M
i < (S 1),
’ - k:{)nla.)s m<M27k) b2

Thus, the set
K ={(z.y) € PCx PC: (2,y) = \N(z.y), A€ (0,1)}.

Since N : PC x PC — PC x PC' is completely continuous and the set K is bounded, from Theorem
2.4, N has a fixed point (x,y) € PC x PC which is the solution of problem (4.1). O
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Theorem 4.3. Suppose that the conditions of Theorem 4.2 hold. Then the set of all solutions of
problem (4.1) is nonempty, compact, Rs, and acyclic. Moreover, the solution operator S is u.s.c.,
where

S:RxR— P, (PC x PC),
(w0, 90) — S(x0,%0),

S(xo,yo):{(a:,y) €PCxPC : (z,y) is a solution of problem (4.1) with (x(0)7y(0)):(x0,y0)}.

Proof.
e The solution set is compact.
Let (a,b) e R x R,
S(a,b)= {(:107 y) € PCx PC : (x,y) is a solution of problem (4.1) with (x(0),y(0))=(a, b)}
1. S(a,b) is a closed set.
Let (x4,y4)q be a sequence in S(a,b) such that
Jim (2g,9¢) = (2,9)-

Let

Zi(t) =a+/f1(saw(8),y(8))d8+ Y D), y(t), te0,1],
0 0<trp<t

Z2(t):b+/f2(8ﬂx(8)7y(s))d8+ Z IZ,k(x(tk)ﬂy(tk))7 te [07 1]
0 0<tp<t

For ¢ € [0, 1], we have
lzq(t) = Z1 ()|
t

S/Hfl(saxq(s)qu(s))—f1(87$(5)7y(5))Hd3+ > k(g(tn), v (1) — T (@ (te), y(te)) |
0

0<ty<t

1 m
< / [ £1(s,24(5), yq () = fr(s,a(s), y(s)) || ds + D [T (@q(tr), ya (1)) = T (i), y(tn)|
0 k=1
By the Lebesgue dominated convergence theorem, we have
llzq(t) — Z1(t)|| — 0 as ¢ — oo.

Similarly,
194(t) = Z2(8)]]| — 0 as g — oo,

So, qﬁ%(xmyq) = (z,y) = (Z1, Z2) € S(a,b).

2. S(a,b) is bounded uniformly.
Let (z,y) € S(a,b); then (x,y) is a solution of problem (4.1) and hence, 3b* > 0 such that

Iz, y)|| < (6%, 07).

3. S(a,b) is equicontinuous.



26 Roummani Bahya, Johnny Henderson and Abdeghani Ouahab

Let r1,m € [0,1], 71 < ry and (z,y) € S(a,b). Then

r1<tp<r2

1z, y)(r1) = (@, y)(r2)[| < (/Ilfl(svﬂ?(S),y(S))lldS+ Yo ), y@)l;

JIECECRCE S S RO

r1<tp<rg

and

[InGs.ahu)lds+ Y It o)]

ry<tp<ro

T2

S/p(S)%D(III(S)H+||y(8)||)ds+ Y sup (L)l

r1 r <tp<rs (T,y)EBpx

r2

< /p(s)w(b*{—l-b;)ds—i— Z sup L1 k(z,y)| — 0 as 1 — ra.

- r1<tp<rz (T,¥)EBpx
Then S(a,b) is compact.
e The solution set S(a,b) is Rs.

Let N : PC x PC — PC x PC be defined by

Nz, y)(t) = (a+ / Fils,a(s)y() ds+ Y Dalt) y(te)),
0

0<tp<t

t
v+ [ Ras.as) v ds+ 3 12,k<x<tk>7y<tk>>), te
0 0<trp<t
Then Fix N = S(a,b), and by Step 4 of the proof of Theorem 4.2, 3b* > 0 such that
(@, )| < (b",b%), V(z,y) € S(a,b).

For i = 1,2, we define

3 AEORTON it [ p)(0)] < (7,0°).
(e T 1@ »Oleewe 2 67,6)
and
(1), y(1) i () (0)] < (07, 5°),

)i @] = 070,

Since the functions f;, i = 1,2, are L!-Carathéodory, f' are also L'-Carathéodory, and Ik € L'(J,R,)
such that

I1fi(t, 2, y)|| < h(t), Vi=1,2, ae. teJ, and (z,y) € R x R. (4.5)
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Consider the problem

1)), t €10,1],
t)), t €10,1],
k 5 5 k:1,2,...,m,
—y(ty) = L(z(te),yt,)), k=12,...,m,
b

We can easily prove that Fix N = Fix N, where N : PC' x PC — PC x PC is defined by

0<tp<t

N = (ot [ Fssahao)ds+ 3 Tata(t.u(w),
0

bt [ Flsals)u(e)ds + 3 Bale(t)(v). te
0

0<trp<t

By inequalities (4.5) and the continuity of I; x,7 = 1,2, we get

[N (z,y)| < <a|| A+ sup_ [y k(2 y)ll,
k=1 (=.¥)€EB,

I+ Dl + 3 sup. ||12,k<x,y>) = (rir) = .
k=1 (z,y)€B,

Then N is bounded uniformly. B
We can easily prove that the function M defined by M(z,y) = (z,y) — N(z,y) is well defined,
and since N is compact, by the Lasota—Yorke theorem (Theorem 2.7), it is easy to prove that the

conditions of Theorem 2.8 are satisfied. Then the set M~1(0) = Fix N = S(a,b) is the Rs-set and,
by Lemma 2.7, it is also acyclic.

e The solution operator is wu.s.c.

1. S has a closed graph.
To see this, first we note that the graph of S is the set

G = {((a,b), (z,y)) € (R x R) x (PC x PC) : (z,y) € S(a,b)}.
Let ((aq,bq), (zq,Yq))q be a sequence in Gg, and let ((aq,bq), (24,¥q))q = ((a,b), (z,y)) as ¢ — oo.

Since (x4, yq) € S(aq,by), we have
¢
2q(t) = aq +/f1(8’33q(8),yq(8))d8+ D Lulg(s), yg(tn), te .
0 0<trp<t
¢

) =ty + [ falsiayl) (D ds+ 3 Taula(s) ), t€ T
0 O<trp<t

Let

t

(a+ [t u)ds+ 3 natels)uin)

0 0<tp<t

Z(t) = (Z1(1), Z2(1))

t

b+/f2(s,x(s),y(s))ds+ > 127k(x(s),y(tk))>, te .

0 0<tp<t
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Let t € J, then

1(zq, yq) (t) = Z(#)]|

b
< (llaq—a||+/Hfl(svxq(S)qu(S)) fi(s,x( |\dS+ZHhk 2q (), yq () =Tk (@ (), y(1)],
. 0
[[bg — bl +/Hf2(8=$q(8)7yq(8)) fa(s,2( HdSJrZ ([ L2, (24 (), yq (1)) —fz,k(ﬂc(t)ay(t))H)
0

and, by the Lebesgue dominated convergence theorem, we have
(g, 49)(t) = Z(t)]| — 0 as ¢ — oc.

Then

which implies that (z,y) € S(a,b).
2. S transforms every bounded set into a relatively compact set.

Let r = (:1> >0 and B, := {(z,y) € PC x PC : ||(z,y)| <r}.
2

(a) S(B,) is bounded uniformly.

Let (z,y) € S(B,), then there exists (a,b) € B, such that

t

x()—a—i—/fl(sx( ))ds + Z I g (x y(te)), t € J,
0 0<tp<t
t

y()—b+/f2(5$( d8+ Z IQk tk)) teJ
0 0<ty<t

By the same method detailed in Step 4 of the proof of Theorem 4.2, we find that there exists b* > 0
such that
(@, y)llpcxpc < (b7,0%).

(b) S(B,)is an equicontinuous set.

Let 71,72 € J, 71 < T2, and (z,y) € S(B,). Then

(. 9)(m2) — (. 9) ()
( / (s z(s)yDlds + S st ut)

71 <tp<T2

/||f2 s,a(s),y(s))llds + Y IIIz,k(x(tk),y(tk)H)

T1<tp<T2

T2

< (/p(S)w(le(S)ll +ly()lhds+ > ITuela(te), y(t)ll,

- T1<tp<T2

T2

/p(S)w(llm(S)ll+IIy(S)II)d8+ > IIIz,k(x(tk),y(tk))H)

- T1<tp<T2
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T2

<< [rewi+mds e 3 s hnl,

T1<tp<to (T,y)EBpx

T1
T2

/p(s)d;(bi—l—b%)ds—i— Z sup||12,k(x,y)|) — 0 as 71 — 7.

'r1 71 <ty <72 (Z,Y)EBy=

Thus the set S(B,) is compact.
The operator S is locally compact and has a closed graph, so, S is u.s.c. O

Theorem 4.4. Assume that the conditions of Theorem 3.1 hold, where Fy, Fy : J XRXR — Py o (R)
are Carathédory, u.s.c. and mLL-sectionnable. Then the set of all solutions of problem (1.1) is
contractible.

Proof. Let fi € Sk, be a locally Lipschitzian measurable selection of F;, i = 1,2. Let us consider the
problem

' (t) = f1(t, z(t),y(t)), a.e. te€J,

y'(t) = fa(t, 2(t), y(t)), a.e. t€J,

m(tg) —x(ty) = Lig(x(te), y(tr)), k=1,...,m, (4.6)
y(th) —y(ty) = L(x(te), y(tr), k=1,...,m,

z(0) = z0, y(0)=wo

By Theorem 4.1, problem (4.6) has a unique solution.
Consider a homotopy function h : S(zg,yo) X [0,1] = S(zo, yo) defined by

(z,9)(t) if 0<t<a,
(x*y")(t) if a<t <1,

h((z,y), a)(t) = {
where (2*,y*) is the solution of problem (4.6), and S(z, yo) is the set of all solutions of problem (1.1).

In particular
z,9Y), if =1,
h((w)a) = { 0
(x*,y*), if a=0.

Thus to prove that S(xg,yo) is contractible, it is enough to show that the homotopy h is continuous.
Let (2, yn),an) € S(xo,y0) % [0, 1] be such that ((xn,yn), an) = ((x,y), @) as n — co. We have

(Tn,yn)(t) if 0 <t <y,
(" y")(t) if a, <t <1,

h((Zn, yn), an)(t) = {

(a) If lim a,, =0, then
n—oo

h((x,y),0)(t) = (x*,y")(t) forall ¢t e J.

Thus
||h((xn,yn),an) - h((z,y),a)”oo < (@n,yn) — ($*;y*)||[o,an] — 0 as n — oo.

(b) If lim a, =1, then
n—oo

h((z,y),1)(t) = (z,y)(t) forall ¢t e J.

Thus
Hh((xnvyn)aan) - h((l‘,y),&)”oo < ”(x’myn) - (xay)”[o,an] — 0 as n — oo.

(¢) If 0 < limy, 00 ap, = @ < 1, then we distinguish the following two cases.
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(1) If t € [0, a], we have (2, yn) € S(o,yo), thus there exists (v1,,, v2,) € Sk, X Sk, such that for
all £ € [0, o),

wn(t) =0+ [ vin(s)ds+ > Tig(@n(te) yn(tr)),

0<tp<t

Ugn(S)d8+ Z I2,k(mn(tk)’yn(tk))'

O<trp<t

Yn(t) = yo +

|
/

By Step 5 of the proof of Theorem 3.1, we have
" b1
|(zn, yn)llPoxPc < b = pe |
2
and, by hypothesis, we get
* * 1 * *\ 10
(o1, 02O < (000005 +85) (1) o all 1€ N = (o1, 12,)(0) € p(00(5 + 33)B(0.1)

The sequences {v1,(-),v2,(+)}nen are integrably bounded. By the Dunford—Pettis theorem [52],
there are subsequences, still denoted by (v1,,)nen, (Van)neny Which converge weakly to elements vy (-) €

L' and vy(-) € LY, respectively. Mazur’s Lemma implies the existence of o > 0,i = n, ..., k(n), such
k(n) , k(n)

that > i’ =1 and the sequence of convex combinations g,,(-) = >_ ajv;;(+), i = 1,2, converges
i=1 j=1

strongly to v; in L'. Since I} and F, take convex values, using Lemma 2.6, we obtain

vi(t) € ﬂ {gi,(t)}, ae teJ,

n>1
C m co{vig(t), k>n} C ﬂ @{ U Fi(t’xk(t)’yk(t))} (4.7)
n>1 n>1 k>n
= @(HmsupFi(t, l‘k(t),yk(t)))-
k—o00

Since F' is u.s.c. with compact values, by Lemma 2.5, we have

ligsotip Fi(t,zn(t), yn(t)) C F;(t,z(t),y(t)) for a.e. t €[0,al.

This, together with (4.7), imply that
v;(t) € Co Fy(t, z(t),y(t)), i=1,2.

Hence, for every ¢ € [0, o],

2(t) = 20 + / ols)ds + > Iia(a(te) y(t)
0

0<tp<t

and

0<trp<t

w0 =un+ [oa)dst 3 Tanlaltn) yite).
0

(2) If t €]y, 1], then

h(@n, yn), an)(t) = (2, y), )(t) = (=", y")(1).

Thus
”h((xnvyn)aan) - h((ﬂ?,y),oz)“ — 0 as n — oo.

Hence, h is continuous, so, the set S(zg,yo) is contractible. O
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Theorem 4.5. Suppose the conditions of Theorem 3.1 hold, and F1,Fy : J X R X R — Pgp oo (R X R)
are Carathéodory, u.s.c. and o-Ca-selectionnable. Then the set of all solutions of problem (1.1) is
Rs-contractible and acyclic.

Proof. Let f* € Sk, be a Carathéodory selection of F;, i = 1,2. Consider the homotopy multifunction
IT: S(xo,y0) % [0,1] = P(S(zo,y0)) defined by

S t if 0<t<
((r,y),0) = { 5100 EOSE=a
where
e S(xo,yo0) is the set of all solutions of problem (1.1);

o S(f,,(x,y)) is the set of all solutions of the problem

z1(t) = fi(t, 21(2), 22(1)), ae. t€a,l],

z3(t) = f2(t, 21(1), 22(¢)), a.e. t € [a,1],

Zl(t:) — 21ty ) = I k(21 (te), 22(te)), k=1,...,m, (4.8)
2(th) — 2(ty) = Li(zi(te), 22(tk), k=1,...,m,

z1(e) = z(a),  2(a) =y(a)

By the definition of II, for all (x,y) € S(zo,v0), (z,y) € II((z,y),1) and II((x,y),0) = S(f,0, (z,y)),
which is an Rs-set by Theorem 4.3.

It remains to show that IT is u.s.c. and II((z,y), @) is an Rs-set for all ((x,y), &) € S(zg, yo) % [0, 1].
The proof is given by the following steps.

Step 1. II is locally compact.
(a) The multifunction S : [0,1] x R x R — P(PC(J,R) x PC(J,R)) defined by

S(t, (7)) = S(f.1.(,7))

is u.s.c. where S(f,t,(%,7)) is the set of all solutions of the problem

21(t) = fi(t, z1(1), 22(1)), ae. t €[t 1],

z(t) = f2(t, 21(1), z2(¢)), ae. t€t1],

z(ty) — z1(ty) = Iur(z1(te), 22(t), k=1,...,m, (4.9)
22(t2r — Zg(t];) = Iy p(z1(tk), 22(tk)), k=1,...,m,

2(t) =7, z() =7

Assume the opposite, i.e., S is not w.s.c. Then for some point (£, (Z, 7)), there is an open neighborhood
U of S(t,(Z,7)) in PC(]0,1],R) x PC([0,1],R) such that for any open neighborhood V' of (t, (Z,7))
in [0,1] x R x R, there exists (t1, (Z1,71)) € V such that S(t, (z1,91)) ¢ U.

Let

Vo= q(t(2,9) € [0, xR xR d((t, (z,9), (t,(Z,9))) <

1
n
l , neN,
n
1

n
where d is the generalized metric of the space [0,1] x (R x R). Then for each n € N we take

(tn, (Xn,yn)) € Vi, and (2, yn) € §(tn, (Tn,Yn)) such that (z,,y,) ¢ U. We define the functions

G . PC([0,1],R) x PC([0,1],R) — PC([0,1],R) x PC([0,1],R)

@ tEp
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t

Fram@n® = (54 [ Al oo s+ 3 huln).on)

j+ / fols, (2(s),y(s)) ds + 3 f%(x(tk),y(tk))), teff 1,

T t<tp<t
G;;)(Eyg)(x,y) = (x,y) — F'tj@@(x,y) for t €[0,1], (x,y) € PC(J,R) x PC(J,R).

Then for (z,y) € PC(J,R) x PC(J,R),t,t € [0,1], and (Z,7) € R x R, we have

Fr g5 (@ y)(t) = (2,9) — Fo,@5 (@ y) () + Fo,a,5(@,y)(0).
Consequently,
GZ(EE,Q]) (.’IJ, y) (t) = _(%7 @ + FO,(E,@) (.’IJ, y) (t) + GO,(E,;E) (.’L‘, y) (t)
Then, we obtain

S, (%,7)) = Gr . (0) forall (7,(2,7)) €[0,1] x R x R.

Since FE(E,g) is compact (see the proof of Theorem 4.3), Gi(i,m is proper. And as (z,,yn) €
g(tnv (xnayn)), we have

wn(t)=fcn(tn)+/f1(87xn(8),yn(8))ds+ Y Dupzalte)syalte)), t € [ta, 1],

tn <tRp <t

0 = valtn) + [ Falss2a(6) (@) ds+ Y Lanlealt)gn(te)), €€ fin 1,

tn<tp<t
which in turn gives

0= th,(gc,,,,yn)(xnayn)(t) = _(xnayn)(tn) + FO,(acn,yn)(xmyn)(tn) + GO,(zn,yn)(‘rnvyn)(t)

and

G7 @ (@Tns Yn)(t) = (T, 9) + Fo,@.5) (@n, Yn) (1) + Go,@5) (@, Yn) (1)
Then

"Ga(i,g)(mn’yn)(t) - th,(zn,yn)(xnvyn)(t)H = HGE(i,’g)(xnayn)(t)H

=l = @9+ @n, ) (tn) + Fo ) (@0 yn)E) = Fo o) (2, ) (1) = H <§> H B <”|Z||> ’

where

t

a=—T+ x,(tn) + <5§—|— /fl(s,mn(s),yn(s)) ds + Z Ilﬁk(acn(tk),yn(tk))>

0 0<tr<t
tTL

() + [ Assallm(eD st 30 Dialonltn).n(®)))
0

0<tp<tn
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Therefore,
t
o] S/||f1(5,£€n(8),yn(8))||d8+ > Mk(@n(te), yn ()]
tn tn<tk<t~
t
< /p(8)¢(bT+b§)d8+ > k(@n(te), yn ()]l
tn tn <t <t
Similarly,
t
5=—wwwm+@+/h@m@@w»@+}j&ﬂmwmmmﬁ
0 0<ty<t
tn
= () + [ Relsan oD ds 3D Taatann) ) ).
0 0<t<tn
t
81 < [t + 51 ds+ Y Marlan(t) ()]
tn Ly <tp<t
Now, B
nIL%(mn,yn) = (7,y) and nh—>120 t, =1
imply that

lim GE(E@(xmyn) =0.

n—00

Then the set A = {Gg ;7 (zn,yn)} is compact, thus th(lg 7 (A) is also compact. It is clear that

{(Zn,yn)} T A. As li_>m (Tn,yn) = (Z,7), it follows (z,7) € 5(%: (Z,9)) C U, so we have a contradic-
tion to the hypothesis (x,,y,) € U for every n.
(b) II is locally compact.

r .
For r = rl > 0, consider the set
2

Bx1={((z.9).0) € S(xo.30) x 0.1+ ()] <r}.

and let {u,} € II(B x I). Then there exists ((n,Yn),an) € B x I such that

) (Tn,yn) if 0<t<ay,
up(t) =
U (1) if a, <t<1, vy, €S(f,n, (Tn,yn)).

Since S(zg,yo) is compact, there exists a subsequence of (z,, ), which converges to ((z,y), a).
S is w.s.c. implies that for all & > 0, there exists ng(¢) such that v, (t) € S(¢, (z,y)) = S(f, o, (z,y))
for all n > ng(e), and by the compactness of S(f, «, (z,y)), it is concluded that there is a subsequence
of {v,} which converges towards v € S(f,a, (z,y)). Hence II is locally compact.

Step 2. II has a closed graph.

Let ((Zn,yn)san) = (Tw,Ys), @), b € (X, Yn, ) and h, — hy as n — 4o0o. We are go-
ing to prove that h. € II((x.,y«),a). Now, h, € II((Zn,¥Yn), ®,) implies that there exists z, €
S(f%, an, (Tn,yn)) such that for all t € J,

o (t) = (Tn,yn) if 0<t<ay,
) za(t) if ap <t<1.
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Therefore, it is enough to prove that there exists z, € S(f%, , (z«,y«)) such that for all t € J,

Ky Yk if Stﬁ )
ha(t) = o) IEOSE<a
2« (t) if a<t<l1.

It is clear that (an, (Tn,Yn)) = (@, (4, yx)) as n — oo, and it can easily be proved that there exists
a subsequence of {z,} which converges to z.. So, we can handle the cases @« = 0 and o = 1 as we did
in the proof of Theorem 4.4, and we obtain finally that z. € S(f, o, (z«, y«))-

Step 3. II((x,y),a) is an Rg-set for all ((x,y), ) € S(xo,yo) X [0, 1].
Since F is o-Ca-selectionnable, there is a decreasing sequence of multifunctions Fy, : [0,0] x RxR —
Pep.cv(R x R), k € N, which admit Carathéodory selections and

Fiy1(t,u) C Fi(t,u) forall t€[0,1],u € R x R,

and

o0

F(t,u) = ﬂ Fi(t,u), ueRxR.

k=0

Then -
((z,y),a) = [ ] S(Fk, (x,y))-
k=0

By Theorem 4.3, the sets II((x,y), «) and S(Fy, (z,y)) are compact. Furthermore, by Theorem 4.4,
the set S(Fy, (x,y)) is contractible. Thus, II((x,y), ) is an Rs-set. O

Lemma 4.1. Suppose that the multifunction F : J X R X R = Pgp o (R) is Carathéodory and wu.s.c.
of the type of Scorza—Dragoni. Then the set of all solutions of problem (1.1) is Rs-contractible.

Proof. By Theorem 2.6, we have that F' is 0-Ca-selectionnable. Thus we have the same conditions of
the last theorem. O

5 Summary/Conclusion

In this paper, we investigate the existence of a solution for the system of differential inclusions under
various assumptions on the multi-valued right-hand side nonlinearity. Also, we have studied some
properties of solution sets of those results, such as topological properties (compactness), acyclicity
properties, geometric topological properties, Rs, etc. Theorem 4.3 is a major result entailing some of
the topological properties, while Section 4 is devoted to geometric topological properties.
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SOLVABILITY AND NUMERICAL APPROXIMATION
OF THE SHELL EQUATION DERIVED BY THE I'-CONVERGENCE



Abstract. A mixed boundary value problem for the Lamé equation in a thin layer Q" = C x [~h, h]
around a surface C with the Lipshitz boundary is investigated. The main goal is to find out what
happens when the thickness of the layer tends to zero, h — 0. To this end, we reformulate BVP into
an equivalent variational problem and prove that the energy functional has the I'-limit of the energy
functional on the mid-surface C. The corresponding BVP on C, considered as the I'-limit of the initial
BVP, is written in terms of Giinter’s tangential derivatives on C and represents a new form of the shell
equation. It is shown that the Neumann boundary condition from the initial BVP on the upper and
lower surfaces transforms into the right-hand side of the basic equation of the limit BVP. The finite
element method is established for the obtained BVP.
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1 Introduction

In the present paper, we study a mixed boundary value problem for the Lamé equation in a thin
layer Q" := C x [~h, h] of thickness 2h around a smooth mid-hypersurface C C R? written in terms
of Gilinter’s derivatives and the energy functional associated to it. We show that when thickness
of the layer tends to zero, h — 0, the corresponding energy functional, scaled properly, converges
in the I'-limit sense to some functional defined on mid-surface C of the layer, which corresponds
to the two-dimensional boundary value problem for associated Euler-Lagrange equation in terms of
Gilnter’s derivatives. The obtained equations together with boundary conditions can be considered
as a boundary value problem defined on a shell model. We employ Galerkin’s method to establish
numerical approximation for solutions of the obtained BVP.

The equations of three-dimensional linearized elasticity have been studied mostly in Cartesian
coordinates. The linear shell theory justified in the present paper is based on the natural curvilinear
coordinates, defined on the mid-surface C extended by the normal vector field of this surface, which
“follow the geometry” of the shell in a most natural way. Accordingly, the purpose of the present
preliminary section is to provide a thorough derivation and a mathematical treatment of the equations
of linearized three-dimensional elasticity in terms of special curvilinear coordinates.

Let C C R? be an open surface with the boundary I = dC in the Euclidean space R3, represented
by a single coordinate function 6 : w — C (the case of multiple coordinate function is similar and we
skip this case for the simplicity). Let v(x) = (v1(x), v2(x),v3(x)) T, x € C, be the normal vector field
on C and v(x) = (N (z), Na(x),N3(z)) " be its extension in the neighbourhood Ue of the surface C.
It is known that such extension is unique under the assumption that the extension, as the field on
the surface itself, is a gradient vector field 9; N, = OpN; for all j, k = 1,2,3 and is called the proper
extension (see [6] for details).

The 3-tuple of tangential vector fields to the surface g; := 010, g2 := 020 (the covariant basis)
together with the proper extension gz := N of normal vector field v from the surface C into the
neighborhood Q" depend only on the variable 2’ € C and constitute a basis in Q". That means

3
that an arbitrary vector field U = 3 Uje’ can also be represented with this basis in “curvilinear
j=1
coordinates”. Along with the covariant basis, the use is made of the contravariant basis g', g2
which is the bi-orthogonal system to the covariant basis (g;, g") = d;1, where §;; denotes Kroneker’s
symbol, j,k = 1,2 (see, e.g., [3,4]). In the classical geometry, the covariant {(g;,gx)}; k=12 and
contravariant {(g’,g")}; x—1 2 metric tensors together with the Christofell symbols I, = (g%, 0;8k)
are the main tools of the calculus. For example, the covariant derivatives on the surface C are defined

2
by vy)j; 1= 0jv; — k2—:1 T op.

Our calculus on the surface C is based on a different curvilinear system of coordinates than the
covariant and contravariant vector fields used usually by mathematicians and mechanists to derive the
shell equations (see, e.g., P. Ciarlet [3,4]). Moreover, the system of curvilinear coordinates introduced
below is linearly dependent but, surprisingly, many partial differential equations are written in this
system in a simple form, including Laplace-Beltramy and shell equations on a hypersurface (see [5].

From now on, if not stated otherwise, we stick to the following notation: the terms with repeated
indices are implicitly summed from 1 to 3 if indices are Greek (o, 3,7,...) and are summed from 1
to 4 if indices are Latin (4, k,l,...), as shown in the following examples:

3 3 4 4

— 2 . _ 2 I 2. 2

by = g @b, by = g b, «c;d; = E cjdj, ¢ = E 5
a=1 a=1 j=1

Jj=1

We consider a deformation of an isotropic layer domain Q" := C x (—h, h) of thickness 2h around
the mid-surface C which has the nonempty Lipschitz boundary dC. The deformation is governed by
the Lamé equation with the classical mixed boundary conditions, Dirichlet conditions on the lateral
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surface ' := AC x (—h, h) and Neumann conditions on the upper and lower surfaces I'* := C x {£h}:

LonU(z) =F(z), =€ Q":=Cx (=h,h),
Ut (t) = G(t), teTh :=aC x (—h,h), (1.1)
(T(x, V)U)F (1) = H(x,%h), (x,t) €T =C x {xh}.

Here U(z) = (Uy(z), Ua(x),Us(z)) " is the displacement vector, Lqn is the Lamé differential operator
and ¥(x, V) is the traction operator

LopU=—p AU~ (A+ ) VdivU,
[‘Z(X, V)U],g = /\ug&YUﬂ, + ,ul/,yagUfY + ,LLaVUg, 6=1,23.

The BVP (1.1) we consider in the following weak classical setting:
UeHY(Q"), FeH '(Q"), GeHY>Th), H(-,+h) e H/2(C). (1.3)

For definitions of Bessel potential spaces H?, Hs see, e.g., [8].
Let us consider the following subspace of H'(Q"):

Q" Th) = {V cH'(QM): V() =0 forall te r’i}‘ (1.4)

Theorem 1.1. The BVP (1.1) in the weak classical setting (1.3) has a unique solution.

Proof. The Lamé operator Lqn is strictly positive on the subspace ﬂl(ﬂh, INOR
(Lan V., V) = M|[V|* ¥V e H'(Q"T),
and the proof follows easily from the Lax-Milgram Lemma (a similar proof see, e.g., in [7]). O

To find what happens with the BVP (1.1),(1.3) as h — 0, we first reformulate this BVP into the
equivalent variational problem: Find the vector U which minimizes the energy functional Eqn (U) (see
(3.4)) under the same constraints (1.3). It is proved that if the weak limits

lim F(x, hr) = F(x), lim — [H(x, +h) - H(x, —h)] = HO(x), F,HY € Ly(C),
h—0 h—0 2h

exist in Ly(Q") and Lg(C), respectively, then there exists the I-limit of the energy functional
}llirrb Eqn(U) = E(U) (cf. (4.2)), and the equivalent BVP on the surface C, using Einstein’s con-
—

vention, is written as follows:

s Acﬁa + 'DQDQUB — 27‘lcl/3'DaU5 — 'D,y(l/oél/gp,yﬁg)}
A

A+ 2u

Uy(t)=0 on I'=0C,

— —1 1
+ D,DsUs — 2’HcV(XD,3Uﬁ} =5 Fat HY onc, «=123 (L5

In (1.5), v := (v1,v2,v3)" is the unit normal vector filed on C, Hc is the mean curvature of C,

D, = 0y — Va0, @ = 1,2,3, are Giinter’s tangential derivatives on C (see Section 2) and U :=
(Uy(x,0),Usz(x,0),Us(x,0)) T, x € C, is the trace of the displacement vector field

U(x,t) = (Ur(x, 1), Us(x, 1), Us(x,8) T, (x,8) € Q" :=C x (=h, D),

on the mid-surface C (see Theorem 4.3).
The BVP (1.5) represents a new 2D shell equation in terms of Giinter’s tangential derivatives on
the mid-surface C.
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2 Auxiliaries

We commence with the definition of a new system of coordinates: the system of 4-vectors
d/:=e ~ NN, j=1,2,3, and d*:= N, (2.1)

where e! = (1,0,0)T, > = (0,1,0)7, e* = (0,0,1) is the Cartesian basis in R?; the first 3 vectors

d!, d?, d? are projections of the Cartesian vectors and are tangential to the surface C, while the last

one d* = N is orthogonal to it and, thus, to d', d2, d3. The system is linearly dependent, but full,
and any vector field U = U,e® in €, can be written in the following form:

U =U,e*=U)d’ =U" =Uy +UJN, (2.2)
Uy:=U- W, UN, U):=(N,U)=N,U,,

and the vector Ug := (U, U, U)T is chosen to be tangential to the surface (A, Ug) = 0.
Since the proper extension depends only on the surface variable N (x,t) = N (x) (see [6]), the
same is true for the entire basis d’(x,t) = d’(x), j = 1,2, 3,4.
Note that
Ny=WN,N)=1.

Although the system {d’ }?:1 is linearly dependent, the following holds.
In [2, Lemma 1], it is proved that representation (2.2) is unique, that is,

if U°=0U)d’ =0, then U} =Uj =Uj =U; =0.

Moreover, the scalar product and, consequently, the distance between two vectors in the Cartesian
and new coordinate systems coincide:

<U0,V0> = U]O‘/JO = UCYVOt = <U7V>7 ||U0 - VOH = ||U - V”

for arbitrary vectors U = (Uy,Us,Us) T, V = (V1, Vo, V3) T € R3.
Gilinter’s derivatives
Do := 0np — Vo 0pp, a=1,23, (2.3)

represent tangential differential operators on the surface C (orthogonal projections of the coordinate
derivatives 01, 02, 03) and have the extensions

Da‘p = 804‘)0 - Naa/\ﬂp

in the neighbourhood of the surface C. The system D, Ds, Ds is, obviously, linearly dependent, but
full: any tangential linear differential operator on the surface A(D) is written in the following form:

A(D) = aa(x)0s4 = an(x)Dy, provided aq(z)va(x)=0, x €C.

In particular,
Oy = Uado = UjD;.

The adjoint operator to D;, j = 1,2,3, is
Dip = —Djp+2v;Hep, ¢ € C'(C),

where

He(x) = %Daya(x) = %Da/\/a(x), xec, (2.4)

is the mean curvature of the surface C.
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Definition 2.1. For a function ¢ € W!(Q"), we define the extended gradient

-
Var ¢ = {D1p, Dap, D3, Dap} , Dap := Inep, (2.5)
and, for a vector field U = U,e* = U]de € WHQ"), we define the extended divergence

divor U :=D;U; + 2Ho Uy = =V, U, (2.6)

where V¢, denotes the formally adjoint operator to the gradient Vn, Hc is the mean curvature (cf.
(2.4)) and
DyUy = OnUj = (N,0n'U) = (D, V)5,

Caution: While defining the extended divergence in (2.6), we have to use only the representation
U=U deJ' (cf. (2.2)), because any other representation differs from the indicated one by the vector
¢ N, where ¢(x) is an arbitrary function. Then the extended divergences will differ by the summand

divgn (c(x)N(x)) = One(x) + 2¢(x)He(x).

Lemma 2.2. The classical gradient Vo := {01, 020,030} ", written in the full system of vectors
{d?}i_; in (2.1), coincides with the extended gradient Vi = Vn @ in (2.5).

The classical divergence div U := 0,U, of a vector field U := U,e®, written in the full system
(2.1), coincides with the extended divergence div U = divgr U° in (2.6).

The gradient and the negative divergence are the adjoint operators, V¢, = — divgn with respect to
the scalar product induced from the ambient Euclidean space R™.

In the domain Qy,, the classical Laplace operator

Agrp(x) := (divgr Van @)(z) = _(V?zh (Vmap))(x), T e Qh7
written in the full system (2.1), acquires the following form:
Agre =Dip+2HcDap, © € WHQ).
Proof see in [2, Lemma 2].
The Lamé operator
LU = —p AU — (A4 p) VdivU = —[ubapd} + (A + 1)9adp],, ;U
== [Cavﬁw&/aw]gnga CayBw = Mary0sw + 1(0ap0yw + bawdpy)

is formally the self-adjoint differential operator of the second order and, written in the full system
(2.1), acquires the form

£QhUO i AQh,UO — (A + M) VQh diVQh UO.
To reformulate the BVP (1.1) in curvilinear coordinates we introduce the traction operator (cf.
(1.2))
(@, 0)U = (Tap(w, ) Up)e™ = ({Avads + sl + dupit 0,}Us )€, U = (U1, Up,Uy)T = Uye®
and Gunter’s derivatives (see [2, (25)])
T(x,D)=e*® eﬂ{)\yoﬁg + prg0a + dap it 3,,}
= \d* @ (d° + vpd*)(Ds + v5Dy)
+ u(d? + vod*) ® (d° + vsd")Dy + u(d? + vpd*) @ d*(Dg + v5D,)
MD4 0 0 /ﬂ)l
0 /ﬂ?4 0 /~LD2

0 0 pDy 1D
)\Dl )\DQ )\Dg ()\ + 2M)D4

Let us recall some results related to the uniqueness of solutions to an arbitrary elliptic equation.
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Definition 2.3. Let 2 be an open subset with the Lipschitz boundary 02 # @ either on a Lipschitz
hypersurface C C R”, or in the Euclidean space R" 1.

We say that a class of functions U(Q2), defined in a domain  in R", has the strong unique
continuation property if every u € U(Q2) in this class which vanishes to infinite order at one point
must vanish identically.

If a surface C is C'°°-smooth, any elliptic operator on C has the strong unique continuation property
due to Holmgren’s theorem. But we can have more.

Lemma 2.4. Let C be a C%-smooth hypersurface in R™. The class of solutions to a second order
elliptic equation A(x,D)u = 0 with the Lipschitz continuous top order coefficients on a surface C has
the strong unique continuation property.

In particular, if the solution u(x) = 0 vanishes in any open subset of C, it vanishes identically on
entire C.

Proof see in [1, Lemma 1.7.2].

Lemma 2.5. Let C be a C?-smooth hypersurface in R™ with the Lipschitz boundary T' := 0C and
v C I' be an open part of the boundary I'. Let A(x,D) be a second order elliptic system with the
Lipschitz continuous top order matriz coefficients on a surface C.
The Cauchy problem
A(x,D)u=0 on C, ueHY(Q),
u(s) =0 forall s €7,
(Ovu)(s) =0 for all s €,

where V is a non-tangential vector to T', but tangent to C, has only a trivial solution u(x) = 0 on
entire C.

Proof see in [1, Lemma 1.7.3].

3 Variational reformulation of the problem

To apply the method of I'-convergence, we have to reformulate the BVP (1.1) into an equivalent
variational problem for the energy functional. To this end, we have to consider the BVP with the
vanishing Dirichlet condition on the lateral surface:
LonUg(x) = Fo(z), € Q" :=C x (=h,h),
Uf(t)=0, t€Th :=09C x (—h,h),
(T(x,V)Uy) " (x,+h) = Ho(x,£h), x €C.

It is possible to rewrite the BVP (1.1) in the equivalent BVP (3.2). Indeed, consider the BVP

LoV (z) =0, 2€Q":=Cx (~h,h),
V*H(t) =G(t), teTh, (3.1)
(%, V)V)(x,+h) =0, (x,+h) €T =C x {h},

which has a unique solution V€ W' (") (see Theorem 1.1) and note that the difference Uy := U~V
of solutions to BVPs (1.1) and (3.1) is a solution to the BVP (3.2), where Fo(x) = F(x) — Lon V (&),
= Hy(x,+th) == H(x,+h) — (T((x,V)V)T(x,£h). Vice versa, a solution to the BVP (1.1) is
recovered as the sum of solutions U = Uy 4+ V of the BVPs (3.2) and (3.1).
Thus, in the BVP (1.1) we can assume, without restricting generality, that G = 0 and consider
the BVP
LonU(z) = F(x), =€ Q" :=C x (—h,h),
Ut(t)=0, teI :=aC x (~h,h), (3.2)
(T(x,V)U)"(x, £h) = H(x,+h), x €C.
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Theorem 3.1. Problem (3.2) with the constraints
U cHY(Q"TE), FeH '(Q"), H(.,+h) e H /?(C) (3.3)

is reformulated into the following equivalent variational problem: Under the same constraints (3.3),
look for a displacement vector-function U € HY(Q", T%), which is a stationary point of the following
functional:

1
Ean (U) = 5/ 105U - 95Ua + 103 Ua - 9,Up + 20, Us - 9, U, + 2F 5 - Up | do

Qh

/ (x,+h), U (x,+h)) — (H(x, —h), U (x, —h)>} do

C
1 h
5// 195U, - 95U + p93Us - 0, U + A0, U,, - 9, U, + 2F; - Ug
—h C
+% [(HL(, +R), U (x, +1)) = (H(x, =h), U* (x, ~h))]| | do dt, (3.4)

Proof see in [2, Theorem 2].

Remark 3.2. The integral on C in (3.4) is understood in the sense of duality between the spaces
HY2(C) and H~'/2(C) because H( -, +h) € H"'/2(Cy) and the condition U € H'(Q", T?) implies the
inclusion Ut (-, +h) € HY?(Cy).

Let us prove the following auxiliary lemma.

Lemma 3.3. Let > 0 and p+ A > 0. Then the quantity n(E) := 2u|E[> + A(Trace E)?
non-negative, n(E) = 0 for an arbitrary matriz E = [Eypglsxs.

Proof. We proceed as follows:

_2MZE§B+2:U’ZE M+>‘)ZEaQEBﬁ_ﬂZEaaEBB

a#p a,pB o8
2
=2u ) Ei5+ U"'/\)(ZE(XQ) +u[2ZEia -> EaaEﬁﬁ}
a#p a a a#p
= 2”2 Eag +(p+AN) (ZEM) +uZ(Eaa — Epp)? >0,
a#s a#pB
since >0, p+ A > 2“"’3)‘ > 0 (see (1.2)). O

4 Shell operator is non-negative

The main theorem of the present paper, Theorem 4.3, will be proved later. Here we recall the main
results about I-limit of the energy functional Eqn (U) in (3.4).

Next, we perform the scaling of the variable ¢ = hr, —1 < 7 < 1, in the modified kernel Q4(VU)
of the quadratic part of energy functional (3.4) and divide by h.

Lemma 4.1. The scaled and divided by h energy functional

£8,(T") = 1 0 (T") =  QYT") — FO(TY) (11)
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with the quadratic and linear parts

1

QYT = / / QU U (2, 7)) dor dr,

—-1C
h
T /h c/ (Fh. [<ﬁ<’“»+h>ﬁ°’+<x>+h>> — (B, =h), T (2, -h))] |

FO(x,7) := (F(x, hr), FQ(x, h7), F (2, hr), FO(x,h7)) |, F? = Ny Fa,
HY) (v, 7) == (HO(x, hr), HY(x, h7), HY(x, h7), H)(x,h7)) |, H) = NyH,,

is correctly defined on the space ]IT]Il(Ql,FlL) (see (1.4)) and is convex:
3, (0U" + (1 — 0)V") < %, (UM + (1 - )3, (V"), 0< 0 <1,

for arbitrary vector V"'(x,7) := (Vi(x, ht), Va(x, hr), V(x, h7), Va(x, h7)) T, VI € HY(QL,T}).
Moreover, if F(x,7) := F°(x, h7) are uniformly bounded in Lo(Q), i.e.,

sup [|F}[Lo(Q1)] < oo
h<hg

for some hg > 0, the energy functional has the following quadratic estimate: there exist positive
constants C1, Cy and Cs independent of the parameter h such that

o [ [@atpenn)? + (3 225N o - 0 < 0

. < 03{1 +/ |:(DO¢U]Q(X,hT))2 + (% Wﬂ da:}

Ql
for all UM € HY(Q!,T}).
Proof see in [2, Lemma 5].

Theorem 4.2. Let the weak limits

1
im — _ -l =" 1
}llu%F(X ht) = F(x), ilLlL% 5% [H(x,+h) —H(x,—h)] =HW(x), F,H" € Ly(C),

in La(Q") and Ly (C), respectively, exist. Then the T-limit of the energy functional EQ,L( Y emists:

T - lim 5zh (UM = &2(U /Q3 (U(x (4.2)
where
Q3(0) = g “D Tp + Dl —zuﬁyvpampaﬁw}
AT‘;M (DalUa)? + (F(x) +2HW (x),U(x)) (4.3)
and

T(x) = (U1(x),T2(x),Ts(x)) |, Talx) i=Ua(x,0), a=1,2,3.

Proof see in [2, Theorem 3].
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Theorem 4.3. Let F,HY ¢ Ly(C). The vector-function U € ﬁl(C) which minimizes the energy
functional EZ(U) in (4.2), (4.3) is a solution to the following boundary value problem:

(LeU)a = p [ACUQ +DsDTs — 2HevsDall 5 — DW@MDVUB)}
4\ = — 1 B
—— DD -2 WD = -F,+HWY a=1,2,3. (44
o [DaDsUs = 2HevaDpUs) = 5 Fa+ Hy on C,

Unt)=0 on T =0C,

Vice versa: on the solution U € H'(C) to the boundary value problem (4.4) under the condition
F,HW € 1L,(C), the energy functional E3(U) in (4.2), (4.3) attains the minimum.

Moreover, the operator L¢ in the left-hand side of the shell equation (4.4) is elliptic, positive definite
and has finite dimensional kernel consisting of the solutions to the following system of equations:

DalUp +DslUa — D [Vavy(DsU,) + vy (Dal,)] =0, o, =1,2,3. (4.5)
il

The boundary value problem (4.4) has a unique solution in the classical setting:
— S 1
U= (U17U27U3)T €H1(6)7 §F+H(1) E]LQ(C)

Proof. The first part of the theorem, that BVP (4.4) is the I'-limit of the BVP (3.2) (i.e., the solution
to the BVP (4.4) U € H!(C) minimizes the energy functional E2(U) in (4.2),(4.3)) is proved in [2,
Theorem 4].

Ellipticity of the operator L¢ in the left-hand side of the shell equation (4.4) is checked directly
and from the Lax—Milgram Lemma, it follows that it is the Fredholm operator in the setting L¢ :
H~(C) — H'(C) (see [7, Theorem 14]) for a similar proof). Therefore, L¢ has the finite dimensional
kernel.

Let us start with the energy functional and recall the quadratic part of the energy functional (see
(4.1) and formulae [2, (33)]):

h

W)= [ [@ivuim o (1)
—h C |

QY(F) = 2u|E|* + A(TraceE)?, E= - (F+F"),

l\D\»—t

where F = [F,5]3x3 and E = [E,glax3 are the 3 x 3 matrices and |E|? = Trace(E'E) = ) Eiﬁ
a,B
From Lemma 3.3 it follows that the kernel QY(F) is non-negative:
F)=2u> B2+ /H—/\(ZEM) + 1> (Baa — Egs)? 2 0. (4.7)
a#f a#B
Let us rewrite the kernel Q}(VU) of the quadratic part Q3(U) of the energy functional in (4.1),
(4.6), (4.7) by using the equalities

F =VU = [0aUplsx3, (DefU):= ((VU) + (VU)T) - [% (OaUs +85U°‘)}3x3

N =

and (2.3) as follows:

Qu(VU) =2 3 (Def U2 + (1 + ) (Za U, ) + 1> [0ala — 95U5)°

a#B a#p
—on Y [(Der)aﬂ + YaPala ; ”BD‘*UBT +(ut A)(ZDQUQ + D4U4)2
a#B [
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+ 1Y [DalUa — DsUs + vaDaly — v5D1Us)"

ey

D, D 2 2
—oy [(Der)aﬂ + YaPala ; i 4UB} +(u+ A)(ZDQUQ + D4U4)
a#B [
2

+ 1Y [Pala = DpUs + vaDalUs — v5DaUs)", (4.8)

a,f3

where
DaUﬁ + DﬁUa

2
Next, we perform the scaling of the variable t = h7, —1 < 7 < 1, in the modified kernel Q4(VU)

of the quadratic part of energy functional (4.8), divide by h and study the following kernel in the
scaled domain Q! =C x (1,1):

DefU)qp = , a,f=1,23.

QVer T (3, 7)) = 3 Qu(VU(, hr))
— % > l:'DaUg(X,hT) + DpUq (%, h7) +
aFp

Vo OUg(x, h7) L UL (x,h7)]?
h or h or

1 OUy(x, h7)\2
+(M+>\)<ZDQUO¢(2€,}ZT)+E%>
Vo OUq(x,h7) vz OUg(x, ht

_ Va v )
+u§[DaUa(A’,hr) DgUs(x, hr) + - o - o ., (4.9)

where
T

U (x,7) := (UL (x, h7), U (x, h7), U (2, h7), UL (2, h7)) , UL = NoU,.

For this, let us rewrite QY in (4.9) in the form

QY (Vo UM, 7)) = g > {DaUﬂ(x, h7) + DsUq (%, h7) + No&p +N5§ar

a#B
2 2
(N (D Palia(w,hr) + &) + 1Y [Dallalt, hr) = DaUp(, hr) + Naka — N
« a,B
2
= B Z [DQUB(X, hT) + 'DBUQ(X, hT) +Na€ﬁ “V‘Nﬁga}
2 a#pB
2
+ (4 N (DivU(x, hr) + &) + 1y [DQUQ(X, ht) — DUs (2, h7) + Naba — Nﬁgﬁ] . (4.10)
a,p
where the variables
ga = ga(XJ”-) = % Wa a = 17273a §4 :/\/'(xgoz

depend on h and we find minimum of the kernel Q$(Vqn ﬁ(x, 7)) with respect to the variables &1, &2, &3.
It was shown in [2] that by Q(Vo.U"(x, 7)) the I-limit is attained on the following values of the
variables:

€y = Div U, (4.11)

A
DsUs :_A—i—Q,u
A

fa = 7N’y(,Do¢U’y) - mNQD’L’U U, o = 1,273, (412)

_/\—|—2,u
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where we remind that Div U = D,U,. From (4.11), (4.12) and (4.10) we find the I-limit Q3(U) (the
same as in [2], but written in a different form):

Q3(0) = min (Ve TU")

£1,62,83
U 7 77 = 2A
=3 Z [DaUﬁ +DplUqo — Z [Vavy(DsU) + vgvy (DU )] — N o vavgDiv U}
a#p o
_ N2
Div U — Di )
+(M+/\)( w U )\+2N v U
+ ’UJZ [Daﬁa - Dﬁﬁﬁ - Z [VQVV(DO(UV) — V@V,Y(IDBﬁ,Y)]
o, ~
- v2Div U + LzﬂDivﬁr
At2p A42p "
1Y = —_— — . 2)\ - 2
) Z [DaUﬁ + Dl = Z [Vav (DpU) + v51a Doy — A+ 2u vavgDiv U]

+ W [Div TP + u az [DuT — DsTs - ; o (PaT) = vy (DT)]] - (413)

From (4.13) it follows that Q3(U) is a nonnegative quadratic form Q3(U) > 0 for all U € H!(C,T),
I':=0cC. O

5 Shell operator is positive definite

If Q3(U) = 0, from (4.13) we get

DivU =0,
DolUo —DpUp — Y [Vary(Dals,) — vry (DsU,)] =0, a#B=1,2,3
g (5.1)
DoUp + DslUa — > [Vary(DsUs) + vy (Dal,)] =0, a#B=1,2,3

By taking the sum with respect to § in the second equality in (5.1), we get

= ZVOLV’Y(DQU’Y)7 o = 1,2,3.

Note that the obtained equality implies both, the first and the second equalities from (5.1). Moreover,

it coincides with the third equality in (5.1) if we allow there @« = 8 = 1,2,3. Thus, equation (4.5)

implies all three equalities in (5.1) and describes the kernel Ker L¢ of the shell equation L¢ in (4.4).
Now we rewrite the obtained equation in the following form:

DU, ZVO‘VV D, U,) =v,D (ZV,Y ) — Zua(’l)o(yy)ﬁ7
Y
= 1o(DoUy) — ZVQ(DQVW)UV, Uy = Zuﬁv, a=1,2,3. (5.2)
Y Y

Similarly to (5.2), from equality (4.5) (see the third equality in (5.1) we derive

’DQUB + 'Dgﬁa = VJDQU;; + IJB'DQU4 — Z [Va('DgI/W) + Vg('Dal/W)] UW a,f=1,2,3. (5.3)
vy

Besides the equalities (4.5), (5.2), (5.3) we have the following equality
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3 [[Doﬁﬁ +Da0.)7 — 2 ugl/A,DaUBDaUV}
o, Y

= [[pam n DBUQ]Q} — 23 (DuT0)? =2 Y (Davs)(Davy) T 5T,
a,f « a,Byy

+2) (Davp)(DalUa)Us =2 (Davy)(DalUa)U, =0, (5.4)

o, o,y

which follows from (4.3) if we apply the first equality from (5.1) and recall that Q3(U) = 0.
If Uy(s) =0, a = 1,2,3, equalities (5.2)—(5.4) simplify:
Do (5)Ua(5) = va(5)DalUa(s),
DoUps(s) + DpUn(s) = va(5)DUs(s) + v5(5)DalUs(s), a,B=1,2,3,
[P.T

(5.5)
4(s) + Dﬁﬁa(s)ﬂ =23 (DTa(s)), s € C.

a,p

We can see that not only the first equality in (5.5) is the consequence of the second one (by taking
a = B), but also the third equality follows from the second one if we take into account that > v2 = 1

and > v4D, = 0.

e

By inserting the first equality from (5.5) into the second one we get

Dolp(s) + DyUals) = - ;8 DsTps(s) + Zzg DoTals), a,8=1,2,3,
If we succeed in proving that
D Us(s) =0, s€C, a=1,23, (5.6)
then from (5.5) and (5.6) will follow
D, Us(s) + DgUqs(s) =0, s€0C, o,f=1,2,3. (5.7)
The latter implies that
D,Up(s) =0 Va,=1,2,3, Vs € 0C. (5.8)

Indeed (cf. [1, Lemma 1.7.4]), among directing tangential vector fields {d*(s)}3_, generating Giin-

ter’s derivatives Dy = dgr, k = 1,2,3, only 2 are linearly independent (one of these vectors might even
collapse at a point d*(s) = 0 if the corresponding basis vector e* is orthogonal to the surface at s € C).
One of these vectors might be tangential to the boundary curve 9C and, at least one, say d3(s), is non-
tangential to OC. The vector d® for o = 1,2, 3, is a linear combination d(s) = ¢ (s)d3(s) +c2(s)7%(s)
of the non-tangential vector d3(s) and of the projection 7%(s) := mocd®(s) of the vector d*(s) to the
boundary curve OC at the point s € dC. Then

(DaUs)(s) = c1(5)(0asUs)(s) + c2(5) (97 Us)(s) = c1(s)(D3Us)(s) (5.9)

for all s € v and all @ = 1,2, 3, since (DgsUs)(s) = (D3Us)(s)Us, Us vanishes identically on 9C and
the derivative (0,;UY)(s) = 0 vanishes, as well.

On the other hand, from (5.7) for 8 = a = 3 follows 2D3Us(s) = 0 and, together with (5.9), gives
(Do Us)(s) =0 for all s € v, § = 1,2,3. Then, due to (5.7), (D3U,)(s) = (DaUs)(s) = 0 and, due to
(5.7), (DaUy)(s) =0 for all s € v, a« = 1,2,3. Applying again the above arguments, exposed for Us,
we prove equalities (5.8).



52 Tengiz Buchukuri, Roland Duduchava

6 Numerical approximation of the shell equation

Consider the boundary value problem (4.4)

(Lcﬁ)a = M[Acﬁa + Dﬂ'DaUﬂ — 2chﬁDaﬁﬂ — D,Y(VQVBD—YUB)]
NN

A+ 2u
Uy(t)=0 on T'=0C, a=1,2,3,

_ — 1
['Da’DBUg — Q'HCua'DgUg] = 5 Ga on C7

where Gy = Fy + 2HS € [Ly(C)], a = 1,2,3.
In [2, Theorem 4], it is proved that if U € [H!(C)]? is a solution of BVP (4.4) and V € [H!(C)]?,
then

o I . A\ .
/ {2p [PsUaDsVa + PalsDsVa — vavsDyUpDy Ve + ﬁ DﬁUﬁpava} do
C

= /(éa,7a> do. (6.1)

C

Therefore, the BVP (4.4) can be reformulated in the following way.
Find a vector U € [H'(C)]? satisfying equation (6.1) for any V € [H'(C)]3:

(Capyc(@)DpUa, DeVy) = (Ga, Va) ¥V € [H(C)]?, (6.2)

where
4\
2 s

= A+ 2‘u ap + 21”’(50“/55C + 6(14“(5@\/ - VQV’Y(SBC)

Capye ()

and (-, -) denotes an inner product

(f,9) = /<f, g) do.

c

Due to (4.13), the sesquilinear form
a(U,V) = (capy¢DpUa, DcV5)
is bounded and coercive in H(C),
2 2
M||U |HYC)|” = a(U,U) = M||U |H'(C)||” VU € [Hy(C))?

for some M > 0, M; > 0. Therefore, by the Lax—Milgram Theorem problem (6.2) possesses a unique
solution.
Now, let us consider the discrete counterpart of the problem.
Let X}, be a family of finite-dimensional subspaces approximating [H*(C)]?, i.e., such that UXh
h
is dense in [H*(C)]3.
Consider equation (6.2) in the finite-dimensional space X},

a(Uh, Vh) = §(Vh) YV e Xh, (6.3)
where g(V3,) = —(G, Vi)c.

Theorem 6.1. Equation (6.3) has the unique solution Uy, € X}, for all h > 0. This solution converges
in [H(C)]? to the solution U of (6.2) as h — 0.
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Proof. Immediately follows from the coercivity of sesquilinear form a:

c1 ||Un | [JHP(C)PH2 < a(Uy, Up) = |[F(U)| < e2||Un | [HY(C)]?|| for all h. (6.4)

Let Uy be the unique solution of the homogeneous equation
a(Uh,wh) =0 for all 1ﬁh € Xy,

Then (6.4) implies |Uy, | [H!(C)]?|| = 0 and, consequently, U, = 0. Therefore, equation (6.3) has a
unique solution. From (6.4) it also follows that

o | @) < 2 0w | [ @]

Hence, the sequence {||Uy | [H*(C)]?||} is bounded and we can extract a subsequence {Up, } which

converges weakly to some U € H!(C).
Let us take an arbitrary V € [H!(C)]® and for each h > 0 choose Vj, € X}, such that V,, — V in

[H'(C)]3. Then from (6.3) we have
a(U, V) =g(V) YV € [H(C)]>.

Hence, U solves (6.2). Note that since (6.2) is uniquely solvable, each subsequence {Uj, } converges
weakly to the same solution U and, consequently, the whole sequence {U,} also converges weakly
to U.
Now, let us prove that it converges in the space [H*(C)]3.
Indeed, due to (6.4), we have

cail|lUn = U||? < |a(Uy — U, U, = U)| < |a(Un, U, —U) — a(U, U, — U)]
= c1|g(Un) — a(Up,U) = g(Un = U)| — 1|g(U) — a(U,U)| = 0,

which completes the proof. O
We can choose spaces X}, in different ways.
In particular, consider a case where w = U, in the above parametrization is a square part of R2:

w={(z1,22): 0< 21 <1, 0<m <1}, ((w)=C.

Allocate N? nodes P;; = (i/(N +1), j/(N+1)),4,7=1,...,N, on w.

Let ag, k=1,..., N, be piecewise linear functions defined on the segment [0, 1] as follows:
k—1
) k-1 Okg :Ulg Nt
(N+1)( - erl)’ N:—l <TS NI
0, Zlifj—ll <z <1,
j=k,...,N.

Denote by 5, 4,5 = 1,..., N, the functions

pij(x1, v2) = ai(z1)ay(z2), i, =1,...N,

(1, T2) € w.

Evidently, ¢;; are continuous functions, which take their maximal value goij(Pij) = 1 at the point P;;

and vanish outside the set

wij:wﬂ{(xl,xg): 0< ‘xl_N—i-l

| <L0<em- iy

<1},

+11~
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Consequently, they belong to H'(w) and are linearly independent.

Denote by Xn the linear span of the functions @;; = ¢;; 09, 4,5 = 1,..
N? dimensional space contained in H*(C).

Let % = (61k, 02k, 03k)Pij € [XN]?, k=1,2,3,i,5=1,...,N.

Consider equation (6.3) in the space [Xy]°

.,N. The space Xy is

a(U, V) =g(V) VV € [Xy]*. (6.5)
We sought for the solution U € [Xy]? of equation (6.5) in the form

3 N
U=3 > oA
m=11,j=

>(m)

1) )

where Clgj are unknown coefficients. Substituting U into (6.5) and replacing V' successively by @

m=1,2,34,j=1,...,N, we get the equivalent system of 3N? linear algebraic equations
Z Z AmCi =gl n=1,2,3, kl=1,...,N, (6.6)
m=14,5=1
where (m.n) _ m) ~(n) (n) _ (n)
Az]kl = a(%] > Pt )» I = 9(501@1 )

The matrix A = AEmkrlL)) is Gram’s matrix defined by the positive semidefinite bilinear form a attached

to basis vectors <pgj ), =1,2,3,4,5=1,..., N, of [Xy]3. Therefore, it is a nonsingular matrix and
equation (6.6) has a unique solution

- ~(m) (n)
)
E , zﬁzn 1;n Ikt -
1,5,k 1=

To calculate explicitly Az("zl ") and g,(;;) we note that
.5 (y) = %@ﬂu+wmﬁk>

= Z Oppij (I(y)) (arﬂp(y) + Vrl/lalﬁp(y)) (0m1,0m2; 0m3)
=1

= Z Bpij (9(Y))Drp(y) (G, Smas Sm3),s

A(mn)—a( B G

ijkl @” y PRl ) = (qustérmfstnpq(ﬂijvDs@kl)
Z / Cqmsn (1)) (Batij (9(1))) (O r1(9(y))) Dg¥a(y) Dss(y)l o’ ()] dy,
o.B 1Wz]mwkl
(n) _ )y 9 (n) 9 / d
Ir = —(9: Py e = 9(0()) e (OW))lo" (y)| dy,

wijNwgi

where |o/(y)] is a surface element of C

0’ (y)| = 1019(y) x D29(y)|.
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ON THE EXISTENCE AND STABILITY OF SOLUTIONS
OF STOCHASTIC DIFFERENTIAL SYSTEMS DRIVEN
BY THE G-BROWNIAN MOTION



Abstract. In this paper, we study the Carathéodory approximate solution for a class of stochastic
differential systems driven by G-Brownian motion. Based on the Carathéodory approximation scheme,
we prove under some suitable conditions that our system has a unique solution and show that the
Carathéodory approximate solutions converge to the solution of the system. Moreover, we prove a
stability theorem for our system.
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1 Introduction

This paper is intended to study stochastic differential equations (SDE, for short) which have been the
object of sustained attention in recent years because of their interesting structure and usefulness in
various applied fields. The motivation for studying SDEs comes originally from the stochastic optimal
control theory, that is, the adjoint equation in the Pontryagin type maximum principle. After this,
extensive study of SDEs was initiated, and potential for its application was found in applied and
theoretical areas such as stochastic control, mathematical finance, differential geometry, et al. It is
worth pointing out that the SDEs have also been successfully applied to model and to resolve some
interesting problems in mathematical finance, such as problems involving term structure of interest
rates and hedging contingent claims for large investors, etc. See, e.g., [1,3,11,13,15,16, 18,20, 21]
and [24-27,29].

Recently, the theory of G-Brownian motion was introduced by S. Peng. The existence and unique-
ness of solutions for some stochastic differential equations under G-Brownian motion (G-SDEs) with
Lipschitz continuous coefficients were developed by Peng and Gao. In 2006, Peng in [24] (for more de-
tails see [10] and [19,24-29]) introduced the theory of nonlinear expectation, the G-Brownian motion
and defined the related stochastic calculus, especially, stochastic integrals of It6’s type with respect
to the G-Brownian motion, and derived the related Itd’s formula. In addition, the notion of G-normal
distribution plays the same important role in the theory of nonlinear expectation as that of the nor-
mal distribution with the classical probability. In 2009, Gao in [10] studied pathwise properties and
homeomorphic property with respect to the initial values for stochastic differential equations driven
by the G-Brownian motion. Later, Faizullah et al. extended this theory (see, e.g., [4-9]).

In general, one cannot obtain the explicit solutions of SDEs. The fact that these systems model
phenomena of the real world, the important mathematical questions that concern them are: the
existence and uniqueness of a solution, stability, asymptotic behavior of a solution, etc.

There are many theoretical, analytical and numerical methods and techniques for processing and
studying SDEs. We find this in the references mentioned and others. In this work, we will focus on
the Carathéodory approximation scheme that has been used by many mathematicians to prove the
existence theorem of solutions of ordinary differential equations under weak regularity conditions (see,
e.g., [2,5,14,18,22,23)).

Furthermore, in [5], Faizullah introduced the Carathéodory approximation scheme for vector-
valued stochastic differential equations under the G-Brownian motion. It is shown that the Carathéo-
dory approximate solutions converge to the unique solution of the equation. The existence and
uniqueness theorem for G-SDEs is established by using the stated Lipschitz method and the linear
growth conditions

t

X(t) = X(0) + /f(s,X(s)) d8+/g(s,X(s)) d{B)(s) +/h(s,X(s)) dB(s), t€0,T). (1.1)

0

The existence and the uniqueness of the solution X (¢) for G-SDEs (1.1) under different conditions
were proved in [1,4-10,15,17] and [19,24-29].

In this paper, we study the existence, uniqueness and stability of the solution for the following
stochastic differential system driven by the G-Brownian motion (SG-DEs):
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Xl(t):X1(O)+/f1,1(s,X1(8),...,Xn(s))ds
0

—i—/fg,l(s,Xl(s),...,Xn(s))d<B)(s)—i—/f3,1(5>’,X1(s)7...,Xn(s))dB(s)7
0 0

Xn(t):Xn(o)+/fl,n(s,xl(s),...,Xn(s))ds

+/fgﬁn(s,Xl(s),...,Xn(s))d<B>(s)+/fgyn(s,Xl(s),...,Xn(s))dB(s),
0 0

where (X71(0),...,X,(0)) is the given initial condition, ((B(t))):>0 is the quadratic variation process
of the G-Brownian motion (B(t));>0, and all the coefficients f; ;(t,z1,...,2y,) for 1 < ¢ < 3 and
1 < j < n satisty the Lipschitz and the linear growth conditions with respect to (z1,...,2,). These
results are obtained by using the technics adopted by F. Faizullah [5] in the case where the Lipschitz
and the linear growth constants are time dependant.

The article is organized as follows. In Section 2, we provide some results and definitions necessary
to understand the content of this work. Section 3 is devoted to the existence and uniqueness of the
solution of system (1.2) using the Carathéodory approximation scheme. In the last Section 4 we give
a result of the stability.

2 Preliminaries

In this section, we recall some basic notions, definitions and theorems necessary to understand the
content of this work. For more details concerning this section see, e.g., [5,10-12,15,26-28] and [24].

Let Q be a given non-empty set and let H be a linear space of real valued functions defined on 2
such that any arbitrary constant ¢ € H and if X € H, then | X| € H. We consider that H is the space
of random variables.

Definition 2.1. A functional E : H — R is called sublinear expectation, if for all X, Y in H, ¢ in R
and A > 0, the following properties are satisfied:

(i) (Monotonicity): if X > Y, then E[X] > E[Y];
(ii) (Constant preserving): E|c]

(i) (
(iv)
The triple (2, H,E) is called a sublinear expectation space.

We assume that if X1, Xo,...,X,, € H, then ¢(X1, Xs,...,X,,) € H for each ¢ € Cy 1;p(R™), the
set of functions ¢ : R™ — R satisfying the condition:

&
Sub-additivity): E[X +Y] < E[X]+ E[Y];
v) (Positive homogeneity): E[AX] = AE[X].

p(2) = o(y)] < O+ [2[™ + [y[™)|z —y| for all z,y € R,
where C' is a positive constant and m € N* depending only on ¢.

Definition 2.2. Let X, Y be two n-dimensional random vectors defined on nonlinear expectation
spaces (Q1,H1,Eq1) and (Qso, Ha, Es), respectively. They are called identically distributed, denoted by
X2y, if

Eq[p(Y)] = E1[p(X)] for each ¢ € CpLip(R™).



On the Existence and Stability of Solutions of Stochastic Differential Systems Driven by the G-Brownian Motion 61

Definition 2.3. In a sublinear expectation space (Q,H,E), a random vector Y € H" is said to be
independent of another random vector X € H™ if

E[o(X,Y)] = E[E[p(x,Y)lz=x] V¢ € CoLip(R™ x R).

X is called an independent copy of X if X2 X and X is independent of X.

Let T be a closed bounded and convex subset of Si(d), the set of positive and symmetric d-
dimensional matrices. Let

Z:{'y'yTr: 'yEI‘}
and let G : S;(d) — R is defined by

1
G(A) = 3 Slé? Tr(yyTr A)
¥

Definition 2.4. In a sublinear expectation space (£, H, E), a d-dimensional vector of random vari-
ables X € H? is G-normal distributed if for each ¢ € C 11, (R?), the function u(t, z) = E(p(z+v1tX))
is the unique viscosity solution of the following parabolic equation called the G-heat equation:

Ou = G(D%u), 4
ot (t,z) € Ry x RY,

u(0, ) = o(x),
where D?u = (97, u)}; is the Hessian matrix of u.

Remark 2.5. In fact, if d = 1, we have G(a) = 3(c%a™ — o?a™), where 52 = E[X?], 0? = —E[-X?],
a™ = max(,0) and o~ = max{ @,0} (for more details see [24]). We write X ~ N(0;[a2,5?]).

Definition 2.6. A process (B(t));>0 in a sublinear expectation space (2, H, E) is called a G-Brownian
motion if the following properties are satisfied:

(i) B(0) =0;
(ii) for each t, s > 0, the increment B(t+ s) — B(t) is N(O [025s,525]-distributed and is independent
of (B(t1),...,B(ty)) foreachn e Nand 0 <t; <--- <t¢, <t

We denote by Q = Cy(R) the space of all R-valued continuous functions w defined on Ry such
that w(0) = 0, equipped with the distance

wl,wg ZQ ltrél%)j] (t) — (,dg(t)) A 1|]

For each fixed T > 0, let
Qr = {w(. A7), we},
Lip(Qr) = {@(B(t),. .. B(tw)), m=1, t1,..stm € [0,T), ¢ € Corip(R™)},
where

Lip(Q) = | J Lip(©

In [24], Peng constructs a sublinear expectation E on (2, Lip(£2)) under which the canonical process
(B(t))>0 (i-e., B(t,w) = w(t)) is a G-Brownian motion. In what follows, we consider this G-Brownian
motion.

We denote by LE(Qr), p > 1, the completion of Lip(Q7) under the norm || X||, = (E[| X|])7.
Similarly, we denote by L,(2) the completion space of Lip(Q). It was shown in [28] and [24] that
there exists a family of probability measures P on €2 such that

E[X] = sup EP[X] for X € LL(Q),
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where ET stands for the linear expectation under the probability P. We say that a property holds
quasi surely (q.s.) if it holds for each P € P.
For a finite partition of [0, T], 7p = {to,t1,...,tN}, We set

wu(mr) = max{|ti+1 —t], 0<i<N-— 1}.

Consider the collection M, g’O(O, T) of simple processes defined by

Z gz tb,t,+1[ )

where
& e L (), 0<i<N-1and p>1.

The completion of M%°(0,T) under the norm

nll = {;/TE[M(t)P] dt}

B=

is denoted by MZ(0,T). Note that
ML(0,T) € ME(0,T) for 1 <p<gq.

(
Definition 2.7. For each n € MZ°(0,T), the G-It6 integral is defined by

T N-1
IW%=/W@MB@%=§:MBGHQ—BWD
0 1=0

The mapping 7 — I(n) can be extended continuously to MZ(0,T).
Definition 2.8. The increasing continuous process ((B)(t)):>o with (B)(0) = 0 defined by

(BY(t) = B2(t) — 2 / B(v) dB(v)
0

is called the quadratic variation process of (B(t));>o. Note that (B)(t) can be regarded as the limit
N

in LZ(€) of Zl(B(tf\_]H) — B(t]N))?, where ol = {t{,tIV, ... t}'} is a sequence of partitions of [0, T’
J:

such that p(m®) tends to 0 when N goes to infinity.

The following Burkholder-Davis—-Gundy inequalities play an important role in the study of our
system (see [10] and [29]).

Lemma 2.9. Letp>1,ne MZ(0,T) and 0 < s <t <T. Then

1§CN—W*jMWWﬂm

S

E%w ]wwww>

s<u<t

where Cy > 0 is a constant independent of 1.

Lemma 2.10. Letp > 2, ne€ ML(0,T) and 0 < s <t <T. Then

/un(r) dB(r) p} < C2|t—85_1/tE[l77(U)|”] du,

S S

E{ sup

s<u<t

where Cy > 0 is a constant independent of 1.
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3 Existence and uniqueness results

In this section, we are interested in the study of the existence and uniqueness of the solution to
the SG-SDE (1.2), where the initial condition (X;(0),...,X,(0)) € (RY)" is a given constant and
fii(txe,. .. @) € MA(O, T (RH)™) for 0 <i<3and 1 <j<n.
For system (1.2), the Carathéodory approximation scheme is given as follows. For any integer
k > 1, we define
(XF@),..., XE() = (X1(0),..., X,(0)), if t€]—1,0],

and for ¢ €]0, T], we have

0
t
1 W1
+/f2’1 (S,X1 (s E)’ ce, X (s — E)) d(B)(s)
Ot 1 1
_— k —_—
+/f31(5,X1 (5 k:)’” ,Xn(s k))dB(s),
0
(3.1)
f 1 1
By E(. 1 B, 1
X0 = Xa0) + [ (5. X0 (5= 1) XE(s = 1)) s
0
t
1 1
k(. 1 k(. 1
+/f27n(s,X1 (s=5)r - Xk(s— 1)) aB)s)
0
t
1 1
k. 1+ k(. 1+
+/f3,n(s7X1 (s k) L XE (s k)) dB(s).
0
We assume the following assumptions (A1) and (A2) for f; ;, 0 <i<3and1<j<n:
(A1)
2 - 2
|fij(t i, @0, 20)|” < g(t)(l + Z |51 )
j=1
for each z1,...,z, € R? and t € [0, T], where g is a positive and continuous function on [0, 7.
(A2)
9 n
[Fialtmn ) = frgtnown)F < R0 (D Iy - w1?)
j=1
for each x1,1,...,2Zn,y, € R? and t € [0, 7], where h is a positive and continuous function on
[0,T7.

In the sequel, the space of processes in (M2(0,T;R?))" will be equipped with the norm

05, Xl =B s (3 1Xl)]
j=1

0<t<T

We note that this is a Banach space.
Now, we give first main result of this work.

Theorem 3.1. Under the assumptions (A1) and (A2), system (1.2) has a unique solution g.s.,
(X1(t),- -, Xn(t) € (ME(0, T5RY)".
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In order to prove this theorem, we need some important lemmas.

Lemma 3.2. For all integersn, k> 1 and 0 < s <t < T, we have

where .
K, =1+4Y E[X;(0)]], Cp=4n(T +CiT + Cy).
j=1

n

n
Proof. By using (3.1) and the fact that ( ) aj)2 <n Y a3 for each positive constants a;, 1 < j <n,

j=1 j=1
for all ¢ € [0,T], we have

x50 <4Xj<o>|2+4’/tflﬂ'(”f(s—i)wXﬁ(s‘;))d‘s
0

+ / o (55 (-1 ). XE (s 1) ) B

o [ (o3t (s X ()Y am)]
0

2

which, due to Lemmas 2.9 and 2.10, the G-Hélder inequality and the assumption (A1), implies that

t

0<v<t
0

t

sup E[| X} (v)[*] <4E[|X;(0)] +4(T+01T+02)/9 <1+E[Zn:‘Xk($— )ﬁ)ds

< 4E[|X;(0)] +4(T+C’1T+C’2)/g(s) <1+ sup E[iwf(v)ﬂ) ds

0

Thus

n

0<v<t 0<v<s

Jj=1

1+ sup E{Z\Xk t| } <1+4ZE |X;(0 ]+C’n/g(s)(1+ sup E{Z\Xk })ds,
0

where C,, = 4n(T + C1T + C5). Applying Gronwall’s lemma, we conclude that

1+ sup E{En:\Xjk(v)F] < K, exp (Cn/g(s)ds)
0

o<v<t LI

and, consequently,
T

Lemma 3.3. For all integersn, k> 1 and 0 < s <t < T, we have
B[ S1XE() - XF(s)1P] < LalG(t) — G(s))
j=1

where

0= [aorts and £ =2 1s e (0 [t )|
0 0
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Proof. We have

t
+ [ o (w Xt (0=7) o XE(w=) ) a /fs,]wxl ) X (0= ) ) aB )

and so, for each 0 < s < v <wu <t <T, we have

E[ sup |Xf(u)—X’j(v)|2}§3]E[ sup

s<v<u<t s<v<u<t

/ufl,j(w,Xf<w—;),...,X,’f(w— %))dw

+3E[ sup /quj(w,Xf<w1),...,Xﬁ(w1)>d<B>(w) 2}
s<v<u<t J ' k k
k 1 :
+3EL<§1£Q /fg,] w X1 k) Xk (wfg))dB(w) }

Owing to Lemmas 2.9, 2.10 and the assumption (A1), we obtain

t

E[sgiiggth;{(u) - XF)P] < 3T/Eﬂf1,j(w,xf(w - %)X,’f(w— i))ﬂ dw

+301T/tEUf2,j(w,Xf(w—;),...,X,’f(w— ;))’2] dw
’ t

+3C’2/E“f37j(w,X]’-“<w—;),...7Xﬁ(w—;>)’2] dw

S

3(T+C1T+Cg)/g(w)(1 +E{i ’X]k(w _ ;)’1) dw

s J=
t

< 3(T + C1T + C)[G(E) — G(s)] + 3(T + C1T + Co) /g Z‘xk(w")\ | du.

Using Lemma 3.2, we get

s<v<u<t

T
B[ sup |xXEw) - XE@)P] <3+ T+ Cy) [1 + K, exp (cn /g(t) dt)] G(t) — G(s)].
0
Thus

n T
E| sup |XF(u)—XJ()]?| <3n(T + CiT + Ca) |1+ Kyexp ( Cp [ g(t)dt || [G(t) — G(s)].
> el J st e el oo (0 [or)]

=1 s<v<u<t

Then

n

d_E[XF(1) - XF(s)PP] < LalG(t) - G(s),

j=1
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where
T

= %Cn [1 + K, exp <Cn /g(t) dt)],

0
which proves the desired result. O
Proof of Theorem 3.1. We will prove the theorem in three steps.

Step 1: Suppose that (X1(t),...,Xn(t)) and (Y1(¢),...,Y,(t)) are two solutions of system (1.2)
with the initial conditions (X1(0),...,X,(0)) and (Y1(0),...,Y,(0)), respectively. Then we for 1 <
7 < n, we have

Vi (1) = X;(0) < 41X;(0) - Y;(0)

+ 4 /fljj(s,Xl(s), . ,Xn(S)) — f17j(8,Y1(8), .. ,Yn(s)) ds
0

44 /fg,j(s,xl(s), e X (8)) = Fag (8, Y1(5), -, Yi(s)) d(B)(s)
0

+4 /fgyj(s,Xl(s),...,Xn(s))—f37j(s,Y1(s),...,Yn(s))dB(s)
0

Now, by using Lemmas 2.9, 2.10 and the assumption (A2), for 0 < r <t < T, we have

2

E l ‘ /(f17j(8, Xl(S), . ,XH(S)) — ij(S, Yl(s), ey Yn(S))) ds
0

< T/]E[|f1,j(s,xl(s),...,Xn(s)) ffl,j(s,yl(s),...,Yn(s))ﬂ ds
0

r[re (3 o)X )

/ Fori (5, X0(8)s 2 X(8)) — foog (5, Ya(5), . Ya(s)) d(B) ()

| /\

sup
0<r<t

t

< ClT/IE[‘fg,j(s,Xl(s)7...7Xn(s)) —fg,j(s,yl(s),...,Yn(s))ﬂ ds

<ot [eE](L W) - x,0F)] s

and
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< Cg/h(s)E[(iM(s) —Xj(s)|2)} ds.
j=1
Therefore,

E[ sup [Y;(r) = X, ()]

0<r<t
< 4]Y;(0) ( )|2+4(T+01T+Cz)/h } (s) —Xj(s)ﬂ ds
We obtain 0
[Os<up (Z\Y i(r 2)} < 4Z|Y (0)]* + C / (s )E[iwj(s) —Xj(s)ﬂ ds.
r<t A j=1

Using Gronwall’s lemma, we get

[ sup (an )} < 4Z|Y 0)]2 exp <C’n/h(s) ds).

0<T<t

Now, taking
(X1(0), ..., Xn(0)) = (Y1(0), ..., Yx(0)),

o s, (0500 =0,

0<r<T

we can see that for t =T,

which implies
(X1(2),..., X)) = (Y1(2),...,Yn(t)) q.s. for each t € [0,T].

Step 2: We now prove that (XF(t),..., XE(t))k>1 in (MZ(0,T;R%))™ is a Cauchy sequence for
each t € [0,7]. By the same arguments as those used in the previous step, for each £ > k, we have

E| sup (;mf(t)_xf(t)\?)} < ch/Th(s)E[( ‘Xé(s—z) Xk(s—;)f)} ds.

SQE{ sup (
0<u<s =

using Lemma 3.3 we get

e[ e, (3210 - x50P)]

0<t<T

<

N W

T " T
C’no/h(r)IE[ sup <Z|Xf(u)fXjk(u)|2)] dr+gC’nLn[G<37%) G(sli)}()/h(r)dr.

0<u<r N
j=1
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Thus, by Gronwall’s lemma,

o, (S 310t 0)] <0~ e (G f )

where
M, = TC L, sup [g(¢)] sup [h(t)],
0<t<T 0<t<T
which means that (X7 (¢),..., Xﬁ(t))kzl is a Cauchy sequence.
Step 3: Here we prove that the limit (X;(t),..., X,(t)) in (M&(0,T;RY))™ of (XE(t),..., XE(t))
is the solution of system (1.2). For the existence, let the initial condition (X7(0),...,X,(0)) € (

be a given constant.
This results in

X (u) — XE(u)|? < 3‘ /fl,j (S,Xf (s— %)Xr’j (s - %)) — f1i(5,X1(5), ..., Xp(s)) ds
0

+3‘ /fzvj (s,xf (5 - %) Xk <s - %)) — i (5, X1(5), .., Xn(3)) d(B)(5)
0

+3’/f3,j(s,xf(s— %),...,Xﬁj(s— %)) — fa.3(8, X1(5), - .., Xn(s)) dB(s)
0

Using Lemmas 2.9, 2.10 and the assumption (A2), we have

E[OEEET (1X* (u) — Xj(u)|2)] <3(T + C1T + Cy) /h Z ‘X’? (3 — %) _ Xj(s)ﬂ ds
<u< o j=1
T n
6(T + C1T + @)/h(s)E[Z ‘X]’? (5 - %) — XH(s) 2} ds
0 J=1
T n
F6(T + C1T + Cy) / h(s )E[Z Xk (s) — X; (S)F] ds
0 J=1
Thus, using Lemma 3.3,
T n
e s, (5~ Xs00P)] < T+ G [B] s (3160 - X F)] s
which implies that
e[ s, (3 (X000 = X500)] < 5+ G [HOE s 3 (500 = X0
<u<T VT 5 Suss i)

Applying Gronwall’s lemma again, we get directly

E[ sup (i|X]k(u) fXj(u)\z)} < %exp (3 C’n/h(s) ds),

0<u<T

which shows our result. O
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4 Stability result

In this section, we prove another important result on the stability of the following G-SDEs depending
on a parameter ¢ (¢ > 0) (for more information, see, e.g., [13,15,27,28,30]):

t

Xi(t) +/f11 s, X5(8),. .., X;(s))ds

0

+/f§,1(8aXf(S)7-~in(S))d(B)(S)+/f§,1(8aXf(S)7~~»Xi(8))d3(8)7
0 0

+/f§,n(8,Xf(8),~-,XZ(S))d<B>(8)+/fpf,n(saXf(S)w~»XZ(8))dB(8)~
0 0

We assume the following assumptions (B1), (B2) and (B3) for 0<i<3and1<j<m

Z ]’
(B1)
n
15t < g0 (143 Jal?)
j=1
for each x1, @a,...,7, € R% and t € [0,7], where g is a positive and continuous function on
[0,7].
(B2)
‘fqi](taxlv7xn)_fij(tvy17ayn <h’ (Zly]_x]| )
for each x1,%1,...,Zn,y, € R? and t € [0, 7], where h is a positive and continuous function on
[0,T7.

(B3) (i) Vtelo,T],

e—0
0

lim E[|f§j(s,xf(s),...,Xg(s)) - 3],(5,)(9(5),...,)(2(5))” ds = 0;

(ii)
e—
Remark 4.1. The assumptions (B1) and (B2) guarantee, for any ¢ > 0, the existence of a unique

solution
(X7 (@), ..., X5 () € (M&(0,T; R))"

of our system, while the assumption (B3) allows us to deduce the stability theorem for the system.

The following lemmas are very important, they will be used in the upcoming result. For the proofs
see [15].
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Lemma 4.2. For every p > 1 and for any T > 0 and n € MZ(0,T), we have

T P
E [ ‘ O/n(t) dt
I P
E [ \ / n(t) d(B) ()

Lemma 4.3. For every p > 2, there exists a positive constant C, such that, for any T > 0 and

ne ME(0,T), .,
E n(t) dB(t)
/

Now, we present our second main result of this work.

T
<17 [ B[] ar
0

T
<17 [ B[] ar
0

T
p
<G5 [Enp) d

0

Theorem 4.4. Under the assumptions (B1), (B2) and (B3), we have
vt e [0,7T], hm]E{Z\XE )|}=o.

Proof. For all 1 < j <n, we have
X5(t) = /flj 8, X1(8),...,X5(s))ds
/fzj 5 X5 (s /fgj 6, X5(s),..., X2(s)) dB(s),
X0(t) = X0(0) + / £0(5, X0(s), ..., XO(s)) ds
0

t
+ [ 3,0, X0(s), ..., X](s f95(s,X7(s), ..., X0(s)) dB(s).
/ o+ f

Then

X5(t) — Xj(t) = X3 (0) — X7(0)

(555 X5(5), 0, X)) = £, (5, X0(s), .. X0(5))] ds
+

5505, X5 (5). o X)) = £, (5. XD (s). .. XD(9)) | d(B) (s)

[ [Fs X (), X)) = S5 (5, X0(s), ., X0(s)) | dB(s)

+
S L O O
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and

X5(t) = X9(t) = X5(0) — X7 (0)+

b [ (F505 X5 X35 = 2, (5, X006, X))
g
505 X5 (), Xa(9)) = f5 (5, XE(9), o, X3 (9)) ) ds
+ / (505, X5 (5), - X5()) = £, (5. XD (s), ., XD(5))
g
5 (5, X (5), o X)) = £5 (5. XF(5), 0 X3 (5))) dUB)(s)

[ (F55(5 X5 (), X)) = fi (5, X0(s), 0 X0(9))

o

+ f?f,j(s’Xls(S)7 R 7X75L(5)) - fg,j(SaX16<5)v te 7X7€z(5))> dB(S)

+7

We have
X5 (1) = X7 (1)]* < 7IX5(0) — X7(0)?
j 2
+7 /[ff,j(s,Xf(s),...,XfL(s)) — 555 X0(s), ., X0(5))] ds
0
¢ 2
+7 /[ff,j(s,X?(s),...,Xg(s)) — 19,5, X0(s),. ., X0(5))] ds
0
7] [ [0, 0D X)) = 5,05, X000 ()
0
+7 /[fza,j(s’X?(S)r'ng(S))_fg,j(S’X?(S)""’Xg(S))] d<B>(S)
0
7] [ [5,06,X5 0] Xi0)) = 5,5, X (0) - X209))] B
0
0

(75,05, X0(5), ., X0(8) = £, (5, X0(9),..., X0(s))| dB(s)

Taking the G-expectation on both sides of the above relation, from Lemmas 4.2 and 4.3 we get

EIX5(t) — X7(0)* < TE[|X5(0) — X7(0)[]

t

7T [ B[ (5, X5 (5) o Xi0)) = 5,5, X00), o X0 ] s

0
t
+7T‘/E
)t
t

7T [ B[|f5, (5, X5 (5) o Xi0)) = 15,05, X00), o X2 ] s
0

i 55 X08), - X0()) = 70,5, X0(6), o, X0 ] s
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7T [ B[|f5,(5, X001 X20)) = 12,05, X0(0), ., X0 ] s
0
470 [B[[£5,( X5 0), - X5() = £, X0, X2 | ds
0
+7C/IE:f§’j(s,X?(s)7...7X0( ) = £ (5, X%(s), ..., XO(s)) 2: ds.
0
By the assumptions (B1)—(B3), we obtain
E[|X5(t) — X°()P] < CE(T)+7(2T+C)/E<h(s)Z|X§(s) - XJ(5)2) ds,
0 J=1
where
C*(t) = TE[|X5(0) — X7 (0)[]
+7T/E[ ff,j(&X?(S)v"'vXO( )) flg(s Xl( ) 7X2(8)) 2] ds
+7T/E[ f;,j(&X?(s)"“vXo( )) fQJ(S Xl( ) ’Xg(s)) 2] ds
0
70 [E[|£5,(X00), . X0) — 13,5, X00), .. X2 | ds
0
Then
E[YI1X5(t) - X} < ZEW (1)
< C5(T) + Co(T) / h(s) S E|XS(s) — XO(s)[ ds,
0 j=1
where

Ci(T) =nC*(T) and C,(T) =T((2T + C).
Hence, by Gronwall’s inequality, we have
n T
E[ Y150 - X00)] < Ca(T) exp ( 7) [ ho
0

j=1

Since C5(T) — 0 as € — 0, we finally get
vt e [0,T], hm]E{Zp(e ﬂ—o,

hence the desired result follows.

")

Salim Mesbahi
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1 Introduction
In this article, we study the well-posedness and exponential stability for coupled flexible structure
system with distributed delay in two equations
T2
ma(x)u — (p1(2)uy + 201 (2)Ugt) s + pous + /ul(s)ut(x,t —$)ds =0,
5 (L.1)

mo(2)vy — (p2(T)vy + 202(T) Vet )2 + pove + /,ug(s)vt(x,t —s)ds =0,

T1
where (z,t) € (0, L) x (0,400), with the following initial and boundary conditions:

u(+,0) = up(x), u(-,0)=wui(z), YV e]|0,L],
Lit)=0, Yt>0,

v(-,0) =vo(z), ve(-,0)=wv1(z), Yz €[0,L], (1.2)
v(0,t) =v(L,t) =0, V>0,
ut(x, —t) = fo(z,t), 0<t< 1o,
ve(x, —t) = go(z,t), 0<t <y,

where u(z,t),v(z,t) are the displacements of a particle at position « € (0, L) and time ¢ > 0. ug, vg are
initial data, and fy, go are the history function. The parameters m;(z), d;(x) and p;(z) (for i = 1,2)
are responsible for the non-uniform structure of the body, where m;(z) denotes mass per unit length
of the structure, d;(x) is a coefficient of internal material damping and p;(z) is a positive function
related to the stress acting on the body at a point . We recall the assumptions of the functions
m;(x),0;(x) and p;(x) in [1] such that

mi, 8, pi € WH(0, L), mi(x),d;(x),pi(x) >0, Yo €[0,L] for i=1,2.

The coefficients o, p( are positive constants, and w1, ug : [11;72] — R are the bounded functions,
where 71 and 75 are two real numbers satisfying 0 < 7 < 75. Here, we prove the well-posedness and
stability results for the problem on the under the assumption

o > / a2 ()] ds,
n (1.3)
iy > / l12(s)] ds.

T1

During the last few decades, the theory of stabilisation of flexible structural system has been a
topic of interest in view of vibration control of various structural elements. In [6], Gorain established
the uniform exponential stability of the problem

m(z)uy — (p(z)us + 25(m)um)z = f(z) on (0,L) x RT,

which describes the vibrations of an inhomogeneous flexible structure with an exterior disturbing
force f. Indeed, it is physically relevant to take into account thermal effects in flexible structures: in
2014, M. Siddhartha et al. [9] showed the exponential stability of the vibrations of a inhomogeneous
flexible structure with thermal effect governed by the Fourier law,

m(x)uy — (p(@)uy + 26(2) gt ), + K0, = f,
gt — QM + RUty = 0.
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It is known that the dynamic systems with delay terms have become a major research subject in
the differential equation since the 1970s of the last century (see, e.g., [2-4,7,8,11-15,18]). It may not
only destabilize a system which is asymptotically stable in the absence of delay, but may also lead
to the well-posedness (see [5,17] and the references therein). Therefore, the stability issue of systems
with delay is of great theoretical and practical importance. In [8], the authors consider a non-uniform
flexible structure system with time delay under Cattaneo’s law of heat condition

m(z)uy — (p(x)ug + 20(2)Uugt) s + Nbs + pug(x,t —179) =0, z € (0,L), t>0,
O + Kq + Nute = 0, HASS (0, L), t>0, (14)
TGt + Bq + kO, =0, x € (0,L), t>0,

with the boundary condition
u(0,t) =wu(L,t) =0, 0(0,t) =0(L,t)=0, t>0, (1.5)
and the initial condition
u(z,0) = up(x), u(z,0)=ui(z), 0(x,0)=0o(x), q(z,0) =qo(z), x€[0,L]. (1.6)

They proved that system (1.4)—(1.6) is well-posed, and the system is an exponential decay under a
small condition on time delay. M. S. Alves et al. (see [1]) considered system (1.4)—(1.6) without delay
term, and obtained an exponential stability result for one set of boundary conditions and at least a
polynomial for another set of boundary conditions.

In [14], Nicaise and Pignotti considered the wave equation with linear frictional damping and
internal distributed delay

T2

U — Au+ prug + a(x) /Mg(S)Ut(t —s)ds =0

T1

in  x (0,00), with initial and mixed Dirichlet~Neumann boundary conditions and a as a function,
chosen in an appropriate space. They established exponential stability of the solution under the

assumption
T2

lall [ a(s)ds < .
T1
The authors also obtained the same result when the distributed delay acted on a part of the boundary.
Motivated by the above results, in the present work we consider system (1.1),(1.2), prove the
well-posedness and establish exponential stability results.
We now briefly sketch the outline of the paper. In Section 2, we state and prove the well-posedness

of system (1.1),(1.2) by using the semigroup method. In Section 3, we establish an exponential
stability by using the perturbed energy method and construct some Lyapunov functionals.

2 The well-posedness

In this section, we give a brief idea about the existence and uniqueness of solutions for (1.1),(1.2)
using the semigroup theory [16]. As in [14], we introduce the new variables

z1(x, p,t,8) = ug(x,t — ps), € (0,L), pe(0,1), s€(m,m), t>0,
zo(z, p,t,s) = vz, t —ps), x€(0,L), pe(0,1), se€ (r,m), t>0.

Then we have

szit(z, p,t,s) + zip(z, p,t,s) =0 in (0,L) x (0,1) x (0,00) x (11, 72) for i=1,2.
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Therefore, problem (1.1) takes the form
T
ma(z)uge — (P1(2)ug + 261(2)uzt)z + pour + /ul(S)z1 (z,1,t,8)ds =0,

T1

Szlt('rapvt7 S) + le(‘rv pat7 S) = 07

(2.1)
T2
mao(2)vy — (p2(2)ve + 202(x) Vet )2 + pove + /,ug(s)zz(x, 1,t,8)ds =0,
T1
SZQt(’JJ, pst, S) + ng(.’t, P, t, S) = 07
with the following initial and boundary conditions:
u(+,0) = ug(x), u(-,0)=uy(z), Va €0, L],
u(0,t) = u(L,t) =0, YVt >0,
v(+,0) = vo(x), ve(+,0) =v1(x), Vo €l0,L],
o(0,0) = (L, 1) =0, V120, 0
z1(x,0,t,8) = ug(z,t) on (0,L) x (0,00) x (11, 72), '
z9(x,0,t,8) = ve(x,t) on (0,L) x (0,00) x (11, 72),
Zl(x7p7075) = fO(xaps) on (O7L) X (07 1) (Tlv 2)5
22(337/)7075) = go(z,ps) on (OvL) X (07 1) (7_177—2)
Introducing the vector function U = (u,,21,v,,22)T, where ¢ = wu; and 1) = v;, system
(2.1),(2.2) can be written as
U'(t)+AU({t) =0, t>0, (2:3)
U(O) = UO = (UO,Ul,fO,’UQ,’Ul,gO)T, .

where the operator A is defined by

2
1 Mo 1 7
7m1(95) (p1(x)ug + 201(2)pz)e + (@) p+ (@) /ul(s) 1(z,1,t,8)ds
— 8712’1
AU = I p T
_m;(x) (p2(z)vy + 202(x)1)y) ml:?g:) P+ mzl(x)T/HQ(s)zg(x, 1,t,s)ds
8_122p

Next, we define the energy space as
H = H}(0,L) x L*(0,L) x L*((0, L) x (0,1) x (71,72))
x H3(0,L) x L*(0,L) x L*((0,L) x (0,1) x (71,72)),
equipped with the inner product

L T2

/p1 uxuxdx—F/ml <pdas—|—///s|u1 ) z1(z, p, $)Z1(x, p, 8) dsdp dx

0

+/p2(33)vzvzdw+/ o wz/)dx—i—///smg M z2(z, p, $)2a2(x, p, 8) dsdp dz.

0 0
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Then the domain of A is given by
UcH| uve H*0,L)NHy(0,L), @, € HY(0,L),
D(A) = 21, R1py 225 22p € L2((07 ) (07 1) X (7—177—2))7
z1(x,0,8) = p(x), 2z2(x,0,s) =(x)

Clearly, D(A) is dense in H.
The well-posedness of problem (2.3) is ensured by

Theorem 2.1. Assume that Uy € H and (1.3) holds, then problem (2.3) has a unique solution
U e CRT;H). Moreover, if Uy € D(A), then

UecCRT;DA)NCHRT;H).

Proof. The result follows from the Lumer—Phillips theorem provided we prove that A : D(A) — H is
a maximal monotone operator. First, we prove that A is monotone. For any U = (u, ¢, 21, v, 9, zg)T S
D(A), by using the inner product and integrating by parts, we obtain

L T2

L L
(AU, U)y :2/51(95)50920@34‘/90/Ml(s)zl(x,lats) defU‘i‘Mo/@le‘
0 0 0

T1
L 1

T2 L
[ [ [ hmeateps)zayops) dsdpda 2 [ sa(w)i o
T1 0

0 0

L T2 L L 1 T2
=+ /1/)/#2(5)22(55a 17t78) dsdx +:u6/77[}2 dx + /// \M2(5)|22($,,0, S)ZQp(xapa S) ds ddeC
0 T1 0 0 0 T1

Integrating by parts in p, we have

L 7 1

[ ] [ 1o 5120w p.5)dp ds o
0O m™ O

LTQ

//|,ul (z,1,5) — 2}(,0,s)] dsdx for i=1,2.

Using the fact that z1(z,0,s,t) = ¢ and 22(x,0, s,t) = 1, we obtain

L
(AU,U)H:2/ gozdx—i—/ /ul $)z1(z, 1,1, 8) dsd:z:—i—( 0—7/|u1 |d8>/4p2d$
0

L 1o L T2
+;//|u1( )|zl(x 1,s) dsdx+2/52( )wzder/ijJ/,ug( )zo(x,1,t,8) dsdx
0 m T1

@r/m mﬁ/wmw //m B 1,5) dsda. (2.4)

Now, using Young’s inequality, we can estimate

1 17‘2

L T2 T

1 1
/g@/,ul(s)zl(x,l,t,s) dsdx > —5/\u1(s)\ds/gp2 dx — 5/ |1 (s)|23(x,1,5) dsdx  (2.5)
0 T1 T1 0

0 71
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and

L T2 T2 1 1 7

1 1
/w/pg(s)zg(x,l,t,s) dsdr > —§/|,u2(s)|ds/z/}2da:— 5//|u2(5)|z§(33,1,s) dsdx. (2.6)
0 T1 T1 0 0 71

Substituting (2.5) and (2.6) in (2.4), and using (1.3), we obtain

T2

L
(AU, U) % >2/61 somder(uo—/lm |d8>/<ﬂ2d$
T1 0
+2/52( )¢2dx+<u0 /|u2 ds>/¢2dx>0
0

Hence, A is monotone. Next, we prove that the operator I + A is surjective, i.e., for any F =
(fl» f27 f3a f4v f57 fG)T € H? there exists U = (u7 ¥, 21,0, 'l/}a ZZ)T € D(A) satisfying

I+ AU =F, (2.7)
which is equivalent to
uU—¢= fla

T2

(ma () + po)p — (p1()us + 261(2)pa)s + /Ml(s)zl(x’ L,t,5)ds = mi(z) fa,

™1
sz1 + 21p = S8 f3, (2.8)
U= ’l/) = f4a

2

(ma(x) + po)¥ — (p2(2)va + 202(2)hz)s + /uz(S)Zz(% L t,s)ds = ma(z) fs,

T1

S22 + 22p = Sf6.

Suppose that we have found u and v. Then equations (2.8); and (2.8)4 yield

p=u— f17 (29)
Y =v— fy
It is clear that ¢ € H}(0,L) and v € H(0,L). Equations (2.8)3 and (2.8)s with (2.9), recalling
251(.13, 0,t, S) =¥, ZQ(Z’,O,t, 3) =1, yleld

p

2, pv) = ule)e ?* — fla)e ™ s [ fo(or0)e dr (2.10)

0

and ,
z9(z, p,8) = v(x)e " — fy(x )efszrse*pS/f@(x,T,s)e” dr. (2.11)

0

0 1) X (7’1,7’2)).
2, and inserting (2.9)2 and (2.11) into (2.8)s5, we get

Clearly, z1, 21,, 22, 22, € L*((0,L) x (0,
Inserting (2.9); and (2.10) into (2.

8)
mu — (p1(z)us + 261(2)ps)s = g1,
120 — (p2(2)ve + 202(2)Ys)z = g2,
— Pz = 93,
— Yy = ga,

(2.12)
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where
T2 T2
m = mi(x) + po + /#1(5)673 ds, m2 =ma(x) + pg + //@(5)673 ds,
T1 T1
T2 1
g1 =mf1+mi(x)fa — /Sul(s)efs/f:s(ﬂfm s)e’ dr ds,
T1 0
To 1
g2 = N2 fs + ma(z) f5 — /Sﬂz(S)e_s/fes(ﬂ?,T,S)eTs dr ds,
T1 0

93 = fiz, 91 = faa-
The variational formulation corresponding to equation (2.12) takes the form
B((u,0)T, (@9)7) = G(@ )", (2.13)

where )
B:[Hj(0,L) x Hj(0,L)]” — R

is the bilinear form given by
L L
B((u,v)", (@,0)") =m /uﬂdx + /(pl(m) + 201 (2))ugty, dx
0 0

L L
+ 19 /vT)dx + /(pg(m) + 202(x))v, 0, dz,
0 0
and

G: [Hg(0,L) x Hy(0,L)] — R
is the linear form defined by

L L L L
G(ﬂfﬁ)T :/glﬂdx—i—/gg'ﬁdm—f—/251(x)ggﬂz dm+/252(x)g45m dx.
0 0 0 0

Now, we introduce the Hilbert space V = HJ (0, L) x Hg(0, L) equipped with the norm
1, )T = Nlull3 + [luallz + [[ol13 + lve 13-

It is clear that B(-, -) and G(-) are bounded. Furthermore, we can find that there exists a positive
constant « such that

L L
Bl(w )" (o)) =m [ do+ [(pr(a) +261(2))u do
0 0

L

L
b [ dot [ (a(o) + 22 do > af (w0
0 0

which implies that B(-, -) is coercive.
Consequently, applying the Lax—Milgram lemma, we obtain that (2.13) has a unique solution
(u,0)T e V.
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Then, by substituting u, v into (2.9), we get
¢, € Hy(0,L).
Next, it remains to show that
u,v € H*(0,L) N H(0, L).

Furthermore, if 7 = 0 € HZ (0, L), then (2.13) reduces to

L L L L
/ z) +261(2))ug) ﬁdmz/glﬂdx—/2(51(x)gg)xﬂdx—m/uﬁd$
0 0 0 0

for all u in H}(0, L), which implies
[(p1(z) + 251(95))%]1 =nmu— g1+ 2(01(x)gs). € L*(0,L).
Thus, by the L? theory for the linear elliptic equations, we obtain
u € H?*(0,L) N H}(0,L).

In a similar way, we have
v € H*(0,L)N Hy(0,L).

Finally, the application of the classical regularity theory for the linear elliptic equations guarantees
the existence of unique solution U € D(.A) which satisfies (2.7). Therefore, the operator A is maximal.
Hence, the result of Theorem 2.1 follows. O

3 Exponential stability

In this section, we prove the exponential decay for problem (2.1), (2.2). This will be achieved by using
the perturbed energy method. We define the energy functional E(t) as

E(t) = Ex(t) + Ea(t),

L L 1 7
1 1
El(t)zi/[ml( Jui + pi(x +§///s\u1 )23 (2, p, 2, t) ds dp de,
0 00 7 (3.1)
1 L L 1 T2
Es(t) = 5/ [ma(2)uf + pa(x)ul] do + = ///s\ug )23 (x, p, 2, t) ds dp de.
0

We have the following exponentially stable result.

Theorem 3.1. Let (u,us, 21,0, 04, 22) be a solution of (2.1),(2.2) and assume that (1.3) holds. Then
there exists positive constants \g, A1 such that the energy E(t) associated with problem (2.1),(2.2)
satisfies

E(t) < Xoe™ M, t > 0. (3.2)

To prove this result, we will state and prove some useful lemmas in advance.

Lemma 3.2 (Poincaré-type Scheeffer’s inequality, [10]). Let h € H}(0,L). Then

L L2 L
/\h|2dx < p/|hz|2dx. (3.3)
0 0
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Lemma 3.3 (Mean value theorem, [1]). Let (u,us,v,v:) be a solution to system (1.1),(1.2) with
an initial datum in D(A). Then, for any t > 0, there exists a sequence of real numbers (depending on
t), denoted by (;,& € [0,L)(i =1,...,6), such that

L L

L L
/p1 (z)u dx = p1(¢1) / u? de, my (z)u? de = my((2) / u? d,
0

L

0 0

0

L ’ L L
mi(z)u? dz = m1(G) [ u?de, S1(x)u? de = 61(¢) | u?de,
j fou | ]
L L

0
L L

/51(:17)u§ dx :51(C5)/u32€ dx, /51(x)uit dr = 51((6)/uit dx,

0 0 0 0

L

/

L L

Lemma 3.4. Let (u,us, 21,0, 0¢,22) be a solution of (2.1),(2.2). Then the energy functional satisfies

E'(t) = E}(t) + E{(t) <0, YVt >0,
L T2 L
E(t) < —2/51(x)uitdx+ (/|,u1(s)|dsuo> /utzdx <0,
0 T1 0

L T2 L
Ey(t) < —2/62(x)vgtdx+ (/|u2(s)ds—u6) /vtzdx <0.
0 T1 0

Proof. Multiplying (2.1); and (2.1)3 by u; and v, respectively, and integrating over (0, L), using
integration by parts and the boundary conditions in (2.2), we get

L
1d
3 %/ [ma (2)uf + p1(z)ul] do
0
L L L T2
=— 2/51(x)u2t dx — ,uo/ut2 dx — /ut /ul(s)zl(m, 1,t,s) dsdx, (3.4)
0 0 0 1
1d r
3 @/ [ma(2)v] + po(2)v2] d
0
L L L T2
=— 2/(52(;6)1}% dx — g /vf dx — /Ut/MQ(S)ZQ(J], 1,t,s) dsdx. (3.5)
0 0 0 n

On the other hand, multiplying (2.1)2 and (2.1)4 by |u1(s)|z1 and |u2(s)|z2, respectively, and
integrating over (0,L) x (0,1) x (1, 72), and recalling z1(z,0,t,s) = us and z3(z,0,t,8) = v, we
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obtain

sl (s)|z2(, p, 5,1) ds dp da

N —
Sl
Tt~
o—__
j\,j

LT2

l\D\H

0

slu2(s)|25 (z, p, 5,1) ds dp dz

N | =
SIS
St~
o —__
J\g

e

L 1
1
= 5//\,ug V|22 (x,1,5,t) dsdx + = / /\,uQ )| ds da.

T1

0
A combination of (3.4) and (3.6) gives
L

L L T2
1(t) :—2/51(x)uitdx—,u()/ufda:—/ut/u1(s)zl(x,l,t,s) dsdx
0 T1

L 7o

0
Also, (3.5) and (3.7) give

L T2

L L
EL(t) :—2/52(x)v§t alac—,uf)/vt2 dx—/vt/ug(s)zg(x,l,t,s) ds dx
0 0

0 T1

L’Tz L

—*//‘/.tg V|23 (2,1, 8,t) dsdx + = /|u2 |ds/vt dx.

0 0

Now, using Young’s inequality, we obtain

//\,ul 22(x,1,5,t) dsdx + = /ut/\ul )| dsdzx,

L
—7//|u1 W22 (x,1,5,t) dsda + — /|u1 |ds/utdx
0

(3.8)

/ut/m s)z1(x, 1,t,8) dsdr < = /|u1 |ds/ut dx + = //|u1 V22 (x,1,8) dsdx, (3.10)
1 2 1 2
— | v ,ug(s)ZQ(x7 1,t,8) dsdx < 3 |u2(s)| ds [ v; dz+ 3 |,u2(s)\zz(x, 1,8) dsdx. (3.11)
0 1 1 0 0 7m

Substituting (3.10) into (3.8), (3.11) into (3.9), and using (1.3), we obtain (3.4), which completes

the proof.

O

Next, in order to construct a Lyapunov functional equivalent to the energy, we prove several
lemmas with the purpose of creating negative counterparts of the terms that appear in the energy.

Lemma 3.5. Let (u,uy, 21, v, v, 22) be a solution of (2.1),(2.2). Then the functions

L

L(t) = /61(x)ufc dz+/Lm1(:1:)utud:c,

L

0
Fi(t) = /Lég(x)vg der/mg(x)vtv dx
0

0
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satisfy, for all e1,e9 > 0 and &), e} > 0, the estimates

L L
LZ;LQ L2€2
I{(t) < - (pl((l) - 7T20 &1 — 2 )/Uidl’+ (m1 CQ 461 /u dx
0 0
L T2
Mo 9
+— |1 (9)]21(x, 1, 8,t) ds duz, (3.12)
452
0 71
L L

L2 /2 LQE/ 1
Fi(t) < - (pz(ﬁl) - WZO €1~ 722) /Ui dr + (mz(ﬁz) 1

—l——,) v? dx
e 51

0 0
L T2

!/
+%//|M2(S)Izg(w,1,s,t) ds du. (3.13)
“2 0 71

Proof. By differentiating I (t) with respect to ¢, using (2.1); and integrating by parts, we obtain

L

L L L
—/pl(x)ui dx—,uo/utudx— /u/ul(s)zl(x,l,sj) dsdx—l—/ml(x)uf dx.
0 0 0 ™ 0
By using Young’s inequality, Lemma 3.2 and (1.3)1, for 1,62 > 0 we get
L 122 L . L
I
—,uo/utudx < W2061/ui dz + 4—51/1& dz, (3.14)
0 0
L T2 L L T2
f/u/ul(s)zl(x,l,s,t) ,uo //Wl )23 (2,1, 5,t) ds da. (3.15)
0 T1

0

T1
Consequently, using Lemma 3.3, (3.14) and (3.15), we establish (3.12).
Similarly, we prove (3.13).

Lemma 3.6. Let (u,uq, z1,v, v, 22) be a solution of (2.1),(2.2). Then the functions

T2

/ se™|un (5)]22 (2, py 5. 1) ds dpda,

T1

[ s P a(s) e p.5,1) dsdpda,

T1

1
0

1 72
0

satisfy, for some positive constants ny and no, the estimates

1

o/

T2 L

[ @)z e 1 s,0) dsdo o [ o da. (3.16)
T1 0

1
o/
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L T2 L
—ng//mg(s)\zg(:ﬂ,l,s,t) dsdx—i—,u{)/fvf dz. (3.17)
0 71 0

Proof. By differentiating Io(t) with respect to ¢ and using equation (2.1)2, we obtain

T2

L1
_ —2/// TP pa ()21 (x, py 8, 0)21,(2, p, s, t) dsdp da
00

T1

T2 T2

L 1 L 1
d
(Tp/// | (s)|25 (2, p, 5, t) dsdp dx — ///se 111 (3) |22 (2 o5, 1) dis dp e
0 0 0 0

T1 T1

L T2 L 1 T2
//|,u1 H(x,1,8,t) — 23 (2,0, t)]dsdx—///se |y (s)|21(z, p, 5,t) ds dp da.
0 0 T1

Using the fact that z1(x,0,s,t) = u; and e™* < e %" < 1, for all 0 < p < 1, we obtain

L 7o
Ii(t) < —//e_s|u1(s)|zf(a:,17s,t) dsdx

0 71
L 1 T2
/|p1 |d5/ut dx — ///se*SP|u1(s)|zf(x,p,s,t) dsdpdzx.
0 T

Since —e™* is an increasing function, we have —e™* < —e™™ for all s € |1y, T3].
Finally, setting n; = e~ ™ and recalling (1.3);, we obtain (3.16).
Similarly, we prove (3.17). O

Next, we define a Lyapunov functional L and show that it is equivalent to the energy functional E.
Lemma 3.7. Let N, N1, Ny > 0 and a functional be defined by
L(t) .= NE(t) + I, (t) + N112(t) + Fi(t) + NaFa(t). (3.18)
For two positive constants c¢1 and cs, we have
aEt) < L(t) < cE(t), Vt>0. (3.19)

Proof. Let
,C(t) = Il(t) + Nllg(t) + Fl(t) + NQFQ(t)

Then

L

/ u dr + = /m1 utdx—|— /m1 uda:

0

+N1///s|,u1 )22 (x, p, 5, 1) dsdpdx+/5g )2 dr + = / o(z)v} da

L 1

1
—|—§/m( ) dl’-‘er///S“,LQ V23 (x, p,s,t) dsdpdr < ' Ei(t) + " Fay(t) < coE(t),
0 0 0 71
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where ¢p = max{c, "}, with

L*m(C3) n 201(¢s)
™pi(¢)  pi(G)

Consequently, |L(t) — NE(t)| < coE(t), which yields
(N = o) E(t) < L(t) < (N + o) E({).

7 L2m2(£3) + 252(55)

= 2Ns.
t w2pa(&1) p2(&1) LR

C/:1+ +2N1a

Choosing N large enough, we obtain estimate (3.19). O
Now, we prove the main result of this section.

Proof of Theorem 3.1. Differentiating (3.18) and recalling (3.4), (3.12), (3.13), (3.16) and (3.17), we
obtain

'(t)s[(]2|u1<s>dsuo) + (ma(G) + 42 + Nawo] / 3 da
1 0

L

L
L2 2 L2
—[p1(C1)— 5051——262}/7126&3—2]\7/611‘112 dx
T ™

0
L1T2 LTQ

—nlNl///s|u1 V23 (x, p, 5, 1) dsdpdm— nlNl—— //|u1 22 (2,1, 5,t) dsdx
L
[ oias =) + (e + ) + i) [ 2
T1 0

L
L2 2 L2
- [pz(fl) - /;O el — Fsé] /vfc dx — 2N/52(x)v§t dx
0 0

™
L 1 T2 , L T2
fn2N2///s|u2(s)|z§(x,p,s,t) dsdpdx — [nQN *f?(i} //|u2(s)|z§(x,1,s,t) dsdzx.
2
0 0 7 0 7

Using Lemma 3.2 and Lemma 3.3, we get

L L
L? 1 L? L2ud
Ll(t) < - |:’YIN - F (ml(Cz) + E ,UO ] /’LL zdit - |:p1 Cl) 2 81 - 52:| /u dx
0 0

L T2
—nlNl///sml )22(x, p,s,t) dsdpda — [nlNl - — //|u1 22(x,1,5,t) dsdx

0 0 7 0 71

L? 1 i L2 r
u ug
|:"}/2N - — (m2(§2) 45’1 0 NQ] /uir dxr — [pg (&) - 3 — € } /
0 0
L T2
*TlQNQ///SLUQ V|22 (xz, p,s,t) dsdpdx — |:TL2N - — //|u2 )|22(2,1,5,t) dsdx, (3.20)
00mn 0

where

2/ f
n=20(60) - 5 (/ml(s)ws—uo) >0,

T1
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2/ 7
2= 260(60) ~ 5 ( [l ds = ) > .

At this point, we need to choose our constants very carefully.
2 2
First, we choose €2 < 77zp1(¢1) and & < F=p2(&1) so that
L? p1(¢1) L p2(&1)

/
p1(C1) — 32> T, p2(&1) — 552>

Next, we choose N7 and Ny large enough so that

/

Fo .

Tlllef?o >0, TLQNQ*H
2 2

Then, we choose €1 and ¢ small enough satisfying

pi(G) L p2(&)  LPug

5 = €1 >0, > 2 g1 > 0.
Finally, we choose N large enough so that
L? 1 L2
N - — ( —) ——— N1 >0,
Y1 7'(‘2 m1(<2) + 461 772 1>

12 1\ L2
N-= ( —) )
V2 = ma(&2) + i — N2>

By (3.1), we deduce that there exists a positive constant ¢z such that (3.20) becomes

L'(t) < —c3E(t), Vt>0. (3.21)
The combination of (3.19) and (3.21) gives

L'(t) < =X\ L(t), ¥Vt >0, (3.22)

where A\; = 2. Then a simple integration of (3.22) over (0,t) yields

2

a1 E(t) < L(t) < L(0)e™ !, Vit >0. (3.23)

Finally, combining (3.19) and (3.23), we obtain (3.2) with A\g = 62151(0), which completes the

proof. O
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STUDY OF STABILITY IN NONLINEAR
NEUTRAL DYNAMIC EQUATIONS USING
KRASNOSELSKII-BURTON’S FIXED POINT THEOREM



Abstract. Let T be an unbounded above and below time scale such that 0 € T. Let id—7 : [0,00)NT
be such that (id—7)([0,00)NT) is a time scale. We use Krasnoselskii-Burton’s fixed point theorem to
obtain stability results about the zero solution for the following nonlinear neutral dynamic equation
with a variable delay:

22 (t) = —a(t)h(z7 (1) + Q(t, z(t — 7(£))> + G(t, z(t), z(t — T(t)))

The stability of the zero solution of this equation is provided by h(0) = Q(¢,0) = G(¢,0,0) = 0. The
Carathéodory condition is used for the functions @) and G. The results obtained here extend the work
of Mesmouli, Ardjouni and Djoudi [21].
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1 Introduction

The concept of time scales analysis is a fairly new idea. In 1988, it was introduced by the German
mathematician Stefan Hilger in his Ph.D. thesis [17]. It combines the traditional areas of continuous
and discrete analysis into one theory. After the publication of two textbooks in this area by Bohner
and Peterson [9] and [10], more and more researchers were getting involved in this fast-growing field
of mathematics. The study of dynamic equations brings together the traditional research areas of
differential and difference equations. It allows one to handle these two research areas simultaneously,
hence shedding light on the reasons for their seeming discrepancies. In fact, many new results for
the continuous and discrete cases have been obtained by studying the more general time scales case
(see [1,4-6,18] and the references therein).

There is no doubt that the Lyapunov method have been used successfully to investigate stability
properties of wide variety of ordinary, functional and partial equations. Nevertheless, the application
of this method to the problem of stability in differential equations with a delay has encountered serious
difficulties if the delay is unbounded or if the equation has an unbounded term. It has been noticed
that some of theses difficulties vanish by using the fixed point technic. Other advantages of fixed point
theory over Lyapunov’s method is that the conditions of the former are average, while those of the
latter are pointwise (see [2—4,6-8,12-15,18-22] and the references therein).

In this paper, we consider the nonlinear neutral dynamic equations with a variable delay given by

2(t) = —a(t)h(z7 (1)) + (Qt, z(t — 7(£)))™ + G (¢, z(t), x(t — 7(¢))), (1.1)
with an assumed initial function
z(t) = Y(t), t € [mo,0]NT,

where T is an unbounded above and below time scale such that 0 € T.

Our purpose here is to use a modification of Krasnoselskii’s fixed point theorem due to Burton
(see [12, Theorem 3]) to show the asymptotic stability and the stability of the zero solution for equation
(1.1). Clearly, the present problem is totally nonlinear so that the variation of parameters cannot be
applied directly. Then we resort to the idea of adding and subtracting a linear term. As is noted by
T. A. Burton in [12], the added term destroys a contraction already present in part of the equation
but it replaces it with the so-called large contraction mapping which is suitable for the fixed point
theory. During the process we have to transform (1.1) into an integral equation written as a sum
of two mappings; one is a large contraction and the other is compact. After that, we use a variant
of Krasnoselskii’s fixed point theorem to show the asymptotic stability and the stability of the zero
solution for equation (1.1). In the special case T = R, Mesmouli, Ardjouni and Djoudi [21] show that
the zero solution of (1.1) is asymptotically stable by using Krasnoselskii-Burton’s fixed point theorem.
Then the results presented in this paper extend the main results obtained in [21].

The paper is organized as follows. In Section 2, we present some preliminary material that we will
need through the remainder of the paper. We will state some facts about the exponential function on a
time scale. In Section 3, we present the inversion of (1.1) and state the modification of Krasnoselskii’s
fixed point theorem established by Burton (see [10, Theorem 3] and [14]). For details on Krasnoselskii’s
theorem, we refer the reader to [23]. We present our main results on the stability in Section 4.

In this paper, we give the assumptions below that will be used in the main results.

7 :[0,00) NT — T is a positive rig ense continuous (rd-continuous) function, id — 7 :

H1 0 T T i iti ight d ti d-conti functi id
[0,00) NT — T is an increasing mapping such that (id — 7)([0,00) N T) is closed, where id is the
identity function. Moreover, there exists a constant I > 0 such that for 0 < t; < tg

[7(t2) — 7(t1)] < l2fts — ta].
(H2) 9 : [mp,0] NT — R is a rd-continuous function with mg = —7(0).

(H3) a:[0,00)NT — (0,00) is a bounded rd-continuous function and there exists a constant I3 > 0

such that for 0 < 1 < tg,
to

/ a(u) Au

t1

<Iglty — t].
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(H4) @ : T xR — R is a Lipschitz continuous function and Q(¢,0) = 0, that is, for ¢;,t2 > 0 and
z,y € [-R, R], where R € (0, 1], there exist the constants ly, Eg > 0 such that

|Q(t1, ) — Q(t2, y)| < lolts — ta| + Eglz —y.

Also, @ is a bounded function satisfying the Carathéodory condition with respect to L} ([0, 00)N

T) such that
QU p(t = T(0)] < ar(H) < T R,

where o is a positive constant.

(H5) The function G : T xR xR — R satisfies the Carathéodory condition with respect to L} ([0, 00)N
T), G/a is a bounded function and G(¢,0,0) = 0 such that for ¢t > 0,

G(t,o(t), ot = 7(1)] < 95 5(t) < aza(t)R,
where as is a positive constant.

(H6) There exists a constant J > 3 such that
J(ar +ag) <1

and

2
(EQ + Eng)ll + 1o+ 3R(% + as + j)l?’ <,

where [ is a positive constant.

(H7) h : R — R is continuous and strictly increasing on [—R, R], h(0) = 0, h is differentiable on
(=R, R) with h/(x) <1 for z € (—R, R).

(H8) For v > 0 small enough,

2
1+ Eqly+ (Eg + Egla)lh + 1o + 3R(% +as + j)ls <lh

and

3R
[1+ Bqheea(t,0) + 2 < R

Also,
2R
max {|H(-R)||[H(R)|} < 22,

where H(z) = z° — h(z7).

(H9) t — 7(t) = 00, eca(t,0) — 0, qr(t) — 0 and gf(i%(t) — 0 as t — oo.

2 Preliminaries

In this section, we consider some advanced topics in the theory of dynamic equations on a time scales.
Again, we remind that for a review of this topic we direct the reader to the monographs of Bohner
and Peterson [9] and [10].

A time scale T is a closed nonempty subset of R. For ¢t € T, the forward jump operator o
and the backward jump operator p, respectively, are defined as o(t) = inf{s € T : s > t} and
p(t) = sup{s € T : s < t}. These operators allow the elements in the time scale to be classified as
follows. We say t is right scattered if o(t) > t and right dense if o(t) = ¢t. We say t is left scattered if
p(t) <t and left dense if p(t) = t. The graininess function p : T —[0, 00) is defined by u(t) = o(t) — ¢
and gives the distance between an element and its successor. We set inf @ = sup T and sup @ = infT.
If T has a left scattered maximum M, we define T* = T\ {M}. Otherwise, we define T = T. If T
has a right scattered minimum m, we define T, = T \ {m}. Otherwise, we define T}, = T.
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Let t € T* and let f : T — R. The delta derivative of f(t), denoted by f2(t), is defined to be the
number (if any) with the property that for each € > 0, there is a neighborhood U of ¢ such that

[f(o() = f(s5) = fAWD[o(t) - s]| <elo(t) 5|

for all s € U. If T = R, then f2(t) = f’(t) is the usual derivative. If T = Z, then f2(t) = Af(t) =
ft+1)— f(¢) is the forward difference of f at t.

A function f is rd-continuous, f € C,q = Cyq(T,R), if it is continuous at every right dense point
t € T and its left-hand limits exist at each left dense point ¢ € T. The function f : T — R is
differentiable on T* provided f2(t) exists for all t € T*.

We are now ready to state some properties of the delta-derivative of f. Note that f7(t) = f(o(t)).

Theorem 2.1 ([9, Theorem 1.20]). Assume f,g: T — R are differentiable at t € T* and let a be a
scalar.

() (f+9)2(#) = f2(1) + 92(1).
(it) (af)2(t) = af2(t).
(iii) The product rules

(iv) If g(t)g°(t) # 0, then

A ) — FB)eA )
(5) 0= rw

The next theorem is the chain rule on time scales (see [9, Theorem 1.93]).

Theorem 2.2 (Chain Rule). Assume v: T — R is strictly increasing and T := v(T) is a time scale.
Let w: T — R. If v2(t) and w™(v(t)) exist fort € T, then

A A

(wov)> = (wh ov)v™.

In the sequel, we will need to differentiate and integrate functions of the form f(t—7(t)) = f(v(t)),
where v(t) :=t — 7(t). Our next theorem is the substitution rule (see [9, Theorem 1.98]).

Theorem 2.3 (Substitution). Assume v: T — R is strictly increasing and T := v(T) is a time scale.
If f: T — R is an rd-continuous function and v is differentiable with an rd-continuous derivative,
then for a,b € T,
b v(b)
[ronrwac= [ (fou s
a v(a)

A function p : T — R is said to be regressive provided 1+ u(t)p(t) # 0 for all t € T*. The set of
all regressive rd-continuous functions f : T — R is denoted by R. The set of all positively regressive
functions R+ is given by RT={feR : 1+u(t)f(t)> 0 for all t € T}.

Let p € R and pu(t) # 0 for all t € T. The exponential function on T is defined by

e(t,s) = exp ( j M(lz) 10g(1+u(z)p(z))Az>.

S

It is well known that if p € R™, then e,(t,s) > 0 for all ¢t € T. Also, the exponential function
y(t) = e,(t, s) is the solution to the initial value problem y® = p(t)y, y(s) = 1. Other properties of
the exponential function are given by the following lemma.
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Lemma 2.1 ([9, Theorem 2.36]). Let p,q € R. Then
(i) eo(t,s) =1 and ey(t,t) =1,
(i) ep(a(t),s) = (1 + p(t)p(t))ep(t, s),

s t
(i) —2 5= op(t, s), where Op(t) = _%’

»(t,
( ) ( ) = ep(s D e@p(svt);
(v) ep(t, s)ep(s,m) = ep(t,T),

(vi) 6?(',8) =pey(-,s) and (ﬁ)A = 7%.

Lemma 2.2 ([1]). Ifp € R*, then

¢
0 <ep(t,s) <exp (/p(u) Au), vteT.

Corollary 2.1 ([1]). If pe RT and p(t) < 0 for allt € T, then for all s € T with s <t we have

0 < ep(t,s) <exp (]p(u) Au) <1

S

3 The inversion and the fixed point theorem

We begin this section with the following

Lemma 3.1. z is a solution of equation (1.1) if and only if
z(t) = [¢(0) — Q(0,%(—7(0)))] eca(t, 0) + /a(3)€9a(tv s)H(z(s)) As + Q(t, z(t — 7(t)))
0

+ /e@a(t, s) [ —a(8)Q%(s,z(s — 7(s))) + G(s, x(s),x(s — T(S)))} As, (3.1)
0
where
H(z) =27 — h(z?). (3.2)

Proof. Let x be a solution of (1.1). Rewrite equation (1.1) as

(z(t) — Qt,x(t — 7(t ) [ t) ( ) (t*T( )))]
= a(t) [m" )] - x(t—7(t)) + G(t z(t),z(t — 7(t))).

Multiplying both sides of the above equation by e, (¢,0) and then integrating from 0 to ¢, we obtain

t t

/ ((2(s) — Q(s, (s — 7(5))))ea(s,0)) > As = / a($)[27(s) — h(2° ()] eals,0) As

0 0

+/ 5)Q7 (s, (s — 7(s))) + G(s, z(s), x(s — T(s)))}ea(s,()) As.

0
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As a consequence, we arrive at

[2(t) = Q(t,z(t — 7(1))] ea(t, 0) — ¥(0) + Q(0, ¥(—7(0)))

/ a(s)[27 () — h(2” (5))]ea (s, 0) As
0

n / [ — a(3)Q7 (s, (s — 7(s))) + G (s, (), x(s — T(s)))} ea(s,0), As.
0

By dividing both sides of the above equation by e,(¢,0), we obtain
a(t) — Qt, x(t — 7(t))) — [#(0) — Q(0,9(~7(0)))]eea(t, 0)

t

- / a(3)a” (5) — h(2(5))]eca(t, s) As
0

+ / = al9)Q7 (s,2(s = 7()) + G(s,2(s), w(s = 7(5))) [ecalt,s) s, (3.3)

0
The converse implication is easily obtained and the proof is complete. O
Now, we give some definitions which will be used in this paper.

Definition 3.1. The map f :[0,00) N T x R™ — R is an L}4-Carathéodory function if it satisfies the
following conditions:

(i) for each z € R™, the mapping ¢t — f(t, z) is A-measurable,
(ii) for almost all ¢ € [0,00) N'T, the mapping z — f(t, z) is continuous on R™,

(iii) for each 7 > 0, there exists a,. € L4 ([0,00) N T,RT) such that for almost all ¢ € [0,00) N'T and
for all z such that |z|] < r, we have |f(t, z)| < a,(t).

T. A. Burton studied the theorem of Krasnoselskii (see [14] and [23]) and observed (see [11]) that
Krasnoselskii’s result may be more interesting in applications with certain changes, and formulated
Theorem 3.1 below (see [11] for its proof).

Definition 3.2. Let (M, d) be a metric space and assume that B : M — M. B is said to be a large
contraction if for ¢, ¢ € M, with ¢ # ¢, we have d(By, Bp) < d(p,¢), and if Ve > 0, 3§ < 1 such
that

(0,0 € M, d(p,¢) > ] => d(Bp, Bo) < §d(¢p, ¢).

It is proved in [11] that a large contraction defined on a closed bounded and complete metric space
has a unique fixed point.

Theorem 3.1 (Krasnoselskii-Burton). Let M be a closed bounded convexr nonempty subset of a
Banach space (x, || - ||). Suppose that A and B map M into M such that

(i) A is continuous and AM is contained in a compact subset of M,
(ii) B is large contraction,

(iii) x,y € M, implies Az + By € M.

Then there exists z € M with z = Az + Bz.

Here we manipulate the function spaces defined on infinite ¢-intervals. So, for the compactness,
we need an extension of Arzela—Ascoli’s theorem. This extension is taken from [14, Theorem 1.2.2,
p. 20] and is presented as follows.
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Theorem 3.2. Let ¢ : [0,00) N T — RY be an rd-continuous function such that q(t) — 0 as t — co.
If {pn(t)} is an equicontinuous sequence of R™-valued functions on [0,00) N'T with |p,(t)| < ¢(t) for
t € [0,00)N'T, then there is a subsequence that converges uniformly on [0,00) N'T to an rd-continuous
function o(t) with |o(t)] < q(t) for [0,00) NT, where | - | denotes the Fuclidean norm on R™.

4 The stability by Krasnoselskii—-Burton’s theorem

From the existence theory, which can be found in [14] or [16], we conclude that for each rd-continuous
initial function ¢ € Crq([mo,0]N'T,R), there exists an rd-continuous solution (¢, 0, 1) which satisfies
(1.1) on an interval [0,0) N'T for some o > 0 and z(¢,0,) = ¥(t), t € [mg,0]NT. We refer the reader
to [14] for the stability definitions.

Definition 4.1. The zero solution of (1.1) is said to be stable at ¢t = 0 if for each € > 0, there exists
d > 0 such that v : [mg, 0] N'T — (=4, ) implies that |z(t)] < e for t > my.

Definition 4.2. The zero solution of (1.1) is said to be asymptotically stable if it is stable at t = 0
and there exists 6 > 0 such that for any rd-continuous function ¢ : [mg,0]NT — (=4, J), the solution
x with x(t) = ¥(¢) on [mo,0] N'T tends to zero as t — co.

To apply Theorem 3.1, we need to define a Banach space x, a closed bounded convex subset M
of x and construct two mappings; one large contraction and the other a compact operator. So, let
w : [mg,00) NT — [1,00) be any strictly increasing and rd-continuous function with w(mg) = 1,
w(t) = oo as t — co. Let (S,| - |,) be the Banach space of rd-continuous ¢ : [mg,00) N T — R for
which

‘W'w = sup

thO

ol

Let R € (0,1] and define the set

M = {cp € S : s l3-Lipschitzian,

lp(t)] < R, t € [mo,00) NT and p(t) = 9(t) if t € [mo, 0] N ’]I‘}.
Clearly, if {¢,} is a sequence of [;-Lipschitzian functions converging to some function ¢, then

lo(t) — @(s)] = |o(t) — on(t) + on(t) — on(s) + onls) — ©(s)]
< p(t) = o)) + lon(t) = pn(s)| + |nls) — ¢(s)]
S ll|t — 5‘

as n — oo, which implies that ¢ is [;-Lipschitzian. It is clear that M is closed convex and bounded.
For ¢ € M and t > 0, we define by (3.1) the mapping P : M — S as follows:

t

(Pe)(t) = [#(0) — Q0,4 (—7(0)))] esa(t, 0) + /G(S)eea(t s)H(p(s)) As + Q(t, p(t — 7(1)))

0

+ [ cealtis)] = a(s)Q7(s. 005 = () + G, pls) ol = () As. ()

Therefore, we express mapping (4.1) as

Py =Ap+ By,
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where A, B : M — S are given by
(Ap)(t) = Q(t, p(t — (1))

t

+ [ cealtin)] = a(s)Q7 (5.0l = 7)) + Glsvpls) ol — ()| As (42)
0

(Be)(t) = [4(0) — Q(0,4(~7(0)))]ecalt, 0) +/a(8)6ea(t7S)H(90(8))A8- (4.3)

0

By applying Theorem 3.1, we need to prove that P has a fixed point ¢ on the set M, where
x(t,0,9) = p(t) for t > 0and z(t, 0,v¢) = ¥(t) on [mg, 0]NT, x(t, 0,) satisfies (1.1) and |x(¢,0,¢)| < R
with R € (0,1].

By a series of steps we will prove the fulfillment of (i), (ii) and (iii) of Theorem 3.1.

Lemma 4.1. For A defined in (4.2), suppose that (H1)—(H6) hold. Then A : M — M and A is
continuous and AM is contained in a compact subset of M.

Proof. Let A be defined by (4.2). Then for any ¢ € M, we have
|(Ap)(t)] < |Q(t, o(t — 7(1)))]

+ [ cealt)[als)Q7 (s, s = (6] + G s (o) s = 7(51) | As

t

< an(t) + R [ coult,s)(als)

0

R(S) 93 (s)
m TR

aq aq R
As<Mp ™ <2 R
) s<GR+FR+aR<S <R

That is, |(A@)(t)] < R. Second, we show that for any ¢ € M, the function Ay is I;-Lipschitzian. Let
p € M, and let 0 <ty < to, then

|(Ap)(ta) = (A9) (t1)] < |QUta: plta = 7(t2))) = Qb1 (b = 7(21)))|
] [ eeattars)] = a9 (pts 760 + Glosple) (s = 7(6))] s

0
t1

= [ coultr, )| = 9@ (s, pls = () + 65,06, (s — 7(s)) ] As|.
0

(4.4)

By hypotheses (H1), (H3) and (H4), we have
Qlta, otz = (1)) = Qt1, ot = (1))

< lo‘tg — t1| + EQZ1|(t2 - tl) — (T(tg) - T(tl))’ < (lo + EQll + EQ1112)|t2 — tl‘, (45)

where [; is the Lipschitz constant of ¢. In the same way, by (H3)—(H5), we have

| / coaltz,s) | — al9)Q7 (5,05 = 7(5))) + G (s, (5), (s — 7(5))) | As
0

t1

= [ cealtis)] - al)Q7(supls = (5) + Glsv o)l = ()] As

0
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<| / [~ al8)Q7 (5. pls = () + G 5. 0(5). ols = () | As - ecaltr. ) ecalla 1) = 1) As
;
+] / ecnlts, )| —a(9)Q7 (s, (s = 7(5)) + Gls, 0(s) (s — 7(5))) ] As
< (G +oo)Rlecalta,t) = 1| / a(s)eca(tr. ) As
d
+ ] cca(t2; 5)(a(s)an(s) + 9 3r(5)) As
< (S +a)R / a(s) As + / a(s)e@aaz,s)( / (a(r)ar(r) +9,3r(1)) Ar)A As
< (% +a2)R / als) As + [eeauz,s) / (a(r)an(r) + 935(r)) Ar]

to s

—l—/a(s)e@a(tg,s)/(a(r)qR(r) —i—gﬁR(r)) Ar As

t1 ty
to ta to

< (G ran)r faass [ (@6 + 0,500 85(14 [ alelena(ras) as)

t1 t1 t1
2}

< (% + az)Rja(s) As+ 2/ (a(s)qr(s) + 9,5r(s)) As

t1
t2 t2

< (% + a2>R/a(5) As + 2(% + a2>R/a(5) As < 3R<% +a2)13|t2 —t1]. (4.6)
ty t1

Thus, by substituting (4.5) and (4.6) into (4.4), we obtain
«
[(Ap)(t2) — (Ap)(t1)] < (o + Eol + Eghls)|ts — t1] + 33(71 + a2>13|t2 ] < Lty — t].

This shows that Ay is [1-Lipschitzian if ¢ is. This completes the proof that A : M — M.

Since A is [1-Lipschitzian, we have that AM is equicontinuous, which implies that the set AM
resides in a compact set in the space (S, ] - |o).

Now, we show that A is continuous in the weighted norm letting ¢,, € M, where n is a positive
integer such that ¢, = ¢ as n — oco. Then

(Aen)(t) — (Ap
w(t)

)®) | < |Qtt, @nlt = (1) — Q(t 0t — (1))

w

¥ / a(s)eca(t:)|Q7 (s, pnls = 7())) = Q7 (s, (s = (s)))|_As
+ [ ccnlt.9)|Gls.u(5) onls = 7(51) = Gls.(s)ols = ()| A

w
0
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By the dominated convergence theorem, lim |(Ag,)(t) — (Ap)(t)|. = 0. Then A is continuous. This
n—oo
completes the proof that A : M — M is continuous and AM is contained in a compact subset

of M. O

Now, we state an important result implying that the mapping H given by (3.2) is a large contraction
on the set M. This result was already obtained in [1] and for convenience we present below its proof.

Theorem 4.1. Let h: R — R be a function satisfying (H7). Then the mapping H in (3.2) is a large
contraction on the set M.

Proof. Let ¢%,¢% € M with ¢7 # ¢°. Then ¢?(t) # ¢?(t) for some t € T. Let us denote the set of
all such t by D(¢p, ¢), i.e.,

D(p.¢)={teT: ¢7(t) # ¢7(1)}.
For all t € D(p, @), we have

[(Ho)(t) = (Ho)(t)] < [07(t) = ¢7(t) — h(¢? (1)) + h(67 (1))

<ly) - ool - "EPEEEOL )
Since h is a strictly increasing function, we have
P ) = MG D) ) o a1 ¢ € D(g, ). (4.8)

@7 (t) — 97 (1)
For each fixed t € D(¢y, ¢), we define the interval I; C [-R, R] by

I = (p7(8), 97 (1)) if ¢ (t) < ¢ (1),
(@7(), (1)) if ¢7(t) < (1)

The Mean Value Theorem implies that for each fixed ¢ € D(¢p, ¢) there exists a real number ¢; € I;

e thot A" (1) — h(e" (1)
P _ ’
=h .
sh-em
By (HT7), we have
05 S H O SHE S NS mp KL 49
Hence, by (4.7)—(4.9), we obtain
(He) () = (HO)®)] < |7 (1) = ¢ (O [L = _ inf h'(s) (4.10)

for all t € D(p,¢). This implies a large contraction in the supremum norm. To see this, choose a
fixed € € (0,1) and assume that ¢ and ¢ are two functions in M satisfying

e< sup |o(t) = ¢(t)| = llp — ¢l
te(—R,R)

If |7 (t) — ¢7 ()| < § for some t € D(p, ), then we get by (4.9) and (4.10) that

07(t) ~ 070 < 3 llo — 9. (111)

NN

[(He)(t) — (He)(t)| <

Since h is continuous and strictly increasing, the function h(s + 5) — h(s) attains its minimum on the
closed and bounded interval [—R, R]. Thus, if § < |7 (t) — ¢7(t)| for some t € D(p, ¢), then by (H7)

we conclude that h(g? (1) — h(6° (1))
o7 (1))
O 0

> A,
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where
A= % min{h(s+ %) —h(s): s€ [—R,R]} > 0.
Hence, (4.7) implies
[(Ho)(t) = (Ho)(t)] < (1= N)]le = ¢l (4.12)

Consequently, combining (4.11) and (4.12) we obtain

[(He)(t) = (He)(t)] < 8]l — gll,

where

5:max{%,1—/\}. O

The relations of (H8) will be used below in Lemma 4.2 and Theorem 4.2 to show that if ¢ = R
and ||%]| < 7, then the solution satisfies |z(t,0,1)| < €.

Lemma 4.2. Let B be defined by (4.3). Suppose that (H1)-(H3), (H7) and (H8) hold. Then B :
M — M and B is a large contraction.

Proof. Let B be defined by (4.3). Obviously, B is continuous with the weighted norm. Let ¢ € M,

t

[(Be)(t)] < [(0) — Q(0,%(=7(0)))|ecalt, 0) + /a(s)eea(tvs)‘H(@(s)” As
0

< [1+ Eglyeca(t,0) + / a(s)eaa(t, s) max {|[H(~R)|, [H(R)[} As < R,
0

and we use a method like in Lemma 4.1 and deduce that for any ¢ € M, the function By is ;-
Lipschitzian, which implies B : M — M.

By Theorem 4.1, H is a large contraction on M, then for any ¢, ¢ € M with ¢ # ¢ and for any
€ > 0, from the proof of that theorem, we have found that 6 < 1 such that

t

M‘ < /a(s)eea(t75)|H(¢(S)) — H((s))],, As < 3¢ — Bl .
0

w(t)

Theorem 4.2. Assume that (H1)-(H8) hold. Then the zero solution of (1.1) is stable.

Proof. By Lemmas 4.1 and 4.3, A : M — M is continuous and AM is contained in a compact set.
Also, from Lemma 4.2, the mapping B : M — M is a large contraction. First, we show that if
#,6 € M, we have || A + Bo|| < R. Let ¢, € M with ¢, |6 < R, then

2R R 2R
|4p + Boll < (1+ Eg)veca(t,0) + (a1 + az) R+ - < (1+ Fhreca(t,0) + 5 + - < R.
Next, we prove that for any ¢, ¢ € M, the function Ap + B¢ is l-Lipschitzian. Let ¢, ¢ € M, and
let 0 < t; < to, then

[(Ap + Bo)(t2) — (Ap + Bo)(t1)]
2

< ([1 + Egly + (Eq + Egla)ly + 1o + 3R(% Toas+ J)zg) Ity — t1] < Li|ts — t1].

Clearly, all the hypotheses of the Krasnoselskii-Burton theorem are satisfied. Thus there exists a fixed
point z € M such that z = Az + Bz. By Lemma 3.1, this fixed point is a solution of (1.1). Hence,
the zero solution of (1.1) is stable. O
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Remark 1. When T = R, Theorem 4.2 reduces to Theorem 4 of [21]. Therefore, Theorem 4.2 is a
generalization of Theorem 4 of [21].

Now, for the asymptotic stability, define Mg by

My = {(p € S: ¢is l-Lipschitzian, |p(t)| < R, t € [mg,00) N'T,
o(t) = (t) if t € [mo,0] N T and |p(t)] — 0 as t — oo}.
All calculations in the proof of Theorem 4.2 hold with w(¢) = 1, when | - |, is replaced by the supremum
norm || - ||.

Lemma 4.3. Let (H1)-(H6) and (H9) hold. Then the operator A maps M into a compact subset
of M.

Proof. First, we deduce by Lemma 4.1 that AM is equicontinuous. Next, we notice that for an
arbitrary ¢ € M, we have

t

(A¢)(1)] < an(t) + / ecalt. s)a(s) (an(s) + gf(’*g)) As = q(t).

We see that ¢(t) — 0 as ¢ — oo which implies that the set AM resides in a compact set in the space
(S, ]I - II) by Theorem 3.2. O
Theorem 4.3. Assume that (H1)—(H9) hold. Then the zero solution of (1.1) is asymptotically stable.

Proof. Note that all of the steps in the proof of Theorem 4.2 hold with w(¢) = 1 when | - |,, is replaced
by the supremum norm || - ||. It suffices to show that for ¢ € M we have Ap — 0 and By — 0. Let
© € My be fixed, we will prove that [(Ap)(t)| — 0 as t — co. As above, we get

[(Ap)(®)] < [Q(t, o(t — 7(1)))]

+ /e@a(t, $)[a()]|Q7 (s, 05 = 7(5)| + |G (s, 9(5), 05 = ()| | As.

First of all, we have
’Q(t,go(t — T(t)))‘ < qgr(t) =0 as t — oc.

Second, let € > 0 be given. Find T such that |o(t — 7(t))], |¢(t)| < € for t > T. Then we have

t

[ cealts)[al]Q7 (s, 005~ )] + |6 5,00, (s = 7(s)) | As

0

T
= ceu(t.T) [ cealT5)[a(6)]Q (5 005 — (6] + ]G (5. 0(5), s — (5D)] | As
0

+ [ canlt,)[al9]Q7(s.0ls = ()] + 651005 (s~ 7(s)) | As

[0 [0
< ecalt, T)(71 + ag)R+ (71 + az)e.

By (H9), the term eqq(t,T)(% + az)R is arbitrarily small as ¢ — oco. In the same way, we obtain
By — 0. Then, by the Krasnoselskii-Burton theorem, there exists a fixed point z € Mg such that
z = Az + Bz. By Lemma 3.1, this fixed point is a solution of (1.1). Hence, the zero solution of (1.1)
is asymptotically stable. O
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Remark 2.

1) When T = R, Theorem 4.3 reduces to Theorem 5 of [21]. Therefore, Theorem 4.3 is a general-

ization of Theorem 5 of [21].

2) The sufficient conditions (H1)-(H9) of Theorem 4.3 are essential for applying Theorems 3.1 and

3.2.
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Abstract. In this paper, we consider a class of bilinear time-varying systems. We study the stabiliza-
tion problem for these systems with norm-bounded controls by using Lyapunov techniques and the
solutions of Riccati differential equations. A numerical example is given to illustrate the efficiency of
the obtained result.
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1 Introduction

The problem of controllability and stabilizability for linear control systems has received a considerable
amount of interest in the last few years [5,9,10]. This problem is an extension of the classical Kalman
result [3] on the controllability and stability of linear control systems. Linear nonautonomous control
systems are usually represented in the form

i(t) = A(t)z(t) + B(t)u(t), t € R, (1.1)

where z(¢) € R™ and u(t) € R™. We assume that A(t) € R"*" and B(t) € R™*™ are the matrices,
continuously depending on ¢. The global null-controllability (GNC) problem of the linear system (1.1)
concerns the question of finding an admissible control u(t) which leads an arbitrary state zg to the
origin. The stabilization problem is aimed by means of a linear control to find a control u(t) = K (t)x(t)
such that the zero solution of the closed-loop system

i(t) = [A(t) + B(t)K(t)]z(t), t >0,

is asymptotically stable in the Lyapunov sense. In this case one says that the system is stabilizable
with the stabilizing feedback control u(t) = K (t)z(t). For linear time-varying (LTV) systems, the first
result on the relationship between GNC problem and Riccati differential equation (RDE) was given
in [3] where it was proven that if the LTV control system (1.1) is GNC, then the RDE

P(t) + AT (t)P(t) + P(t)A(t) — P(t)B(t)BT (t)P(t) + Q(t) = 0, (1.2)

where Q(t) > 0, has a positive semi-definite solution P(¢). However, the existence of the positive
definite solution P(t) of the above RDE is not sufficient for the GNC. In [2], the authors prove that
the system is completely stabilizable if it is uniformly globally null-controllable. In [6], the authors
have developed the relationship between the exact controllability and complete stabilizability for
linear time-varying control systems in Hilbert spaces. In [7], the authors study the stabilization of
linear nonautonomous systems with norm-bounded controls (1.1), where the control u(t) satisfies the
following condition:
lu@l <, teR*

For autonomous systems, where the constant matrix A satisfies some appropriate spectral properties,
Slemrod [8] proposed a nonsmooth feedback control of the form

—rBTx(t)
u(t) = q 1B z(t)]|
~BTx(t) if |BTz@)|| <7

In this paper, we consider the following bilinear time-varying (BTV) control system:
i(t) = At)z(t) + u(t)B(t)x(t), t € RT, (1.3)
where z(t) € R, u(t) € R, A(t) € R**™ B(t) € R"*".
The purpose of this paper is to discuss the problem of global uniform stabilization of the BTV
control system (1.3) with norm-bounded controls by using the Lyapunov techniques.
2 Preliminary results
We start by recalling some classical notation and definitions that will be useful throughout the paper.

e RT denotes the set of all real nonnegative numbers.
e R” denotes the n-dimensional space.

e (z,y) or 27y denote the scalar inner product of two vectors z,y € R™.
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e ||z|| denotes the Euclidean vector norm of x.

o R"™*™ ig the set of all n x m matrices.

e [, denotes the identity matrix.

Let A € R™*™:

o AT denotes the transpose matrix of A; A is symmetric if and only if AT = A.
e A\(A) denotes the set of all eigenvalues of A.

e Anax(A4) = max{Re(A\) : A € A(A)}, Mnin(A) = min{Re(N\) : X € A\(A)}.

e 1(A) denotes the matrix measure of the matrix A defined by
1
H(A) = 5 Amax(A + AT).

e Lo([t, s],R) denotes the set of all square integrable R-valued functions on [¢, s].

e The matrix A is bounded on R* if there exists M > 0 such that sup ||A(t)| < M.
>0

e The matrix A € R™*" is positive semi-definite (A > 0) if (Az,z) > 0 for all x € R™.

e M([0,00),R" ) is the set of all symmetric positive semi-definite matrix functions, continuous and
bounded on [0, c0).

e The matrix function A(t) is positive definite (A(¢) > 0) if there exists a constant ¢ > 0 such
that (A(t)x,z) > c||z||? for all z € R™, ¢t > 0.

Now, we recall some classical definitions and results.
Let the system is described by the equation

z = f(t,x), (2.1)

where the map f: R x U — R" is continuous locally Lipschitz with respect to z, f(¢,0) =0Vt > 0,
and U is an open set of R™ (0 € U). Denote by z(t,%y) the solution of (2.1) starting at =g at time tg.

Definition 2.1. The equilibrium point = 0 of system (2.1) is said to be
(i) stable if Ve > 0, Vtg >0, 35 = 6(tg,e) > 0 such that Vxg € R™ one has

lzoll <0 = |lz(t,to)|| <&, Vt=to;

(ii) uniformly stable if (i) holds where § = §(¢) is independent of ¢p;

(iii) attractive if there exists a neighborhood V of 0 such that for any initial condition zy belonging
to V, the corresponding solution x(¢,to) is defined for all ¢ > 0 and , hiﬂ z(t,tg) = 0. f YV =R",
—+00

then x = 0 is globally attractive;
(iv) asymptotically stable if it is stable and attractive;

(v) uniformly asymptotically stable if it is uniformly stable and, in addition, there exists ¢ > 0 such
that for all & > 0, there exists 7 > 0 such that for all g € R™

lzol| < c = ||z(t, to)|| <&, ViE>T+ to;

(vi) globally uniformly asymptotically stable if it is uniformly stable, §(¢) can be chosen to satisfy
lim d(g) = 400, and for all ¢ > 0 and for all € > 0, there exists 7 > 0 such that for all ¢ € R™,

e—+0o0

lzol| < e = |lz(t, to)|| <&, Vt=>T+to.
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Definition 2.2. The pair (A(t), B(¢)) is said to be GNC if the associated linear control system (1.1)
is GNC in the following sense:

for every zp € R™, there exist a number 7 > 0 and an admissible control u(t) such that z(7) = 0.
We recall the following controllability criterion that will be used later.

Proposition 2.1 ([1,3]). The pair (A(t), B(t)) is GNC if and only if one of the following conditions
holds:

(i) there existt > 0 and ¢ > 0 such that

t
/HBT YUT(t,)|| ds > ¢ |UT (1, 0)|%, V€ R™:
0

(ii) A(t), B(t) are analytic on Ry and the rank M (tg) = n for some to > 0, where
M(t) = [Mo(t), Ml(f), ceey Mnfl(t)];

My = B#), Misa(t) = ~AWM(1) + 0 Mi(t), i=0,1,..,n—2

Definition 2.3. A scalar continuous function «(r) defined for r € [0, a[ belongs to the class K if it is
strictly increasing and a(0) = 0. It belongs to the class K if it is defined for all » > 0 and a(r) — oo
as r — oo.

Theorem 2.1 ([4]). Let r > 0 and denote B, = {z € R, |z|| <r}. Let V: Rt x B, - R be a
smooth function. If there exists functions a1, as and as of the class K defined on [0, a] and satisfying:
Vit >ty andVx €B,,

ar(flz])) < V(t,z) < aq(|l=]]), (2.2)
V(t,z) < —as(|lz), (2:3)

then the origin x = 0 is uniformly asymptotically stable (UAS). If B, = R™ and a1 and ay are two
functions of the class Koo, then the origin x = 0 is globally uniformly asymptotically stable (GUAS).

To solve the stabilization problem of the bilinear system (1.3) the RDE (1.2) is useful.
Theorem 2.2 ([6]). The following statements are equivalent:
(i) the pair (A(t), B(t)) is GNC;
(i) for @ € M([0,00),R"), the RDE (1.2) has a solution P € M([0,00), R ).

3 The main results
Let us consider the BTV control system (1.3)
(t) = A(t)x(t) + u(t)B(t)x(t), t € RT,

where z(t) € R", u(t) € R, A(t), B(t) are matrix functions, continuous and bounded on [0, 00).
Suppose that the pair (A(t), B(t)) is GNC. Then for @ € M(]0, oo) R ), the RDE (1.2) has a solution
P € M([0,00),R%). Denote

=sup [BOI.  p=sup [P

t>0

In what follows, we need the following assumptions:

(Hy) The BTV control system (1.3) is GNC.
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(Hg) n = t11>1(f) Q(t)]| satisfies n > p?b?.
Proposition 3.1. Let B(t) and P(t) be bounded matriz functions. Then for r > 0, the function

B L ]l
g(t,z) = —r( )B(t)x
L+ IB@| [P )]
is globally Lipschitz with respect to x € R™.
Proof. Let x1,x2 € R™, t > 0. We have
B P @) |
L+ (B@1P@)] 2]l

IBOIIPO 1
L+ {[B@OI P @)

lg(t,z1) — g(t, z2)|| = r B(t)zs — B(t)x

22|22 B 1|21
g H T IBOPO Tzl T 1B P el
leallzs — e + IBOIIPON el a2l (22 — 21)
W+ IBOTPO )+ BOTIPO[ 7))

< | B®)IP(IP(

< | BOIPIPW)] \

Since
lleslies = lolio]| = ||lzzlez  lo1llez + ooz = oo |
< Nazll ez = a1ll + o]l oz = o]
< lwz — x|l ([l + ll2ll).
we get

Hg(t,l‘l) - g(tva)”

P e ol + el + 1BOUIPON el o

< rIBWIIP®) lor — 22l [(1 TIBOTIEON =)0+ 1BOTIPW] ||x2||>}
P laa ]l + i1+ B P )

< rIBOIIPON o — 22| [(1 TIBONPO=)E + [BO11P0] ||z2||>}

IBO L@ |
A+ IBONIP@Hz [N+ B IP @ {l22]])

IBO L@ | ]
L+ (IB@HIP@E =]

< B o - a1

S 27’1)“1‘1 — 392”
Therefore the function g(¢,x) is a globally Lipschitz function with respect to x. O
Theorem 3.1. Suppose that the conditions (Hy) and (Hs) are fulfilled. Then if we choose 0 < r <

";’I’) sz , the feedback function

__(_IBOIIPO] e
uta) == (BT PO

is bounded and makes system (1.3) GUAS.

), teRY, zeR", (3.1)

Proof. Let us consider the Lyapunov function
V(t,x) = (P(t)z,z), te RT, z€R"

Since P is a positive definite symmetric matrix, we can reduce condition (2.2) of Theorem 2.1 by
choosing a1 (||z||) = c||z]|* and az(||z]|) = p||z|*. Furthermore, the derivative of V (¢, z) along the
solutions of the closed-loop system (1.1) by the feedback (3.1) is

V(t,z) = (P(t)z, ) + 2(P(t)i, )
BN PE]] ||l
L+ B[P ||l

IN

—nllz||® + <P(t)B(t)B(t)TP(t)x,x> —2r (P(t)B(t)x, x).
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Since
[(P(t)B(t)x, z)| < [[PO)|IB®] ],

we get

V(t,z) < —nllz|* + [POIPIBO)IP]|=l® + 2r[(P(6) B(t)z, )|

<
< —nllz|* + [|P@)|PIBEI 21> + 2r| PE)| 1|1 BE)] |||
< (p?0* —n + 2rpb) ||z

By choosing as(||z]|) = (7 — p?b* — 2rpb)||z||?, condition (2.3) of Theorem 2.1 is well checked. So,
the closed loop system (1.3) is globally uniformly asymptotically stable. Moreover, |u(t,z)| < r,
V(t,z) € Ry x R™. O

Now, let us consider the dynamical control system
#(t) = At)z(t) +u(t)B(t)z(t) + F(t,z), t € RT, (3.2)

where z(t) € R™, F : [0,400[ xR™ — R™ is a nonlinear continuous function which is locally Lipschitz
with respect to x.

Theorem 3.2. If F(t,x) satisfies the condition
[F ()| <vllzll, VE=0, Vo eR",
where v is a positive number satisfying

n— p2b2 — 2rpb

0<y< )
Y %

then the closed loop system (3.2) by the feedback function (3.1) is GUAS.
Proof. Let us consider the Lyapunov function
V(t,z) = (P(t)z,z), te Ry, x€R",

and let the feedback control be of form (3.1). The derivative of V' along the solutions of the system
(3.2) by using the chosen feedback control (3.1) and the RDE (1.2), results in

V(t,x) = <P(t)x,x> + 2(P(t)&, z)

< (P*0° =+ 2rpb)||z||® + 2(P@)F(t,2), (1))
< (P*6* =+ 2rpb)||2|? + 2| P@)| | F(t,2)|| l=(8)]]
< (P?0° =+ 2rpb)||z||* + 29| POl [l=(6) ]|l (t)]]
< (P*6° — 0+ 2rpb + 2p7) |l|*.
The proof of the theorem is completed by using condition (3.3) and Theorem 2.1. O

Theorem 3.3. If F(t,xz) satisfies
IF(t,2)| <~llz]? VE=>0, Yz eR",

where d > 1, then the closed loop system (3.2) by the feedback function (3.1) is locally uniformly
asymptotically stable.

Proof. Let us consider the Lyapunov function
V(t,z) = (P(t)z,z), teR", zeR",

and let the feedback control be of form (3.1).
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The derivative of V' along the solutions of system (3.2) by using the chosen feedback control (3.1)
and the RDE (1.2) gives

V(t,x) = (P(t)x,z) + 2(P(t)i, z)
(p*v? —77—|—27‘pb)||a:||2—|—2<P F(t a:),x(t))
(6% — n + 2rpb) ||z]|* + 2| P@)|| [|F (¢, )| [l2(2)]]
< (D6 — n+ 2rpb)||2|* + 2yl P@)| =)

< (p** — 0+ 2rpb + 2py|| x| 1) |22
So, for # in a small neighborhood of the origin, p?b*> — n + 2rpb + 2py[lz[|*"' < —p < 0. Then
V(t,z) < —pl|lx||?, which implies that the origin is locally uniformly asymptotically stable. O
4 Example

Let us consider the bilinear time-varying control system
(t) = A(t)x(t) + u(t)B(t)z(t), (4.1)

A(t) = <__61t eL) and B(#) = (eot e(lt).

To verify the global null-controllablity of system (4.1), we apply Proposition (2.1)(ii). Denote

et 0 e 2_et —et
ot

where z(t) € R?,

0 —t —t _e—2t

It is easy to verify that rank(M(t)) = 2 for all ¢ > 0. By taking @ = 1001, € M([0,00),[R?), the
RDE (1.2) has a solution P(t) € M([0,00),RR2).

Solution of the closed loop system
‘ :

Solution of the system with u=0 3

x2

Figure 1. Dynamics of the closed BTV system @(t) = A(t)z(t) + u(t, z)B(t)z(t).

Using the Lyapunov function
V(t,x) = (P(t)z,z)
and the feedback function

IB@PE)] []]|
u(t,z) = —20 )
L+ [[B@O[ L@ ]l
we verify that there exists o > 0 such that

V(t,z) < —allz||?, VteRy, VzeR™
So, according to Theorem 3.1, system (4.1) is GUAS (see Figure 1).
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Abstract. In this paper, we discuss the existence of solutions for a third-order differential inclusions
with three-point boundary conditions involving convex multivalued maps. The obtained results are
based on a nonlinear alternative of the Leray—Schauder type. Finally, some examples are given to
illustrate our results.
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1 Introduction

Differential inclusions arising in the mathematical modeling of certain problems in economics, optimal
control, stochastic analysis, and so forth, are widely studied by many authors (see [3-5,14,15,18,19]
and the references therein). This work is concerned with the existence of solutions for boundary value
problems (BVP, for short). In Section 3, we study the three-point boundary value problems of the
third order differential inclusion, when the right-hand side is convex

—u"'(t) € F(t,u(t)), te(0,1), (1.1)
with the boundary conditions
U(O) = au/(0)7 u(l) = 5?/(77)7 u/(l) = ’YUI(W)y (1'2>

where n € (0,1), o, 3,7 € R, with (1+a)y <8 < 4, and F: [0,1] x R — P (R) is a multivalued map;
and with

W' (0) = u"(0) = Bu(n), u(l)=au(n), (1.3)
where n € (0,1), o, 8 € R, and F : [0,1] x R — P (R) is a multivalued map.

The present paper is motivated by the recent papers [15], by S. A. Guezane-Lakoud, N. Hamidane,
and [10], by R. Khaldi and D. Liu and Z. Ouyang, where problems (1.1), (1.2) and (1.1), (1.3) with
single valued F( -, -), respectively, are considered, and several existence results are obtained by using
fixed point techniques.

The aim of our paper is to extend the study in [10] and [15] to the set-valued framework and to
present some existence results for problems (1.1),(1.2) and (1.1),(1.3). Our results are based on the
nonlinear alternative of Leray—Schauder type [9]. The method used is standard, however, its exposition
in the framework of problems (1.1), (1.2) and (1.1), (1.3) are new. In Section 4, we complete our work
by giving some examples to illustrate the obtained results.

2 Preliminaries

We begin this section by introducing some notation. Let C([0,1];R) denote the Banach space of all
continuous functions v : [0,1] — R with the norm

|ul| = sup {|u(t)| for allt € [0,1]},

let L'([0,1];R) be the Banach space of measurable functions u : [0,1] — R which are Lebesgue
integrable, normed by

1
fullos = [ (o) dt,
0

and AC*(]0,1]; R) be the space of i-times differentiable functions u : [0,1] — R, whose ith derivative
u(? is absolutely continuous. Let (X, d) be a metric space induced from the normed space (X, ]| - [|).
Denote

: Als closed}7

: Ais bounded},
: Als convex},

: Als compact}.
Consider Hy : P(X) x P(X) — RU {co} given by

H;(A, B) = max { 51613 d(a, B), igg d(b, A)},



120 Ali Rezaiguia, Smail Kelaiaia

where
d(a,B) = blélg d(a,b) and d(b, A) = algg d(a,b).

Then (Py,(X), Hy) is a metric space and (P (X), Hy) is a generalized metric space (see [12]).

Let E be a separable Banach space, Y be a nonempty closed subset of E and G : Y — P, (E)
be a multivalued operator. G has a fixed point if there is z € Y such that € G(z). G is said to be
completely continuous if G () is relatively compact for every Q € Pp(Y). If the multi-valued map
G is completely continuous with nonempty compact values, then G is upper semicontinuous (u.s.c)
if and only if G has a closed graph, that is, , = T, Yn — Vs, Yn € G (x,,) imply that y. € G (x,).
For more details on the multi-valued maps, see the books by Aubin and Cellina [1], by Aubin and
Frankowska [2], by Deimling [7], by Gorniewicz [8] and by Hu and Papageorgiou [11].

Definition 2.1. A multivalued map F': [0,1] x R — P(R) is said to be Carathéodory if
(1) t = F(t,u) is measurable for each u € R,
(2) w— F(t,u) is upper semicontinuous for almost all ¢ € (0, 1),
and, further, a Carathéodory function F is called L'-Carathéodory if
(3) for each r > 0, there exists @, € L*((0,1); RT) such that
IE(t Wl = sup {Jo] : v e Flt.u)} < @, (1)
for all ||u|| < r and for a.e. ¢ € (0,1).

For each u € C((0,1);R), define the set of selections of F' by
Spa = {v e LY((0,1);R) : v(t) € F(t,u(t)) for ae. t € (0, 1)}.

Lemma 2.1 ([13]). Let E be a Banach space, let F : [0,T]X — Peomp.c(E) be an L*-Carathéodory
multivalued map and let © be a linear continuous mapping from L*([0,1], E) to C([0,1], E). Then the
operator

©0Sp : C([0,1], E) = Peomp,c(C([0,1], E)), u— (©0Sp)(u) =0O(Sru)

is a closed graph operator in C([0,1], E) x C([0,1], E).

Lemma 2.2. Assume
¢=2(n(a(y+1) =)+ (B-a)) —7—1#£0,
then for y € C([0,1];R), the problem

u(0) = au'(0), u(l)=PBu'(n), «(1)=u'(n) (2.1)
has a unique solution

t

u<t>=—§/<t—s> W) ds = ¢ [F(8 =7 = am) + -+ ) = 28)] [(n = s)uls) ds
0

m\»—l

1
/1—s (s —2a+ 25 — 7—37—1)+(t—l—a)(’yn—2Bn—s+swn)}y(s)ds.
0

Lemma 2.3. Assume
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then for y € C([0,1];R), the problem

W/ (0) = " (0) = Bu(n),  u(1) = auln) (2.2)

has a unique solution

l\D\»—t

¢
/t—s ds—&—%( §t2—ﬂt—|—(2ﬁ—a>)/n(n—s)2y(s)d8
0 0

+%(’8t2+ﬂt+177ﬂn 577)0/(15)2y(s)ds.

The proofs of Lemmas 2.2 and 2.3 are given by integrating three times v’ (t) 4+ y(¢) = 0 over the

interval [0,¢]. We obtain

t

u(t) = —%/(t— $)2(s) ds + AL + Ast + Ag, where Ay, Az, As € R.
0

The constants A;, As and Az in Lemmas 2.2 and 2.3 are given by the three-point boundary
conditions (2.1) and (2.2), respectively.

3 Main results

Before presenting the existence result for problem (1.1), (1.2), let us introduce the following hypotheses
which are assumed hereafter:

(Hy) F:[0,1] x R — P.(R) is Carathéodory;

(Hz) there exist a continuous nondecreasing function ¢ : [0,00) — (0,00) and a function p €
LY([0,1];RT) such that

[F(t,u)|lp =sup{|lw|: we F(t,u)} <pt)y(|ul]) for each (t,u) € [0,1] x R.
Definition 3.1. A function u € AC?((0,1);R) is called a solution to the BVP (1.1), (1.2) if u satisfies
the differential inclusion (1.1) a.e. on (0,1) and conditions (1.2).

Theorem 3.1. Assume that (Hy), (Hz) hold and let the function v be bounded satisfying the condition:
there exists a number M > 0 such that

(1 §+7+Mﬂnw+aw)

_l’_
2 131
Then the BVP (1.1), (1.2) has at least one solution on [0,1].
Proof. Define the operator T': C([0,1]; R) — P(C[0,1];R) by

t
/t—s
0

vz fa ) (S (1= s+ 20 B)+1(1+ 9)) + (t+ ) (n(y — 28) — s(1 +7m) ) Fu) ds
0

PllulDllpllzy < M.

T(u) = {h € C([0,1];R) :

l\D\»—l

- £ (3 - a+ap) +e+ ) -28) [0- 9w ds}
0
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for f € Spy. It is not difficult to show that 7" has a fixed point which is a solution of problem
(1.1),(1.2). We show that T satisfies the assumptions of the nonlinear alternative of Leray—Schauder
type. The proof consists of several steps.
Step 1. First, we show that T is convex for each u € C([0, 1]; R).

Let h1, ho € Tu. Then there exist wi,ws € Sp,, such that for each ¢ € [0, 1], we have

ds

l\DM—l
o\&
-
|
Cn

/ 1—3 1 —s+2(a—p) +'y(1+8)) + (t+oz)(77(fy—2ﬂ) —s(1 —&-“W)))wi(s)ds
0

- é (8- A+ a)y) + (t+a)(y —28)) /(n — S)w;(s)ds, i=1,2.
0

Let 0 <y < 1. So, for each t € [0, 1], we have

pha(t) + (1 = what) = 3 / (t = )2 (pwi(s) + (1 — pywn(s)) ds
0

%/ 1—8 1—8+2(a—6)+7(1+8))+(t+a)(77(7—2ﬁ)—8(1+v77)))
0

X (pwi(s) + (1 — p)wa(s)) ds
1

n
& (*(B = (1 +a)y) + (t+a)(y - 20)) /(77 = s)(pwi(s + (1 = pws(s)) ds.
0

Since S, is convex, it follows that phy + (1 — p)he € Tu.

Step 2. Here we show that 7' maps bounded sets into bounded sets in C([0, 1]; R).
For a positive number r, let B, = {u € C([0,1];R) : |lu|| < r} be a bounded ball in C([0, 1];R).
So, for each h € T'u, u € B,, there exists w € Sg,, such that

ht) = —

DN | =

j(t = 5)%w(s) ds

2

+ fil (1-— s)(7 (I—=s+2(a—8)+v1+s) + (t+a)(n(y—28) — s(1 + ’W?)))w(s)ds

[}

1

& (B + ) -29) [0- uls)ds
0

If (14 a)y < B <3, weobtain

) < 20 sy as+ 2D (501 g = ] [t s
0 0

ISTIS”

B wig?n) vn(% n a) 0/p(5) ds,
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Thus
1

s(lul) | (lul)
Iy < A Jm&w+ et [t 1=+ 2= 8] [ p(s)as

0

Step 3. Now we show that T' maps the bounded sets into equicontinuous sets of C([0, 1];R).
Let t1,t5 € [0,1] with ¢; < t3 and let B, be a bounded set of C([0,1];R). Then, for each h € Tu,
we obtain that the bounded sets of C([0,1];R) are mapped into the equicontinuous sets,

[h(t2) = h(t)] < %/(tz = 8)*[w(s)|ds + %/ ((t1 = 9)* = (t2 = 9)*)w(s)| ds
ty 0
; 2 2
+é% ﬂ7$(ggiilCps+%a*@+7ﬂ+$}HmthMVf%%*ﬂLVW»NMGH@
0
1 2 2 7
T (=) (B— (1+a)y) + (ts — t1)(y — 28)) /(n _ $)lw(s)| ds,
0
o) F, |m”t 2
< —— [(ta2—9)p(s)d — (ta — %)p(s) ds
] [ -
sl [ —(B-8)
- ] 0/(1—8)(2(1—3+2(04—ﬁ)+’y(1+s))+(t2—t1)(n(’y—Qﬁ)—S(1+”Y77))>p(S)dS

+mﬁf”«@—ﬁXﬁ—u+awwuw—me—%D/?@Ws
0

Obviously, the right-hand side of the above inequality tends to zero independently of u € B, as
to —t1 — 0. Since T satisfies the above three assumptions, it follows by the Ascoli-Arzeléa theorem
that T : C([0,1];R) — P(C|0, 1];R) is completely continuous.
Step 4. We show that T has a closed graph.

Let wy — U, hy € T(uy,) and hy,, — h,. Then we need to show that h, € Tu..

Associated with h,, € T'(uy,), there exists w, € Sp,, such that for each ¢ € [0, 1], we have

+ %/(1 - 8)(% (T=s+2(a=B)+7v(1+s)+ (t+a)(nly—28) —s(1+ ’m)))wn(&‘) ds
0

—é«ﬂw—41+aw»+u+ax7—2my/m—smhgyw
0

Thus we have to show that there exists w, € Sg,, such that for each ¢ € [0, 1],
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(1- 3>(—7t2 (L= 5+2(a— )+ (1 +5)) + (t+ )0y — 26) = s(L+ 7)) )wa (s) ds

+
o=
O\H

1

~ L (BB - (1 ap) + (t+a)(y - 28)) / (n— s)wa (s) ds.
0

Let us consider the continuous linear operator © : L' ([0, 1];R) — C([0, 1];R) given by

t

w— Ouw(t) = 7% /(t — 5)%w(s)ds

0

2

1
1
+ 510/(1 - s)(T (1—s+2(a—=B8)+~v(1+3)) + (t+a)(nly—28) —s(1 +’Y77)>)w(s)ds

~ L (BB - (1 ap) + (t+a)(y - 28)) / (n— syw(s) ds.
0

Observe that

) = o) = | = 5 [0~ 2 wa(6) = w(s) s

1
2

+ 5%/(1 = 3)( 5~ (1=s+2(a=B)+7(1+5)) +(t+a) (n(=28) = s(1+9m)) ) (wa(s) —w.(s)) ds

0

)

- (BB - () + + )= 20) [0 3)(wa(s) = we(5) ds

then ||hy,(t) — he(?)|| = 0 as n — oo.
Thus, it follows by Lemma 2.1 that © o F is a closed graph operator.
Further, we have h,,(t) € O(Sp., ). Since u,, — u., we get

* 5110/(1 _S){_th (L= s+2(a=p)+7(1+5)) + (t+a)(n(y - 26) —s(1+vn))}w*(s)ds

- g (BE- ) ++a)y-28) [n- (o) ds
0

for some w, € Sp4. .

Step 5. We discuss a priori bounds on solutions.
Let u be a solution of (1.1),(1.2). So, there exists w € L'([0,1];R) with w € Sg, such that for
t € [0,1], we have
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+ i/(l - 55)(_7752 (1 —s+2(a—p)+~(01 +s)) + (t—i—a)(n(fy— 26) —s(1 +’Y77)>)w(s)ds

1

~ L (BB - (14 ap) + (t+a)(y - 28)) / (n— syw(s) ds.
0

In view of (Hs), for each ¢ € [0,1], and (1 + a)y < § < 7, we obtain

1 1 .
llluw
u(t)] < & /p L vl H/ L o= Bl 4+ 2y —28) /p
& =
0 0 J
1
_17nw<|| /p
2 131
0
Consequently,
[lul| -1
3 Hy+la—p B+a = 1
(% + 2ol sy ) | .

So, there exists M such that |ju|| # M. Let us set U = {u € C([0,1];R) : ||u|]| < M + 1}. Note that
the operator 7' : U — PC([0,1];R) is upper semicontinuous and completely continuous. From the
choice of U, there is no u € OU such that u € ATz for some A € (0, 1).

Consequently, by the nonlinear alternative of Leray—Schauder type [19], we deduce that T has a
fixed point u € U which is a solution of problem (1.1), (1.2). This completes the proof. O

The next result concerns the four-point BVP (1.1),(1.3). Before stating and proving this result,
we give the definition of a solution of the four-point BVP (1.1), (1.3).

Definition 3.2. A function u € AC?((0,1);R) is called a solution to the BVP (1.1), (1.3) if u satisfies
the differential inclusion (1.1) a.e. on (0,1) and conditions (1.3).

Theorem 3.2. Assume that (Hy), (Hz) hold and let the function v be bounded satisfying the condition:
there exists a number M > 0 such that

<;+21€|( 2ol + (L2 -+ )|ﬁ|+1))w<||u||>||p||L1<M.

Then the BVP (1.1), (1.3) has at least one solution on [0, 1].
Proof. Define the operator T : C([0, 1];R) — P(C]0,1];R) by

T(u) = {h € O([0,1];R) : h(t) = —7/(15 —5)2f(u)ds

o (258t (55-a)) [ 92was
0

1
1 1
+2f£(§t2+5t+1—§ﬂn2—ﬁn /1—5 s}
0

for f € Sp,,. We can easily show that T has a fixed point which is a solution of problem (1.1),(1.3),
following the steps of Theorem 3.1. We omit the details. O
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4 Examples
Example 4.1. Consider the boundary value problem
—u"(t) € F(t,u(t)), te(0,1),

w(0) = —u/(0), (1) = = u(%) W(1) = u(%) 1)

where F' : [0,1] x R — P(R) is a multivalued map given by
exp(u) 3
F(t = —2log(t+1 t t+1].
(t,u) [3+exp(u), og(t+1)+t° +t+ }
For f € F, we have

exp(u)

| f] < max (3 T exp ()

,2log(t+1)+t3+t+l> <2, ueR.

Thus
|F(t,u)llp = sup {|w|: we Ft,u)} <2=pt)p(lul), ueR,

with p(¢) = 3, ¥ (||ul|) = 4. Further, using the condition

;L — Bl = n(B+
(5+ 2= 21D s < o

we find that M > %. By Theorem 3.1, the boundary value problem (4.1), has at least one solution
on [0,1].

Example 4.2. Consider the boundary value problem
—u"'(t) € F(t,u(t)), te(0,1),

W(0) = u”(0) = _u(;), u(l) = _2u<%)’ (4.2)

where F': [0,1] x R — P(R) is a multivalued map given by

F(t,u) = {sin(u), oxpu + t].

For f € F, we have
lfl < max(sin(u),L—l—t) <1+t uek
expu
Thus
||F(t>u)||73 = sup{|w| Twe F(tvu)} <1+t Zp(t)d)(HUH)v u € R,
with p(t) = 1 +¢, ¥(|lu]|) = 1. Further, we use the condition

(3 + g Pl + (32 + 3l + 10 tlalDlplos < b

with M > 2. By Theorem 3.2, the boundary value problem (4.2) has at least one solution on [0, 1].
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