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Abstract. The sufficient conditions are given ensuring the existence and the controllability of mild
solutions for a semi-linear fractional differential equation with state-dependent delay in Fréchet space.
We use in the study a generalization of Darboux’s fixed point theorem combined with measures of
non-compactness.
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1 Introduction

This paper deals with the existence and controllability of mild solutions for a semi-linear fractional
differential equation with state-dependent delay in Fréchet spaces. In Section 3, we examine semilinear
fractional differential equations with state-dependent delay given by

Dy(t) = Ay(t) + f(t,y(t — p(y(t))), ae. teJ=[0,4+), 0<a<l, (1.1)
y(t) = ¢(t), te[-r0] (1.2)

and, in Section H, we investigate the controllability of semi-linear fractional differential equation with
state-dependent delay

‘DYy(t) = Ay(t) + f(t,y(t — p(y(t))) + Bu(t), ae. teJ=1[0,400), 0<a<]l, (1.3)
y(t) = o(t), te[-r0],

where D¢ is the standard Caputo fractional derivative, f : J x E — FE is a given function, A :
D(A) C E — E is an almost sectorial operator, that is, A € O}(E) (-1 <7y < 0,0 < w < 1),
O (FE) is a space of almost sectorial operator to be specified later, the control function v is given in
L?(J,U), a Banach space of admissible control functions, B is a bounded linear operator from U into
E, ¢ : [-r,0] — E is a given continuous function and (E,| - ||) is a Banach space, p is a positive

bounded continuous function on C([—r,0], E), r is the maximal delay defined by

r = sup |p(y)| < co.
yeC

Recently, fractional calculus takes a great interest, in cause, in part to both the intensive development
of the theory of fractional calculus itself and the applications of such constructions to different sciences
such as physics, mechanics, chemistry, engineering, etc. (for details, see the monographs [17, 21, 23]
and the references therein). Newly, several works have been published on the existence and uniqueness
of mild solutions for various types of fractional differential equations using different approaches and
techniques such as fixed point theorems, probability density functions, lower and upper solutions
method, coincidence degree theory, etc. (see, e.g., [2,8,12,[15,28]).

Moreover, the existence of solutions on the half-line of the integer order differential equations has
been investigated in [[1,5, 6, 8,[16,22]. Quite recently, in [25], Su considered the existence of solutions
to the boundary value problems of fractional differential equations on unbounded domains by using
the Darboux fixed point theorem. The attractiveness of fractional evolution equations with almost
sectorial operators has been proved by Zhou [29].

The problem of controllability for linear and nonlinear systems shown by ODEs in a finite-
dimensional space has been extensively examined. Certain authors have enlarged the controllability
concept to the infinite-dimensional systems in Banach space with unbounded operators (for more de-
tails see [L1,20]). N. Carmichael and M. D. Quinn [24] proved that the controllability problem can be
translated into a fixed point problem. Interesting controllability results of various classes of fractional
differential equations defined on a bounded and unbounded intervals are given in many papers (see
e.g., [4,1,10,19]).

Our investigations are considered in the Fréchet spaces by using a generalization of the classical
Darboux fixed point theorem with the concept of a family of measures of noncompactness.

The paper is organized as follows. In Section E, we recall briefly some basic definitions and pre-
liminary facts that will be used throughout the paper. In Section B, we discuss the existence of
mild solutions for problem ([L.1)), (L.2). In Section @, we testify the controllability of mild solutions
for problem (@), (@) The investigation on semilinear fractional differential equations with almost
sectorial operators have not been shown yet in the Fréchet spaces, so the present results make a
valuable contribution to this study.
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2 Preliminaries

Let J = [0,b], b > 0, be a compact interval in R, C(J, E) be the Banach space of all continuous
functions from J to F with the norm

[1Yllco = sup [ly(®)]l-
teJ

Let B(FE) denote the Banach space of bounded linear operators from E into E.

A measurable function y : J — E is Bochner integrable if and only if ||y|| is Lebesgue integrable.

Let L'(J, E) denote the Banach space of measurable functions y : J — E which are Bochner
integrable normed by

b
Iyl = [ ey .
0

Definition 2.1. A function f:J x E — FE is said to be Carathéodory if
(i) for each t € J the function f(¢, -) : E — E is continuous;
(ii) for each y € F the function f(-,y): J — E is measurable.

Definition 2.2 ([L7]). The fractional primitive of order a > 0 of a function f : R™ — E of order
a € RY is defined by

Ioh(t) = / (t_r(i; F(s)ds.
0

Definition 2.3 ([L7]). The Riemann-Liouville derivative of order o > 0 with the lower limit ¢ for a
function f: R™ — E is given by

DY) = s

el _ \n—a-—1 -1 .
Tin—a) dt”/(t s) f(s)ds, t>ty, n <a<n

to

Definition 2.4 ([L7]). The Caputo fractional derivative of order o > 0 with the lower limit ¢y for a
function f: RT — E is given by

t
1

D) = gy [= o ) ds

We denote by D(A) the domain of A, by o(A) its spectrum, while p(A4) = C\ o(A) is the resolvent
set of A, and denote by R(z, A) = (21 — A)~1, 2 € p(A), the family of bounded linear operators which
are the resolvents of A.

Definition 2.5. Let —1 <y <0 and 0 <w < L. By ©)(E) we denote the family of all linear closed
operators A : D(A) C E — E which satisfy the following conditions:

(a) 0(A) C Sy = {z € C\{0};[argz[ < w} U{0};
(b) for every w < g < II, there exists a constant C), such that

|R(z; A)|| < Cyulz]” forall ze C\S,.

A linear operator A is said to be an almost sectorial operator on E if A € ©)(FE).
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Let A be an operator in the class ©)(F) and -1 <7y < 0,0 < w < % Define the operator families
(Salhiesy, - (PalOhicsy, by

Sult) = Bu(—t7)(A) = ﬁ /Ea(—zt“)R(z,A) dz,
Ty

Po(t) = ea(—2t*)(A) = %Hi/ea(—zt“)R(z,A) dz

e

where the integral contour I'y = {R, e} U {R, e~} is oriented counter-clockwise and w < 6 < p <
% — | argt|. Now, we present the following important results about the operators S, and P,,.

Theorem 2.6 ([27]). For each fized t € S, Sa(t) and Po(t) are the bounded linear operators
2
on E. Moreover, there exist the constants Cs = C(a,v) > 0, Cp, = C(a,y) > 0 such that for allt > 0,

[8a (0] < =0, [Pa(t)]] < Cpt= 0+,
Also,

Sa(t)x = /\I'a(s)T(sta)a: ds, teS%_, v€E,
0

and

r € F,

—w?

Po(t)z = /as\I/a(s)T(st“)m ds, t€S%
0

where T'(-) is a semigroup associated with A.
Theorem 2.7 ([27]). Fort > 0, So(t) and Pu(t) are continuous in the uniform operator topology.

Consider the problem

CDay(t) - Ay(t) = f(t)v te (07 b]a (21)
y(0) = yo,

where D, 0 < o < 1, is the Caputo fractional derivative, f € L*(J, E) and yo € E.
Definition 2.8 ([27]). A function y € C([0,b], E) is called a mild solution of Problem (EI), (@) if

t
y(t) = yo—l—/t—so‘ YPu(t —s)f(s)ds, t€]0,b].
0

Let C(Ry) be the Fréchet space of all continuous functions v from R, into E, equipped with the
family semi-norms
[vlln = sup [lv(@)], neN,
te[0,n]
and the distance

o oon 1w =l
v)=Y 27" — " uwveC(Ry).
) = 14 flu—vl, (R+)

(For more details about measures of noncompactness see [L3,[14].)

Definition 2.9. Let M x be the family of all nonempty and bounded subsets of a Fréchet space X.
A family of functions {un,}nen, where u, : Mx — [0,00) is said to be a family of measures of
noncompactness in the real Fréchet space X if for all B, B, Bo € Mx it satisfies the following
conditions:
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a) {n}tnen is full, that is, u,(B) = 0 for n € N if and only if B is precompact;

(
(

)
b) pn(B1) < pn(Bg) for By C By and n € N;
(¢) p(ConvB) = p(B) for n € N;

)

(d) if {B} is a sequence of closed sets from M x such that B;y; C B, i=1,..., and if lim p,(B;)=0,

1—00

o0
for each n € N, then the intersection set Bo, = [ B; is nonempty.
i=1

1=

Definition 2.10. A nonempty subset B C X is said to be bounded if for n € N, there exists M,, > 0
such that

lylln < M,, foreach ye B.

Lemma 2.11 ([9]). If Y is a bounded subset of the Banach space X, then for each € > 0, there is a
sequence {yr}72, CY such that

u(Y) < 2u({ye}i,) +e

Lemma 2.12 ([18]). If {ux}72, C L'(I) is uniformly integrable, then pu({uy}?2,) is measurable for

n € N and . .
({ / ui(s) d}zo_) <» / (s (5)152) ds

for each t € [0,n].

Definition 2.13. Let 2 be a nonempty subset of a Fréchet space X, and let A : 2 — X be a continuous
operator which transforms bounded subsets onto the bounded ones. One says that A satisfies the
Darboux condition with constants (k,)nen with respect to a family of measures of noncompactness

(tn)nen if
1in(A(B)) < kppin(B)

for each bounded set B C Q and n € N. If k, < 1, n € N, then A is called a contraction with respect
to {Mn}nEN~

In the sequel, we will make use of the following generalization of the classical Darboux fixed point
theorem for the Fréchet spaces.

Theorem 2.14 ([L3,14]). Let Q be a nonempty, bounded, closed and convex subset of a Fréchet space
F oand let V : Q — Q be a continuous mapping. Suppose that V' is a contraction with respect to a
family of measures of noncompactness {pn}nen. Then V has at least one fized point in the set Q.

3 The main result

Influenced by [27] with ¢(0) € D(A?), 8 > 1+, we define a mild solution of problem (EI), (@) by
the following

Definition 3.1. We say that a continuous function y : R — E is a mild solution of problem (@), (@)
if y(t) = ¢(t) for all t € [—r, 0] and y satisfies the integral equation

t

y(t) = Salt)$(0) + /(t — )P, (t — s)f(s,y(s — p(y(s)))) ds for each t € J.
0

Let us include the hypotheses.

(H1) The function f :J x E — E is Carathéodory.
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(H2) There exist a function p € L}, .(J,RT) and a continuous nondecreasing function ¢ : J — [0, +00)
such that
If @&, w)| < p(t)(||ul]) for a.e. t € J and each u € E.

(H3) There exists a function | € L}, (J,RT) such that for any bounded set B C E, and for each t € J,
we have

a((f,B)) < U(t)a(B).

(H4) There exists r, > 0 such that

t
Csn—a(1+v)|¢< )H_pr Tn sup {/ —(1+av) ( )ds} <.
0

te[0,n]

For n € N, we define on C([—r,400), E) the family of measures of noncompactness by

pn(V) = wi (V) + s e Mu(v(t)),
tel0,n

where V(t) = {v(t) € E:v e V)},t €[0,n], and L > 0 is a constant chosen so that

t
l, =4C), sup /e_L(t_s)(t —5)" () ds < 1.
te[0,n]
0
Remark 3.2. Notice that if the set V is equicontinuous, then w{ (V) = 0.
(

Theorem 3.3. Assume (H1)—(H4) are satisfied. Then problem EI), (@) admits at least one mild
solution.

Proof. Consider the operator N : C([—r,+c0), E) — C([—r,+00), E) given by

o(t) if ¢ € [—r0;
(Ny) (1) = :
+/ )T Pa(t — 5)f(s,y(s — p(y(s))) ds if t € J.
0

We shall check that the operator IV satisfies all conditions of Theorem . The proof is given in
several steps.
Let
B, = {u € C([-r,+00), E) : |lulln < rn}a

where 7, is the constant given by (H4). It is obvious that the subset B, is closed, bounded and
convex.

Step 1. N(B,.,) C B, .
For any n € N and for each y € B, and t € [0,n], we have

IO < [S2O160)] + [ (= 91 [Palt = s)] 17505 — plus)) | ds
0
< Ct= | g(0)] + / (t — 50N Cop(s)([ly(s)])) ds
0

t
< Con = H|4(0)| + Cpip(ry) sup {/ (t —s)~ IV p(s) ds}
0

te[0,n]
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Thus
INY)ln < 7.

Step 2. N is continuous on B, .
Let y,, be a sequence such that y, — y in B, . Then for each t € [0,n], we have

[(Nya)(8) — (Ny) (1)

t

< [t =5 Pat = )1 £ mls = plan(6)) = F(ss0(s = plus)) | ds

0

/ R Hf $,4n(s = p(yn(s)))) = £ (s,(s _p(y(s))))”ds'
0

Since f is a Carathéodory function for ¢ € [0,n], from the continuity of p, the Lebesgue dominated
convergence theorem implies that

IN(yn) = N(y)||ln — 0 as n — oo.

Step 3. N(B,,) is bounded which is clear.
Step 4. For each bounded equicontinuous subset V' of B, , tn(N(V)) < kppn (V).

From Lemmas and , for any V' C B,, and any € > 0, there exists a sequence {yx}3>, C V
such that for all t € [0, n],

u(v)(0) = ({ Sa060) + / Pt )5 sl — py(s))) s, V)
0

< { / (t— )" Pt — ) (s — p(s(5)))) ds}oo )+
0

k=1

o0

<40, [ (t - s)’““’”)u({f(tyyk(s - P(%(S))))}k

)ds—l—e

0

<16, [t =9 ()N ds + ¢
0
/ €45t — )Mol ({ (ye(5)) 172y ) ds + e
0

Thus
n(N(V)) < lnpin (V).

As a conclusion, N has at least one fixed point in B, . O
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4 Controllability of semilinear fractional differential equations
with state-dependent delay

In this section, we prove a controllability result for system (@)7 (@)

Definition 4.1. System (@), (@) is said to be controllable if for any continuous function ¢ € [—r, 0],
any y; € E and for each n € N there exists a control v € L?([0,n], E) such that the mild solution

() of (L), ([L.4) satisfies y(n) = y1.

Let us introduce the following hypotheses:
(H4’) There exists 7], > 0 such that

—Q

Con™ 1 p(0)][1+ =

—ay

v n
7} + |y1[Cp My M —

n

+ () / (t — )"0 p(s) ds -

0

—ay

14+ n CpM1M2:| S ’I“/n.
—ay

(H5) For each n > 0, the linear operator W : L?([0,n],U) — E is defined by

Wu= [ (t—s)*'Py(n— s)(Bu(s))ds,
/

and

(i) the operator W has a pseudo-invertible operator W ~! which takes values in L2([0,n],U)/ Ker W
and there exist positive constants M7, M such that

IB|| < My and W] < Mo,
(i) there exist nw (t) € L>=(J,RT), Cp > 0, for any bounded sets V; C E, Vo C U,
p(W=IV)() < mw (Du(Va(t),  u((BV2)) < Crpu(Va).
Theorem 4.2. Suppose that hypotheses (H1)—(H3) and (H4')-(H5) hold. Further, assume that the

inequality

—Q

Y
n )<1
ay

Proof. We define in C((—o0,r], E') the family of measures of noncompactness by

L (1 +2C,Cilinwl| =

holds, then problem (B), (Q) is controllable.

pn(V) = wi (V) + sup e “u(V (1),
te[0,n]
where V(t) ={v(t) e E: ve V}.
Consider the operator Ny : C((—o0,7], E) = C((—00,r], E) defined by

o(t) if ¢ € [—r,0];

)+ ) Palt — 8)f (5, 5(s — p(y(s)))) ds

(N1y)(t) =

+ V¥ Py (t — 5)Buy(s) ds if teJ

o fe
fos
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Using assumption (H5), for an arbitrary function y( - ), we define the control
t
)= W i = S 00(0)+ [0 = 9 Palt = 911 (.0l — pal9) 5] ).
0

Noting that

n

luy @) < W] {Iyﬂ + 1Sa(t)o(0)[| + /(n =7)* Pa(n = 1) f(1,y(r = p(y(7)))) dT} ;

0

by (H2) we get

n

[uy (D) < Mo [Iyll + Ot~ 6(0)] + /Cp(n =) p(r) y(7)| dT]- (4.1)

0
Next, for any n € N,
B, =B(0,r,) = {w € C([-r,00), E) : |Jw|, < 7“;},

where 7], > 0 is the constant defined in (H4’). Obviously, the subset B, is closed, bounded and
convex.

Step 1. Ny(B,,) C B,,,.
For any n € N, and each y € B, , by (@) we have

Vi) (0] < [Sa(®)] 6(0)] + / (t— )2 Palt — )] | £ (5:9(s — ply(s)))) || ds
0
+/ (t— )Y Palt — )| Buy ()] ds
0

t
< Con | G(0)] + Cpio(r, / ~(+e) () ds
0

t

+ Cp M1 Mo /(t —5)” (o) [|y1| + Cyn=*1|6(0))

0
n

+Cutry) [[(n =) ) dT] s

0
—a —a

n- n
} + |y1|Cp My My
—avy _

< Con 0 jp(0)] [1+

+ Cp’L/J(T;l) /(t — S)_(H"W)p(s) ds - [1 + =
0

MQ}
<r

!/
= I'n-

Step 2. N; is continuous on B,
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Let y, be a sequence such that y, — y in B,,. Then for each ¢ € [0,n], and by the Lebesgue
dominated convergence theorem, we obtain

[(N1y)(t) = (Ny) (1)l

< [t = Pate = 7 (53005 = plan(61)) = 7 (5.5 = plu(s)) | ds
0

+ /(t = 8)* Y| Palt — )| || Buy, (s) — Buy(s)||ds — 0 as n — oo.
0
Thus N is continuous.

Step 3. Since Ni(B,,) C B,, and B, is bounded, we find that Ny (B3, ) is bounded.
Step 4. For cach bounded subset V' of By, fin(N1(V)) < kppin (V). O

From Lemmas and , for any V' C B,, and any € > 0, there exists a sequence {yx}32, C V
such that for all ¢ € [0, n], we have

(000 = i {8a0600) + (¢~ 9" Pate = ) [FG6sats — o) + By (6)] v e v )
0

<o { / (1= 9" Palt = ) [F (sl — p(9) + Buy (9] ds} ) e

k=1

<40, [ (=) ({5 nls = by (o)) + Buy (9} ) ¢

k=1

<4c, /(t —5) ") u({yn(s)}52y) + e

t
40, [0 ) (fu ()12 .
0

Now, let us calculate p({uy, (s))}72 ;).
By (H5) we have

i({uy, (0332) < 20w (HC, / (t — )~ () (e (3)) }52) ds

0
t

< 5001 [ (8= 9 T eEse s (o (e (5) 0} o) .
0
Then 1
(V) < & L ()0, (V). (4.2

Since € > 0 is arbitrary, by (@) we obtain

t*O(

2l
HNL(V)) < bpinV) + 20 CpC = [l [l pin (V)-

«
Thus
nfa

mv)un(V)-

As a conclusion, we have achieved that N; has at least one fixed point in B, .

i (N1(V)) < 1 (142G, C || =
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5 An example
We consider the fractional differential equation with state-dependent delay of the form
0P u(t, x) = Ofu(t, ) + Q(t)|u(t — 7(u(t,x)),z)|, x€[0,7], t€[0,00),
u(t,x) = up(t, x), x €10,7], —Tmax <t <0, (5.1)

u(t,0) =u(t,m) =0, t € [0,00),

where ug € C?([—Tmax, 0] X [0, 7], R) @ is a continuous function from [0, +00) to R, the delay function
7 is the bounded positive continuous function in R", and 7y,.x is the maximal delay which is defined by

Tmax = Sup 7(x).
xER

Consider the space of Holder continuous functions £ = C!([0,7],R) (0 < I < 1), and let 0% be the
regularized Caputo fractional partial derivative of order 0 < a < 1 with respect to ¢ defined by

(C0%u)(t,2) = ﬁ (gt j (t — 8) " ult,z) ds — tau(O,x)>.

0

Next, we introduce the operator

A=-92, D(A) = {ueC*(0,7]): u(t,0)=u(t,7) =0}
in the space C'([0, 7], R). It follows from [26] that v exists, ¢ > 0 such that A + v € @%__1(X) Set

y(t)(z) = u(t,x), t € (—o00,0], x € [0,n],
o(t)(x) = up(t,x), t € [~Tmax,0], = € [0, 7],
[t o) (@) = Q) |u(t — T(u(t,2)),2)|, ¢ €E, te[0,+00), —00<6<0, x€l0,n].

Then system (| can be written in the abstract form as (EI), (@) As a consequence of Theo-
rem , system (b.1]) has a mild solution.
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ON SOME FRACTIONAL INTEGRO-DIFFERENTTIAL INCLUSIONS
WITH ERDELYI-KOBER FRACTIONAL INTEGRAL
BOUNDARY CONDITIONS



Abstract. We study two classes of fractional integro-differential inclusions with Erdélyi-Kober frac-
tional integral boundary conditions and we obtain existence results in the case of the set-valued map
has nonconvex values.
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1 Introduction

In recent years, the systems defined by fractional order derivatives have attracted increasing interest
mainly due to their applications in different fields of science and engineering. The main reason
is that a lot of phenomena in nature can be better explained using fractional-order systems (see,
g., [B,1L0,[13,[15,1L6], etc.).
The present paper is concerned with the following boundary value problems. First, we consider a
fractional integro-differential inclusion defined by the Caputo fractional derivative

Dix(t) € F(t,z(t),V(z)(t)) a.e. ([0,T]) (1.1)
with the boundary conditions of the form
q
z(0) =« ﬁ /(C — 8P ta(s)ds = aJPz((),
0 . (1.2)

x(T) =

775 n(0+7) / gm+n—1 ( )ds:BIg"sx(g),

gn _ sn 1-6
0
where ¢ € (1,2], D? is the Caputo fractional derivative of order ¢, 0 < (,¢ < T, a,f8,7 € R,
p,0,n > 0, JP is the Riemann-Liouville fractional integral of order p, I;]V"; is the Erdélyi-Kober
fractional integral of order § > 0 with n > 0 and v € R, F : [0,7] x R x R — P(R) is a set-
valued map and V : C([0,7],R) — C([0,T],R) is a nonlinear Volterra integral operator defined by
¢

V(z)(t) = [k(t,s,2(s))ds with k(-,-,-) : [0,7] x R x R — R a given function. We note that
0

the fractional derivative introduced by Caputo in [§] and afterwards adopted in the theory of linear
visco-elasticity allows to use Cauchy conditions with physical meanings.
Next, we consider the problem

Dx(t) € F(t,z(t),V(z)(t)) a.e. ([0,T]) (1.3)

with the boundary conditions of the form

2(0) = ZBJ”“ (&), (1.4)

where DY is the Riemann—Liouville fractional derivative of order ¢ € (1,2], 0 < & < T, o, 8,7 € R,
0;,m; >0,i=1,2,...,m, F and V are as above.

Our aim is to obtain the existence of solutions for problems (@), (@) and (E)7 (Q) in case
where the set-valued map F' has nonconvex values, but is assumed to be Lipschitz in the second and
third variable. Our results use Filippov’s techniques (see [12]); namely, the existence of solutions
is obtained by starting from a given “quasi” solution. In addition, the result provides an estimate
between the “quasi” solution and the solution obtained.

Note that in the case when F' does not depend on the last variable and is single-valued, the existence
results for problem ([.1]), () may be found in [2], and in the situation when F' does not depend on
the last variable, the existence results for problem ([L.3), (L.4) are given in [1]. All the results in [1,2]
are proved by using several suitable theorems from fixed point theory.

Our results improve some existence theorems in [[l] and, respectively, in [2] in the case where
the right-hand side is Lipschitz in the second variable. Moreover, these results may be regarded as
generalizations to the case where the right-hand side contains a nonlinear Volterra integral operator.
It should be also mentioned that the method used in our approach is known in the theory of differential
inclusions; similar results for other classes of fractional differential inclusions have been obtained in
our previous papers (see [f=9], etc.). However, the exposition of this method in the framework of
problems (@), (IE) and (E),( ) is new.

The paper is organized ag follows. In Section E we recall some preliminary results that we need
in the sequel and in Section J, we prove our main results.
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2 Preliminaries

Let (X,d) be a metric space. Recall that the Pompeiu—Hausdorff distance of the closed subsets
A, B C X is defined by

du(A, B) = max {d*(A, B),d"(B,A)}, d*(A,B) =sup{d(a,B); a € A},

h B) = inf .
where d(z, B) ylgBd(z,y)

Let I = [0,T], we denote by C(I,R) the Banach space of all continuous functions from I to R
with the norm ||z(-)|lc = sup,e;|z(?)|, and Ll(I R) is the Banach space of integrable functions

u(-): I — R endowed with the norm |lu(-)||; = f lu(t)| dt.

The fractional integral of order o > 0 of a Lebesgue integrable function f : (0,00) — R is defined by

t

—s a—1
5w = [ %f@) ds,
0

provided the right hand side is defined pointwise on (0, 00), and I'( ) is the (Euler’s) Gamma function
defined by T’ f te~tetdt.

The Riemann Lzoumlle fractional derivative of order o > 0 of a Lebesgue integrable function
f:(0,00) — R is defined by

t

Daf(t) = ﬁ j;l /(t — 5)*C¥+n71f(s) ds

0

where n = [a] 4+ 1, provided the right-hand side is defined pointwise on (0, 00).
The Caputo fractional derivative of order o > 0 of a function f : [0,00) — R is defined by

t
DE() = Fma [ (=97 ) as,
(n—a)
0
where n = [a] + 1. Tt is assumed implicitly that f is n times differentiable whose n-th derivative is
absolutely continuous.
The Erdélyi-Kober fractional integral of order 6 > 0 with n > 0 and v € R of a continuous function
f:(0,00) — R is defined by

¢
77t n(6+7) Snwrn 1
IO f(t) = )i=s f(s)ds

0

provided the right-hand side is defined pointwise on (0, 00).
We recall that for n =1,

t
—(5+7)
I f(t) V/ 15f s)ds

0

is the Kober operator introduced by Kober in [14]. If v = 0, the Kober operator reduces to the
Riemann—Liouville fractional integral with a power weight

t=9 / S
190f(t) = ) / (tf(s))l_a ds.
0
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Lemma 2.1 ([2]). Let 6,7 >0 and v,q € R. Then

q q
pﬁq%:tFW+"+U,
K Fiy+1+d+1)

By definition, a function x(-) € C?(I,R) is called a solution of problem (EI), (@) if there exists
f G LY(I,R) such that f(t) € F(t,z(t),V(z)(t)) a.e. (I), Diz(t) = f(t) a.e. (I) and conditions
are satzsﬁed

Lemma 2.2 ([2]). For f(-) € AC(I,R), z(-) € C*(I,R) is a solution of the problem
Dix(t) = f(t) a.e. (I),
with the boundary conditions (@) if and only if

B{t) = JOF(E) + 5 (o4 — tus) TPHOF(C) + (v -+ 100) (BT TF(€) = T (T)),

where
A ¢ S
vivg +ozvy 20, 0 “Tor+1 " %Tpr2)
D(y+1 C(y+++1)
U3:1—,87(,7 ) 3 ’U4ZT—B< 17] .
P(v+d+1) I‘(v—i—;—i—&-ﬁ-l)

Remark 2.3. The solution z(-) in Lemma @ can be written as

t ¢
[ (=)t tvg gypra-1
(1) = / o s + / (s) ds
£ s
B(vg + tvy) 77§ n(6+7) sm+n—1 1 B
+ 2A 1 / 577_5771 5 F()/(S_u)q 1f(u)du)d5
0 0
T
— — (vg +tvq) f(s)ds
!

t ¢
L _g) 1 ot (va —tvg) _ §)Pte-1¢(s) ds
o O/t sy ds+ § ) 0/<< P () d

¢
(6+7) +n—1
—l—ﬁ(i\z;(_tvl ne e /(/ s"j 57:7 T ami=s (8 —u)! ds)f(u)du
0

u

T
— — (v +t1) f(s)ds
!
T
:/Gl(t,s)f(s) ds,
0
where
— )it a (vg —tv
Gi(t,u) = (tr(q))q X0, () + A (4F(qt)3) ¢ - u)erq*lX[O?C] (u)
£
Blug +1 —n(d+7) ny+n—1 - Tt W
o | s 0 a0 - S @ -0,
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Xs(+) denotes the characteristic function of the set S.
Using the fact that ¢ > 1 and taking into account Lemma @, one has

S
nf—n(ﬂw) / gm+n—1 o1
O A GET IR

u

< 775777(6+7) 7 sl s97lds = ¢+ 11;71 +1)
IR A (§n —sm)t=0 P(y+ 42 +6+1)

Therefore, for any t,u € I,

Tt o (o] + Tlos )¢+
G
Gl 1y AT(g)

Bl(Jvs| + Tlor)) €' PO+ E2+1) (oo + Toa T
AC(q)  T(y+ L +45+1) AT (q) H K

By definition, a function z(-) € C?(I,R) is called a solution of problem (E), (@) if there exists
f@) € L'(I,R) such that f(t) € F(t,z(t),V(x)(t)) a.e. (1), Diz(t) = f(t) a.e. (I) and conditions

are satlsﬁed
Lemma 2.4 ([1]). For f(-) € AC(I,R), z(-) € C?(I,R) is a solution of the problem
Dea(t) = f(t) ae. (I),
with the boundary conditions (@) if and only if

ta—1

2(t) = JUf(t) - — (anf Zﬁf%wﬁf )

where ) )
m q— X q—
A=aTd ! — Z Ble F(lzll—’_ M; + 1)
o T+ 4 +0i+1)

T
Remark 2.5. The solution z(-) in Lemma 2.4 can be written as z(t) = [ Ga(t, s) f(s) ds, where
0

— e 1 at?—1
(t ) X[o,t] ('LL) - A;(q) (t - u)q71X[U,t] (’LL)

é‘ i 5+’Yz) &

/th q-1 gMiYitni—1 .
- Z I'(6;) / (&1 — smi)l=o (s = u)?™"ds Xy ¢y (W)

As in Remark @, for i =1,2,...,m, one has

mgi*m(c‘ﬁ%) & gMivitni—1 -1 Eg_lf‘(%' + L;il +1)
L (5; / Tyt WSS sem s
( l) (67, S ) F('Yz + m + 51 + 1)

and thus, for any t,u € I,

Tt Iﬂz Eq T+ %2 +1)
Go(t, T 1+§ =: Ks.
G2t < Ty |A|F( [ | +—qm1+51+1) i
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3 The main results

First, we recall a selection result (see [4]) which is a version of the celebrated Kuratowski and Ryll-
Nardzewski selection theorem.

Lemma 3.1. Suppose X is a separable Banach space, B is the closed unit ball in X, H : I — P(X) is
a set-valued map with nonempty closed values and g : I — X, L : I — R are measurable functions. If

Ht)N(g(t)+L(t)B) # 2 a.e. (I),
then the set-valued map t — H(t) N (g(t) + L(¢t)B) has a measurable selection.
In order to prove our results, we need the following hypotheses.
Hypothesis 3.2.
(i) F(-, ) : I xR xR = P(R) has nonempty closed values and is L(I) @ B(R x R) measurable.

(ii) There exists L(-) € L'(I,(0,00)) such that, for almost allt € I, F(t, -, -) is L(t)-Lipschitz in
the sense that

dH(F(tv‘Tlvyl)ﬂF(tﬂx27y2)> < L(t)(|(l?1 - $2| + |y1 - y2|) V.’I,'17£C27y1,y2 eR.
(iif) (-, -, ) : I xR xR — R is a function such that Va € R, (t,s) — k(t, s,x) is measurable.
(iv) |k(t,s,2) — k(t,8,9)| < L(t)|z —y| a.e. (¢,8) €I xI, Va,yeR.

Next, we use the notation
¢ T
M(t) == L(t)(1 +/L(u) du), tel, Ko= /M(t) dt.
0 0
Theorem 3.3. Assume that Hypothesis @ is satisfied and K1Ko < 1. Let y(-) € C*(I,R) be such
that y(0) = aJ?y((), y(T) = B} y(§) and there exist p(-) € L*(I,Ry) with

d(Dey(t), F(t,y(t),V(y)(t)) < p(t) a.e. (I).
Then there exists a solution z(-) : I — R of problem (EI), (E) satisfying for all t € I the inequality

o(8) ~ y(0) < T ()l

Proof. The set-valued map t — F(t,y(t), V(y)(t)) is measurable with closed values and

F(t,y(t), V(y)®) N {D2y(t) + p(t)[-1,1]} # & ae. (I).

It follows from Lemma @ that there exists a measurable selection f1(t) € F(t,y(t),V(y)(t)) a.e.
(I) such that

[f1(t) = Dey(t)] < p(t) ae. (I). 3.1
Define z1(t) = OfGl (t,s)f1(s)ds. One has

T
21 () — y(t)] < My / p(t) dt.
0



22 Aurelian Cernea

We construct two sequences x,,(-) € C(I,R), fo(-) € L*(I,R), n > 1, with the following proper-
ties:

n(t) = / Gr(t, s)fu(s)ds, €T, (3.2)
0
fn(t) GF(t,xn,l(t),V(xn 1)(t)) a.e. (I), (3.3)
|fn+1<t>—fn<t>|SL<t>(|xn<t>—xn O+ [ L)fen(s) = aa(s >ds) ac (1) (34)
0

If this is done, then from (@)7(@) for almost all ¢ € I we have
T
|Tnt1(t) — 2 (t)] < K1 (K1Kp)" /p(t) dt VneN.
0
Indeed, assume that the last inequality is true for n — 1 and we prove it for n. One has

|Tn1(t) — 2 (O] < [ [G1(E 8] [ fasa(t1) — fu(tr)] dta

Ot~

T t1
< 1/L [m o 1(t1)|+/L(s)|atn(s)—xn1(s)ds] dty
0 0
T T
< K, / L(t <1+ ds) dty - KKy / p(t) dt
0 0

Therefore, {z,(-)} is a Cauchy sequence in the Banach space C(I,R) converging uniformly to
some z(-) € C(I,R). Hence, by (@), for almost all ¢ € I, the sequence {f,(¢)} is Cauchy sequence
in R. Let f(-) be the pointwise limit of f,(-).

At the same time, one has

|20 () — y ()] < Jaa(2) HZlml — x(t)]

T
T T Ky fp(t) dt

<M / ) dt + Z ( /p )(KlKo)i = 1_0%- (35)

0 0

On the other hand, from (@)7 (@) and (@) for almost all ¢t € I we obtain

n—1 Kl fp(t) dt
[fn(t) = D2y(t)| < Z [firr(t) = fi(t)] + [f1(t) — Dey(t)| < L(t) #ﬁﬁ) +p(t).

Hence the sequence f,(-) is integrably bounded and therefore f(-) € L(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit in (@), (@), we deduce
that x(-) is a solution of (@), (@) Finally, passing to the limit in (B.H), we obtain the desired
estimate on z( )
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It remains to construct the sequences x,(-), fn(-) with the properties in (@)7(@) The con-
struction will be done by induction.

Since the first step is already realized, assume that for some N > 1 we have already constructed
2,(-) € C(I,R) and f,(-) € L*(I,R), n = 1,2,..., N, satisfying (@), (@) forn=1,2,...,N and
(@) forn=1,2,..., N —1. The set-valued map ¢t — F'(¢,zn(t), V(zn)(t)) is measurable. Moreover,
the map

t— L) (m(t) ey ()] + / L)l (s) — v 1(5) ds)
0

is measurable. By the lipschitzianity of F'(¢, -) for almost all ¢ € I we have

F(umw,wxm(w)m{fN<t>+L<t><|xN<t>:cN_1<t>+ / L<s>|xN<s>mN_1<s>|ds) -1, 11} 4o

0

Lemma @ yields that there exists a measurable selection fyy1(-) of F(-,zn(-),V(zn)(-)) such
that for almost all t € I,

Unan(t) — (0] < (1) (xw) — a1+ [ L)) — v () ds).
0

We define zn41(+) as in (@) with m = N + 1. Thus fy41(-) satisfies (@) and (@) and the proof
is complete. O

The assumption in Theorem @ is satisfied, in particular, for y(-) = 0 and therefore with p(-) =
L(-). We obtain the following consequence of Theorem

Corollary 3.4. Assume that Hypothesis @ is_satisfied, d(0, F'(¢,0,0) < L(t) a.e. (I) and K1 Ky < 1.
Then there exists a solution x( ) of problem (EI),( ) satisfying for all t € I, the inequality

Ky
< —k||L(- .

Example 3.5. Consider

3 6 1 1
q_ivT_lva_ﬁvp_fvc_Zv
VT 3 VT 1 3
6:7a7:7>6:77n:7a€:7'
9 4 5 6 4

Denote by K the corresponding estimate of G (-, -) in Remark @ and take a € (0, -1+ ,/1 + %)
1
Define F/(-, ) : I x Rx R — P(R) by

F(t,x,y) = [_alflﬂ 0] U fo.a 1yl ]

and k(-, -, ): I XxRxR — R by k(t, s,z) = az.
Since

sup{|u|: ue F(t,z,y)} <a Vte[0,1], z,y €R,
du (F(t,z1,11), F(t,22,y2)) < alzy — x2] + alyr — ya| Va1, 22,51,92 € R,

in this case p(t) = L(t) = a, M(t) = a(l + at) and Ky =a + %
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According to the choice of a, we are able to apply Corollary 3.4 in order to deduce the existence
of a solution of the problem

D2x(t) e {“1f|(fc)(lt)’0] U [o,az

|fg:c(s)ds| ]
1—|—a|f0tx(s)ds‘ 7

O RO 0

that satisfies
KYa

— 1% wie(o,1].
1—(a+ %)KY

()] <

If F' does not depend on the last variable, Hypothesis @ becames
Hypothesis 3.6.
(i) F(-,): I xR — P(R) has nonempty closed values and is L(I) ® B(R) measurable.

(ii) There exists L(-) € L*(I,(0,00)) such that for almost all t € I, F(t, -) is L(t)-Lipschitz in the
sense that
dy (F(t,$1), F(t,xg)) < L(t)|$1 — $2| Vxl,xz c R.

T
Denote Lo = [ L(t) dt.
0

Corollary 3.7. Assume that Hypothesis @ is satisfied, d(0, F(t,0) < L(t) a.e. (I) and KLy < 1.
Then there exists a solution x(-) of the fractional differential inclusion

Dix(t) € F(t,z(t)) a.e. (I),
with the boundary conditions (@) satisfying for allt € I

KLy

lz(t)] < - KLy (3.6)

Remark 3.8. If F(-, -) is a single-valued map, the fractional differential inclusion reduces to the

fractional differential equation
Dix(t) = f(t,z(t)) a.e. ().

In this case, a similar result to the one in Corollary @ may be found in [2], namely, Theorem 3.1.
It is assumed that the Lipschitz constant of f(¢, -) does not depend on ¢ and its proof is done by
using the Banach fixed point theorem. Therefore, our Corollary @ extends Theorem 3.1 in [2] to
the situation when the Lipschitz constant of f(t, -) depends on ¢ and to the set-valued framework.
Moreover, Corollary @ provides a priori bounds for the solution, as in (B.4).

The proof of the next theorem is similar to that of Theorem @

Theorem 3.9. Assume that Hypothesis @ is satisfied and KoKo < 1. Let y(-) € C*(I,R) be such
m

that y(0) =0, ay(T) = > &Igj*‘siy(&) and let there exist p(-) € L*(I,R) with
i=1

d(Dy(1), F(t,y(t,V(y)(1)))) < p(t) a.e. (I).
Then there exists a solution x(-): I — R of problem (@), (@) satisfying for allt € 1

o®) = y(0) < T ()l
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Example 3.10. Consider

3 2 e T NS

q 27 , m , 3561 27ﬁ2 37ﬁ3 67
V3 Y2 e 52 e
771—57772—5a773—37’71—3,72—9a73—27
3 V3 e? 4 3 2
61_?762_?753_1751_5752_§a€3_?'

Denote by K9 the corresponding estimate of Ga(-, -) in Remark 2.5 and take a € (0,1 (-1 +

1/1+1,%2))).

Define F(-,-): I x R xR — P(R) by

F(t,z,y) = [—alfuyo} Y {O’Cll#l%/'yl}

and k(+, -, ) : I x RxR = R by k(t,s,x) = ax.
As above,
sup{|ul: u e F(t,z,y)} <a Vte[0,1], z,y €R,
dH(F(t,J?l,yl),F(t,.]jg,yg)) < Cl|.’131 —$2| +a|y1 _92‘ Vﬂ?l,x%yla?ﬁ € R7

and, therefore, p(t) = L(t) = a, M(t) = a(1 + at) and Ko = 5a + 252~
Taking into account the choice of a, we can apply Theorem 3.9 with y(-) = 0 and deduce the
existence of a solution of the problem

t
D3a(t) € {faiw(t)' ,0] U [O,a2 s IES) ds| ],
1+ [a(t)| 1+al [y x(s)ds
2 e 53 /4 w23 3 R
0)=0, Za)=sIe(5)+ 50 a(5) + X a(2)
@(0) 50 =g lue(5) + 5" w3) g s 7
that satisfies o
5K
()] < L Vte (0,5
1 (5& + T)KQ
Remark 3.11. If F(-. -, -) does not depend on the last variable and y(-) = 0, similar results to
the one in Theorem can be found in [[lf], namely, Theorem 3.1 and Theorem 4.2. Even if our

hypothesis concerning the set-valued map is weaker than in [[] (in Theorem 3.1 of [[] it is assumed
that F' has the approximate end point property and in Theorem 4.2 of [I] it is assumed that F' is a
generalized contraction), our approach does not require for the values of F' to be compact as in [[]
and also provides a priori bounds for solutions.
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INTERACTION PROBLEMS OF ACOUSTIC WAVES AND
ELECTRO-MAGNETO-ELASTIC STRUCTURES



Abstract. In the paper, is consider a three-dimensional model of fluid-solid acoustic interaction when
an electro-magneto-elastic body occupying a bounded region Q7 is embedded in an unbounded fluid
domain Q~ = R3\ QF. In this case in the domain Q7 is a five-dimensional electro-magneto-elastic
field (the displacement vector with three components, electric potential and magnetic potential), while
in the unbounded domain 2~ is a scalar acoustic pressure field. The physical kinematic and dynamic
relations mathematically are described by appropriate boundary and transmission conditions. In the
paper, less restrictions are considered on matrix differential operator of electro-magneto-elasticity and
asymptotic classes are introduced. In particular, corresponding characteristic polynomial of the matrix
differential operator can have multiple real zeros. With the help of the potential method and theory
of pseudodifferential equations, for above mentioned fluid-solid acoustic interaction mathematical
problems the uniqueness and existence theorems are proved in Sobolev—Slobodetskii spaces.
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Key words and phrases. Boundary-transmission problems, fluid-solid interaction, potential method,
pseudodifferential equations, Helmholtz equation, steady state oscillations, Jones modes, Jones eigen-
frequencies.

gbogdg. 6590mITo gobbomygmos Lombols ©s Lbggmol 539LEH04gM0 gOM0g@mJdgogool Lad-
256bm3oggdosbo Impgmo, Gmeglon gmgd®®m-dspbgdm-p®gioo Lbygml gssg0s QT gdmls-
DEgOgmo sMg, Mmdgmo hopydgmos O =R3\ QF YgdmgLobepgdgan s®9To. >3 gdmbgggsdo
B9 lsbpgdgm QT 5630 5@l bymyobbmdomgdosbo gemgdd®m-3s3bgBm-p@3o0 ggmo (ows-
oa0mgdol ggd@m@ol Lado gmd3mbgbdo, gmgdddgmo 3m@gbiosmo s dsaboda®o 3m@Egbzos-
o), bomm Q7 Ygdmglobmgmgm s®gdo - s3gLGoggmo §bgzol Lgsmodgmo ggmo. gobogg@o
306985304900 ©s ©06s5303gM0  JOm0gMmmJdgrgdgon BomgdsGogg@ee  seFg@momos Ygbsdsdolo
Lolbobmgtom ©s G®Msbldolool 30Mmmogéom.  bsB@mmdTo dmmbmgbomos bogemgdo Ygboywggdo
9209JBOM=853693 M- M go0md0l ogg@HgbEosmY®m M3gHsGHm®mby s Ygdmwgdymos Ygbsdsdolo
sbodd@m@gmo  gmolgdo.  3g®dme, ds@@oEgmo ©oxgMgbiosmamo m3gms@mmol  Fgbsdsdols
dobolosmgdge 3mmobmdl Ygodmgds goohbpgl xg@mewo bsdpgomo bymgdo.  3m@gbEosgmms
dgompols s glggemEogg®gbEosmy®d gobGmmgdsms mgmmools ds3mygbgdom ©sIFI0(3909Eos
bg3mm s@bodbgmo Lombols s Lbygmol s3gbEogg®o gomog@nddggdols dsmgds@oggmo sdm-
(356900l 53mbsblbgdols gOmeg@mmdols s s@lgdmdols mgmmgdgdo Lmdmegs-Lmmdmeg3gol
Log®3990To.



Interaction Problems of Acoustic Waves and Electro-Magneto-Elastic Structures 29

1 Formulation of the problems

1.1 Introduction

Interaction problems of different dimensional fields of this type appear in mathematical models of
electro-magneto transducers. Further examples of similar models are related to phased array micro-
phones, ultrasound equipment, inkjet droplet actuators, sonar transducers, bioimaging, immunochem-
istry, and acousto-biotherapeutics (see [38,89]).

Due to the rapidly increasing use of composite materials in modern industrial and technological
processes on the one hand, and in biology and medicine on the other hand, mathematical modeling
related to complex composite structures and their mathematical analysis became very important from
the theoretical and practical points of view in recent years.

The Dirichlet, Neumann and mixed type interaction problems of acoustic waves and piezoelectric
structures are studied in [g,11,12].

Similar interaction problems for the classical model of elasticity has been investigated by a number
of authors. An exhaustive information concerning theoretical and numerical results, for the case
when the both interacting media are isotropic, can be found in [[I-4,[15, 17-19,26,27,81]. The cases
when the elastic body is homogeneous and anisotropic, and the fluid is isotropic, has been considered
in [25,85,36]. In this case, one has a three-dimensional elastic field, the displacement vector with three
components in the bounded domain O, and a scalar pressure field in the unbounded domain Q.

In our case, in the domain QF we have an additional electric and magnetic fields which essentially
complicate the investigation of the transmission problems in question. In contrast to the classical
elasticity, the differential operator of electro-magneto-elasticity is not self-adjoint and is not positive-
definite.

We consider less restrictions on the matrix differential operator of electro-magneto-elasticity by in-
troducing asymptotic classes My, my,ms (P), where P is determinant of the electro-magneto-elasticity
matrix operator, in particular, we allow for the corresponding characteristic polynomial of the matrix
differential operator to have multiple real zeros. This class is generalization of the Sommerfeld-
Kupradze class.

We investigate the above problems with the use of the boundary integral equations method and the
theory of pseudodifferential equations on manifolds and prove the existence and uniqueness theorems
in Sobolev—-Slobodetskii spaces.

1.2 Piezoelectric field

Let Q% be a bounded three-dimensional domain in R? with a compact C*°-smooth boundary S = 9"
and let Q= := R?®\ QF. Assume that the domain Q% is filled with an anisotropic homogeneous
piezoelectro-magnetic material.

The basic equations of steady state oscillations of piezoelectro-magneticity for anisotropic homo-
geneous media are written as follows:

Cijr100ug + prw®Spuy + €1;0,0i0 + qij0;0 + F; =0, j=1,2,3,
—ei110;01uy, + €10;010 + 050;01 + Fy = 0,
— Qi1 0i01uy, + a4 0;010 + 1310;01 + F5 = 0,

or in the matrix form
A(0,w)U + F =0 in QT
where U = (u, 0,%) ", u = (u1,us,u3)" is the displacement vector, ¢ = uy is the electric potential,

1) = uy is the magnetic potential and F' = (Fy, Fy, F3, Fy, F5)T is a given vector-function. The three-
dimensional vector (Fy, Fy, F3) is the mass force density, while —F) is the electric charge density, —Fs
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is the electric current density, and A(9,w) is the matrix differential operator,

A(a,w) = [Ajk(a7w)]5x5, (1.1)
Aj(0,w) = cijidi0 + prw?djn,  Aju(0,w) = e1;;00i,  Ajs(0,w) = qi;010;,
Ask(0,w) = —€i10;0;,  Aaa(0,w) = €10;0), As5(0,w) = a;10;0,
As(0,w) = —qir10:0y,  Asa(0,w) = a0;0;,  Ass(0,w) = pa0;0,
7.k = 1,2,3, where w € R is a frequency parameter, p; is the density of the piezoelectro-magnetic
material, cijik, €iri, Qiri, €i, Mil, ay are elastic, piezoelectric, piezomagnetic, dielectric, magnetic
permeability and electromagnetic coupling constants, respectively, d; is the Kronecker symbol and

summation over repeated indices is meant from 1 to 3, if not stated otherwise. These constants satisfy
the standard symmetry conditions

Cijkl = Cjikl = Cklijs Cijk = Cikj, Qijk = Qikj> E€ij = Ejis MHjk = Hkj, Qjk = Akj, %, J,k,1=1,2,3.

Moreover, from physical considerations related to positiveness of the internal energy, it follows that
the quadratic forms ¢;;1:1€:;&k and €;;1;m; are positive definite:

Cijri§izrl > coij&iy V&ij = &5 €R, (1.2)
eigming = canl®, qining = esnl?, pagmim; > caln* Y = (n1,m2,m3) € R?, (1.3)

where cg, c¢1, co and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy insures that the

matrix
Ao [[Erilaxs okl
[akjlsxs  [1njlzys 6x6
is positive definite, i.e.,
e ChCl + ars (GRS + ¢l ) + G Sy = ea(IC1? + [¢"%) V¢ ¢" e CP, (1.4)

where ¢4 some positive constant.
The principal homogeneous symbol matrix of the operator A(9,w) has the following form:

[—cijin€ililsng  [—€1ij&i&ilssy [~ @ii&il5,
A = | [eirbi&),xs —ea&i& —a1&:&
[Giri&i&)1 <3 —a & —wa&i& ) 5.5

With the help of inequalities () and (@) it can be easily shown that
—Re AO(E)¢C - ¢ > ¢|¢2E)? V¢ e T, VEER?, ¢=const >0,
implying that A(9,w) is a strongly elliptic, formally nonselfadjoint differential operator.

N _
Here and in the sequel, a - b denotes the scalar product of two vectors a,b € CV, a-b:= > azby.
k=1

In the theory of electro-magneto-elasticity, the components of the three-dimensional mechanical
stress vector acting on a surface element with a normal n = (n1,ng,ng) have the form

03N 1= Cijipni Qg + eijni0ip + quijni 01y, j=1,2,3,

while the normal component of the electric displacement vector D = (Dj, Dy, D3)" and the normal
component of the magnetic induction vector B = (By, B, B3) " read as

—Din; = —ejpniOiug + €401 + ayn; O,
—Bin; = —qirniOug + ayn;Oip + pin; 0.
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Let us introduce the boundary matrix differential operator

T(a’ n) = [Tjk(a’ n)]5><57
Tk (0,n) = cijieniO;, Tja(0,n) = eni0;,  Tj5(0,n) = quijniol,
Tye(0,n) = —einiOl,  Tua(0,n) = egni0;,  Ty5(9,n) = ayn;dy,
Ts5x(0,n) = —qiraniOy,  T54(0,n) = auni0y, Tss5(0,n) = pyn,;oy,

4,k =1,2,3. For a vector U = (u,p,%) ", we have
T(@, n)U = (aljnj,agjnj,agjnj, —Dini, —Bmi)T. (15)

The components of the vector TU given by (@) have the following physical sense: the first three
components correspond to the mechanical stress vector in the theory of electro-magneto-elasticity,
while the fourth one is the normal component of the electric displacement vector and the fifth one is
the normal component of the magnetic induction vector.

In Green’s formulae, one also has the following boundary operator associated with the adjoint
differential operator A*(9,w) = AT (-0,w) = AT(9,w),

f(av ’I’L) = [Tjk(av ﬂ)}5><5,

where
Tji(0,n) = Tjx(d,n), Tja(d,n) = ~Tja(d,n), Tj5(0,n) = —Tj5(9,n),
Tur(0,n) = —Tur(d,n), Taa(d,n) = Tua(d,n), Tus(d,n) = Tu5(9, n),
Tsr(0,n) = —Tsr(0,n), Tsa(d,n) = Tsa(8,n), Ts5(,n) = Ts5(,n),
g, k=1,2,3.

1.3 Green’s formulae for electro-magneto-elastic vector fields

For arbitrary vector-functions U = (w1, ug, uz, ug,us) " € [C*(QT)]° and V = (v1,ve,v3,v4,05)" €
[C2(Q1)]5, we have the following Green’s formulae (see [(]):

/ [A(0,0)U -V + B(U, V)] da = /{TU}+ (VY as,

Qt S
/ [A(8,w)U -V —U - A*(8,w)V] dz = / [{TU} (VT —{U}+ {TV}T]ds,
Qt S

where

E(U,V) = ¢;ju0iu;ony, — prwu - v + €13 (0us0iv; — ju;0,04)

+ quij (81u58ﬁj - @-ujal%) + EjlajU4al@4 + ajl(alumj% — 8ju58ﬁ4) + ,ujlaju58ﬁ5
with u = (u1,us2,u3) " and v = (vy,vs,v3) . The symbol {-}* denotes the one-sided limits (the trace
operator) on S from QF. Note that by the standard limiting procedure, the above Green’s formulae can
be generalized to the vector-functions U € [H*(Q21)]® and V € [HY(Q1)]® with A(9,w)U € [Lo(Q7)]°
and A*(0,w)V € [Lo(Q27)]5.

With the help of these Green’s formulae, we can define a generalized trace vector {T(9,n)U}T €
[H~1/2(8))° for a function U € [H*(Q1)]® with A(9,w)U € [L2(Q7)]%:

({T@, U} (V}*), = / [A(0,w)U -V + E(U, V)] da,

O+

where V € [H(Q7)]® is an arbitrary vector-function.
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Here and in what follows, the symbol (-, -)g denotes the duality between the mutually adjoint
function spaces [H~1/2(S)|N and [H'/?(S)]N, which extends the usual Ly scalar product

N
(hg)s = [ 31,948 tfor fg [La(S)™.
5 =1

1.4 Scalar acoustic pressure field and Green’s formulae

We assume that the exterior domain 2~ is filled with a homogeneous isotropic inviscid fluid medium
with the constant density ps. Further, let the propagation of acoustic wave in 2~ be described by
a complex-valued scalar function (scalar field) w, being a solution of the homogeneous Helmholtz
equation

AW + pow’w =0 in Q7 (1.6)

3
where A = Y 8‘9722 is the Laplace operator and w > 0. The function w(z) = P*¢(x) is the pressure of
=7

a scattered acoustic wave.
We say that a solution w to the Helmholtz equation (@) belongs to the class Som,(27), p = 1,2,
if w satisfies the classical Sommerfeld radiation condition

Ow(z)

o] +i(=1)P/prww(z) = O(|z|72) as |z| — oc. (1.7)

Note that if a solution w of the Helmholtz equation (@) in Q7 satisfies the Sommerfeld radiation
condition (@), then (see [43])
w(z) = O(Jz|™) as |z| — oo.

Let Q be a domain in R? with a compact simply connected boundary 9Q € C'°.

We denote by H*(Q) (H}.(2)) and H*(0N2) s € R, the Ly based Sobolev—Slobodetskii (Bessel
potential) spaces in © and on the closed manifold 99).

Respectively, we denote by HZ,,,,(2) the subspace of H*(Q) (H}, (2)) consisting of functions with
compact supports.

If M is a smooth proper submanifold of a manifold 052, then we denote by H 5(M) the following
subspace of H*(0Q):

H*(M) := {g : g€ H?(09), suppg C M},

while H*(M) denotes the space of restrictions to M of functions from H*(0),
H*(M):={ruf: feH09Q)},

where r); is the restriction operator to M. o
Let wi € H. (Q7)NSomy,(27), p=1,2,, Awy € Lo 0c(Q7), wa € H.,,,,,(€27), then the following
Green’s first formula holds:

/(A + k2)W1W2 dxr + / VwiVWws dx — k2 / WiWo dx = —<{6nw1}_, {Wg}_>s, (18)
Q- Q- Q-

where n = (ny,ng,n3) is the exterior unit normal vector to S directed outward with respect to the
domain Q7, and 8,, = % denotes the normal derivative.

1.5 Formulation of the Dirichlet and Neumann type
interaction problems for steady state oscillation equations

Now we formulate the fluid-solid interaction problems. We assume that S = Q1 = 9Q~ € C*°.
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Dirichlet type problem (D,,): Find a vector-function U = (u,u4,us)" = (u,9,¥)" € [HY(Q1)]® and
a scalar function w € H} (27) N Som, (Q7) satisfying the differential equations

A(0,w)U =0 in O, (1.9)
AW + pow?w = 0in Q7 (1.10)
the transmission conditions

{u-n}" =b{0,w}~ + fo on S, (1.11)
{[T(0,n)U);}" = bo{w} " nj+ f; on S, j=1,2,3, (1.12)

and the Dirichlet boundary conditions
{o}t =) on S, (1.13)
{1t =P on S, (1.14)

where by and by are the given complex constants satisfying the conditions
b1b2 ?é 0 and Im[glbg] = 07 (1.15)

and fo € HV2(S), f; € H-V2(S), j =1,2,3, f{P) e HY2(S), f{P) € HV/2(S).

Neumann type problem (N,,): Find a vector-function U = (u, uy,us) = (u, p, )" H1 and
a scalar function w € H} _(Q7) N Som;(Q7) satisfying the differential equations ( , the
transmission conditions ([L.11)), (1.12) and the Neumann boundary conditions

{[r(@,n)U)} " = £ on 8, (1.16)
{IT@,n)U]5}" = i) on S, (1.17)

=

where b; and by are the given complex constants satisfying conditions (), and fo € H-/2(9),
fie HV2(S), j=1,2,3, (V) e H-V2(S), 1§V e H-V/2(S).

The transmission conditions (), () are called the kinematic and dynamic conditions. For
an interaction problem of fluid and electro-magneto-elastic body

by = [png]ilv by = _1a fO(x) = 6nc(x) = [png]ilaanc(x)v

fi = —P™(z)n;(z), j=1,2,3, (1.18)

where P is an incident plane wave,

Pznc(m) _ eid-o:’ d= W\/EW, ne R3’ ‘77| =1.

2 The uniqueness of solutions of the problems (D,) and (N,)

2.1 Jones modes and Jones eigenfrequencies

We denote by Jp(Q2T) the set of values of the frequency parameter w > 0 for which the following
boundary value problem

A(0,w)U =0 in QF, (2.1)
{u-n}t =0 on S, (2.2)
{IT(®,n)U);}" =0 on S, j=1,2,3, (2.3)
{¢}T =0 on S, (2.4)

{}* =0 on S, (2.5)
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has a nontrivial solution U = (u, p,%) " € [H*(QT)]® (cf. [25]).
We denote by Jy(£27) the set of values of the frequency parameter w > 0 for which the following
boundary value problem

A(0,w)U =0 in QF, (2.6)
{u-n}t =0 on S,
{IT(,m)U]}" =0 on S, (2.8)

has a nontrivial solution U = (u, p,%) " € [H*(QF)]° (cf. [25

Nontrivial solutions of problems ( )7(‘@) and (@)%ﬁ) will be referred as Jones modes, while
the corresponding values of w are called Jones eigenfrequencies, as they were first discussed by
D. S. Jones [29] in a related context (a thin layer of ideal fluid between an elastic body and a sur-
rounding elastic exterior). For example, Jones eigenfrequencies exist for any axisymmetric body, such
bodies can sustain torsional oscillations in which only the azimuthal component of displacement is
nonzero. However, we do not expect Jones eigenfrequencies to exist for an arbitrary body. The spaces
of Jones modes corresponding to w we denote by Xp .,(Q2") and Xx ,(2F), respectively.

Let J5,(21) be the set of values of the frequency parameter w > 0 for which the following boundary
value problem

A*(0,w)V =0 in QF, (2.9)
{v-n}" =0 onsS, (2.10)
{IT@,n)V];}" =0 on 5, j=1,2,3, (2.11)
{vg}T =0 on S, (2.12)

{vs}T =0 on S (2.13)

has a nontrivial solution V = (v,v4,vs5) " € [HY(QF)]5.
Let J5 (1) be the set of values of the frequency parameter w > 0 for which the following boundary
value problem

A*(0,w)V =0 in QF, (2.14)
{v-n}t =0 on S, (2.15)
{IT@,n)V]} =0 on S (2.16)

has a nontrivial solution V = (v,v4,vs5) " € [HY(QF)]5.

The spaces of Jones modes corresponding to w for the differential operator A*(9,w) we denote by
X5 (), and X3 (%), respectively.

It can be shown that Jp(Q1) is at most countable, while Jy (Q27) = R, since for an arbitrary non-
zero constants ¢; and cg, the vector (0,0,0,c1,c2) " is a Jones eigenvector: (0,0,0,¢1,¢2)" € Xy o(QF)
for arbitrary w. The same is true for J5,(27) and J3 (21). Note that for each w the corresponding
spaces of Jones modes Xp (), Xy o(QF), X} ,(QF) and X3 ,(Q7) are of a finite dimension.

2.2 The uniqueness theorems for the problems (D,) and (N,)

Theorem 2.1. Let a pair (U,w) be a solution of the homogeneous problem (D) and w > 0. Then
w=01in Q" and either U=0in Q" ifw & Jp(QF) or U € Xp ,(QF) ifw € Jp(QT).

Proof. Let us write Green’s formula for the Helmholtz equation in the domain Qr := Q™ N B(0, R),
where O+ C B(0, R) with B(0, R) being the ball of radius R and centered at the origin,

/ [(A + pow?®)ww — w(A + p2w2)W] dx
Qg

_ / DywiwdS — / BpwwdS — ({0aw) ™ (W} )y + ({87} (7)) (217)

S(0,R) S(0,R)
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where S(0, R) = 0B(0, R) is the boundary of the ball B(0, R).
We have also the following Green’s formula for the operator A(d,w) in the domain QF:

[ (@i, + A0 + @@ )sus + EU.0)] de
O+
= <{TU};_’ {uj}+>s + <{ﬁ}z_v {64}+>S + Hﬁ};—a {ﬂ5}+>sv (2'18)

where E(U,U) = ¢;ju0iujOty, — prw?ul? + £10;u40ita + pj105us0yus. Clearly, InE(U,U) = 0 for an
arbitrary vector-function U.

With the help of (@), (), ()7 and (), we obtain from () and () the following

equalities:

Oyww dS — / B ww dS — ({B,w) ™~ {w} g + ({0nw)~, (W) ") = 0, (2.19)
5(0,R) S(0,R)
Im ({[TU;}*, {u;} ") = 0. (2.20)
The homogeneous transmission conditions yield
{TU1 T {ui} ) g = (bW} ™ ng, {us} ") g = b2b1 {0,W}, {W} 7). (2.21)
Since Im[b1bs] = 0, from () and () it follows that
Im ({0, W}~ {W} 7 )g =0,
and from () we derive that
Im / OpwwdS = 0. (2.22)
5(0,R)
Taking into account the Sommerfeld radiation condition, from () we conclude that
lim lw|?dS = 0.
R—o0
S(0,R)

Using the Rellich-Vekua lemma, we find that w = 0 in the domain Q= (see [13,43]). Then from the
homogeneous boundary conditions it follows that the vector-function U = (u, ¢, )" solves problem
(@)7(@), ie., either U=0in QT ifw & Jp(QF) or U € Xp ,(Q") if w € Jp(27T), which completes
the proof. O

The following assertions can be proved quite analogously.

Theorem 2.2. Let a pair (U, w) be a solution of the homogeneous problem (N,). ThenU € Xy ,(27)
and w=0 in Q.

Remark 2.3. Let a pair (V,w) € [H(Q1)]® x [H].(27) N Somz(227)] be a solution of the homoge-
neous problem

A*(0,w)V =0 in QF,
(A + pow®)w =0 in Q7
{v-n}t +52_1{8nw}* =0 onS,
{[T(a, n)V]j}+ —&—El_l{w}*nj =0onsS, j=1,2,3,
{vg}T =0 on S,
{vs}T =0 on S,

where by and by are the given complex constants satisfying the conditions ()
Then w =0 in @~ and either V =01in Q% if w & J5(QF) or V € X}, (QF) if w e JH(QF).
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Remark 2.4. Let a pair (V,w) € [HY(QT)]° x [HL_.(27) N Soma(Q27)] be a solution of the homoge-
neous problem

A*(0,w)V =0 in QF,
(A + pow?)w =0 in Q,
{v-n}t +b, {8,w}~ =0 on S,
{[T(E)JL)V]]-}+ +5;1{w}*nj =0onsS, j=1,2,3,
{[T@,n)V]s}" =0 on 8,
{IT(8,7)V]5}" =0 on 5,

where by and by are the given complex constants satisfying conditions ()
Then V € X3 ,(27) and w =0 in Q.

3 Layer potentials

3.1 Potentials associated with the Helmholtz equation

Let us introduce the single and double layer potentials,

Vo(g)(z) = /v(x —y,w)g(y)d,S, =¢S5,

S
Wo(f)(z) = / By — 1.0) [ (¥) dyS, = ¢S,
S

where

exp(i/p, wlz|)
) =~

is the fundamental solution of the Helmholtz equation (E) These potentials satisfy the Sommerfeld
radiation condition, i.e., belong to the class Som(Q27).
For these potentials the following theorems are valid (see [13,87]).

Theorem 3.1. Let g € H-'/2(S), f € H'/?(S). Then on the manifold S the following jump relations
hold:

(Vo)) =Hulg), {(Wu(H)}F =x271f + K5(f),
{&sz(g)}i = :F2_1g + /Cw(g), {3nWw(f)}+ = {anWw(f)}_ = ﬁw(f)a

where H,,, IC5 and ICy, are integral operators with the weakly singular kernels,

Hao(9)(2) == /W(Z —y,w)g(y)dyS, z€S8,
S

K5(f)(2) = / Bty 1(z — ) f(y) dyS, =€ S,
S

Ku(g)(2) = / Bniey(z — 1 w)g(y) dyS, 2 € 8,
S

while L, is a singular integro-differential operator (pseudodifferential operator) of order 1.
Theorem 3.2. The operators
N =27 + K + pH, - HY?(S) — HY?(S), (3.1)
M= Lo+ p(27 L + Ky) - HY2(S) — HY2(S), (3.2)

are invertible provided that Im pu % 0. Here Iy is the scalar identity operator.
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The mapping properties of the above potentials and the boundary integral operators are described
in Appendix.

3.2 Fundamental solution and potentials of the steady state
oscillation equations of electro-magneto-elasticity

Let us consider the equation
[ciji&i& — p1w®djn)axs  [ew;&iilsny  [@ii&i&ilsny
P4 (&, w) = det A(i§, w) = det [—eiri&i&il1x3 eu&i&l au&i&i =0, (3.3)
[~ airi&i&ilxs ai&i&i wa&i&l ) 5os
EeR\{0}, weR, i,j,kl=123,

where ® 4 (&, w) is the characteristic polynomial of the operator A(9,w). The origin is an isolated zero

of (B.d).

We are interested in the real zeros of the function ®4 (&, w), € € R3\ {0}.
Denote

2
)\::p|g|u2 , E::éfor €] # 0,
leijm€i&t — Mjlaxs  [Aja(E)laxt [Aj5()]ax1
B(\€) = [_Aj4(g>]1><3 eubify an&i&
[~ Aj5()]1xs ai&& paki&t /o
Then (@) can be rewritten as R R
T(N &) :=det B(\,§) =0. (3.4)

This is a cubic equation in A with real coefficients.
Theorem 3.3. Equation (@) possesses three real positive roots A1 (€), Aa(€), As(E).

Proof. Let € € $y = {zx € R®: |z|] = 1} and \I'()\,E) = 0. Then there is a non-trivial vector
n € C°\ {0} such that B(\,€) n =0, i.e.,

(Cijklgigl — M)k + em@@m + QZijglgiU5 =0, 7=1,2,3, (3.5)
—eim&i&imy + e + auki&ms =0, (3.6)
_Qiklgiglnk + aiz@@m + Milgigl% =0, (3.7)

Multiply the first three equations by 7;, the complex conjugate of the fourth equation by 74, the
complex conjugate of the fifth equation by 75 and sum them to obtain
Cijr&&mal; — ANn'1? + ew;&&inam; + i &&ins,

— €i;1&&Mna + ea&ililnal® + aa&i&imMsna — G j&&imms + an&&imans + pa&&ilns|> =0, (3.8)

where ' = (11, 12,13).
Due to the symmetry property of the coefficients e;;; and g5,
€15 §i&inaml; = €ij&i&inas  Qii&i&insm,; = ¢ij1&iSim;ns-
Therefore, we derive from (@) that
cijr&&mialy — M’ 12+ ea&i&lmal® + pa&i&ilns|” + 2Re aui&msna = 0. (3.9)

Next, we note that Cijklgiglnkﬁj = CijklHij ki > 50%k17kl > 0 with »”, = 271(&7]1C + fknl)

Moreover, due to the strict inequalities 61‘121‘21 > 41 >0, Ml@@ > 99 > 0, and (@), it follows that
|n'| # 0, since otherwise from (@) we get ny = 0, which contradicts the inclusion n = (0, n4,75) €
C®\ {0}. Therefore, from (@) we finally conclude that A > 0. O
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Denote the roots of equation (@) by A1, A2, As. Clearly, the equation of the surface S, ;,
7 =1,2,3, in the spherical coordinates reads as

V1w
X (€)

where & = rcospsinf, &, = rsinpsing, £&5 =rcosf with 0 < ¢ <27, 0 <0 <7, r = [¢|.
We also have the following identity:

r:Tj(aaSD) =

3

(r? = r2(€)) = @a(€,0)r* T[] P ()

j=1 j=1

B A(€,w) = det A(i€,w) = Ba(E,0)7

'.’:lw

It can easily be shown that the vector

n(é) = (=1)|VeA(& w)| "' VOA(E,w), €€ Sy,

is an external unit normal vector to S, ; at the point .
Further, we assume that the following conditions are fulfilled (cf. [10,83,41,42]):

(1) if a(E,) = BA(E,0) FAPUEPAE) P (€), then Ve(P(€)Pa(€)Py(£)) # 0 at real zeros € € R? |
{0} of the polynomial (@1), or

if @ 4(€,w) = D 4(E,0) 4 PE(E) Py(€), then Ve(Pi(€)Py(€)) # 0 at real zeros £ € R3\ {0} of the
polynomial (B.3), or

if @4 (€,w) = Ba(E,0)r4P3(€), then Ve Pi(€) # 0 at real zeros € € R3\ {0} of the polynomial
(ii) the Gaussian curvature of the surface, defined by the real zeros of the polynomial ®4(&,w),
¢ € R3\ {0}, does not vanish anywhere.

It follows from the above conditions (i) and (ii) that the real zeros € € R?\ {0} of the polynomial
® 4 (&, w) form non-self-intersecting, closed, convex two-dimensional surfaces Sy, 1, Sw,2, Sw,3, enclosing
the origin. For an arbitrary unit vector n = x/|z| with € R\ {0}, there exists only one point on
each S, j, namely, & = (¢ {2,53) € S,,; such that the outward unit normal vector n(¢’) to S, w,j
at the point &7 has the same direction as 7, i.e., n(¢) = n. In this case, we say that the points &7,
7 =1,2,3, correspond to the vector 7.

From (i), we see that the surfaces S,, ; j = 1,2, 3, might have multiplicities.

We say that a vector-function U = (u1,us,us,us,us)’ belongs to the class M, my.m,(P) if
U € [C>(Q7)]° and the relation

5
=) w(@)
p=1

holds, where u? has the following uniform asymptotic expansion as r = |z| — oo:

~ Ze—"f]{ o, (™2 (n)rmJ‘Q‘q}, p=12,3, (3.10)
qg=1

ut(z) = O(T’l), Oput(z) = O(r™?), w’(x) =007, Owu’(x) =0(7?%), k=123,

here P = det A(i0;,w) and df,, € C>, j=1,2,3 (see [L0]).

These conditions are generalization of Sommerfeld-Kupradze type radiation conditions in the an-
isotropic elasticity (cf. [28,83]).

From condition (i) it follows that our class M, my,ms(P) is M7 11(P) (when there is no multi-
plicity, i.e., surfaces do not coincide) or M 1(P) (when two surfaces coincide) or M3(P) (when all
three surfaces coincide).

The class M 1 1(P) is a subset of the generalized Sommerfeld-Kupradze class.

We can show the following uniqueness theorems.
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Theorem 3.4. The homogeneous exterior Dirichlet boundary value problem
AQ,w)U =0 inQ~, {U} =0 onS,
has only the trivial solution in the class [H} . (Q27)]% N My, mo,ms (P)-

Theorem 3.5. The homogeneous exterior Dirichlet boundary value problem
A*(Q,w)V =0 inQ~, {V}==0 onsS,

has only the trivial solution in the class [HL .(27)]° N M, sy .ms (P*), where P* = det A*(9,w).

If surfaces S, ; 7 = 1,2,3, have no multiplicity, Theorems @ and @ are valid in generalized the
Sommerfeld-Kupradze class (cf. [2§]).

Denote by I'(xz,w) the fundamental matrix of the operator A(9,w). By means of the Fourier
transform method and the limiting absorption principle, we can construct this matrix explicitly (see
Ch. 1, Section 1, also see [42])

[(z,w)= lm F! [A7'(i& w +ig)], (3.11)

et §7F

where F~! is the inverse Fourier transform. The columns of the matrix I'(z,w) are infinitely differ-
entiable in R? \ {0} and belong to the class My, my.ms(P).
Further, we introduce the single and double layer potentials associated with the differential operator

A0, w),

Vo(9)(z) = / Iz - y,w)g(y) d,S, = e 0*,
S
W (f)(a) = / [0y, n)TT (z — y.)] " f(y)dyS, @ € O,

.., f1) T are density vector-functions.
o the homogeneous equation ([.9) in QF we have the integral

where g = (g1,...,94) " and f =
For a solution U € Hl((ﬁ)

representation

rF\.

U=W,{U}") - V,{TU}*") in QF.
For these potentials the following theorem holds (see [0, []).
Theorem 3.6. Let g € [H175(9)]* and f € [H*(S)]*, s > 0. Then
{Vu(9)(2)}F =Hu(9)(2), 2 €8,
{(Wo (N =427 f(2) + Ku(f)(2), z €S,
(@, n)Vale) ()} =F27'9(:) + Kul9)(2), 2 €5,
{T(0.,n(2)Wu(f)(2)} " = {T(0.,n(z ))Ww(f)(z)} = Lu(f)(2), z€5,

where H,, is a weakly singular integral operator, Kw and K, are singular integral operators, while L,
is a pseudodifferential operator of order 1,

H,(g)(2) = / T(z - y,w)g(y) dyS, 2 €8,

S

Ru(1)(:) = [ [T, (e = )] 10,5, 2 €5
S

K.(9)(z) := /T(@Z,n(z))I‘(z —y,w)g(y)dyS, z€S.
S

The mapping properties of these potentials and boundary integral operators are described in
Appendix.
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4 The Dirichlet and Neumann type interaction problems
for pseudo-oscillation equations

In this section, we consider the Dirichlet and Neumann type interaction problems for the so-called
pseudo-oscillation equations. These problems are intermediate auxiliary problems for investigation of
interaction problems for the steady state oscillation equations.

4.1 Formulation of the problems

The matrix differential operator corresponding to the basic pseudo-oscillation equations of the electro-
magneto-elasticity for anisotropic homogeneous media is written as follows:

A(a7 T) = [A]k(av T)]5><57
Aj(0,7) = cijra0iO + p1736k,  Aja(0,7) = €13;0,0;,  Ajs(0,7) = qi;010;,
Ayr(0,7) = —€i110i0;, Aus(0,7) = €40;0;, Au5(0,7) = a;0;0,,
Asi(0,7) = =i 0;01,  As4(0,7) = ayy0;0y,  Ass(0,T) = pa0;0l,
7,k =1,2,3, where 7 is a purely imaginary complex parameter: 7 =140, 0 # 0, 0 € R.

Dirichlet type problem (D,): Find a vector-function U = (u,us,us)’ € [HY(Q1)]® and a scalar
function w € H} (27) N Som, (27) satisfying the differential equations

A(0,7)U =0 in Qr, (4.1)
Aw + pow?w =0 in Q~,
the transmission conditions

fu-n}* = by {0}~ + fo on S, (43)
{[TU);}" =ba{w} nj+ fj on S, j=1,2,3,

and the Dirichlet boundary conditions

{us}™ = £ on s, (4.5)

{us}* = f3" on s, (4.6)
where b; and by are the given complex constants satisfying conditions (), fo € H1/2(S), fi €
HY2(S), j=1,2,3, f\7) e HY2(S), fi7) € HY/*(S).

Neumann type problem (N,): Find a vector-function U = (u,uy,us)'_€ [H'(21)]° and a scalar
function w € H: _(Q7) N Som; @_) satisfying the differential equations (@) and (4.2), respectively,
)

loc
transmission conditions (@), (f.4), and the Neumann boundary conditions

(TU] T = £ on S with fV) e H-1/2(9), (4.7)
{(TU]53 = £ on S with £V € H-1/2(9). (4.8)

4.2 Uniqueness theorems for problems (D,) and (V)

Theorem 4.1. Let 7 = io, 0 # 0, 0 € R. The homogeneous problem (D;) has only the trivial
solution, while the general solution of the homogeneous problem (N;) is the vector (0,0,0,cq,ca),
where ¢1 and co are an arbitrary complexr scalar constants.

Proof. Let (U, w) be a solution of the homogeneous problem (D).
Let us write Green’s formula for the Helmholtz equation (%.2) in the domain Qg := Q™ N B(0, R),
where Q+ C B(0, R),
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/ (A + pow?)WW — (A + pow®)W] da
Qr

_ / Oywiw dS — / B ww dS — ({B,w) ™ (W} g + ({0n), (W) )y (4.9)

S(0,R) S(0,R)
Now write Green’s formula for the operator A(9,7) in the domain Q%
/ (1A, 7)01; + [A@, 7)Uua + [A(0, ) Usus + E(U,T)] do

= {10} {w;} ) g + {TUN {a} *) g + ({TUN {us} ) g (4.10)

where @U, U) = cfgkaiuj(?lﬂk + p1o?|ul? + £40;us0yUy + pj10;us0,us. Using (@), (@), and (@),

from (4.9) and (4.10) we obtain the following equalities:
/ Oyw dS — / O, ww dS — ({B,w) ™ {w} g + ({0n)~, (W) ) = 0, (4.11)
5(0,R) S(0,R)
Im ({[TU];}", {u;}") g =0, j=1,2,3. (4.12)

In view of the homogeneous transmission conditions, we get
{ITU1F {3 ) g = (ba{w} ny, {ui} ) g = babi ({0, W} {W} 7). (4.13)
Since Im[b1bs] = 0, from () and () we get
Im ({9,w} ™, {w} ), =0,
and from (.11)) we derive that
Im / OpwwdS = 0. (4.14)

5(0,R)

By the Sommerfeld radiation condition, from (4.14) we conclude that

lim lw|?dS = 0.
R—o0
S(0,R)

Using the Rellich—Vekua lemma, we find that w = 0 in the domain Q.
Then from Green’s formula () it follows that

/5(U,U) dr = 0. (4.15)
O+

Using (@) and (B), it is easy to see that for a complex vector v = (uy,us,u3)' and a complex
functions uy4, us,

Cijlkaiu]'alﬂk >0, 5j181u48jﬁ4 >0, /lealU5ajﬂ5 > 0. (4.16)
Taking into account (), from () we obtain
/ [Cijlkaiuj'alﬂk + p102|u\2 + €jlﬁlU46jﬂ4 + ujlﬁlu56ﬂ5 dr =0, (4.17)

ot

implying that v = 0 in Q7 and uy = c1, us = ¢z in QT, where c;, ¢y are arbitrary constants. Since
{ug}™ ={us}* =0 on S, we deduce that uy = us = 0 in the domain Q7.

Applying the same arguments, we can show that the general solution of the homogeneous problem
(N,) is a vector (0,0,0,c1,c2) ", where ¢; and ¢ are arbitrary complex scalar constants. O
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4.3 Fundamental solution and potentials for the pseudo-oscillation
equations of piezoelectro-magneto-elasticity

The full symbol of the pseudo-oscillation operator A(9, 7) is elliptic provided 7 = io, o # 0, 0 € R, i.e.,
det A(—i&, ) #0 V¢ € R*\ {0}.

Moreover, the entries of the inverse matrix A~!(—i&, 1) are locally integrable functions decaying at
infinity as O(]¢|72). Therefore, we can construct the fundamental matrix I'(z,7) = [[y;(x, 7)]5x5 of
the operator A(9,7) by the Fourier transform technique,

D(w,7) = F, [ATH (i€, 7). (4.18)

Note that in a neighbourhood of the origin the following estimates hold (0 < |z| < 1):

T (2, 7) w)| <e (4.19)
|8;[ k(@ 7) = Tjr(z,w H <ec ln|x| v (4.20)
’60‘ [F]k(x 7) = Djp(z,w ” Y|~ ‘O‘l, j, k=15, (4.21)

where a = (a1, a2, ar3) is a multi-index with || = a1 + a2+ a3 > 2, while ¢(7,w) is a positive constant
depending on 7 = io and w with o,w € R\ {0} (cf. [B3]).
Let us introduce the single and double layer pseudo-oscillation potentials

V() = / T(x -y, 7)h(y) d, S,
S

W, (h) = / 7@y ()T (@ — 7)) h(y) dy S,
S

where h = (hi, ha, hs, hy, hs) T is a density vector-function.
These pseudo-oscillation potentials have the following jump properties (see [G]).

Theorem 4.2. Let hY) € [H=1+5(9)]°, h®) € [H*(9)]°, s > 0. Then the following jump relations
hold on S':

(V@) = [T nw)d,s.
S

(W (12)(2)}E = 22710 (2) + / 70, n(w)TT (2 - 9.7)] Th) (y) dy 5,
S

[TV, (WD) ()} = 727 00 (2) + / (0., ()T (= — y, YAV () dy S,

{TW,(h?)(z) } = {TW,(h?)(2)} .

Further, we introduce the boundary operators

H, (h)(2) = / P(z — y, 7)h(y) dy S,

S
K., (h)(z) = / T(0.,n(2)L (= — g 7)h(y) dy S,
S
R, (h)(z) = / 70y n()TT (2 - y.7)] "hy) dy S,

S
L, (h)(z) = {TW.(h)(2)} " = {TW.(h)(2)} .
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Note that H, is a weakly singular integral operator (pseudodifferential operator of order —1), K, and
K. are singular integral operators (pseudodifferential operator of order 0), and L. is a pseudodiffer-
ential operator of order 1.

The mapping properties of these potentials are described in Appendix.

4.4 Existence of solutions of problem (D,)

By Theorem @ (see Appendix) the operator H, : [H*(S)]> — [H*T1(S)]® is invertible for all s € R
and we can look for a solution of problem (D, ) in the following form

U=V,H '¢g inQ", w=W,+uV,)h inQ", pucC, ITmpu#0,

where ¢ = (§,q4.95)" € [HV*(S)]®, § = (91,92,93) ", h € HY?(S) are unknown densities. From

Theorems ﬁ and .4 (see_Appendix) it follows that U € [H}(Q1)]® and w € HL (7).
Transmission conditions (4.3), ({.4) and the Dirichlet type conditions ({.5), (@) lead to the

following system of pseudodifferential equations with respect to the unknowns g, g4, g5 and h:

g-n—bM(h)=fo on S, (4.22)

[(—27'I + KT)H;lg]j —byn;N(h) = f; on S, j=1,2,3, (4.23)
g4 = fl(D) on S, (4.24)

g5 = fQ(D) on S, (4.25)

where N = =271 + K + pHy, M = Ly, + (2711 + Ky).
Here and in what follows, I,,, stands for the m x m unit matrix.
The matrix operator generated by the left-hand side expressions in system (Y .2)7() reads as

[n]1x3 0 0 —bM
Py o= [-A]rk]3x3 [-AJT4]3x1 ['AJT5]3><1 [_b2an]3><1 jk=1,2,3
T, [0]1><3 Il O 0 ) 9 9 Ay Dy
[0]1x3 0 I 0 66
where ‘
Ar = (-2 L+ K )H = [AMsxs, 5,k =15, (4.26)

is the Steklov—Poincaré type operator on S. This operator is a strongly elliptic pseudodifferential
operator of order 1 (see [6] for details).
By Theorems and (see Appendix), the operator P, p possesses the following mapping

property:
Prp: [HY?(S)) — [HY2(9)]° x HY?(S). (4.27)

In view of () and (), equations () and () can be rewritten in the following equivalent

form as a system with respect to g and h:

g' n— b1./\/l(h) = f() on S, (428)
[-/47—(570, O)T]j - anJN(h’) = Fj on S7 J=12,3, (429)

where Fj := f; — Ajffl(D) - Al5f2(D), j=1,2,3.
Denote by R, p the operator corresponding to system (), ()

([n]1x3 —biM )
7?"r,D = ~ 5
AT [—bQTLkN]le Ax4

where A, := [A9¥]5.3, j.k =1,2,3.
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Clearly, the operator
Rop: [HY?(8)* — [HV2(S))* (4.30)

is bounded.
Let us represent the operator R, p as the sum of two operators

R =R} + RO,

R _ 0153 —1iM R@) _ ()13 0
T,.D — e ’ T,.D — 0 —b N’] .
A- 0151 Axd 055 [=bonaN]5,, axd

It is easy to see that the operator N : H/2(S) — H~'/2(S) is compact due to Theorem @ and
Rellich compact embedding theorem. Therefore, the operator R(sz D [HY2(S)E — [HY2(S)* is

T)

where

compact. Further, we show that the operator .ZT is Fredholm. Indeed,
Ar [HYP(S)P — [HV2(8))°
is strongly elliptic pseudodifferential operator of order 1 (see [6]), i.e.,

Re&(A;2, )¢ - ¢ > clé] [¢)?,

where c is a positive constant and &(A,;z, &) with z € S, ¢ € R?\ {0}, is the principal homogeneous
symbol of the operator A, in some local coordinate system. Therefore, V¢ € R?\ {0}, V(' € C3 the
following estimate holds:

ReG(A,;7,6)¢ - ¢ =ReS(Ay;7,6)(¢,0)7 - (¢,0)T > ¢l¢]|¢'|*

Thus A, is a strongly elliptic pseudodifferential operator of order 1. Therefore, by virtue of the general
theory of elliptic pseudodifferential operators on a compact manifold without boundary (see [16,
Ch. 19], [14, Ch. 5]), we conclude that

Ao (HYAS)P - [HV(5)P

is a Fredholm operator. From the strong ellipticity property it also follows that the index of the
operator A; is zero (see [L6, Ch. 6], [14, Ch. 2]). Taking into account Theorem @, we find that the

operator R(T% is Fredholm with index zero. Therefore, operators () and, consequently, () are
Fredholm with index zero.

Now we show that the operator R, p is injective. Let (g,h)" with g € [H'/2(S))? and h € H/?(S)
be some solution of the homogeneous system

RT,D(ﬁ) h)T = Oa

and set

U = (@,14,1u5) = V,H;1(3,0,0), W= (W, + uV,)h, Impu # 0.

Evidently, U and W solve the homogeneous problem (D, ).
It follows from the uniqueness result for problem (D;) (see Theorem @) that U = 0 in QT and
W =0in Q™. Then {U}* = (3,0,0)T =0on S. Since {Ww}~ = N (h) = 0 and N is invertible operator,
we obtain h = 0 on S. Consequently, the operators
Rep : [H2(S) = [H2(S)]*,
Prp: [HY?(S)]® — [HV2(S)]° x HY?(S)

are invertible.
Therefore, system (Y .2)7() is uniquely solvable. Thus the following assertion holds.
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Theorem 4.3. Let 7 = io, 0 # 0, 0 € R, and let fo € HY%(S), f; € H7Y/2(S), j = 1,2,3, and
fP) e HY2(S). Then problem (D) has a unique solution (U,w), U € [H'(Q)]°, w € H. (Q7) N
Somq(27), which can be represented as

U=V, H'g inQ", w=W,+uV,)h inQ",
where the densities g € [HY2(S)]> and h € H'Y?(S) are defined from the uniquely solvable system

(1-22) - (1-29).

4.5 Existence of solutions of problem (V)

As in the previous subsection, we can look for a solution of problem (N, ) in the following form:
U=V,H '¢g inQ", w=W,+uV,)h inQ", pcC, Tmpu#0,

where ¢ = (§,94,95)" € [H'/?(S)]° and h € H'/?(S) are unknown densities. From Theorems EI, @
and p.4 of Appendix it follows that U € [H'(QT)]° and w € H} (Q7).

Transmission conditions (@), (f.4), and the Neumann type condition (@) lead to the following
system of pseudodifferential equations with respect to the unknowns g and h:

g-n—bM(h)=fo on S, (4.31)
[ATg]j - bgnJN(h) = fj on S, ] = 1,2,3, (432)
[Argla = f) on S, (4.33)
[Argls = £ on 8, (4.34)
where N and M are defined in (@) and (@)7 while A, is defined in ({.20).
The operator generated by the left-hand side of the system ()f( 33) reads as
[(n,0,0)]1x5 M
(A5 [=baniNsxa ,
P, N = 23%5 , j=1,2,3 k=15
N [AY]1x4 [0]1x2 g
[A¥]1 x4 [0]1x2 66
The operator P, y possesses the following mapping property:
Prn : [HY2(S)]° — [HV2(5)]°.
From equation (), we define h,
h=b"M(g-n) b7 ' M fo,
and substitute this into equation () We obtain the system
[Arglj — boby ' NM™HG-n)=F; on S, j=1,2,3, (4.35)
[Argla = ) on 8, (4.36)
[Argls = £V on S, (4.37)

where Fj = fj — bl_lbganMilfo.
Denote by R n the operator generated by the left-hand side of system ()7()7

[CT}3X3 [Ag;4]3><1 [A15]3><1
Ron = | [A¥]1x3 AR AP ,
[A]1xs AR A

5X5
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where
[Crlaxs = [AZ¥]3x5 — boby [0 jN]3x1 M ng)ixs, d,k=1,2,3.

Note that the difference A, — R, x : [H'/2(S)]> — [H~'/2(S)]® is a compact operator.
Since the Steklov—Poincaré type operator A, is strongly elliptic pseudodifferential operator of order
1, it follows that the operator A, : [H'/2(S)]° — [H~Y/?(S)]° is Fredholm with index zero. Hence the
operators
Row i [HP(S) = [HTV2(S), Prn: [HV2(S))° = [H2(9)]°

are Fredholm with index zero.
Now let us investigate the null space of the operator P, n. Let g € [HY/2(S)]® and h € HY/?(S)
be solutions of the homogeneous system ()7()

,PﬂN(g7 h’)T = 07

and put _
U= (u,ts,us) =V,H lg, w=W,+ uV,)h.

Evidently, U and W solve the homogeneous problem (N,).
From the structure of a solution to the homogeneous problem (N.) (see Theorem @) we have

5’:(0,0,0,01,02)—'— inQt, w=0inQ",

where c¢; and ¢y are arbitrary constants. Then {U}+ (0,0,0,¢1,c0) T =gonS,ie g =go=g3=0,
g4 = c¢1 and g5 = co. Since {w}~ = Nh =0 on S, the invertibility of the operator A/ yields that h = 0
on S. Whence we obtain that if P, n(g,h)" =0, then g = (0,0,0,c1,c2)" and h = 0.

Therefore, the dimension of the null space of the operator P, nx equals to 2, dimKer P, v = 2.
Thus dim Ker P} y = 2, where P; : [HY%(9)]¢ — [HY/2(8)]° is the operator adjoint to Py y :
[H'2(9)]° — [H~ 1/2(5)]

Now we can formulate the following existence theorem.

Theorem 4.4. Let 7 = io, 0 # 0, 0 € R, and let fo € H-Y2(S), f; € H Y%(S), j = 1,2,3, and
fl(N) € H™Y/2(9), f2(N) € H=Y2(S). Then problem (N,) is solvable if and only if the condition

3
(fo,d1)s Z Findis)s + (A ds)s + (Y, d6)s (4.38)

is fulfilled, where ¢ = (& , 03, Pa, b5, B6) | is a montrivial solution of the homogeneous equation
Pr n¢ = 0. If condition (.38) holds, then solutions of problem (N-) are represented by the potentials

U=V,H 'g inQ", w=W,+uV,)h in Q"
where the densities g € [HY/?(S)]> and h € HY?(S) are defined from system ()7(), and they

are defined modulo the addend vector (0,0,0, ¢y, cz)T with arbitrary complex constants c¢1 and cs.

5 Existence results for the steady state oscillation
problems (D) and (V,)

5.1 Existence of solution of the Dirichlet type problem (D,)
We look for a solution of problem (D,,) in the form
U=V,g nQ", w=W,+uV,)h inQ", peC, Impu#0,

where g € [H~1/2(S5)]° and h € H'/2(S) are unknown densities, and w € R\ {0}. From Theorems @
and .3 of Appendix it follows that U € [H1(2F)]5 and w € HlloC(Q_)
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Transmission conditions ([L.11]), () and the Dirichlet boundary conditions ([L.13), () lead to
the following system of pseudodifferential equations with respect to the unknowns g and h:

[ng]ml —byM(h) = fo on S, (5.1)

[(—27'L +Kw)g}j —bonN(h) = f; on S, j=1,2,3, (5.2)
[Hgls = £{”) on 8, (5.3)

[Hg]s = fs”) on . (5.4)

The operator generated by the left-hand side of system (@)7(@) reads as

[ H) 5 —b M
[(—2715 + K, )] [—ban;N]sx1
Qu,p = ), e 35 0 , j=1,3, k=15
5k
[Hw h><5 0 6X6

By Theorem @, the operator
Qu,p : [HTV2(S) x HY2(S) — [HV2(S)]* x [H'2(9))?

is bounded.
In view of estimates ()—() it follows that the main parts of the operators H,, and H, (as
well as the main parts of the operators K, and K, ) are the same, implying that the operators

H, —H, : [HY2(8)]° — [HY?(5)], (5.5)
K, - K, : [HY2(8)° = [H V9P (5.6)
are compact. Hence the operator
Qu,p = Qrp : [HY2(S)]P x HYA(S) — [H™Y2(S)]* x [H'?(5)]?

is compact, where @, p := P, p7, with

L H‘r [0}4><1
T = ([O]M . ) 67

Therefore, from the invertibility of the operators P, p : [HY/2(S)]® — [H~Y/2(9)]> x H'/?(S) and
T, [H7Y2(S))° x HY2(S) — [HY?(S)]® (see Section {) the invertibility of the operator Q. p :
[H=1/2(S)]° x HY2(S) — [H~Y/2(8)]> x H/?(S) follows. In turn, this implies that the operator

Qu,p : [HT2(S)]P x HY2(S) — [HV2(S)]* x [HY2(9))? (5-8)

is Fredholm with index zero.
Let us show that for w & Jp(Q7F) the operator Q,, p is injective. Indeed, let g € [H~/%(S)]® and
h € HY?(S) be solutions of the homogeneous system

Q%D(g,h)T =0 on S.

Construct a vector-function U = V¢ and a scalar function w = (W,, + uV,,)h with p € C, Im p1 # 0:
Clearly, the pair (U, w) solves the homogeneous problem (D). Since w ¢ Jp(Q"), from Theorem E]
we have that

U=V,g=0inQ", w=(W,+uV,)h=0 in Q.

In view of the equation {w}~ = N(h) = 0 on S and the invertibility of the operator " we deduce
that h =0 on S. From continuity of a single layer potential we have {U}* ={U}~ =0 on S.



48 George Chkadua

Thus U = Vg solves the exterior homogeneous Dirichlet problem
AQ,w)U =0 onQ~, {U} =0 onS. (5.9)

U =V,9 € Mu, myms(P) and, by Theorem @, U=V,g=0 in Q. Using the jump formula
{TU}~ —{TU}* =gon S, we get g =0 on S. Thus the null space of the Fredholm operator (E) is
trivial and since the index equals to zero we conclude that (@l)j is invertible.

These results imply the following assertion.

Theorem 5.1. If w & Jp(2T), then problem (D,,) is uniquely solvable.

Now let us consider the case where w is Jones’s frequency, w € Jp ().
The operator adjoint to ), p has the following form:

o (E s (2T LA KON H s [H . a
= < b M* [—b2N*n;]1x3 e 0 0 6x67 i=13 k=15,
where
i) = [T 2a) o) S, 25,
S
K (g)(2) = / 70y n(s) T — 7.0))] 9(w)d,S. =€ 5,
S
N*(h)(2) = (=27 I + Ku) (h)(2) + BHE (W) (2), =z €S,
Me(h)(=) = L) (=) + B2 T + K5)(h)(2), =€ S,
while

Ko(h)(2) = / D1z — 7 Ih(y) dyS, = € S,
S

(1) (2) = / O 7z — . )h(y) dy S, = € S,
S

HE(h)(2) = / T = g)h(y)d,S, =€ 5,
S
L5 (h)(2) = {Oney W (h)(2)} 5, 2 €8,

W (h)(x) = / Oniy 1@ — 5 )h(y) dyS, = ¢ S,
S

V(b)) = [T gahw)d,S. = ¢S,
S

The adjoint operator possesses the following mapping property:
Qup  [HP(S))* x [HTVA(S) — [H(S)] x HTV2(S).

Let U := (11, %9, 03, %4, Vs, 106) | € [HY?(S)]* x [H~1/2(S)]? be a solution of the homogeneous adjoint
system

Q:pl =0. (5.10)
Construct the potentials

U=V, 00+ W, u® 4+ v, o6 inq-, (5.11)

W= —by Wby — bV, [ - n] in QF, (5.12)
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where
W = (ny,0)7, @ = (T,0)7, ¥ = (0,0,0,¢5,96) . U = (o, ¥3,94) ",

[C(y —z,w)]"g(y) d,S, =€ QF,
[T(@y, n(y))T(y — z,0) ] g(y)d,S, @ eQt.

The vectors V., (g) and Ww (g) are the single and double layer potentials associated with the operator
A*(0,w).
From () it follows that

{U} =0 and {9,w+pw}t =0 on S,

where p = pi1 4 ipa, po # 0.
Since the vector U € [H} (27)]° N My, my.ms (P*) and solves the homogeneous Dirichlet problem

A (0,w)U =0 inQ", {U}"=0oné,

the uniqueness Theorem @ implies that U = 0 in Q.
On the other hand, the function w € H(2%) solves the homogeneous Robin type problem

(A + pow?®)W =0 in QF, (5.13)
{0,w+aw}t =0 on S. (5.14)
This problem possesses only the trivial solution. Indeed, the following Green’s first formula holds:
/(A + pow®)Ww da + / |VW| dz — pow? / |w| do = ({8, W}, {Vv}+>s, (5.15)
Q+ Q+ O+
Taking into account equation () and the boundary condition (), from () we get
/ |VW| dx — paw? / |W| dz = —puy / y{e“v}ﬂQ dS +ips / ‘{W}+‘2 ds.
Q+ Q+ s s

Therefore, {W}* = 0. For a solution w € H!(QT) to the homogeneous equation () we have the
following integral representation:

& =W, ({#}1) =V, ({0,%}1) n QF. (5.16)

Since {w}T =0 and {9, W}T = 0, from the representation formula () we find that w =0 in Q7.
Using the jump formulae for potentials () and (), we derive that on the surface S the
following relations hold:

{W}™ = b1,

{0,W}™ = by V' -,
{[TU} = —nyn, j=1,2,3,
(IO} = —¢s,

{[T0)s}+ = —¢,
{U}F =07,
{Ua}* =0,

{Us}F =o.



50 George Chkadua

Hence we deduce that U = ([71, (72,[73, (74, (75)T = ((7’, (74, (75)T with U’ = ((71,(72, (73, )T and w solve
the following homogeneous transmission problem:
A*(0,w)U =0 in QF,
(A + pow®)W =0 in Q7
(U -n}* +5by {0,%}" =0 on S,
{[T@,m) U} +5, {F}n; =0 on S, j=1,2,3,
{U, 3" =0 on S,
{Us}* =0 on S,

From the uniqueness result (see Remark @) it follows that w =0 in Q= and U € XDw (Q1), ie., U
belongs to the space of Jones modes X7, ,(2F). Then we obtain

Y1 =0, Y ={U;}" j=1,23 ¢5= —{[fﬁ]4}+7 e = —{[fﬁ]5}+-
Vice versa, if Ue XDw (Q1), then from the representation formula
U=W,{U -V {TU} inQF (5.17)

it is easy to show that the vector-function ¥ := (072171}*, (U}, {Us}+, —{[TU4} T, —{[Tﬁ]g,ﬁ—r

is a solution of the adjoint homogeneous system ( ). Indeed, let us substitute ¥ in system (p.10).
Therefore, we obtain the equalities

(=27 1+ K], AT} = [H s {[TU)} T = [H s ([T} =0, (5.18)
j=1,3, k=1,5,
b N*({U'}F - n) =0, (5.19)

where 6, = (61, ﬁg, ﬁg)—r.
By taking a trace of the representation formula (), we get
(U} =27 YUY + K {U} —H{TU}" on S,
i.e., we have _ .
(27 T+ K){UYT —H{TU}" =0 on S. (5.20)

Since U € X} (), we have

(U} =0, {Us}" =0, {[T0);}" =0, j=1,2,3, (5.21)
(U} - n=0. (5.22)
Therefore, taking into account () in equality (), we find that () is true, and it follows from

() that (b.19) is true.
Therefore,

dimker Q,, p = dimker Q}, , = dim X5, ,(QF).
Thus the orthogonality condition

3 —_— = — —_— — ~
> (AT ) = (IO 77 - (T} 77) =0 vO e Xp (@), (5.23)

is necessary and sufficient for the system of pseudodifferential equations (@)7(@) to be solvable.
We can now formulate the following existence theorem.
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Theorem 5.2. If w € Jp(Q"), then the Dirichlet type problem (D,,) is solvable if and only if the
orthogonality condition (p.23) holds, and a solution is defined modulo Jones modes Xp ,(2).

Remark 5.3. Let (f1, fo, f3) = ny, where 1) is a scalar function and n is the unit normal vector to
S (see ()) Then the necessary and sufficient condition () reads as

({T01 A7)+ ({IT0s} A7) =0 VT e X5, (2").

Clearly, if the Dirichlet datum for the electric potential and magnetic potential are constant, or
w & J5H(QT), then problem (D,,) is always solvable.

5.2 Existence of solution to the Neumann type problem (N,)

We look for a solution of the Neumann type problem (N,,) in the form of the following potentials:
U=V,g nQ", w=W,+pupV,)h in Q"

where g € [H=/2(S)]° and h € HY?(S) are unknown densities. From Theorems EI and @ of

Appendix it follows that U € [H!(Q1)]° and w e H. (7).
Transmission conditions (), (IL.19) and the Neumann boundary conditions (|L.16), () lead

to the following system of pseudodifferential equations with respect to the unknowns g and h:

[Hogling — biM(h) = fo on S, (5.24)

[(—27'I5 + Kw)g}j —boniN(h) = f; on S, j=1,2,3, (5.25)
(2705 + Ku)g], = £ on 8, (5.26)

[(—27' +K.)g], = ) on S. (5.27)

The operator generated by the left-hand side of system ()7() reads as

[ HE] 5 - M
Oun = (2705 + Ko )*], o [beniN]ss _T3 p_T%
w,N [(_271]5+Kw)4k]1><5 0 ) J y Iy 5
-1 k
(=271 + Ku)**], . 0 o

Due to Theorem @ (see Appendix), it is evident that the operator
Qun : [HY2(9)° x HY?(S) — [H~Y/2(9))°

is bounded.
It follows from (@) and (@) that the operator

Qu.N — Qrn 1 [HY2(S)P x HY2(S) — [HY/2(9)]8

is compact, where Q- n := P, n7T; with the operator 7, defined in (@) Since the operator Q, n is
Fredholm with index zero (see Section 4), we have that the operator

Qu.v : [HTV2(S)P x HY(S) — [HV2(9))°

is Fredholm with index zero.
Recall that Jy (1) = R, due to Theorem @ (see the end of Subsection EI)
The operator adjoint to Q,, y has the form

O v = [H*?m]sm [(—2_1f5+K$)kj]5X3 (=27 +KE) s (=27 L+KE)P),
w. N —b M* [ — sz*TLj] 0 0 656 ’

1x3
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and
Qn  [HY2(8)]° — [H'Y(S)]° x H'2(S)

is bounded.
Let ® := (¢1, 92,03, 04, 05, 06) | € [HY?(S)]% be a solution of the homogeneous adjoint system

Qo n®=0. (5.28)

Construct the potentials
U=v,o"+W,0? inQ, (5.29)
W= —b1Wapr — bV, [® - n] in QF, (5.30)

where (p(l) = (n(phO)T’ (p(2) = ((I)lygpfngpﬁ)—r’ ¢ = (@2a§03a(p4)—r'
From () we have

{U}" =0 on S,
{(%VT/JrﬁvT/}+ =0 on S,

where U € [HL_(Q7)]5 N My, my.ms (P*) and w € HY(QT).
Therefore, from the uniqueness results for the exterior Dirichlet problem (see Theorem @) and

interior Robin type problem, we conclude that U=0in Q" and w =0 in QF.
From jump formulae for potentials () and () we find that on the surface S the following
relations hold:

(W}~ =bien, (5.31)
(0,7}~ = —bo®' -, (5.32)
(U} = (¥, 05,6) ", (5.33)
{TO);}" = —njer, §=1,2,3, (5.34)
{101} =0, (5.35)
{(ITU]5}" =o. (5.36)

Hence we obtain that [7 = ([71, [72, (73, 64, 175)T = ([7/, (74, (75)T with [7/ = ([71, [72, [73)T and w solve
the following homogeneous problem:

A*(0,w)U =0 in QF,
(A + pow?)W =0 in Q7
(U -n}* +by {0,%}" =0 on S,
{70, m0);}" +b, {7} ;=0 on S, j=1,23,
{[Tﬁ}4}+ =0 on S,
{ITU]5}" =0 on S.

From uniqueness result (see Remark @) we have w = 0 in Q~ and U € X3, (QF), ie, U belongs
to the space of Jones modes X (7).

From () and () we get
e1=0, g1 ={U;}*, j=1,5.

On the other hand, if U € X3 o(Q7F), then using the representation formula () it is easy to
show that the vector-function ® := (0,{U1}", {Us}*, {Us}*, {Us},{Us}*)T is a solution of the
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homogencous adjoint system (5.28). Indeed, let us substitute @ in system (p.2§). Therefore, we
obtain the equalities

(27" + K){U} =0, (5.37)
DN ({U'} - n) = 0. (5.38)
Taking the trace of the representation formula ()7 we get
(=27 ' T+ K){UY —H{TU}* =0 on S. (5.39)
Since U € X3, (QF), we have

{TU}* =0, (5.40)
(U n=0. (5.41)

Therefore, taking into account () in equality (), we obtain that () is true, and it follows
from () that (5.3§) is true.

Therefore,
dimker Q,, v = dimker Q, y = dim X3, (7).

Thus the orthogonality condition
3
ST AT g+ (VAT ) g + (B T3 g =0 VU € X5, () (5.42)
Jj=1

is necessary and sufficient for the system of pseudodifferential equations ()—() to be solvable.
The following existence theorem follows directly.

Theorem 5.4. The Neumann type problem (N,,) is solvable if and only if the orthogonality condition
() holds, and a solution is defined modulo Jones modes X .,(Q).

Remark 5.5. If (f1, f2, f3) = ny, where ¢ is a scalar function and n is the unit normal vector to S
(see ())7 then the necessary and sufficient condition () can be written in the form

(VAT )+ (I ATs )5 = 0 VD € Xjro (@),

Clearly, if f; (M) = f5 (N) — = 0, then problem (IV,,) is always solvable.

6 Appendix

For the readers convenience, we collect here some results describing properties of the layer potentials.
Here, we preserve the notation from the main text of the paper. For the potentials associated with
the Helmholtz equation, the following theorems hold (see [[13,20,32,37]).

Theorem 6.1. Let s € R, 1 < p < oo, S € C®. Then the single and double layer scalar potentials
can be extended to the following continuous operators:

Vot HY(S) > H2(Q4), Vs Hs(S) — HiP (@),

loc
W, : H*(S) — H*PV2(QY), W, : H(S) —» HITY2 Q).

loc
Theorem 6.2. Lets€e R, 1 <p < oo, S € C>®. Then the operators
He : H*(S) — HT(9),
Ko, K« H5(S) — H*(S),
L, : H*(S) — H*Y(9)

are continuous.
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For the potentials of steady state oscillation and pseudo-oscillation equations, the following theo-
rems hold (see [5-§,12]).

Theorem 6.3. Let s € R, 1 <p < o0, S € C>®. Then the vector potentials V,, W, V. and W,
are continuous in the following spaces:

V,,V.: [HS(S)]5 N [Hs+3/2(Q+)]5 ([HS(S)]5 _ [Hs+3/2(Q_)]5)’

loc

W, W_: [HS(S)F) N [H;Jrl/Q(QJr)]S ([HS(S)P - [H;Otl/Q(Q,)]g)).
Theorem 6.4. Let s € R, 1 < p < oo, S € C®. Then the operators

H, : [H*(S)]” — [H*1(S)],

K., K, : [H* ()] = [H*(S)],
L, [H*(S))° — [H*H(S)P°
are bounded.

The operators Hy and L, are strongly elliptic pseudodifferential operators of order —1, and 1
respectively, while the operators £2 1 Is + K, and £27 ' I5+ K, are elliptic pseudodifferential operators
of order 0. _

Moreover, the operators H, 27115 + K, and 27 I5s + K, are invertible, whereas the operators L,
—27'Is + K, and —27'I5 + K, are Fredholm operators with index zero.

Theorem 6.5. Let se R, 1 <p < oo, Se€C®. Then the operators

H, : [H*(S)]° — [H*T(9)],
+27' 5 + K, [H(9))° — [H*(9)]°,
+£271 5 + K, ¢ [H(S)]° — [H*(S)),

L, : [H*(S)) = [H*(S))°

are bounded Fredholm operators with index zero.

Acknowledgement

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSF)
(Grant # YS-18-385).

References

[1] J. Bielak and R. C. MacCamy, Symmetric finite element and boundary integral coupling methods
for fluid-solid interaction. Quart. Appl. Math. 49 (1991), no. 1, 107-119.

[2] J. Bielak, R. C. MacCamy, and X. Zeng, Stable coupling method for interface scattering problems.
Research Report No. R-91-199. Department of Civil Engineering, Carnegie Mellon University,
1991.

[3] A. Bostrom, Scattering of stationary acoustic waves by an elastic obstacle immersed in a fluid.
J. Acoust. Soc. Amer. 67 (1980), no. 2, 390-398.

[4] A. Bostrom, Scattering of acoustic waves by a layered elastic obstacle in a fluid — an improved
null field approach. J. Acoust. Soc. Am. 76 (1984), 588-593

[5] T. Buchukuri, O. Chkadua, R. Duduchava and D. Natroshvili, Interface crack problems for
metallic-piezoelectric composite structures. Mem. Differ. Equ. Math. Phys. 55 (2012), 1-150.

[6] T. Buchukuri, O. Chkadua and D. Natroshvili, Mixed boundary value problems of thermopiezo-
electricity for solids with interior cracks. Integral Equations Operator Theory 64 (2009), no. 4,
495-537.



Interaction Problems of Acoustic Waves and Electro-Magneto-Elastic Structures 55

[7]

8]

[24]

[25]

[26]

T. Buchukuri, O. Chkadua and D. Natroshvili, Mathematical problems of generalized thermo-
electro-magneto-elasticity theory. Mem. Differ. Equ. Math. Phys. 68 (2016), 1-166.

T. Buchukuri, O. Chkadua and D. Natroshvili, Mixed boundary value problems of pseudo-
oscillations of generalized thermo-electro-magneto-elasticity theory for solids with interior cracks.
Trans. A. Razmadze Math. Inst. 170 (2016), no. 3, 308-351.

G. Chkadua, Mathematical problems of interaction of different dimensional physical fields. J.
Phys., Conf. Ser. 451 (2013), 012025.

G. Chkadua, Pseudodifferential operators and boundary value problems for elliptic equations and
systems. PH.D. thesis, King’s College London, London, UK, 2016.

G. Chkadua, Solvability, asymptotic analysis and regularity results for a mixed type interaction
problem of acoustic waves and piezoelectric structures. Math. Methods Appl. Sci. 40 (2017),
no. 15, 5539-5562.

G. Chkadua and D. Natroshvili, Interaction of acoustic waves and piezoelectric structures. Math.
Methods Appl. Sci. 38 (2015), no. 1, 2149-2170.

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Pure and Applied
Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York,
1983.

G. 1. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations. Translated from
the Russian by S. Smith. Translations of Mathematical Monographs, 52. American Mathematical
Society, Providence, R.I., 1981.

P. P. Goswami, T. J. Rudolphi, F. J. Rizzo and D. J. Shippy, A boundary element model for
acoustic-elastic interaction with applications in ultrasonic NDE. J. Nondestructive Evaluation 9
(1990), no. 2-3, 101-112.

L. Hérmander, The Analysis of Linear Partial Differential Operators. 1I1. Pseudodifferential
Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences|, 274. Springer-Verlag, Berlin, 1985.

G. C. Hsiao, On the boundary-field equation methods for fluid-structure interactions. Problems
and methods in mathematical physics (Chemnitz, 1993), 79-88, Teubner-Texte Math., 134, Teub-
ner, Stuttgart, 1994.

G. C. Hsiao, R. E. Kleinman and G. F. Roach, Weak solution of fluid-solid interaction problems.
Technische Hochschule Darmstadt, Fachbereich Mathematik, Preprint-Nr. 1917, May, 1997.

G. C. Hsiao, R. E. Kleinman and L. S. Schuetz, On variational formulations of boundary value
problems for fluid-solid interactions. Elastic wave propagation (Galway, 1988), 321-326, North-
Holland Ser. Appl. Math. Mech., 35, North-Holland, Amsterdam, 1989.

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations. Applied Mathematical Sciences,
164. Springer-Verlag, Berlin, 2008.

Z. Jackiewicz, M. Rahman and B. D. Welfert, Numerical solution of a Fredholm integro-
differential equation modelling neural networks. Appl. Numer. Math. 56 (2006), no. 3-4, 423-432.

L. Jentsch and D. Natroshvili, Non-local approach in mathematical problems of fluid-structure
interaction. Math. Methods Appl. Sci. 22 (1999), no. 1, 13-42.

L. Jentsch, D. Natroshvili and W. L. Wendland, General transmission problems in the theory
of elastic oscillations of anisotropic bodies (basic interface problems). J. Math. Anal. Appl. 220
(1998), no. 2, 397-433.

L. Jentsch, D. Natroshvili and W. L. Wendland, General transmission problems in the theory of
elastic oscillations of anisotropic bodies (mixed interface problems). J. Math. Anal. Appl. 235
(1999), no. 2, 418-434.

D. S. Jones, Low-frequency scattering by a body in lubricated contact. Quart. J. Mech. Appl.
Math. 36 (1983), no. 1, 111-138.

M. C. Junger and D. Fiet, Sound, Structures and Their Interaction. MIT Press, Cambridge, MA,
1986.



56

George Chkadua

[27]

[28]

[40]

[41]

[42]
[43]

[44]

Y. Kagawa and T. Yamabuchi, Finite element simulation of a composite piezoelectric ultrasonic
transducer. IEEE Transactions on Sonics and Ultrasonics 26 (1979), no. 2, 81-87.

V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili and T. V. Burchuladze, Three-Dimensional
Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Classical and Micropolar
Theory. Statics, Harmonic Oscillations, Dynamics. Foundations and Methods of Solution. (Rus-
sian) Izdat. “Nauka”, Moscow, 1976; translation in North-Holland Series in Applied Mathematics
and Mechanics, 25. North-Holland Publishing Co., Amsterdam—New York, 1979.

R. Lerch, Finite element analysis of piezoelectric transducers. IEEE 1988 Ultrasonics Symposium
Proceedings 2 (1988), 643-654.

R. Lerch, Simulation of piezoelectric devices by two- and three-dimensional finite elements. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 37 (1990), no. 3 233-247.

C. J. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic
obstacle. STAM J. Appl. Math. 55 (1995), no. 4, 904-922.

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University
Press, Cambridge, 2000.

D. Natroshvili, Boundary integral equation method in the steady state oscillation problems for
anisotropic bodies. Math. Methods Appl. Sci. 20 (1997), no. 2, 95-119.

D. Natroshvili, S. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid-structure interaction
problems. Dedicated to the memory of Gaetano Fichera (Italian). Rend. Mat. Appl. (7) 20 (2000),
57-92.

D. Natroshvili and G. Sadunishvili, Interaction of elastic and scalar fields. Math. Methods Appl.
Sci. 19 (1996), no. 18, 1445-1469.

D. Natroshvili, G. Sadunishvili, I. Sigua and Z. Tediashvili, Fluid-solid interaction: acoustic
scattering by an elastic obstacle with Lipschitz boundary. Mem. Differential Equations Maith.
Phys. 35 (2005), 91-127.

J.-C. Nédélec, Acoustic and FElectromagnetic Equations. Integral Representations for Harmonic
Problems. Applied Mathematical Sciences, 144. Springer-Verlag, New York, 2001.

G. S. Neugschwandtner, R. Schwoédiauer, S. Bauer-Gogonea and S. Bauer, Piezo- and pyroelec-
tricity of a polymer-foam space-charge electret. J. Appl. Phys. 89 (2001), 4503-4511.

A. Nguyen-Dinh, L. Ratsimandresy, P. Mauchamp, R. Dufait, A. Flesch and M. Lethiecq, High
frequency piezo-composite transducer array designed for ultrasound scanning applications. 1996
IEEFE Ultrasonics Symposium. Proceedings 2 (1996), 943-947.

A. Safari and E. K. Akdogan (Eds.), Piezoelectric and Acoustic Materials for Transducer Appli-
cations. Softcover reprint of hardcover 1st ed. 2008 edition, Springer, 2010.

B. R. Vainberg, Principles of radiation, limiting absorption and limiting amplitude in the general
theory of partial differential equations. (Russian) Uspehi Mat. Nauk 21 (1966), no. 3 (129), 115
194.

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics. Translated from the
Russian by E. Primrose. Gordon & Breach Science Publishers, New York, 1989.

I. Vekua, On metaharmonic functions. (Russian) Trav. Inst. Math. Thilissi [Trudy Tbiliss. Mat.
Inst.] 12 (1943), 105-174.

A. A. Vives (Ed.), Piezoelectric Transducers and Applications. Springer, Berlin, Heidelberg, 2014.

(Received 01.11.2019)

Author’s address:

Department of Mathematical Physics, Andrea Razmadze Mathematical Institute of Ivane Java-

khishvili Thilisi State University, 6 Tamarashvili Str., Thilisi 0177, Georgia

E-mail: g.chkadua@gmail.com



Memoirs on Differential Equations and Mathematical Physics

VOLUME 79, 2020, 57—68

Yuqgiang Feng, Yuanyuan Wang, Deyi Li

COMPARISON THEOREM AND SOLVABILITY
OF THE BOUNDARY VALUE PROBLEM
OF A FRACTIONAL DIFFERENTIAL EQUATION



Abstract. When the nonlinearities satisfy the growth conditions on a finite interval, some existence
results of solutions to the boundary value problems of fractional differential equations are established
via comparison theorem, upper and lower solutions method and fixed point theorems. An example is
presented to illustrate the applications of the obtained results.

2010 Mathematics Subject Classification. 26A33, 34B15.

Key words and phrases. Comparison theorem, fractional differential equation, upper and lower
solutions method, the Banach contraction principle, Shauder’s fixed-point theorem.

Mgbody. Ygomgool mgm@gdol, bgws ©s Jagws s8mbsblibgdol dgmmeols s gdmsgo Fg@@omol
0gme 99960l Lsdgemgdon oy gbogos Msdegbody Jgogy0 BMsJ30gmo oggmgbGosEagmo yob-
BMEgdolbogol Lolsbmg®m s3m3sbgdols sdmbsblbol s@lgdmdol gbabgd, MmEals s®sf®xR0gmds
53dogmzoegdl bHol 300mmdgdL Lobdygm 0bGg@gemby. Jowgdygmo Fggagool asdmygbgdol Lo-

ogliG@some dmygsbomos dsgommomo.



Comparison Theorem and Solvability of the BVP of a Fractional Differential Equation 59

1 Introduction

Fractional calculus has played a significant role in engineering, science, economy, and other fields. Most
of papers and books on fractional calculus are devoted to the solvability of linear initial fractional
differential equations in terms of special functions. Recently, there appeared some papers dealing
with the existence of solutions (or positive solutions) of nonlinear initial value problems of fractional
differential equation using the techniques of nonlinear analysis (see [2,9] and the references therein).

In the literature, “Dg, u(t) + f(t,u(t)) = 0 is known as a single-term equation. This kind of frac-
tional differential equation has many applications and has been studied widely. Equations containing
more than one fractional differential terms are called multi-term fractional differential equations; they
have some concrete applications in many fields. Due to the complexity of such a kind of equations,
it seems that there has been no result for a general multi-term fractional differential equation. Only
some special cases have been investigated. A classical example is the so-called Bagley—Torvik equation
(B-T equation for short) [12],

Au’(t) + B°Dg, u(t) + Cu(t) = f(t),

where A, B and C' are certain constants, D, is the Caputo fractional derivative and f is a given
function. This equation arises from the mathematical model of the motion of a thin plate in a
Newtonian fluid. The B-T equation, as well as various generalizations, have wide applications in fluid
dynamics and hence attracted much attention. The analytic solution and the numerical solution for
the B-T equation were studied in [4] and [5], respectively.

J. Cermak et al. [B] investigated the two-term fractional differential equation

W (t) + BCDy u(t) + bu(t) = 0

with coeflicients a,b € R and positive real orders 0 < 8 < 2. It contains the important case such as
the B-T equation for § = % . Qualitative properties of the true and numerical solutions were described
and numerical stability regions for the classical and fractional models were compared.

In [[14], S. Zhang discussed the following boundary-value problems for two-point nonlinear fractional
differential equation:

{D3+u(t) +q(t) f (u(t),u' @), u" (t), ..., u*D(t)) =0, te(0,1),
u(0) = u'(1) = u"(0) = --- = ul"=2(0) = u"~2)(1) = 0,

where « is a positive number, D§, is the Riemann-Liouville’s fractional derivative, ¢ may be singular
at t = 0 and f(xo,21,...,2,—2) may be singular at o = 0,21 = 0,22 = 0,...,2(,—2) = 0. The
existence of positive solutions to the problem is obtained by the fixed point theorem for the mixed
monotone operator.

In [[7], the authors have investigated the existence of solutions for two-point boundary value prob-
lems

Dgu(t) + f(t u(t), Dg*u(t)) =0, t € (0,1),

u®(0)=0, k=0,1,...,n—3, n=[a] +1,

Dy *u(1) = D u(0) = 0,
for fractional differential equations of arbitrary order a > 2, by applying upper and lower solutions
method together with Schauder’s fixed point theorem. First, they transformed the posed problem to
an ordinary first order initial value problem that they modified to prove the existence of solutions
for the problem. Moreover, they gave the explicit expression of the upper and lower solutions of the
problem.

Recently, in [13], the authors considered the existence of solutions of the boundary-value problem
for two-term three-point nonlinear fractional differential equation:

{AD&u(t) +Dg,u(t) = f(t,u(t), te0,T),
uw(0) =0, pDFLu(T) + D3 u(n) = s,
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where 1 < a <2, 1<<a,0<A<1,0<u<,0<m<a—-08,7%>20,0<n<T are
the constants, D, , Dg , are the Riemann-Liouville fractional derivative, and f : [0,T] x R — R is
continuous. By means of the fixed point theorems and Gronwall type inequality, some results on the
existence of solutions and the Hyers—Ulam stability are obtained. (For more results see [, 10, [11]
and the references therein.)

Motivated by the above results, in this paper we deal with the boundary value problem of the
two-term fractional differential equation:

{Dgi“u(t) + f(t,u(t), D§,u(t)) =0, te(0,1),
0,

(1.1)
u(0) = 0, Dg‘-‘ru(t)}t:() = D3+“(t)|t=1 =

where 0 < o < 1 is a real number and D§, is the standard Riemann-Liouville fractional derivative,
f :[0,1] x R? — R is continuous. We prove a new comparison theorem, and then establish the
existence of solutions for the above-given problem using the comparison theorem, fixed point theory
and the method of upper and lower solutions. By these methods, we can obtain the iterative scheme
for this problem, which implies that the solutions are computable.

The paper is organized as follows. In Section P}, a new comparison theorem is proved. The existence
results for problem ([L.1]) are established in Section . In the same section, we give the proof of the
main result. An example is presented in the last section to illustrate the application of our results.

2 Preliminaries and comparison theorem

In this section, we first recall some standard definitions and notation.
Let a > 0 be a constant.

Definition 2.1 ([8]). The Riemann-Liouville fractional integral I$, f of order « is defined by

I f(t) = I‘(la) / f;x) —dz, t>a,

a
provided that the right-hand side is defined point-wisely, where I' is the Gamma function.

Definition 2.2 ([8]). The Riemann-Liouville fractional derivatives Dg, f of order « are defined by

Dy )= () 000 = () ey [ Gy de n=lal+ 1t

provided that the right-hand side is defined point-wisely, where [a] denotes the integer part of a.

Lemma 2.3 ([8]). Let m € Ny and D = d/dt. If the fractional derivatives (DS, f)(t) and (Doi™ f)(t)
exist, then
(D™ Dg f)(t) = (DI F) (@)

Remark 2.4.

(1) The Riemann-Liouville fractional integral satisfies the equality

15 1P = Mtﬁm, a>0, B>-1, t>0.

(2) The equality D, I§, u(t) = u(t) holds for u € L(0,1).

(3) If a € (0,1], then for u € L(0,1), DS, u € L(0,1) and arbitrary ¢ € R, the equality
I8, D& u(t) = u(t) + ct**

holds.
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The following comparison theorem is crucial in this paper.

Lemma 2.5. Let A\, Ay be two nonnegative numbers, r > 0 be a constant. If m(t) € C2[0,1] satisfies

m”(t) > a /(t —5)""'m(s)ds + dom(t), 0<t<1, m(0)<0, m(1)<0,

then m(t) <0, Vt € [0,1], provided that 0 < A; + AT(r +1) < 2'(r + 1).
Proof. We will verify the assertion in the following cases.

Case 1. If Ay = Ay = 0, then we have m” (t) > 0, which implies that m(t) is a convex function on
[0,1]. Hence, we have m(¢) < min{m(0), m(1)} <0, ¢ € [0,1].

Case 2. Let A1 =0,0 < Ay < 2.
Conversely, suppose there exists ¢ € (0, 1) such that mg = m(tg) = maxm(t) > 0, then m/(¢g) = 0,
m” (tg) < 0. But m”(tg) > Aam(tg) implies m”(tp) > 0, which is a contradiction.

Case 3. Let A1 >0, Ay > 0and 0 < A\ + X T'(r +1) <2I'(r 4+ 1).
Assume that there exists to € (0,1) such that mg = m(ty) = Orgiéclm(t) > 0, then m/(ty) = 0,

m” (ty) < 0. Hence, by

to
A1
0 2 m t(] Fi/ t() - S )ds + )\Qm(t(])
0

to
we have [ (to — )" 'm(s) ds < 0.
0
This implies that there is t; € [0,tg) such that m; = m(¢;) = min m(t) < 0. According to

te[0,to]
Taylor’s formula, there is A € (t1,%0) such that

m// (}\)

my = m(ty) = mfto) + m' (to) (tr — to) + =5 (ts - to)>.
Since m; < 0, we have
2 2
") = (1 m20) mi
(t1 —to) (t1 —to)
Hence
A , A .
2my > m"(\) > F(;’) /(A — )" tm(s) ds + Aam(X) > F(:’ / s)" " 'my ds + Aemy
0 0
)\1 >\1
=\ A _— A .
Ty 1) M T = p gy A

This implies that A\; +A2T'(r+1) > 2I'(r + 1), which contradicts the assumption that 0 < Ay + A2T'(r+
1) <2I'(r +1).
This ends the proof. O

Corollary 2.6. Let A1, A2 be two nonnegative numbers, 0 < o < 1 be a constant. If h(t) € C3[0,1]
satisfies

{D%i”‘h(t) > Ah(t) + A Dgh(t), 0<t<1,

h(0) =0, Dg h(t)|,_, <0, D§A(t)],_, <0,

then h(t) <0, Vit € [0,1] provided that 0 < A1 + AT (a4 1) < 2T'(a + 1).
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Proof. Let m(t) = D§ h(t). Since h(0) = 0, we have

h(t) = ﬁ / (t— )° 'm(s)ds, m"(t) = DErh(t)
0

and
t

m(t) > %/(t — )" 'm(s)ds + dam(t), 0<t<1, m(0) <0, m(1)<0.

Due to Lemma @, we have m(t) <0, Vt € [0,1]. Hence
t
/t—s m(s)ds <0, Vte[0,1].
0
This ends the proof. O

3 The existence criteria

Throughout this section, we assume that f : [0,1] x R? — R is continuous and there exist non-negative
numbers A1, Ag such that

(Hy) for t € [0,1], z € R, m1 > T2, Y1 > ¥2
f(t7331,y1) - f(t7.’1,'2,y2) > —)\1(371 - 1‘2) - >\2(y1 o y2)

(Hy) 0 <A1+ Xol(a+1) <2T(a +1).

Definition 3.1. A function v € C[0,1] is called a solution of problem (| if D§, u e C[0,1], and u
satisfies the equation in ([L.1)) for ¢ € [0, 1] and the boundary condition in (JL.1]).

Lemma 3.2. Ifu € C[0,1] is a solution of the following boundary value problem

{(D3+u(t))" + f(t,ult), D u(t)) =0, t€(0,1), 5.1)
(0) =0, Dg,u(t)],_, = D§u(t)],_, =0,
then u is a solution of (EI)
Proof. According to Lemma @, we have
(D?Dg u)(t) = (DgFPu)(b),
ie.,
(Dfyw)"(t) = (DG u)(t).
So, if u € C[0, 1] is a solution of (EI)7 it is a solution of (EI) O

The main result reads as follows.

Theorem 3.3. If Orgtigl f(t,0,0) > 0 and there exists ¢ > 0 such that

max{f(t,x,y) | (t,z,y) €[0,1] x [O,F(gia)(lza)Ha} X [07 c}} < 2c,

then (EI) has a solution u* satisfying

te 217t )

0sw(®) < C(F(l fa) I3+a)
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Proof. Let X = C[0,1], the norm on X be || - || : |z] = Jnax |z(t)| for x € X. Let K = {x €

X | z() >0, 0 <t < 1} and the partial order “<” on X be induced by K: for z,y € X,
y<xz<=x—yé€ K, then (X, K) is an ordered Banach space.
Having in mind (@) (with D§, v replaced by h), we discuss the problem

{—h"(t) = f(t. 1§, h(t), h(t)),
h(0) = h(1) = 0,
Let D={he X | h" € X, h(0) =h(1) =0}. Define L: D C X — X and N : X — X as follows:
Lh = —h"(t) + M Ig h(t) + X2h(1),
Nh = f(t, I§ h(t), h(t)) + M IS h(t) + A2h(t).
By the definition of L and N, (@) can be rewritten as
Lh = Nh. (3.3)

(3.2)

Step 1. L: D C X — X is a reversible mapping.
Given n € X, we consider the following boundary value problem:

B (1) + Mg, h(t) + Aeh(t) = n(t),
h(0) = h(1) = 0.

It is known that h is the solution of the above problem if and only if & is the fixed point of the
operator A, : X — X, where

1
Aph(t) = /G(t, s)[n(s) = MI§ h(s) — A2h(s)] ds

and

[Aga(t) ~ )] = [ Gltos) M3 (w) — o(5)) + Aaluls) — ()] ds

A 1
=+ o] lz =l < 7 e -yl

1
1
< & — — < D | "=
< [ Gt Mt e =l + dale =l s < § [ 52
0

for all t € [0,1], z,y € X, which implies that A, : X — X is contractive.
By the completeness of X and an application of the Banach contraction principle, there exists a
unique h € X such that A,h = h, ie., Lh =n. In fact, h € D. Hence L : D C X — X is reversible.

Step 2. L' : X — D is continuous.
Letne X, {n,} C X, ny —n, L7'n =21z, L™y, = z,, then

G(t,5) [ (s) = AMIG n(s) — Aown(s)] ds,

G(t,s)[n(s) — MI§ z(s) — Aoz(s)] ds.
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As a result,

ru(t) = 2(0)] = ] [ 6005 [1als) = 16) + AT (o = ) 6) + X)) s

)17 (5) = ()] + A5 o = wal(3) + Aala(s) = wa(s)] ] ds

[ = nll + (mfin +30) 2 — ]

7 =l + ||$ Ty|-

IN

IN

oo — oo\HO\H
Q

We have .
Iz — 2l < 2 Nl =l
Consequently, x,, — z, when 7,, — 1. Therefore, L™! : X — D is continuous.

Step 3. L' : X — D is compact.

Let S € X be a bounded subset, i.e., there exists a constant M > 0 such that ||n|| < M for any
nes.

Let n € S,L~ 'y =z, then

1
/G = M I§ a(s) — Agx(s)] ds.
0
As a result,
1 1 A1 1 1
< D L (2 )it < L+ L,
ol < § ol + § (e + )l < Il + 5 e
hence
lall < = Inll < =
=5 n =

which implies that L=1(S) is bounded.
Furthermore, let t1,to € [0,1], t; < t, then for any x € L™!(S), there exists n € D such that
L~'n =2 and

|z(t1) — 2(t2)] = [Apz(tr) — Ay (ta)|

= ‘ / (t1,5) — G(t2, 8)) [n(s) — M I x(s) — Aax(s)] ds

§/|G(t17 s) = G(tz, s)| [n(s) = Mlgiz(s) — Aow(s)| ds
0

/ Gt1,5) = Geas o) ds Il + (2

— 1+ A
) ]
u 1
T/ (t1,5) — G(t2,s)| ds.

0

Due to the uniform continuity of G(t, s) on [0,1] x [0, 1], for Ve > 0, there exists ¢ > 0 such that
[ta — t1] < o implies

IN

I /\

3
‘G(ths)_G(tZa )l <57 4M
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At the same time, we have

1
4M 4M 3
o(t) ~ alt2)] < 25~ [ [6(t1,5) = Gilta,)]ds < 25 pre=e.
0

Hence L~1(9) is equi-continuous.
Since L=1(S) is bounded and equi-continuous, L=! : X — D is compact.

Step 4. LN : X — D is continuous and increasing.

Since f is continuous, by the definition of N and Step 3, N : X — X and L™'N : X — D are
continuous.

Moreover, for arbitrary n1,7m2 € X, n1 < 12, (Hy) implies Nn; < Nno. Let vy = L™1Nny,
ve = L1 Nmny, then Lv; = Nn; < N1y = Lvs. Hence we have L(v; — v2) <0, i.e.,

t

F)(\i‘) O/(t — s)T—l(’U1(S) — 1)2(8)) ds + )\Q(vl(t) — 1;2(15))’ 0<t<l,

—(v1 —v2)"(t) +

(v1 = v2)(0) = (v1 —v2)(1) = 0.

By Lemma @, we obtain (v; — vg)(t) < 0 for t € [0,1], i.e., v1 < vo. Hence L™'N : X — D is
increasing.

Step 5. There exist x,y € D, x <y such that Lv < Nx and Ly > Ny.

Let v(t) = 0. Since
min f(¢,0,0) > 0,

0<t<1
we have
D3tv(t) + f(t,v(t), D§ v(t)) >0, te(0,1)
{1}(0) =0, Dg v(t)],_, <0, Dg v(t)],_, <O0.
Let

t 22+
t) = - .
w(?) C(F(l +a) F(3—|—a))

Noting that for ¢t € [0, 1],

DEHw(t) = 26, w(t) € [Oﬁ (1;“)1”}, D u(t) [0, ]

and

s { e | (b € 001 0. (F52) ] < 0.5 b < 2

we get
{Dgiaw(t) + £ (tw(t), D§ w(t)) <0, t€(0,1),
w(0) =0, Dgw(t)|,_y >0, Deyu(t)],_, >0.

By Step 1, there exist x,y € D such that
Lo = N(Dgo(t), Ly = N(Dg,uw(t)).
Next, we assert that
(1) z <y
(2) D§,v(t) < and Lz < Nux;

(3) y < D w(t) and Ly > Ny.
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Since N is nondecreasing, we have N(Dg, v(t)) < N(Dg w(t)), hence Lz < Ly. Lemma @
implies = < y. Assertion (1) is verified.

Next, we verify assertion (2).

In fact, by the definition of z, we have

{x//(t) + MG w(t) + Aax(t) = f(t,v(t),DS‘_,_v(t)) + Ao(t) + X2 D§ v(t), )
z(0) = z(1) = 0.
Let ¢(t) = D@, v(t). Then
—¢"(t) + M5 D) + Aag(t) < f(t,v(t), Dgo(t)) + Miv(t) + A DF v(t), .
#(0) <0, ¢(1) <0. .

(@), (@) together with the assumption (Hs) lead to

{—(90(75) — ()" + Mg, (x — ¢)(t) + Ao (z(t) — 6(1)) = 0,
(2(0) = ¢(0)) 20, (x(1) —¢(1)) 0.
By virtue of Lemma @, we have z(t) — ¢(t) > 0 i.e., xz(t) > ¢(t). The nondecreasing of N gives
Nx > N¢, hence Ly = N¢ < Nux.

y < D§ w(t), Ny < Ly can be verified similarly.
Step 6. Problem (EI) has a solution u*(t) satisfying v(t) < u*(t) < w(t).

Step 4 and Step 5 implies that the operator L=*N maps [z,y] N D into [z,y] N D. Since [x,y] N D

is convex, closed and bounded and L~!NN is completely continuous, an application of Schauder’s fixed
point theorem implies that Lh = Nh has a solution h* in [z, y]. Let

t

1 -
ut(t) = F(a)/(ts)a "n*(s) ds,
0
then u*(t) is a solution of problem (EI) satisfying v(t) < u*(t) < w(t). O

Theorem 3.4. If Jmax f(t,0,0) <0 and there exists ¢ > 0 such that

min{f(t,sc,y)| (t,u,v) € [0,1] x [—% (1;a)1+a,0} X [—270}} > —2¢,

B3+ a)
then (@) has a solution u* satisfying

. t 22+«
02u(t) 2 ’C(r<1+a) - r(3+a)>'

Proof. In Step 5 of the proof of Theorem @, let

te 212t
t) = — — t
vt) C(F(l—l—a) F(3+a)>’ w(®)

Then the conclusion of Theorem @ can be verified in a similar way. O

0.

Theorem 3.5. If there exists ¢ > 0 such that
c 14 ay1te c
1Y _ | — — <
aX{f(t,x,y) | (t,2,y) €[0,1] x [07 X ( ) } x [07 ” < 2,

3+ a) 2 4
min{f(t,:c,y)| (t,u,v) € [0,1] x [fﬁ <1—|2_a)1+a,0} X {Z,O}} > —2¢,

then (EI) has a solution u* satisfying
te 2t

a 24a
_C(I‘(l +a) F(3—|—a)> sui(l) < C(F(lt—l— a) T(2?f+a))'
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Proof. In Step 5 of the proof of Theorem @, let

e o2t

o 24
v(t) = *C(p(l Ta) F(3+a)>’ w(t) = C(F(1t+ a) F(2§+ a))'

Then the conclusion of Theorem @ can be verified in a similar way. O

4 Example and remark

Example 4.1. Consider the following boundary value problem for the fractional differential equation:

Dau(t) + cosu(t) + arctan(Dg, u(t)) = 0,
1 1
u(0) =0, D¢, u(t)|,_, =D& u(t)],_, =0.
Let
flt,xz,y) = cosz + arctany.

Then f(¢,0,0) > 0 and f satisfies (H; — Ha) with \y =1, A2 =0, a = %
Furthermore, let ¢ = 4, we have

max{1e) | @ e 0 (F5) < [0.5]} =1 T <

Then Theorem @ assures the above problem has a solution between 0 and

82 (1- %)
VT 15/

Remark 4.2. By the proof of Theorem @, we know that the solution of problem (@) can be
obtained by iterative sequence {z,} or {y,}, where

an-'rl:N(In)a To =, TL:O71,2,...;
Lyn+1 =N(yn), vo=vy, n=0,1,2,....

This implies that the solution of problem (EI) is computable.
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Abstract. The paper deals with the three-dimensional boundary-contact problems of couple-stress
viscoelasticity for inhomogeneous anisotropic bodies with friction. The uniqueness theorem is proved
by using the corresponding Green’s formulas and positive definiteness of the potential energy. To
analyze the existence of solutions, the problem under consideration is reduced equivalently to a spatial
variational inequality. A special parameter-dependent regularization of this variational inequality is
considered, which is equivalent to the relevant regularized variational equation depending on a real
parameter, and its solvability is studied by the Faedo—Galerkin method. Some a priori estimates for
solutions of the regularized variational equation are established and with the help of an appropriate
limiting procedure the existence theorem for the original contact problem with friction is proved.
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1 Introduction

The general and widespread use of the linear theory of viscoelasticity has been observed since the
early seventies of the past century. Activity in this area is associated with a wide application of
polymeric materials with properties that can obviously be described neither by elastic nor by viscous
models, but combine the features of both models. Mathematical strictly grounded theory of linear
viscoelasticity with numerous practical applications is contained in the monographs of D. R. Bland
and R. M. Christensen (see [I,2] and the references therein).

Viscoelastic materials are those supplied with the “memory” in the sense that the state at time
t depends on all the deformations that the material undergoes. A particularly important class of
“viscoelastic equations of state” is associated with materials for which there is a linear relationship
between the time derivatives of the stress and strain tensors. We will consider viscoelastic materials
with short-term memory, i.e., when the stress of the moment at time ¢ depends only on the defor-
mations, the moment at time ¢t and the nearest previous moments of time. In the considered model
of the theory of elasticity, as distinct from the classical theory, every elementary medium particle
undergoes both displacement and rotation. In this case, all mechanical values are expressed in terms
of the displacement and rotation vectors. In their work [4], E. Cosserat and F. Cosserat created and
presented the model of a solid medium in which every material point has six degrees of freedom,
three of which are defined by the displacement components and the other three by the components
of rotation (for the history of the model of elasticity see [6,24,27,B1] and the references therein).
The main equations of that model are interrelated and generate a matrix second order differential
operator of dimension 6 x 6. The basic boundary value problems and also the transmission problems
of the hemitropic theory of elasticity for smooth and non-smooth Lipschitz domains were studied
in [28]. The one-sided contact problems of statics of the hemitropic theory of elasticity, free from
friction, were investigated in [11,12.16,18,21], and the contact problems of statics and dynamics with
a friction were considered in [9,[10,13-15,117,19,20]. Analogous, one-sided problems of classical linear
theory of elasticity have been considered in many works and monographs (see [, [1,8,22.23] and the
references therein). Particular problems of the viscoelasticity theory are considered in [[l|,2]. As for
the dynamical and quasistatical boundary-contact problems of viscoelasticity with friction, we have
considered them in [f].

The paper is organized as follows. First, we present general field equations of the linear theory of
couple-stress viscoelasticity and formulate the boundary-contact problem of dynamics with regard to
the friction. We prove the uniqueness theorem by using Green’s formulas and positive definiteness of
the potential energy. Afterwards, the contact problem is equivalently reduced to a spacial variational
inequality. The latter is in its turn replaced by the relevant regularized equation depending on a
real positive parameter ¢, and its solvability is studied by the Faedo—Galerkin method in appropriate
approximate function spaces of dimension m. Furthermore, some a priori estimates are established,
which allow us to pass to the limit with respect to dimension m as m — oo and to parameter ¢ as
€ — 0. As a result, we prove that the limiting function is a solution of the variational inequality and,
consequently, the limiting function solves the original contact problem.

2 Field equations and Green’s formulas

2.1 Basic equations

Let © C R? be a bounded, simply connected domain with C> smooth boundary S := 9Q, Q = QU S.
Throughout the paper, n(z) = (n1(x), n2(x), n3(x)) denotes the outward unit normal vector at a point
xeS.

The basic equilibrium equations of dynamics of couple-stress viscoelasticity for inhomogeneous
anisotropic bodies read as

0%u;j(z,t)
otz
2.1
82wj (z,t) (2.1)
otz 7’

8io'ij(xat) + QFj(xat) =0

8iﬁbij($,t) + 5ikj0'ik($7t) + QGj(.’E,t) =J
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where ¢ is the time variable, 0 = (01, 02, 03) with 9; = 8%1_, 0 is the mass density of the elastic material,
J is the moment of inertia per unit volume, F = (Fy, Fp, F3) " and G = (G1, G2, G3) " are, respectively,
the body force and body couple vectors per unit mass, u = (u1, uz,us)' is the displacement vector,
w = (w1, w2,ws) " is the micro-rotation vector, e;;; is the permutation (Levi-Civita) symbol;

Here and in what follows, the symbol (-)T denotes transposition and the repetition of the index
means summation over this index from 1 to 3. For the force stress tensor {o;;} and the couple-stress
tensor {p;;}, we have

oij(x,t) == 035 (U ( )

- az]l

k
pig(w,t) == pi; (U(t)
= b0 () (U (1)) + 00 (@) (U (1)) + b ()8 (U (2)) + €11, (@)D (U (1)),

where U(t) == U(,t) = (u(@,t),w(z,t))", (u(U(t)) = Ouk(x,t) — Erpmwm(@,t) and mk(U(t)) =

Ojwi(x,t) are the so-called strain and torsion (curvature) tensors; the real-valued functions al ; lk, bz(?l)k,

cgjl)k (respectively, agjl)k, bgjll)k, Ejll)k), called the elastic constants (respectively, viscosity constants),

satisfy certain smoothness and symmetry conditions

)
2 (@)G (U (1)) + b5 (@)mie(U (1)) + ay ()0 (U (1)) + b33, (@)D (U (1)),
)

(i) g Difhes i € C1 (@),
sy ( ) (
(11) az;ll)k - al(lgzﬁ Cz;ll)k = Cl(kzﬁ

(iii) there exists ap > 0 such that Vz € Q and V&;;,m:; € R:
Ulk( )& + 2bwlk( )&k + CEJz)k( Mijnue > ao(&i€ig +nijnig) (¢ =0,1).

We introduce a matrix differential operator corresponding to the left-hand side of system (@)

MO (z,0) M) (z,0) )
M(x,0) = . M (@0) = [ MP(w,0)| , p=T1,

MO (z,0) M@ (x,0) bt 3x3
where
M) (@,0) = 0;([af . (x) + ally (2)04]Br),
M (2,0) = 0; ([B0), (x) + b1} (2)84)01) — e1rn0; [al)), (x) + Ejfr (2)0];
M (,0) = 0; ([biy), (x) + bl ()0:]01) + einj [aloh (x) + afyiy, (2)0:) 0
M) (@,0) = 0; ([l (@) + 1), (2)06)O1) — e1rd; [b}2 () + b§:2j< )]
+ Eirj [bggl)k( ) + b( ('r)at] 81 - g’LP]ElTk?[ Epl)r( ) + a’zplr( )at]

Denote by N (9,n) the generalized 6 x 6 matrix differential stress operator

N (9, N®@ (9,
Nom =[N O O o = (WP o], p=T

/\/(3)(3’ n) N(4)(8, n) ot 3x3

where
'A/j(li)(87 n) = [ g)z)k zylkat]nlal’
j\/j(]f)(a, n) = [b(;)z)k + bijl)kat} 101 — €1k [agffr + agjll)rat]m; (2.2)
NP (@.m) = [bfg); + b)) midh: |
N (@.m) = [elgh, + el midn — eupi [biy); + by 0:]mi
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Here 0,, = 0/0n denotes the directional derivative along the vector n (normal derivative). In the
sequel, for the force stress and couple-stress vectors we use the following notation:

TU=NOu+ Ny, MU =NOy+ NDy,

where N, p = 1,2,3,4, is defined by formula (2.9).
The system of equations (R.1]) can be rewritten in the matrix form

02U (z,1)
ot?

where T is an arbitrary positive number, U = (u,w)", G = (oF, 0G)", P = [pijlexs, pii = 0, when
i=1,2,3, p;i = J, when i = 4,5,6, and p;; =0, when i # j.

Throughout the paper, L,(Q) (1 < p < c0), Lo(Q) = H°(Q) and H*(Q) = H5(Q), s € R, denote
the Lebesgue and Bessel potential spaces (see, e.g., [25,82]). We denote the corresponding norms by
the symbols || - ||z (o) and || - |+ (), respectively. Denote by D(2) the class of C°°(§2) functions with
a support in the domain Q. If M is an open proper part of the manifold 02, i.e., M C 9Q, M # 9Q:
then we denote by H*(M) the restriction of the space H*(92) on M,

M(z,0)U(z,t) + G(z,t) = P , 2€Q, 0<t<T, (2.3)

H*(M) :={r,¢: ¢ € H(0Q)},
where r,, stands for the restriction operator on the set M. Further, let
H*(M) :={p € H*(0Q) : suppyp C M}.
The total strain energy of the respective media has the form

BOW.Y) = [ (a6 )06n(V) + 0, @) @ (V)
Q

+ bggl)k(x)Cij(V)nlk(U) + cggl)k(x)nij(U)nlk(V)} dz,

where ¢ = 1,2, U = (u,w) ", V = (v,w) " and ¢;(U) = diuj — &ijrwr, 0i;(U) = Oiw;.

From properties (ii) and (iii), it is clear that B (U, V) = B@(V,U) and B@ (U, U) > 0. Moreover,
there exist positive constants C7 and Cs, depending only on the material parameters, such that Korn’s
type inequality (cf., [8, Part I, §12], [3, §6.3])

BOU,U) > Ci||U | ays — Coll U,y ¢ = 1,2, (2.4)
holds for an arbitrary real-valued vector function U € [H'(£2)]5.

Remark 2.1. If U € [H'(©2)]° and on some open part S* C 9Q the trace {U}T vanishes, i.e.,
7. {U}" =0, then we have the strict Korn’s inequality

BOU,U) > c|U|fy e

with some positive constant ¢ > 0 which does not depend on the vector U. This follows from (@)
and the fact that in this case B(9)(U,U) > 0 for U # 0 (see [29], [26, Ch. 2, Exercise 2.17]).

2.2 Green’s formulas

For the real-valued vector functions U(t) = (u(t),w(t))T and U(t) = (u(t),&(t)) T of the class [C2(Q)]°
and for an arbitrary ¢ € [0; T, the following Green’s formula (see [[13])

/ M(z,0)U(t) - U(t) da
Q

- / N@mUMY - {TW} ds - {BOW),T) +aBOUE),T(1)} (25)
S
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holds, where { -} T denotes the trace operator on S from Q.
By the standard limiting arguments, Green’s formula (2.5) can be extended to the Lipschitz do-
mains and to vector functions U, U € [H1(Q)]® with M (x,d)U(t) € [La(Q)]° (see [25,29)),

S

/M(a:,a)U(t) CU(t)do = <{N(a, OUOIAE {ﬁ(t)}+> ds
Q
—{BOW ), T(1) +aBVU®,TE)}, teO:T), (26)

where (-, -)g denotes the duality between the spaces [H~1/%(S)]® and [H'/2(S)]%, which generalizes
the usual inner product in the space [Lo(9€)]°. By this relation, the generalized trace of the stress
operator {N(9,n)UY*t € [H=/2(8)]¢ is well defined.

The following assertion describes the null space of the energy quadratic form B (U(t),U(t))
(see [13)).

Lemma 2.2. Let for an arbitrary t € (0;T), U(t) = (u(t),w(t))T € [C*(Q)]® and BD(U(t),U(t)) =0
in Q. Then
u(t) = [a'? x 2] + 0D, w(t)=a?, 2z e,

where a'? and b are arbitrary three-dimensional constant vectors and the symbol [ x -] denotes the
cross product of two vectors.

The vectors of type ([a? x ] +bD, a D) are called generalized rigid displacement vectors. Observe
that a generalized rigid displacement vector vanishes, i.e., a{? = b(@) = 0, if it is zero at a single point.

3 Contact problems with friction

3.1 Coulomb’s law

Let the boundary S of the domain €2 be divided into two open, connected and non-overlapping parts Sy
and Sy of positive measure, S = S; U Sy, S; NSy = @. Assume that the viscoelastic body occupying
the domain € is in a contact with another rigid body along the subsurface S;. Denote by F(z,t)
the force stress vector by which the hemitropic body acts upon the rigid body at the point x € Ss.
Throughout the paper, F;,, and Fy stand for the normal and tangential components of the vector F,
respectively: F,, = F -n and Fy = F — (F - n)n. Further, let F(z) be the friction coefficient at the
point x € S,. It is a nonnegative scalar function which depends on the geometry of the contacting
surfaces and also on the physical properties of the interacting materials.

Coulomb’s law describing the contact interaction of materials with friction reads as follows (for
details see [4]):

If the contact of two bodies is described by the force vector F', then

[Fs(a,t)] < F(a)[Fu(x,2)]

Moreover, if
|Fs(x, )| < F(x)|Fu(z,1)],
then Bu(a.®)
Us\T,
o
and if
|Fs(, )| = F ()| Fu(z,1)],

then there exist nonnegative functions A1 and Ao not vanish simultaneously such that

A1(z,t) W = —Xo(z,t)Fs(z, ).
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3.2 Pointwise and variational formulation of the contact problem

Let X be a Banach space with the norm || - || x. We denote by L,(0,7;X) (1 < p < o) the space of
measurable functions ¢ — f(¢) defined on the interval (0;7") with values in the space X such that

z 1/p
1l 0.1y = { JALCIE dt} <oo for 1<p<oo
0

and
[l Lo 0.7:x) = esssup { || f(t)[[x } < oo for p=oco.
te(0;T)

Definition 3.1. The vector-function U : (0; T) — [H*(£2)]° is said to be a weak solution of equation
(2.3 for G : (0:T) — [La(Q)F it
U(t),U'(t) € Loo (0, T35 [H()]°), U"(t) € Loo(0, T3 [L2()]°),
and for every ® € [D(Q)]°,
(PU"(1),®) +BOU(1), ®) + BY(U' (1), ®) = ((t), ®).

Here and in what follows, the symbol (-, -) denotes the scalar product in the space Lo ().
Further, let

G:(0,T) = [La(D)°,  : (0:7) = [HV2(S2)P, f:(0:T) = Loo(S2),

and set
g:=Ff| 0. (3.1)
Consider the following contact problem of dynamics with friction.
Problem (A). Find a weak solution U : (0;T') — [H*()]® of the equation
p 0?U (z,t)
ot?
satisfying the inclusion 7y {(TU)}" € [Loo(S2 x (0;T))]%, the initial conditions

M(z,0)U (z,t) + G(z,t) = L 2eQ, te(0:7T), (3.2)

U(z,0)=0, z€Q, (3.3)
U'(z,0) =0, z€Q, (3.4)
and the boundary contact conditions

ro {U}T =0 on S1 x (0;7), (3.5)
rSZ{(TU)n}+ =f on Sp x (0;T), (3.6)
ro, {MU}Y" = ¢ on Sy x (0;T), (3.7)

dus\ .
ro {5} =0 i [ {(TU)Y | < g on S x (0:T), (3.8)

and if ry {(TU)s}*| = g, then there exist nonnegative functions A; and )z do not vanishing simultane-
ously, such that

Oug
ot

Mg, { 1T = Aoty r, ((TU)YF on S5 x (0:T). (3.9)

is problem can be reformulated in terms of a variational inequality. To this end, on the space
Thi bl be ref lated in t f iational i lity. To this end th
[H()]% we introduce the continuous convex functional

V) = /g|{vs}+|d5a V= (v,w)" :(0;T) = [H ()] (3.10)
Sa
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and the closed convex sets K and Ky:

K= {V | VO).V(1) € Loo (0,73 [H'()]°),
V(t) € Loo(0, T3 [La()]°), 75, {V}T =0, V(0) = V'(0) = 0};

Ko = {v | Ve [H\Q)F, ro {V}T = o}.
Consider the following variational inequality: Find a (u,w)" € K such that the variational inequality

(PU"(t),V =U'(t)) + BOU(t),V - U'(t)) + BOU'(t),V = U'()) + §(V) — j(U'(t))
> (G(t),V —-U'(t) + / F@®){vn —up ()} dS + (p(t), 7o, fw =o' ()} )y (3.11)
Sa

holds for all V = (v,w)" € Ko.

Here and in what follows, the symbol (-, -) denotes the duality relation between the corresponding
dual pairs X*(M) and X (M). In particular, (-, -)g, in () denotes the duality relation between
the spaces [H~1/2(Sy))? and [H'/2(S5)]>.

4 Equivalence theorem
Here we prove the following equivalence result.

Theorem 4.1. If U :&T) — [HY(Q)]® is a solution of problem (Ag), then U is a solution of the

variational inequality (B.11]), and vice versa.

Proof. Let U = (u,w)" : (0;T) — [H*(92)]® be a solution of problem (Ay), and V = (v,w)" € Ko. By
virtue of the interior regularity theorems (see [§]), we have U(t) € [H?(Q)')]% for every domain ¥ C Q.
Hence the equation

82U (z, 1)

M(z,0)U(z,t) +G(x,t) = P —3

, €, te(0;7T)
holds almost everywhere in the domain Q. By virtue of Green’s formula (@), we get

(PU"(t),V =U'(t)) = ({TU}" {v —u' (1)} ) g — ({MU}T {w — ' (1)} 7)
+BOW(@),V =U' (1) + BOWU' ),V —U'®) = (G@1),V -U'(t). (4.1)

Taking into account the boundary conditions (B.5), (@), (@) and the form of the functional (),
we deduce that for all V = (v,w)" € Ko from (4.1)), we have

(PU"(t),V =U'()) + BOU®),V = U'(t) + BY(U' (), V = U'(t)) +5(V) — (U (¢))
=(G(1),V-U'(t) + /f(t){vn —up (1)} dS + (p(t), 15, {w — ' (1)} )4
Sa

2

+ [ [{T0LY o= O + ({0} - (w0} )] ds.

Sa

It is easy to see that if conditions (@) and (@) hold, then

re, {(TU) 3 g, {vs — (O} + g(Irs, {va} T = s, {us (O} ) 2 0.
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Hence we have
(PU"(t),V = U'(t)) + BOW®),V —=U'(t)) + BYU'(t),V = U'(t)) + §(V) - j(U'(t))
> (G, V —U'(t /f Yom — u, (O} dS + (), o, w0 — ' (O} )

for all V. = (v.w)" € Kog. Thus U = (u,w)" : (0;T) — [H*(Q)]% is a solution of the variational
inequality (@)

Let now U = (u.w)" € K be a solution of the variational inequality () Substituting U’ (¢) &+ @
instead of V in (@) with an arbitrary ® € [D(Q)]°, we obtain

(PU"(1),®) + BO(U(1), @) + BV (U'(1), @) = (6(1),®) V€ [D(Q)]°,

which implies that U is a weak solution of equation (@) Again, by virtue of the interior regularity
theorem (see [E]), equation (@) is satisfied almost everywhere in the domain . Thus, taking into
account the fact that rg {V —U'(t)}* =0 for all V = (v,w)" € Ko, Green’s formula (@) yields
(PU"(t),V = U'(t)) + BOU(t ) V- U’(t)) +BOU ),V - U'(t))
= (g(t),V P, TV} g, o — (0} )

+ (o, ((TU)) sz{vs—u<t>}> + (re (MUY SQ{w—w<>}+>S YV € K.

2

Subtracting the above equality from (), we obtain

(AT oy o= 0F )+ [ ool | = 1o} 1) ds

Sa

(e, (TOYY T = J O, fon = (0}) 4 (o, (MUY = o(t). v, fw = o/ (0}) >0 (42)

for all V = (v,w)" € Ko. For an arbitrary ¢ from the interval (0;7), we choose V = (v,w)" € Ko
such that 7y {w}t =7, {&'(t)}F, 7o, {vs}t =1y {ul()} 1, and rg {v,} 1 =7y [{ur,(t)} T £4], where

¢ € HY2(S,) is an arbitrary scalar function. Then from (4.9) we infer

re, {(TU)n}" = f (1), (4.3)
i.e., condition (@) is fulfilled. Taking into account (@)7 from (@) we find that

(AT sy o= ) )+ [ a0 | = 1o} 1) ds

Sa
+ <r52{MU}+ — o(t), g, {w — w’(t)}+>sz >0 VYV =(v,w) €Ky (44)

Let now the vector-function V = (v,w)" € Ko be such that ro {vi}t =7  {ul ()} and rg {w}t =
g, [{W' (1)} £ 9], where ¢ € [H1/2(S,)]? is an arbitrary vector-function. Then (Q) yields

ro (MUY = o(0). (4.5)

Consequently, condition (@) is satisfied. Note that conditions (% (@) and (B.4)) are automatically
(8.9) )

fulfilled, since U = (u,w)' € K. Taking into account condition , from ( we obtain

(AT o= O )+ [ oo} = O} D dS 20 ¥V = (0.0)T € Ko, (46)

Sa
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whence
(re (T g, fos =l (O} ) /g|{us}+ — (Ul ()}F]dS =0 YV = (0,w)" € Koo (4.7)
Sa

Further, let us choose the vector-function V = (v,w)" € Ko such that ro {w}™ = ry {&/'(t)},

ro {vn} T = 1o {u, ()}, and r, {v}t =1y {ul(t)}T £rg s, where ¢ € [H'/2(S,)]3 is an arbitrary
vector-function. Then from (@) we obtain

£ AT b, + [ ol s 2o, (48)
Sa

For an arbitrary ¢ € [H/2(S3)]3, we have rs, ¥s| < |rg, | and

(re, {(TU) Y ro,vs) g, = (e, {(TU) g ),

2

Therefore, from (@) we derive

(ro, ((TU)Y re, ),

< [alvlas wo e (@S (4.9)
Sa

Let t € (0;T) and consider in the space [H/2(S5)]? the linear functional
(I)t(w) = <TSQ{(TU)S}+vr52 >527 Y e [ﬁ1/2(32)]3'

Due to inequality (@), this functional is continuous on the space [I;' 1/2(85)]% with respect to the
topology induced by the space [L;(S2)]3. Since the space [H/2(S,)]? is dense in [L;(S5)]3, the
functional ®; can be continuously extended to the whole space [L;(S2)]® preserving the norm. Since
the dual of [L;(S2)]? is isomorphic to [Le(S2)]?, there exists a function @} € [Loo(S2)]® such that

<I>t<w>=/<1>r~¢ds Vi € [Li(So)P

Sa

Hence
ro, {(TU)s}" = @ € [Loo(S2)].

Using again inequality (@) we derive

/ [+ {(TU) ) - —gl|]dS <0 Vo € [HY2(S), (4.10)

Sa
whence the inequality

re, {(TU)s}*| < g almost everywhere on Sy x (0;7)

follows. Indeed, it is well known that for an arbitrary essentially bounded function 7:/; € Lo (S2) there
is a sequence ¢; € C°°(S2) with supports in Sy for which (see [B0, Lemma 1.4.2])

lim &(z) = ¢(z) for almost all z € Sy and |@(x)] < esssup |4 (y)]
l—o0 yESy

for almost all x € S5. Therefore, from inequality (), by the Lebesque dominated convergence
theorem, it follows that

J ATV 6= glvl]dS <0 Vi€ [La(S)

Sa
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whence we get

£r, {(TU)s} - =gl <0

on Sy for every ¢ € [Loo(S2)]?. Substituting v = 75, {(TU)s} T in the above inequality, we finally get
the inequality

Ire, {(TU):}F| < g (4.11)

Now let us set
Osi=rg {va}t, os i=rg {ul(t)}. (4.12)

Clearly, 9,905 € [H'/?(52)]>. Due to the inclusion
re, {(TU)} € [La(S2 % (0;T))]7,

from (@) we get

(o ATOI00) g, + [ al0u]dS = (o ((TV)N b0), — [ oldoulds =0 (4.13)

SQ SZ

Let o € [H'/2(S5)]? be an arbitrary vector-function. Substitute in () 95 = qp for a nonnegative
number ¢ > 0, and take into consideration that [¢s| < [¢| and ro {(TU)s}* -5 = rs {(TU)s}t -9
to obtain

q/ H(TU)}" v +glv]] dS — / {(TU)s}* - Dos + gldos| ] dS > 0.

S2 SZ

Sending ¢ to 0, we arrive at the inequality

/ {(TU) 3} - os + glos| | dS <0,

Sa
whence by () and () we arrive at the equation
re, {(TU)} T -1, {ul (0} + g[r, {ui(®)} ] = 0. (4.14)

Clearly, iﬁ(z {(TU),}*|<g, then it follows from (}1.14) that ro, {us ()} = 0. Butif [ {(TU)s} | =

g, then ( ) can be rewritten in the form
glrs, {us(t)} " |(cosa+1) =0 on S5 x (0;7),

where o is the angle lying between the vectors r; {ui(t)}* and r, {(TU)s}" at the point z € Ss.
Consequently, there exist the functions A; and Ag such that A\ (z,t) + A2(z,t) > 0 and

A (z,t)rg {uy ()} = =Xa(a, t)rs {(TU)}" on Sy x (0; 7).

Moreover, we may assume that A; belongs to the same class as {(TU)s}", while Ay belongs to the
same class as {u/(¢)}". This completes the proof. O

5 The uniqueness theorem

We start the investigation of the variational inequality () with the following uniqueness result.

Theorem 5.1. The variational inequality () and hence Problem (Ag) have at most one weak
solution.
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Proof. Let U = (u,w)” € K and U = (&,&)" € K be two solutions of inequality () Substituting
in (B.11) U’(t) instead of V', we obtain

(PU"(t),U'(t)—=U'(1)) +BO(U(t), U (t)~U" (1)) + B (U’ (1), U’ (t)~U" () +5(U' (£)) — (U’ (¢))
> (G000 - U'(0) + [ FO{E,0) ~ w0} 45+ (ol0). 7, (&0 -/ O} ), (51
Sa

Analogously, substituting U(t) = U(t) and V = U’(t) in (), we get

(PU" (1), U (1) =U" (1)) +BO (U (1), U'(t) =T (£)) +BD (U’ (¢), U’ (6) = U' (1)) +5(U" (£)) =3 (U" (1))
> (G(),U'(t) - U'(t) + /f(t){ué(t) — (1)} dS + (p(t), e, (' () & (O} )y . (5.2)
Sa

Combining (@) and () and denoting the difference U(t) — U(t) by W (t), we obtain
— (PW"(8), W'(8)) = BO(W (), W' (1)) = B (W' (1), W'()) = 0, (5.3)
Note that

(PW (), W) = < vewaor,

o]

Q“Q‘
l\D\»—t

S (VEW . VEW) =

and

BOW (t), W' (t)) = 4 5o (W (t), W(t)),

2 dt
where VP = [1/%6><6 with \/pi; = (/o for i =1,2,3, \/pii = VT for i =4,5,6, and p;; = 0 if i # j.

Then, from (5.3) we get

1d 2

57 {Hﬁw’(t)H[LZ(Q)]G +BO(W (1), W(t))} +BO(W' (), W'(t)) < 0. (5.4)
Since B (W' (t), W'(t)) is nonnegative, (@) can be rewritten as

2 dt {”\FW ol +B(O)(W(t)’W(t))} <0. (5.5)

On the basis of (@), we can conclude that the scalar function
VW (1), e + BOOV (@), W)

decreases on the interval (0;7). Since B(O)(W(t),W(t)) >0 VYte (0;7) and W(0) = W/(0) =0, we
see that BO) (W (t), W(t)) = 0. Hence, by virtue of Lemma P.9, we conclude that W(t) = 0, which
completes the proof. O

6 The existence results

The existence of a solution to the variational inequality () is obtained by the following scheme.
First, we reduce the variational inequality (B.11)) to an equivalent regularized variational equation
depending on a small parameter & whose solvability is studied by the Faedo—Galerkin approximation
method. Then we establish some a priori estimates which allow us to pass to the limit with respect
to the dimension m of the approximation space of test functions as m — 400 and with respect to
the parameter as ¢ — 0. We will show that the limiting function solves the variational inequality
(m)) and, consequently, by virtue of Theorem ({.1], it will be a solution of problem (Ag), as well. The
assumptions which are to be satisfied by the data of problem (Ag) will be given below in the course
of discussions and, finally, we will formulate the basic existence theorem.
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6.1 Reduction to regularized variational equation

To reduce the variational inequality () to the regularized variational equation, we consider on the
space Ky the convex differentiable functional

Je(V) = /g(w)ws(l{vs}ﬂ)d& V= (v,w)" € Ko, (6.1)
5,

where € is an arbitrary positive number, ¢, : R — (0; 00) is defined by

Ye(A) = VA2 42,

g is defined by (@) and, in what follows, we assume that it does not depend on the time variable t.
Denote by K|, the dual space to Ko and by j. the Gateaux derivative of the functional (@) It is easy
to show that for almost all ¢ from the interval (0;7T),

]2K0—>IC6

is given by

Mds VV = (v,w)" € Ko, YU = (u,w)" € Ko. (6.2)

<jé(V),U>52 :é{g(x) [{vs } T2 + 2

Consider the following regularized variational equation: Find U, € K satisfying for almost all ¢ from
the interval (0;T), the equation

(PUL(1), V) + BOU(t), V) + BOUL®), V) + (GLUL®E), V) g, = (T(E), V)kgs  (63)

where V = (v,w)" € Ko and the linear functional W (t) is defined as

(Ve Vi, i= (G0 V) + [ v} dS+ (o0, ) ), (6.0
Sa

with G, f, and ¢ involved in the formulation of Problem (Ay).

It can be easily shown that the variational inequality (), in which U and j are replaced,
respectively, by U, and j., is equivalent to the regularized variational equation (§.3). Therefore, we
investigate the regularized variational equation (@)

Since the space Kg is separable, there exists a countable basis Wi, Wa, ..., W,,,... in the sense
that for every m the system of vectors Wi, Wa, ..., W,, is linearly independent and the space of all
finite linear combinations is dense in ICy. We denote by W, := [W1, Ws, ..., W,,] the linear span of
elements Wy, Wo, ..., W,,.

Consider the auxiliary problem: Find a vector-function U.,, : (0;T) — W, such that U, U.,,,
Ul € Loo(0,T;W,,) and the variational equation

(PUL,(8), V) + BO Uem (1), V) + BO(UL,, (8), V) + (GLULL (1)), Vg, = (¥(1), VI,  (6.5)

and the initial conditions

Uem(0) =0, (6.6)

are satisfied for almost all ¢ from the interval (0;7) and YV € W,,.
Let us look for a solution of the above problem in the form of a linear combination with unknown
coefficients Cjep, (2):

Uena(t) = 3 Com )WV, (6.8)

m
j=1
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Replace in (@) the test vector-function V' by W and instead of U,,, substitute the above linear
combination to obtain

> (PW;, W) Ol (8) + D BO (W, Wi) Cem( +ZB< (Wi, W) Ol (1)
j=1

j=1

<35(Z e (W) Wi) = ((0). Wiy, k=1.2.....m. (6.9)
Introduce the notation:

(I)k(cisnw i msm . <]6(Z jsm ) Wk> ) Q= ((1)17 ) q)m)T7
Pk(t) = <\I/( )’Wk>)CU’ k=1,m, P:= (P1,P2,. .. ,'Pm)T’
B:=[(PW;,Wy)] . . D= [BOW; W) |

DO = [BOW,, )] Com(t) 1= (Crem(t), Cozm (), ..., Conem ()

mxm’

System (B.9) can be then rewritten as
BC” (t)+DW ! (t)+ DO C.,.(t) + (C., (1) = P(t). (6.10)
The initial conditions (@) and (@) result in
Cem(0) = C",,(0) = 0. (6.11)

Note that det B # 0, since the system of vectors Wi, Ws, ..., W,, is linearly independent, and hence

from () we get
o’ () +BDMC! (1) + B1DO C,,, (t) + B71o(CL,, (1) = B~P(t). (6.12)

To reduce system () to the normal type, we introduce the notation

Sem(t) i= CLon(t)y Yemn(t) := (Sem(t), Com ()"

e fyy o [FPO B8 — 5 DeL, —BD0C,
Sem 2mx1
Then equation () and the initial conditions () take the form
0
Vi (t) = L(t,Yem), Yem(0) = | : : (6.13)
01 5mx1

Let us show that the matrix function £ is continuous with respect to the first argument ¢. To this
end, we estimate the difference

|Prlt + At) = Pi(t)| = [((t + At) — W (t), Wi) . |
= ’(g(t + At)-G(t), Wk)+/(f(t + A= f(0)) {(E)n} T dS+(p(t + At) —p(t), 75, {m} ) g,
Sa

< (llg¢ + a6 = GO)l 1o + 17+ 20 = 7O

+ [t + A1) = Ol -2 50 ) IV 211 e
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where Wy, = (&x,m1) " € Ko.
In what follows, we assume that

G.G,G" € Ly(0,T;[La(Q)]%),  f € Loo(Sa), 0, ¢, ¢" € La(0,T; [H™?(S5)]%). (6.14)

Note that the further analysis of the problem shows that g cannot be dependent on ¢, and hence f
also cannot be dependent on t. Assumptions G, f, and ¢ are continuously differentiable with respect
to ¢ almost everywhere in the interval (0;7"), and hence | Py (¢t + At) — Pi(t)] — 0 as At — 0, implying
that the function £ is continuous with respect to the first argument.

To prove the continuity of the function £ with respect to Yz,,, it suffices to consider only the term
®(Sem ). By formula (@), we have

m

" (2 Siem{(€)s1) {60}
Dp(S, —< (Z iem ) > — ds.
= WZSW{ )| +e

It is easily seen that ®; is continuous and continuously differentiable with respect to the variables
Sjem. Moreover, ®;, and its derivatives with respect to Sj.n are bounded by an absolute constant
depending on e. Therefore, the function £ satisfies the Lipschitz condition in the second argument.
Consequently, system () possesses at most one solution.

Any vector function Y., that is a solution to problem () possesses second_order continuous
derivatives with respect to ¢._The same is valid for Ug,,(t) defined by formula (@) with Cjepm (2),
being a solution of problem () It can be shown that U.,,(t) possesses actually continuous third
order derivatives with respect to ¢ and solves problem (.5)—(p.1).

In the next subsections we derive some a priori estimates which we need to perform the limiting
procedure with respect to the dimension m.

6.2 A priori estimates I

Insert the solution of system () in (@) and then substitute U.,,(t) instead of V into (@) to
obtain

(PULL(6), UL (8)) + B (Uein(t), UL (£)
+ BO(UL, (1), Ul (1)) + (G (UL (1), Ul (1)) g, = (W (2), UL (1)) -

e (OO
(UL (0), UL (0) s, = / @) el as 20

and BW(UL, (t),U.,.(t)) > 0, from the preceding equality we have

Since

%{HﬁUg’m(t)llsz(Q)]ﬁB (U (), Uz () }<2<xp UL (1)) .-

Consequently, due to the homogeneous initial conditions, we arrive at the inequality
t
VPO e + B Wm0 U ®) < 2 [ (0(0). 0L (0))., do
0
By virtue of (@), we get

t
VPO Ol + CollUm OlFirsae < CallUam Ol qape +2 [ (¥0). V(@) , dor (6.5
0
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with C; and C5 from (@) Since U, (0) = 0, we can write

t
Uan®) = [ Uty(o) do
0
whence .
[Uem (8 1P (e S/”Us/m(o—)”[sz(Q)]G do. (6.16)
0

For the last term in () we have

t t

2/ <\IJ(U)’ Uém(g)>’C0 do = 2<\Ij(t)’ Usm(t)>lCo B 2/<\P,(0)7 Uem(g)>lco do
0 0
1 2 2 / ’ 2 9
< S IO, + 01U=m )i e +/ (1" (@)1, + [Uem (@) Farr.0yye) do

0

t
< Cs + 6| Uem () 1|71 (00 +/\|Usm(a)|\fH1(Q)]6 do. (6.17)
0

Taking_into account estimates (6.16) and () and choosing § in inequality (6.17) smaller than Cy
from @), we finally get

t

”(/e/m(t)”Z[z(Q)ﬁ ||L€m(t)H[2H1(Q)]6 <0y (Hl/ém(o)H[z[Q(Q)]ﬁ Hbem(o)Hle(Q)]G)dO Cs
[ ]
0

with some constants Cy and C5 independent of m and €. Now, by using Gronwall’s lemma, we obtain
10 1P @yjs + 1 Uem )11 ye < C (6.18)

with the constant C' independent of m and ¢.

6.3 A priori estimates 11
Differentiating (@) with respect to t and replacing V' with the vector-function U/  (t), we obtain

(PULL(8), UL (8) + BO (UL, (1), UL, (1))
+B<1><U;;n<t>,U;;1<t>>+<%j;<U;m<t)>7U;;1(t>>S = (W), UL(t), (6:19)

2

Due to formula (@), for every W = (&,1)T € Ko and V = (v,w)" € Ko, we have

(V@) Vs, = [ 9()Qu(Eu(t) - {02} " as. (6.20)
S
where {f (t)}+
Qs §S(t) = LS .
) VIrs, {6} + &2

Equality () yields
(G V) = [ o) in 3 Q6+ ) - Que®)] - (v} ds.

Sa
Sa
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Replace here V' by the vector-function W'(t), then

(GEWEWO) = [ o fim 3 [Q6(+ 1) - Qu(e(0)] - § {&(t+ W) — &0} s,

dt So h—0
Sa

Since j. is a convex differentiable functional on Ky, the operator j. : Ky — Kf, is monotone and we
have

0 < (JLOW(t+h)) = SL(W (). Wt -+ h) = W (D))

- /g(x)Qa(is(t+h))'{és(t+h)—€s(t)}+ds+ / (@)Q-(6(1) - {&(t) — &t + 1)} T ds

Sa Sa
— [ @) [Quleult+ 1) = Qul ()] - {&ule+ W)~ €0} ds.
Sa
Thus we obtain p
(G2 @). W) >0, (6.21)
Taking into account (), it follows from () that
(PUL (), UL (1)) + BO (UL, (8), UL, () + BY (UL, (8), UL (5) < (W (1), ULy (8)) ., »

whence, since B(l)(U”m(t), UZ . (t)) is nonnegative, we have

s S AIVPUL O+ BOWEn(0),Un (1) } < (W0, UL (1) .,

Using (@) and the homogeneous initial condition (@), by the integration of the foregoing formula
we get

2
IVP UL O] 0ppe + CLIULm (Ol 0o
t
2
< o\ ULp Do @pe + VP UL O], e + 2 / ). UL (0)), do (6.22)
0

with C; and Cy from (@) Since

t

/ (W(0), Ut (o)), dor = (W(1), ULy (1)), / (W(0), UL,y (o)), do, (6.23)
0

0

using the inclusions (), we infer that U” € Ly(0,T;K(), and hence for an arbitrary positive § it
follows from () that

t

)
[0 U0, 0 < 2 I OI + 5 100

0
+03/|\\1/” ¥, da+C4/H () 1Pe1. (e do- - (6.24)

Taking now into account the inequality

WOl <2 [ 19l do -+ 2 O)l, < G,
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from () we get
/ 1)
/(qn(g),U;’m(a»KO do < Cs + §||UE’ Ol ys + Ca / UL ()1 (aype do- (6.25)
0

Choosing § sufficiently small and taking into account estimates () and

UL () 1Fr s </|| o)tz (e o

from () we derive

VP UL O sage + 10 @)1 e

t

S C7H\/]3Us/lm(0)||[2[/2(g)]6 + OS/ [H\/IEU! || 2(92)]6 + || (J)H[zHl(Q)]e} do + Cg. (626)
0

Let us now estimate ||v/PU,(0)|/(r,(oys- Substituting ¢ =0 in (@)7 we obtain

(PU,(0),V) = (¥(0),V),. VYV eEW,, (6.27)

Ko

where, in view of (@)7

(WO V), = GOLV) + [ FO .} dS + (0(0). s, (w0} ),
Sa

Here we formulate one more restriction on the data of the problem: we assume that there exists a
vector-function Uy € [Lo(2)]% such that

(2(0), V), = U0, V) YV € Ko. (6.28)

Note that if ¢ € Ly (0, T; [L(S2)]?), then (b.28) holds.
Since U/, (0) € W,,, we can take U/ (0) instead of V in () and, using (), we arrive at the

inequality

2
IVPUL )7, s = Wor Ulin(0)) < 100l 001 10250 (0) gy

whence

VP UL 0]z, e < Cro

with Cjo independent of € and m. Therefore () takes the form
2
H\/FUé{rn(t)H[LQ(Q)]G + HUém(t)H[QHl(Q)]G

t
<Cn+ 012/ [|\\/1?Ué%z(0’)|\[2L2(Q)]e + ||U5/m(0)||[2H1(Q)]5} do.

0

Using again Gronwall’s lemma, we find

U5 (DL, e + UL Ol ye < Cs (6.29)

where C' does not depend on ¢ and m.



Dynamical Contact Problems with Regard to Friction of Couple-Stress Viscoelasticity 87

6.4 The basic existence theorem

First, we pass to the limit with respect to the dimension m. The estimates () and () show that
Uem and U.,, (respectively, U/ ) are bounded by the constants independent of e and m in the space
Loo(0,T;Ko) (respectively, in the space Lo (0,T;[L2(€)]%). Thus we can choose from the sequence
U.m a subsequence, which we again denote by U.,,, such that

Uerm — Ue x-weakly in Lo (0,T;Kg) as m — oo,
Ul — Ul xweakly in Lo (0,T;Kg) as m — oo, (6.30)
Ul — U s-weakly in Lo (0,T; [L2(2)]%) as m — oo.

Let us show that the limiting function U, satisfies the regularized variational equation (@) with the
homogeneous initial conditions for ¢ = 0. We proceed as follows. Let ¥; € C*([0;T]), ¥;(T) = 0,

mo
j = 1,00, be smooth scalar functions and consider the vector-function ®(t) = 3 ¥;(t)W; with
=1

a natural number m@ It is easy to see that ® € W,, for every m > mg and V¢ € [0;7)] and,
)

consequently, from ( we have

(PUL,(8), (1)) + B (Uana (1), ©(1))
+ BO (UL, (1), ®(1)) + (UL, (1)), @(1)) g, = (1), ®(1)), - (6.31)

2

Integrate () with respect to ¢ from 0 to T,
T
[ [(Puz o). 20) + B (U (0). 2(0)
0

T
+BOUL,(0,2(0) + (0L, (0. 8(0) | ¢t = [ (00 8(0),., dt

Taking now into account () and passing to the limit in the last equality as m — oo, we get

/ PU”(t),0(t)) + BOUL(t), d(#))
0

+ BO(UL(t), d(t)) + <j;(UE’(t)),<I>(t)>SZ] dt = /(\I’(t),(b(t))Ko dt. (6.32)
0

Since the finite linear combinations Y ¥;(¢)W; are dense in Ky for every t € [0;T], equality ()
J
allows us to conclude that

/ PUZ(1),V) + BO(U.(1), V)

+BOWLL). V) + (GLULE), Vs, = ({8, @) [ dt =0 vV e Ko, (6.33)

To obtain equality (@), it remains to derive a pointwise equation from the integral equality ()
To this end, we take an arbitrary fixed number 7 € (0;T) and an arbitrary vector-function W € KCy.
Consider the family of neighborhoods of the point 7,

Fk:<7—%, T+%),
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and define the function V'(¢) as follows:

if t¢TI
W, if t eIy

Denoting the measure of T'y by |T'x|, from () we find that

(|Fk|/PU” t)dt W)+B°)(|Pk|/ g(t)dt,W)+Bl)(|Pk|/ ;(t)dt,W)
+ (L Fl UL(t)dt ), —F— (W(t), W), dt
| | S | k'rk

According to the Lebesgue theorem, since

0. (6.34)

1
wl/w(t)dtﬁw(ﬂ as k — 0o

for almost all 7, it follows from () that
(PUL(7), W) + BOUL(7), W) + BO(UL(r), W) + (GLULT)), W)y, = (¥(r), W), YW € K,

that is, the limiting function U, satisfies the regularized variational equation (@) As for the initial
conditions for ¢ = 0, we notice that the conditions () allow us to conclude that U, (t) and U.(t)
are the continuous mappings of the interval [0;7] onto Ky. Thus U.(0) and U.(0) are well defined
and, in view of (), we see that U (0) and U.,,(0) converge weakly in Ky to U.(0) and U.(0),
respectively. Since U, (0) = 0 and U/,,(0) = 0, we can show that U.(0) = 0 and U/(0) = 0, i.e., the
initial conditions are fulfilled.

It remains to pass to the limit in equality (@) with respect to the parameter €. Repeating the
arguments applied above, we can derive the estimate

U=l @ + ITZO iz @pe + 1UZ ()l za@ye < C

with the constant C' independent of €. Thus from the sequence {U(t)} we can choose a subsequence,
which we denote again by {U.}, such that

Us —» U *weakly in Lo(0,T;Kp) as € — 0,
Ul - U’ xweakly in Lo (0,T;Kg) as & — 0,
U/ — U" s-weakly in Lo (0,T;[L2(Q)]%) as ¢ — 0.

Let us show that the limiting function U satisfies the variational inequality () Replacing in (@)
V by the vector-function W — U.(t), where W € Ky is arbitrary, we have

(PUL(t),W = UL()) + BO(U.(t), W — UL(t))
+BWUL(1), W - UL(1)) +JE(W) Je(UL(t) <¢ ), W = UL(t)),,
=Jj:(W) — j(U, <j€ L), W =ULt)g, YW eKo (635)

The right-hand side of the above inequality is non-negative. Indeed, since the functional j. is convex,
we find that

Jo(W) = e (UL) = GLUL0), W = UL(D)
= 5o = G (UL() — Jim - [ (AW + (1~ WUL(H) — o (U4(0))] > 0.
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Taking into account the last inequality, from () we have

T
[ [Pz w) + BO 0. W)+ BOWL@,W) + 32W) (¥, W ~ UL(t), | de
0

/ PU"(t),U.(t)) + B(O)( U.(t), UL(t)) +B(1)(U£(t),UE'(t)) +]'5(Ué(t))} dt.
0

On the other hand, the equality
T
[ [(puzie.vze) + BO@.0,0200) + B0, ULt) + (VL)
0

T
= 5 [ VPO, e + BO W) 00)] + [ [BO@0).U20) + 5020 a
0

with the help of the inequality
lim inf BO(U(T), U.(T)) > BO(U(T),U(T))

e—0

leads to the inequality

[(PU”(t), W —U'(t)) + BOW), W — U'(t)) + BOW (1), W — U'(t))

St~

+ (W) = (U () — (W(t), W — U’(t)>,CO} dt>0 YW eKo. (6.36)
From the integral relation () we can derive as above the pointwise inequality

(PU"(t),W = U'(t)) + BOW @), W —U'(t))
+BOU (), W = U'(t) + j(W) — §(U'(t) — (T(t), W — U'(t), 20 VW € Ko,

and by an analogous reasoning we conclude that the homogeneous initial conditions are fulfilled. Thus
we have proved the following existence theorem.

Theorem 6.1. Let conditions () be fulfilled, g be independent of t, and let there exist a vector-
function Uy € [L2(Q)]® such that

(Up, V) = (Q(O),V) + /f(O) {v,}TdS + <<p(0),r52 {w}+>s2 YV = (v,w)" € K.
Sa

Then there exists one and only one function U € K which is a solution of the variational inequality
() and, according to Theorem W1, it is a solution of problem (Ao), as well.
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MATHEMATICAL STUDY
TO A REGULARIZED 3D-BOUSSINESQ SYSTEM



Abstract. We prove existence of weak solution to a regularized Boussinesq system in Sobolev spaces
under the minimal regularity to the initial data. Continuous dependence on initial data (and then
uniqueness) is proved provided that the initial fluid velocity is mean free. If the temperature is also
mean free, we prove that the solution decays exponentially fast, as time goes to infinity. Moreover,
we show that the unique solution converges to a Leray—Hopf solution of the three-dimensional Boussi-
nesq system, as the regularizing parameter alpha vanishes. The mean free technical condition appears
because the nonlinear part of the fluid equation is subject to regularization. The main tools are the en-
ergy methods, the compactness method, the Poincaré inequality and some Gronwall type inequalities.
To handle the long time behaviour, a time dependent change of function is used.
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1 Introduction
We consider the following system denoted by (Bg,):

00 — A0+ (u-V)I =0, (t,x) e Ry x T3,
O — Av+ (v-V)u=—Vp+0es, (t,r)€Ry xT?,
v=u—a’Au, (t,z)€ Ry x T3,
divu = dive =0, (t,z) € Ry x T?,
(u,9)|t=0 = (u% 8", €T3,

where the unknown vector field u, the scalars p and 6 denote, respectively, the velocity, the pressure
and the temperature of the fluid at the point (t,2) € Ry x T3. Here, T? is the three-dimensional torus
and a > 0 is a real parameter that has to go to zero. The data 6° and u° are initial temperature and
initial divergence free velocity. In [[q], the author explained motivations behind considering regularized
systems such as (Bq, ), and he gave a wide review of related literature. Here, we just recall that alpha-
regularization consists in replacing the velocity u in some of its occurrences by the most regular field
v = u—a?Au. So, contrarily to the non-regularized fluid mechanic equation, we have the existence of a
unique three-dimensional solution that depends continuously on initial data. Moreover, as explained in
[2], these models can be implemented in a relatively simple way in numerical computation of the three-
dimensional fluid equations. Thus, they are to be known as regularization stimulated by numerical
motivations. In the framework of computational fluid dynamics, for zero valued temperature, it
was proved in [4] that the model we are actually considering, provides a computationally sound
analytical subgrid scale model for large eddy simulation of turbulence. More important is that when
the regularizing parameter « tends to zero, the solution of (Bg,) coincides with the solution of
Boussinesq system (Bga—o). Furthermore, as time tends to infinity, the system (Bgss0) behaves like
(BQa=O)'

In this paper, we will investigate the weak solution to the modified Leray-alpha model for the
Boussinesq system. More than the linear part, the nonlinear part of the fluid equation is to be
regularized as well. This is one of the main differences between systems we considered in [[7] and [3],
where we regularized only the linear part and studied, respectively, the weak and the strong solutions.

Our first result is the existence of the weak solution to the system (Bg,) in the context of the
minimal regularity to the initial data.

Theorem 1.1. Let ° € L*(T3) and let u® € HY(T3) be a divergence-free vector field. Then there
ezists a unique weak solution (uq,0.) of system (Bq.) such that u, belongs to C(Ry, H(T?)) N
L3Ry, H?(T?)) and 6, belongs to C(Ry, L*(T?)) N L*(Ry, HY(T®)). Moreover, this solution satisfies
the energy estimate

t
16allZ2 + luallZ> + ol Vuall7s + 2/ IV0alZ2 (s, dr
0

t
+ 2/ (IVualliz + o AuallZz) dr < 116°]Z: + [[u’ll72 + @[ Vul|[Z2 + oa(t), (1.1)
0

where
oa(t) = (e = 1)([0°7> + [ul72 + o[ Vu°||F2).

If the initial velocity is mean free, the solution is continuously dependent on the initial data on any
bounded interval [0,T]. In particular, it is unique.

The proof is done in the frequency space and uses the compactness method. To close the energy
estimates, the buoyancy force presents some difficulties that we have overcome by Grénwall’ s lemma,
without useless sharpness. More than the uniqueness, we have continuous dependence of the weak
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solution on the initial data. This is the main advantage provided by alpha regularization, since such
dependence plays an important role in numerical schemes.

To prove continuous dependence with respect to the initial data, we consider the system satisfied
by the difference of two solutions and apply energy methods. The Young product inequalities and
suitable Sobolev products allow to estimate the nonlinear terms. Gronwall’s type differential inequality
finishes the proof. In particular, we infer the uniqueness of solution. Compared to [[7] and [3], the
mean free condition is compulsory, since we are regularizing the nonlinear term and thus the Poincaré
inequality turns to be a necessary tool to run the argument of the continuous dependence to initial
data.

Our next result asserts that for long time, the regularized temperature and the regularized velocity
fields vanish exponentially fast as time tends to infinity. This convergence is uniform with respect to
«. One recovers, for a > 0, a similar property of the long time behavior to the Leray—Hopf solution
of the non-regularized system.

Theorem 1.2. Let a € (0,1). Let 6, and uy be the family of solutions from Theorem EI If 6° and

u® are both mean free and satisfy the inequality

16°11Z2 + [u®ll72 + o®[[ V|72 < 1 —a,

then 0, and u, decay exponentially fast to zero as time tends to infinity as soon as the initial data
(hence the solution) are mean free:

10a(t)ll22 + [ua(®)llm < (1—a)e™ Vit >0.

To prove this result, we use a change of the function that depends explicitly on time. This
leads to an energy estimate that is sharper than the one of the existence result. For zero-mean
valued temperature and velocity, this estimation allows to derive the vanishing limit and the rate of
convergence, as time tends to infinity.

Our last result describes the weak and strong convergence, as @ — 0, of the unique weak solution
of the regularized system (Bgq,) to the Leray—Hopf solution of the system (Bgqg). This convergence
asserts that as smaller is alpha, as better we describe reality.

Theorem 1.3. Let T > 0, (uq,0s) be the unique solution of system (Bqy). Then there exist the
subsequences uq,,, Vo, and by, , a scalar function 0, and a divergence-free vector field u, both belonging
to L>=([0,T), L3(T?)) N L%([0,T], H'(T?)), such that as oy, — 0F, we have:

1. The sequence u,, converges tou and 8, converges to 0 weakly in L?([0,T), H*(T?)) and strongly
in L2((0, T), L2(1%)).

2. The sequence vy, converges to u weakly in L*([0,T], L?(T?)) and strongly in L*([0,T], H=1(T3)).

3. The sequence u,, converges to u and 0, converges to 0 weakly in L*(T3) and uniformly over
[0,T]. Furthermore, (u,0) is the weak solution of the Boussinesq system (Bqo) on [0, T] associated
with the initial data (u®,0°) satisfying for all t € [0,T] the energy inequality

t
10122 + llullzz + [IIVOlZ2 + [VulZa dr < [16°122 + [u®]1Z2 + 00 (t). (1.2)
0

Here, (Bqo) and og denote, respectively, (Bqs) and o4 for a=0.

The purpose of the proof is to extract subsequences that converge to the solution of (Bgq) as
a — 0F. First, we derive a uniform bound independent of the parameter «. This gives the weak
convergence. Then, following the lines of the existence proof, we establish strong convergence of such
subsequences in suitable spaces. This strong convergence allows to take the limit in the quadratic
terms, and hence a weak convergence of the unique weak solution of (Bq) to a weak solution of (Bq)
is proved and the associated energy estimate is derived.

The remainder of the paper is organized as follows. We start with recalling some useful background.
Section B is devoted to the proof of the existence result and the continuous dependence of the weak
solution on the initial data, in particular, uniqueness. In Section {, we investigate the long time
behaviour of the regularized temperature and the regularized velocity. Section f is devoted to proving
several convergence results, as the regularizing parameter o vanishes.
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2 Preliminary results

For n € N, let P, denote the projection into the Fourier modes of order up to n, that is,

Pn( Z ake““'“) = Z ake“f'”.

kez3 |k|<n
We define for s > 0 the operator A® acting on H*(T?) by

Au(z) = D [k|*Tre™” € L*(T?).

kez3
Moreover, we denote by || - || . the seminorm || - || 2. This is, of course, compatible with the definition
of the Sobolev norm that || - ||z is equivalent to || - |2+ - || z-- We will also make use of the fact

that ||ul| z. < [lull 4. if 0 < s <t and A% = —A. Moreover, if divu = 0, we have (v - Vu,u) 2y = 0
and (u-V0,0)r2(s) = 0. Finally, we recall the version of the Aubin-Lions Theorem that will be used.

Lemma 2.1. Let Xy, X and Xy be three Banach spaces with Xog C X C Xi. Suppose that Xq is
compactly embedded in X and X is continuously embedded in X,. For 1 <p, ¢ < o0, let

W= {u e L7([0, 7], Xo) : ‘%‘ c Lq([O,T},Xl)}.

o If p < +o00, then the embedding of W into LP([0,T); X) is compact.
e If p=+00 and q¢ > 1, then the embedding of W into C([0,T]; X) is compact.

Also, we need the following inequalities:

19]lzs < [9I}52 1990155, (2.1)
1/2 1/2

190l < 1912101122, (2.2)

19 s < VI L. (2.3)

3 Existence and uniqueness results

Let u, = P,u. One approximates the continuous problem (Bg,) by the following problem denoted
by (Bga)n:

00, — A0, + P, div(fpuy) =0, (3.1)
3
Opvyn, — Avy, + Py div(vauy,) — Ope3 = PnVAfl( Z 0;0; (v;uﬁl) - 33971), (3.2)
ij=1
Up = U — o Ay, (3.3)
divu, = dive, =0, (3.
(tn, 0p) =0 = (u,6°) = (P,u°, P,6°).

The ordinary differential equation theory implies that there exists some maximal T > 0 and a unique
local solution u,, € C°([0,T) x T?) to (Bqa),. Taking the inner product of (@) by 6,, and (@)
by u,, applying the Cauchy—Schwarz inequality to the forcing term < 6,,e3,u,, >r2 and dropping the
viscous term, we obtain

d
= UIBnllZe + llunlZz + @[ VunlZz) < 2(10all7: + llunllZe + o[ Vun|Zz).

Let
¢(t) = 0nl72 + unlZz + | Vg7,
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then the above equation reads ¢'(t) < 2¢(t). Applying Gronwall’ s inequality and integrating over
[0,t], we obtain ¢(t) < ¢(0)e?!. Thus,

16 ()72 + llun (172 + [ Vun(®)ll72 < (105172 + lluplze + o®([Vup [172)e.

This implies that

t
10 (ONZ> + lun (N> + [ Vua (O]1Z2 + 2/ IV 0 (7)I[72 ) dT
0

t
+ 2/(\\Vun(7)l\%2 + (| Aun (1) [Z2) dr < 03172 + lunllZe + o®([VupllZe + oa(?),
0

where
oa(t) = (e =) (60172 + llupll7= + ®[Vuy|72)-

So, the maximal solution to problem (@)7(@) is global and T} = +oc0.
Using the product laws and interpolation inequality, we obtain

. 1/2 1/2
| div(vn @ un)ll -2 < l[vallze a5 a7

Hence, 4 v, € L*([0,T], H=2). We denote by W the set of functions defined by

) dt
W = {un : w, € L2([0,T), H(T?)), %n € LQ([O,T],Lz(T3))}.

By the AubinfLions'Theorem, we conclude that there is a subsequence w,/ such that w, — uq
weakly in L2([0,T], H*(T?)), and w,, — u, strongly in L*([0,T], H'(T?)), moreover, u,s — u, in
C([0,T), L*(T?)). Likewise, if we denote
) do .
W = {on 0, € L(0,T), H'(T?), e L2([O,T],H*1(T3))},

then there exists 6, such that 6, — 6, weakly in L?([0,T], H'(T%)), and 6,, — 6, strongly in
L2([0,T], L*(T?)), moreover, 6,, — 6 in C([0,T], H~*(T?)). Further, we relabel u,, v, and 6,
by un, v, and 6, and note that the strong convergence is compulsory when taking the limit in the
nonlinear term. Let us begin with proving that

lim  Po[(unV)bn] = [(1aV)ba]

n—-+4oo

in D'(R% x T%). Let ¥ € H? be a vector divergence-free test function, ® € H' be a scalar test
function, and Vt € R,

t

I3 = /((Pn — 1) (uaV)bo, ®) , dr.
0

Using, respectively, the Cauchy—Schwarz inequality and Sobolev product laws, we obtain
|I’rlz| < lun — “aHL?([o,T],Hl)Hen”m([o,T],Hl)H‘I)HHM

112] < Nluall g2 0,71, 2) 10 = Oallz2o,17,22) 191l 1
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As for I3, first, we estimate the term

(P = D(aV)00:®) o = [ 3 (arV)bare @ do
T3 |k|>n

/ Z (Uq, kV o, Oy 12D dr < = /A (div(uaby))® dx.

T3 |k|>n

Then, by inequality () and Holder’s inequality, we obtain

t
1 . 1
19 < [ 1AV a0)) 21200 47 < el o, 100 2 o, @1

Now, let us prove that
lim P,(v, - V)u, = (Vg - V)ug

in D'(R% x T?). Let

As for J!, we have
7 s/||<vnfva>~wnuf-,_2||\1/||g2 dr

< C/ [vn = vall -1 | Vunl| gase [ g= d7 < cfjvn — Ua”L?([o,T],H—l)||Un||L2([0,T],H2)H\IIHH2~
0

Since u,, is bounded in L?([0, T}, H?) and v,, — v, in L2([0,T], H™'), we get lirf J! = 0. Applying
n—-+oo

the Cauchy—Schwarz inequality and Sobolev product laws, we have
t
212 [ low 9 = wa)l -l Wl dr
0

< / ”UQHH—U2 ||V(un - ua)”pn\I/”H? dr < ||Ua||L2([O,T],L2)||Un - ua||L2([o,T],H1)H\IIHH2~

Since vq is bounded in L2([0,T], L?) and u, — uq strongly in L2([0,T], H'), we get grf J2 = 0.

As for J32, at a first step, we estimate the term

((Pn—I)(va - V)uaq, \IJ>L2 = /(Pn — D (va - V)ua¥der < %/A(div(va ® uq))Vde,

T3 T3
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where we have used the divergence-free condition and a standard calculation. Then, by the Cauchy—
Schwarz inequality and Sobolev product laws, we get

t

[Tl < %/<A(div<va ® ua)), ) 1, d7
0

1 . 1
< n / ||A(d1V(Ua ®ua))||H—2H\I/HH2 dr < n Hva||L2([O,T],L2)||ua||L2([o,T],H2)H\I/HH%

To prove the continuity of the solution, it suffices to prove at a first step that for all £ € Ry,
10a(t) = Oa(to)llL2(rsy — 0 as t — to.

Towards this end, we have to prove that the function ¢ — ||6,(t)||r2 is continuous and the func-
tion t — 0,(t) is weakly continuous with value in L?*(T3). We have 6, € L>®(Ry,L?(T3))N
L2(R,., HY(T?)), so, 4 10,(t)]|2. belongs to L'([0,T]). Hence, ||04(t)||2. belongs to C([0,T]). Since
0o € L>(Ry, HY(T?)) and ® € H', we find that as t tends to to, the inequality

¢ 12 , ¢ 1/2
< ( J G df) ( vz dT)
to tO

tends to zero. Using inequality (@) and the Cauchy—Schwarz and Holder inequalities, we find that

L 12 , ¢ 1/2
<(J1eatear) ([ luatar) ol
to to

tends to zero as t tends to to. Therefore langlefy (t), ®) 2 — (0(to), @) as t — to for every & € H'.
In particular, 6, (t) € L? and ® € H' C L?. Since the Sobolev space H! is dense in L?, we have for
t €[0,T), (0a(t), @) 1> — (O(to), @) 12 as t — to for every ® € L2. Hence, 0, € C([0,T), L?). Similarly,
we obtain [|[Vua(t) — Vua(to)||2. — 0 as t — to.
To prove continuous dependence of solutions on initial data, we assumer that (u, ) and (%, ) are
0

t
' / (V0,,V®),, dr
to

t
’/<div(9aua),<l> >r2 dT

any two solutions of the system (Bgq) on the interval [0, 7], with initial values (u°,6°) and (u ?0),

respectively. Let us denote v = u — a?Au, v = U — a?Au, du = u —u, v =v — 7, 60 = § — 0, and by
0p = p —p. Then

0p08 — AdO + (du - V)0 + (- V)d0 = 0,
0rdv — Adv + (0v - V)u+ (T- V)ou = —=Vép + dbes,
dv = du — a?Adu,
divdu = divdv = 0,

(6u,80)i—0 = (u° —7°,0° —9°

~7%.

We have 4 66 € LQ([O T),H= ') and 66 € L*([0,T), H'). Moreover, 2 < 5 belongs to L*([0,T7, H?)
and du € L?([0,T], H?). By appropriate duality action, for almost every time ¢ in [0, 7] we have

<dt 30,00) .+ V0l + (bu-V0,58) =0,

d
<£ 50,5U>H_2 + (IIVoul|2s + a2[|Adul|22) + (6v - Vu, u) ;o = (50, 5u) 5

Using the fact that (see, e.g., [R, Chapter 3, p. 169])

<% 69’59>H*1(T3)

1
2
<% ov, 6U>H72(1r3) - %

d

T 166117 2 7).
d 2
i (||6UHL2(’]I‘3) ta ||V5U||L2(T3))
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and summing up, we obtain

1d
BT (||5u||2L2(T3) + OZZHV(SU”iz(W) + ||59||2L2(T3))
+ (||V6UH%2(’]I‘3) + 042||A5U||2L2(T3)) + ||V59||2L2(T3)

= (60, 6u) g1 (pay =0V - VU, 0U) g sy —(0u - VO, 00) g1 (s -

Iz 13
Using, respectively, the Cauchy—Schwarz and Young’s inequalities, we obtain
(86, 0u) 71 (ps)] < 5 (H5u||L2 + 1166]122).
For I, we note that
|<(51} - Vu, 5u)H_2(T3) | = |<(5U - Vu, 5U>L2(T3)| < H5u||Loo(T3) ||Vu||L2(T3) ||5U||L2(T3)~
Using inequality (@), we obtain
1/2 1/2
‘12| < C||5U||L2(T3)||quL2(T3) H5u”h{1(Ts) ||(S ||H/2 (T3)"
The velocity has zero average for positive times, thus we have
||(5’U||L2(T3) < (C =+ (JéQ)HA(SuHLQ(Ta),
using (@) and Young’s inequality, we obtain

1/2 3/2
2| < Cle+a®)[Vullaers) 1ull 7 oy 150l

C a?
< glet )V IV ull 2 o) IV Ul Z2 sy + > AU 2 (ps)-
To estimate I3, we use the Cauchy—Schwarz inequality twice to obtain

(8w - N0, 80) 1 (psy| < N|0ul| s [ VO] 2| 66]| s -
Next, inequalities (@)7 (E) and Sobolev’s norm definition imply that

(- V0, 80) g1 o | < 100l 2210wl 21900 21100 0 < (180l 22 V8wl 22 V0] 2] V66 2

Using twice the Young product inequality, we obtain
sl < o~ (||5UHL2 +a?||VoulZ:) [VOll7- + 5 HV59||L2

Summing up estimates (@)7 (@) and (@), we infer that

d
= (IoullZz + a®[VoullZ: + [100]72) + (IVOullZz + o®[|AdullZz) + (V0]

< g(®) (10ull72(psy + ®[VoullF2(ps) + 106072 (1s)),

where
9(t) = (14 (5 + 1) IVullds + o= 1V8]32).
Dropping the dissipative positive term from the left-hand Slde, we obtain
d

- (||5UH%2(’H‘3) + 042||V5U||%2(1r3) + ||59H%2(1r3)) < g(t)(”5u||2L2(’]I‘3) + 042HV5U||%2(T3) + ||5‘9||2L2(1r3))-

Since 8 L2([0,T], H') and w€ L>°([0,T], H'), Gronwall’s lemma, (cf. [5, Appendix A, p. 377}) leads to

(”(Su”%?('ﬂ‘?’)"_ 042||V5u||2L2(T3) + ||59||%2(1r3 ) (H5UO||L2(11‘3 + a2||V5“O||L2 (r3)t ||590||L2 'ﬂ‘S))

This implies the continuous dependence of the weak solution on the initial data in any bounded

interval of time [0, 7]. In particular, the solution is unique.
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4 Decay results

Following [1], we introduce the change of functions ¢, := F~(e*19,) and w, := F~1(evl¥7,).
Applying Fourier transform to (EI) and to (@)7 we obtain

0i@n + |K|(|k] = a)@n + e*FI F(Py (uy - VO,)) =0, (4.1)

(1+ &®[k|?) (0@, + |[E|(|k] — a)By) — Pnes + e FIF(P, (v, - VO,)) = 0. (4.2)

We note that under the divergence free condition, the pressure term vanishes. The Plancherel identity
implies that the trilinear expressions vanish as (v - Vu,u)r2 = 0 and (u - V6,0)r> = 0. Taking the
combinations (B0)@, + (E1)p,, and (E2)w,, + (E2)W,, using the Cauchy—-Schwarz inequality and the
fact that

(1 —a)lk]* < [k[(|k] —a) VkeZ®,

one obtains
Bulnl® +2(1 — a)|k[*1@nl> = 0 (4.3)
and
(1 + o®[k) 0| @0 * + 2(1 = @) |k[* (1 + &2 [k[*) @0 * < B |- (4.4)
Integrating (@) with respect to time and summing up over k € Z3, we obtain

t
le(t, 7 + (1 —a) / IV(n)lZ2 dr < 116°]2-. (4.5)
0

Integrating (Q) with respect to time and summing up over k € Z3, we obtain

t
w72 + o Vw(®)||Z2 + (1 - a) / IVw(s)ll7z + o[ Aw(s)|Z- ds
0

t
< [ulllfe + o[Vl |22 + 116°] 2 / [w(7)] L2 dr.
0

Since 0|y, | < |Pn||Wn|, we can deduce that

t
lwo(®)IIZ2 + o[V ®)]|Z: + (1 - a) / IVw(s)IZ: + o Aw(s)|7- ds
0

< ([l13z + 0Vl |32 + #]6°]]2)°.  (4.6)
Summing up estimates (@) and (@)7 one obtains

t
leI1Z + [w®lZe + o®|[ V()72 + (1 - a) / IVe®lZ2 + IVw(b)Z + o[ Aw(t)|Z-
0

< (16°1132 + [1u01132 + o[ VuP[[32 + £]16°]|z2) .
As for the existence result, this energy estimate allows to run a standard compactness argument and to
obtain the existence of (p, w) such that ¢ € C(R*, L2)NL*(RT, H!) and w € C(RT, HY)NL?*(R*, H?).
In particular,
2

> M0 R+ (L4 QPR ult,k)[P) < (10°072 + [0®l72 + @® [Vl 72 +¢|6°] =) (47)

kez3
For zero-mean valued (6, u), multiplying by exp(—2at), we deduce that 8 and u vanish, respectively,

in the L? and H'! norm as time tends to infinity. Note that estimation (@) does not allow to deduce
the decay result, so a sharper estimation is needed.
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5 Convergence results

As «a is destined to vanish, we can suppose that there exists a fixed ag such that 0 < o < «ag. It
follows that

t
16alZ2 + luallZ> + o[ Vuall7: + 2/ IV6all72 sy dr

t
+ 2/ (IVuallzz + o?[|AuallZz) dr < (16°]7: + [[u°[|72 + g Vu’l[Z2 + aq (). (5.1)
0

This implies that 6, and u, are uniformly bounded in L2([0,T], H'(T?)) and v, is uniformly bounded
in L%([0,7],L?(T?)), then the Banach-Alaoglu theorem [f] allows to extract subsequences (ug),
(va), and (0y) such that (04, us) — (6,u) weakly in L2([0,T], H(T?)) and v, — u weakly in
L2([0,T],L?(T3)) as a — 0. Using the energy estimate, we infer that (uq,0,) converges to (u,)
weakly in L?(T3) and uniformly over [0,7]. At this step. we have proved the two first results of
statements 1 and 2 and the third statement of Theorem @

About tlme derlvatives, since 6, is uniformly bounded independently on « in the space
L2([0,T].H'(T?)), we find that A, belongs to L2([0,T], H~(T?)). Furthermore, the energy es-
tlmate EI 1mphes that

A

/ | div Bty < 1603w oz 2y 100 oo 211

IN
DN | =

2
(16°11Z2 + 1122 + ag V'l + 0an (1)

Then we obtain

< Kj,

@ ga‘
H dt L2([0,T],H—3/2)

where K7 is a real positive constant. To handle the velocity derivatives, we apply the operator
(I —a?A)~! to the equation (@) and obtain

d

7 Ua = Aug — (I = ?A) v - Vg + (I — a?A) " Vpy + (I — a?A) 104e3. (5.2)

We have that ug is uniformly bounded independently of o in L*([0,T7, H'(T?3)), and it follows that
Auy, belongs to L2([0,T], H1(T?)). First, we note that

I = a22)7 | < 1.

Then we use the Sobolev norms definition and product laws to get

T
_ . 2 . 2
/H(I—ORA) ! div(ve ® )|y _oyo g/”dlv(va@ua)HH,s/z
0
T
< / a2 a2 < Nt e o 1.2 19l 2 0,712
0

Thus, estimate (EI) allows to bound the convective term. The linear terms are not problematic.
Equation (b.2) implies that || % uq, 20,77, F1-5/2(13)) < K, where K is a real positive constant, and
so on for 2v,, in the space L*([0, 77, H92(T3)).

At this step, using Aubin’s compactness theorem, we can extract subsequences of 6, u, that con-
verge strongly in L?([0, 7], L?(T?)) and subsequence of v, converging strongly in L2([0, T, H~1(T?)).
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Thus, as in the existence section, using Aubin’s compactness theorem, we can take the weak limit
in the variational formulation associated to the system (Bq,). For ¢ € [0; 7] one obtains

t t
O(t), ) — /9 AD) d7+/ (uV)8, ®) dr =0,
0 0
t t t
0/

(u(t),¥) — (u(0),¥) — / u, AV dr + [ (uV)u, V) dr — /(963,\1') dr=0

0 0

for all ® and ¥ belonging to the space of infinitely differentiable functions with a compact support
D(T? x [0,T)).

On the other hand, 6, converges weakly to 6 and u,, converges weakly to u in L2([0,T], L*(T?)) N
L2([0,T], H'(T?)), which are Hilbert spaces. So, for all non-negative time ¢, we have

16132 + lull3 < limint ([6a]3 + luall3 + 02 Vual32),

and
2/||v9||2m(?3) dT+2/||Vu||iQ dr
0 0

t
g1i£n_>ié1f2/||V0a||iz(1r3)dr+2/(||Vua||2L2 10 Aug) dr
0 0

Taking the lower limit as « tends to zero in the energy inequality (EI), we obtain (@)
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Zurab Vashakidze

AN APPLICATION OF THE LEGENDRE
POLYNOMIALS FOR THE NUMERICAL
SOLUTION OF THE NONLINEAR DYNAMICAL
KIRCHHOFF STRING EQUATION



Abstract. In the present work, the classical nonlinear Kirchhoff string equation is considered.
A three-layer symmetrical semi-discrete scheme with respect to the temporal variable is applied for
finding an approximate solution to the initial-boundary value problem for this equation, in which the
value of the gradient of a non-linear term is taken at the middle point. This approach is essential
because the inversion of the linear operator is sufficient for computations of approximate solutions
for each temporal step. The variation method is applied to the spatial variable. Differences of the
Legendre polynomials are used as coordinate functions. This choice of Legendre polynomials is also
important for numerical realization. This way makes it possible to get a system whose structure
does not essentially differ from the corresponding system of difference equations allowing us to use
the methods developed for solving a system of difference equations. An application of the suggested
variational-difference scheme for the numerical treatment of the stated nonlinear problem gives us
an opportunity to solve the system of linear equations instead of a nonlinear one. It is proved that
a matrix of the system of Galerkin’s linear equations is positively defined and the stability of the
factorization method is established.

The program of the numerical implementation with the corresponding interface is created based
on the suggested algorithm, and numerical computations are carried out for the model problems.
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Key words and phrases. Non-linear Kirchhoff string equation, Cauchy problem, three-layer semi-
discrete scheme, Galerkin method, Cholesky decomposition.
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1 Introduction

For the first time, G. Kirchhoff generalized D’Alembert’s classical linear model with the addition of a
nonlinear term (see [14]). The issues on the existence and uniqueness of local and global solutions of
initial-boundary value problems for the Kirchhoff string equation were first studied by S. Bernstein in
1940 (see [4]). The issues of the solvability of the classical and generalized Kirchhoff equations were
later considered by many authors: Arosio, Panizzi [ll], Arosio and Spagnolo [2]. Berselli, Manfrin [5],
D’Ancona, Spagnolo [[7,8], Manfrin [17], Medeiros [19], Liu, Rincon [15], Matos [L&] and Nishihara [20].
To the approximate solutions of initial-boundary value problems for classical equations the following
works are devoted: Christie, Sanz-Serna [(], Peradze [3,21,22] and Temimi et al. [28]. Construction
of algorithms of finding approximate solutions and their investigations for initial-boundary value
problems of some classes integro-differential equations are considered in the monograph of Jangveladze,
Kiguradze and Neta [[13]. As far as we know, issues on the approximate solution in terms of a part of
numerical realization to the Kirchhoff string equation are less studied.

We consider the nonlinear dynamical Kirchhoff string equation and look for an approximate solu-
tion to a Cauchy problem for this equation using the symmetric three-layer semi-discrete scheme with
respect to the temporal variable. The value of the gradient in the nonlinear term of the equation is
taken at the middle point. This type of semi-discrete schemes for a generalized Kirchhoff equation
have been studied by Rogava and Tsiklauri [24-26]. Inversion of the liner operator makes it possible
to find an approximate solution at each temporal step. The variation method is applied to a spatial
variable. The differences of the Legendre polynomials are used as coordinate functions. An application
of the Legendre polynomials to boundary value problems of equations of the theory of elasticity are
considered in the monograph of Vashakmadze [30]. The Gauss-Legendre quadrature (see [16,R7]) is
applied for numerical integration, where [—1,1] is the domain.

The results of the numerical computations of test problems are presented at the end of the para-
graph. According to the numerical experiments, the order of convergence of the scheme is practically
stated and it is shown that the constructed scheme describes well the behavior of an oscillating solu-
tion.

2 Statement of the problem and discretization
for a temporal variable

Let us consider the equation

Pu(x,t) 0*u(z, )
G ['ae) 550~ pen, @oel-alxirl @)
where a > 0 and 8 > 0; f(z,t) is a continuous function; u(x,t) is an unknown function.

For equation ( @), the followmg initial-boundary conditions

hold, where v (z) and 1 (z) are continuous functions, and, in addition, the compatibility condition
Po(—1) =0, ¢¥o(1) = 0 is fulfilled.
The segment [0, 1] is divided into equal parts with uniform meshes 7, i.e.,

O=to<ti < --- <ty =T,
where

T
ty, =kt (k=0,1,..., M), T=9
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We would like to find an approximate solution of problem (@)7(@) by using the following semi-
discrete scheme:

U1 () — 2up(x) + up—1(x 1 g (z dPuy_q1(x
+1(@) T§ ) (@) 5 o d;( ) de( ))sz(x), k=1,2,...,M—1, (2.4)

where fi(z) = f(z,t), )
e =a+3/(du579530))2dx'
=

As an approximate solution of u(z,t) of problem (@)7(@) at the point ¢, = k7, we declare ug(x),
u(z, ty) ~ ug(x).
From equation (@) we obtain

(2 ~ 701 g Yo () = g (a), (25)

where

d?up_ ()
dz?
The values of the unknown_functions on the zeroth and first layers are described by the initial

conditions (@) and equation (@)7

uo(z) = Yo(x), (2.6)

wa(z) = o(a) + (@) + 5 7(a0 T 4 o). (2.7

gr(z) = 27’2fk(m) + dug(x) + 72qp — 2up_1(x).

Let us rewrite the boundary conditions (E) in the following form:

uk(—l) =0, uk(l) =0. (2.8)

3 A solution of the system of equations with
the Galerkin method using the Legendre polynomials
as coordinate functions

To find approximate solutions of problem (@)f(@) per temporal step we apply the following linear
combination:

N
ak(x) = Z Cicn(pm(x)a (31)
m=1

where the coordinate functions ¢,,(x) represent differences of the Legendre polynomials, i.e.,

Som(x) _ /2m2+ 1 /Pm(s) ds = Am (Pm+1(sc) - Pm_l(z)), Am = Q(Q:-n_i_l) . (32)

For any (k+1)-th layers, the coefficients ¥ (k =1,2,..., M —1) can be found from the following

m

equation:

((21 2 V@) - ), mw) 0. (3:3)

Putting (@) into equation (@), we finally get

<§: Cf—H (2[ —72q j—;)QOi(m)y Sﬁm(z)> = (gk(a?), ‘Pm(x))~ (3.4)

i=1
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The key property of the Legendre polynomials is given (see [H, ]) in the form

2
/Pi(x)Pn(iU) do = GRS Sin, (3.5)

where 9;,, is the Kronecker symbol.
We introduce the notation

Pa) = /2 PG,

It is easy to see that

(@) = Pr(@). (3.6)
If we apply the integration by parts with the boundary conditions (@), we get
[ (o) [ dui(a)
U (T _ Up (T
/ ( I ) dx = / T2 u(z) de. (3.7)
-1 —1
The usage of the integration by parts, due to (@) and (@), yields
[ i)
(z
/ P00 () e = i (3.8)
21

Now, let us rewrite equality (@) in terms of A; and A,,:

1
/ P(2) P () d = 4A; Ay 6. (3.9)

-1

According to (@), we get

1
/Lﬂi(x)@m(x) dr = 4A; A, (Aip1 Amg10it1m1
=

— A1 Ap—16it1m—1 — A1 A 18imtme1 + Aic1Ap—18i—1,m—1).  (3.10)

If we take equalities (@) and (@) into account, we obtain
al 2
g=a+pY (). (3.11)
m=1

From (| ) we get

(11(0) o(@) = Sk [ @ilo)gmle) do

=4(- Ao AL | Apchily + A7 (A2, + A?n+1)0k+1 - AmA$n+1Am+26ﬁ1tL12)a

m
Let us introduce the following notation:

1
By, =4A,, 1A% Ay, B,, = ; 3.12
! i (2m +1)\/2m — 1)(2m + 3) (3.12)

2

2m—1)2m+3)

Co = AA7 (A7 1 + AR ) = 8AL AT L, Cm = (3.13)
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According to () and (), the inner product of (ug+1(x), pm(x)) can be rewritten in the following

form:
(up+1(2), om(2)) = =B 1L 4 Okt — Bm+101:nt_12~ (3.14)
From (@) we conclude that
d*u x
(Fn® o @) = el (3.15)
Finally, if we use () and (), for the calculation of inner product of the left-hand side of equation
(@)7 we get the equality

N
d?
Cerl 2 —7° U 72 )ei(z), Sﬁm(x)) = _2Bmflcfn+12 + (20 + T2qp) et - QBerlentrl? (3.16)

For the right-hand side of equation (@), we have

(Qk(iﬁ)a@m(x)) —2B,,_ 1(20m 2 C:fn__lg)
+ 20 (2ey, — ey ') = TP @k = 200,) = 2By (2¢h, 5 — i), (3.17)

For every k =1,2,..., M — 1, we obtain the following system of linear equations:

— 2B,,— 1ck+1 + (2C,, + T2qi ) — QBchfi;B
= 2B, 1(2¢_, — L)+ 20,2k, — E7h)
— 7 (qeery = 215) = 2Bni1 (2ch, 40 — ). (3.18)

To find coefficients c& (k = 1,2,..., M — 1), we have first to find ¢!, and c!,. To this end, we
calculate the inner products (ug(z), om(2)) and (u1 (), om(2)):

—Bp—1€0, 5+ Crcd, — Bpp1ch, o = 1o, (3.19)
1
3 7%(goct, — I9)). (3.20)

The values of summands with negative indices in (B.1§), () and () we set equal to zeros.

The notation of I¥, I° and I} denote the inner products (fx(z), om(x)), (uo(x), om(z)) and
(u1 (), pm(x)), respectively. We calculate approximately the already-mentioned inner products using
the Gauss—Legendre quadrature rule (see [16,27]), which is exact for polynomials of degree 2N — 1 or
less.

We rewrite the system of linear equations () in a matrix form. Let us introduce the following
notation:

—Bo1€hy o+ Cchy = Byichy o = 10 + 711 —

DF =2C,, + Tq,
FF = 2B, 1(2c8 _, — L)y +2C,,(2¢F, — 1)
-7 (chfn t— QInk@) - 23m+1(2051+2 - CI:n_J,-lQ)'

According to the above-mentioned notation, the system of linear equations has the form

D¥ 0 2B, 0 e 0 k1 FF
0o Dk 0 2By . : st Fy
k: k
—2B, 0 Dk 0 0 A F;
g | = | e |- (3.21)
0 —2B; 0 . —2Bp,_1 4
: S . DE, 0 :
0 e 0 —2B,,_1 0 Dk eyt Fy,

The following statement takes place.
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Theorem 3.1. The matriz of the system of Galerkin’s linear equations () is positively defined.
This theorem is a result of the following

Lemma 3.1. Let us consider a general operator equation in a Hilbert space H,
Au=f, fe€H,
where the operator A is symmetric and satisfies the condition
(Au,u) > a(Bu,u) + v||ul|®, Vue D(A) C D(B), (3.22)

B is also a symmetric operator, besides D(A) C D(B); a and v are the positive constants.
The matriz of the system of linear equations (| ) is positively defined when the basis functions
{oK 32, are B-orthogonal, which means that

(Bok, ¢i) = Oki- (3.23)
Proof. We denote the Galerkin system of equations by Sy. Let us introduce the vector

UvN = (01,027...701\{)—'—.

We can straightforwardly show that

Snon = ((Aun, 1), (Aun, @2), ..., (Auy, @N))T,

where
Uy = chgok. (3.24)
Indeed,
N
(Aun, @) = (ZCkA<Pka<Pz) > (Apk,pier (i=1,2,...,N). (3.25)
k=1
Due to (), we have

(Snown,un) = ci(Aun, ¢1) + c2(Aun, @2) + - - + en(Aun, on)
N

= (Aun, c11) + (Aun, c22) + -+ + (Aun, enpn) = (AUN7 Z Ck‘Pk) = (Aun,un),
k=1
and obtain
(SNUN,UN) = (AUN7’LLN). (326)
From () and (B.26) it follows that
(Snun,vn) = a(Buy,un) + vlux|. (3.27)

Inserting () into inequality () and also taking into account the B-orthogonality (), we get

(Sxuw,vn) > (chBgok,chBgoz)+u||uN||

N

Zazzckci(&ﬂk,% = Z = aljon|*. N

k=11i=1 =1

Remark 3.1. Obviously, for equation (@) we have
(Au,u) = 2|[u)|* + 2qu(Bu, w),

where A =21 + 72, B and B = —4,  D(A) = D(B) = {u(z) € C?([-1,1]) | u(-1) = u(1) = 0}. Tt
is well-known that the operator B is positive (see [23]).
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Remark 3.2. The matrix of system () is diagonally dominant of order O(-15) and the following
inequality holds:

m+4

2m —1)(2m +3)(m — 1)(m + 1) > Bpm—1+ Bmy1 (m=3,4,...,N —2).

Cm +

Proof. We note that for the coefficient B, (m = 2,3,...,N — 1) in () the following double
inequality holds:
(2m)? < (2m —1)(2m +3) < (2m + 1) (3.28)

Due to (), for B,,—1 and By,41, the inequalities

Am—1>% < (2m—=3)2m+1) < (2m —1)? (3.29)
and
4m+1)°% < 2m+1)(2m+5) < (2m + 3)* (3.30)
are fulfilled, respectively.
Let us evaluate the expression By,—1 + Bpmy1 — Cpy (m = 3,4,..., N — 2). Taking into account
(B29) and (B.30) we get
16 m+ 4

< Bp—1+4+ By — C,, <

(2m — 1)%(2m + 3)° 2m—1)2m +3)(m —1)(m + 1)

For the first two and the last two rows of the matrix of system (), we have the following estimations:

7 9
% <O —By < %,
1 11
ﬁ <Cy—B3< m,
2N —9 <C B < 2N — 7
22N —3)2N + (N —2) = N T ENES o T3)2eN 1 1)
2N — 7 2N —5
<Cny—By_1< . O
22N — )N +3)(N—1) N TN 9N TN 1 3)

For the solution of system () we consider the so-called Cholesky decomposition (see [IL0,[11,27,
29))
A=LDL" (3.31)

of a symmetric, positively defined matrix A = (a; ;) > Where L is a lower triangular matrix having
identities of the main diagonal, L' is the transposed matrix of L and D is a diagonal matrix. Applying
the decomposition similar to (@), the system of linear equations

Az =b
can be split into the following sub-systems:

Lz =,
Dy =z,
LTz =uy.

For the system of equations on the layers k =0 and k& = 1, we get

Ac™ =pM | n=0,1, (3.32)
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a solution of system () has the following form (n = 0, 1):

L ) m € {1,2};
(n) (n) Bmfl (n)
2y :bm +d72m72, m€{3,47’N}’
m—2
Z(n)
yn?):di’ me{1,2,...,N};
e =y, m € {N,N -1}
) =y 4 =2 7(;127 me{N—-2,N=3,...,1},
where
dpm = Cp, m € {1,2};
B2
dm— m_mi_lv m6{3’4""’N}'
dm72

Any (k + 1)-th layers, a solution of linear algebraic system of equations AW k1) — p(F) | where
k=1,2,...,M — 1, has the following form:

e me 2}
2Bm71 k+1
27(715+1) :Fr(pf) + =5 7(7%2), m € {3,4,...,N};
) kD) me?
+1) _ Zm )
A =S e 2 N
D) (kD). m e {N,N —1};
(k+1) _ (k1) 2Bm+1 (k+1) e{N-2,N-3 1}
Cm = Ym 4 Cng2 s M J b
where
d% =20, + 2q, m € {1,2};

AB?
d%) = (2C,, + T2q) — d(g—l, m € {3,4,...,N}.

m—2

4 Analysis of the numerical results

Let us consider the initial-boundary value problem (@)7(@) with the constants o = 8 = 1 and
t € [0,1]. For this problem we take two cases of tests, which are also considered in [25].

Test 1:
d)o(l’) = Oa ¢1(1') = m7TSiIl(71'£E)7
f(z,t) = (= m® + (a + Br’sin®(mrt))) sin(mrt) sin(rz).
Test 2:
Yo(x) = sin(mzz), P1(x) = wsin(mnz),
f(z,t) = 7 (1 + m*(a + BmPr2e®™))e™ sin(mmz).

The solutions of and are u(z,t) = sin(mmnt)sin(rz) and u(z,t) = e™ sin(mnz),

respectively.
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Figure 1: Dependence of logarithm of relative error on logarithm of the temporal step.

In , there is a dependence of the logarithm of relative error of the approximated solution of

on the logarithm of the temporal step. On the horizontal axis there is the logarithm of temporal
step, and on the vertical axis there is the logarithm of a relative error of the approximated solution. In
all the four pictures, starting from the certain time step, the curve approaches the line, whose angular
coefficient is —2, which confirms that the approximate solution obtained by the considered scheme is
of the second order accuracy. For this case, eleven (N = 11) coordinate functions are taken and the
errors of each temporal step are calculated with a maximum norm.
In ‘, there are approximate and exact solutions of at the point ¢ = 0.5. The
approximate and exact solutions are shown as dashed and continuous curves, respectively. The errors
between the exact and approximate solutions are calculated by a maximum norm and in each cases
they represent the following values:

|w(z,0.5) — @(x,0.5)]|, ~ 1.00 x 10,

u(z,0.5) — u(x,0.5)||, ~ 4.44 x 1072,
|w(z,0.5) — @(x,0.5)|| ~ 3.43 x 101,
|u(z,0.5) — u(x,0.5)||, ~ 3.31 x 107°

with respect to the cases @, , and . In , B and represent the case m = 3,

and and ((d) represent the case m = 7. In figures (a) and , the value of 7_is the same, but
the amount of the coordinate functions is different. Analogously, figures and m have the same
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u(2,0.5)
u(x,0.5)

—5F ‘ ‘ ‘ ‘\'I ‘ ‘ ‘ \ ‘ ‘ il / | | \ | | | | |
-1 -08 —0.6 -04 —0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 —-06 —04 —0.2 0 0.2 0.4 0.6 0.8 1
(a) m = 3,7 = 1/1024, N = 10. (b) m = 3,7 = 1/1024, N = 20.
B ” i m ﬂ ﬂ ﬂ
3t sl
2t N
= 1r = 1
I 0 3 0
1 i -1
9 2
iyl -3
_71 7‘0.8 7‘0.6 7‘0.4 7‘(].2 [‘] U.‘2 U.‘4 U.‘G (].‘8 ‘1 7571 7‘(].8 7‘0.6 7‘0.4 7‘0.2 (; (].‘2 0.‘4 0.‘6 0.‘8 1
(¢) m=7,7=1/4096, N = 30. (d) m=7,7 =1/4096, N = 35.

Figure 2: Exact and approximate solutions at the point of 0.5 with respect to the temporal variable,
which are represented by solid and dashed lines, respectively.

mesh length, however, the number of the coordinate functions is not equal to each others. As the
tests show, increasing of only temporal layers is not enough to reach high order accuracy, we need
to rise the amount of the coordinate functions. Nevertheless, there exists some relationship between
numbers of layers and the coordinate functions.
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