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Tengiz Gegelia
(1928–1994)

This year we celebrate the 90th anniversary of the birth of prominent Georgian mathematician
Professor Tengiz Gegelia.

Tengiz Gegelia was born on January 28, 1928, in Patara Jikhaishi, a village in Georgia near the
city of Kutaisi. In 1945 he entered the Faculty of Physics and Mathematics of Tbilisi State University
and completed his university education in 1950. In 1950–1954 he was a post-graduate student, and in
1954–1956 an assistant at the chair of differential and integral equations of Tbilisi State University.
In 1956–1966 Gegelia worked as a senior researcher at A. Razmadze Mathematical Institute of the
Georgian Academy of Sciences. In 1966 he headed Department of Continuum Mechanics of Institute
of Applied Mathematics. In 1980 this department was moved to A. Razmadze Mathematical Institute
and Tengiz Gegelia was at its head until his death in 1994.

T. Gegelia defended Candidate of Science thesis in 1954 and his doctoral thesis in 1964. Since
1967, he was a professor at the Tbilisi State University. In 1981–1994, he held the chair of differential
and integral equations at Tbilisi State University. In 1974, T. Gegelia was elected a corresponding
member of the Georgian Academy of Sciences.

Tengiz Gegelia’s mathematical activity covered several fundamental areas: problems of the po-
tential theory and singular integral equations, problems of the classical elasticity theory, as well
as the theories of other models of elastic medium such as couple-stress and thermomoment elasticity
and electroelasticity. In his first papers published in 1952-1954 T. Gegelia considered singular integral
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equations with the Cauchy kernel and boundary value problems of the theory of holomorphic functions.
He studied these problems for much wider classes of lines than those of straight or piecewise-smooth
ones which where considered before. These lines can have an infinite number of angular points, cusp
points and points of more complicated structure. To accomplish such an extension, he generalized the
notion of the integral in the sense of the Cauchy principal value and investigated the so-called loaded
singular integral operator. The results he obtained then formed the basis of his Candidate of Science
thesis.

In 1955–1963 Tengiz Gegelia published a series of papers on multidimensional singular integral
operators. He investigated differential properties of functions represented by singular integrals as well
as of solutions of the corresponding singular integral equations. He also considered singular potentials
in various spaces of smooth functions. Other noteworthy results obtained by T. Gegelia in this field
include a formula for the difierentiation of singular integrals, a formula for the change of integration
order in iterated singular integrals, as well as an estimate of the continuity modulus of the multidimen-
sional singular integral by means of the continuity modulus of the density and the main smoothness
characteristics of the kernel and the integration surface. In particular, for a Cauchy type integral,
the latter estimate yields the well-known Zygmund inequalities. These papers made an important
contribution to the investigation of boundary value problems of elasticity. Victor Kupradze and he
were the first scientists who investigated the solvability of the system of boundary integral equations
corresponding to the Neumann boundary value problem of elasticity. Together with his associates
T. Gegelia investigated boundary value problems of various nonclassical models of elastic medium,
which take into account couple and thermal stresses, electric, diffusive and other fields. It also should
be mentioned the study of the asymptotic behaviour of solutions of various systems of elasticity in the
neighbourhood of isolated singular points. These results significantly stimulated application of the
potential method and the theory of singular integral equations to investigation of three-dimensional
problems of elasticity. Most of the above-mentioned results of T. Gegelia were included into the
well-known monographs “Three-dimensional Problems of the Mathematical Theory of Elasticity and
Thermoelasticity” by V. Kupradze, T. Gegelia, M. Basheleishvili, and T. Burchuladze and “Develop-
ment of the Potential Method in the Theory of Elasticity” by T. Burchuladze and T. Gegelia and into
his other monographs and papers.

The scientific activities of T. Gegelia won him a wide recognition. He was a member of many
national and international scientific organizations and societies. In 1976 he was elected a member of
the Bureau of the Scientific Council on Solidity and Plasticity of the USSR Academy of Sciences, and
from 1982 he was chairman of the elasticity theory sector of the said Council. From 1984 T. Gegelia
was a member of the International Society of Interaction of Mathematics and Mechanics (ISIMM),
and, from 1985, a member of the USSR National Committee on Theoretical and Applied Mechanics.

T. Gegelia made a great contribution to the search and development of young talented mathe-
maticians in Georgia. In spite of constant intensive work, he yet managed to find time for teaching
at a mathematical secondary school. Tengiz Gegelia was the author of many original textbooks for
university and secondary school curricula. He showed interest in teaching mathematics and was re-
garded as a commonly acknowledged authority in this field. For many years he headed the Methodics
Council of the Georgian Public Education Ministry and chaired the organizing committee for holding
mathematical olympiads in Georgia. He was the initiator of founding the specialized mathematical
school under Tbilisi State University. which is still successfully functioning.

Tengiz Buchukuri
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Abstract. A periodic problem for systems of linear generalized differential equations is considered.
The Green type theorem on the unique solvability of the problem and the representation of its so-
lution are established. Effective necessary and sufficient conditions (of spectral type) for the unique
solvability of the problem are also given.
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ÒÄÆÉÖÌÄ. ÂÀÍÆÏÂÀÃÄÁÖË ßÒ×ÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ ÂÀÍáÉËÖËÉÀ
ÐÄÒÉÏÃÖËÉ ÀÌÏÝÀÍÀ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÂÒÉÍÉÓ ÔÉÐÉÓ ÈÄÏÒÄÌÀ ÀÌ ÀÌÏÝÀÍÉÓ ÝÀËÓÀáÀÃ ÀÌÏá-
ÓÍÀÃÏÁÉÓÀ ÃÀ ÀÌÏÍÀáÓÍÉÓ ßÀÒÌÏÃÂÄÍÉÓ ÛÄÓÀáÄÁ. ÃÀÃÂÄÍÉËÉÀ ÝÀËÓÀáÀÃ ÀÌÏáÓÍÀÃÏÁÉÓ
ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÓÐÄØÔÒÀËÖÒÉ ÔÉÐÉÓ ÐÉÒÏÁÄÁÉ.
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1 Statement of the problem and formulation of the results
In the present paper, we investigate the solvability for the system of linear generalized ordinary
differential equations

dx(t) = dA(t) · x(t) + df(t) (1.1)
with the ω-periodic (ω > 0) condition

x(t+ ω) = x(t) for t ∈ R, (1.2)

where A = (aik)
n
i,k=1 : R → Rn×n and f = (fi)

n
i=1 : R → Rn are, respectively, the matrix- and the

vector-functions with bounded variation components on every closed interval from R, and ω is a fixed
positive number.

We establish the Green type theorem on the solvability of problem (1.1), (1.2) and the represen-
tation of a solution of the problem. In addition, we give effective necessary and sufficient conditions
(of spectral type) for the unique solvability of the problem.

The general linear boundary value problem for system (1.1) has been investigated sufficiently
well (see, e.g., [6, 7, 15] and the references therein, where the Green type theorems are obtained
for the unique solvability). Some questions related to the periodic problem for system (1.1) are
investigated in [2–5, 8, 14] (see also the references therein), but in these works no attention is given
to the investigation of specific properties analogous to the already established ones for the ordinary
differential case (see, e.g., [11]). But some questions concerning the results obtained in [11] for the
periodic problem for linear ordinary differential case is not investigated for the periodic problem for
the generalized differential case. So, the problem considered in the paper is quite topical.

We establish some special conditions for the unique solvability of the problem.
To a considerable extent, the interest in the theory of generalized ordinary differential equations

has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive differential and difference equations from the unified point of view (see [1,7,9,10,13,14] and
the references therein).

The theory of generalized ordinary differential equations was introduced by J. Kurzweil [13] in
connection with the investigation of the well-posed problem for the Cauchy problem for ordinary
differential equations.

In the paper, the use will be made of the following notation and definitions.
R = ]−∞,+∞[ , R+ = [0,+∞[ .
Rn×m is the space of all n×m real matrices X = (xij)

n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |.

Rn×m
+ = {(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)}.

On×m (or O) is the zero n×m matrix.
If X = (xij)

n,m
i,j=1 ∈ Rn×m, then |X| = (|xij |)n,mi,j=1.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

x ∗ y is the scalar product of the vectors x and y ∈ Rn.
If X ∈ Rn×n, then: X−1 is the matrix, inverse to X; detX is the determinant of X; r(X) is

the spectral radius of X; XT is the matrix transposed to X; λ0(X) and λ0(X) are, respectively, the
minimal and maximal eigenvalues of the symmetric matrix X.

In is the identity n× n-matrix.
The inequalities between the real matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
If X : [a, b] → Rn×m is a matrix-function, then

b∨
a
(X) is the sum of variations on [a, b] of its

components xij (i = 1, . . . , n; j = 1, . . . ,m); V (X)(t) = (v(xij)(t))
n,m
i,j=1, where v(xij)(a) = 0,

v(xij)(t) =
t∨
a
(xij) for a < t ≤ b.
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X(t−) and X(t+) are, respectively, the left and the right limits of X at the point t (X(a−) = X(a),
X(b+) = X(b)); d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).

∥X∥s = sup{∥X(t)∥ : t ∈ [a, b]}, |X|s = (∥xij∥s)n,mi,j=1.
BV([a, b],Rn×m) is the normed space of all bounded variation matrix-functions X : [a, b] → Rn×m

(i.e., such that
b∨
a
(X) < ∞) with the norm ∥X∥s.

BVloc(R,Rn×m) is the set of all matrix-functions X : [a, b] → Rn×m whose restrictions on every
closed interval [a, b] from R belong to BV([a, b],Rn×n).

BVω(R,Rn×m) is the set of all matrix-functions G : R → Rn×m whose restrictions on [0, ω] belong
to BV([0, ω],Rn×m) and there exists a constant matrix C ∈ Rn×m such that

G(t+ ω) = G(t) + C for t ∈ R.

BV([a, b],Rn×m
+ ) = {X ∈ BV([a, b],Rn×m) : X(t) ≥ On×m for t ∈ [a, b]}.

sc, s1, s2 : BV([a, b],R) → BV([a, b],R) are the operators defined, respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ), s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and
sc(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s < t ≤ b, then

t∫
s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure µ(sc(g)) corresponding to the function sc(g).
If a = b, then we assume

b∫
a

x(t) dg(t) = 0,

and if a > b, then we assume
b∫

a

x(t) dg(t) = −
a∫

b

x(t) dg(t).

So,
b∫
a

x(τ) dg(τ) is the Kurzweil–Stieltjes integral (see [13,14]).

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then

t∫
s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for s ≤ t.

L([a, b],R; g) is the set of all functions x : [a, b] → R, measurable and integrable with respect to
the measures µ(gi) (i = 1, 2), i.e., such that

b∫
a

|x(t)| dgi(t) < +∞ (i = 1, 2).
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If G = (gik)
l,n
i,k=1 ∈ BV([a, b],Rl×n) and X = (xkj)

n,m
k,j=1 : [a, b] → Rn×m, then

Sc(G)(t) ≡ (sc(gik)(t))
l,n
i,k=1, Sj(G)(t) ≡ (sj(gik)(t))

l,n
i,k=1 (j = 1, 2)

and
b∫

a

dG(τ) ·X(τ) =

( n∑
k=1

b∫
a

xkj(τ) dgik(τ)

)l,m

i,j=1

.

We introduce the operator A as follows. If the matrix-function X ∈ BVloc(R, ;Rn×n) is such that
det(In + (−1)jdjX(t)) ̸= 0 for t ∈ R (j = 1, 2), and Y ∈ BVloc(R;Rn×m), then

A(X,Y )(0) = On×m,

A(X,Y )(t) = Y (t)− Y (0) +
∑

0<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

0≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ) for t > 0,

A(X,Y )(t) = −A(X,Y )(t) for t < 0.

Here, the use will be made of the following formulas:

b∫
a

f(t) d

( t∫
a

h(s) dg(s)

)
=

b∫
a

f(t)h(t) dg(t) (substitution formula);

b∫
a

f(t) dg(t) +

b∫
a

g(t) df(t) = f(b)g(b)− f(a)g(a) +
∑

a<t≤b

d1f(t) · d1g(t)

−
∑

a≤t<b

d2f(t) · d2g(t) (integration by parts formula),

b∫
a

h(t) d(f(t)g(t)) =

b∫
a

h(t)f(t) dg(t) +

b∫
a

h(t)g(t) df(t)−
∑

a<t≤b

h(t)d1f(t) · d1g(t)

−
∑

a≤t<b

h(t)d2f(t) · d2g(t) (general integration by parts formula)

and

dj

( t∫
a

f(s) dg(s)

)
= f(t) djg(t) for t ∈ [a, b] (j = 1, 2),

where f , g and h ∈ BV([a, b],R) (see Theorems I.4.25 and I.4.33 in [14]). Further, we use these
formulas without special indication.

We say that the matrix-function X ∈ BV([a, b],Rn×n) satisfies the Lappo–Danilevskiǐ condition if
the matrices Sc(X)(t), S1(X)(t) and S2(X)(t) are pairwise permutable for every t ∈ [a, b] and there
exists t0 ∈ [a, b] such that

t∫
t0

Sc(X)(τ) dSc(X)(τ) =

t∫
t0

dSc(X)(τ) · Sc(X)(τ) for t ∈ [a, b].

A vector-function x ∈ BVloc(R,Rn×m) is said to be a solution of system (1.1) if

x(t)− x(s) =

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for s < t, s, t ∈ R.
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We assume that A ∈ BVω(R,Rn×n) and f ∈ BVω(R,Rn), i.e.,

A(t+ ω) = A(t) + C and f(t+ ω) = f(t) + c for t ∈ R, (1.3)

where C ∈ Rn×n and c ∈ Rn are, respectively, some constant matrix and vector. Moreover, we assume
that

det
(
In + (−1)jdjA(t)

)
̸= 0 for t ∈ R (j = 1, 2). (1.4)

If a matrix-function X ∈ BV([0, ω],Rn×n) is such that det(In − d1X(t)) ̸= 0 for t ∈ [0, ω], then
we put

[X(t)]0 = (In − d1X(t))−1, [X(t)]i = (In − d1X(t))−1

t∫
0

dX−(τ) · [X(τ)]i−1

for t ∈ [0, ω] (i = 1, 2, . . . ), (1.51)

(X(t))0 = On×n, (X(t))1 = X(t), (X(t))i+1 =

t∫
0

dX−(τ) · (X(τ))i

for t ∈ [0, ω] (i = 1, 2, . . . ), (1.61)

and

V1(X)(t) =
∣∣(In − d1X(t))−1

∣∣V (X−)(t),

Vi+1(X)(t) =
∣∣(In − d1X(t))−1

∣∣ t∫
0

dV (X−)(τ) · Vi(X)(τ) for t ∈ [0, ω] (i = 1, 2, . . . ),
(1.71)

where X−(t) ≡ X(t−); and if X ∈ BV([0, ω],Rn×n) is such that det(In + d2X(t)) ̸= 0 for t ∈ [0, ω],
then we put

[X(t)]0 = (In + d2X(t))−1, [X(t)]i = (In + d2X(t))−1

t∫
ω

dX+(τ) · [X(τ)]i−1

for t ∈ [0, ω] (i = 1, 2, . . . ), (1.52)

(X(t))0 = On×n, (X(t))1 = X(t), (X(t))i+1 =

t∫
ω

dX+(τ) · (X(τ))i

for t ∈ [0, ω] (i = 1, 2, . . . ) (1.62)

and

V1(X)(t) =
∣∣(In + d2X(t))−1

∣∣ ∣∣(V (X+)(t)(ω)− V (X+)(t)
∣∣,

Vi+1(X)(t) =
∣∣(In + d2X(t))−1

∣∣ ∣∣∣∣
t∫

ω

dV (X+)(τ) · Vi(X)(τ)

∣∣∣∣ for t ∈ [0, ω] (i = 1, 2, . . . ),
(1.72)

where X+(t) ≡ X(t+).
Alongside with system (1.1), we consider the corresponding homogeneous system

dx(t) = dA(t) · x(t). (1.10)

Moreover, along with condition (1.2) we consider the condition

x(0) = x(ω). (1.8)
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Definition 1.1. Let condition (1.4) hold and let there exist a fundamental matrix Y of problem
(1.10), (1.8) such that

det(D) ̸= 0, (1.9)

where D = Y (ω)− Y (0). A matrix-function G : [0, ω]× [0, ω] → Rn×n is said to be the Green matrix
of problem (1.10), (1.8) if:

(a) the matrix-function G( · , s) satisfies the matrix equation

dX(t) = dA(t) ·X(t)

on both [0, s[ and ]s, ω] for every s ∈ ]0, ω[ ;

(b) for t ∈ ]a, b[ ,

G(t, t+)− G(t, t−) = Y (t)D−1
{
Y (ω)Y −1(t)(In + d2A(t))−1 − Y (0)Y −1(t)(In − d1A(t))−1

}
;

(c) G(t, · ) ∈ BV ([0, ω],Rn×n) for every t ∈ [0, ω];

(d) the equality
ω∫

0

ds
(
G(ω, s)− G(0, s)

)
· f(s) = 0

holds for every f ∈ BV ([0, ω],Rn).

The Green matrix of problem (1.10), (1.8) exists and is unique in the following sense (see [6, 15]).
If G(t, s) and G1(t, s) are two matrix-functions satisfying conditions (a)–(d) of Definition 1.1, then

G(t, s)− G1(t, s) ≡ Y (t)H∗(s),

where H∗ ∈ BV([0, ω],Rn×n) is a matrix-function such that

H∗(s+) = H∗(s−) = C = const for s ∈ [0, ω],

and C ∈ Rn×n is a constant matrix.
In particular,

G(t, s) =


Y (t)D−1Y (0)Y −1(s) for 0 ≤ s < t ≤ ω,

Y (t)D−1Y (ω)Y −1(s) for 0 ≤ t < s ≤ ω,

arbitrary for t = s.

Theorem 1.1. System (1.1) has a unique ω-periodic solution x if and only if the corresponding
homogeneous system (1.10) has only the trivial solution satisfying condition (1.8), i.e., when condition
(1.9) holds, where Y is a fundamental matrix of system (1.10). If the last condition holds, then the
solution x can be written in the form

x(t) =

ω∫
0

dsG(t, s) · f(s) for t ∈ [0, ω], (1.10)

where G : [a, b]× [a, b] → Rn×n is the Green matrix of problem (1.10), (1.8).

Corollary 1.1. Let conditions (1.3) and (1.4) hold, and the matrix-function A satisfy the Lappo–
Danilevskiǐ condition. Then system (1.1) has a unique ω-periodic solution if and only if

det
(

exp(S0(A)(ω))
∏

0≤τ<ω

(In + d2A(τ))
∏

a<τ≤ω

(In − d1A(τ))−1 − In

)
̸= 0. (1.11)
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Note that if the matrix-function A satisfies the Lappo–Danilevskiǐ condition, then the matrix-
function Y defined by Y (0) = In and

Y (t) ≡ exp(S0(A)(t))
∏

0≤τ<t

(In + d2A(τ))
∏

0<τ≤t

(In − d1A(τ))−1 for t ∈ [0, ω] (1.12)

is the fundamental matrix of system (1.10).

Remark 1.1. Let system (1.10) have a nontrivial ω-periodic solution. Then there exists f ∈
BVω(R,Rn) such that system (1.1) has no ω-periodic solution (see [6]).

In general, it is rather difficult to verify condition (1.9) directly even in the case where one is able
to write the fundamental matrix of system (1.10) explicitly. Therefore, it is important to find effective
conditions which would guarantee the absence of nontrivial ω-periodic solutions of the homogeneous
system (1.10). Below, we will give the results concerning this question. Analogous results have been
obtained by T. Kiguradze for ordinary differential equations (see [11,12]).

Theorem 1.2. System (1.1) has a unique ω-periodic solution if and only if there exist natural numbers
k and m such that the matrix

Mk = −
k−1∑
i=0

(
[A(ω)]i − [A(0)]i

)
(1.13)

is nonsingular and
r(Mk,m) < 1, (1.14)

where

Mk,m = Vm(A)(c) +
(m−1∑

i=0

∣∣[A( · )]i
∣∣
s

)
· |M−1

k | ·
(
Vk(A)(ω)− Vk(A)(0)

)
, (1.15)

[A(t)]i (i = 0, . . . ,m− 1) and Vi(A)(t) (i = 0, . . . ,m− 1) are defined, respectively, by (1.5l) and (1.7l)
for some l ∈ {1, 2}, and c = (2− l)ω.

Corollary 1.2. System (1.1) has a unique ω-periodic solution if and only if there exist natural numbers
k and m such that the matrix

Mk = −
k−1∑
i=0

(
(A(ω))i − (A(0))i

)
(1.16)

is nonsingular and inequality (1.14) holds, where

Mk,m = (V (A)(c))m +
(
In +

m−1∑
i=0

∣∣(A( · ))i
∣∣
s

)
· |M−1

k | ·
[
(V (A)(ω))k − (V (A)(0))k

]
, (1.17)

(A(t))i (i = 0, . . . ,m− 1) and (V (A)(t))i (i = 0, . . . ,m− 1) are defined by (1.6l) for some l ∈ {1, 2},
and c = (2− l)ω.

Corollary 1.3. Let there exist a natural j such that

(A(0))i = (A(ω))i (i = 1, . . . , j − 1) (1.18)

and
det

(
(A(ω))j − (A(0))j

)
̸= 0, (1.19)

where (A(t))i (i = 0, . . . , j) are defined by (1.6l) for some l ∈ {1, 2}. Then there exists ε0 > 0 such
that the system

dx(t) = εdA(t) · x(t) + df(t) (1.20)

has one and only one ω-periodic solution for every ε ∈]0, ε0[.



On the Solvability of the Periodic Problem for Systems of Linear Generalized ODEs 15

Theorem 1.3. Let a matrix-function A0 ∈ BVω(R,Rn×n) be such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ [0, ω] (j = 1, 2) (1.21)

and the homogeneous system
dx(t) = dA0(t) · x(t) (1.22)

has only the trivial ω-periodic solution. Let, moreover, the matrix-function A ∈ BVω(R,Rn×n) admit
the estimate

ω∫
0

|G0(t, τ)| dV (S0(A−A0))(τ)

+
∑

0<τ≤ω

∣∣∣G0(t, τ−) · d1
(
A(τ)−A0(τ)

)∣∣∣+ ∑
0≤τ<ω

∣∣∣G0(t, τ+) · d2
(
A(τ)−A0(τ)

)∣∣∣ ≤ M, (1.23)

where G0(t, τ) is the Green matrix of problem (1.22), (1.8), and M ∈ Rn×n
+ is a constant matrix such

that
r(M) < 1. (1.24)

Then system (1.1) has one and only one ω-periodic solution.

Formula (1.10) can be written in a simpler form if we introduce the concept of the Green matrix
for problem (1.10), (1.2).

Definition 1.2. A matrix-function Gω : R × R → Rn×n is said to be the Green matrix of problem
(1.10), (1.2) if:

(a)
Gω(t+ ω, τ + ω) = Gω(t, τ), Gω(t, t+ ω)− Gω(t, t) = In for t, τ ∈ R; (1.25)

(b) the matrix-function Gω( · , τ) : R → Rn×n is a fundamental matrix of system (1.10) for every
τ ∈ R.

Theorem 1.4. Let condition (1.3) hold,

det
(
In ± djA(t)

)
̸= 0 for t ∈ R (j = 1, 2), (1.26)

and system (1.10) have a unique ω-periodic solution. Then system (1.1) has likewise a unique ω-
periodic solution x which is written in the form

x(t) =

t+ω∫
t

Gω(t, τ) dA
(
A,A(−A, f)

)
(τ) for t ∈ R, (1.27)

where Gω is the Green matrix of problem (1.10), (1.2).

We introduce the following class of matrix-functions.
Let m, r1, . . . , rm and n1, . . . , nm (0 = n0 < n1 < · · · < nm = n) be natural numbers; σj ∈ {−1, 1}

(j = 1, . . . ,m); glj : [0, ω] → R (l = 1, . . . , rj ; j = 1, . . . ,m) be nondecreasing functions; αlj ∈
L([0, ω],R; glj) (l = 1, . . . , rj ; j = 1, . . . ,m), and let matrix-functions Plj = (pljik)

n
i,k=1 (l = 1, . . . , rj ;

j = 1, . . . ,m) be such that pljik ∈ L([0, ω],R; glj) (i, k = nj−1 + 1, . . . , nj) and

σj

nj∑
i,k=nj−1+1

pljik(t)xixk ≥ αlj(t)

nj∑
i,k=nj−1+1

x2
i for µ(glj)-almost all t ∈ [0, ω], (xi)

n
i=1 ∈ Rn

(l = 1, . . . , rj ; j = 1, . . . ,m). (1.28)
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Then by Qω((rj , nj , σj)
m
j , (glj , αlj ,Plj)

rj ,m
l=1,j=1) we denote the set of all matrix-functions A ∈

BV([0, ω],Rn×n) such that

aik(t) ≡ 0 (i = nj−1 + 1, . . . , nj ; k = nj + 1, . . . , n; j = 1, . . . ,m), (1.29)

σj

(
bjii(t)− bjii(s)−

rj∑
l=1

t∫
s

pljii(τ)dglj(τ)

)
≥ 0 for 0 ≤ s ≤ t ≤ ω

(i = nj−1 + 1, . . . , nj ; j = 1, . . . ,m) (1.30)

and

bjik(t) =

rj∑
l=1

t∫
s

pljik(τ) dglj(τ) for t ∈ [0, ω] (i ̸= k; i, k = nj−1 + 1, . . . , nj ; j = 1, . . . ,m), (1.31)

where

bjik(t) ≡ aik(t)−
(
1

2

∑
0<τ≤t

nj∑
r=nj−1+1

d1ari(τ) · d1ark(τ)−
∑

0≤τ<t

nj∑
r=nj−1+1

d2ari(τ) · d2ark(τ)
)

(i, k = nj−1 + 1, . . . , nj ; j = 1, . . . ,m). (1.32)

If s ∈ R and β ∈ BV([0, ω],R) are such that

1 + (−1)jdjβ(t) ̸= 0 for (−1)j(t− s) < 0 (j = 1, 2),

then by γs(β) we write a unique solution of the Cauchy problem

dγ(t) = γ(t) dβ(t), γ(s) = 1.

Notice that condition (1.4) guarantees the unique solvability of the Cauchy problem for system
(1.1) (see, e.g., [13, 14]).

It is known (see [9, 10]) that

γs(β)(t)=


exp

(
s0(β)(t)−s0(β)(s)

) ∏
s<τ≤t

(1−d1β(τ))
−1

∏
s≤τ<t

(1+d2β(τ)) for s<t≤ω,

exp
(
s0(β)(t)−s0(β)(s)

) ∏
t<τ≤s

(1−d1β(τ))
∏

t≤τ<s

(1+d2β(τ))
−1 for 0≤ t<s.

(1.33)

Theorem 1.5. Let there exist natural numbers m, r1, . . . , rm and n1, . . . , nm (0 = n0 < n1 < · · · <
nm = n), σj ∈ {−1, 1} (j = 1, . . . ,m), nondecreasing functions glj : [0, ω] → R (l = 1, . . . , rj;
j = 1, . . . ,m), functions αlj ∈ L([0, ω],R; glj) (l = 1, . . . , rj; j = 1, . . . ,m) and matrix-functions
Plj = (pljik)

n
i,k=1 (l = 1, . . . , rj; j = 1, . . . ,m), pljik ∈ L([0, ω],R; glj) (i, k = nj−1 + 1, . . . , nj) such

that
A ∈ Qω

(
(rj , nj , σj)

m
j , (glj , αlj ,Plj)

rj ,m
l=1,j=1

)
. (1.34)

Let, moreover,

(1− σj)d1gj(t) + (1 + σj)d2gj(t) ̸= −2 for t ∈ [0, ω] (j = 1, . . . ,m) (1.35)

and
γtj (σjgj)(ω − tj) < 1 (j = 1, . . . ,m), (1.36)

where tj =
1
2 (1 + σj)ω, the functions γtj (σjgj) (j = 1, . . . ,m) are defined by (1.33), and

gj(t) ≡ 2

rj∑
l=1

t∫
0

αlj(τ) dglj(τ).

Then system (1.1) has a unique ω-periodic solution.
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Remark 1.2. In the above theorem, if in addition to condition (1.35), the condition

(1 + σj) d1gj(t) + (1− σj) d2gj(t) < 2 (1.37)

holds, then, by (1.33), inequality (1.36) is equivalent to

exp
(
s0(gj)(ω)

)
> −1

2

(
(1 + σj)

∏
0<τ≤ω

(1− d1gj(τ))
∏

0≤τ<ω

(1 + d1gj(τ))
−1

+ (1− σj)
∏

0<τ≤ω

(1 + d1gj(τ))
−1

∏
0≤τ<ω

(1− d2gj(τ))

)
for t ∈ [0, ω] (j = 1, . . . ,m).

Let g : [0, ω] → R be a nondecreasing function and P = (pik)
n
i,k=1, where pik ∈ L([0, ω],R; g)

(i, k = 1, . . . , n). Then we denote by Qω(P ; g) the set of all matrix-functions A = (aik)
n
i,k=1 ∈

BV([0, ω],Rn×n) such that

bik(t) =

t∫
0

pik(τ) dg(τ) for t ∈ [0, ω] (i, k = 1, . . . , n), (1.38)

where

bik(t) ≡ aik(t)−
1

2

( n∑
l=1

∑
0<τ≤t

d1ali(τ) · d1alk(τ)−
∑

0≤τ<t

d2ali(τ) · d2alk(τ)
)

(i, k = 1, . . . , n). (1.39)

Theorem 1.6. Let A ∈ Qω(P ; g). Let, moreover, either

(a)
n∑

i,k=1

pik(t)xixk ≥ α(t)

n∑
i=1

x2
i for µ(g)− a.a. t ∈ [0, ω], (xi)

n
i=1 ∈ Rn, (1.40)

1− 2α(t)d1g(t) > 0, 1 + 2α(t)d2g(t) ̸= 0 for 0 ≤ t < ω, (1.41)
γω(α)(0) < 1 (1.42)

or

(b)
n∑

i,k=1

pik(t)xixk ≤ β(t)

n∑
i=1

x2
i for µ(g)− a.a. t ∈ [0, ω], (xi)

n
i=1 ∈ Rn, (1.43)

1 + 2β(t)d2g(t) > 0, 1− 2β(t)d1g(t) ̸= 0 for 0 < t ≤ ω, (1.44)
γ0(β)(ω) < 1, (1.45)

where α, β ∈ L([0, ω],R; g), the function γ0(β) is defined by (1.33), and

gα(t) ≡ 2

t∫
0

α(τ) dg(τ) and gβ(t) ≡ 2

t∫
0

β(τ) dg(τ). (1.46)

Then system (1.1) has a unique ω-periodic solution.

Corollary 1.4. Let A ∈ Qω(P ; g). Let, moreover, either (a) conditions (1.41) and (1.42) hold, or
(b) conditions (1.44) and (1.45) hold, where the functions gα and gβ are defined by (1.46), α(t) ≡
λ0(P

∗(t)), β(t) ≡ λ0(P ∗(t)), and P ∗(t) ≡ P (t) + PT (t). Then system (1.1) has a unique ω-periodic
solution.
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2 Auxiliary propositions
Lemma 2.1. The following statements are valid:

(a) if x is a solution of system (1.1), then the vector-function y(t) = x(t + ω) (t ∈ R) will be a
solution of system (1.1), as well;

(b) problem (1.1), (1.2) is solvable if and only if system (1.1) has on the closed interval [0, ω] a
solution satisfying the boundary condition (1.8). Moreover, the set of restrictions of solutions of
problem (1.1), (1.2) on [0, ω] coincides with the set of solutions of problem (1.1), (1.8).

Proof. Let x be an arbitrary solution of system (1.1). Assume y(t) = x(t + ω) for t ∈ R. Then, by
(1.3), we have

y(t) = x(0) +

t+ω∫
0

dA(τ) · x(τ) + f(t+ ω)− f(0)

= x(0) +

ω∫
0

dA(τ) · x(τ) + f(ω)− f(0) +

t+ω∫
ω

dA(τ) · x(τ) + f(t+ ω)− f(ω)

= x(ω) +

t∫
0

dA(τ + ω) · x(τ + ω) + f(t+ ω)− f(ω)

= y(0) +

t∫
0

dA(τ) · y(τ) + f(t)− f(0) for t ∈ R.

Therefore, y is likewise a solution of system (1.1). Thus statement (a) is proved.
Let us show statement (b). It is evident that the restrictions of every solution of problem (1.1), (1.2)

on the interval [0, ω] will be a solution of problem (1.1), (1.8). Consider now an arbitrary solution x of
problem (1.1), (1.8). Any continuation of this solution we again denote by x. According to statement
(a), the vector-function y(t) = x(t+ω) will be a solution of system (1.1), as well. On the other hand,
in view of (1.8), we have

y(0) = x(ω) = x(0).

This implies that the functions x and y are the solutions of system (1.1) under the common initial
value condition. So, x(t) ≡ y(t). Therefore, x is a solution of problem (1.1), (1.2).

Lemma 2.2. An arbitrary fundamental matrix Y of system (1.10) satisfies the identity

Y (t+ ω) = Y (t)Y −1(0)Y (ω) for t ∈ R. (2.1)

Proof. By Lemma 2.1, the columns of the matrix-function Z(t) = Y (t+ω) are the solutions of system
(1.10). Therefore, there exists a constant matrix C ∈ R such that

Z(t) = Y (t)C for t ∈ R.

Thus it is clear that
C = Y −1(0)Z(0) = Y −1(0)Y (ω).

Hence equality (2.1) holds.

Lemma 2.3. Let problem (1.10), (1.2) have only the trivial solution. Then there exists a unique Green
matrix of the problem having the following form:

Gω(t, τ) = Y (t)
(
Y −1(ω)Y (0)− In

)−1
Y −1(τ) for t, τ ∈ R, (2.2)

where Y is a fundamental matrix of system (1.10).
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Proof. Let Y be an arbitrary fundamental matrix of system (1.10). Then, by Lemma 2.1, condition
(1.9) holds because the lemma guarantees the validity of Theorem 1.1 (see the proof of Theorem 1.1
below). According to Definition 1.2, the matrix-function Gω : R × R → Rn×n is the Green matrix if
and only if

Gω(t, τ) = Y (t)C(τ) for t, τ ∈ R, (2.3)
where the matrix-function C : R → Rn×n is such that equalities (1.25) hold, i.e.,

Y (t+ ω)C(τ + ω) = Y (t)C(τ), Y (t)
(
C(t+ ω)− C(t)

)
= In for t, τ ∈ R. (2.4)

By equality (2.1), equalities (2.4) hold if and only if

Y −1(0)Y (ω)C(τ + ω) = C(τ), C(τ + ω)− C(τ) = Y −1(τ) for τ ∈ R.

Clearly, (
In − Y −1(0)Y (ω)

)
C(τ) = Y −1(0)Y (ω)Y −1(τ) for τ ∈ R.

Therefore, taking into account condition (1.9), we conclude that

C(τ) =
(
Y −1(ω)Y (0)− In

)−1
Y −1(τ) for τ ∈ R.

Putting the obtained value of C(t) in (2.4), we obtain equality (2.2).

Lemma 2.4. If X ∈ BVω(R,Rn×n) and Y ∈ BVω(R,Rn×m), then

(a)
djX(t+ ω) = djX(t) for t ∈ R (j = 1, 2); (2.5)

(b)
A(X,Y ) ∈ BVω(R,Rn×m), i.e., A(X,Y )(t+ ω) = A(X,Y )(t) + C for t ∈ R, (2.6)

where C is some constant n× n-matrix.

Proof. Consider equality (2.5). Let j = 1. Then by the definition of the set BVω(R,Rn×m), we have

d1X(t+ ω) = lim
ε→0, ε>0

(
X(t+ ω)−X(t+ ω − ε)

)
= lim

ε→0, ε>0

(
X(t)−X(t− ε)

)
= d1X(t) for t ∈ R.

Analogously, we show equality (2.5) for j = 2.
Let us show (2.6). From the definition of the operator A and equalities (2.5), we conclude that

A(X,Y )(t+ ω) = Y (t+ ω)− Y (0) +
∑

0<τ≤t+ω

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

0≤τ<t+ω

d2X(τ) · (In + d2X(τ))−1 d2Y (τ)

= Y (t+ ω)− Y (0) + C0 +
∑

ω<τ≤t+ω

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

0≤τ<t

d2X(τ + ω) · (In + d2X(τ + ω))−1 d2Y (τ + ω)

= Y (t+ω)−Y (0)+ C0 +
∑

0<τ≤t

d1X(τ+ω) · (In−d1X(τ+ω))−1 d1Y (τ+ω)

−
∑

0≤τ<t

d2X(τ) · (In + d2X(τ + ω))−1 d2Y (τ + ω) = A(X,Y )(t) + C,

where

C0 =
∑

0<τ≤ω

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)−
∑

0≤τ<ω

d2X(τ) · (In + d2X(τ))−1 d2Y (τ),

and C is some constant matrix.
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Lemma 2.5. Let g : [a, b] → R be a nondecreasing function, t0 ∈ [a, b] and c0 ∈ R. Let, in addition,
z ∈ BV([a, b],R) be such that(

dz(t)− z(t) dg(t)
)

sgn(t− t0) ≤ 0 for t ∈ [a, b],

1− d1g(t) > 0, 1 + d2g(t) ̸= 0 for a ≤ t < t0,

1 + d2g(t) > 0, 1− d1g(t) ̸= 0 for t0 < t ≤ b,

(−1)j
(
djz(t0)− c0djg(t0)

)
≤ 0 (j = 1, 2)

and z(t0) ≤ c0. Then
z(t) ≤ x(t) for t ∈ [a, b],

where x is a unique solution of the problem

dx(t) = x(t) dg(t) for t ∈ [a, b],

x(t0) = c0.

The above lemma is a particular case of Lemma 2.4 from the paper [1].

Lemma 2.6. If C is a symmetric matrix, then the inequalities

λ0(C)(x ∗ x) ≤ Cx ∗ x ≤ λ0(C)(x ∗ x)

hold for every x ∈ R.

The lemma is proved in [11, Lemma 1.9].‘

3 Proof of the results
By Lemma 2.1, Theorem 1.1 follows immediately from the corresponding results of the papers [6,
15], and Theorems 1.2, 1.3 and Corollaries 1.1–1.3 follow immediately from Theorems 2.1, 2.2 and
Corollaries 2.2–2.4 of [7], respectively, if we assume that the linear operator l appearing there has the
form l(x) ≡ x(0) − x(ω). Note that condition (1.9) has form (1.11) when the fundamental matrix of
system (1.10) is given by (1.12) in Corollary 1.1.

Proof of Theorem 1.4. By Theorem 1.1 and Lemma 2.3, problem (1.1), (1.2) is uniquely solvable, and
problem (1.10), (1.2) has the unique Green matrix Gω. Therefore, for the proof it is sufficient to verify
that the vector-function given by (1.27) is the ω-periodic solution of system (1.1).

Assume
φ(t) = A(−A, f)(t) for t ∈ R.

Let us show that the vector-function x defined by (1.27) satisfies condition (1.2). By Lemma 2.4,
it is evident that A(A,φ) ∈ BVω(R,Rn) and, therefore,

A(A,φ)(t+ ω) = A(A,φ)(t) + c for t ∈ R, (3.1)

where c is some constant n-vector. Taking into account (3.1) and (1.27), due to (1.25) we have

x(t+ ω) =

t+2ω∫
t+ω

Gω(t+ ω, τ) dA(A,φ)(τ) =

t+ω∫
t

Gω(t+ ω, τ + ω) dA(A,φ)(τ + ω) = x(t).

Let us verify that the vector-function x satisfies system (1.1). By equality (2.2),

Gω(t, τ) = Y (t)CωY
−1(τ) for t, τ ∈ R,

where Y is a fundamental matrix of system (1.10), and

Cω =
(
Y −1(ω)Y (0)− In

)−1
.
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Thus, using the general integration by parts formula, we find that

x(t)− x(s) =

t∫
s

dx(τ) =

t∫
s

d

( τ+ω∫
τ

Gω(τ, η) dA(A,φ)(η)

)
=

t∫
s

d

(
Y (τ)Cω

τ+ω∫
τ

Y −1(η) dA(A,φ)(η)

)

=

t∫
s

dY (τ) · Cω

τ+ω∫
τ

Y −1(η) dA(A,φ)(η) +

t∫
s

Y (τ)Cω d

( τ+ω∫
τ

Y −1(η)dA(A,φ)(η)

)

−
∑

s<η≤t

d1Y (τ) · Cω d1

( τ+ω∫
τ

Y −1(η) dA(A,φ)(η)

)

+
∑

s≤η<t

d2Y (τ) · Cω d2

( τ+ω∫
τ

Y −1(η) dA(A,φ)(η)

)
for s < t. (3.2)

On the other hand, due to (2.1),

Y −1(t+ ω)− Y −1(t) ≡ C−1
ω Y −1(t). (3.3)

By (3.1), for τ ∈ R, we conclude that

τ+ω∫
τ

Y −1(η) dA(A,φ)(η) =

ω∫
τ

Y −1(η) dA(A,φ)(η) +

τ+ω∫
ω

Y −1(η) dA(A,φ)(η)

=

ω∫
τ

Y −1(η) dA(A,φ)(η) +

τ∫
0

Y −1(η + ω) dA(A,φ)(η + ω)

=

ω∫
0

Y −1(η) dA(A,φ)(η) +

τ∫
0

(
Y −1(η + ω)− Y −1(η)

)
dA(A,φ)(η).

Hence, taking into account (3.3), we get
τ+ω∫
τ

Y −1(η) dA(A,φ)(η) ≡
ω∫

0

Y −1(η) dA(A,φ)(η) + C−1
ω

τ∫
0

Y −1(η) dA(A,φ)(η).

Due to the last equality and the general integration-by-parts formula, taking into account the equalities

dY (t) = dA(t) · Y (t) and djY (t) = djA(t) · Y (t) for t ∈ R (j = 1, 2),

it follows from (3.2) that

x(t)− x(s) =

t∫
s

dA(τ) · Y (τ)Cω

τ+ω∫
τ

Y −1(η) dA(A,φ)(η) + F (s, t)

=

t∫
s

dA(τ) · x(τ) + F (s, t) for s, t ∈ R, s < t, (3.4)

where

F (s, t) = A(A,φ)(t)−A(A,φ)(s)

−
∑

s<τ≤t

d1A(τ) · d1A(A,φ)(τ) +
∑

s≤τ<t

d2A(τ) · d2A(A,φ)(τ) for s, t ∈ R, s < t.
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Moreover, taking into account condition (1.26), according to the definition of the operator A and the
function φ, we conclude that

d1φ(τ) = d1f(τ)−
∑

s<τ≤t

d1A(τ) ·
(
In + d1A(τ)

)−1
d1f(τ) for τ ∈ R,

and
d2φ(τ) = d2f(τ) +

∑
s≤τ<t

d2A(τ) ·
(
In − d2A(τ)

)−1
d2f(τ) for τ ∈ R.

Using the last equalities, we can easily show that

F (s, t) = φ(t)− φ(s) +
∑

s<τ≤t

d1A(τ) · (In − d1A(τ))−1 d1φ(τ)

−
∑

s≤τ<t

d2A(τ) · (In + d2A(τ))−1 d2φ(τ)

−
∑

s<τ≤t

(d1A(τ))2 · (In − d1A(τ))−1 d1φ(τ)

−
∑

s≤τ<t

(d2A(τ))2 · (In + d2A(τ))−1 d2φ(τ)

= φ(t)− φ(s) +
∑

s<τ≤t

d1A(τ) · d1φ(τ)−
∑

s≤τ<t

d2A(τ) · d2φ(τ)

= f(t)− f(s) for s, t ∈ R, s < t.

Consequently, due to (3.4), the vector-function x satisfies equation (1.1).

Proof of Theorem 1.5. According to Theorem 1.1, to prove the theorem, it suffices to show that the
homogeneous system (1.10) has only the trivial ω-periodic solution. Let x = (xi)

n
i=1 be an arbitrary

solution of the latter problem. Assume

uj(t) =

nj∑
i=nj−1+1

x2
i (t) for t ∈ [0, ω] (j = 1, . . . ,m).

By condition (1.34), conditions (1.28)–(1.32) are fulfilled. In view of (1.29) and the formula of
integration by parts, we find that

σ1(u1(t)− u1(s)) = σ1

n1∑
i=1

(
2

t∫
s

xi(τ) dxi(τ)−
∑

s<τ≤t

(d1xi(t))
2 +

∑
s≤τ<t

(d2xi(t))
2

)

= σ1

n1∑
i=1

(
2

t∫
s

xi(τ)xk(τ) daik(τ) +
∑

s<τ≤t

(
x2
i (τ)− x2

i (τ−)− 2xi(τ) d1xi(τ)
)

+
∑

s≤τ<t

(
x2
i (τ+)− x2

i (τ)− 2xi(τ) d2xi(τ)
))

= 2σ1

n1∑
i,k=1

( t∫
s

xi(τ)xk(τ) daik(τ)−
∑

s<τ≤t

xi(τ)xk(τ) d1aik(τ)−
∑

s≤τ<t

xi(τ)xk(τ) d2aik(τ)

)

+ σ1

2∑
j=1

(
sj(u1)(t)− sj(u1)(s)

)
for 0 ≤ s ≤ t ≤ ω.
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Hence,

σ1

(
u1(t)− u1(s)

)
= 2σ1

n1∑
i,k=1

t∫
s

xi(τ)xk(τ) ds0(aik)(τ)

+ σ1

2∑
j=1

(
sj(u1)(t)− sj(u1)(s)

)
for 0 ≤ s ≤ t ≤ ω.

On the other hand,

σ1

2∑
j=1

(
sj(u1)(t)− sj(u1)(s)

)
=

n1∑
i,k=1

{ ∑
s<τ≤t

d1xi(τ) ·
(
2xi(τ)− d1xi(τ)

)
+

∑
s≤τ<t

d2xi(τ) ·
(
2xi(τ) + d2xi(τ)

)}

= 2

n1∑
i,k=1

{ ∑
s<τ≤t

xi(τ)xk(τ)
(
d1aik(τ)−

1

2

n1∑
r=1

d1ari(τ) · d1ark(τ)
)

+
∑

s≤τ<t

xi(τ)xk(τ)
(
d2aik(τ)−

1

2

n1∑
r=1

d2ari(τ) · d2ark(τ)
)}

for 0 ≤ s ≤ t ≤ ω.

From this and (1.32), we obtain

σ1(u1(t)− u1(s)) = 2σ1

n1∑
i,k=1

t∫
s

xi(τ)xk(τ) db1ik)(τ) for 0 ≤ s ≤ t ≤ ω. (3.5)

With regard for (1.28)–(1.31), it follows from (3.5) that

σ1(u1(t)− u1(s)) = 2σ1

n1∑
i=1

t∫
s

x2
i (τ) db1ii(τ) + 2σ1

n1∑
i ̸=k;i,k=1

t∫
s

xi(τ)xk(τ) db1ik(τ)

≥ 2σ1

r1∑
l=1

n1∑
i,k=1

t∫
s

pl1ik(τ)xi(τ)xk(τ) dgl1(τ) ≥ 2

r1∑
l=1

t∫
s

αl1(τ)

n1∑
i=1

x2
i (τ) dgl1(τ),

i.e.,

σ1(u1(t)− u1(s)) ≥
t∫

s

u1(τ) dg1(τ) for 0 ≤ s ≤ t ≤ ω.

Moreover, by (1.35), the conditions of Lemma 2.5 are fulfilled for t0 = t1, c0 = u1(t0) and g(t) ≡
g1(t). In addition, by (1.35),

1 + (−1)jdjg1(t) ̸= 0 for t ∈ [0, ω] (j = 1, 2)

and, therefore, the problem
dx(t) = σ1x(t) dg1(t), x(t0) = c0

has a unique solution x given by

x(t) = c0γt0(σ1g1)(t) for t ∈ [0, ω],

where the function γt0(σ1g1)(t) is defined by (1.33). According to Lemma 2.5, we have

u1(t) ≤ c0γt0(σ1g1)(t) for t ∈ [0, ω]. (3.6)
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Due to (1.8), we have u1(0) = u1(ω). Hence, it follows from (3.6) that

u1(ω − t1) ≤ u1(t1)γt1(σ1g1)(ω − t1) = u1(ω − t1) γt1(σ1g1)(ω − t1).

Therefore, due to (1.36),
c0 = u1(0) = u1(ω) = 0,

and thus, by (3.6), we have
u1(t) ≡ 0.

Using this identity and (1.28)–(1.32), by induction, we prove uj(t) ≡ 0 (j = 1, . . . ,m). Consequently,
xi(t) = 0 for t ∈ [0, ω] (i = 1, . . . , n).

Proof of Theorem 1.6. According to Theorem 1.1, to prove the theorem, it suffices to show that the
homogeneous system (1.10) has only the trivial ω-periodic solution. Let x = (xi)

n
i=1 be an arbitrary

solution of the latter problem. Assume

u(t) =

n∑
i=1

x2
i (t) for t ∈ [0, ω].

Consider the case (a). Analogously to the proof of equality (3.5) in Theorem 1.5, using (1.39), we
can show that the equality

u(t)− u(s) = 2

n∑
i=1

t∫
s

xi(τ)xk(τ) dbik(τ) for 0 ≤ s ≤ t ≤ ω

is valid. Thus, by (1.38), we have

u(t)− u(s) = 2

n∑
i=1

t∫
s

pik(τ)xi(τ)xk(τ) dg(τ) for 0 ≤ s ≤ t ≤ ω.

Therefore, due to (1.40), we find

u(t)− u(s) ≥
t∫

s

u(τ) dgα(τ) for 0 ≤ s ≤ t ≤ ω,

i.e., (
du(t)− u(t) dgα(t)

)
sgn(t− ω) ≤ 0 for 0 ≤ s ≤ t ≤ ω

and
d1u(ω)− u(ω) d1gα(ω) ≥ 0.

Now, taking into account condition (1.41), due to Lemma 2.5, we find

u(t) ≤ u(ω)γω(α)(t) for t ∈ [0, ω], (3.7)

whence, by equality u(0) = u(ω) and (1.42), we have

u(ω) = u(0) ≤ u(ω)γω(α)(0)

and u(ω) = 0. Hence by (3.7) we find u(t) ≡ 0 and xi(t) ≡ 0 (i = 1, . . . , n).
In a similar way we can prove the theorem in the case (b) as well. It should only be noted that

due to (1.43), (1.44) and Lemma 2.5, we have the estimate

u(t) ≤ u(0)γ0(β)(t) for t ∈ [0, ω]

instead of (3.7). Thus
u(ω) = u(0) ≤ u(0)γ0(β)(ω)

and, therefore, by (1.45), we get u(0) = 0, u(t) ≡ 0 and xi(t) ≡ 0 (i = 1, . . . , n).
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Proof of Corollary 1.4. It is evident that
n∑

i,k=1

pik(t)xixk ≡ 1

2

n∑
i,k=1

(
pik(t) + pki(t)

)
for µ(g)-almost all t ∈ [0, ω], (xi)

n
i=1 ∈ Rn,

from which by Lemma 2.6, we have

λ0(P
∗(t))

n∑
i=1

x2
i ≤

n∑
i,k=1

pik(t)xixk ≤ λ0(P ∗(t))

n∑
i=1

x2
i for µ(g)-almost all t ∈ [0, ω], (xi)

n
i=1 ∈ Rn.

Therefore, the corollary follows immediately from Theorem 1.6.
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Abstract. In this paper we investigate the existence and uniqueness of solutions on a compact
interval for non-linear fractional integro-differential equations with state-dependent delay and non-
instantaneous impulses. Our results are based on the Banach contraction principle and the Kras-
noselkii fixed point theorem. For the illustration of the results, an example is also discussed.
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ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ÜÅÄÍ ÛÄÅÉÓßÀÅËÉÈ ÊÏÌÐÀØÔÖÒ ÉÍÔÄÒÅÀËÆÄ ÂÀÍÓÀÆÙÅÒÖË ÀÌÏÍÀáÓÍÈÀ
ÀÒÓÄÁÏÁÀÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀÓ ÀÒÀßÒ×ÉÅÉ ×ÒÀØÝÉÖËÉ ÉÍÔÄÂÒÏÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄ-
ÁÄÁÉÓÀÈÅÉÓ ÛÉÍÀÂÀÍ ÌÃÂÏÌÀÒÄÏÁÀÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÃÀÂÅÉÀÍÄÁÉÈÀ ÃÀ ÀÒÀÌÚÉÓÉÄÒÉ ÉÌÐÖË-
ÓÄÁÉÈ. ÜÅÄÍÉ ÛÄÃÄÂÄÁÉ Ä×ÖÞÍÄÁÀ ÁÀÍÀáÉÓ ÊÖÌÛÅÉÓ ÐÒÉÍÝÉÐÓ ÃÀ ÊÒÀÓÍÏÓÄËÓÊÉÓ ÖÞÒÀÅÉ
ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÀÓ. ÛÄÃÄÂÄÁÉÓ ÉËÖÓÔÒÀÝÉÉÓÈÅÉÓ ÂÀÍáÉËÖËÉÀ ÛÄÓÀÁÀÌÉÓÉ ÌÀÂÀËÉÈÉ.
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1 Introduction
This paper is concerned with the existence of solutions defined on a compact real interval for semilinear
integro-differential equations of fractional order for which impulses are not instantaneous of the form

y′(t)−
t∫

0

(t− s)α−2

Γ(α− 1)
Ay(s) ds = f(t, yρ(t,yt)), a.e. t ∈ (si, ti+1] ⊂ J, i = 0, . . . , N, (1.1)

y(t) = gi(t, yρ(t,yt)), t ∈ (ti, si], i = 1, . . . , N, (1.2)
y0 = ϕ ∈ B, (1.3)

where 1 < α < 2, J = [0, b], b > 0, A : D(A) ⊂ E → E is a closed linear operator of sectorial
type on a complex Banach space (E, ∥ · ∥E), the convolution integral in the equation is known as the
Riemann–Liouville fractional integral, f : J ×B → E and ρ : J ×B → (−∞, b] are suitable functions.
For any function y defined on (−∞, b] and any t ≥ 0, we denote by yt the element of B defined by
yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. Here, yt( · ) represents the history of the state from each time
θ ∈ (−∞, 0] up to the present time t. We assume that the histories yt belong to some abstract phase
space B, to be specified later, let 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tN−1 ≤ sN ≤ tN ≤ tN+1 = b be
pre-fixed numbers, and gi ∈ C((ti, si]×B, E), for all i = 1, 2, . . . , N , stand for the impulsive conditions.

Fractional differential equations have been of great interest recently, in both the intensive devel-
opment of the theory of fractional calculus itself and the applications of such constructions in various
sciences such as physics, mechanics, chemistry, engineering, economy and so on (see [20, 21, 23]). In
particular, the question on the existence of solutions of the Cauchy problem for fractional integro-
differential equations was studied in numerous works; we refer the reader to the books by Abbas et
al. [1, 2], Kilbas et al. [16], Lakshmikantham et al. [18], and the papers by Anguraj et al. [3], Bal-
achandran et al. [5]. Cuevas et al. [6, 8, 9], studying S-asymptotically w-periodic solutions of some
classes of semilinear differential and integro-differential equations. Recently, Wang and Chen [24]
considered a class of retarded integro-differential equations with nonlocal initial conditions where the
existence results of solutions are given over the half-line [0,∞). In [11], Gautam and Dabas studied
the existence of local and global mild solution for an impulsive fractional integro-differential equation
with state dependent delay.

Recently, Hernández and O’Regan [13] initiated the study on the Cauchy problems for a new
type of first order evolution equations with non instantaneous impulses. In the model analyzed
in [13], the impulses start abruptly at the points ti and their action continue on a finite time interval
[ti, si]. This type of problem motivates to study certain dynamical changes of evolution processes
in pharmacotherapy. For example, as in [13], we note the following simplified situation concerning
the hemodynamical equilibrium of a person. In the case of decompensation (for example, high or
low levels of glucose) one can prescribe some intravenous drugs (insulin). Since the introduction of
the drugs in the bloodstream and the consequent absorbtion for the body are gradual and continuous
processes, we can interpret this situation as an impulsive action which starts abruptly and stays active
on a finite time interval.

In this paper, we provide sufficient conditions for the existence of solutions for problem (1.1)–
(1.3). Our approach is based on the Banach contraction principle and on the Krasnoselskii fixed point
theorem.

2 Preliminaries
We introduce notations, definitions and theorems which are used throughout this paper.

Let C(J,E) be the Banach space of continuous functions from J into E with the norm

∥y∥∞ = sup
{
∥y(t)∥E : t ∈ J

}
.

Let B(E) denote the Banach space of bounded linear operators from E into E.
A measurable function y : J → E is Bochner integrable if and only if ∥y∥E is Lebesgue integrable.
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Let L1(J,E) denote the Banach space of measurable functions y : J → E which are Bochner
integrable normed by

∥y∥L1 =

b∫
0

∥y(t)∥E dt.

We define

PC(J,E) =
{
y : J → E; y ∈ C((tk, tk+1], E), k = 0, 1, . . . , N

and y(t+k ), y(t
−
k ) exist with, y(t−k ) = y(tk), k = 1, . . . , N

}
.

Obviously, PC(J,E) is a Banach space with the norm

∥y∥PC = sup
t∈J

∥y(t)∥E .

In this paper, we will employ an axiomatic definition of the phase space B introduced by Hale and
Kato in [12] and follow the terminology used in [15]. Thus, (B, ∥ · ∥B) will be a seminormed linear
space of functions mapping (−∞, 0] into E, and satisfying the following axioms:
(A1) If y : (−∞, b) → E, b > 0, is continuous on J and y0 ∈ B, then for every t ∈ J we have the

following conditions:

(i) yt ∈ B;
(ii) there exists a positive constant H such that ∥y(t)∥E ≤ H∥yt∥B;
(iii) there exist two functions K( · ),M( · ) : R+ → R+ independent of y with K continuous and

M locally bounded such that

∥yt∥B ≤ K(t) sup
{
∥y(s)∥E : 0 ≤ s ≤ t

}
+M(t)∥y0∥B.

(A2) For the function y in (A1), yt is a B−valued continuous function on J .

(A3) The space B is complete.
Denote

Kb = sup
{
K(t) : t ∈ J

}
and Mb = sup

{
M(t) : t ∈ J

}
.

Remark 2.1.
1. (A1)(ii) is equivalent to ∥ϕ(0)∥ ≤ H∥ϕ∥B for every ϕ ∈ B.

2. Since ∥ · ∥B is a seminorm, two elements ϕ, ψ ∈ B can verify ∥ϕ− ψ∥B = 0 without necessarily
ϕ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence in the first remark, we can see that for all ϕ, ψ ∈ B such that ∥ϕ−ψ∥B = 0,
we necessarily have ϕ(0) = ψ(0).

Definition 2.2. A function f : J × B → E is said to be a Carathéodory function if
(i) for each t ∈ J , the function f(t, · ) : B → E is continuous;

(ii) for each y ∈ B, the function f( · , y) : J → E is measurable.
Definition 2.3. Let A be a closed and linear operator with domain D(A) defined on a Banach
space E. We recall that A is the generator of a solution operator if there exists µ ∈ R and a strongly
continuous function S : R+ → B(E) such that{

λα : Re(λ) > µ
}
⊂ ρ(A)

and

λα−1(λα −A)−1x =

∞∫
0

e−λtS(t)x dt, Reλ > µ, x ∈ E.

In this case, Sα(t) is called the solution operator generated by A.
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Remark 2.4. The concept of a solution operator, as defined above, is closely related to the concept of
a resolvent family (see Prüss [22]). Because of the uniqueness of the Laplace transform, in the border
case α = 1, the family S(t) corresponds to a C0 semigroup (see [10]), whereas in the case α = 2,
a solution operator corresponds to the concept of a cosine family (see [4]). We note that solution
operators, as well as resolvent families, are a particular case of (a, k)-regularized families introduced
in [19]. According to [19], a solution operator Sα(t) corresponds to a (1, t

α−1

Γ(α) )-regularized family. The
following result is a direct consequence of [19, Proposition 3.1 and Lemma 2.2].
Proposition 2.5. Let Sα(t) be a solution operator on E with generator A. Then the following
conditions are satisfied:

(a) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0.

(b) Let x ∈ D(A) and t ≥ 0,

Sα(t)x = x+

t∫
0

(t− s)α−1

Γ(α)
ASα(s) ds.

(c) Let x ∈ E. Then
t∫
0

(t−s)α−1

Γ(α) Sα(s)x ds ∈ D(A) and

Sα(t)x = x+A

t∫
0

(t− s)α−1

Γ(α)
Sα(s) ds.

Definition 2.6. Let A : D(A) ⊂ E → E be a closed linear operator. A is said to be sectorial of the
type (M, θ, µ) if there exist µ ∈ R, θ ∈ (0, π2 ) and M > 0 such that the resolvent of A exists outside
the sector and following two conditions are satisfied:

(1) µ+ Sθ = {µ+ s : λ ∈ C, | arg(−λ)| < θ};

(2) ∥(λ−A)−1∥ ≤ M
|λ−µ| , λ ̸∈ µ+ Sθ.

In this paper, we assume that in problem (1.1)–(1.3) the operator A is sectorial of type µ with
0 ≤ θ < π( 1−α

2 ). Then A is the generator of a solution operator given by

Sα(t) =
1

2πi

∫
γ

expλt λα−1(λα −A)−1 dλ,

where γ is a suitable path lying outside the sector µ+ Sθ.
Cuesta [7] has proved that if A is a sectorial operator of type µ, for some M > 0 and 0 < θ <

π(1− α
2 ), there is C > 0 such that

∥Sα(t)∥B(E) ≤
CM

1 + |µ|tα
if µ < 0

and

∥Sα(t)∥B(E) ≤ CM(1 + µtα)eµ
1
α t if µ ≥ 0.

Note that Sα(t) is, in fact, integrable on [0, b].
Theorem 2.7 (Krasnoselkii’s fixed point theorem [17]). Let B be a closed convex and nonempty
subset of a Banach space X. Let P and Q be two operators such that

(i) Px+Qy ∈ B, whenever x, y ∈ B;

(ii) P is compact and continuous;

(iii) Q is a contraction mapping.
Then there exists z ∈ B such that z = Pz +Qz.
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3 Main results
Motivated by [9], we give the following definition of a mild solution of (1.1)–(1.3).

Definition 3.1. We say that the function y : (−∞, b] → E is a mild solution of (1.1)–(1.3) if
y0 = ϕ ∈ B on (−∞, b], y|[0,b] ∈ PC([0, b], E) and

y(t) =



Sα(t)ϕ(0) +

t∫
0

Sα(t− s)f(s, yρ(s,ys)) ds, t ∈ [0, t1],

gi(t, yρ(t,yt)), t ∈ (ti, si], i = 1, 2, . . . , N,

Sα(t− si)gi(si, yρ(si,ysi
)) +

t∫
si

Sα(t− s)f(s, yρ(s,ys)) ds, t ∈ (si, ti+1].

Set
R(ρ−) =

{
ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0

}
.

We always assume that ρ : J × B → (−∞, b] is continuous. Additionally, we introduce the following
hypothesis:

(Hφ) The function t→ φt is continuous from R(ρ−) into B and there exists a continuous and bounded
function Lϕ : R(ρ−) → (0,∞) such that

∥ϕt∥B ≤ Lϕ(t)∥ϕ∥B for every t ∈ R(ρ−).

Remark 3.2. The condition (Hφ) is frequently verified by the functions, continuous and bounded.
For more details, see, e.g., [15].

Lemma 3.3 ([14, Lemma 2.4]). If y : (−∞, b] → E is a function such that y0 = ϕ, then

∥ys∥B ≤ (Mb + Lϕ)∥ϕ∥B +Kb sup
{
|y(θ)| : θ ∈ [0,max{0, s}]

}
, s ∈ R(ρ−) ∪ J,

where Lϕ = sup
t∈R(ρ−)

Lϕ(t).

Proposition 3.4. From (Hφ), (A1) and Lemma 3.3, for all t ∈ [0, b] we have

∥yρ(t,yt)∥B ≤ (Mb + Lϕ)∥ϕ∥B +Kb∥y(t)∥.

Our first result is based on the Banach contraction principle.

Theorem 3.5. Assume:

(H1) The solution operator Sα(t) is compact for t > 0, and there exists M > 0 such that ∥Sα(t)∥ ≤M
for every t ∈ J .

(H2) There exists l > 0 such that

∥f(t, u)− f(t, v)∥E ≤ lf∥u− v∥B for all u, v ∈ B.

(H3) The functions gi : (ti, si] × B → E, i = 1, . . . , N , are continuous and there exist the constants
hi > 0, i = 1, . . . , N such that

∥gi(t, u)− gi(t, v)∥E ≤ l′g∥u− v∥B for all u, v ∈ B.

If
C =MKb(l

′
g + lfb) < 1,

then there exists a unique solution of problem (1.1)–(1.3).
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Proof. Let Y = {u ∈ PC(E) : u(0) = ϕ(0) = 0} be endowed with the uniform convergence topology
and P : Y → Y be the operator defined by

(Py)(t) =



Sα(t)ϕ(0) +

t∫
0

Sα(t− s)f(s, yρ(s,ys)
) ds, t ∈ [0, t1], i = 0,

gi(t, yρ(t,yt)
), t ∈ (ti, si], i ≥ 1,

Sα(t− si)gi(si, yρ(si,ysi
)) +

t∫
si

Sα(t− s)f(s, yρ(s,ys)
) ds, t ∈ (si, ti+1], i ≥ 1,

where y : (−∞, b] → E is such that y0 = ϕ and y = y on J . Let ϕ : (−∞, b] → E be the extension
of ϕ to (−∞, b] such that ϕ(θ) = ϕ(0) = 0 on J . It is clear that P is a well-defined operator from Y
into Y . We show that P has a fixed point which is, in turn, a mild solution of problem (1.1)–(1.3).

For any t ∈ [0, t1] and y, y∗ ∈ Y , from (H1)–(H2) we have

∥(Py)(t)− (Py∗)(t)∥E ≤
t∫

0

∥Sα(t− s)∥B(E)

∥∥f(s, yρ(s,ys)
)− f(s, y ∗

ρ(s,y ∗
s ))

∥∥
E
ds

≤
t∫

0

Mlf
∥∥yρ(s,ys)

− y ∗
ρ(s,y ∗

s )

∥∥
B ds.

Using Proposition 3.4, we get

∥(Py)(t)− (Py∗)(t)∥E ≤
t∫

0

MlfKb

∥∥y(s)− y ∗(s)
∥∥
E
ds ≤MlfKb

t∫
0

∥∥y(s)− y ∗(s)
∥∥
E
ds

=MlfKb

t∫
0

∥y(s)− y∗(s)∥E ds (since y = y on [0, b])

≤MlfKbb∥y − y∗∥PC.

For any t ∈ (ti, si], i = 1, . . . , N , we have

∥(Py)(t)− (Py∗)(t)∥E =
∥∥gi(t, yρ(t,yt)

)− gi(t, y
∗
ρ(t,y ∗

t ))
∥∥
E
≤ l′gKb∥y − y∗∥PC.

Similarly, for any t ∈ (si, ti+1], i = 1, . . . , N , we have

∥(Py)(t)− (Py∗)(t)∥E ≤
∥∥∥Sα(t− si)

[
gi(si, yρ(si,ysi

))− gi(si, y
∗
ρ(si,y ∗

si
))
]∥∥∥

E

+

t∫
si

∥Sα(t− s)∥B(E)

∥∥f(s, yρ(s,ys)
)− f(s, y ∗

ρ(s,y ∗
s ))

∥∥
E
ds

≤Ml′gKb∥y − y∗∥PC +MlfKbb∥y − y∗∥PC ≤ (Ml′gKb +MlfKbb)∥y − y∗∥PC.

Thus, for all t ∈ [0, b], we obtain ∥(Py)− (Py∗)∥PC ≤ C∥y − y∗∥PC. Hence, P is a contraction on Y
and has a unique fixed point y ∈ P , which is, obviously, a unique mild solution of problem (1.1)–(1.3)
on [0, b].

To obtain an existence result via Krasnoselskii’s fixed point theorem, we need the following as-
sumptions.

(H4) The function f : J × B → E is Carathéodory one.
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(H5) There exist a function p ∈ L1(J ;R+) and a continuous nondecreasing function ψ : R+ → (0,∞)
such that

∥f(t, u)∥E ≤ p(t)ψ(∥u∥B) for a.e. t ∈ J and each u ∈ B.

(H6) The functions t→ gi(t, 0) are bounded with

G∗ = max
i=1,...,N

∥gi(t, 0)∥E .

Theorem 3.6. Assume that (H1), (H3)–(H6) and (Hφ) hold. Then problem (1.1)–(1.3) has a mild
solution.

Proof. Let P be the operator introduced in the proof of Theorem 3.5. We introduce the decomposition
Py(t) = P 1y(t) + P 2y(t), where

(P 1y)(t) =



Sα(t− si)gi(si, yρ(si,ysi
)) +

t∫
si

Sα(t− s)f(s, yρ(s,ys)
) ds, if t ∈ (si, ti+1], i ≥ 1,

Sα(t)ϕ(0) +

t∫
0

Sα(t− s)f(s, yρ(s,ys)
) ds, if t ∈ [0, t1],

0, if t ∈ (ti, si], i ≥ 1,

and

(P 2y)(t) =


gi(t, yρ(t,yt)

), if t ∈ (ti, si], i ≥ 1,

0, if t ∈ (si, ti+1], i ≥ 1,

0, if t ∈ [0, t1].

Let Br = {y ∈ Y : ∥y∥PC ≤ r}. The proof of the theorem will be given in a couple of steps.
Step 1: For any y ∈ Br, we have P 1y + P 2y ∈ Br.
Case 1. For each t ∈ [0, t1], we obtain

∥(P 1y + P 2y)(t)∥E ≤ ∥Sα(t)∥B(E)∥ϕ(0)∥B +

t∫
0

∥Sα(t− s)f(s, yρ(s,ys)
)∥E ds

≤M∥ϕ∥B +M

t∫
0

∥f(s, yρ(s,ys)
∥E ds ≤M∥ϕ∥B +M

t∫
0

p(s)ψ
(
∥yρ(s,ys)

∥B
)
ds.

Set
d = (Mb + Lϕ)∥ϕ∥B +Kbr.

Then we have

∥(P 1y + P 2y)(t)∥E ≤M∥ϕ∥B +Mψ(d)

t∫
0

p(s) ds.

Thus,
∥P 1(y) + P 2(y)∥ ≤M∥ϕ∥B +Mψ(d)∥p∥L1[0,t1] ≤ r.

Case 2. For each t ∈ [ti, si), i = 1, 2, . . . , N , we have

∥(P 1y + P 2y)(t)∥E ≤ ∥gi(t, yρ(t,yt)
)∥E

≤
∥∥gi(t, yρ(t,yt)

)− gi(t, 0)
∥∥
E
+ ∥gi(t, 0)∥E ≤ l′g∥yρ(t,yt)

∥B +G∗ ≤ l′gd+G∗.

Then
∥P 1y + P 2y∥ ≤ l′gd+G∗ ≤ r.



Existence Results for a New Class of Fractional Integro-differential Equations with State Dependent Delay 35

Case 3. For each t ∈ (si, ti+1), i = 1, 2, . . . , N , we obtain

∥(P 1y + P 2y)(t)∥E ≤
∥∥Sα(t− si)gi(si, yρ(si,ysi

))
∥∥
E

+

t∫
si

∥∥Sα(t− s)f(s, yρ(s,ys)
)
∥∥
E
ds ≤M(l′gd+G∗) +Mψ(d)

t∫
si

p(s) ds.

Then

∥P 1y + P 2y∥ ≤M

(
l′gd+G∗ + ψ(d)

t∫
si

p(s) ds

)
≤ r.

Thus, we obtain P 1y + P 2y ∈ Br for any y ∈ Br.
Step 2: We show that P 2 is a contraction on Br.
Case 1. For y1, y2 ∈ Br and for t ∈ [0, t1], we have∥∥(P 2y1)(t)− (P 2y2)(t)

∥∥
E
= 0.

Case 2. For y1, y2 ∈ Br and for t ∈ [ti, si), i = 1, 2, . . . , N , we have∥∥(P 2y1)(t)− (P 2y2)(t)
∥∥
E
≤ l′gd.

Case 3. For y1, y2 ∈ Br and for t ∈ (si, ti+1], i = 1, 2, . . . , N , we obtain∥∥(P 2y1)(t)− (P 2y2)(t)
∥∥
E
= 0.

Thus, we obtain
∥P 2y1 − P 2y2∥PC ≤ l′gd = L,

which implies that P 2 is a contraction due to L < 1.
Step 3: P 1 is continuous.

Let yn be a sequence such that yn → y in Br.
Case 1. For each t ∈ [0, t1], we have

∥∥P 1(yn)(t)− P 1(y)(t)
∥∥
E
=

∥∥∥∥Sα(t)ϕ(0) +

t∫
0

Sα(t− s)
[
f(s, y n

ρ(s,y n
s ))− f(s, yρ(s,ys)

)
]
ds

∥∥∥∥
E

≤M

t∫
0

∥∥f(s, y n
ρ(s,y n

s ))− f(s, yρ(s,ys)
)
∥∥
E
ds.

Case 2. For each t ∈ [ti, si), i = 1, 2, . . . , N , we have∥∥P 1(yn)(t)− P 1(y)(t)
∥∥
E
= 0.

Case 3. For each t ∈ (si, ti+1], i = 1, 2, . . . , N , we obtain

∥∥P 1(yn)(t)− P 1(y)(t)
∥∥
E
=

∥∥∥∥Sα(t)ϕ(0) +

t∫
0

Sα(t− s)
[
f(s, y n

ρ(s,y n
s ))− f(s, yρ(s,ys)

)
]
ds

∥∥∥∥
E

≤M

t∫
0

∥∥f(s, y n
ρ(s,y n

s ))− f(s, yρ(s,ys)
)
∥∥
E
ds.

Then by (H4), by the Lebesgue dominated convergence theorem, we have

∥P 1yn − P 1y∥PC → 0 as n→ +∞.

Step 4: P 1 is compact.
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I. P 1(Br) ⊂ Br because ∥P 1y∥ ≤ r.

II. We show that P 1 maps a bounded set into a equicontinuous set of Br.

Case 1. For the interval t ∈ [0, t1], 0 ≤ τ1 ≤ τ2 ≤ t1, any y ∈ Br, one has∥∥(P 1y)(τ2)− (P 1y)(τ1)
∥∥
E
≤ ∥Sα(τ2)− Sα(τ1)∥B(E)∥ϕ∥B

+

τ1∫
0

∥S(τ2 − s)− S(τ1 − s)∥B(E)∥f(s, yρ(s,ys)
)∥E ds+

τ2∫
τ1

∥Sα(τ2 − s)f(s, yρ(s,ys)
)|∥E ds

≤ ∥Sα(τ2)−Sα(τ1)∥B(E)∥ϕ∥B+ψ(d)
τ1∫
0

∥∥Sα(τ2−s)−Sα(τ1−s)
∥∥
B(E)

p(s) ds+Mψ(d)

τ2∫
τ1

p(s) ds.

Case 2. For the interval t ∈ [ti, si), i = 1, 2, . . . , N , ti ≤ τ1 ≤ τ2 ≤ si, any y ∈ Br, one has∥∥(P 1y)(τ2)− (P 1y)(τ1)
∥∥
E
= 0.

Case 3. For the interval t ∈ (si, ti+1], i = 1, 2, . . . , N , si ≤ τ1 ≤ τ2 ≤ ti + 1, any y ∈ Br, one has∥∥(P 1y)(τ2)− (P 1y)(τ1)
∥∥
E
≤

∥∥Sα(τ2 − si)− Sα(τ1 − si)
∥∥
B(E)

∥gi(si, yρ(si,ysi
))∥E

+

τ1∫
0

∥∥Sα(τ2 − si)− Sα(τ1 − si)
∥∥
B(E)

∥f(s, yρ(s,ys)
)∥E ds+

τ2∫
τ1

∥∥Sα(τ2 − si)f(s, yρ(s,ys)
)
∥∥
E
ds

≤
∥∥Sα(τ2 − si)− Sα(τ1 − si)

∥∥
B(E)

(l′gd+G∗)

+ ψ(d)

τ1∫
0

∥∥Sα(τ2 − si)− Sα(τ1 − si)
∥∥
B(E)

p(s) ds+Mψ(d)

τ2∫
τ1

p(s) ds.

From the aforementioned equation, we find that ∥(P 1y)(τ2) − (P 1y)(τ1)∥ → 0 as τ2 → τ1, since
Sα(t) is continuous in the uniform operator topology. So, P 1 is equicontinuous. As a consequence of
Steps 3–4, together with the Arzelà–Ascoli theorem, we can conclude that P 1 : Br → Br is continuous
and completely continuous. By using Krasnoselskii’s fixed point theorem, the operator P = P 1 + P 2

has a fixed point, which is a solution of problem (1.1)–(1.3).

4 An example
We consider the fractional differential equation with a state-dependent delay of the form

∂u

∂t
(t, x)− 1

Γ(α− 1)

t∫
−∞

(t− s)α−2Lxu(s, x) ds

=
e−γt+t|u(t− σ(u(t, 0)), x)|

3(e−t + et)(1 + |u(t− σ(u(t, 0), x))|)
, (t, x) ∈

N∪
i=1

[si, ti+1]× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, b],

u(τ, x) = u0(τ, x), θ ∈ (−∞, 0], x ∈ [0, π],

u(t, x) = Gi

(
t, u

(
t− σ(u(t, 0)), x

))
, (t, x) ∈ (ti, si]× [0, π], i = 1, 2, . . . , N,

(4.1)

where 1 < α < 2, 0 = t0 = s0 < t1 < t2 < · · · < tN − 1 ≤ sN ≤ tN ≤ tN + 1 = b are pre-
fixed real numbers, σ ∈ C(R, [0,∞)), γ > 0, Lx stands for the operator with respect to the spatial
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variable x which is given by Lx = ∂2

∂x2 − r, with r > 0. Take E = L2([0, π],R) and the operator
A := Lx : D(A) ⊂ E → E with domain D(A) := {u ∈ E : u′′ ∈ E, u(0) = u(π) = 0}. Clearly, A
is densely defined in E and is sectorial. Hence A is a generator of a solution operator on E. For the
phase space, we choose B = Bγ defined by

Bγ =
{
ϕ ∈ C((−∞, 0],R) : lim

θ→−∞
eγθϕ(θ) exists

}
with the norm

∥ϕ∥γ = sup
θ∈(−∞,0]

eγθ|ϕ(θ)|.

Notice that the phase space Bγ satisfies axioms (A1), (A2) and (A3) (see [15] for more details). Set

y(t)(x) = u(t, x),

ϕ(θ)(x) = u0(θ, x),

f(t, ϕ)(x) =
e−γt+t|ϕ(0, x)|

3(e−t + et)(1 + |ϕ(0, x)|)
,

gi(t, ϕ)(x) = Gi

(
t, u

(
t− σ(u(t, 0)), x

))
,

ρ(t, ϕ) = t− σ(ϕ(0, 0)).

Let ϕ ∈ Bγ be such that (Hϕ) holds, and let t → ϕt be continuous on R(ρ−). Then by Theorem 3.5,
there exists at least one mild solution of (4.1).
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Abstract. In this paper, we study mixed and crack type boundary value problems of the linear
theory of thermopiezoelectricity for homogeneous isotropic bodies possessing the inner structure and
containing interior cracks. The model under consideration is based on the Green–Naghdi theory
of thermopiezoelectricity without energy dissipation. This theory permits propagation of thermal
waves at finite speed. Using the potential method and the theory of pseudodifferential equations on
manifolds with boundary we prove existence and uniqueness of solutions and analyze their smoothness
and asymptotic properties. We describe an efficient algorithm for finding the singularity exponents
of the thermo-mechanical and electric fields near the crack edges and near the curves where different
types of boundary conditions collide. By explicit calculations it is shown that the stress singularity
exponents essentially depend on the material parameters, in general.
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ÒÄÆÉÖÌÄ. ÀÌ ÓÔÀÔÉÀÛÉ ÜÅÄÍ ÛÄÅÉÓßÀÅËÉÈ ÈÄÒÌÏÐÉÄÆÏÄËÄØÔÒÏÏÁÉÓ ßÒ×ÉÅÉ ÈÄÏÒÉÉÓ ÛÄÒÄÖË
ÃÀ ÁÆÀÒÉÓ ÔÉÐÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÓ ÛÉÍÀÂÀÍÉ ÓÔÒÖØÔÖÒÉÓ ÌØÏÍÄ ÄÒÈÂÅÀÒÏÅÀÍÉ ÉÆÏÔÒÏ-
ÐÖËÉ ÓáÄÖËÄÁÉÓÈÅÉÓ, ÒÏÌÄËÈÀÝ ÂÀÀÜÍÉÀ ÛÉÍÀÂÀÍÉ ÓÔÒÖØÔÖÒÀ ÃÀ ÛÄÉÝÀÅÓ ÛÉÃÀ ÁÆÀÒÄÁÓ.
ÂÀÍáÉËÖËÉ ÌÏÃÄËÉ Ä×ÖÞÍÄÁÀ ÂÒÉÍ-ÍÀáÃÉÓ ÈÄÒÌÏÐÉÄÆÏÄËÄØÔÒÏÏÁÉÓ ÈÄÏÒÉÀÓ ÄÍÄÒÂÉÉÓ
ÃÉÓÉÐÀÝÉÉÓ ÂÀÒÄÛÄ. ÀÌ ÈÄÏÒÉÀÛÉ ÃÀÓÀÛÅÄÁÉÀ ÈÄÒÌÖËÉ ÔÀËÙÄÁÉÓ ÂÀÅÒÝÄËÄÁÀ ÓÀÓÒÖËÉ
ÓÉÜØÀÒÉÈ. ÐÏÔÄÍÝÉÀËÈÀ ÌÄÈÏÃÉÓÀ ÃÀ ÓÀÆÙÅÒÉÀÍ ÌÒÀÅÀËÓÀáÄÏÁÄÁÆÄ ÂÀÅÒÝÄËÄÁÖËÉ ×ÓÄÅ-
ÃÏÃÉ×ÄÒÄÍÝÉÖË ÂÀÍÔÏËÄÁÀÈÀ ÈÄÏÒÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÜÅÄÍ ÅÀÌÔÊÉÝÄÁÈ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏÍÀá-
ÓÍÈÀ ÀÒÓÄÁÏÁÀÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀÓ, ÛÄÅÉÓßÀÅËÉÈ ÌÀÈ ÓÉÂËÖÅÄÓÀ ÃÀ ÀÓÉÌÐÔÏÔÖÒ ÈÅÉ-
ÓÄÁÄÁÓ. ÜÅÄÍ ÀÙÅßÄÒÈ Ä×ÄØÔÖÒ ÀËÂÏÒÉÈÌÓ ÈÄÒÌÏÌÄØÀÍÉÊÖÒÉ ÃÀ ÄËÄØÔÒÖËÉ ÅÄËÄÁÉÓ
ÓÉÍÂÖËÀÒÏÁÉÓ ÄØÓÐÏÍÄÍÔÄÁÉÓ ÂÀÌÏÓÀÈÅËÄËÀÃ ÁÆÀÒÉÓ ÊÉÃÄÄÁÉÓ ÌÀáËÏÁËÏÁÀÛÉ ÃÀ ÉÓÄÈÉ
ßÉÒÄÁÉÓ ÌÉÃÀÌÏÛÉ, ÓÀÃÀÝ ÓáÅÀÃÀÓáÅÀ ÔÉÐÉÓ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉ ÄÒÈÌÀÍÄÈÓ áÅÃÄÁÀ. ÐÉÒ-
ÃÀÐÉÒÉ ÂÀÌÏÈÅËÄÁÉÈ ÃÂÉÍÃÄÁÀ, ÒÏÌ ÞÀÁÅÉÓ ÓÉÍÂÖËÀÒÏÁÉÓ ÄØÓÐÏÍÄÍÔÄÁÉ ÓÀÆÏÂÀÃÏÃ ÀÒ-
ÓÄÁÉÈÀÃ ÀÒÉÓ ÃÀÌÏÊÉÃÄÁÖËÉ ÌÀÔÄÒÉÀËÖÒ ÐÀÒÀÌÄÔÒÄÁÆÄ.
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1 Introduction
Theories of thermo-mechanics of continua consistent with a finite speed propagation of heat recently
are attracting increasing attention. In contrast to the conventional heat transfer theory, these non-
classical refined theories involve a hyperbolic-type heat transport equation, and are motivated by
experiments exhibiting the actual occurrence of wave-type heat transport (second sound). Several
authors have formulated these theories on different grounds, and a wide variety of problems revealing
characteristic features of the theories has been investigated.

Green and Naghdi [13, 14] in 1993 developed a thermo-mechanical theory of thermoelastic bodies
based on an entropy balance law rather than an entropy inequality (hereinafter we refer this theory
as Green–Naghdi theory). The linearized form of this theory does not sustain energy dissipation and
permits the transmission of heat as thermal waves at finite speed. Moreover, the heat flux vector is
determined by the same potential function that determines the stress. The thermal waves propagate
with finite speeds and the solution has no dissipative term.

Almost complete historical and bibliographical notes to this direction can be found in the reference
[16] where the dynamical equations of the thermopiezoelectricity without energy dissipation are derived
on the basis of the Green–Naghdi theory established in [13,14] and Eringen’s results obtained in [9,10].

In the present paper we consider the pseudo-oscillation equations obtained by the Laplace trans-
form from the dynamical equations derived by Ieşan in [16] for homogeneous isotropic solids possessing
thermopiezoelectricity properties without energy dissipation. We formulate the basic, mixed and crack
type boundary value problems (BVP) and prove existence and uniqueness of solutions. Our main tools
are the potential method and the theory of pseudodifferential equations. Solutions to the mixed and
crack type boundary value problems have singularities near the crack edges and near the lines where
the different types of boundary conditions collide, regardless of the smoothness of the boundary sur-
faces and given boundary data. Throughout the paper we shall refer to such lines as exceptional
curves. We carry out a detailed theoretical investigation of regularity and asymptotic properties of
thermo-mechanical and electric fields near the exceptional curves. By explicit calculations we show
that the stress singularity exponents essentially depend on the material parameters, in general. We
describe an efficient algorithm for finding the singularity exponents of the thermo-mechanical and
electric fields. The obtained asymptotic formulas allow us to establish optimal regularity results for
solutions.

2 Basic equations
Let Ω = Ω+ be a bounded 3-dimensional domain in R3 with a simply connected piecewise smooth
Lipschitz boundary S = ∂Ω, and Ω = Ω∪ S. Throughout the paper n(x) stands for the outward unit
normal vector to S at the point x ∈ S. We assume also that the origin of the co-ordinate system
belongs to Ω.

By Ck(Ω) we denote the subspace of functions from Ck(Ω) whose derivatives up to the order k are
continuously extendable to S from Ω and by C∞

0 (Ω) the space of infinitely differentiable test functions
with compact supports in Ω ⊂ R3.

The symbols { · }+S and { · }−S designate one sided limits on S from Ω and Ω− := R3\Ω, respectively.
We drop the subscript S if it does not lead to misunderstanding.

By Lp, Lp,loc, W r
p , W r

p,loc, Hs
p , and Bs

p,q (with r ≥ 0, s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞) are denoted
the Lebesgue, Sobolev–Slobodetskii, Bessel potential, and Besov function spaces, respectively (see,
e.g., [23]). Recall that Hr

2 = W r
2 = Br

2,2, Hs
2 = Bs

2,2, W t
p = Bt

p,p, and Hk
p = W k

p , for any r ≥ 0, for
any s ∈ R, for any positive and non-integer t, and for any non-negative integer k.

We use the notation vi1...im for the components of tensor v of order m and employ the usual Einstein
summation convention where the subscripts range over the integers {1, 2, 3}. Partial derivatives with
respect to spatial variable xj we denote by ∂j = ∂/∂xj , j = 1, 2, 3, while a superposed dot denotes
partial differentiation with respect to the time variable t.

We consider an elastic body that at some instant occupies the region Ω of the Euclidean three-
dimensional space and is bounded by a piecewise smooth Lipschitz surface S.
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We restrict our consideration to the linear theory of homogeneous isotropic thermoelastic bodies
developed by Green and Naghdi [13,14]. According to this theory the system of the governing equations
consists of the following field equations [16]:

• The local form of the conservation law of linear momentum

∂jtji + ρ0fi = ρ0üi, (2.1)

where tji is the stress tensor, u = (u1, u2, u3)
⊤ is the displacement vector, fi is the external

body force per unit mass, and ρ0 is the density in the reference configuration.

• The local form of the conservation law of the moment of momentum

∂jmji + εijktjk + ρ0Xi = Iij ϕ̈j , (2.2)

where mij is the couple stress tensor, εijk is the alternating Levi-Civita symbol, Xi is the external
body couple per unit mass, Iij are the coefficients of inertia, and ϕi is the microrotation vector.

• Maxwell’s equations for the quasi-static electric fields

∂jDj = f and Ek = −∂kψ, (2.3)

where D is the electric displacement field, f is the density of free charge, E is the electric
intensity, and ψ is the electric potential.

• The local form of energy balance

ρ0ė = tij ėij +mijκ̇ij + πiζ̇i + ϵφ̇+ ρ0sθ + ∂i(Φiθ) + EiḊi,

where e is the internal energy per unit mass, φ is the microstretch function, πi is the microstretch
stress vector, s is the external rate of supply of entropy per unit mass, θ is the absolute temper-
ature, Φi are components of the entropy flux vector,

eij = ∂iuj + εjikϕk, κij = ∂iϕj , ζi = ∂iφ (2.4)

and
ϵ = ∂jπj + ρ0F − j0φ̈, (2.5)

where j0 is the microstretch inertia, and F is the microstretch body force.

• The equation of entropy
ρ0T0η̇ = qj,j + ρ0Q, (2.6)

where η is the entropy per unit mass and unit time, T0 is the initial reference temperature, that
is, the temperature in the natural state in the absence of deformation and electromagnetic field,
qi is the heat flux vector

qi = T0Φi,

and Q is the external rate of supply of heat per unit mass.

The quantities tij , mij , πi, ϵ, Di, qi and ρ0η for homogeneous isotropic media can be expressed via
ui, ϕi, φ, ψ, ϑ by the following constitutive relations [16]:

tij = λerrδij + (µ+ κ)eij + µeji + λ0φδij − β0Tδij , (2.7)
mij = ακrrδij + βκji + γκij + b0εijkζk + λ1εjikEk + ν2εijk∂kϑ, (2.8)
πi = a0ζi + λ2Ei + b0εrsiκrs + ν1∂iϑ, (2.9)
ϵ = λ0err + ξ0φ− c0T, (2.10)

Di = −λ1εijkκkj − λ2ζi − ν3∂iϑ+ χEi, (2.11)
qi = T0(ν2εrsiκrs + ν1ζi + k∂iϑ+ ν3Ei), (2.12)

ρ0η = β0err + c0φ+ aT, (2.13)
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where ϑ is the temperature change to a reference temperature T0,

T = θ − T0, ϑ =

t∫
t0

T dt,

δij is the Kronecker delta and λ, µ, κ, λ0, β0, α, β, γ, λ1, ν1, a0, λ2, ν2, ξ0, c0, a, k, ν3, and χ, are
constitutive constants, then the field equations (2.1)–(2.3), (2.5), (2.6), read as [16]

(µ+ κ)∂j∂jui + (λ+ µ)∂j∂iuj + κεijk∂jϕk + λ0∂iφ− β0∂iϑ̇+ ρ0fi = ρ0üi, (2.14)
γ∂j∂jϕi + (α+ β)∂j∂iϕj + κεijk∂juk − 2κϕi + ρ0Xi = I0ϕ̈i, (2.15)

(a0∂j∂j − ξ0)φ− λ2∂j∂jψ + ν1∂j∂jϑ− λ0∂juj + c0ϑ̇+ ρ0F = j0φ̈, (2.16)
λ2∂j∂jφ+ χ∂j∂jψ + ν3∂j∂jϑ = −f, (2.17)

k∂j∂jϑ− β0∂j u̇j − aϑ̈− c0φ̇+ ν1∂j∂jφ− ν3∂j∂jψ = − 1

T0
ρ0Q, (2.18)

Let v = (eij ,κij , ζi, φ, T, ϑi, Ei) and v′ = (e′ij ,κ′
ij , ζ

′
i, φ

′, T ′, ϑ′i, E
′
i). Introduce a symmetric bilinear

form

B(v, v′) := λeiie
′
jj + (µ+ κ)eije′ij + µejie

′
ij + λ0(ejjφ

′ + e′jjφ) + ξ0φφ
′

+ kϑjϑ
′
j + ακiiκ′

jj + βκjiκ′
ij + γκijκ′

ij + b0εijk(κijζ
′
k + κ′

ijζk)

+ ν2εijk(κijϑ
′
k + κ′

ijϑk) + a0ζiζ
′
i + ν1(ϑiζ

′
i + ϑ′iζi) + χEiE

′
i + aTT ′. (2.19)

The corresponding quadratic form B(v, v) can be represented as follows:

B(v, v) = F1(e11, e22, e33, φ) + F2(e12, e21, e13, e31, e23, e32) + F3(κ11,κ22,κ33)

+ F4(κ12,κ13,κ21,κ23,κ31,κ32, ζ1, ζ2, ζ3, ϑ1, ϑ2, ϑ3) + F5(E1, E2, E3, T ), (2.20)

where

F1(e11, e22, e33, φ) = (λ+ 2µ+ κ)e11e11 + λe11e22 + λe11e33 + λ0e11φ+ λe22e11

+ (λ+ 2µ+ κ)e22e22 + λe22e33 + λ0e22φ+ λe33e11 + λe33e22

+ (λ+ 2µ+ κ)e33e33 + λ0e33φ+ λ0φe11 + λ0φe22 + λ0φe33 + ξ0φ
2,

F2(e12, e21, e13, e31, e23, e32) = (µ+ κ)e12e12 + µe12e21 + (µ+ κ)e13e13
+ µe13e31 + µe21e12 + (µ+ κ)e21e21 + µe23e32 + (µ+ κ)e23e23
+ µe31e13 + (µ+ κ)e31e31 + µe32e23 + (µ+ κ)e32e32,

F3(κ11,κ22,κ33) = (α+ β + γ)κ11κ11 + ακ11κ22 + ακ11κ33 + ακ22κ11

+ (α+ β + γ)κ22κ22 + ακ22κ33 + ακ33κ11 + ακ33κ22 + (α+ β + γ)κ33κ33,

F4(κ12,κ21,κ13,κ31,κ23,κ32, ζ1, ζ2, ζ3, ϑ1, ϑ2, ϑ3) = κ12(γκ12 + βκ21 + b0ζ3 + ν2ϑ3)

+ κ21(βκ12 + γκ21 − b0ζ3 − ν2ϑ3) + κ13(γκ13 + βκ31 − b0ζ2 − ν2ϑ2)

+ κ31(βκ13 + γκ31 + b0ζ2 + ν2ϑ2) + κ23(γκ23 + βκ32 + b0ζ1 + ν2ϑ1)

+ κ32(βκ23 + γκ32 − b0ζ1 − ν2ϑ1) + ζ1(b0κ23 − b0κ32 + a0ζ1 + ν1ϑ1)

+ ζ2(−b0κ13 + b0κ31 + a0ζ2 + ν1ϑ2) + ζ3(b0κ12 − b0κ21 + a0ζ3 + ν1ϑ3)

+ ϑ1(ν2κ23 − ν2κ32 + ν1ζ1 + kϑ1) + ϑ2(−ν2κ13 + ν2κ31 + ν1ζ2 + kϑ2)

+ ϑ3(ν2κ12 − ν2κ21 + ν1ζ3 + kϑ3),

F5(E1,E2, E3, T ) = χEiEi + aT 2.

Throughout the paper we assume that B(v, v) is a positive definite form with respect to the vector
v = (eij ,κij , ζj , φ, T, ϑi, Ei),

B(v, v) > 0 for all v ̸= 0. (2.21)
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From the positive-definiteness of the forms F1, F2, F3, F4, and F5, by Sylvester’s criterion we derive
the following necessary and sufficient conditions for form (2.20) to be positive definite:

κ > 0, κ + 2µ > 0, κ + 2µ+ 3λ > 0, ξ0 (κ + 2µ+ 3λ) > 3λ20,

γ > |β|, a0k − ν21 > 0, β + γ + 3α > 0, χ > 0, a > 0, k > 0, a0 > 0,

a0(γ − β) > 2b20, (γ − β)(a0k − ν21) + 4b0ν1ν2 − 2a0ν
2
2 − 2kb20 > 0.

(2.22)

Further, we assume also that
ρ0 > 0, I0 > 0, j0 > 0. (2.23)

3 Equations of pseudo-oscillations
Let the sought functions ui, ϕi, φ, ψ, ϑ, as well as the sources fi, Xi, F , f , Q involved in the system
of equations (2.14)–(2.18), be harmonic time dependent, i.e.

ui(x, t)=e
τtui(x), ϕi(x, t)=e

τtϕi(x), φ(x, t)=eτtφ(x), ψ(x, t)=eτtψ(x), ϑ(x, t)=eτtϑ(x),

fi(x, t)=e
τtfi(x), Xi(x, t)=e

τtXi(x), F(x, t)=eτtF(x), f(x, t)=eτtf(x), Q(x, t)=eτtQ(x),

where τ = σ + iω is a complex parameter, σ, ω ∈ R. Then equations (2.14)–(2.18) lead to the system

(µ+ κ)∂j∂jui + (λ+ µ)∂j∂iuj − τ2ρ0ui + κεijk∂jϕk + λ0∂iφ− τβ0∂iϑ = −ρ0fi, (3.1)
γ∂j∂jϕi + (α+ β)∂j∂iϕj − τ2I0ϕi + κεijk∂juk − 2κϕi = −ρ0Xi, (3.2)

(a0∂j∂j − ξ0)φ− τ2j0φ− λ2∂j∂jψ + ν1∂j∂jϑ+ τc0ϑ− λ0∂juj = −ρ0F , (3.3)
χ∂j∂jψ + λ2∂j∂jφ+ ν3∂j∂jϑ = −f, (3.4)

k∂j∂jϑ− τ2aϑ− τβ0∂juj − τc0φ+ ν1∂j∂jφ− ν3∂j∂jψ = − 1

T0
ρ0Q. (3.5)

If τ is a pure imaginary number, we obtain the steady state oscillation equations, and if τ = 0,
then we get the equations of statics.

Constitutive relations (2.7)–(2.13) for pseudo-oscillation state read as

tij = λ∂kukδij + (µ+ κ)∂iuj + κεjikϕk + µ∂jui + λ0φδij − τβ0ϑδij , (3.6)
mij = α∂kϕkδij + β∂jϕi + γ∂iϕj + b0εijk∂kφ+ λ1εijk∂kψ + ν2εijk∂kϑ, (3.7)
πi = a0∂iφ− λ2∂iψ + b0εkli∂kϕl + ν1∂iϑ, (3.8)
ϵ = λ0∂kuk + ξ0φ− τc0ϑ, (3.9)

Di = −λ1εkli∂kϕl − λ2∂iφ− ν3∂iϑ− χ∂iψ, (3.10)
qi = T0(ν2εlki∂lϕk + ν1∂iφ+ k∂iϑ− ν3∂iψ), (3.11)

ρ0η = β0∂kuk + c0φ+ τaϑ, i, j = 1, 2, 3. (3.12)

Denote by
A(∂, τ) =

[
Aij(∂, τ)

]
9×9

the matrix differential operator generated by the left hand side expressions in (3.1)–(3.5),

Aij(∂, τ) = δij(µ+ κ)∂l∂l + (λ+ µ)∂i∂j − τ2ρ0δij , Ai,j+3(∂, τ) = −κεijl∂l,
Ai7(∂, τ) = λ0∂i, Ai8(∂, τ) = 0, Ai9(∂, τ) = −τβ0∂i, Ai+3,j(∂, τ) = −κεijl∂l,

Ai+3,j+3(∂, τ)=δijγ∂l∂l+(α+β)∂i∂j−(2κ+τ2I0)δij , Ai+3,j+6(∂, τ)=0, A7,j(∂, τ)=−λ0∂j ,
A7,j+3(∂, τ)=0, A77(∂, τ)=a0∂l∂l−(ξ0+τ

2j0), A78(∂, τ)=−λ2∂l∂l, A79(∂, τ)=ν1∂l∂l + τc0,

A8j(∂, τ) = 0, A8,j+3(∂, τ) = 0, A87(∂, τ) = λ2∂l∂l, A88(∂, τ) = χ∂l∂l,

A89(∂, τ) = ν3∂l∂l, A9j(∂, τ) = −τβ0∂j , A9,j+3(∂, τ) = 0,

A97(∂, τ) = ν1∂l∂l − τc0, A98(∂, τ) = −ν3∂l∂l, A99(∂, τ) = k∂l∂l − τ2a, i, j = 1, 2, 3.
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Then we can rewrite system (3.1)–(3.5) in the matrix form

A(∂, τ)U = Φ, (3.13)

where

U = (u1, u2, u3, ϕ1, ϕ2, ϕ3, φ, ψ, ϑ)
⊤,

Φ = −
(
ρ0f1, ρ0f2, ρ0f3, ρ0X1, ρ0X2, ρ0X3, ρ0F , f,

1

T0
ρ0Q

)⊤
.

4 Generalized stress operator and Green’s formulae
Let n be a unit vector field on Ω coinciding with the outward unit normal vector to ∂Ω. Introduce
the generalized stress operator T (∂, n, τ) = [Tjk(∂, n, τ)]9×9 defined by the relation

T (∂, n, τ)(u1, u2, u3, ϕ1, ϕ2, ϕ3, φ, ψ, ϑ)
⊤

= (tl1nl, tl2nl, tl3nl,ml1nl,ml2nl,ml3nl, πlnl,−Dlnl, T
−1
0 qlnl)

⊤,

where tij ,mij , πj , Dj , qi are defined in (2.7)–(2.13). Entries of the matrix T (∂, n, τ) read as

Tij(∂, n, τ) = λni∂j + µnj∂i + δij(µ+ κ)nk∂k, Ti,j+3(∂, n, τ) = −κεijknk,
Ti7(∂, n, τ) = λ0ni, Ti8(∂, n, τ) = 0, Ti,9(∂, n, τ) = −τβ0ni, Ti+3,j(∂, n) = 0,

Ti+3,j+3(∂, n, τ) = αni∂j + βnj∂i + δijγnk∂k, Ti+3,7(∂, n, τ) = b0εliknl∂k,

Ti+3,8(∂, n, τ) = λ1εliknl∂k, Ti+3,9(∂, n, τ) = ν2εliknl∂k, T7j(∂, n, τ) = 0,

T7,j+3(∂, n, τ) = −b0εljknl∂k, T77(∂, n, τ) = a0nk∂k, T78(∂, n, τ) = −λ2nk∂k,
T79(∂, n, τ) = ν1nk∂k, T8j(∂, n, τ) = 0, T8,j+3(∂, n, τ) = −λ1εljknl∂k, T87(∂, n, τ) = λ2nk∂k,

T88(∂, n, τ) = χnk∂k, T89(∂, n, τ) = ν3nk∂k, T9j(∂, n, τ) = 0, T9,j+3(∂, n, τ) = −ν2εljknl∂k,
T97(∂, n, τ) = ν1nk∂k, T98(∂, n, τ) = −ν3nk∂k, T99(∂, n, τ) = knl∂l, i, j = 1, 2, 3.

For a domain with smooth boundary and smooth complex valued vector functions

U = (u1, u2, u3, ϕ1, ϕ2, ϕ3, φ, ψ, ϑ)
⊤ ∈ [C2(Ω)]9,

U ′ = (u′1, u
′
2, u

′
3, ϕ

′
1, ϕ

′
2, ϕ

′
3, φ

′, ψ′, ϑ′)⊤ ∈ [C2(Ω)]9

the following Green formula holds∫
Ω

A(∂, τ)U · U ′ dx =

∫
∂Ω

{T (∂, n, τ)U}+ · {U ′}+ dS −
∫
Ω

E(U,U ′) dx, (4.1)

where the overbar denotes complex conjugation operation, the central dot designates the scalar product
in the complex space C9,

E(U,U ′) = (µ+ κ)∂jui∂ju′i + τ2ρ0uiu
′
i + λ∂juj∂iu

′
i + µ∂iuj∂ju

′
i + κεijkϕk∂ju′i + λ0φ∂iu

′
i

− τβ0ϑ∂iu
′
i + γ∂jϕi∂jϕ

′
i + (2κ + τ2I0)ϕiϕ

′
i + α∂jϕj∂iϕ

′
i + β∂iϕj∂jϕ

′
i

+ κεijk∂juiϕ′k + b0εijk∂kφ∂iϕ
′
j + λ1εijk∂kψ∂iϕ

′
j + ν2εijk∂kϑ∂iϕ

′
j + a0∂jφ∂jφ

′

+ (ξ0 + τ2j0)φφ
′ − λ2∂jψ∂jφ

′ + ν1∂jϑ∂jφ
′ − τc0ϑφ

′ + λ0∂jujφ
′ + b0εijk∂iϕj∂kφ

′

+ χ∂jψ∂jψ
′λ2∂jφ∂jψ

′ + ν3∂jϑ∂jψ
′ − λ1εijk∂jϕk∂iψ

′ + k∂jϑ∂jϑ
′ + τ2aϑϑ′

+ τβ0∂jujϑ
′ + ν1∂jφ∂jϑ

′ + τc0φϑ
′ − ν3∂jψ∂jϑ

′ + ν2εijk∂jϕk∂iϑ
′. (4.2)

By standard limiting procedure Green’s formula (4.1) can be extended to Lipschitz domains and to
vector-functions U ∈ [W 1

p (Ω)]
9 and U ′ ∈ [W 1

p ′(Ω)]9 with A(∂, τ)U ∈ [Lp(Ω)]
9 1 < p <∞, 1

p + 1
p′ = 1.
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With the help of Green’s formula (4.1) we can correctly determine a generalized trace vector
{T (∂, n, τ)U}+ ∈ [B

−1/p
p,p (∂Ω)]9 for a vector function U ∈ [W 1

p (Ω)]
9 with A(∂, τ)U ∈ [Lp(Ω)]

9 by the
relation (cf. [20]) ⟨

{T (∂, n, τ)U}+, {U ′}+
⟩
∂Ω

:=

∫
Ω

[
A(∂, τ)U · U ′ + E(U,U ′)

]
dx, (4.3)

where U ′ ∈ [W 1
p′(Ω)]9 is an arbitrary vector function. Here the symbol ⟨ · , · ⟩∂Ω denotes the duality

between the function spaces [B
−1/p
p,p (∂Ω)]9 and [B

1/p
p′,p′(∂Ω)]9 which extends the conventional L2 inner

product for complex valued vector functions,

⟨f, g⟩∂Ω =

∫
∂Ω

9∑
j=1

fj(x)gj(x) dS for f, g ∈ [L2(∂Ω)]
9.

Introduce the boundary operator T̃ (∂, n, τ) = [T̃ (∂, n, τ)ij ]9×9 associated with the formally adjoint
differential operator A∗(∂, τ) = A⊤(−∂, τ),

2T̃ij(∂, n, τ) = λni∂j + µnj∂i + δij(µ+ κ)nk∂k, T̃i,j+3(∂, n, τ) = −κεijknk,

T̃i7(∂, n, τ) = λ0ni, T̃i8(∂, n, τ) = 0, T̃i,9(∂, n, τ) = τβ0ni, T̃i+3,j(∂, n, τ) = 0,

T̃i+3,j+3(∂, n, τ) = αni∂j + βnj∂i + δijγnk∂k, T̃i+3,7(∂, n, τ) = b0εilknl∂k,

T̃i+3,8(∂, n, τ) = λ1εliknl∂k, T̃i+3,9(∂, n, τ) = ν2εilknl∂k, T̃7j(∂, n, τ) = 0,

T̃7,j+3(∂, n, τ) = 0, T̃77(∂, n, τ) = a0nk∂k, T̃78(∂, n, τ) = λ2nk∂k, T̃79(∂, n, τ) = ν1nk∂k,

T̃8j(∂, n, τ) = 0, T̃8,j+3(∂, n, τ) = 0, T̃87(∂, n, τ) = −λ2nk∂k, T̃88(∂, n, τ) = χnk∂k,

T̃89(∂, n, τ) = −ν3nk∂k, T̃9j(∂, n, τ) = 0, T̃9,j+3(∂, n, τ) = 0,

T̃97(∂, n, τ) = ν1nk∂k, T̃98(∂, n, τ) = ν3nk∂k, T̃99(∂, n, τ) = knl∂l, i, j = 1, 2, 3.

From (4.1) we deduce Green’s second formula,∫
Ω

[
A(∂, τ)U · U ′ − U ·A∗(∂, τ)U ′] dx

=

∫
∂Ω

[{
T (∂, n, τ)U

}+ · {U ′}+ −
{
T̃ (∂, n, τ)U ′}+ · {U ′}+

]
dS. (4.4)

From Green’s formulae (4.3) and (4.4) by standard limiting procedure we derive similar formulae
for the exterior domain Ω− provided vector functions U,U ′ ∈ [W 1

p,loc(Ω
−)]9 ∩ Z(Ω−) and A(∂, τ)U

is compactly supported. The class Z(Ω−) is defined as a set of functions U possesing the following
asymptotic properties as |x| → ∞:

uk(x) = O(|x|−2), ∂juk(x) = O(|x|−2), ϕk(x) = O(|x|−2), ∂jϕk(x) = O(|x|−2),

φ(x) = O(|x|−1), ∂jφ(x) = O(|x|−2), ψ(x) = O(|x|−1), ∂jψ(x) = O(|x|−2),

ϑ(x) = O(|x|−2), ∂jϑ(x) = O(|x|−2), k, j = 1, 2, 3.

(4.5)

Note that the fundamental matrix of the operator A(∂x, τ) with τ = σ + iω, σ > σ
0
≥ 0, possesses

the decay properties (4.5) (see Appendix B).
If A∗(∂x, τ)U

′ is compactly supported as well and U ′ satisfies the decay conditions (4.5), then the
following Green formulae hold for the exterior domain Ω−:⟨

{T (∂, n, τ)U}−, {U ′}−
⟩
∂Ω

= −
∫
Ω−

[
A(∂, τ)U · U ′ + E(U,U ′)

]
dx, (4.6)
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∫
Ω−

[
A(∂, τ)U · U ′ − U ·A∗(∂, τ)U ′] dx

= −
∫
∂Ω

[{
T (∂, n, τ)U

}− · {U ′}− − {U}− ·
{
T̃ (∂, n, τ)U ′}−

]
dS.

We recall that the direction of the unit normal vector to S = ∂Ω is outward with respect to the
domain Ω = Ω+.

Denote by E(U, V ) the sesquilinear form on [H1
2 (Ω)]

9 × [H1
2 (Ω)]

9

E(U, V ) :=

∫
Ω

E(U, V ) dx, (4.7)

where E(U, V ) is defined by (4.2).
For U = (u1, u2, u3, ϕ1, ϕ2, ϕ3, φ, ψ, ϑ)

⊤, v = (eij ,κij , ζj , φ, T, ϑi, Ei), where eij = ∂iuj + εjikϕk,
κij = ∂iϕj , ζi = ∂iφ, T = τϑ, ϑi = ∂iϑ, Ei = −∂iψ, we have

E(U,U) = B(v, v) + 2iλ1εijk Im(∂iϕj∂kψ) + 2iλ2 Im(∂jφ∂jψ) + 2iν3 Im(∂jψ∂jϑ)

+ 2iτβ0 Im(∂jujϑ) + 2iτc0 Im(φϑ) + τ2(ρ0uiui + I0ϕϕ+ j0φφ+ aϑϑ). (4.8)

Therefore from (4.7), (4.8), (2.21), and (2.22) it follows that

Re E(U,U) ≥ c1∥U∥2[H1
2 (Ω)]9 − c2∥U∥2[H0

2 (Ω)]9 for all U ∈ [H1
2 (Ω)]

9 (4.9)

with some positive constants c1 and c2 depending on the material parameters and on the complex
parameter τ , which shows that the sesquilinear form E(U, V ) defined in (4.7) is coercive.

5 Boundary value problems and uniqueness theorems
Here we preserve the notation introduced in the previous subsections and formulate the boundary
value problems for the pseudo-oscillation equation (3.13) assuming that

τ = σ + iω, σ > σ
0
> 0, ω ∈ R.

Further, let Sm (m = 1, 2, . . . , 10) be proper sub-manifolds of ∂Ω such that S1 ∪ S2 = S3 ∪ S4 =
S5 ∪ S6 = S7 ∪ S8 = S9 ∪ S10 = ∂Ω, S1 ∩ S2 = S3 ∩ S4 = S5 ∩ S6 = S7 ∩ S8 = S9 ∩ S10 = ∅.

We consider the following boundary value problems.
The general mixed boundary value problem (G)+τ : Find a solution

U = (u1, u2, u3, ϕ1, ϕ2, ϕ3, φ, ψ, ϑ)
⊤ ∈ [W 1

p (Ω)]
9

to the pseudo-oscillation equation (3.13) with Φ ∈ [Lp(Ω)]
9, 1 < p < ∞, satisfying the boundary

conditions

ui = ũi on S1, tjinj = ϵ̃i on S2, ϕi = ϕ̃i on S3, mjinj = m̃i on S4,

φ = φ̃ on S5, πknk = π̃ on S6, ψ = ψ̃ on S7, Djnj = D̃i on S8,

ϑ = ϑ̃ on S9, qjnj = q̃ on S10, i = 1, 2, 3,

(5.1)

where ũi, ϕ̃i, φ̃, ψ̃, ϑ̃, ϵ̃i, m̃i, π̃, D̃ and q̃ are given functions. Here equation (3.13) is understood in
the distributional sense, the Dirichlet type conditions are understood in the usual trace sense and the
corresponding data belong to the space B1−1/p

p,p , while the Neumann type conditions are understood in
the generalized functional trace sense and the corresponding data belong to the space B−1/p

p,p .

The Dirichlet problem (D)+τ : Find a solution

U = (u, ϕ, φ, ψ, ϑ)⊤ ∈ [W 1
p (Ω)]

9



48 Tengiz Buchukuri, Otar Chkadua, David Natroshvili

to the pseudo-oscillation equation (3.13) with Φ ∈ [Lp(Ω)]
9, 1 < p < ∞, satisfying the Dirichlet type

boundary condition
{U}+ = f on S, (5.2)

where f ∈ [B
1−1/p
p,p (S)]9 is a given vector function.

In the case when U satisfies the homogeneous equation

A(∂x, τ)U = 0 in Ω, (5.3)

we denote the corresponding problem by (D)+τ,0.
The Neumann problem (N)+τ : Find a solution

U = (u, ϕ, φ, ψ, ϑ)⊤ ∈ [W 1
p (Ω)]

9

to the pseudo-oscillation equation (3.13) with Φ ∈ [Lp(Ω)]
9, 1 < p <∞, satisfying the Neumann type

boundary condition
{T (∂x, n, τ)U}+ = F on S, (5.4)

where F ∈ [B
−1/p
p,p (S)]9 is a given vector function.

In the case when U satisfies the homogeneous equation (5.3) we denote the corresponding problem
by (N)+τ,0.
Mixed boundary value problem for solids with interior cracks. Let us assume that a solid
under consideration contains an interior crack. We identify the crack surface as a two-dimensional,
two-sided manifold Σ with the crack edge ℓc := ∂Σ. We assume that Σ is a proper part of a closed
surface S0 ⊂ Ω surrounding a domain Ω0 ⊂ Ω and that Σ, S0, and ℓc are C∞-smooth. Denote
ΩΣ := Ω \ Σ.

We write v ∈W 1
p (ΩΣ) if v ∈W 1

p (Ω0), v ∈W 1
p (Ω \ Ω0), and r

S0\Σ
{v}+ = r

S0\Σ
{v}−.

Recall that throughout the paper n = (n1, n2, n3) stands for the exterior unit normal vector to
∂Ω and S0 = ∂Ω0. This agreement defines the positive direction of the normal vector on the crack
surface Σ.

Further, we assume that S is dissected into two smooth subsurfaces, the Dirichlet part SD and the
Neumann part SN , S = S̄D ∩ S̄N , and consider the following mixed BVP (MC)+τ :

(i) on the subsurface SD there are given the displacement and the microrotation vectors, the mi-
crostretch function, the temperature and the electric potential functions (i.e., on SD there are
given the components of the vector {U}+ - the Dirichlet data);

(ii) on the subsurface SN there are prescribed the mechanical stress vector, the normal components
of the microstretch stress vector, the heat flux, and the electric displacement vector (i.e., on SN

there are given the components of the vector {T U}+ – the Neumann data);

(iii) the crack surface Σ is mechanically traction free and we assume that the microstretch function,
temperature, electric potential, and the normal components of the microstretch stress vector,
heat flux, and the electric displacement vector are continuous across the crack surface.

Reducing the nonhomogeneous differential equation (3.13) to the corresponding homogeneous one, we
can formulate the above mixed problem mathematically as follows: Find a vector function

U = (u, ϕ, φ, ψ, θ)⊤ = (u1, . . . , u9)
⊤ ∈ [W 1

p (ΩΣ)]
9 with 1 < p <∞,

satisfying the homogeneous differential equation

A(∂x, τ)U = 0 in ΩΣ, (5.5)

the crack conditions on Σ, {
[T U ]j

}+
= F+

j on Σ, j = 1, 6, (5.6)
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{
[T U ]j

}−
= F−

j on Σ, j = 1, 6, (5.7)
{u7}+ − {u7}− = f7 on Σ, (5.8){

[T U ]7
}+ −

{
[T U ]7

}−
= F7 on Σ, (5.9)

{u8}+ − {u8}− = f8 on Σ, (5.10){
[T U ]8

}+ −
{
[T U ]8

}−
= F8 on Σ, (5.11)

{u9}+ − {u9}− = f9 on Σ, (5.12){
[T U ]9

}+ −
{
[T U ]9

}−
= F9 on Σ, (5.13)

and the mixed boundary conditions on S = SD ∪ SN ,

{U}+ = g(D) on SD, (5.14){
T U

}+
= g(N) on SN . (5.15)

We require that the boundary data belong to the natural spaces,

f7, f8, f9 ∈ B̃
1− 1

p
p,p (Σ), F7, F8, F9 ∈ B̃

− 1
p

p,p (Σ), g(D) ∈ [B
1− 1

p
p,p (SD)]9, g(N) ∈ [B

− 1
p

p,p (SN )]9, (5.16)

and the compatibility conditions

F+
j − F−

j ∈ B̃
− 1

p
p,p (Σ), j = 1, 6,

are satisfied.
Remark that if U ∈ [W 1

p (ΩΣ)]
9 solves the homogeneous differential equation (5.5) then actually

we have the inclusion U ∈ [C∞(ΩΣ)]
9 due to the ellipticity of the corresponding differential operator.

In fact, U is a complex valued analytic vector function of spatial real variables (x1, x2, x3) in ΩΣ.
Now we prove the uniqueness theorem (cf. [16, Theorem 3.1]).

Theorem 5.1. Let conditions (2.22) and (2.23) be satisfied and let U = (u, ϕ, φ, ψ, ϑ) be a solution of
the problem (G)+τ for the homogeneous equation (5.3) satisfying the homogeneous boundary conditions
(5.1) for p = 2. Then, u = ϕ = φ = ϑ = 0, and ψ = const. Moreover, if S7 ̸= ∅, then ψ = 0 as well.

Proof. Due to (2.1), (2.2), we have the system of equations

∂jtji − τ2ρ0ui = 0, i = 1, 2, 3, (5.17)
∂jmji + εijktjk − τ2I0ϕi = 0, i = 1, 2, 3, (5.18)

∂jπj − ϵ− τ2j0φ = 0, (5.19)
∂jqj − τρ0T0η = 0, (5.20)

∂jDj = 0, (5.21)

where tji, mji, πj , ϵ, qj , η, Dj are defined from (3.6)–(3.11).
Multiply (5.17), (5.18), (5.19), (5.20), and (5.21) by ui, ϕi, φ, ϑ, and ψ, respectively, and integrate

over Ω. In view of (2.4) and homogeneous boundary conditions we find∫
Ω

(
tijeij + εijktijϕk + τ2ρ0uiui

)
dx =

∫
∂Ω

njtjiui dS = 0, (5.22)

∫
Ω

(
mijκij − εijktijϕk + τ2I0ϕiϕi

)
dx =

∫
∂Ω

njmjiϕi dS = 0, (5.23)

∫
Ω

(
πiζi + ϵφ+ τ2j0φφ

)
dx =

∫
∂Ω

niπiφdS = 0, (5.24)
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1

T0

∫
Ω

(
qi∂iϑ+ τρ0T0ηϑ

)
dx =

∫
∂Ω

niqiϑdS = 0, (5.25)

∫
Ω

DiEi dx =

∫
∂Ω

niDiψ dS = 0. (5.26)

By summing equalities (5.22)–(5.25) and complex conjugate of (5.26) we obtain∫
Ω

(
tijeij+mijκij+πiζi+ϵφ+

1

T0
qi∂iϑ+τρ0ηϑ+DiEi+τ

2
(
ρ0uiui+I0ϕϕ+j0φφ

))
dx=0. (5.27)

By virtue of (2.19) the integrand in (5.27) can be rewritten as

λeiiejj + (µ+ κ)eijeij + µejieij + λ0φejj − β0Tejj + ακiiκjj + βκjiκij + γκijκij

+ b0εijkζkκij + λ1εjikκijEk + ν2εijkκij∂kϑ+ a0ζiζi + λ2Eiζi

+ b0εijkκijζk + ν1∂iϑζi + λ0ejjφ+ ξ0φφ− c0Tφ− λ1εjikκijEk

− λ2ζiEi − ν3∂iϑEi + χEiEi + ν2εijkκij∂kϑ+ ν1ζi∂iϑ+ k∂iϑ∂iϑ

+ ν3Ei∂iϑ+ τβ0ejjϑ+ τc0φϑ+ τaTϑ+ τ2(ρ0uiui + I0ϕϕ+ j0φφ)

= B(v, v) + τβ0(ejjϑ− ejjϑ) + τc0(φϑ− φϑ) + τ2(ρ0uiui + I0ϕϕ+ j0φφ+ aϑϑ),

where B(v, v′) is the bilinear form with respect to the variables v = (eij ,κij , ζi, φ, T, ∂iϑ,Ei) and
v′ = (e′ij ,κ′

ij , ζ
′
i, φ

′, T ′, ∂iϑ
′, E′

i) defined in (2.19),

B(v, v′) = λeiie
′
jj + (µ+ κ)eije′ij + µejie

′
ij + λ0(ejjφ

′ + e′jjφ) + ξ0φφ
′ + ακiiκ′

jj

+ βκjiκ′
ij + γκijκ′

ij + b0εijk(κijζ
′
k + κ′

ijζk) + ν2εijk(κij∂kϑ
′ + κ′

ij∂kϑ)

+ a0ζiζ
′
i + ν1(∂iϑζ

′
i + ∂iϑ

′ζi) + χEiEi + k∂ϑ ∂ϑ′.

Due to (2.22) we have B(v, v) > 0 for any complex valued vector v ̸= 0.
Let τ = σ + iω, σ > 0. Separating the real and imaginary parts of (5.27) we get∫

Ω

(
B(v, v)− 2ωβ0 Im(ejjϑ)− 2ωc0 Im(φϑ)

+(σ2 − ω2)
(
ρ0|u|2 + I0|ϕ|2 + j0|φ|2 + a|ϑ|2

))
dx = 0, (5.28)∫

Ω

(
2σβ0 Im(ejjϑ) + 2σc0 Im(φϑ) + 2σω

(
ρ0|u|2 + I0|ϕ|2 + j0|φ|2 + a|ϑ|2

))
dx = 0. (5.29)

Multiply (5.29) by ω/σ and add to (5.28) to obtain∫
Ω

(
B(v, v) + (σ2 + ω2)

(
ρ0|u|2 + I0|ϕ|2 + j0|φ|2 + a|ϑ|2

))
dx = 0,

implying |u| = |ϕ| = |φ| = |ϑ| = 0 and
∫
Ω

χ|E|2 dx = 0. Whence E = − gradψ = 0 and thus ψ = const.

Evidently, if S7 ̸= ∅, then ψ = 0 follows, which completes the proof.

From Theorem 5.1 the following uniqueness theorem follows directly.
Theorem 5.2. Let S be Lipschitz surface and τ = σ + iω with σ > σ0 > 0 and ω ∈ R.

(i) The basic Dirichlet BVP (D)+τ has at most one solution in the space [W 1
2 (Ω)]

9.

(ii) Solutions to the Neumann type BVP (N)+τ in the space [W 1
2 (Ω)]

9 are defined modulo a vector of
type U (N) = (0, 0, 0, 0, 0, 0, 0, b, 0)⊤, where b is an arbitrary constant.

(iii) Mixed type boundary value problem (MC)+τ has at most one solution in the space [W 1
2 (ΩΣ)]

9.
Similar uniqueness result for p ̸= 2 will be proved later.
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6 Properties of potentials and boundary operators
The full symbol of the pseudo-oscillation differential operator A(∂x, τ) with Re τ ̸= 0 is non-singular,
i.e.,

detA(−i ξ, τ) ̸= 0 ∀ ξ ∈ R3 \ {0}.

Moreover, the entries of the inverse matrix A−1(−i ξ, τ) are locally integrable functions decaying at
infinity as O(|ξ|−2). Therefore, we can construct the fundamental matrix Γ(x, τ) = [Γkj(x, τ)]9×9 of
the operator A(∂x, τ) with the help of the Fourier transform technique,

Γ(x, τ) = F−1
ξ→x[A

−1(−iξ, τ)].

The structure of the matrix A−1(−iξ, τ) allows to represent the fundamental matrix Γ(x, τ) in terms
of elementary functions (see Appendix B). These explicit formulas imply that in a neighbourhood of
the origin the fundamental matrix possesses the property Γ(x, τ) = O(|x|−1), while the columns of
Γ(x, τ) satisfy the decay conditions (4.5) at infinity.

Here we collect some necessary results for our analysis. Proofs of the theorems below are similar
to the proofs of their counterparts in [2, 3, 8, 17,18].

Let us introduce the single and double layer potentials:

V (h)(x) = VS(h) =

∫
S

Γ(x− y, τ)h(y) dyS,

W (h)(x) =WS(h) =

∫
S

[
T̃ (∂y, n(y), τ)[Γ(x− y, τ)]⊤

]⊤
h(y) dyS,

where h = (h1, h2, . . . , h9)
⊤ is a density vector function.

Theorem 6.1. Let 1 < p < ∞, 1 ≤ q ≤ ∞, s ∈ R. Then the single and double layer potentials can
be extended to the continuous operators

V :
[
Bs

p,q(S)
]9 →

[
B

s+1+ 1
p

p,q (Ω)
]9
, W : [Bs

p,q(S)]
9 → [B

s+ 1
p

p,q (Ω)]9,

: [Bs
p,q(S)]

9 → [B
s+1+ 1

p

p,q,loc (Ω−)]9, : [Bs
p,q(S)]

9 → [B
s+ 1

p

p,q,loc(Ω
−)]9,

: [Bs
p,p(S)]

9 → [H
s+1+ 1

p
p (Ω)]9, : [Bs

p,p(S)]
9 → [H

s+ 1
p

p (Ω)]9,

: [Bs
p,p(S)]

9 → [H
s+1+ 1

p

p,loc (Ω−)
]9
, : [Bs

p,p(S)]
9 → [H

s+ 1
p

p,loc(Ω
−)]9.

Theorem 6.2. Let h(1) ∈ [B
− 1

p
p,q (S)]9, h(2) ∈ [B

1− 1
p

p,q (S)]9, 1 < p <∞, 1 ≤ q ≤ ∞. Then{
V (h(1))(z)

}±
=

∫
S

Γ(z − y, τ)h(1)(y) dyS on S,

{
W (h(2))(z)

}±
= ±1

2
h(2)(z) +

∫
S

[
T̃ (∂y, n(y), τ)[Γ(z − y, τ)]⊤

]⊤
h(2)(y) dyS on S.

The equalities are understood in the sense of the space [B
1−1/p
p,q (S)]9 (cf. [21])

Theorem 6.3. Let h(1) ∈ [B
− 1

p
p,q (S)]9, h(2) ∈ [B

1− 1
p

p,q (S)]9, 1 < p <∞, 1 ≤ q ≤ ∞. Then{
T V (h(1))(z)

}±
= ∓1

2
h(1)(z) +

∫
S

T (∂z, n(z), τ)Γ(z − y, τ)h(1)(y) dyS on S,

{
TW (h(2))(z)

}+
=

{
TW (h(2))(z)

}− on S,

where the equalities are understood in the sense of the space [B
− 1

p
p,q (S)]9.
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We introduce the following notation for the boundary operators generated by the single and double
layer potentials:

H(h)(z) =

∫
S

Γ(z − y, τ)h(y) dyS, z ∈ S, (6.1)

K(h)(z) =

∫
S

T (∂z, n(z), τ)Γ(z − y, τ)h(y) dyS, z ∈ S, (6.2)

N (h)(z) =

∫
S

[
T̃ (∂y, n(y), τ)[Γ(z − y, τ)]⊤

]⊤
h(y) dyS, z ∈ S, (6.3)

L(h)(z) =
{
TW (h)(z)

}+
=

{
TW (h)(z)

}−
, z ∈ S. (6.4)

Note that H is a weakly singular integral operator (pseudodifferential operator of order −1), K and
N are singular integral operators (pseudodifferential operator of order 0), and L is a singular integro-
differential operator (pseudodifferential operator of order 1). These operators possess the following
mapping and Fredholm properties.

Theorem 6.4. Let 1 < p <∞, 1 ≤ q ≤ ∞, s ∈ R. Then the operators

H : [Bs
p,q(S)]

9 → [Bs+1
p,q (S)]9, H : [Hs

p(S)]
9 → [Hs+1

p (S)]9,

K,N : [Bs
p,q(S)]

9 → [Bs
p,q(S)]

9, K,N : [Hs
p(S)]

9 → [Hs
p(S)]

9,

L : [Bs
p,q(S)]

9 → [Bs−1
p,q (S)]9, L : [Hs

p(S)]
9 → [Hs−1

p (S)]9,

are continuous.
The operators H and L are strongly elliptic pseudodifferential operators, while the operators ± 1

2 I9+
K and ± 1

2 I9 +N are elliptic, where I9 stands for the 9× 9 unit matrix.
Moreover, the operators H, 1

2 I9+N , and 1
2 I9+K are invertible, whereas the operators − 1

2 I9+K,
− 1

2 I9 +N , and L are Fredholm operators with zero index.
The following operator equalities hold in appropriate function spaces

LH = −1

4
I9 +K2, HL = −1

4
I9 +N 2. (6.5)

7 Existence and regularity of solutions to mixed BVP (MC)τ
Before we start analysis of the mixed problem we present here existence results for the basic Dirichlet
and Neumann boundary value problems. Using Theorem 6.4 and the fact that the null spaces of
strongly elliptic pseudodifferential operators acting in Bessel potentialHs

p(S) and Besov Bs
p,q(S) spaces

actually do not depend on the parameters s, p, and q, by quite the same arguments as in [3], we arrive
at the following existence results.

Theorem 7.1. Let 1 < p <∞ and f ∈ [B
1− 1

p
p,p (S)]9. Then the pseudodifferential operator

2−1I9 +N : [B
1− 1

p
p,p (S)]9 → [B

1− 1
p

p,p (S)]9

is continuously invertible, the interior Dirichlet BVP (5.3), (5.2) is uniquely solvable in the space
[W 1

p (Ω)]
9 and the solution is representable in the form of double layer potential U = W (h) with the

density vector function h ∈ [B
1− 1

p
p,p (S)]9 being a unique solution of the singular integral equation

[2−1I9 +N ]h = f on S.

Theorem 7.2. Let 1 < p <∞ and a vector function U ∈ [W 1
p (Ω)]

9 solves the homogeneous differential
equation A(∂, τ)U = 0 in Ω. Then it is uniquely representable in the form

U(x) = V (H−1{U}+)(x), x ∈ Ω,
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where {U}+ is the trace of U on S from Ω and belongs to the space [B
1− 1

p
p,p (S)]9. Here H−1 is the

inverse to the operator H : B− 1
p → B1− 1

p .

Theorem 7.3. Let 1 < p <∞ and F = (F1, . . . , F9)
⊤ ∈ [B

− 1
p

p,p (S)]9.

(i) The operator
−2−1I9 +K : [B

− 1
p

p,p (S)]
9 → [B

− 1
p

p,p (S)]
9 (7.1)

is an elliptic pseudodifferential operator with zero index and has a one-dimensional null space
spanned by the vector function h0 = H−1Ψ, where

Ψ := (0, 0, 0, 0, 0, 0, 0, 1, 0)⊤ on S. (7.2)

(ii) The null space of the operator adjoint to (7.1),

−2−1I9 +K∗ : [B
1
p

p′,p′(S)]
9 → [B

1
p

p′,p′(S)]
9,

1

p
+

1

p′
= 1,

is the linear span of the vector (0, 0, 0, 0, 0, 0, 0, 1, 0)⊤.

(iii) The equation
[−2−1I9 +K]h = F on S, (7.3)

is solvable if and only if ∫
S

F8(x) dS = 0. (7.4)

(iv) If condition (7.4) holds, then solutions to equation (7.3) are defined modulo constant times
h0 = H−1Ψ with Ψ defined in (7.2).

(v) If condition (7.4) holds, then the interior Neumann type boundary value problem (5.3), (5.4)
is solvable in the space [W 1

p (Ω)]
9 and its solution is representable in the form of single layer

potential U = V (h), where the density vector function h ∈ [B
− 1

p
p,p (S)]9 is defined by equation

(7.3). A solutions to the interior Neumann BVP in Ω is defined modulo summand C Ψ with
arbitrary constant C and Ψ given by (7.2).

Now we start investigation of the mixed boundary value problem (MC)τ .
First let us note that the boundary conditions on the crack faces Σ, (5.6) and (5.7), can be

transformed equivalently as{
[T U ]j

}+ −
{
[T U ]j

}−
= F+

j − F−
j ∈ B̃

− 1
p

p,p (Σ), j = 1, 6,{
[T U ]j

}+
+
{
[T U ]j

}−
= F+

j + F−
j ∈ B

− 1
p

p,p (Σ), j = 1, 6.

Therefore the boundary conditions (5.6)–(5.15) of the problem under consideration can be rewritten as{
T U

}+
= g(N) on SN , (7.5)

{U}+ = g(D) on SD, (7.6){
[T U ]j

}+
+
{
[T U ]j

}−
= F+

j + F−
j on Σ, j = 1, 6, (7.7)

{u7}+ − {u7}− = f7 on Σ, (7.8)
{u8}+ − {u8}− = f8 on Σ, (7.9)
{u9}+ − {u9}− = f9 on Σ, (7.10){

[T U ]j
}+ −

{
[T U ]j

}−
= F+

j − F−
j on Σ, j = 1, 6, (7.11){

[T U ]7
}+ −

{
[T U ]7

}−
= F7 on Σ, (7.12)
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{
[T U ]8

}+ −
{
[T U ]8

}−
= F8 on Σ, (7.13){

[T U ]9
}+ −

{
[T U ]9

}−
= F9 on Σ. (7.14)

We look for a solution of the boundary value problem (5.5), (7.5)–(7.14) in the form

U = V (H−1 h) +Wc(h
(2)) + Vc(h

(1)) in ΩΣ, (7.15)

where

Vc(h
(1))(x) :=

∫
Σ

Γ(x− y, τ)h(1)(y) dyS,

Wc(h
(2))(x) :=

∫
Σ

[
T̃ (∂y, n(y), τ)[Γ(x− y, τ)]⊤

]⊤
h(2)(y) dyS,

V (H−1h)(x) :=

∫
S

Γ(x− y, τ)(H−1h)(y) dyS,

h(i) = (h
(i)
1 , . . . , h

(i)
9 )⊤, i = 1, 2, and h = (h1, . . . , h9)

⊤ are unknown densities,

h(1) ∈
[
B̃

− 1
p

p,p (Σ)
]9
, h(2) ∈

[
B̃

1− 1
p

p,p (Σ)
]9
, h ∈

[
B

1− 1
p

p,p (S)
]9
. (7.16)

Due to the above inclusions, clearly, in the potentials Vc and Wc we can take the closed surface S0 as
an integration manifold instead of the crack surface Σ. Recall that Σ is assumed to be a proper part
of S0 = ∂Ω0 ⊂ Ω (see Section 5).

The boundary and transmission conditions (7.5)–(7.14) lead to the equations:

r
SN

Ah+ r
SN

[
TWc(h

(2))
]
+ r

SN

[
T Vc(h(1))

]
= g(N) on SN , (7.17)

r
SD
h+ r

SD

[
Wc(h

(2))
]
+ r

SD
Vc(h

(1)) = g(D) on SD, (7.18)
rΣ

[
T V (H−1h)

]
j
+ rΣ

[
Lch

(2)
]
j
+ rΣ

[
Kc(h

(1))
]
j
= 2−1(F+

j + F−
j ) on Σ, j = 1, 6, (7.19)

where

h
(2)
7 = f7, h

(2)
8 = f8, h

(2)
9 = f9, h

(1)
j = F−

j − F+
j , j = 1, 6,

h
(1)
7 = −F7, h

(1)
8 = −F8, h

(1)
9 = −F9 on Σ,

and A := (−2−1I9 +K)H−1 is the Steklov–Poincaré type operator on S, and

Lc(h
(2))(z) :=

{
TWc(h

(2))(z)
}+

=
{
TWc(h

(2))(z)
}− on Σ,

Kc(h
(1))(z) :=

∫
Σ

T (∂z, n(z), τ)Γ(z − y, τ)h(1)(y) dyS on Σ.

As we see the sought for density h(1) and the last three components of the vector h(2) are determined
explicitly by the data of the problem. Hence, it remains to find the density h and the first six
components h̃(2) = (h

(2)
1 , . . . , h

(2)
6 )⊤ of the vector h(2).

The operator generated by the left hand side expressions of the above simultaneous equations
(7.17)–(7.19), acting upon the unknown vector (h, h̃(2)), reads as

Q :=


r
SN

A r
SN

[TWc]9×6

r
SD
I9 [r

SD
Wc]9×6

r
Σ
[T V (H−1)]6×9 r

Σ
[Lc]6×6


24×15

,
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where [M ]m×n denotes the upper left m× n dimensional block of a matrix M of dimension m0 × n0
with m0 > m and n0 > n. This operator possesses the following mapping properties:

Q : [Hs
p(S)]

9 × [H̃s
p(Σ)]

6 → [Hs−1
p (SN )]9 × [Hs

p(SD)]9 × [Hs−1
p (Σ)]6,

Q : [Bs
p,q(S)]

9 × [B̃s
p,q(Σ)]

6 → [Bs−1
p,q (SN )]9 × [Bs

p,q(SD)]9 × [Bs−1
p,q (Σ)]6,

1 < p <∞, 1 ≤ q ≤ ∞, s ∈ R.

(7.20)

Our main goal is to establish invertibility of the operators (7.20). To this end, by introducing a
new additional unknown vector we extend equation (7.18) from SD onto the whole of S. We will do
this in the following way. Denote by g(D)

0 some fixed extension of g(D) from SD onto the whole of S
preserving the space. In particular, for the zero vector g(D) = 0 on SD we always choose the fixed
extension vector g(D)

0 = 0 on S.
Introduce a new unknown vector w on S

w = h+ r
S
[Wc(h

(2))] + r
S
Vc(h

(1))− g
(D)
0 . (7.21)

It is evident that w ∈ [B̃
1− 1

p
p,p (SN )]9 in accordance with (7.18), (7.16), (5.16), and the imbedding

g
(D)
0 ∈ [B

1− 1
p

p,p (S)]9. Moreover, the restriction of equation (7.21) on SD coincides with equation (7.18).
Therefore, we can replace equation (7.18) in system (7.17)–(7.19) by equation (7.21). Finally, we
arrive at the following simultaneous equations with respect to unknowns h, w, and h̃(2):

r
SN

Ah+ r
SN

[TWc]9×6(h̃
(2)) = g(1) on SN , (7.22)

h− w + r
S
[Wc]9×6(h̃

(2)) = g(2) on S, (7.23)
rΣ

[
T V (H−1)

]
6×9

(h) + rΣ[Lc]6×6(h̃
(2)) = g(3) on Σ, (7.24)

where

g(1) = g(N) − r
SN

[
T Vc(h(1))

]
− r

SN

[
TWc

((
[0]1×6, h

(2)
7 , h

(2)
8 , h

(2)
9

)⊤)]
,

g(2) = g
(D)
0 − r

S

[
Vc(h

(1))
]
− r

S

[
Wc

((
[0]1×6, h

(2)
7 , h

(2)
8 , h

(2)
9

)⊤)]
,

g(3) = 2−1(F+ + F−)− rΣ [Kc]6×9(h
(1))− rΣ

[
Lc

((
[0]1×6, h

(2)
7 , h

(2)
8 , h

(2)
9

)⊤)]
,

with F± = (F±
1 , . . . , F

±
6 )⊤.

Rewrite system (7.22)–(7.24) in the equivalent form

r
SN

Aw + r
SN

[TWc]9×6(h̃
(2))− r

SN
A[r

S
Wc]9×6(h̃

(2)) = g(1) − r
SN

Ag(2) on SN , (7.25)

−w + h+ r
S
[Wc]9×6(h̃

(2)) = g(2) on S, (7.26)
rΣ

[
T V (H−1)

]
6×9

(h) + rΣ[Lc]6×6(h̃
(2)) = g(3) on Σ. (7.27)

Remark 7.4. Systems (7.17)–(7.19) and (7.25)–(7.27) are equivalent in the following sense:

(i) if (h, h̃(2))⊤ solves system (7.17)–(7.19), then (w, h, h̃(2))⊤ with w given by (7.21) where g(D)
0 is

some fixed extension of the vector g(D) from SD onto the whole of S involved in the right hand
side of equation (7.26), solves system (7.25)–(7.27);

(ii) if (w, h, h̃(2))⊤ solves system (7.25)–(7.27), then (h, h̃(2))⊤ solves system (7.17)–(7.19).

The operator generated by the left hand sides of system (7.25)–(7.27) reads as

M :=


r
SN

A [0]9×9 r
SN

R

−r
S
I9 r

S
I9 [r

S
Wc]9×6

[0]6×9 r
Σ

[
T V (H−1)

]
6×9

r
Σ
[Lc]6×6


24×24

,
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where
R = [TWc]9×6 −A[r

S
Wc]9×6.

This operator has the following mapping properties:

M : [H̃s
p(SN )]9 × [Hs

p(S)]
9 × [H̃s

p(Σ)]
6 → [Hs−1

p (SN )]9 × [Hs
p(S)]

9 × [Hs−1
p (Σ)]6,

M : [B̃s
p,q(SN )]9 × [Bs

p,q(S)]
9 × [B̃s

p,q(Σ)]
6 → [Bs−1

p,q (SN )]9 × [Bs
p,q(S)]

9 × [Bs−1
p,q (Σ)]6,

1 < p <∞, 1 ≤ q ≤ ∞, s ∈ R.

(7.28)

Due to the above agreement about the extension of the zero vector we see that if the right hand side
functions of the system (7.17)–(7.19) vanish then the same holds for the system (7.25)–(7.27) and vice
versa.

The uniqueness Theorem 5.2 and properties of the single and double layer potentials imply the
following assertion.

Lemma 7.5. The null spaces of the operators Q and M are trivial for s = 1/2 and p = 2.

Now we start to analyse Fredholm properties of the operator M.
For the principal part M0 of the operator M we have

M0 :=


r
SN

A [0]9×9 [0]9×6

−r
S
I9 r

S
I9 [0]9×6

[0]6×9 [0]6×9 rΣL(1)


24×24

, (7.29)

where L(1) := [Lc]6×6.
Clearly, the operator M0 has the same mapping properties as M and the difference M−M0 is

compact.
By the same arguments as in [3], we can establish that the operators Lc and A are strongly elliptic

pseudodifferential operators of order 1, therefore L(1) is a strongly elliptic pseudodifferential operator
as well. Moreover, we have the following invertibility results.

Theorem 7.6. Let 1 < p <∞, 1 ≤ q ≤ ∞, 1/p− 1/2 < s < 1/p+ 1/2. Then the operators

r
Σ
L(1) :

[
H̃s

p(Σ)
]6 →

[
Hs−1

p (Σ)
]6
, r

Σ
L(1) :

[
B̃s

p,q(Σ)
]6 →

[
Bs−1

p,q (Σ)
]6 (7.30)

are invertible.

Proof. With the help of the first equality in (6.5) we find that the principal homogeneous symbol
matrix of the strongly elliptic pseudodifferential operator Lc reads as

S(Lc;x, ξ) = S(LS0 ;x, ξ) :=
[
− 4−1I9 +S2(KS0 ;x, ξ)

] [
S(HS0 ;x, ξ)

]−1

=
[
− 4−1I9 +S2(Kc;x, ξ)

] [
S(Hc;x, ξ)

]−1
, x ∈ Σ, ξ ∈ R2 \ {0},

where HS0
and KS0

are integral operators given by (6.1) and (6.2) with S0 for S.
One can show that the principal homogeneous symbol matrix of the operator Kc is an odd matrix

function in ξ, whereas the principal homogeneous symbol matrix of the operator Hc is an even matrix
function in ξ. Consequently, the matrix S(Lc;x, ξ) is even in ξ (for details see [3, Lemma C.2]).

From these results it follows that L(1) is a strongly elliptic pseudodifferential operator with even
principal homogeneous symbol. Therefore the matrix [S(L(1);x, 0,+1)]−1S(L(1);x, 0,−1) is the unit
matrix and the corresponding eigenvalues equal to 1. Now, from Theorem A.1 in Appendix A it
follows that the operators (7.30) are Fredholm with zero index for 1 < p < ∞, 1 ≤ q ≤ ∞ and
1/p− 1/2 < s < 1/p+1/2. It remains to show that the corresponding null spaces are trivial. In turn,
due to the same Theorem A.1, it suffices to prove that the operator r

Σ
L(1) : [H̃

1
2
2 (Σ)]

6 → [H
− 1

2
2 (Σ)]6

is injective, i.e, we have to prove that the homogeneous equation

rΣL(1)g = 0 on Σ (7.31)
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possesses only the trivial solution in the space [H̃
1
2
2 (Σ)]

6.
Let g ∈ [H̃

1
2
2 (Σ)]

6 solve equation (7.31) and construct the double layer potential

U = (u1, . . . , u9)
⊤ =Wc(g̃), g̃ = (g, 0, 0, 0)⊤.

In view of properties of the double layer potential and equation (7.31), it can easily be verified that
the vector U ∈ [W 1

2 (R3 \Σ)]9 is a solution to the following crack type boundary transmission problem:

A(∂x, τ)U = 0 in R3 \ Σ,{
[T U ]j

}+
=

{
[T U ]j

}−
= 0, j = 1, 6 on Σ,

{uk}+ − {uk}− = 0, k = 7, 8, 9 on Σ,{
[T U ]k

}+ −
{
[T U ]k

}−
= 0, k = 7, 8, 9 on Σ

and satisfies the decay conditions (4.5) at infinity, i.e., U ∈ Z(R3 \ Σ).
Applying Green’s identities (4.1), (4.6) by standard arguments we can show that U = 0 in R3 \Σ.

Whence g = (g1, . . . , g6)
⊤ = 0 on Σ follows due to the equalities {uj}+ − {uj}− = gj on Σ, j = 1, 6.

This completes the proof.

Due to (4.9) the operator A is coercive and consequently is elliptic. Moreover, it is strongly elliptic.
Indeed, let Ax be the operator A written in some local coordinate system with origin at the frozen
point x ∈ S. Denote by A(0)

x the principal part of the operator Ax and let R3(n) be the half-space
y1n1(x) + y2n2(x) + y3n3(x) < 0 with plane boundary R2(n) = ∂R3(n). Evidently, n(x) is the unit
outward normal vector to R3(n). From Green’s formula (4.1) with Ω = R3(n), equality (4.8), and
positive definiteness of form (4.1) it follows that for all φ ∈ [C∞

0 (R2)]9, φ ≠ 0,

Re
∫

R2(n)

A(0)
x φ(y) · φ(y) dy =

∫
R2(n)

ReS(A;x, ξ)ψ(ξ) · ψ(ξ) dξ ≥ 0, ψ(ξ) = Fy→ξ(φ)(y),

(cf. [19, Theorem 17]) which ensures strong ellipticity property of the symbol S(A;x, ξ), that is, there
exists a positive constant c such that ReS(A;x, ξ)ζ · ζ ≥ c|ξ| |ζ|2 for x ∈ S, ξ ∈ R2, ζ ∈ C9.

Let λ̃k, k = 1, 9, be the eigenvalues of the matrix a0(x) := [S(A;x, 0,+1)]−1S(A;x, 0,−1), x ∈
ℓm = ∂SD = ∂SN , where S(A;x, ξ) with x ∈ SN and ξ = (ξ1, ξ2) ∈ R2 is the principal homogeneous
symbol of the Steklov–Poincaré operator A. As we will see below one of the eigenvalues (λ̃9 say) of
the matrix a0(x) equals to 1.

Let us introduce the notation

δ′ = inf
1≤j≤9
x∈ℓm

1

2π
arg λ̃j(x), δ′′ = sup

1≤j≤9
x∈ℓm

1

2π
arg λ̃j(x). (7.32)

Due to strong ellipticity of the operator A and since one eigenvalue equals to 1, we deduce that
−1/2 < δ′ ≤ 0 ≤ δ′′ < 1/2. Theorem A.1 in Appendix A implies the following assertion (cf. [3,
Theorem 5.19]).

Theorem 7.7. Let 1 < p <∞, 1 ≤ q ≤ ∞, 1/p− 1/2+ δ′′ < s < 1/p+1/2+ δ′ with δ′ and δ′′ given
by (7.32). Then the Steklov–Poincaré operators

r
SN

A :
[
H̃s

p(SN )
]9 → [Hs−1

p (SN )]9, r
SN

A :
[
B̃s

p,q(SN )
]9 → [Bs−1

p,q (SN )]9

are invertible.

In turn, Theorem 7.7 leads to the following invertibility result.

Theorem 7.8. Let

1 < p <∞, 1 ≤ q ≤ ∞,
1

p
− 1

2
+ δ′′ < s <

1

p
+

1

2
+ δ′. (7.33)

Then operators (7.28) are invertible.
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Proof. From Theorems 7.6 and 7.7 we conclude that for arbitrary p, q, and s satisfying conditions
(7.33), the operators

M0 : [H̃s
p(SN )]9 × [Hs

p(S)]
9 × [H̃s

p(Σ)]
6 → [Hs−1

p (SN )]9 × [Hs
p(S)]

9 × [Hs−1
p (Σ)]6,

M0 : [B̃s
p,q(SN )]9 × [Bs

p,q(S)]
9 × [B̃s

p,q(Σ)]
6 → [Bs−1

p,q (SN )]9 × [Bs
p,q(S)]

9 × [Bs−1
p,q (Σ)]6,

with M0 defined in (7.29) are invertible. Therefore the operators (7.28) are Fredholm operators with
index 0.

By Lemma 7.5 we conclude then that for s = 1/2 and p = 2 operator (7.28) is invertible. The
null-spaces and indices of the operators (7.28) are the same for all values of the parameter q ∈ [1,+∞],
provided p and s satisfy the inequalities (7.33) (see [1, Chapter 3, Proposition 10.6]). Therefore, for
such values of the parameters p and s they are invertible. In particular, the nonhomogeneous system
(7.25)–(7.27) is uniquely solvable in the corresponding spaces. Moreover, it can be easily shown that
the solution vectors h, h̃(2) do not depend on the extension of the vector g(D), while w does. However,
the sum w + g

(D)
0 is defined uniquely.

Due to Remark 7.4 we conclude that the operators (7.20) are invertible if p, q and s satisfy
conditions (7.33).

With the help of this theorem we arrive at the following existence result for the original mixed
BVP.

Theorem 7.9. Let
4

3− 2δ′′
< p <

4

1− 2δ′
(7.34)

with δ′ and δ′′ given by (7.32). Then the BVP (5.5)–(5.15) has a unique solution U in the space
[W 1

p (ΩΣ)]
9, which can be represented as U = V (H−1h) +Wc(h

(2)) + Vc(h
(1)) in ΩΣ, where h, h(2),

and h(1) are defined by the system (7.17)–(7.19).

Proof. The condition (7.34) follows from the inequality (7.33) with s = 1 − 1/p. Now existence of
a solution U ∈ [W 1

p (ΩΣ)]
9 with p satisfying (7.34) follows from Theorem 7.8 and Remark 7.4. Due

to the inequalities −1/2 < δ′ ≤ δ′′ < 1/2 we have p = 2 ∈ ( 4
3−2δ′′ ,

4
1−2δ′ ). Therefore the unique

solvability for p = 2 is a consequence of Theorem 5.2.
To show the uniqueness result for all other values of p from the interval (7.34) we proceed as follows.

Let a vector U ∈ [W 1
p (ΩΣ)]

9 with p satisfying (7.34) be a solution to the homogeneous boundary value
problem (5.5)–(5.15).

Then it is evident that

{U}+S ∈ [B
1− 1

p
p,p (S)]9, {T U}+S ∈ [B

− 1
p

p,p (S)]
9, {U}±Σ ∈ [B

1− 1
p

p,p (Σ)]9, {T U}±Σ ∈ [B
− 1

p
p,p (Σ)]

9,

{U}+Σ − {U}−Σ ∈ [B̃
1− 1

p
p,p (Σ)]9, {T U}+Σ − {T U}−Σ = 0 on Σ.

By the general integral representation formula the vector U can be represented in ΩΣ as

U =Wc({U}+Σ − {U}−Σ)Vc({T U}+Σ − {T U}−Σ) +W ({U}+S )− V ({T U}+S ) ,

i.e.,
U = U∗ +Wc(h

(2)) + Vc(h
(1)) in ΩΣ, (7.35)

where
h(1) = {T U}+Σ − {T U}−Σ , h(2) := {U}+Σ − {U}−Σ on Σ,

U∗ :=W ({U}+S )− V
(
{T U}+S

)
∈ [W 1

p (Ω)]
9.

Note that U∗ solves the homogeneous equation

A(∂, τ)U∗ = 0 in Ω.

Denote h := {U∗}+S . Clearly, h ∈ [B
1−1/p
p,p (S)]9. Since the Dirichlet problem possesses a unique

solution in the space [W 1
p (Ω)]

9 for arbitrary p ∈ [1,+∞), due to Theorem 7.2 we can represent U∗
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uniquely in the form of a single layer potential, U∗ = V (H−1h) in Ω (for details see [3, Chapter 5,
Section 5.6]). Therefore from (7.35) we get

U = V (H−1h) +Wc(h
(2)) + Vc(h

(1)) in ΩΣ.

Now, the homogeneous boundary and transmission conditions for U lead to the homogeneous
system (cf. (7.17)–(7.19)) QΨ = 0, where Ψ = (h, h(2), h(1))⊤. Whence, Ψ = 0 follows immediately
due to invertibility of Q (see Theorem 7.8 and Remark 7.4). Consequently, U = 0 in ΩΣ.

Let us now present some regularity results for solutions of the mixed boundary value problem
(5.5)–(5.15).

Theorem 7.10. Let 1 < t <∞, 1 ≤ q ≤ ∞,

4

3− 2δ′′
< p <

4

1− 2δ′
,

1

t
− 1

2
+ δ′′ < s <

1

t
+

1

2
+ δ′

with δ′ and δ′′ given by (7.32), and let U ∈ [W 1
p (ΩΣ)]

9 be the solution of the boundary value problem
(5.5)–(5.15). Then the following regularity results hold:

(i) If

F+
j , F

−
j ∈ Bs−1

t,t (Σ), F+
j − F−

j ∈ B̃s−1
t,t (Σ), j = 1, 6,

Fk ∈ B̃s−1
t,t (Σ), fk ∈ B̃s

t,t(Σ), k = 7, 8, 9,

g(D) ∈ [Bs
t,t(SD)]9, g(N) ∈ [Bs−1

t,t (SN )]9,

then
U ∈ [H

s+ 1
t

t (ΩΣ)]
9;

(ii) If

F+
j , F

−
j ∈ Bs−1

t,q (Σ), F+
j − F−

j ∈ B̃s−1
t,q (Σ), j = 1, 6,

Fk ∈ B̃s−1
t,q (Σ), fk ∈ B̃s

t,q(Σ), k = 7, 8, 9,

g(D) ∈ [Bs
t,q(SD)]9, g(N) ∈ [Bs−1

t,q (SN )]9,

then
U ∈ [B

s+ 1
t

t,q (ΩΣ)]
9;

(iii) If α > 0 and

F+
j , F

−
j ∈ Bα−1

∞,∞(Σ), F+
j − F−

j ∈ B̃α−1
∞,∞(Σ), j = 1, 6,

Fk ∈ B̃α−1
∞,∞(Σ), fk ∈ Cα(Σ), rℓcfk = 0, k = 7, 8, 9,

g(D) ∈ [Cα(SD)]9, g(N) ∈ [Bα−1
∞,∞(SN )]9,

then
U ∈

∩
α′<γ

Cα′
(Ωj), j = 0, 1,

where γ = min{α, 1/2 + δ′}, −1/2 < δ′ ≤ 0 and Ω0 is an arbitrary proper subdomain of Ω such
that Σ ⊂ ∂Ω0 = S0 ∈ C∞ and Ω1 = Ω \ Ω0.

Moreover, in one-sided interior and exterior neighbourhoods of the surface S0 the vector U has Cγ′−ε-
smoothness with γ′ = min{α, 1/2}, while in a one-sided interior neighbourhood of the surface S the
vector U possesses Cγ′′−ε-smoothness with γ′′ = min{α, 1/2+δ′}; here ε is an arbitrarily small positive
number.

Proof. The proof is exactly the same as that of Theorem 5.22 in [3].
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8 Asymptotic expansion of solutions
Here we investigate the asymptotic behaviour of solutions to the problem (5.5)–(5.15) near the ex-
ceptional curves ℓc and ℓm. For simplicity of description of the method applied below, we assume
that the boundary data of the problem are infinitely smooth, F+

j , F
−
j ∈ C∞(Σ), F+

j − F−
j ∈ C∞

0 (Σ),
j = 1, 6, fk, Fk ∈ C∞

0 (Σ), k = 7, 8, 9, g(D) ∈ [C∞(SD)]9, g(N) ∈ [C∞(SN )]9, where C∞
0 (Σ) denotes a

space of functions vanishing along with all tangential (to Σ) derivatives at ℓc = ∂Σ.
In Section 7, we have shown that the boundary value problem (5.5)–(5.15) is uniquely solvable and

the solution U can be represented by (7.15), where the densities are defined by equations (7.17)–(7.19)
or by the equivalent system (7.25)–(7.27).

Let Φ := (w, h, h̃(2))⊤ be a solution of the system (7.25)–(7.27): MΦ = G, where G is the vector
constructed by the right hand sides of the system, G ∈ [C∞(SN )]9 × [C∞(S)]9 × [C∞(Σ)]6. To
establish the asymptotic behaviour of the vector U near the curves ℓc and ℓm, we rewrite (7.15) as
follows:

U = V (H−1w) +Wc(g̃) +R, (8.1)

where
R := −V

(
H−1

[
r
S
Wc(h

(2)) + r
S
Vc(h

(1))− g
(D)
0

])
+Wc(f0) + Vc(h

(1)),

with f0 = (0, 0, 0, 0, 0, 0, f7, f8, f9)
⊤.

Due to the relations

r
S
Wc(h

(2)) + r
S
Vc(h

(1))− g
(D)
0 ∈ [C∞(S)]9,

h(1) =
(
F−
1 − F+

1 , . . . , F
−
6 − F+

6 ,−F7,−F8,−F9

)
∈ [C∞

0 (Σ)]6,

h
(2)
7 = f7 ∈ C∞

0 (Σ), h
(2)
8 = f8 ∈ C∞

0 (Σ), h
(2)
9 = f9 ∈ C∞

0 (Σ).

we deduce r
Ωj
R ∈ [C∞(Ωj)]

6, where Ωj , j = 0, 1, are as in Theorem 7.10(iii).
The vector g̃ involved in (8.1) is defined as follows: g̃ = (h̃(2), 0, 0, 0)⊤, where h̃2 solves the pseu-

dodifferential equation
rΣL(1) h̃(2) = Ψ(1) on Σ (8.2)

with Ψ(1) = (Ψ
(1)
1 , . . . ,Ψ

(1)
6 )⊤. Evidently,

Ψ(1) = g(3) − rΣ [T V (H−1)]6×9(h).

Finally, the vector w involved in (8.1) solves the pseudodifferential equation

r
SN

Aw = Ψ(2) on SN , (8.3)

where

Ψ(2) = g(1) − r
SN

Ag(2) − r
SN

(
[TWc]9×6(h̃

(2))−A[r
S
Wc]9×6(h̃

(2))
)
∈ [C∞(SN )]9.

As we have already mentioned, the principal homogeneous symbol S(L(1);x, ξ), x ∈ Σ, ξ = (ξ1, ξ2) ∈
R2 \ {0} of the pseudodifferential operator L(1) is even with respect to the variable ξ and therefore
the matrix [

S(L(1);x, 0,+1)
]−1

S(L(1);x, 0,−1), x ∈ ℓc,

is the unit matrix I6. Consequently, all eigenvalues of this matrix equal to one, λ̃j(x) = 1, j = 1, 6,
x ∈ ℓc. Applying a partition of unity, natural local coordinate systems and local diffeomorphisms,
we can rectify ℓc and Σ locally in a standard way. For simplicity, let us denote the local rectified
images of ℓc and Σ under this diffeomorphisms by the same symbols. Then we identify a one-sided
neighbourhood (on Σ) of an arbitrary point x̃ ∈ ℓc as a part of the half-plane x2 > 0. Thus, we assume
that (x1, 0) ∈ ℓc and (x1, x2,+) ∈ Σ for 0 < x2,+ < ε. Clearly, x2,+ = dist(x, ℓc).
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Applying the results obtained in the references [6] and [7] we can derive the following asymptotic
expansion for the solution h̃(2) of the strongly elliptic pseudodifferential equation (8.2),

h̃(2)(x1, x2,+) = c0(x1)x
1
2
2,+ +

M∑
k=1

ck(x1)x
1
2+k
2,+ + h̃(2)

M+1
(x1, x2,+), (8.4)

where M is an arbitrary natural number, ck ∈ [C∞(ℓc)]
6, k = 0, 1, . . . ,M , and the remainder term

satisfies the inclusion
h̃(2)

M+1
∈ [CM+1(ℓ+c,ε)]

6, ℓ+c,ε = ℓc × [0, ε].

Note that, according to [7], the terms in expansion (8.4) do not contain logarithms, since the
principal homogeneous symbol S(L(1);x, ξ) of the pseudodifferential operator L(1) is even in ξ.

To derive analogous asymptotic expansion for the solution vector w of equation (8.3), we apply
the same local technique as above to a one-sided neighbourhood (in SN ) of the curve ℓm and preserve
the same notation for the local coordinates.

Consider a 9× 9 matrix a0(x1) constructed by means of the principal homogeneous symbol of the
Steklov–Poincaré operator A,

a0(x1) :=
[
S(A;x1, 0,+1)

]−1
S(A;x1, 0,−1), (x1, 0) ∈ ℓm. (8.5)

Note that unlike to the above considered case, now (8.5) is not the unit matrix and therefore we
proceed as follows.

Denote by λ̃1(x1), . . . , λ̃9(x1) the eigenvalues of the matrix a0. Let µj , j = 1, . . . , l, 1 ≤ l ≤ 9,
be the distinct eigenvalues and mj be their algebraic multiplicities: m1 + · · · + ml = 9. It is well
known that the matrix a0(x1) admits the decomposition (see, e.g., [12, Chapter 7, Section 7]) a0(x1) =
D(x1)Ja0

(x1)D−1(x1), (x1, 0) ∈ ℓm, where D is 9×9 nondegenerate matrix with infinitely differentiable
entries and Ja0

has a block diagonal structure Ja0
(x1) := diag{µ1(x1)B

(m1)(1), . . . , µl(x1)B
(ml)(1)}.

Here B(ν)(t), ν ∈ {m1, . . . ,ml}, are upper triangular matrices:

B(ν)(t) = ∥b(ν)jk (t)∥ν×ν , b
(ν)
jk (t) =


tk−j

(k − j)!
, j < k,

1, j = k,

0, j > k,

i.e.,

B(ν)(t) =



1 t
t2

2!
· · · tν−2

(ν − 2)!

tν−1

(ν − 1)!

0 1 t · · · tν−3

(ν − 3)!

tν−2

(ν − 2)!
. . . . . . . . . . . . . . . . . .

0 0 0 · · · 1 t
0 0 0 · · · 0 1


ν×ν

.

Denote
B0(t) := diag

{
B(m1)(t), . . . , B(ml)(t)

}
.

Again, applying the results from the reference [6] we derive the following asymptotic expansion for
the solution ω of the strongly elliptic pseudodifferential equation (8.3):

ω(x1, x2,+) = D(x1)x
1
2+∆(x1)
2,+ B0

(
− 1

2πi
logx2,+

)
D−1(x1)b0(x1)

+

M∑
k=1

D(x1)x
1
2+∆(x1)+k
2,+ Bk(x1, logx2,+) + ωM+1(x1, x2,+), (8.6)
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where b0 ∈ [C∞(ℓm)]9, ωM+1 ∈ [C∞(ℓ+m,ε)]
9, ℓ+m,ε = ℓm × [0, ε], and

Bk(x1, t) = B0

(
− t

2πi

) k(2m0−1)∑
j=1

tjdkj(x1).

Here m0 = max{m1, . . . ,m9}, the coefficients dkj ∈ [C∞(ℓm)]9, ∆ := (∆1, . . . ,∆9), and

∆j(x1) =
1

2πi
log λ̃j(x1) =

1

2π
arg λ̃j(x1) +

1

2πi
log |λ̃j(x1)|,

−π < arg λ̃j(x1) < π, (x1, 0) ∈ ℓm, j = 1, 9.

Furthermore,
x

1
2+∆(x1)
2,+ := diag

{
x

1
2+∆1(x1)
2,+ , . . . , x

1
2+∆9(x1)
2,+

}
.

Now, having at hand formulae (8.4) and (8.6) with the help of the asymptotic expansion of
potential-type functions obtained in [5] we can write the following spatial asymptotic expansions
for the solution vector U of the boundary value problem (5.5)–(5.15) near the crack edge ℓc and near
the collision curve ℓm.

(a) Asymptotic expansion near the crack edge ℓc:

U(x) =
∑
µ=±1

[
l0∑

s=1

ns−1∑
j=0

xj3z
1
2−j
s,µ d

(c)
sj (x1, µ) +

M+2∑
k,l=0

M+2−l∑
j+p=0

k+l+j+p≥1

xl2x
j
3z

1
2+p+k
s,µ d

(c)
slkjp(x1, µ)

]
+ U

(c)
M+1(x) (8.7)

with the coefficients d(c)sj ( · , µ), d
(c)
slkjp( · , µ) ∈ [C∞(ℓc)]

9 and U
(c)
M+1 ∈ [CM+1(Ωj)]

9, j = 0, 1. Here Ωj ,
j = 0, 1, are as in Theorem 7.10(iii), and

zs,+1 = −(x2 + x3ζs,+1), zs,−1 = x2 − x3ζs,−1, −π < arg zs,±1 < π, ζs,±1 ∈ C∞(ℓc), (8.8)

where {ζs,±1}l0s=1 are the different roots in ζ of multiplicity ns, s = 1, . . . , l0, of the polynomial
detA(0)([J⊤

κ (x1, 0, 0)]
−1η±) with η± = (0,±1, ζ)⊤, satisfying the condition Re ζs,±1 < 0. The matrix

Jκ stands for the Jacobian matrix corresponding to the canonical diffeomorphism κ related to the
local co-ordinate system. Under this diffeomorphism ℓc and Σ are locally rectified and we assume that
(x1, 0, 0) ∈ ℓc, x2 = dist(x(Σ), ℓc), x3 = dist(x,Σ), where x(Σ) is the projection of the reference point
x ∈ ΩΣ onto the plane corresponding to the image of Σ under the diffeomorphism κ.

Note that the coefficients d(c)sj ( · , µ) can be expressed by the first coefficient c0 in the asymptotic
expansion (8.4) (for details see [5, Theorem 2.3]).

(b) Asymptotic expansion near the collision curve ℓm:

U(x) =
∑
µ=±1

{
l0∑

s=1

ns−1∑
j=0

xj3

[
d
(m)
sj (x1, µ)z

1
2+∆(x1)−j
s,µ B0

(
− 1

2πi
log zs,µ

)]
c̃j(x1)

+

M+2∑
k,l=0

M+2−l∑
j+p=0

k+l+j+p≥1

xl2x
j
3d

(m)
sljp(x1, µ)z

1
2+∆(x1)+p+k
s,µ Bskjp(x1, log zs,µ)

}
+ U

(m)
M+1(x), (8.9)

where d
(m)
sj ( · , µ) and d

(m)
sljp( · , µ) are matrices with entries belonging to the space C∞(ℓm), c̃j ∈

[C∞(ℓm)]9, U (m)
M+1 ∈ [CM+1(Ω1)]

9, and

zκ+∆(x1)
s,µ := diag

{
zκ+∆1(x1)
s,µ , . . . , zκ+∆9(x1)

s,µ

}
, κ ∈ R, µ = ±1, x1 ∈ ℓm;

Bskjp(x1, t) are polynomials with respect to the variable t with vector coefficients which depend
on the variable x1 and have the order νkjp = k(2m0 − 1) + m0 − 1 + j + p, in general, where
m0 = max{m1, . . . ,ml} and m1 + · · ·+ml = 9.

Note that the coefficients d(m)
sj ( · , µ) can be calculated explicitly, whereas the coefficients c̃j can

be expressed by means of the first coefficient b0 in the asymptotic expansion (8.6) (for details see [5,
Theorem 2.3]).
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9 Analysis of singularities of solutions

Let x′ ∈ ℓc and Π
(c)
x′ be the plane passing through the point x′ and orthogonal to the curve ℓc. We

introduce the polar coordinates (r, α), r ≥ 0, −π ≤ α ≤ π, in the plane Π
(c)
x′ with pole at the point

x′. Denote by Σ± the two different faces of the crack surface Σ. It is clear that (r,±π) ∈ Σ±.
Denote the similar orthogonal plane to the curve ℓm by Π

(m)
x′ at the point x′ ∈ ℓm and introduce

there the polar coordinates (r, α), with pole at the point x′. The intersection of the plane Π
(m)
x′ and

ΩΣ can be identified with the half-plane r ≥ 0 and 0 ≤ α ≤ π.
In these coordinate systems, the functions zs,±1 given by (8.8) read as follows:

zs,+1 = −r(cosα+ ζs,+1(x
′) sinα), zs,−1 = r(cosα− ζs,−1(x

′) sinα),

where x′ ∈ ℓc ∪ ℓm, s = 1, . . . , l0. We can rewrite asymptotic expansions (8.7) and (8.9) in more
convenient forms, in terms of the variables r and α. Moreover, we establish more refined asymptotic
properties of the solution vector U = (u, ϕ, φ, ψ, ϑ)⊤ ∈ [C∞(ΩΣ)]

9 near the exceptional curves.

(i) Asymptotic analysis of solutions near the crack edge ℓc.

The asymptotic expansion (8.7) yields

U = (u, ϕ, φ, ψ, ϑ)⊤ = a0(x
′, α) r1/2 + a1(x

′, α) r3/2 + · · · , (9.1)

where r is the distance from the reference point x ∈ Π
(c)
x′ to the curve ℓc, and aj = (aj1, . . . , aj9)

⊤,
j = 0, 1, . . . , are smooth vector functions of x′ ∈ ℓc.

From this representation it follows that in one-sided interior and exterior neighbourhoods of the
surface S0 = ∂Ω0 the vector U = (u, ϕ, φ, ψ, ϑ)⊤ has C 1

2 -smoothness.

(ii) Asymptotic analysis of solutions near the curve ℓm.

The asymptotic expansion (8.9) yields

U(x) =
∑
µ=±1

l0∑
s=1

ns−1∑
j=0

csjµ(x
′, α)rγ+iδB0

(
− 1

2πi
log r

)
c̃sjµ(x

′, α) + · · · , (9.2)

where x′ ∈ ℓm,

rγ+iδ := diag
{
rγ1+iδ1 , . . . , rγ9+iδ9

}
,

γj =
1

2
+

1

2π
arg λ̃j(x′), δj =

1

2π
log |λ̃j(x′)|, j = 1, 9,

(9.3)

and λ̃j , j = 1, 9, are eigenvalues of the matrix

a0(x
′) =

[
S(A;x′, 0,+1)

]−1
S(A;x′, 0,−1), x′ ∈ ℓm.

Recall that here S(A;x′, ξ) is the principal homogeneous symbol of the Steklov–Poincaré operator
A = (−2−1I9 + K)H−1. Moreover, the eigenvalues λ̃j , j = 1, 9, can be expressed in terms of the
eigenvalues βj , j = 1, 9, of the matrix S(K;x′, 0,+1), where S(K;x′, ξ) is the principal homogeneous
symbol matrix of the singular integral operator K (see [4, Theorem 6.3]),

λ̃j =
1 + 2βj
1− 2βj

, j = 1, 9. (9.4)
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The symbol matrix S(K;x′, 0,+1) is calculated explicitly

S(K;x′, 0,+1) =



0 0 0 0 0 0 0 0 0
0 0 −ia 0 0 0 0 0 0
0 ia 0 0 0 0 0 0 0
0 0 0 0 0 0 ic ip iq
0 0 0 0 0 −ib 0 0 0
0 0 0 0 ib 0 0 0 0

0 0 0 − ib0
2γ

0 0 0 0 0

0 0 0 − iλ1
2γ

0 0 0 0 0

0 0 0 − iν2
2γ

0 0 0 0 0


9×9

,

where

a =
1

4

( λ

λ+ 2µ+ κ
− µ

µ+ κ

)
, b =

1

4

( α

α+ β + γ
− β

γ

)
,

c = b0b11 + λ1b21 + ν2b31, p = b0b12 + λ1b22 + ν2b32, q = b0b13 + λ1b23 + ν2b33,

[
bjk

]
3×3

=

a0 −λ2 ν1
λ2 χ ν3
ν1 −ν3 k

−1

= (kχa0 + kλ22 − χν21 − 2λ2ν1ν3 + a0ν
2
3)

−1

×

 kχ+ ν23 kλ2 − ν1ν3 χν1 + λ2ν3
−kλ2 + ν1ν3 ka0 − ν21 −νa0 + λ2ν1
χν1 + λ2ν3 −λ2ν1 + a0ν3 χa0 + λ22

 .
The characteristic polynomial of the matrix S(K;x′, 0,+1) can be represented as

det
(
S(K;x′, 0,+1)− βI

)
= −β

3(β2 − a2)(β2 − b2)(2γβ2 − cb0 − pλ1 − qν2)

2γ
.

Therefore we have the following expressions for eigenvalues of the matrix S(K;x′, 0,+1):

β1,2 = ∓
√
d , β3,4 = ∓a, β5,6 = ∓b, β7 = β8 = β9 = 0,

where
|a| < 1

2
, |b| < 1

2
, d =

cb0 + pλ1 + qν2
2γ

, γ > 0. (9.5)

Then due to (9.4) we have

λ̃1 =
1

λ̃2
=


1− 2i

√
−d

1 + 2i
√
−d

if d < 0,

1− 2
√
d

1 + 2
√
d

if d > 0,

λ̃3 =
1− 2a

1 + 2a
, λ̃4 =

1

λ̃3
, λ̃5 =

1− 2b

1 + 2b
, λ̃6 =

1

λ̃5
, λ̃7 = λ̃8 = λ̃9 = 1.

Note, that λ̃3, . . . , λ̃9 are positive eigenvalues, whereas λ̃1, and λ̃2 are positive if d > 0 (see Appendix A)
and |λ̃1| = |λ̃2| = 1 if d < 0.

Applying the above results we can explicitly write the exponents of the dominant terms in the
asymptotic expansion (9.2)–(9.3):

γ1 =
1

2
− 1

π
arctan 2

√
−d , γ2 =

1

2
+

1

π
arctan 2

√
−d , δ1 = δ2 = 0 if d < 0, (9.6)
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γ1 = γ2 =
1

2
, δ1 =

1

2π
ln 1− 2

√
d

1 + 2
√
d
, δ2 = −δ1 if d > 0, (9.7)

and

γ3 = γ4 = γ5 = γ6 = γ7 = γ8 = γ9 =
1

2
,

δ3 =
1

2π
ln 1− 2a

1 + 2a
, δ4 = −δ3, δ5 =

1

2π
ln 1− 2b

1 + 2b
, δ6 = −δ5, δ7 = δ8 = δ9 = 0.

Note, that B0(t) has the form

B0(t) =

[
I6 [0]6×3

[0]3×6 B(3)(t)

]
, B(3)(t) =

1 t t2

0 1 t
0 0 1

 if d < 0,

and
B0(t) = I9 if d > 0.

Now we can draw the conclusions concerning the asymptotic behaviour of solution U to the mixed
problem near the exceptional curve ℓm:

• If d < 0, then the asymptotic expansion has the form

U = c1r
γ1 + c2r

1/2+iδ3 + c3r
1/2−iδ3 + c4r

1/2+iδ5

+ c5r
1/2−iδ5 + c6r

1/2 ln r + c7r
1/2 ln2 r + c8r

1/2 + c9r
γ2 + · · · .

As we see from (9.5) and (9.6), the exponent γ1 characterizing the behaviour of the solution
near the line ℓm depends on the material constants and may take an arbitrary value from the
interval (0, 12 ). In this case the solution possesses Cγ1 smoothness in a neighbourhood of the
line ℓm and since γ1 < 1

2 the first order derivatives of solutions have non-oscillating singularities
near the exceptional curve ℓm.

• If d > 0, then

U = d1r
1/2 + d2r

1/2+iδ1 + d3r
1/2−iδ1 + d4r

1/2+iδ3

+ d5r
1/2−iδ3 + d6r

1/2+iδ5 + d7r
1/2−iδ5 +O(r3/2−ε),

where ε is a sufficiently small positive number. In this case the solution possesses C 1
2 -smoothness

in a neighbourhood of the line ℓm.

10 Appendix A: Fredholm properties of strongly elliptic
pseudodifferential operators on manifolds with boundary

Here we collect some results describing the Fredholm properties of strongly elliptic pseudodifferential
operators on a compact manifold with boundary. They can be found in [1, 11, 15, 22]. We essentially
use these results in Section 7 to prove the existence and regularity of solutions to the mixed boundary
value problem for a solid with an interior crack.

Let M ∈ C∞ be a compact, n-dimensional, nonselfintersecting manifold with boundary ∂M ∈ C∞

and let A be a strongly elliptic N×N matrix pseudodifferential operator of order ν ∈ R on M. Denote
by S(A;x, ξ) the principal homogeneous symbol matrix of the operator A in some local coordinate
system (x ∈ M, ξ ∈ Rn \ {0}).

Let λ̃1(x), . . . , λ̃N (x) be the eigenvalues of the matrix[
S(A;x, 0, . . . , 0,+1)

]−1
S(A;x, 0, . . . , 0,−1), x ∈ ∂M,



66 Tengiz Buchukuri, Otar Chkadua, David Natroshvili

and let
δj(x) = Re

[
(2πi)−1 ln λ̃j(x)

]
, j = 1, . . . , N.

Here ln ζ denotes the branch of the logarithm analytic in the complex plane cut along (−∞, 0]. Due to
the strong ellipticity of A we have the strict inequality −1/2 < δj(x) < 1/2 for x ∈ M. The numbers
δj(x) do not depend on the choice of the local coordinate system at the point x. In particular, if the
eigenvalue λ̃j is real, then it is positive and consequently the corresponding δj = 0.

Note that when S(A, x, ξ) is a positive definite matrix for every x ∈ M and ξ ∈ Rn \ {0} or when
it is an even matrix in ξ we have δj(x) = 0 for j = 1, . . . , N , since all the eigenvalues λ̃j(x) (j = 1, N)
are positive numbers for any x ∈ M.

The Fredholm properties of strongly elliptic pseudodifferential operators are characterized by the
following theorem.

Theorem A.1. Let s ∈ R, 1 < p <∞, 1 ≤ q ≤ ∞, and let A be a strongly elliptic pseudodifferential
operator of order ν ∈ R, that is, there is a positive constant c0 such that

Re
(
S(A;x, ξ)ζ · ζ

)
≥ c0|ζ|2 for x ∈ M, ξ ∈ Rn

with |ξ| = 1, and ζ ∈ CN . Then

A : H̃s
p(M) → Hs−ν

p (M), A : B̃s
p,q(M) → Bs−ν

p,q (M), (A.1)

are Fredholm operators with index zero if

1

p
− 1 + sup

x∈∂M, 1≤j≤N
δj(x) < s− ν

2
<

1

p
+ inf

x∈∂M, 1≤j≤N
δj(x). (A.2)

Moreover, the null-spaces and indices of the operators (A.1) are the same (for all values of the
parameter q ∈ [1,+∞]) provided p and s satisfy the inequality (A.2).

11 Appendix B: Fundamental solution
Let Γ be the fundamental solution of the operator A(∂, τ),

A(∂, τ)Γ(x) = δ(x)I9, (B.1)

where δ(x) is Dirac’s delta function and I9 is the 9× 9 unite matrix.
Denote by F and F−1 the direct and inverse Fourier transform operators in R3,

Fx→ξ[f ] ≡ f̂(ξ) =

∫
R3

eix·ξf(x) dx, ξ ∈ R3,

F−1
ξ→x[g] =

1

(2π)3

∫
R3

e−iξ·xg(ξ) dξ, x ∈ R3.

Applying the Fourier operator F to both sides of equation (B.1) we get

A(−iξ, τ)Γ̂(ξ) = I9,

whence
Γ̂(ξ) = [A(−iξ, τ)]−1. (B.2)

From (B.2) it follows that Γ̂ = (X(1), . . . , X(9)), where X(k) = (X
(k)
1 , . . . , X

(k)
9 )⊤, k = 1, . . . , 9, is a

solution of the equation
A(−iξ, τ)X(k) = B(k) (B.3)

with the right side B(k) = ((C(k))⊤, (F (k))⊤, G(k),H(k), L(k))⊤, where

C(k) = (δ1k, δ2k, δ3k)
⊤, F (k) = (δ4k, δ5k, δ6k)

⊤, G(k) = δ7k, H(k) = δ8k, L(k) = δ9k.
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Introduce the notations

û(k) = (x
(k)
1 , x

(k)
2 , x

(k)
3 )⊤, Φ̂(k) = (x

(k)
4 , x

(k)
5 , x

(k)
6 )⊤, φ̂(k) = x

(k)
7 , ψ̂(k) = x

(k)
8 , ; ϑ̂(k) = x

(k)
9 . (B.4)

Then equation (B.3) can be rewritten as[
(µ+ κ)|ξ|2 + τ2ρ0

]
û(k) + (λ+ µ)ξ(ξ · û(k)) + iκ[ξ × Φ̂(k)] + iλ0ξφ̂

(k) − iτβ0ξϑ̂
(k) = −C(k),[

γ|ξ|2 + (2κ + τ2I0)
]
Φ̂(k) + (α+ β)ξ(ξ · Φ̂(k)) + iκ

[
ξ × û(k)

]
= −F (k),(

a0|ξ|2 + ξ0 + τ2j0
)
φ̂(k) + λ2|ξ|2ψ̂(k) −

(
ν1|ξ|2 − τc0

)
ϑ̂(k) − iλ0(ξ · û(k)) = −G(k),

λ2|ξ|2φ̂(k) + χ|ξ|2ψ̂(k) + ν3|ξ|2ϑ̂(k) = −H(k),(
k|ξ|2 + τ2a

)
ϑ̂(k) − iτβ0(ξ · û(k)) +

(
ν1|ξ|2 + τc0

)
φ̂(k) − ν3|ξ|2ψ̂(k) = −L(k),

(B.5)

Multiplying the first and second equations of (B.5) by iξ and denoting η(k) := iξ · û(k), ζ(k) := iξ ·Φ̂(k),
we get

ζ(k) = − iξk−3

(α+ β + γ)(|ξ|2 − k21)
, k21 = −τ

2I0 + 2κ
α+ β + γ

,

for k = 4, 5, 6 and ζ(k) = 0 otherwise, whereas the remaining equations constitute a system of four
equations for unknowns η(k), φ̂(k), ψ̂(k), ϑ̂(k),[

(λ+ 2µ+ κ)|ξ|2 + τ2ρ0
]
η(k) − λ0|ξ|2φ̂(k) + τβ0|ξ|2ϑ̂(k) = −iξ · C(k),(

a0|ξ|2 + ξ0 + τ2j0
)
φ̂(k) + λ2|ξ|2ψ̂(k) −

(
ν1|ξ|2 − τc0

)
ϑ̂(k) − λ0η

(k) = −G(k),

λ2|ξ|2φ̂(k) + χ|ξ|2ψ̂(k) + ν3|ξ|2ϑ̂(k) = −H(k),(
k|ξ|2 + τ2a

)
ϑ̂(k) − τβ0η +

(
ν1|ξ|2 + τc0

)
φ̂(k) − ν3|ξ|2ψ̂(k) = −L(k).

(B.6)

Denote by Ã(|ξ|2) the matrix of coefficients of system (B.6)

Ã(|ξ|2) :=



[
(λ+ 2µ+ κ)|ξ|2 + τ2ρ0

]
−λ0|ξ|2 0 τβ0|ξ|2

−λ0
(
a0|ξ|2 + ξ0 + τ2j0

)
λ2|ξ|2 −

(
ν1|ξ|2 − τc0

)
0 λ2|ξ|2 χ|ξ|2 ν3|ξ|2

−τβ0
(
ν1|ξ|2 + τc0

)
−ν3|ξ|2

(
k|ξ|2 + τ2a

)

 .

Note, that
D(|ξ|2) := det

(
Ã(|ξ|2)

)
can be factorized as

D(|ξ|2) = d0|ξ|2
(
|ξ|2 − k24

)(
|ξ|2 − k25

)(
|ξ|2 − k26

)
,

where
d0 = (λ+ 2µ+ κ)(a0kχ+ a0ν

2
3 + χν21 + 2λ2ν1ν3 − kλ22)

and k24, k25, k26 are the roots of the polynomial

P (z) = z3 + p1z
2 + p2z + p3 (B.7)

with

p1 =
α+ β + γ

d0

{
− kχλ20 − τ2

[
a(κ + λ+ 2µ) + β2

0

]
λ22 − 2τχβ0λ0ν1 − 2τβ0λ0λ2ν3

− λ20ν
2
3 + (κ + λ+ 2µ)τ2j0(kχ+ ν23) + kκχξ0 + kλχξ0 + 2kµχξ0 + κν23ξ0 + λν23ξ0

+ 2µν23ξ0+τ
2(−kλ22+χν21+2λ2ν1ν3)ρ0+τ

2a0
[
a(κ+λ+2µ)χ+χβ2

0+(kχ+ν23)ρ0
]}
,

p2 =
2(α+ β + γ)

d0
(aκτ2χa0 + aλτ2χa0 + 2aµτ2χa0 + kκτ2χj0 + kλτ2χj0 + 2kµτ2χj0
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+ τ2χa0β
2
0−kχλ20−aκτ2λ22−aλτ2λ22−2aµτ2λ22−τ2β2

0λ
2
2−2τχβ0λ0ν1−2τβ0λ0λ2ν3

+ κτ2j0ν23+λτ2j0ν23+2µτ2j0ν
2
3−λ20ν23+kκχξ0+kλχξ0+2kµχξ0+κν23ξ0+λν23ξ0

+ 2µν23ξ0 + kτ2χa0ρ0 − kτ2λ22ρ0 + τ2χν21ρ0 + 2τ2λ2ν1ν3ρ0 + τ2a0ν
2
3ρ0),

p3 =
α+ β + γ

d0
τ4χ

[
− c20 + a(τ2j0 + ξ0)

]
ρ0, (B.8)

From (B.6) for η(k), φ̂(k), ψ̂(k), ϑ̂(k) we have(
η(k), φ̂(k), ψ̂(k), ϑ̂(k)

)⊤
= −Ã−1

(
|ξ|2

)(
iC(k) · ξ,G(k),H(k), L(k)

)⊤
,

implying

η(1) =− i|ξ|2
(
χ
(
− τ2c20 +

(
|ξ|2k + aτ2

)(
ξ0 + τ2j0

))
− |ξ|2

(
|ξ|2kχa0 + aτ2χa0 + |ξ|2kλ0λ2

− aτ2λ0λ2+|ξ|2χν21+
(
τc0

(
λ0−λ2

)
+|ξ|2(λ0+λ2)ν1

)
ν3+

(
ξ0+|ξ|2a0+τ2j0

)
ν23

)) ξ1
D(|ξ|2)

,

η(2) =− i|ξ|2
(
χ
(
− τ2c20 +

(
|ξ|2k + aτ2

)
(ξ0 + τ2j0)

)
− |ξ|2

(
|ξ|2kχa0 + aτ2χa0 + |ξ|2kλ0λ2

− aτ2λ0λ2+|ξ|2χν21+
(
τc0(λ0−λ2)+|ξ|2(λ0+λ2)ν1

)
ν3+

(
ξ0+|ξ|2a0+τ2j0

)
ν23

)) ξ2
D(|ξ|2)

,

η(3) =− i|ξ|2
(
χ
(
− τ2c20 +

(
|ξ|2k + aτ2

)
(ξ0 + τ2j0)

)
− |ξ|2

(
|ξ|2kχa0 + aτ2χa0 + |ξ|2kλ0λ2

− aτ2λ0λ2+|ξ|2χν21+
(
τc0(λ0−λ2)+|ξ|2(λ0+λ2)ν1

)
ν3+(ξ0+|ξ|2a0+τ2j0)ν23

)) ξ3
D(|ξ|2)

,

η(4) = η(5) = η(6) = 0,

η(7) =− |ξ|4
(
τ2χc0β0 + |ξ|2τβ0(χν1 + λ2ν3) + λ0

(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

)) 1

D(|ξ|2)
,

η(8) = |ξ|4
((

|ξ|2k + aτ2
)
λ20 + |ξ|2λ0ν1(τβ0 − ν3)

+ τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0ν3 + τc0λ0(τβ0 + ν3)

) 1

D(|ξ|2)
,

η(9) = |ξ|4
(
τβ0

(
χ
(
ξ0 + |ξ|2a0 + τ2j0

)
− |ξ|2λ0λ2 − λ0(−τχc0 + |ξ|2χν1 + |ξ|2λ0ν3)

)) 1

D(|ξ|2)
,

φ̂ (1) =− |ξ|2
(
− τ2χc0β0 + |ξ|2τχβ0ν1 + λ0

((
|ξ|2k + aτ2

)
χ+ |ξ|2ν3(τβ0 + ν3)

)) ξ1
D(|ξ|2)

,

φ̂ (2) =− |ξ|2
(
− τ2χc0β0 + |ξ|2τχβ0ν1 + λ0

((
|ξ|2k + aτ2

)
χ+ |ξ|2ν3(τβ0 + ν3)

)) ξ2
D(|ξ|2)

,

φ̂ (3) =− |ξ|2
(
− τ2χc0β0 + |ξ|2τχβ0ν1 + λ0

((
|ξ|2k + aτ2

)
χ+ |ξ|2ν3(τβ0 + ν3)

)) ξ3
D(|ξ|2)

,

φ̂ (4) = φ̂ (5) = φ̂ (6) = 0,

φ̂ (7) =− |ξ|2
(
|ξ|2τ2χβ2

0 +
(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)) 1

D(|ξ|2)
,

φ̂ (8) = |ξ|2
((
τc0 − |ξ|2ν1

)
ν3
(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ λ0

(
|ξ|2τ2β2

0 + |ξ|2τβ0ν3 +
(
|ξ|2k + aτ2

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

φ̂ (9) = |ξ|2
(
τχc0

(
|ξ|2(κ + λ+ 2µ)− τ2ρ0 − τχβ0λ0

+ (χν1 + λ0ν3)
(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

ψ̂ (1) = i|ξ|2
(
λ2

(
|ξ|2kλ0 + τ

(
− τc0β0 + aτλ0 + |ξ|2β0ν1

))
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+
(
τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0 − λ0

(
τc0 + |ξ|2ν1

))
ν3

) ξ1
D(|ξ|2)

,

ψ̂ (2) = i|ξ|2
(
λ2

(
|ξ|2kλ0 + τ

(
− τc0β0 + aτλ0 + |ξ|2β0ν1

))
+
(
τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0 − λ0

(
τc0 + |ξ|2ν1

))
ν3

) ξ2
D(|ξ|2)

,

ψ̂ (3) = i|ξ|2
(
λ2

(
|ξ|2kλ0 + τ

(
− τc0β0 + aτλ0 + |ξ|2β0ν1

))
+
(
τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0 − λ0

(
τc0 + |ξ|2ν1

))
ν3

) ξ3
D(|ξ|2)

,

ψ̂ (4) = ψ̂ (5) = ψ̂ (6) = 0,

ψ̂ (7) = |ξ|2
(
λ2

(
|ξ|2τ2β2

0 +
(
|ξ|2k + aτ2

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))
− ν3

(
− |ξ|2τβ0λ0 +

(
τc0 + |ξ|2ν1

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

ψ̂ (8) =− |ξ|2τβ0
(
τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0 + λ0

(
τc0 − |ξ|2ν1

))
−
(
|ξ|2k + aτ2

)(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))
+
(
τc0 + |ξ|2ν1

)(
|ξ|2τβ0λ0 +

(
τc0 − |ξ|2ν1

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)) 1

D(|ξ|2)
,

ψ̂ (9) = ϑ̂ (8) = |ξ|2
(
ν3

(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))
− λ2

(
|ξ|2τβ0λ0 +

(
τc0 − |ξ|2ν1

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

ϑ̂ (1) =− i|ξ|2
(
τβ0

(
χ
(
ξ0 + |ξ|2a0 + τ2j0

)
− |ξ|2λ0λ2

)
− λ0

(
τχc0 + |ξ|2χν1 + |ξ|2λ2ν3

)) ξ1
D(|ξ|2)

,

ϑ̂ (2) =− i|ξ|2
(
τβ0

(
χ
(
ξ0 + |ξ|2a0 + τ2j0

)
− |ξ|2λ0λ2

)
− λ0

(
τχc0 + |ξ|2χν1 + |ξ|2λ2ν3

)) ξ2
D(|ξ|2)

,

ϑ̂ (3) =− i|ξ|2
(
τβ0

(
χ
(
ξ0 + |ξ|2a0 + τ2j0

)
− |ξ|2λ0λ2

)
− λ0

(
τχc0 + |ξ|2χν1 + |ξ|2λ2ν3

)) ξ3
D(|ξ|2)

,

ϑ̂ (4) = ϑ̂ (5) = ϑ̂ (6) = 0,

ϑ̂ (7) =− |ξ|2
(
− τχc0

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
− |ξ|2

(
− τχβ0λ0 + (χν1 + λ2ν3)

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

ϑ̂ (8) =− ν3

(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ+ λ+ 2µ) + τ2ρ0

))
− λ0

(
− |ξ|2τβ0λ0 +

(
τc0 + |ξ|2ν1

)(
|ξ|2(κ+ λ+ 2µ) + τ2ρ0

)) |ξ|2

D(|ξ|2)
,

ϑ̂ (9) =− |ξ|2
(
− |ξ|2λ0λ2

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ χ

(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)(|ξ|2)
.

Rewrite the first two equations of (B.5) as follows:[
(µ+ κ)|ξ|2 + τ2ρ0

]
û(k) + iκ

[
ξ × Φ̂(k)

]
= −C(k) + i(λ+ µ)η(k)ξ − iλ0ξφ̂

(k) + iτβ0ξϑ̂
(k), (B.9)[

γ|ξ|2 + (2κ + τ2I0)
]
Φ̂(k) + iκ

[
ξ × û(k)

]
= −F (k) + i(α+ β)ζ(k)ξ. (B.10)

Taking cross product of ξ with both sides of (B.9) and employ the identity[
ξ × [ξ × a]

]
= (ξ · a)ξ − |ξ|2a
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we get [
(µ+ κ)|ξ|2 + τ2ρ0

] [
ξ × û(k)

]
− iκ|ξ|2Φ̂(k) = −

[
C(k) × ξ

]
− κζ(k)ξ,[

γ|ξ|2 + (2κ + τ2I0)
]
Φ̂(k) + iκ

[
ξ × û(k)

]
= −F (k) + i(α+ β)ζ(k)ξ.

Hence
Φ̂(k)(ξ) =

iκ(ζ(k)κξ + [C(k) × ξ])− (F (k) − i(α+ β)ζ(k)ξ)((κ + µ)|ξ|2 + τ2ρ0)

Θ(ξ)

with
Θ(ξ) =

(
2κ + γ|ξ|2 + τ2I0

)(
(κ + µ)|ξ|2 + τ2ρ0

)
− κ2|ξ|2.

Similarly, if we take cross product of ξ with both sides of (B.10),[
(µ+ κ)|ξ|2 + τ2ρ0

]
û(k) + iκ

[
ξ × Φ̂(k)

]
= −C(k) + i(λ+ µ)η(k)ξ − iλ0ξφ̂

(k) + iτβ0ξϑ̂
(k),[

γ|ξ|2 + (2κ + τ2I0)
] [
ξ × Φ̂(k)

]
− iκ|ξ|2û(k) = −[F (k) × ξ]− κη(k)ξ,

we find

û (k)(ξ) =
1

Θ(ξ)

[(
i(λ+ µ)η(k)ξ − C(k) − iλ0ξφ̂

(k) + iτβ0ξϑ̂
(k)

)
×
(
γ|ξ|2 + 2κ + τ2I0

)
+ iκ

(
[F (k) × ξ] + κη(k)ξ

)]
.

Let k22 and k23 be the roots of the quadratic polynomial

Q(z) = (2κ + γz + τ2I0)
(
(κ + µ)z + τ2ρ0

)
− κ2z = γ(κ + µ)z2 + q1z + q2, (B.11)

where
q1 = γτ2ρ0 + (κ + µ)(2κ + τ2I0)− κ2, q2 = τ4ρ0I0,

then

k22 =
−q1 −

√
q21 − 4γ(κ + µ)q2
2γ(κ + µ)

, k23 =
−q1 +

√
q21 − 4γ(κ + µ)q2
2γ(κ + µ)

,

1

Q(|ξ|2)
=

1

γ(κ + µ)(k22 − k23)

( 1

|ξ|2 − k22
− 1

|ξ|2 − k23

)
,

and

Φ̂(k)(ξ) =
1

Q(|ξ|2)

[
iκ

(
ζ(k)κξ + [C(k) × ξ]

)
−
(
F (k) − i(α+ β)ζ(k)ξ

)(
(κ + µ)|ξ|2 + τ2ρ0

)]
, (B.12)

û(k)(ξ) =
1

Q(|ξ|2)

[(
− C(k) + i(λ+ µ)η(k)ξ − iλ0ξφ̂

(k) + iτβ0ξϑ̂
(k)

)(
γ|ξ|2+2κ + τ2I0

)
+ iκ

(
[F (k) × ξ] + κη(k)ξ

)]
. (B.13)

From (B.12)–(B.13) we obtain

Φ̂
(m)
j = iκεjmk

ξk
Q(|ξ|2)

+
(κ2+(α+β)((κ+µ)|ξ|2+τ2ρ0))

α+ β + γ
· ξjξm
(|ξ|2−k21)Q(|ξ|2)

, j,m = 1, 2, 3,

Φ̂
(m+3)
j = −δmj

[
(κ + µ)|ξ|2 + τ2ρ0

] 1

Q(|ξ|2)
, m, j = 1, 2, 3,

Φ̂
(m)
j = 0, j = 1, 2, 3; m = 7, 8, 9,

û
(m)
j =

[(
γ|ξ|2 + 2κ + τ2I0

)(
− 1 + |ξ|2ξjξm

(
− λ20

((
k|ξ|2 + aτ2

)
χ+ |ξ|2ν3(τβ0 + ν3)

)
+ τχ

(
ξ0+|ξ|2a0+τ2j0

)
β0τβ0−|ξ|2λ0

(
τχβ0ν1+

(
χν1+λ2(τβ0+ν3)

)
τβ0

)))] 1

Q(|ξ|2)
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+
[(

κ2 + (λ+ µ)
(
|ξ|2γ + 2κ + τ2I0

))(
|ξ|2kξ0χ+ aξ0τ

2χ− τ2χc20 + |ξ|2kτ2χj0

+ aτ4χj0 − |ξ|4kλ0λ2 − a|ξ|2τ2λ0λ2 + |ξ|4χν21
+ |ξ|2

(
τc0(λ0 − λ2) + |ξ|2(λ0 + λ2)ν1

)
ν3 + |ξ|2(ξ0 + τ2j0)ν

2
3

+ |ξ|2a0
(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

))] |ξ|2ξjξm
D(|ξ|2)Q(|ξ|2)

, j,m = 1, 2, 3,

û
(m+3)
j = iκεjmk

ξk
Q(|ξ|2)

, j,m = 1, 2, 3,

û
(7)
j = i

[(
|ξ|2γ + 2κ + τ2I0

)((
τχc0 + |ξ|2χν1 + |ξ|2λ2ν3

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
τβ0

+ λ0

(
|ξ|2τ2χβ2

0 +
(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

)
×
(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
− |ξ|2τχβ0τβ0

))] |ξ|2ξj
Q(|ξ|2)

− i
[(
κ2 + (λ+ µ)

(
|ξ|2γ + 2κ + τ2I0

))(
τ2χc0β0 + |ξ|2τβ0(χν1 + λ2ν3

)
+ λ0

(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

))] |ξ|4ξj
D(|ξ|2)Q(|ξ|2)

, j = 1, 2, 3,

û
(8)
j = −i

[(
|ξ|2γ + 2κ + τ2I0

)((
ξ0 + |ξ|2a0 + τ2j0

)
ν3
(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
τβ0

+ λ20

(
|ξ|2τ2β2

0 +
(
|ξ|2k + aτ2

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ |ξ|2τβ0(ν3 − τβ0)− |ξ|2ν3τβ0

)
− λ0

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)(
|ξ|2ν1(ν3 − τβ0 − τc0(ν3 + τβ0))

))] |ξ|2ξj
Q(|ξ|2)

+ i
[(
κ2 + (λ+ µ)

(
|ξ|2γ + 2κ + τ2I0

))((
|ξ|2k + aτ2

)
λ20 + |ξ|2λ0ν1(τβ0 − ν3)

+ τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0ν3 + τc0λ0(τβ0 + ν3)

)] |ξ|4ξj
D(|ξ|2)Q(|ξ|2)

, j = 1, 2, 3,

û
(9)
j = i

[(
|ξ|2γ + 2κ + τ2I0

)(
λ0

(
− τχc0

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ |ξ|2

(
− τχβ0λ0 + (χν1 + λ0ν3)

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)))
−
(
− |ξ|2λ0λ2

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ χ

(
− |ξ|2λ20 + (ξ0 + |ξ|2a0 + τ2j0)

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)))
τβ0

)] |ξ|2ξj
Q(|ξ|2)

+ i
[(
κ2 + (λ+ µ)

(
|ξ|2γ + 2κ + τ2I0

))(
τβ0

(
χ
(
ξ0 + |ξ|2a0 + τ2j0

)
− |ξ|2λ0λ2

)
− λ0

(
− τχc0 + |ξ|2χν1 + |ξ|2λ0ν3

))] |ξ|4ξj
D(|ξ|2)Q(|ξ|2)

, j = 1, 2, 3.

From (B.4) it follows that the Fourier transform of the entries of the fundamental solution matrix
have the form

Γ̂jm =

{[(
γ|ξ|2 + 2κ + τ2I0

)(
− 1 + |ξ|2ξjξm

(
− λ20

((
k|ξ|2 + aτ2

)
χ+ |ξ|2ν3(τβ0 + ν3)

)
+ τχ

(
ξ0 + |ξ|2a0 + τ2j0

)
β0τβ0 − |ξ|2λ0

(
τχβ0ν1 +

(
χν1 + λ2(τβ0 + ν3)

)
τβ0

)))]
+

[(
κ2 + (λ+ µ)

(
|ξ|2γ + 2κ + τ2I0

))(
|ξ|2kξ0χ+ aξ0τ

2χ− τ2χc20 + |ξ|2kτ2χj0

+ aτ4χj0 − |ξ|4kλ0λ2 − a|ξ|2τ2λ0λ2 + |ξ|4χν21



72 Tengiz Buchukuri, Otar Chkadua, David Natroshvili

+ |ξ|2
(
τc0(λ0 − λ2) + |ξ|2(λ0 + λ2)ν1

)
ν3 + |ξ|2(ξ0 + τ2j0)ν

2
3

+ |ξ|2a0
(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

))] |ξ|2ξjξm
D(|ξ|2)

}
1

Q(|ξ|2)
, j,m = 1, 2, 3,

Γ̂j(m+3) = iκεjmk
ξk

Q(|ξ|2)
, j,m = 1, 2, 3,

Γ̂j7 = i

[(
|ξ|2γ + 2κ + τ2I0

)((
τχc0 + |ξ|2χν1 + |ξ|2λ2ν3

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
τβ0

+ λ0

(
|ξ|2τ2χβ2

0 +
(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

)
×
(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
− |ξ|2τχβ0τβ0

))] |ξ|2ξj
Q(|ξ|2)

− i
[(
κ2 + (λ+ µ)

(
|ξ|2γ + 2κ + τ2I0

))(
τ2χc0β0 + |ξ|2τβ0(χν1 + λ2ν3)

+ λ0
(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

))] |ξ|4ξj
D(|ξ|2)Q(|ξ|2)

, j = 1, 2, 3,

Γ̂j8 = −i
[(
|ξ|2γ + 2κ + τ2I0

)((
ξ0 + |ξ|2a0 + τ2j0

)
ν3
(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
τβ0

+ λ20

(
|ξ|2τ2β2

0 +
(
|ξ|2k + aτ2

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ |ξ|2τβ0(ν3 − τβ0)− |ξ|2ν3τβ0

)
− λ0

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)(
|ξ|2ν1(ν3 − τβ0)− τc0(ν3 + τβ0)

))] |ξ|2ξj
Q(|ξ|2)

+ i
[(

κ2 + (λ+ µ)
(
|ξ|2γ + 2κ + τ2I0

))((
|ξ|2k + aτ2

)
λ20 + |ξ|2λ0ν1(τβ0 − ν3)

+ τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0ν3 + τc0λ0(τβ0 + ν3)

)] |ξ|4ξj
D(|ξ|2)Q(|ξ|2)

, j = 1, 2, 3,

Γ̂j9 = i

[(
|ξ|2γ + 2κ + τ2I0

)(
λ0

(
− τχc0

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ |ξ|2

(
− τχβ0λ0 + (χν1 + λ0ν3)

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)))
−
(
− |ξ|2λ0λ2

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ χ

(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)))
τβ0

)] |ξ|2ξj
Q(|ξ|2)

+ i
[(

κ2 + (λ+ µ)
(
|ξ|2γ + 2κ + τ2I0

))(
τβ0

(
χ
(
ξ0 + |ξ|2a0 + τ2j0

)
− |ξ|2λ0λ2

)
− λ0

(
− τχc0 + |ξ|2χν1 + |ξ|2λ0ν3

))] |ξ|4ξj
D(|ξ|2)Q(|ξ|2)

, j = 1, 2, 3,

Γ̂j+3,m = iκεjmk
ξk

Q(|ξ|2)
+

(κ2+(α+β)((κ+µ)|ξ|2+τ2ρ0))
α+ β + γ

· ξjξm
(|ξ|2−k21)Q(|ξ|2)

, j,m=1, 2, 3,

Γ̂j+3,m+3 = −δmj

[
(κ + µ)|ξ|2 + τ2ρ0

] 1

Q(|ξ|2)
, j = 1, 2, 3, m = 1, . . . , 6,

Γ̂7j = −|ξ|2
(
− τ2χc0β0 + |ξ|2τχβ0ν1

+ λ0

((
|ξ|2k + aτ2

)
χ+ |ξ|2ν3(τβ0 + ν3)

)) ξj
D(|ξ|2)

, j = 1, 2, 3,

Γ̂74 = Γ̂75 = Γ̂76 = 0,

Γ̂77 = −|ξ|2
(
|ξ|2τ2χβ2

0 +
(
|ξ|2kχ+ aτ2χ+ |ξ|2ν23

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)) 1

D(|ξ|2)
,
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Γ̂78 = |ξ|2
((
τc0 − |ξ|2ν1

)
ν3
(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ λ0

(
|ξ|2τ2β2

0 + |ξ|2τβ0ν3 +
(
|ξ|2k + aτ2

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

Γ̂79 = |ξ|2
(
τχc0

(
|ξ|2(κ + λ+ 2µ)− τ2ρ0 − τχβ0λ0

+ (χν1 + λ0ν3)
(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

Γ̂8j = i|ξ|2
(
λ2

(
|ξ|2kλ0 + τ

(
− τc0β0 + aτλ0 + |ξ|2β0ν1

))
+
(
τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0 − λ0

(
τc0 + |ξ|2ν1

))
ν3

) ξj
D(|ξ|2)

, j = 1, 2, 3,

Γ̂84 = Γ̂85 = Γ̂86 = 0,

Γ̂87 = ψ̂(7) = |ξ|2
(
λ2

(
|ξ|2τ2β2

0 +
(
|ξ|2k + aτ2

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))
− ν3

(
− |ξ|2τβ0λ0 +

(
τc0 + |ξ|2ν1

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

Γ̂88 = ψ̂(8) = −|ξ|2τβ0
(
τ
(
ξ0 + |ξ|2a0 + τ2j0

)
β0 + λ0

(
τc0 − |ξ|2ν1

))
−
(
|ξ|2k + aτ2

)(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))
+
(
τc0 + |ξ|2ν1

)(
|ξ|2τβ0λ0 +

(
τc0 − |ξ|2ν1

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)) 1

D(|ξ|2)
,

Γ̂89 = ψ̂(9) = |ξ|2
(
ν3
(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))
− λ2

(
|ξ|2τβ0λ0 +

(
τc0 − |ξ|2ν1

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

Γ̂9j = ϑ̂(1) = −i|ξ|2
(
τβ0

(
χ
(
ξ0 + |ξ|2a0 + τ2j0

)
− |ξ|2λ0λ2

)
− λ0

(
τχc0 + |ξ|2χν1 + |ξ|2λ2ν3

)) ξj
D(|ξ|2)

, j = 1, 2, 3,

Γ̂94 = Γ̂95 = Γ̂96 = 0,

Γ̂97 = −|ξ|2
(
− τχc0

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
− |ξ|2

(
− τχβ0λ0 + (χν1 + λ2ν3)

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
,

Γ̂98 = −ν3
(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ+ λ+ 2µ) + τ2ρ0

))
− λ0

(
− |ξ|2τβ0λ0 +

(
τc0 + |ξ|2ν1

)(
|ξ|2(κ+ λ+ 2µ) + τ2ρ0

)) |ξ|2

D(|ξ|2)
,

Γ̂99 = −|ξ|2
(
− |ξ|2λ0λ2

(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

)
+ χ

(
− |ξ|2λ20 +

(
ξ0 + |ξ|2a0 + τ2j0

)(
|ξ|2(κ + λ+ 2µ) + τ2ρ0

))) 1

D(|ξ|2)
.

Remark B.1. To perform the inverse Fourier thransform, for simplicity, now we assume that the
polynomials P (z) = z3 + p1z

2 + p2z + p3 and Q(z) = γ(κ + µ)z2 + q1z + q2 defined in (B.7) and
(B.11) respectively have distinct non-negative roots in z. Note that this assumption does not follow
from conditions (2.22) and (2.23). Indeed, let τ > 0 and choose λ2 and c0, which are not involved in
conditions (2.22) and (2.23), sufficiently large. We will have p3 > 0 in view of (B.8) and therefore the
polynomial P (z) will have at least one negative root without violating conditions (2.22) and (2.23).

In what follows we will find an explicit representation of the fundamental matrix in terms of
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elementary functions by inverting the Fourier transform

Γ(x) =
1

(2π)3

∫
R3

e−iξ·x Γ̂(ξ) dξ. (B.14)

To this end, let us note that the functions

1

Q(|ξ|2)
,

1

D(|ξ|2)
,

1

D(|ξ|2)Q(|ξ|2)
,

1

(|ξ|2 − k21)Q(|ξ|2)

can be expanded as follows:

1

Q(|ξ|2)
=

3∑
α=2

c
(1)
α

|ξ|2 − k2α
,

1

(|ξ|2 − k21)Q(|ξ|2)
=

3∑
α=1

c
(2)
α

|ξ|2 − k2α
,

1

D(|ξ|2)
= c

(3)
0

1

|ξ|2
+

6∑
α=4

c
(3)
α

|ξ|2 − k2α
,

1

D(|ξ|2)Q(|ξ|2)
= c

(4)
0

1

|ξ|2
+

6∑
α=2

c
(4)
α

|ξ|2 − k2α
,

(B.15)

where

c
(1)
2 = −c(1)3 =

(
γ(κ + µ)(k22 − k23)

)−1
, c

(2)
1 =

(
γ(κ + µ)(k21 − k22)(k

2
1 − k23)

)−1
,

c
(2)
3 =

(
γ(κ + µ)(k23 − k21)(k

2
3 − k22)

)−1
, c

(3)
0 = −

(
d0k

2
4k

2
5k

2
6

)−1
,

c
(3)
4 =

(
d0k

2
4(k

2
4 − k25)(k

2
4 − k26)

)−1
, c

(3)
5 =

(
d0k

2
5(k

2
5 − k24)(k

2
5 − k26)

)−1
,

c
(3)
6 =

(
d0k

2
6(k

2
6 − k24)(k

2
6 − k25)

)−1
, c

(4)
0 =

(
γ(κ + µ)d0

6∏
j=2

k2j

)−1

,

c
(4)
2 =

(
γ(κ + µ)d0k

2
2(k

2
2 − k23)(k

2
2 − k24)(k

2
2 − k25)(k

2
2 − k26)

)−1

,

c
(4)
3 =

(
γ(κ + µ)d0k

2
3(k

2
3 − k24)(k

2
3 − k25)(k

2
3 − k25)(k

2
3 − k26)

)−1

,

c
(4)
4 =

(
γ(κ + µ)d0k

2
4(k

2
4 − k22)(k

2
4 − k23)(k

2
4 − k25)(k

2
4 − k26)

)−1

,

c
(4)
5 =

(
γ(κ + µ)d0k

2
5(k

2
5 − k22)(k

2
5 − k23)(k

2
5 − k24)(k

2
5 − k26)

)−1

,

c
(4)
6 =

(
γ(κ + µ)d0k

2
6(k

2
6 − k22)(k

2
6 − k23)(k

2
6 − k24)(k

2
6 − k25)

)−1

.

Let k0 = 0. Choose kp, p = 1, . . . , 6 so, that −π < arg(kp) ≤ 0 and denote by Kp, p = 0, . . . , 6, the
functions

Kp(x) =
exp(−ikp|x|)

4π|x|
, p = 0, . . . , 6. (B.16)

Then Kp belongs to the space S ′(R3) of tempered distributions in R3 and

(∆ + k2p)Kp(x)=−δ(x),
(
|ξ|2 − k2p

)
K̂p(ξ)=1, F−1

ξ→x

(
|ξ|2K̂p(ξ)

)
=δ(x) + k2pKp(x), p=0, . . . , 6,

where K̂p(ξ) = Fx→ξ(Kp)(ξ).
From (B.15) we get

F−1
ξ→x

( 1

Q(|ξ|2)

)
=

3∑
p=2

c(1)p Kp(x), F−1
ξ→x

( 1

(|ξ|2 − k21)Q(|ξ|2)

)
=

3∑
p=1

c(2)p Kp(x),

F−1
ξ→x

( 1

D(|ξ|2)

)
=

6∑
p=0

c(3)p Kp(x), F−1
ξ→x

( 1

D(|ξ|2)Q(|ξ|2)

)
=

6∑
p=0

c(4)p Kp(x),

(B.17)
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where c(3)p = 0, p = 1, 2, 3, c(4)1 = 0.

To obtain the expression of the fundamental solution Γ, we have to evaluate the inverse Fourier
transform (B.14) of the Fourier image Γ̂. Note that due to ellipticity of the operator A(∂, τ) its
fundamental solution Γ belongs to C∞(R3 \ {0}) ∩ L1

loc(R3) and therefore terms containing δ(x) are
canceled. Taking into consideration relations (B.16)–(B.17) and properties of the inverse Fourier
transform operator we arrive at the following expressions for the components of the fundamental
solution matrix:

Γjm(x) =

3∑
p=2

c(1)p

[
(γk2p + 2κ + τ2I0)

(
− 1 + k2pξjξm

(
− λ20

(
(kk2p + aτ2)χ+ k2pν3(τβ0 + ν3)

)
+ τχ(ξ0+k

2
pa0+τ

2j0)β0τβ0−k2pλ0
(
τχβ0ν1+

(
χν1+λ2(τβ0+ν3)

)
τβ0

)))]
Kp(x)

−
6∑

p=0

c(1)p

[(
κ2 + (λ+ µ)(k2pγ + 2κ + τ2I0)

)(
k2pkξ0χ+ aξ0τ

2χ− τ2χc20 + k2pkτ
2χj0

+ aτ4χj0 − k4pkλ0λ2 − ak2pτ
2λ0λ2 + k4pχν

2
1 + k2p

(
τc0(λ0 − λ2) + k2p(λ0 + λ2)ν1

)
ν3

+ k2p(ξ0 + τ2j0)ν
2
3 + k2pa0(k

2
pkχ+ aτ2χ+ k2pν

2
3)
)]
k2p∂j∂mKp(x), j,m = 1, 2, 3,

Γj (m+3)(x) = κεjmk

3∑
p=2

c(1)p ∂kKp(x), j,m = 1, 2, 3,

Γj7(x) =

3∑
p=2

c(1)p

[
(k2pγ + 2κ + τ2I0)

(
(τχc0 + k2pχν1 + k2pλ2ν3)

×
(
k2p(κ + λ+ 2µ) + τ2ρ0

)
τβ0 + λ0

(
k2pτ

2χβ2
0 + (k2pkχ+ aτ2χ+ k2pν

2
3)

×
(
k2p(κ + λ+ 2µ) + τ2ρ0

)
− k2pτχβ0τβ0

))]
k2p∂jKp(x)

+

6∑
p=0

c(4)p

[(
κ2 + (λ+ µ)(k2pγ + 2κ + τ2I0)

)(
τ2χc0β0 + k2pτβ0(χν1 + λ2ν3)

+ λ0(k
2
pkχ+ aτ2χ+ k2pν

2
3)
)]
k4p∂jKp(x), j = 1, 2, 3,

Γj8(x) = −
3∑

p=2

c(1)p

[
(k2pγ + 2κ + τ2I0)

(
(ξ0 + k2pa0 + τ2j0)ν3

(
k2p(κ + λ+ 2µ) + τ2ρ0

)
τβ0

+ λ20

(
k2pτ

2β2
0+(k2pk+aτ

2)
(
k2p(κ+λ+2µ)+τ2ρ0

)
+k2pτβ0(ν3−τβ0)−k2pν3τβ0

)
− λ0

(
k2p(κ+λ+2µ)+τ2ρ0

)(
k2pν1(ν3−τβ0)−τc0(ν3+τβ0)

))]
k2p∂jKp(x)

+

6∑
p=0

c(4)p

[(
κ2+(λ+µ)(k2pγ+2κ+τ2I0)

)(
(k2pk+aτ

2)λ20+k
2
pλ0ν1(τβ0−ν3)

+ τ(ξ0 + k2pa0 + τ2j0)β0ν3 + τc0λ0(τβ0 + ν3)
)]
k4p∂jKp(x), j = 1, 2, 3,

Γj9(x) =

3∑
p=2

c(1)p

[
(k2pγ + 2κ + τ2I0)

(
λ0

(
− τχc0

(
k2p(κ + λ+ 2µ) + τ2ρ0

)
+ k2p

(
− τχβ0λ0 + (χν1 + λ0ν3)

(
k2p(κ + λ+ 2µ) + τ2ρ0

)))
−
(
− k2pλ0λ2

(
k2p(κ + λ+ 2µ) + τ2ρ0

)
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+ χ
(
− k2pλ

2
0+(ξ0+k

2
pa0+τ

2j0)
(
k2p(κ+λ+2µ)+τ2ρ0

)))
τβ0

)]
k2p∂jKp(x)

+

6∑
p=0

c(4)p

[(
κ2+(λ+µ)(k2pγ+2κ+τ2I0)

)(
τβ0

(
χ(ξ0+k

2
pa0+τ

2j0)−k2pλ0λ2
)

− λ0(−τχc0 + k2pχν1 + k2pλ0ν3)
)]
k4p∂jKp(x), j = 1, 2, 3,

Γj+3,m(x) =

3∑
p=2

c(1)p κεjmk∂kKp(x)

+

3∑
p=1

c(2)p

(κ2 + (α+ β)((κ + µ)k2p + τ2ρ0))

α+ β + γ
∂j∂mKp(x), j,m = 1, 2, 3,

Γj+3,m+3(x) = −
3∑

p=2

c(1)p δmj

[
(κ + µ)k2p + τ2ρ0

]
Kp(x), j = 1, 2, 3, m = 1, . . . , 6,

Γ7j(x) =

6∑
p=0

c(3)p

[
k2p

(
− τ2χc0β0 + k2pτχβ0ν1

+ λ0
(
(k2pk + aτ2)χ+ k2pν3(τβ0 + ν3)

))]
∂jKp(x), j = 1, 2, 3,

Γ74(x) = Γ75(x) = Γ76(x) = 0,

Γ77(x) = −
6∑

p=0

c(3)p

[
k2p

(
k2pτ

2χβ2
0 + (k2pkχ+ aτ2χ+ k2pν

2
3)
(
k2p(κ + λ+ 2µ) + τ2ρ0

))]
Kp(x),

Γ78(x) =

6∑
p=0

c(3)p

[
k2p

(
(τc0 − k2pν1)ν3

(
k2p(κ + λ+ 2µ) + τ2ρ0

)
+ λ0

(
k2pτ

2β2
0 + k2pτβ0ν3 + (k2pk + aτ2)

(
k2p(κ + λ+ 2µ) + τ2ρ0

)))]
Kp(x),

Γ79(x) =

6∑
p=0

c(3)p

[
k2p

(
τχc0

(
k2p(κ + λ+ 2µ)− τ2ρ0 − τχβ0λ0

+ (χν1 + λ0ν3)
(
k2p(κ + λ+ 2µ) + τ2ρ0

)))]
Kp(x),

Γ8j(x) =

6∑
p=0

c(3)p

[
k2p

(
λ2

(
k2pkλ0 + τ(−τc0β0 + aτλ0 + k2pβ0ν1)

)
+
(
τ(ξ0 + k2pa0 + τ2j0)β0 − λ0(τc0 + k2pν1)

)
ν3

)]
∂jKp(x), j = 1, 2, 3,

Γ84(x) = Γ85(x) = Γ86(x) = 0,

Γ87(x) =

6∑
p=0

c(3)p

[
k2p

(
λ2

(
k2pτ

2β2
0 + (k2pk + aτ2)

(
k2p(κ + λ+ 2µ) + τ2ρ0

))
− ν3

(
− k2pτβ0λ0 + (τc0 + k2pν1)

(
k2p(κ + λ+ 2µ) + τ2ρ0

)))]
Kp(x),

Γ88(x) =

6∑
p=0

c(3)p

[
− k2pτβ0

(
τ(ξ0 + k2pa0 + τ2j0)β0 + λ0(τc0 − k2pν1)

)
− (k2pk + aτ2)

(
− k2pλ

2
0 + (ξ0 + k2pa0 + τ2j0)

(
k2p(κ + λ+ 2µ) + τ2ρ0

))
+ (τc0+k

2
pν1)

(
k2pτβ0λ0+(τc0−k2pν1)

(
k2p(κ+λ+2µ)+τ2ρ0

))]
Kp(x),

Γ89(x) =

6∑
p=0

c(3)p

[
k2p

(
ν3
(
− k2pλ

2
0 + (ξ0 + k2pa0 + τ2j0)

(
k2p(κ + λ+ 2µ) + τ2ρ0

))
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− λ2
(
k2pτβ0λ0 + (τc0 − k2pν1)

(
k2p(κ + λ+ 2µ) + τ2ρ0

)))]
Kp(x),

Γ9j(x) =

6∑
p=0

c(3)p

[
k2p

(
τβ0

(
χ(ξ0+k

2
pa0+τ

2j0)−k2pλ0λ2
)
−λ0

(
τχc0+k

2
pχν1+k

2
pλ2ν3

))]
∂jKp(x),

j = 1, 2, 3,

Γ94(x) = Γ95(x) = Γ96(x) = 0,

Γ97(x) =

6∑
p=0

c(3)p

[
− k2p

(
− τχc0(k

2
p(κ + λ+ 2µ) + τ2ρ0)

− k2p(−τχβ0λ0 + (χν1 + λ2ν3)
(
k2p(κ + λ+ 2µ) + τ2ρ0

)))]
Kp(x),

Γ98(x) =

6∑
p=0

c(3)p

[
− ν3

(
− k2pλ

2
0 + (ξ0 + k2pa0 + τ2j0)

(
k2p(κ+ λ+ 2µ) + τ2ρ0

))
− λ0

(
− k2pτβ0λ0 + (τc0 + k2pν1)

(
k2p(κ+ λ+ 2µ) + τ2ρ0

))]
k2pKp(x),

Γ99(x) =

6∑
p=0

c(3)p

[
− k2p

(
− k2pλ0λ2

(
k2p(κ + λ+ 2µ) + τ2ρ0

)
+ χ

(
− k2pλ

2
0 + (ξ0 + k2pa0 + τ2j0)

(
k2p(κ + λ+ 2µ) + τ2ρ0

)))]
Kp(x).
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Abstract. The asymptotic representations of solutions of a class of differential equations of the second
order with rapidly and regularly varying nonlinearities are established.
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1 Introduction
We consider the differential equation

y′′ = α0p(t)φ0(y)φ1(y
′), (1.1)

where α0 ∈ {−1; 1}, the functions p : [a;ω[→ ]0;+∞[ (−∞ < a < ω ≤ +∞), and φi : ∆Yi
→ ]0;+∞[

(i ∈ {0, 1}) are continuous, Yi ∈ {0,±∞}, ∆Yi
is either an interval [y0i , Yi[ 1 or an interval ]Yi; y0i ]. We

suppose that φ1 is a regularly varying function of index σ1 as y → Y1 (y ∈ ∆Y1
) [7, pp. 10–15], and

the function φ0 is strongly monotonous on ∆Y0 , twice continuously differentiable on ∆Y0 and satisfies
the following conditions:

lim
y→Y0
y∈∆Y0

φ0(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

φ0(y)φ
′′
0(y)

(φ′
0(y))

2
= 1. (1.2)

The second order differential equations with both power-type and exponential-type nonlinearities
in the right-hand side play an important role in the qualitative theory of differential equations. Such
equations have a lot of applications in practice. The fact takes place, for example, during investigations
of distribution of electrostatic potential in a cylindrical plasma volume of combustion products. The
corresponding equation can be reduced to the following one:

y′′ = α0p(t)e
σy|y′|λ.

This equation is of type (1.1), in which φ1(z) = |z|λ, φ0(z) = eσz. Under some restrictions on the
function p(t), certain results for the asymptotic behavior of all regular solutions of that equation have
been obtained in the papers by V. M. Evtukhov and N. G. Dric (see, for example, [2]).

The differential equation
y′′ = α0p(t)φ(y)

with a rapidly varying function φ has been considered in the paper by V. M. Evtukhov and V. M. Khar-
kov [3]. But in that paper the introduced class of solutions of the equation depends on the function
φ that in most cases not useful for practical applications.

Equation (1.1) is a natural generalization of two previous ones.
The solution y of equation (1.1) defined on the interval [t0, ω[⊂ [a, ω[ is called Pω(Y0, Y1, λ0)-so-

lution (−∞ ≤ λ0 ≤ +∞) if the conditions

y(i) : [t0, ω[→ ∆Yi
, lim

t↑ω
y(i)(t) = Yi (i = 0, 1), lim

t↑ω

(y′(t))2

y′′(t)y(t)
= λ0 (1.3)

are satisfied.
The goal of the present paper is to find for λ0 ∈ R \ {0; 1} the necessary and sufficient conditions

for the existence of Pω(Y0, Y1, λ0)-solutions of equation (1.1) together with asymptotic representations
of those solutions and their first order derivatives as t ↑ ω. According to the definition, such solutions
are the regularly varying functions as t ↑ ω of index 1

λ0−1 .

2 Main results
First of all, we introduce some notations that will be necessary in the sequel. We consider

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
θ1(y) = φ1(y)|y|−σ1 ,

1If Yi = +∞ (resp. Yi = −∞), we will take y0i > 0 (resp. y0i < 0).
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Φ0(y) =

y∫
Aω

|φ0(z)|
1

σ1−1 dz, Aω =



y00 , if
Y0∫

y0
0

|φ0(z)|
1

σ1−1 dz = ±∞,

Y0, if
Y0∫

y0
0

|φ0(z)|
1

σ1−1 dz = const,

Z0 = lim
y→Y0
y∈∆Y0

Φ0(y)

y
, Φ1(y) =

y∫
Aω

Φ0(τ)

τ
dτ, Z1 = lim

y→Y0
y∈∆Y0

Φ1(y),

F (t) =
Φ−1

1 (I1(t))Φ
′
1(Φ

−1
1 (I1(t)))

πω(t)I ′1(t)
.

If y01 lim
t↑ω

|πω(τ)|
1

λ0−1 = Y1, we put

I(t) = |λ0 − 1|
1

1−σ1 · y01 ·
t∫

B0
ω

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 y01

)∣∣∣ 1
1−σ1

dτ,

B0
ω =


b, if

ω∫
b

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 y01

)∣∣∣ 1
1−σ1

dτ = +∞,

ω, if
ω∫

b

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 y01

)∣∣∣ 1
1−σ1

dτ =< +∞,

I1(t) =

t∫
B1

ω

λ0I(τ)

(λ0 − 1)πω(τ)
dτ, B1

ω =


b, if

ω∫
b

λ0I(τ)

(λ0 − 1)πω(τ)
dτ = ±∞,

ω, if
ω∫

b

λ0|I(τ)|
(λ0 − 1)πω(τ)

dτ = const.

Here, the number b ∈ [a, ω[ is chosen in such a way that y01 |πω(t))|
1

λ0−1 ∈ ∆Y1
as t ∈ [b;ω].

Note 2.1. From conditions (1.2) it follows that Z0, Z1 ∈ {0,+∞} and

lim
y→Y0
y∈∆Y0

Φ′′
0(y) · Φ0(y)

(Φ′
0(y))

2
= 1, lim

→Y0
y∈∆Y0

Φ′′
1(y) · Φ1(y)

(Φ′
1(y))

2
= 1. (2.1)

Note 2.2. The following statements are valid:

1)

Φ0(y) = (σ1 − 1)
φ

σ1
σ1−1

0 (y)

φ′
0(y)

[1 + o(1)] when y → Y0 (y ∈ ∆Y0
)

and therefore
sign(φ′

0(y)Φ0(y)) = sign(σ1 − 1), when y ∈ ∆Y0
.

2)

Φ1(y) =
Φ2

0(y)

yΦ′
0(y)

[1 + o(1)], when y → Y0 (y ∈ ∆Y0
)

and therefore
sign(Φ1(y)) = y00 when y ∈ ∆Y0 .
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Note that, by (2.1), the relation

lim
z→Z0

Φ′′(Φ−1
1 (z))z

(Φ′(Φ−1
1 (z)))2

= lim
y→Y0

Φ′′
1(Φ

−1
1 (Φ1(y)))Φ1(y)

(Φ′
1(Φ

−1
1 (Φ1(y))))2

= lim
y→Y0

Φ′′
1(y)Φ1(y)

(Φ′
1(y))

2
= 1

is valid, and from the latter it follows that

lim
z→Z0

z ·
(Φ′

1(Φ
−1
1 (z))

Φ1(Φ
−1
1 (z))

)′
Φ′

1(Φ
−1
1 (z))

Φ1(Φ
−1
1 (z))

= lim
y→Z0

Φ′′
1(Φ

−1
1 (z))z

(Φ′
1(Φ

−1
1 (z)))2

− 1 = 0.

Thus the function Φ′
1(Φ

−1
1 (z))

Φ1(Φ
−1
1 (z))

is slowly varying as z → Z0. The function Φ−1
1 (z) is also slowly

varying as an inverse to the rapidly varying function. So, we have the following

Note 2.3. The function Φ−1(z) · Φ′
1(Φ

−1
1 (z))
z is slowly varying as z → Z1.

Let Y ∈ {0,∞}, ∆Y be some one-sided neighborhood of Y . The continuously differentiable
function L : ∆Y → ]0;+∞[ is called [6, p. 2–3] normalized slowly varying as z → Y (z ∈ ∆Y ), if

lim
y→Y

y∈∆Y

yL′(y)

L(y)
= 0. (2.2)

We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies the condition
S as z → Y , if for any normalized slowly varying as z → Y (z ∈ ∆Y ) function L : ∆Yi → ]0;+∞[ the
following equality takes place: z → Y (z ∈ ∆Y )

θ(zL(z)) = θ(z)(1 + o(1)).

We will consider that a slowly varying as z → Y (z ∈ ∆Y ) function L0 : ∆Y → ]0;+∞[ satisfies
the condition S1 as z → Y , if for any finite segment [a; b] ⊂ ]0;+∞[ the inequality

lim sup
z→Y
z∈∆Y

∣∣∣ ln |z| ·
(L(λz)
L(z)

− 1
)∣∣∣ < +∞ for all λ ∈ [a; b]

is true.
Conditions S and S1 are satisfied by the functions ln |y|, | ln |y||µ (µ ∈ R), ln | ln |y|| and by many

others.
The following theorem has been obtained.

Theorem 2.1. Let for equation (1.1) σ1 ̸= 1, the function θ1(z) satisfy the condition S as z → Y1

(z ∈ ∆Y1), and the function Φ−1
1 (z) · Φ′

1(Φ
−1
1 (z))
z satisfy the condition S1 as z → Z1. Then for the

existence of Pω(Y0, Y1, λ0)-solutions of equation (1.1), where λ0 ∈ R \ {0, 1}, it is necessary and, if

I(t)I1(t)λ0(σ1 − 1) > 0 as t ∈ ]b, ω[ , (2.3)

and the finite or infinite limits

lim
t↑ω

πω(t)F
′(t) and lim

t↑ω

√
|πω(t)I′

1(t)
I1(t)

|
ln |I1(t)|

exist, (2.4)

sufficient the fulfilment of the following conditions:

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0; πω(t)y

0
1α0(λ0 − 1) > 0 as t ∈ [a;ω[ , (2.5)

y01 · lim
t↑ω

|πω(t)|
1

λ0−1 = Y1, lim
t↑ω

I1(t) = Z1, (2.6)

lim
t↑ω

I ′′1 (t)I1(t)

(I ′1(t))
2

= 1, lim
t↑ω

F (t) =
λ0 − 1

λ0
. (2.7)

Moreover, for each such solution there take place the following asymptotic representations as t ↑ ω:

Φ1(y(t)) = I1(t)[1 + o(1)],
πω(t)y

′(t)

y(t)
=

λ0
λ0 − 1

[1 + o(1)]. (2.8)
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Proof. Necessity. Let the function y : [t0, ω[→ ∆Y0 be a Pω(Y0, Y1, λ0)-solution of equation (1.1), for
which λ0 ∈ R \ {0, 1}. Then, according to the properties of such solutions established by V. M. Ev-
tukhov (see, e.g., [4]), we have

y(t)

y′(t)
=

λ0
(λ0 − 1)πω(t)

[1 + o(1)],
y′′(t)

y′(t)
=

1

(λ0 − 1)πω(t)
[1 + o(1)] as t ∈ [a;ω[ . (2.9)

Thus we obtain (2.5).
From (2.9), it also follows that y′(t) as t ∈ [a;ω[ is a regularly varying function of index 1

λ0−1 . It
can be represented in the form

y′(t) = |πω(t)|
1

λ0−1L1(t) as t ↑ ω, (2.10)

where L1(t) is a regularly varying function as t ↑ ω (see [7, p. 10]).
Hence, taking into account the properties of regularly varying functions [7, p. 10–15], we obtain

the first of conditions (2.6).
From (1.1) and (2.9), it follows that as t ↑ ω

|y′(t)|1−σ1 sign y01
φ0(y(t))

= α0(λ0 − 1)πω(t)φ1(y
′(t))|y′(t)|−σ1p(t)[1 + o(1)]. (2.11)

Substituting (2.10) into (2.11), we get as t ↑ ω the equality

y′(t)

|φ0(y(t))|
1

1−σ1

= y01 |λ0 − 1|
1

1−σ1

∣∣∣πω(t)θ1(|πω(t)| 1
λ0−1L1(t)y

0
1

)
p(t)

∣∣∣ 1
1−σ1

[1 + o(1)]. (2.12)

In (2.10), the function L1 is a slowly varying when its argument tends to Y1. The function θ1
satisfies the condition S. So, from (2.12), we have as t ↑ ω

y′(t)

|φ0(y(t))|
1

1−σ1

= y01 |λ0 − 1|
1

1−σ1

∣∣∣πω(t)θ1(|πω(t)| 1
λ0−1 y01

)
p(t)

∣∣∣ 1
1−σ1

[1 + o(1)]. (2.13)

Integrating the relation from t0 to t, we get as t ↑ ω

y(t)∫
y(t0)

dz

|φ0(z)|
1

1−σ1

= y01 |λ0 − 1|
1

1−σ1

t∫
t0

∣∣∣πω(τ)θ1(|πω(τ)| 1
λ0−1 y01

)
p(τ)

∣∣∣ 1
1−σ1

[1 + o(1)] dτ.

Taking into account the choice of Aω, and that y → Y0 (Y0 ∈ ∆Y0), we have

Φ0(y(t)) = I(t)[1 + o(1)] as t ↑ ω. (2.14)

From (2.13) and (2.14), according to (2.9), we get

πω(t)y
′(t)

y(t)
· y(t)Φ

′
0(y(t))

Φ0(y(t))
=
πω(t)I

′(t)

I(t)
[1 + o(1)] as t ↑ ω. (2.15)

By conditions (1.2), the function Φ0(y) is rapidly varying as y → Y0 (Y0 ∈ ∆Y0
). Thus from (2.15) it

follows that
lim
t↑ω

πω(t)I
′(t)

I(t)
= ∞. (2.16)

Taking into account equalities (2.14) and (2.9), we get

y′(t)Φ0(y(t))

y(t)
=

λ0I(t)

(λ0 − 1)πω(t)
[1 + o(1)] as t ↑ ω. (2.17)

From here in the same way as equality (2.14) was obtained, we get the equality

Φ1(y(t)) = I1(t)[1 + o(1)] as t ↑ ω. (2.18)
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Thus, the correctness of the first representation of (2.8) and the first equality of (2.6) are justified.
  We get the correctness of the second representation of (2.8) as a result of division (2.17) by (2.18).

The second representation of (2.8) can be rewritten in the form

πω(t)y
′(t)

y(t)
· y(t)Φ

′
1(y(t))

Φ1(y(t))
=
πω(t)I

′
1(t)

I1(t)
[1 + o(1)] as t ↑ ω.

With the help of (2.9), from the above representation we get

λ0
λ0 − 1

· y(t)Φ
′
1(y(t))

Φ1(y(t))
=
πω(t)I

′
1(t)

I1(t)
[1 + o(1)] as t ↑ ω. (2.19)

From conditions (1.2) imposed on the function φ0(y(t)) and Note 2.2, we find that Φ1(y) is a rapidly
varying function as y → Y0 (Y0 ∈ ∆Y0). Then, taking into account (2.19), we get

lim
t↑ω

πω(t)I
′
1(t)

I1(t)
= ∞. (2.20)

By (2.1), (2.15), (2.16) and (2.19), we have

lim
t↑ω

I ′′1 (t)I1(t)

(I ′1(t))
2

= lim
t↑ω

πω(t)I′(t)
I(t)

πω(t)I′
1(t)

I1(t)

= lim
t↑ω

y(t)Φ′
0(y(t))

Φ0(y(t))

y(t)Φ′
1(y(t))

Φ1(y(t))

= lim
y→Y0
y∈∆Y0

Φ′′
1(y) · Φ1(y)

(Φ′
1(y))

2
= 1. (2.21)

It means that the first of conditions (2.7) holds.
Note that the function Φ−1

1 (y) is slowly varying as y → Z0, since it is inverse to a rapidly varying
as y → Y0 (Y0 ∈ ∆Y0) function Φ1. Taking into account this fact and (2.18), we get as t ↑ ω

y(t) = Φ−1
1 (I1(t))[1 + o(1)].

The correctness of the second of conditions (2.6) follows from this fact.
Note that (2.19) can be written in the form

λ0
λ0 − 1

· Φ−1
1 (I1(t)) ·

Φ′
1(Φ

−1
1 (I1(t)))

Φ1(Φ
−1
1 (I1(t)))

=
πω(t)I

′
1(t)

I1(t)
[1 + o(1)] as t ↑ ω.

The validity the second of conditions (2.7) is justified, and hence the necessity is proved.
Sufficiency. Let us suppose that conditions (2.3)–(2.7) of the theorem take place.

We apply to equation (1.1) the transformationΦ1(y(t)) = I1(t)[1 + v1(x)],
y′(t)

y(t)
=

λ0
λ0 − 1

· 1

πω(t)
[1 + v2(x)]

(2.22)

and reduce system (2.22) to the following system of differential equations:
v′1 =

I ′1(t)

I1(t)
[1 + v1] ·

( λ0
λ0 − 1

· F (t) ·M(t, v1)[1 + v2]− 1
)
,

v′2 =
1

πω(t)
[1 + v2] ·

[
Q(t, v1, v2)(1 + v1)

σ1−1(1 + v2)
σ1−1 − 1

λ0
− v2

]
.

(2.23)

Here,

M(t, v1) =
Y (t, v1)

Φ′
1

Φ1
(Φ−1

1 (Y (t, v1)))

Φ−1
1 (I1(t))

Φ′
1

Φ1
(Φ−1

1 (I1(t)))
, Y (t, v1) = Φ−1

1

(
I1(t)[1 + v1]

)
,

Q(t, v1, v2) =
N(t, v1, v2)

λ0

(
F (t)

( λ0
λ0 − 1

)2

·M(t, v1)
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×
( L(t)

1 + L(t)
+ F (t)M(t, v1) ·

Φ′′
1(Y (t, v1))Φ1(Y (t, v1))

(Φ1(Y (t, v1)))2
· 1

I1(t)I′′
1 (t)

(I′
1(t))

2 +G(t)

))σ1−1

,

N(t, v1, v2) =
θ1
( λ0Y (t,v1)
(λ0−1)πω(t) · [1 + v2]

)
θ1(|πω(t)|

1
λ0−1 sign y01)

, G(t) =
I1(t)

πω(t)I ′1(t)
, L(t) =

I ′1(t)

πω(t)I ′′1 (t)
.

From the first of conditions (2.7) we have

lim
t↑ω

G(t) = 0. (2.24)

We have already proved that the function Φ−1
1 (z) is slowly varying as z → Z1. So, taking into

account the second of conditions (2.6), we have

lim
t↑ω

Y (t, v1) = Y0 uniformly by v1 : |v1| <
1

2
. (2.25)

By Note 2.3, we have

lim
t↑ω

M(t, v1) = 1 uniformly by v1 : |v1| <
1

2
. (2.26)

From the second of conditions (2.7), we get

lim
t↑ω

F (t) =
λ0

λ0 − 1
. (2.27)

Now, we can prove that

lim
t↑ω

N(t, v1, v2) = 1 uniformly by v1 : |v1| <
1

2
and uniformly by v2 : |v2| <

1

2
. (2.28)

From (2.26) and (2.27), it follows that

lim
t↑ω

(
Φ−1

1 (I1(t))

|πω(t)|
λ0

λ0−1

)′
· πω(t)

Φ−1
1 (I1(t))

|πω(t)|
λ0

λ0−1

= lim
t↑ω

1

F (t)M(t, v1)
− λ0

(1− γ0)(λ0 − 1)
= 0.

Hence (
Φ−1

1 (I1(t))

|πω(t)|
λ0

λ0−1

)
is a normalized slowly varying function as t ↑ ω. Statement (2.28) follows from the above according
to the fact that the function Φ−1

1 is slowly variable as its argument tends to Z1, and the function θ1
satisfies condition S.

Taking into account the first of conditions (2.7), we have

lim
t↑ω

L(t) = 0. (2.29)

From (2.24)–(2.29), it follows that

lim
t↑ω

Q(t, v1, v2) =
1

λ0
uniformly by v1 : |v1| <

1

2
and uniformly by v2 : |v2| <

1

2
. (2.30)

By (2.6), from the fact that the function Φ−1
1 is slowly varying as the argument tends to Z1, it

follows that there exists a number t0 ∈ [a, ω[ such that

Φ−1
1

(
I1(t)(1 + v1)

)
∈ ∆Y0

as t ∈ [t0, ω[ , |v1| ≤
1

2
.
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Further, we consider the system of differential equations (2.23) on the set

Ω = [t0, ω[×D, D =
{
(v1, v2) : |vi| ≤

1

2
, i = 1, 2

}
and rewrite the system in the form

v′1 =
I ′1(t)

I1(t)

[
A11(t)v1 +A12(x)v2 +R1(x, v1, v2) +R2(x, v1, v2)

]
,

v′2 =
1

πω(t)

[
A21v1 +A22v2 +R3(x, v1, z2) +R4(x, v1, v2)

]
,

(2.31)

where

A11(t) =
λ0

λ0 − 1
F (t)− 1, A12(t) =

λ0
λ0 − 1

F (t),

R1(t, v1, v2) =
λ0

λ0 − 1
F (t)− 1 +

λ0
λ0 − 1

F (t)(M(t, v1)− 1)(1 + v1 + v2),

R2(t, v1, v2) =
λ0

λ0 − 1
F (t)M(t, v1)v1v2,

A21 =
σ1 − 1

λ0
, A22 =

σ1 − 1− λ0
λ0

,

R3(t, v1, z2) =
1

λ0

(
1 + (σ1 − 1)v1 + σ1v2

)
·
(
λ0Q(t, v1, v2)− 1

)
,

R4(t, v1, v2) = Q(t, v1, v2)
[
(1 + σ1v2)

(
(1 + v1)

σ1−1 − 1− (σ1 − 1)v1
)

+ σ1(σ1 − 1)v1v2 +
(
(1 + v2)

σ
1 − 1− σ1v2

)
(1 + v1)

σ
1

]
− v22 .

By virtue of equalities (2.24)–(2.29), for k ∈ {2, 4}, we get

lim
|v1|+|v2|→0

Rk(t, v1, v2)

|v1|+ |v2|
= 0 uniformly by t as t ∈ [t0, ω[ , (2.32)

and for k ∈ {1, 3},

lim
t↑ω

Rk(t, z1, z2) = 0 uniformly by v1, v2 as (v1, v2) ∈ D. (2.33)

At the next stage of the proof we apply to system (2.31) the following transformation:{
v1 = r1,

v2 = r2 −H(t).
(2.34)

Here,

H(t) =
λ0

λ0−1 F (t)− 1
λ0

λ0−1 F (t)
.

By (2.27), we have
lim
t↑ω

H(t) = 0. (2.35)

Thus get a system
r′1 =

I ′1(t)

I1(t)

λ0
λ0 − 1

F (t)
[
r2 + r1r2 +R(t; r1; r2)

]
,

r′2 =
1

πω(t)

[
A21r1 +A22r2 + V3(t, r1, r2) + V4(t, r1, r2)

]
,

(2.36)
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where

R(t, r1, r2) = (M(t, r1)− 1)(1 + r1)(1 + r2 −H(t)),

V3(t, r1, r2) = R4(t, r1, r2 −H(t))−R4(t, r1, r2) + πω(t)H
′(t)−A22H(t) +R3(t, r1, r2 −H(t)),

V4(t, r1, r2) = R4(t, r1, r2).

Let us show that
lim
t↑ω

πω(t)H
′(t) = 0. (2.37)

According to condition (2.4) of the theorem, there exists the following finite or infinite limit

lim
t↑ω

πω(t)H
′(t).

Let
πω(t)H

′(t) = q(t) and lim
t↑ω

q(t) ̸= 0. (2.38)

Then
H ′(t) =

q(t)

πω(t)
.

As a result of integration of the above equality from t0 to t, we have

H(t)−H(t0) =

t∫
t0

q(τ)

πω(τ)
dτ. (2.39)

From (2.35) and (2.39), it follows that the integral
ω∫
t0

q(τ)
πω(τ) dτ must be finite. But this is possible

only if
lim
t↑ω

q(t) = 0.

Thus, taking into account (2.38), we have proved the correctness of statement (2.37).
Owing to the properties of the function R4, by (2.28) and (2.35), it follows that

lim
t↑ω

[
R4(t, r1, r2 −H(t))−R4(t, r1, r2)

]
= 0 uniformly by r1 and r2 as |ri| <

1

2
, i = 1, 2. (2.40)

Applying the transformation {
r1 = w1,

r2 =
√

|G(t(x))|w2,
(2.41)

where

x = β ln |I1(t)|, β =

1, if lim
t↑ω

I1(t) = ∞,

−1, if lim
t↑ω

I1(t) = 0,
(2.42)

to system (2.31) and taking into account (2.3), we obtain the system
w′

1 = β
√

|G(t(x))|
[ λ0
λ0 − 1

F (t(x))w2 +
λ0

λ0 − 1
F (t(x))w1w2 +W (x;w1;w2)

]
,

w′
2 = β

√
|G(t(x))|

[
signG(t(x))A21w1

+
(√

|G(t(x))| signG(t(x))A22(x)− Ñ(x)
)
w2 +W3(x,w1, w2) +W4(x,w1, w2)

]
,

(2.43)

where

W (x;w1;w2) =
λ0

λ0 − 1
F (t(x)) · (M(t(x), w1)− 1)√

|G(t(x))|
(1 + w1)

(
1 +

√
|G(t(x))|w2 −H(t(x))

)
,
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W3(x,w1, w2) = V3

(
t(x), w1,

√
|G(t(x))|w2

)
,

W4(x,w1, w2) = V4

(
t(x), w1,

√
|G(t(x))|w2

)
,

Ñ(x) =
sign(G(t(x)))G′(t(x))I(t(x))

2G(t(x))
√
|G(t(x))| I ′(t(x))

.

Note that

Ñ(x) =
sign(G(t(x)))G′(t(x))I(t(x))

2G(t(x))
√

|G(t(x))| I ′(t(x))
=

sign(G(t(x)))G′(t(x))πω(t(x))

2
√
|G(t(x))|

.

At the same time, the equality

(M(t, w1)− 1)√
|G(t(x))|

= ln |I1(t)| ·
(Φ−1

1 (I1(t)[1 + v1])ψ(Φ
−1
1 (I1(t)[1 + v1]))

Φ−1(I1(t))ψ(Φ−1(I1(t)))
− 1

)
·

√
|πω(t)I′

1(t)
I1(t)

|
ln |I1(t)|

is true. Next, let us prove that

lim
t↑ω

√
|πω(t)I′

1(t)
I1(t)

|
ln |I1(t)|

= 0. (2.44)

By de L’Hospital rule we have

lim
t↑ω

√
|πω(t)I′

1(t)
I1(t)

|
ln |I1(t)|

= −1

2
lim
t↑ω

G′(t)πω(t)√
|G(t)|

.

The last limit has a finite or infinite boundary, since the second limit in (2.4) exists.
Now let us prove that

lim
t↑ω

G′(t)πω(t)√
|G(t)|

= 0. (2.45)

According to condition (2.4), there exists the following finite or infinite limit

lim
t↑ω

G′(t)πω(t)√
|G(t)|

.

Suppose that
G′(t)πω(t)√

|G(t)|
= q1(t) and lim

t↑ω
q1(t) ̸= 0. (2.46)

Then
G′(t)√
|G(t)|

=
q1(t)

πω(t)
.

As a result of integration of this equality from t0 to t, we have

2
√
|G(t)| − 2

√
|G(t0)| =

t∫
t0

q1(τ)

πω(τ)
dτ. (2.47)

From (2.24) and (2.47), it follows that the integral
ω∫
t0

q1(τ)
πω(τ) dτ must be finite. But this is possible

only if
lim
t↑ω

q1(t) = 0. (2.48)

The last one is in contradiction with assumption (2.46). So, statement (2.44) is true.
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Let us now prove that
lim

x→+∞
Ñ(x) = 0. (2.49)

The function Φ−1(z) · Φ′
1(Φ

−1(z))
z satisfies condition B, hence∣∣∣∣ ln |I1(t(x))| ·
(Φ−1

1 (I1(t)[1 + v1])ψ(Φ
−1
1 (I1(t)[1 + v1]))

Φ−1(I1(t))ψ(Φ−1(I1(t)))
− 1

)∣∣∣∣ <∞.

From the above equality and statement (2.49), it follows that

lim
x→+∞

W (x;w1;w2) = 0 uniformly towards w1 and w2 if |wi| <
1

2
, i = 1, 2. (2.50)

Note that the characteristic equation of a matrix(
0 β

β sign(λ0(σ1 − 1))A21 0

)
has the form

µ2 − |σ1 − 1|
|λ0|

= 0.

This equation has no roots with real part equal to zero. Let us consider
∞∫
x0

G(t(x)) dx. Taking into

account the presentation G(t(x)) = I(t(x))
πω(t(x))I′(t(x)) , we have

∞∫
x0

G(t(x)) dx =

∞∫
x0

I1(t(x))

πω(t(x))I ′1(t(x))
dx =

ω∫
t(x0)

I1(t)

πω(t)I ′1(t)

I ′1(t)

I1(t)
dt = ln |πω(t)|ωd1

−→ ∞ as t→ ω.

Since in some neighborhood of zero the inequality
∞∫

x0

√
|G(t(x))| dx ≥ sign(G(t(x)))

∞∫
x0

G(t(x)) dx

takes place, it is true that
∞∫

x0

√
|G(t(x))| dx −→ +∞.

We have got that for the system of differential equations (2.43) all conditions of Theorem 2.2 from
[5] are fulfilled. According to this theorem, system (2.43) has a one-parameter family of solutions
{wi}2i=1 : [x1,+∞[→ R2 (x1 ≥ x0, x0 = β ln |I1(t0)|) that tend to zero as x→ +∞. By (2.42), (2.22)
these solutions correspond to those solutions y of equation (1.1) that admit asymptotic representations
(2.8) as t ↑ ω.

By representations (2.8) and inequality (2.3) it is clear that the obtained solutions are indeed the
Pω(Y0, Y1, λ0)-solutions. The theorem is proved completely.

3 Illustration of the results
To illustrate the results obtained above, we consider the following differential equation for t ∈ [2,+∞[

y′′ = ψ(t) exp
(

exp(|y|a)− exp(td)
)
|y|σ0 |y′|σ1 . (3.1)

Here, σ0, σ1 ∈ R, σ1 > 1, a, d ∈ ]0,+∞[ , the function ψ : [2,+∞[→ ]0,+∞[ is continuous, regularly
varying at infinity of index γ, γ ∈ R.
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This equation is of type (1.1) for which

α0 = 1, p(t) = ψ(t) exp
(
− exp(td)

)
, φ0(y) = |y|σ0 exp

(
exp(|y|a)

)
, φ1(y

′) = |y′|σ1 .

Using the above proven theorem, let us investigate the question of the existence and asymptotic
behavior as t→ +∞ of P+∞(∞, Y1, λ0)-solutions of equation (3.1) for which λ0 ∈ R \ {0, 1}.

In our case,
πω(t) = t, θ1(y) = 1.

Thus the function θ1 satisfies condition S.
Taking into account the choice of B0

+∞, as t→ +∞, we have

I(t) = |λ0 − 1|
1

1−σ1 · y10 ·
σ1 − 1

d
· t1−d+ 1

1−σ1 · |ψ(t)|
1

1−σ1 · exp
(exp(td)
σ1 − 1

− td
)
[1 + o(1)].

In the same way, as t→ +∞, we have

I1(t) = |λ0 − 1|
1

1−σ1 · y10 ·
(σ1 − 1

d

)2

· t1−2d+ 1
1−σ1 · |ψ(t)|

1
1−σ1 · exp

(exp(td)
σ1 − 1

− 2td
)
[1 + o(1)].

In addition, in our case, since Y0 = ∞, taking into account the choice of A0
∞, we get

Φ0(y) =
σ1 − 1

a
· y

σ0
σ1−1+1−a · exp

(exp(|y|a)
σ1 − 1

− |y|a
)
[1 + o(1)] as y → ∞.

Similarly, we have

Φ1(y) =
(σ1 − 1

a

)2

· y
σ0

σ1−1+1−2a · exp
(exp(|y|a)
σ1 − 1

− 2|y|a
)
[1 + o(1)] as y → ∞. (3.2)

We have
lim

t↑+∞
F (t) =

a

d
. (3.3)

From (3.3) and the second condition of (2.7), it follows that equation (3.1) may have only
P+∞(∞, Y1, λ0)-solutions with

λ0 =
d

d− a
.

Taking into account asymptotic representations for functions I, I1, Φ0, Φ1, Φ−1
1 , we get

lim
t→+∞

tF ′(t) = 0.

So, the first condition of (2.4) is valid.
Note that √

|πω(t)I′
1(t)

I1(t)
|

ln |I1(t)|
=

√
d(σ1 − 1)

t
d
2

exp( td2 )
[1 + o(1)] as t→ ∞,

from which the second condition of (2.4) takes place.
At the same time,

Φ−1
1 (y) · Φ

′
1(Φ

−1
1 (y))

y
=

(σ1 − 1)2

a
ln y ·

(
ln((σ1 − 1) ln y)

) σ0
σ1−1

−2a+1

a [1 + o(1)] as y → ∞.

This means that condition S1 is satisfied.
Thus, all conditions of Theorem 2.1 are satisfied. By virtue of this theorem, equation (3.1) may

have only P+∞(+∞,+∞, d
d−a )-solutions. From Theorem 2.1 it also follows that equation (3.1) has

one-parameter family of P+∞(+∞,+∞, d
d−a )-solutions.
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Also, using the known asymptotic behavior of the function Φ−1
1 , it is easy to find that every

P+∞(+∞,+∞, d
d−a )-solution of equation (3.1) and its derivative satisfy the following asymptotic

representations

(y(t))
σ0

σ1−1+1−2a · exp
(exp(|y(t)|a)

σ1 − 1
− 2|y(t)|a

)
=

∣∣∣ a

d− a

∣∣∣ 1
1−σ1 ·

(a
d

)2

· t1−2d+ 1
1−σ1 · ψ

1
1−σ1 (t) · exp

(exp(td)
σ1 − 1

− 2td
)
[1 + o(1)] as t→ +∞,

y′(t) =
y(t)

t
[1 + o(1)] as t→ +∞.

References
[1] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation. Encyclopedia of Mathematics

and its Applications, 27. Cambridge University Press, Cambridge, 1987.
[2] V. M. Evtukhov and N. G. Drik, Asymptotic behavior of solutions of a second-order nonlinear

differential equation. Georgian Math. J. 3 (1996), no. 2, 101–120.
[3] V. M. Evtukhov and V. M. Khar’kov, Asymptotic representations of solutions of second-order

essentially nonlinear differential equations. (Russian) Differ. Uravn. 43 (2007), no. 10, 1311–1323.
[4] V. M. Evtukhov and A. M. Klopot, Asymptotic behavior of solutions of nth-order ordinary

differential equations with regularly varying nonlinearities. (Russian) Differ. Uravn. 50 (2014),
no. 5, 584–600; translation in Differ. Equ. 50 (2014), no. 5, 581–597.

[5] V. M. Evtukhov and A. M. Samoilenko, Conditions for the existence of solutions of real nonau-
tonomous systems of quasilinear differential equations vanishing at a singular point. (Russian)
Ukr. Mat. Zh. 62 (2010), no. 1, 52–80; translation in Ukr. Math. J. 62 (2010), no. 1, 56–86.

[6] V. Marić, Regular Variation and Differential Equations. Lecture Notes in Mathematics, 1726.
Springer-Verlag, Berlin, 2000.

[7] E. Seneta, Regularly Varying Functions. Lecture Notes in Mathematics, Vol. 508. Springer-Verlag,
Berlin–New York, 1976.

(Received 31.10.2017)

Author’s address:

Odessa I. I. Mechnikov National University, 2 Dvoryanskaya St., Odessa 65082, Ukraine.
E-mail: olachepok@ukr.net



Memoirs on Differential Equations and Mathematical Physics
Volume 74, 2018, 93–111

Avtandil Gachechiladze, Roland Gachechiladze

UNILATERAL CONTACT PROBLEMS FOR HOMOGENEOUS
HEMITROPIC ELASTIC SOLIDS WITH A FRICTION



Abstract. In the present paper, we study a one-sided contact problem for a micropolar homogeneous
elastic hemitropic medium with a friction. Here, on a part of the elastic medium surface with a
friction, instead of a normal component of force stress there is prescribed the normal component of
the displacement vector. We consider two cases, the so-called coercive case (when the elastic medium
is fixed along some part of the boundary) and noncoercive case (without fixed parts). By using the
Steklov–Poincaré operator, we reduce this problem to an equivalent boundary variational inequality.
Based on our variational inequality approach, we prove the existence and uniqueness theorems for
the weak solution. In the coercive case, the problem is unconditionally solvable, and the solution
depends continuously on the data of the original problem. In the noncoercive case, we present in
a closed-form the necessary condition for the existence of a solution of the contact problem. Under
additional assumptions, this condition is also sufficient for the existence of a solution.
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Key words and phrases. Elasticity theory, hemitropic solids, contact problem with a friction,
boundary variational inequality.

ÒÄÆÉÖÌÄ. ßÀÒÌÏÃÂÄÍÉË ÍÀÛÒÏÌÛÉ ÛÄÓßÀÅËÉËÉÀ ÝÀËÌáÒÉÅÉ ÓÀÊÏÍÔÀØÔÏ ÀÌÏÝÀÍÀ ÌÉÊÒÏÐÏ-
ËÀÒÖËÉ, ÄÒÈÂÅÀÒÏÅÀÍÉ, äÄÌÉÔÒÏÐÖËÉ ÃÒÄÊÀÃÉ ÓáÄÖËÉÓÈÅÉÓ áÀáÖÍÉÓ ÂÀÈÅÀËÉÓßÉÍÄÁÉÈ.
ÀÌ ÛÄÌÈáÅÄÅÀÛÉ ÃÒÄÊÀÃÉ ÓáÄÖËÉÓ ÓÀÆÙÅÒÉÓ ÉÌ ÍÀßÉËÆÄ, ÓÀÃÀÝ áÀáÖÍÉÓ Ä×ÄØÔÉÀ ÂÀÈÅÀËÉÓ-
ßÉÍÄÁÖËÉ, ÍÀÝÅËÀÃ ÞÀÁÅÉÓ ÍÏÒÌÀËÖÒÉ ÌÃÂÄÍÄËÉÓÀ ÌÏÝÄÌÖËÉÀ ÂÀÃÀÀÃÂÉËÄÁÉÓ ÍÏÒÌÀËÖÒÉ
ÌÃÂÄÍÄËÉ. ÂÀÍáÉËÖËÉÀ ÏÒÉ ÛÄÌÈáÅÄÅÀ, ÊÏÄÒÝÉÔÉÖËÉ (ÒÏÃÄÓÀÝ ÓáÄÖËÉ ÓÀÆÙÅÒÉÓ ÃÀÃÄÁÉ-
ÈÉ ÆÏÌÉÓ ÂÀÒÊÅÄÖËÉ ÍÀßÉËÉÈ ÜÀÌÀÂÒÄÁÖËÉÀ) ÃÀ ÀÒÀÊÏÄÒÝÉÔÉÖËÉ (ÒÏÃÄÓÀÝ ÀÓÄÈÉ ÜÀÌÀÂ-
ÒÄÁÄÁÉ ÀÒ ÂÅÀØÅÓ). ÓÔÄÊËÏÅ-ÐÖÀÍÊÀÒÄÓ ÏÐÄÒÀÔÏÒÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÂÀÍÓÀáÉËÅÄËÉ ×ÉÆÉÊÖÒÉ
ÀÌÏÝÀÍÀ ÄÊÅÉÅÀËÄÍÔÖÒÀÃ ÃÀÉÚÅÀÍÄÁÀ ÓÀÓÀÆÙÅÒÏ ÅÀÒÉÀÝÉÖË ÖÔÏËÏÁÀÆÄ. ÅÀÒÉÀÝÉÖË
ÖÔÏËÏÁÀÈÀ ÆÏÂÀÃÉ ÈÄÏÒÉÉÓ ÓÀ×ÖÞÅÄËÆÄ ÛÄÓßÀÅËÉËÉÀ ÓÖÓÔÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓÀ
ÃÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÓÀÊÉÈáÉ. ÊÄÒÞÏÃ, ÃÀÃÂÄÍÉËÉÀ, ÒÏÌ ÊÏÄÒÝÉÔÉÖË ÛÄÌÈáÅÄÅÀÛÉ ÀÌÏÝÀÍÀ
ÀÌÏáÓÍÀÃÉÀ ÝÀËÓÀáÀÃ ÃÀ ÖÐÉÒÏÁÏÃ, áÏËÏ ÀÒÀÊÏÄÒÝÉÔÉÖË ÛÄÌÈáÅÄÅÀÛÉ ÝáÀÃÉ ÓÀáÉÈ
ÉßÄÒÄÁÀ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÀÖÝÉËÄÁÄËÉ ÐÉÒÏÁÀ, ÒÏÌÄËÉÝ ÂÀÒÊÅÄÖË ÃÀÌÀÔÄÁÉÈ ÌÏ-
ÈáÏÅÍÄÁÛÉ ßÀÒÌÏÀÃÂÄÍÓ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÓÀÊÌÀÒÉÓ ÐÉÒÏÁÀÓÀÝ.
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1 Introduction
In the present paper, we investigate the one-sided contact problem for a homogeneous hemitropic
elastic medium with a friction. In the considered model of the theory of elasticity, as distinct from
the classical theory, every elementary medium particle undergoes both displacement and rotation. In
this case, all mechanical values are expressed in terms of the displacement and rotation vectors.

In their works [2] and [3], E. Cosserat and F. Cosserat created and presented the model of a
solid medium in which every material point has six degrees of freedom, three of which are defined by
displacement components and the other three by the components of rotation (for the history of the
model of elasticity see [5, 28,30,31,34,39,40] and the references therein).

A micropolar medium, not possessing symmetry with respect to the inversion, is called a hemitropic
or noncentrosymmetric medium.

Improved mathematical models describing hemitropic properties of elastic materials have been
obtained and considered in [29] and [1]. The main equations of that model are interrelated and
generate a matrix second order differential operator of dimension 6× 6. Particular problems for solid
media of the hemitropic theory of elasticity have been considered in [35, 36, 39] and [40]. The basic
boundary value problems and also the transmission problems of the hemitropic theory of elasticity with
the use of the potential method for smooth and non-smooth Lipschitz domains were studied in [35],
the one-sided contact problems of statics of the hemitropic theory of elasticity free from friction were
investigated in [16, 18, 20], and the contact problems of statics and dynamics with a friction were
considered in [8–15,17,19,21–24]. Analogous one-sided problems of classical linear theory of elasticity
have been considered in many works and monographs (see [4,6,7,26,27,41] and the references therein).

In the present work, we present the basic equations of statics of the elasticity theory for homo-
geneous hemitropic media in a vector-matrix form, introduce the generalized stress operator and a
quadratic form of potential energy. Then we describe mathematical model of boundary conditions
which show the contact between a hemitropic medium and a solid body with regard for the friction
effect. We will consider the case, where some part of the elastic medium boundary is fixed mechan-
ically. The problem is reduced equivalently to the boundary variational inequality, the question on
the existence and uniqueness of a weak solution of the initial problem is treated, and a continuous
Lipschitz dependence of the solution on the data of the problem is investigated. Further, we will
investigate more complicated cases, where friction is considered on the whole medium boundary. In
such cases, the corresponding mathematical problem is, in general, unsolvable. The necessary con-
ditions of solvability are established and the sufficient conditions for the existence of a solution are
formulated explicitly.

2 Basic equations and Green’s formulas
2.1 Basic equations
Let Ω ⊂ R3 be a bounded simply connected domain with a C∞-smooth boundary S = ∂Ω, Ω = Ω∪S.
The domain Ω is assumed to be filled with a homogeneous hemitropic material.

The basic equilibrium equations in the hemitropic theory of elasticity written in components of
the displacement and rotation vectors are of the form

(µ+ α)∆u(x) + (λ+ µ− α) grad divu(x) + (κ + ν)∆ω(x)

+ (δ + κ − ν) grad divω(x) + 2α curlω(x) + ρF (x) = 0,

(κ + ν)∆u(x) + (δ + κ − ν) grad divu(x) + 2α curlu(x) + (γ + ε)∆ω(x)

+ (β+γ−ε) grad divω(x)+4ν curlω(x)−4αω(x)+ρΨ(x) = 0,

(2.1)

where ∆ = ∂21 + ∂22 + ∂23 is the Laplace operator, ∂j = ∂/∂xj , u = (u1, u2, u3)
⊤ is the displacement

vector, ω = (ω1, ω2, ω3)
⊤ is the vector of rotation, F = (F1, F2, F3)

⊤ and Ψ = (Ψ1,Ψ2,Ψ3)
⊤ are the

mass force and mass moment calculated per unit of mass, ρ is density of the elastic medium, and α,
β, γ, δ, λ, µ, ν, κ and ε are elastic constants (see [1,36]). Here and in what follows, the symbol ( · )⊤
denotes transposition.
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We introduce a matrix differential operator corresponding to the left-hand side of system (2.1):

L(∂) =

[
L(1)(∂) L(2)(∂)

L(3)(∂) L(4)(∂)

]
6×6

,

L(1)(∂) := (µ+ α)∆I3 + (λ+ µ− α)Q(∂),

L(2)(∂) = L(3)(∂) := (κ + ν)∆I3 + (δ + κ − ν)Q(∂) + 2αR(∂),

L(4)(∂) :=
[
(γ + ε)∆− 4α

]
I3 + (β + γ − ε)Q(∂) + 4νR(∂),

where Ik is the unit k × k-matrix and

Q(∂) =
[
Qkj(∂)

]
3×3

, Qkj(∂) = ∂k ∂j , R(∂) =

 0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

 .
The system of equations (2.1) can be rewritten in the matrix form

L(∂)U(x) + G(x) = 0, x ∈ Ω,

where U = (u, ω)⊤ and G = (ρF, ρΨ)⊤.
By T (∂, n) we denote the generalized stress operator of dimension 6× 6 (see [36]):

T (∂, n) =

[
T (1)(∂, n) T (2)(∂, n)

T (3)(∂, n) T (4)(∂, n)

]
, T (j) =

[
T (j)
pq

]
3×3

, j = 1, 4,

where

T (1)
pq (∂, n) := (µ+ α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T (2)
pq (∂, n) := (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q − 2α

3∑
k=1

εpqknk,

T (3)
pq (∂, n) := (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q,

T (4)
pq (∂, n) := (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2ν

3∑
k=1

εpqknk.

Here, n(x) = (n1(x), n2(x), n3(x)) denotes the outward (with respect to Ω) unit normal vector at
the point x ∈ S, and ∂n = ∂/∂n is the normal derivative in the direction of the vector n. The
six-component generalized stress vector has the form

T (∂, n)U = (T U,MU)⊤,

where T U := T (1)u+ T (2)ω is the force stress vector and MU := T (3)u+ T (4)ω is the moment stress
vector.

2.2 Green’s formulas
For the real-valued vector functions U = (u, ω)⊤ and U ′ = (u′, ω′)⊤ of the class [C2(Ω)]6 the following
Green’s formula [36] ∫

Ω

[
L(∂)U · U ′ + E(U,U ′)

]
dx =

∫
S

{
T (∂, n)U

}+ · {U ′}+ dS (2.2)
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is valid, where { · }+ denotes the trace operator on S from Ω, and E( · , · ) is a bilinear form defined
by the equality

E(U,U ′) = E(U ′, U)

=

3∑
p,q=1

{
(µ+ α)u′pqupq + (µ− α)u′pquqp + (κ + ν)

(
u′pqωpq + ω′

pqupq
)
+ (κ − ν)

(
u′pqωqp + ω′

pquqp
)

+ (γ + ε)ω′
pqωpq + (γ − ε)ω′

pqωqp + δ
(
u′ppωqq + ω′

qqupp
)
+ λu′ppuqq + βω′

ppωqq

}
,

where upq and ωpq are the so-called tensors of deformation and torsion-bending for the hemitropic
media,

upq = upq(U) = ∂puq −
3∑

k=1

εpqkωk, ωpq = ωpq(U) = ∂pωq, p, q = 1, 2, 3. (2.3)

Here and in the sequel, by a·b we denote the scalar product of two vectors a, b ∈ Rm : a·b =
m∑
j=1

ajbj .

Under certain assumptions on elastic constants (see [1, 10, 23]), specific energy of deformation
E(U,U) is a positive definite quadratic form with respect to upq(U) and ωpq(U), i.e., there exists a
positive number C0 > 0, depending only on the elastic constants, such that

E(U,U) ≥ C0

3∑
p,q=1

[
u2pq + ω2

pq

]
.

The following assertion describes the null space of the energy quadratic form E(U,U) (see [36]).

Lemma 2.1. Let U = (u, ω)⊤ ∈ [C1(Ω)]6 and E(U,U) = 0 in Ω. Then

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω,

where a and b are arbitrary three-dimensional constant vectors and [ · × · ] denotes the cross product
of two vectors.

Vectors of the type ([a×x]+b, a) are called generalized rigid vectors. We observe that a generalized
rigid displacement vector vanishes, i.e., a = b = 0 if it is zero at a single point.

Throughout the paper, Lp(Ω) (1 ≤ p ≤ ∞), L2(Ω) = H0(Ω) and Hs(Ω) = Hs
2(Ω), s ∈ R, denote,

respectively, the Lebesgue and Bessel potential spaces (see, e.g., [32,42]). The corresponding norms we
denote by the symbols ∥ · ∥Lp(Ω) and ∥ · ∥Hs(Ω). By D(Ω) we denote the class of C∞(Ω) functions with
support in the domain Ω. If M is an open proper part of the manifold ∂Ω, i.e., M ⊂ ∂Ω, M ̸= ∂Ω,
then by Hs(M) we denote the restriction of the space Hs(∂Ω) on M , Hs(M) := {r

M
φ : φ ∈ Hs(∂Ω)},

where r
M

stands for the restriction operator on the set M . Further, let H̃ s(M) := {φ ∈ Hs(∂Ω) :
suppφ ⊂M}.

From the positive definiteness of the energy form E( · , · ) with respect to the variables (2.3) it
follows that

B(U,U) :=

∫
Ω

E(U,U) dx ≥ 0. (2.4)

Moreover, there exist positive constants c1 and c2, depending only on the material parameters,
such that the following Korn’s type inequality (see [7, Part I, § 12])

B(U,U) ≥ c1∥U∥2[H1(Ω)]6 − c2∥U∥2[H0(Ω)]6 (2.5)

holds for an arbitrary real-valued vector function U ∈ [H1(Ω)]6.

Remark 2.2. If U ∈ [H1(Ω)]6 and on some part S∗ ⊂ ∂Ω the trace {U}+ vanishes, i.e., r
S∗ {U}+ = 0,

we have the strict Korn’s inequality B(U,U) ≥ C∥U∥2[H1(Ω)]6 with some positive constant C > 0 which
does not depend on the vector U . This follows from (2.5) and the fact that in this case B(U,U) > 0
for U ̸= 0 (see, e.g., [33, Ch. 2]; [37, Ch. 3, p. 193]).
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Remark 2.3. By the standard limiting arguments, Green’s formula (2.2) can be extended to the
Lipschitz domains and to the vector function U ∈ [H1(Ω)]6 with L(∂)U ∈ [L2(Ω)]

6 and U ′ ∈ [H1(Ω)]6

(see [32, 37]), ∫
Ω

[
L(∂)U · U ′ + E(U,U ′)

]
dx =

⟨
{T (∂, n)U}+, {U ′}+

⟩
∂Ω
, (2.6)

where ⟨ · , · ⟩∂Ω denotes duality between the spaces [H−1/2(∂Ω)]6 and [H1/2(∂Ω)]6 which generalizes
the usual inner product in the space [L2(∂Ω)]

6. By virtue of this relation, the generalized trace of the
stress operator {T (∂, n)U}+ ∈ [H−1/2(∂Ω)]6 is determined correctly.

3 Contact problems with a friction
3.1 Pointwise and variational formulation of the contact problem
Let the boundary S of the domain Ω be divided into two open, connected and non overlapping parts
S1 and S2 of positive measure, S = S1 ∪ S2, S1 ∩ S2 = ∅. Assume that the hemitropic elastic body
occupying the domain Ω is in contact with another rigid body along the subsurface S2.

Definition 3.1. A vector function U = (u, ω)⊤ ∈ [H1(Ω)]6 is said to be a weak solution of the
equation

L(∂)U + G = 0, G ∈ [L2(Ω)]
6 (3.1)

in the domain Ω if
B(U,Φ) =

∫
Ω

G · Φ dx ∀Φ ∈ [D(Ω)]6,

where the bilinear form B( · , · ) is given by formula (2.4).

For the normal and tangential components of the force stress vector we will use, respectively, the
following notation:

(T U)n := T U · n, (T U)s := T U − n(T U)n.

Further, let G = (ρF, ρΨ)⊤ ∈ [L2(Ω)]
6, φ ∈ [H−1/2(S2)]

3, f ∈ H1/2(S2), g ∈ L∞(S2), g ≥ 0.
Consider the following contact problem of statics with a friction.

Problem A. Find a vector function U = (u, ω)⊤ ∈ [H1(Ω)]6 which is a weak solution of equation (3.1)
and satisfies the inclusion r

S2
{(T U)s}+ ∈ [L∞(S2)]

3 and the following conditions:

r
S1
{U}+ = 0 on S1, (3.2)

r
S2
{MU}+ = φ on S2, (3.3)
r
S2
{un}+ = f on S2, (3.4)

if |r
S2
{(T U)s}+| < g, then r

S2
{us}+ = 0, if |r

S2
{(T U)s}+| = g, then there exist nonnegative functions

λ1 and λ2 which do not vanish simultaneously, and λ1rS2
{us}+ = −λ2rS2

{(T U)s}+, where the symbol
{ · }+ stands for the trace operator on Si (i = 1, 2) from Ω. Conditions (3.2) and (3.4) are understood
in the usual trace sense, whereas (3.3) is understood in the generalized functional sense described in
Remark 2.3.

To reduce Problem A to a boundary variational inequality, we first reduce the inhomogeneous
equation (3.1) to a homogeneous one. In this connection, we consider the following auxiliary linear
boundary value problem.

Find a vector function U0 = (u0, ω0)
⊤ ∈ [H1(Ω)]6 that is a weak solution of equation (3.1) and

satisfies the conditions

r
S1
{U0}+ = 0 on S1, r

S2
{MU0}+ = 0 on S2,

r
S2
{u0n}+ = f on S2, r

S2
{(T U0)s}+ = 0 on S2.

(3.5)
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It is well known (see [36]) that this problem is uniquely solvable, because S is neither a surface of
revolution, nor a ruled surface. Let V ∈ [H1(Ω)]6 be a solution of Problem A, and let U0 ∈ [H1(Ω)]6

be a solution of the auxiliary problem (3.5); then the difference U := V − U0 is a solution of the
following problem.
Problem A0. Find a weak solution U = (u, ω)⊤ ∈ [H1(Ω)]6 of the equation

L(∂)U = 0 in Ω (3.6)

satisfying the inclusion r
S2
{(T U)s}+ ∈ [L∞(S2)]

3 and the following conditions:

r
S1
{U}+ = 0 on S1, (3.7)

r
S2
{MU}+ = φ on S2, (3.8)
r
S2
{un}+ = 0 on S2, (3.9)

if
∣∣r

S2
{(T U)s}+

∣∣ < g, then r
S2
{us}+ = ψ0, (3.10)

if |r
S2
{(T U)s}+| = g, then there exist nonnegative functions λ1 and λ2 which do not vanish simulta-

neously, such that
λ1

[
r
S2
{us}+ − ψ0

]
= −λ2rS2

{(T U)s}+, (3.11)
where the symbol { · }+ stands for the trace operator on Si (i=1,2) from Ω and ψ0 = −r

S2
{u0s}+ ∈

[H1/2(S2)]
3.

In what follows, we will study Problem A0. Obviously, if a vector function U ∈ [H1(Ω)]6 is a
solution of Problem A0, then the sum U + U0 is a solution of Problem A.

3.2 Reduction of Problem A0 to a boundary variational inequality
To reduce Problem A0 to an equivalent boundary variational inequality, we recall that the vector
U = (u, ω)⊤ ∈ [H1(Ω)]6 is a solution of equation (3.6) satisfying the Dirichlet boundary condition
{U}+ = h on S with h ∈ [H1/2(S)]6 and hence can be uniquely represented by the simple layer
potential (see [35])

U(x) = V (H−1h)(x) :=

∫
S

Γ(x− y)(H−1h)(y) dyS, x ∈ Ω,

where Γ is the fundamental solution matrix of the operator L(∂) and H is the boundary integral
operator generated by the trace of the simple layer potential on the boundary S (see the closed-form
representation of Γ in [35,36]),

H(h)(x) = lim
Ω∋z→x∈S

∫
S

Γ(z − y)h(y) dyS = {V (h)}+.

Note that the simple layer potential V and the integral operator H have the following properties
(see [35,36]):

V : [Hr(S)]6 → [Hr+3/2(Ω)]6, H : [Hr(S)]6 → [Hr+1(S)]6, r ∈ R. (3.12)

These operators are continuous. Moreover, H is an invertible operator and

H−1 : [Hr(S)]6 → [Hr−1(S)]6, r ∈ R. (3.13)

The relation {
T (∂, n)V (h)

}+
= (−2−1I6 +K)h on S (3.14)

holds for an arbitrary h ∈ [H−1/2(S)]6, where K is the singular integral operator,

Kh(x) =
∫
S

[T (∂, n)Γ(x− y)]h(y) dyS.
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Note that
−1

2
I6 +K : [H−1/2(S)]6 → [H−1/2(S)]6

is a continuous singular operator of normal type with zero index (for details, see [35,36]).
Next, for the Dirichlet problem we introduce the so-called Green’s operator G : [H1/2(S)]6 →

[H1(Ω)]6 which is defined by the relation

Gh := V (H−1h). (3.15)

Obviously, L(∂)(Gh) = 0 in Ω and {Gh}+ = h on S. Taking into account the properties of the
trace operator and mappings (3.12), we find that there exist positive numbers C1 and C2 such that

C1∥h∥[H1/2(S)]6 ≤ ∥Gh∥[H1(Ω)]6 ≤ C2∥h∥[H1/2(S)]6 (3.16)

for all h ∈ [H1/2(S)]6.
Now we introduce a generalized operator of the Steklov–Poincaré type by the relation

Ah :=
{
T (∂, n)(Gh)

}+
=

{
T (∂, n)V (H−1h)

}+
= (−2−1I6 +K)(H−1h). (3.17)

By Λ(S) we denote the set of restrictions of rigid displacement vectors to S, i.e.,

Λ(S) :=
{
χ(x) = (ρ, a)⊤ =

(
[a× x] + b, a

)⊤
, x ∈ S | a, b ∈ R

}
. (3.18)

By using the Green’s formula (2.6) for U = U ′ = V (H−1h), relations (3.14), (3.17) and (3.18),
and the uniqueness theorems for the Dirichlet boundary value problem, we obtain kerA = Λ(S).

Now we state the following lemma describing the properties of the Steklov–Poincaré operator.

Lemma 3.1. Let h, η ∈ [H1/2(S)]6 and g ∈ [H̃1/2(S∗)]6, where S∗ is a regular open subset of the
boundary S = ∂Ω. Then the following assertions hold:

(i) ⟨Ah, η⟩S = ⟨Aη, h⟩S;

(ii) A : [H1/2(S)]6 → [H−1/2(S)]6 is a continuous operator;

(iii) ⟨Ah, h⟩S ≥ C1∥h∥2[H1/2(S)]6
− C2∥h∥2[L2(S)]6 ;

(iv) ⟨Ag, g⟩S ≥ C∥g∥2
[H1/2(S)]6

;

(v) ⟨Ah, h⟩S ≥ C∥h− Ph∥2
[H1/2(S)]6

.

Here, P is the operator of orthogonal projection (in the sense of L2(S))of the space [H1/2(S)]6 onto
the space Λ(S); the positive constants C, C1, and C2 depend on the elasticity constants and on the
geometric properties of the surface S and are independent of h and g.

Proof. Let h, η ∈ [H1/2(S)]6. Since the vector Gh is a weak solution of the homogeneous equation
L(∂)(Gh) = 0, it follows from the Green’s formula (2.6) that

⟨Ah, η⟩S =
⟨
{T (∂, n)(Gh)}+, {Gη}+

⟩
S
= B(Gh,Gη) = B(Gη,Gh)

=
⟨
{T (∂, n)(Gη)}+, {Gh}+

⟩
S
= ⟨Aη, h⟩S .

This implies assertion (i). Assertion (ii) is obvious, because the operator A is the composition of the
continuous operator H−1 and operator −2−1I6+K (see relations (3.14) and (3.17)). The proof of (iii)
can be carried out as follows. By using condition (2.5), for an arbitrary h ∈ [H1/2(S)]6, we obtain the
inequality

⟨Ah, h⟩S = B
(
V (H−1h), V (H−1h)

)
≥ c1∥V (H−1h)∥2[H1(Ω)]6 − c2∥V (H−1h)∥2[L2(Ω)]6 .
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Relations (3.15) and (3.16) imply the inequalities ∥V (H−1h)∥[H1(Ω)]6 ≥ C1∥h∥[H1/2(S)]6 . On the other
hand, since the space [L2(S)]

6 is compactly embedded in [H−1/2(S)]6, it follows from the continuity
of operators (3.12) and (3.13) that

∥V (H−1h)∥[L2(Ω)]6 ≤ C∗
1∥H−1h∥[H−3/2(S)]6 ≤ C∗

2∥h∥[H−1/2(S)]6 ≤ C∗
3∥h∥[L2(S)]6

with some positive constants C∗
1 , C∗

2 and C∗
3 independent of h.

We finally obtain the inequality

⟨Ah, h⟩S ≥ c1C
2
1∥h∥2[H1/2(S)]6 − c2(C

∗
3 )

2∥h∥2[L2(S)]6 ,

which implies assertion (iii).
Now, assertion (v) follows from assertion (iii) and the nonnegativity of the operator A, and assertion

(iv) is a consequence of (iii). The proof of the lemma is complete.

Our aim is to reduce Problem A0 to an equivalent boundary variational inequality. To this end, on
the space [H1/2(S2)]

3 we introduce a convex continuous functional

j(v) =

∫
S2

g|vs − ψ0| dS, v ∈ [H1/2(S2)]
3 (3.19)

and the convex closed set

K0 =
{
h = (h(1), h(2))⊤ ∈ [H1/2(S)]6 : r

S1
h = 0, r

S2
h(1)n = 0

}
. (3.20)

On the set K0, we consider the following boundary variational inequality.
Find a function h0 = (h

(1)
0 , h

(2)
0 )⊤ ∈ K0 such that the boundary variational inequality

⟨Ah0, h− h0⟩S + j(h(1))− j(h
(1)
0 ) ≥

⟨
φ, r

S2
(h(2) − h

(2)
0 )

⟩
S2

(3.21)

holds for all h = (h(1), h(2))⊤ ∈ K0.

4 Equivalence theorem
Let us prove the equivalence of the boundary variational inequality (3.21) and the contact Problem A0.
Theorem 4.1. The boundary variational inequality (3.21) and the contact Problem A0 are equivalent
in the following sense: if U ∈ [H1(Ω)]6 is a solution of Problem A0, then h0 = {U}+ ∈ [H1/2(S)]6 is
a solution of the variational inequality (3.21) and vice versa, if h0 ∈ K0 is a solution of the variational
inequality (3.21), then U := Gh0 ∈ [H1(Ω)]6 is a solution of Problem A0.

Proof. Let U = (u, ω)⊤ ∈ [H1(Ω)]6 be a solution of Problem A0, and let h0 = (h
(1)
0 , h

(2)
0 )⊤ := {U}+.

Since U ∈ [H1(Ω)]6 is a solution of Problem A0, it readily follows from conditions (3.7) and (3.9) that
h0 = (h

(1)
0 , h

(2)
0 )⊤ ∈ K0, and by virtue of the definition of the operator G (see relation (3.15)), the

solution U in the domain Ω can be uniquely represented in the form U = Gh0. By taking into account
the definition of the Steklov–Poincaré operator, we obtain

⟨Ah0, h− h0⟩S + j(h(1))− j(h
(1)
0 )−

⟨
φ, r

S2
(h(2) − h

(2)
0 )

⟩
S2

=
⟨
{T (∂, n)(Gh0)}+, h− h0

⟩
S
+ j(h(1))− j(h

(1)
0 )−

⟨
φ, r

S2
(h(2) − h

(2)
0 )

⟩
S2

for each h = (h(1), h(2))⊤ ∈ K0. Since h and h0 are elements of the set K0 and conditions (3.7) and
(3.8) are satisfied, we have

⟨Ah0, h− h0⟩S + j(h(1))− j(h
(1)
0 )−

⟨
φ, r

S2
(h(2) − h

(2)
0 )

⟩
S2

=
⟨
{T (∂, n)(Gh0)}+, rS2

(h− h0)
⟩
S2

+
⟨
g, r

S2
(|h(1) − ψ0| − |h(1)0 − ψ0|)

⟩
S2

=
⟨
{(T (Gh0))s}+, rS2

(h(1)s −h(1)0s )
⟩
S2
+
⟨
g, |r

S2
h(1)s −ψ0|−|r

S2
h
(1)
0s −ψ0|

⟩
S2

:=I. (4.1)
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Let ∣∣r
S2
{(T (Gh0))s}+

∣∣ < g,

then r
S2
{h(1)0s }+ = ψ0 and it is obvious that I ≥ 0. If∣∣{(T (Gh0))s}+

∣∣ = g,

then
λ1

[
r
S2
{h(1)0s }+ − ψ0

]
= −λ2rS2

{
(T (Gh0))s

}+

and when λ1 ̸= 0, we obtain

I =

∫
S2

(T (Gh0))s ·
(
h(1)s − ψ0 − (h

(1)
0s − ψ0)

)
ds

+

∫
S2

g
(
|h(1)s − ψ0| − |h(1)0s − ψ0|

)
ds =

∫
S2

(T (Gh0))s · (h(1)s − ψ0) ds

+

∫
S2

g|h(1)s − ψ0| ds−
{∫

S2

[
− λ2
λ1

|(T (Gh0))s|2 +
λ2
λ1
g2
]}

ds ≥ 0.

The case λ2 ̸= 0 is proved similarly.
Therefore, the right-hand side of equation (4.1) is non-negative and, consequently, we find that

inequality (3.21) is satisfied. The proof of the first part of Theorem 4.1 is thereby complete.
Now assume that h0 = (h

(1)
0 , h

(2)
0 )⊤ ∈ K0 is a solution of the variational inequality (3.21). Let

us show that the vector function U = (u, ω)⊤ := Gh0 ∈ [H1(Ω)]6 is a solution of Problem A0. By
the definition of Green’s operator G, the vector Gh0 is a weak solution of the equation L(∂)U = 0
in Ω; since h0 ∈ K0, we have r

S1
{U}+ = r

S1
{Gh0}+ = r

S1
h0 = 0; i.e., condition (3.7) is satisfied.

Condition (3.9) is automatically satisfied, since h0 = (h
(1)
0 , h

(2)
0 )⊤ ∈ K0 and r

S2
{un}+ = r

S2
h
(1)
0n = 0.

Let h = (h(1), h(2))⊤ ∈ K0, h(1) = h
(1)
0 , and h(2) = h

(2)
0 ± χ, where χ ∈ [H̃1/2(S2)]

3 is an arbitrary
vector function. Since r

S1
(h− h0) = 0, it follows from inequality (3.21) that

⟨{M(Gh0)}+ − φ, r
S2
χ⟩S2

= 0 ∀χ ∈ [H̃1/2(S2)]
3,

so {M(Gh0)}+ = φ; i.e., condition (3.8) is satisfied. Therefore, inequality (3.21) can be represented
in the form⟨

r
S2
{(T (Gh0))s}+, rS2

(h(1)s − h
(1)
0s )

⟩
S2

+ j(h(1))− j(h
(1)
0 ) ≥ 0 ∀h = (h(1), h(2))⊤ ∈ K0,

i.e., ⟨
r
S2
{(T (Gh0))s}+, rS2

(h(1)s − ψ0 − (h
(1)
0s − ψ0))

⟩
S2
+
⟨
g, r

S2

(
|h(1)s − ψ0| − |h(1)0s − ψ0|

)⟩
S2

≥0.

Let χ ∈ [H̃1/2(S2)]
3. Since⟨
r
S2
{(T (Gh0))s}+, rS2

χs

⟩
S2

=
⟨
r
S2
{(T (Gh0))s}+, rS2

χ
⟩
S2

and |r
S2
χs| ≤ |r

S2
χ|, taking r

S2
(h

(1)
s − ψ0) instead of r

S2
χs, we obtain⟨

r
S2
{(T (Gh0))s}+, rS2

χ
⟩
S2

+
⟨
g, r

S2
|χ|

⟩
S2

−
{⟨
r
S2
{(T (Gh0))s}+, rS2

(h
(1)
0s − ψ0)

⟩
S2

+
⟨
g, r

S2
|h(1)0s − ψ0|

⟩}
≥ 0 ∀χ ∈ [H̃1/2(S2)]

3. (4.2)

Further, let t ≥ 0 be an arbitrary number and take ±tχ for χ in (4.2)

t
{
±
⟨
r
S2
{(T (Gh0))s}+, rS2

χ
⟩
S2

+
⟨
g, r

S2
|χ|

⟩
S2

}
−
{⟨
r
S2
{(T (Gh0))s}+, rS2

(h
(1)
0s − ψ0)

⟩
S2

+
⟨
g, r

S2
|h(1)0s − ψ0|

⟩
S2

}
≥ 0 ∀χ ∈ [H̃1/2(S2)]

3,
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whence, by making t tending first to +∞ and then to 0, we easily derive⟨
r
S2
{(T (Gh0))s}+, rS2

(h
(1)
0s − ψ0)

⟩
S2

+
⟨
g, r

S2
|h(1)0s − ψ0|

⟩
S2

≤ 0, (4.3)∣∣⟨r
S2
{(T (Gh0))s}+, rS2

χ
⟩
S2

∣∣ ≤ ⟨
g, r

S2
|χ|

⟩
S2

∀χ ∈ [H̃1/2(S2)]
3. (4.4)

Now we prove that r
S2
{(T (Gh0))s}+ ∈ [L∞(S2)]

3. To this end, on the space [H̃1/2(S2)]
3 we consider

the linear functional

Φ(χ) =
⟨
r
S2
{(T (Gh0))s}+, rS2

χ
⟩
S2

∀χ ∈ [H̃1/2(S2)]
3.

Inequality (4.4) shows that the functional Φ is continuous on the space r
S2
[H̃1/2(S2)]

3 with respect
to the topology induced by the space [L1(S2)]

3. Since the space r
S2
[H̃1/2(S2)]

3 is dense in [L1(S2)]
3,

the functional Φ can be continuously extended to the space [L1(S2)]
3 preserving the norm. Therefore,

by the Riesz theorem, there is a functional Φ∗ ∈ [L∞(S2)]
3 such that

Φ(χ) =

∫
S2

Φ∗ · χdS ∀χ ∈ [L1(S2)]
3.

Thus, ⟨
r
S2
{(T (Gh0))s}+, rS2

χ
⟩
S2

=

∫
S2

Φ∗ · χdS ∀χ ∈ [L1(S2)]
3,

i.e., ⟨
r
S2
{(T (Gh0))s}+ − Φ∗, r

S2
χ
⟩
S2

= 0 ∀χ ∈ [H̃1/2(S2)]
3,

which implies
r
S2
{(T (Gh0))s}+ = Φ∗ ∈ [L∞(S2)]

3.

It is well known that for an arbitrary essentially bounded function ψ̃ ∈ L∞(S2) there is a sequence
φ̃l ∈ C∞(S2) with supp φ̃l ⊂ S2 such that (see, e.g., [38, Lemma 1.4.2])

lim
l→∞

φ̃l(x) = ψ̃(x) for almost all x ∈ S2,

|φ̃l(x)| ≤ ess sup
y∈S2

|ψ̃(y)| for almost all x ∈ S2.

Therefore, by the Lebesgue dominated convergence theorem, it follows from inequality (4.4) that∫
S2

[
± {(T (Gh0))s}+ · χ− g|χ|

]
dS ≤ 0 ∀χ ∈ [L∞(S2)]

3.

Instead of χ we can put γ(S∗)χ, where χ ∈ [L∞(S2)]
3 and γ(S∗) is the characteristic function of an

arbitrary measurable subset S∗ ⊂ S2. As a result, we arrive at the inequality ±{(T (Gh0))s}+ ·χ ≤ g|χ|
on S2 for all χ ∈ [L∞(S2)]

3 and, by choosing χ = {(T (Gh0))s}+, we finally get∣∣r
S2
{(T (Gh0))s}+

∣∣ ≤ g on S2. (4.5)

In view of (4.3) and (4.5), we obtain

r
S2
{(T (Gh0))s}+ · r

S2
(h

(1)
0s − ψ0) + g|r

S2
(h

(1)
0s − ψ0)| = 0 on S2. (4.6)

Now, it is evident that if |r
S2
{(T (Gh0))s}+| < g, then (4.6) implies r

S2
h
(1)
0s = ψ0. Also, if

|r
S2
{(T (Gh0))s}+| = g, then (4.6) can be rewritten as

g|r
S2
(h

(1)
0s − ψ0)|(cosα+ 1) = 0 on S2,
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where α is the angle between the vectors r
S2
{(T (Gh0))s}+ and r

S2
(h

(1)
0s − ψ0) at a point x ∈ S2.

Therefore, there exist the functions λ1(x) ≥ 0 and λ2(x) ≥ 0 such thatλ1(x) + λ2(x) > 0 and

λ1(x)rS2
(h

(1)
0s − ψ0) = −λ2(x)rS2

{(T (Gh0))s}+ on S2.

Moreover, we can assume that λ1 belongs to the same class as {(T (Gh0))s}+ and λ2 belongs to the
same class as r

S2
(h

(1)
0s − ψ0).

Thus, conditions (3.10) and (3.11) of Problem A0 hold as well, and the proof of Theorem 4.1 is
complete.

5 The existence and uniqueness of a solution
5.1 Uniqueness
Let us prove the following uniqueness theorem.

Theorem 5.1. Problem A0 has at most one solution.

Proof. Let h0 = (h
(1)
0 , h

(2)
0 )⊤ ∈ K0 and h̃0 = (h̃

(1)
0 , h̃

(2)
0 )⊤ ∈ K0 be two arbitrary solutions of the

variational inequality (3.21). Then⟨
Ah0, h̃0 − h0

⟩
S
+ j(h̃

(1)
0 )− j(h

(1)
0 ) ≥

⟨
φ, r

S2
(h̃

(2)
0 − h

(2)
0 )

⟩
S2
,⟨

Ah̃0, h0 − h̃0
⟩
S
+ j(h

(1)
0 )− j(h̃

(1)
0 ) ≥

⟨
φ, r

S2
(h

(2)
0 − h̃

(2)
0 )

⟩
S2
.

By summing these inequalities, we obtain ⟨A(h0 − h̃0), h0 − h̃0⟩S ≤ 0. Since A is a positive definite
operator, it follows that ⟨A(h0 − h̃0), h0 − h̃0⟩S = 0. By virtue of relation (3.17) and Lemma 2.1,
we have

0 =
⟨
A(h0 − h̃0), h0 − h̃0

⟩
S

=
⟨
{T (∂, n)V (H−1(h0 − h̃0))}+, h0 − h̃0

⟩
S
=

⟨
{T (∂, n)G(h0 − h̃0)}+, h0 − h̃0

⟩
S

=
⟨
{T (∂, n)G(h0 − h̃0)}+, {G(h0 − h̃0)}+

⟩
S
= B

(
G(h0 − h̃0), G(h0 − h̃0)

)
.

Hence we derive the relation G(h0− h̃0) = V (H−1(h0− h̃0)) =
(
[a×x]+b, a

)⊤ in Ω. Since h0, h̃0 ∈ K0,
we have r

S1
{G(h0− h̃0)}+ = r

S1
(h0− h̃0) = 0; i.e., ([a×x]+ b, a)⊤ = 0 on S1. Consequently, a=b=0

and V (H−1(h0 − h̃0)) = 0 in Ω. Therefore, h0 = h̃0 on S.

5.2 Existence of a solution
To prove the existence of a solution, on the set K0 we introduce the functional

I(h) = 1

2
⟨Ah, h⟩S + j(h(1))− ⟨φ, r

S2
h(2)⟩S2

∀h = (h(1), h(2))⊤ ∈ K0. (5.1)

Since A is a symmetric operator (see Lemma 3.1(i)), it follows that the existence of a solution of
the variational inequality (3.21) is equivalent to the existence of an element of the set K0 minimising
the functional (5.1); i.e., the variational inequality (3.21) is equivalent to the following minimization
problem:

I(h0) = inf
h∈K

I(h). (5.2)

By the general theory of variational inequalities (see [4,25]), the solvability of the minimization problem
(5.2) readily follows from the coerciveness of the functional I, i.e., from the property

I(h) → ∞ as ∥h∥[H1/2(S)]6 → ∞, h ∈ K0.
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Since A is a coercive operator on the set K0 (see Lemma 3.1(iv)) and j(h(1)) ≥ 0, we find that the
coerciveness of the consequence of the obvious estimate

I(h) ≥ C1∥h∥2[H1/2(S)]6 − C2∥h∥[H1/2(S)]6 , h = (h(1), h(2))⊤ ∈ K0,

where C1 and C2 are the positive constants independent of h. Consequently, functional (5.1) is
coercive on the closed set K0. In addition, I is a convex continuous functional. By the general
theory of variational inequalities (see [4, 25]), we find that the variational inequality (3.21) has a
unique solution. Therefore, from Theorem 4.1 we obtain the following assertion of the existence of
the solution of Problem A0.

Theorem 5.2. Let mesS1 > 0, φ ∈ [H−1/2(S2)]
3, g ∈ L∞(S2) and g ≥ 0. Then the variational

inequality (3.21) has a unique solution h0 ∈ [H1/2(S)]6, and U = Gh0 is a solution of Problem A0.

Remark 5.3. Let mesS1 > 0, G ∈ [L2(Ω)]
6, φ ∈ [H−1/2(S2)]

3, f ∈ H1/2(S2), g ∈ L∞(S2) and g ≥ 0.
Then Problem A has a unique solution which can be represented in the form U + U0, where U is a
solution of Problem A0 and U0 is a solution of the auxiliary problem (3.5).

5.3 Lipschitz continuous dependence of the solution on the problem data
Let U ∈ [H1(Ω)]6 and Ũ ∈ [H1(Ω)]6 be two solutions of Problem A0 corresponding to the data φ, g
and φ̃, g̃, respectively. Further, let h0 = (h

(1)
0 , h

(2)
0 )⊤ ∈ K0 and h̃0 = (h̃

(1)
0 , h̃

(2)
0 )⊤ ∈ K0 be the traces

of the vector functions U and Ũ , respectively, on the boundary S. By Theorem 4.1, the vectors h0
and h̃0 are the solutions of the corresponding variational inequalities (3.21) for the above-introduced
data. Therefore, we have two variational inequalities of form (3.21), one for h0 and another for h̃0. By
substituting h̃0 for h into the first inequality and h0 into the second one, we obtain the inequalities:

⟨Ah0, h̃0 − h0⟩S +

∫
S2

g
(
|h̃(1)0s − ψ0| − |h(1)0s − ψ0|

)
dS ≥

⟨
φ, r

S2
(h̃

(2)
0 − h

(2)
0 )

⟩
S2
,

⟨Ah̃0, h0 − h̃0⟩S +

∫
S2

g̃
(
|h(1)0s − ψ0| − |h̃(1)0s − ψ0|

)
dS ≥

⟨
φ̃, r

S2
(h

(2)
0 − h̃

(2)
0 )

⟩
S2
.

By summing these inequalities, we obtain⟨
A(h0 − h̃0), h̃0 − h0

⟩
S
+

∫
S2

(
g − g̃)(|h̃(1)0s − ψ0| − |h(1)0s − ψ0|

)
dS ≥

⟨
φ− φ̃, r

S2
(h̃

(2)
0 − h

(2)
0 )

⟩
S2
,

i.e.,⟨
A(h0 − h̃0), h0 − h̃0

⟩
S
≤

∫
S2

(g − g̃)
(
|h̃(1)0s − ψ0| − |h(1)0s − ψ0|

)
dS +

⟨
φ̃− φ, r

S2
(h̃

(2)
0 − h

(2)
0 )

⟩
S2
.

This inequality, together with (3.16), property (iv) of the operator A (see Lemma 3.1(iv)), and the
continuous inclusion H1/2(S) ⊂ L2(S) implies the Lipschitz estimate

∥U − Ũ∥[H1(Ω)]6 ≤ C1∥h0 − h̃0∥[H1/2(S)]6 ≤ C2

(
∥φ− φ̃∥[H−1/2(S)]6 + ∥g − g̃∥L2(S)

)
,

where C1 and C2 are the positive constants independent of U and Ũ and the data of the problem
under consideration.

6 The semicoercive case
Let S1 = ∅, S2 = S, G ∈ [L2(Ω)]

6, φ ∈ [H−1/2(S)]3, g ∈ L∞(S) and g ≥ 0. Consider the boundary
contact problem.
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Problem B. Find a vector function U = (u, ω)⊤ ∈ [H1(Ω)]6 which is a weak solution of equation
(3.1) in the domain Ω, satisfying the inclusion {(T U)s}+ ∈ [L∞(S)]3 and the following boundary
conditions on the surface S:

{MU}+ = φ, {un}+ = 0,

if |{(T U)s}+| < g, then {us}+ = 0, if |{(T U)s}+| = g, then there exist nonnegative functions λ1 and
λ2 which do not vanish simultaneously, and λ1{us}+ = −λ2{(T U)s}+.

To reduce Problem B to an equivalent boundary variational inequality, we first reduce the inhomo-
geneous equation (3.1) to a homogeneous one. In this connection, we consider the following auxiliary
linear boundary value problem.

Find a weak solution U0 = (u0, ω0)
⊤ ∈ [H1(Ω)]6 of equation (3.1) in the domain Ω under the

conditions
{u0}+ = 0, {MU0}+ = 0 (6.1)

on S. It is well known (see [23]) that the problem is uniquely solvable. Let W ∈ [H1(Ω)]6 be a solution
of Problem B, and let U0 ∈ [H1(Ω)]6 be a solution of the auxiliary problem (6.1), then the difference
U :=W − U0 is a solution of the following problem.
Problem B0. Find a vector function U = (u, ω)⊤ ∈ [H1(Ω)]6 that is a weak solution of the homoge-
neous equation

L(∂)U = 0 in Ω

satisfying the inclusion {(T U)s}+ ∈ [L∞(S)]3 and the following conditions on S:

{MU}+ = φ, {un}+ = 0;

if |{(T U)s}++φ0| < g, then {us}+ = 0, if |{(T U)s}++φ0| = g, then there exist nonnegative functions
λ1 and λ2 which do not vanish simultaneously, and

λ1{us}+ = −λ2
(
{(T U)s}+ + φ0

)
,

where φ0 = {(T U0)s}+.
By analogy with the preceding coercive case (see Theorem 4.1), one can show that Problem B0 is

equivalent to the following boundary variational inequality.
Find a vector h0 = (h

(1)
0 , h

(2)
0 )⊤ ∈ K such that the inequality

⟨Ah0, h− h0⟩S + j1(h
(1))− j1(h

(1)
0 ) ≥ ⟨φ, h(2) − h

(2)
0 ⟩S (6.2)

holds for all h = (h(1), h(2))⊤ ∈ K, where

j1(v) =

∫
S

g|vs| dS + ⟨φ0, vs⟩S , v ∈ [H1/2(S)]3,

K =
{
h = (h(1), h(2))⊤ ∈ [H1/2(S)]6 : h(1)n = 0

}
. (6.3)

Note that the variational inequality (6.2) is equivalent to Problem B0 in the following sense: if U ∈
[H1(Ω)]6 is a solution of Problem B0, then h0 = {U}+ ∈ K is a solution of the variational inequality
(6.2); conversely, if h0 ∈ K is a solution of the variational inequality (6.2), then Gh0 ∈ [H1(Ω)]6 is a
weak solution of Problem B0 (here the operator G is defined by relation (3.15)).

Let h0 = (h
(1)
0 , h

(2)
0 )⊤ ∈ K be a solution of the variational inequality (6.2). By substituting first

h = 0 and then h = 2h0 into inequality (6.2), we obtain the relation ⟨Ah0, h0⟩S + j1(h
(1)
0 ) = ⟨φ, h(2)0 ⟩S

which, together with (6.2), implies that

⟨Ah0, h⟩S + j1(h
(1)) ≥ ⟨φ, h(2)⟩S . (6.4)

Let ξ = (ρ, a)⊤ ∈ Λ(S) and ρn = 0 on S. By substituting ±ξ ∈ Λ(S) for h into inequality (6.4)
(Λ(S) is defined by relation (3.18)) and taking into account the relation kerA = Λ(S), we obtain the
inequality ∫

S

g|ρs| dS −
∣∣⟨φ, a⟩S − ⟨φ0, ρs⟩S

∣∣ ≥ 0. (6.5)
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Inequality (6.5) is a necessary condition for the solvability of the variational inequality (6.2).
Consider the case in which inequality (6.5) is strict. Taking into account the fact that the space

Λ(S) has finite dimension (dimΛ(S) = 6), one can readily see that inequality (6.5) is equivalent to
the relation ∫

S

g|ρs| dS −
∣∣⟨φ, a⟩S − ⟨φ0, ρs⟩S

∣∣ ≥ ∥ξ∥[L2(Ω)]6 (6.6)

with some positive constant C and with an arbitrary ξ = (ρ, a)⊤ ∈ Λ(S). Let P be the operator of
orthogonal projection of the space [H1/2(S)]6 onto Λ(S) in the sense of [L2(S)]

6; i.e., any function
h ∈ [H1/2(S)]6 can be represented in the form h = ξ + χ, where ξ = (ρ, a)⊤ = Ph ∈ Λ(S) and
χ = (η, ζ)⊤ ∈ Λ⊥(S) := {h ∈ [H1/2(S)]6 : (h, ξ)[L2(S)]6 = 0 ∀ ξ ∈ Λ(S)}.

One can readily see that the norm ∥h∥[H1/2(S)]6 is equivalent to the norm ∥χ∥[H1/2(S)]6+∥ξ∥[L2(S)]6 .
On the convex closed set K we introduce the continuous convex functional

I1(h) =
1

2
⟨Ah, h⟩S + j1(h

(1))− ⟨φ, h(2)⟩S , h = (h(1), h(2))⊤ ∈ K

∀h = χ+ ξ ∈ [H1/2(S)]6 with χ = (η, ζ)⊤ and ξ = (ρ, a)⊤, we obtain

I1(h) = I1(χ+ ξ) =
1

2

⟨
A(χ+ ξ), χ+ ξ

⟩
S
+ j1(η + ρ)− ⟨φ, ζ + a⟩S

=
1

2
⟨Aχ, χ⟩S − ⟨φ, ζ⟩S + j1(ρ)− ⟨φ, a⟩S + j1(η + ρ)− j1(ρ)

≥ C1∥χ∥2[H1/2(S)]6 − C2∥χ∥[H1/2(S)]6 + C∥ξ∥[L2(S)]6 + j1(η + ρ)− j1(ρ),

with some positive constants C, C1 and C2. Now let us estimate the difference j1(η + ρ)− j1(ρ). We
have

j1(η + ρ)− j1(ρ) =

∫
S

g|ηs + ρs| dS + ⟨φ0, ηs + ρs⟩S −
∫
S

g|ρs| dS − ⟨φ0, ρs⟩S

=

∫
S

g
(
|ηs + ρs| − |ρs|

)
dS + ⟨φ0, ηs⟩S ≥ −

∫
S

g|ηs| dS − C3∥χ∥[H1/2(S)]6 ≥ −C4∥χ∥[H1/2(S)]6 ,

where C4 is a positive constant independent of η and ρ. By taking into account this inequality, we
finally obtain the estimate

I1(h) ≥ C1∥χ∥2[H1/2(S)]6 + C∥ξ∥[L2(S)]6 − C5∥χ∥[H1/2(S)]6 ,

which implies that
I1(h) → +∞ as ∥h∥[H1/2(S)]6 → ∞, h ∈ K.

We have thereby shown that the functional I1 is coercive and the minimization problem is solvable
for this functional. Consequently, the corresponding variational inequality (6.2) is solvable (see [4,25]).
By virtue of the symmetry of the operator A, the problem of minimization of the functional I1 on the
space [H1/2(S)]6 is equivalent to the solvability of the variational inequality (6.2). Next, note that
⟨A(h0 − h̃0), h0 − h̃0⟩S = 0 for two possible solutions h0 and h̃0 of the variational inequality (6.2) in
the set K. Hence it follows that h0 − h̃0 = ([a × x] + b, a)⊤, a, b ∈ R3. We have thereby proved the
following theorem on the existence and uniqueness of the solution.

Theorem 6.1. Let S1 = ∅, φ ∈ [H−1/2(S)]3, g ∈ L∞(S), g ≥ 0 and let inequality (6.6) be satisfied.
Then the variational inequality (6.2)is solvable and if h0 ∈ K is a solution of inequality (6.2), then
U = Gh0 is a solution of Problem B0. Moreover, two solutions can differ from each other only by a
rigid displacement vector.

Remark 6.2. Let S1 = ∅, G ∈ [L2(Ω)]
6, φ ∈ [H−1/2(S)]3, g ∈ L∞(S), g ≥ 0 and let inequality (6.6)

be satisfied. Then Problem B has a solution which can be represented in the form U +U0, where U is
a solution of Problem B0 and U0 is a solution of the auxiliary problem (6.1).
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Remark 6.3. Let the boundary S = ∂Ω fall into three mutually disjoint parts S1, ST and S2 such that
S1 ∪ ST ∪ S2 = S, S1 ∩ S2 = ∅. By analogy with the coercive case, we can study the problem, when
on ST the traction boundary condition r

ST
{T (∂, n)U}+ = Q is assigned, where Q ∈ [H−1/2(ST )]

6.
The conditions on the parts S1 and S2 in this case remain the same as in Problem A.

To reduce this problem to a boundary variational inequality, we first consider the following auxiliary
problem.

Find a vector function U0 = (u0, ω0)
⊤ ∈ [H1(Ω)]6 that is a weak solution of equation (3.1) in the

domain Ω and satisfies the boundary conditions

r
S2
{U0}+ = 0, r

ST
{T (∂, n)U0}+ = 0,

r
S2
{MU0}+ = 0, r

S2
{u0n}+ = f, r

S2
{(T U0)s}+ = 0.

It is well known that this problem has a unique weak solution (see [4,25]), because S is neither a surface
of revolution, nor a ruled surface. Obviously, if V is a solution of the above-considered problem and
U0 is a solution of the auxiliary problem, then the difference U := V −U0 is a solution of the following
problem.

Find a weak solution U = (u, ω)⊤ ∈ [H1(Ω)]6 of the equation

L(∂)U = 0 on Ω,

which satisfies the inclusion r
S2
{(T U)s}+ ∈ [L∞(S2)]

3 and the following conditions:

r
S1
{U}+ = 0 on S1, r

ST

{
T (∂, n)U

}+
= Q on ST ,

r
S2
{MU}+ = φ on S2, r

S2
{un}+ = 0 on S2,

if |r
S2
{(T U)s}+| < g, then r

S2
{us}+ = ψ0, whereas if |r

S2
{(T U)s}+| = g, then there exist nonnegative

functions λ1 and λ2 which do not vanish simultaneously, and λ1(rS2
{us}+ −ψ0) = −λ2rS2

{(T U)s}+,
where ψ0 = −r

S2
{uos}+. Just as above, this problem can be reduced to an equivalent boundary

variational inequality.
Find a vector h0 = (h

(1)
0 , h

(2)
0 )⊤ ∈ K0 such that the inequality

⟨Ah0, h− h0⟩S + j(h(1))− j(h
(1)
0 ) ≥ ⟨Q, r

ST
(h− h0)⟩ST

+ ⟨φ, h(2) − h
(2)
0 ⟩S

holds for all h = (h(1), h(2))⊤ ∈ K0, where the functional j and the convex set K0 are defined
by relations (3.19) and (3.20), respectively. The proof of the existence, uniqueness and Lipschitz
continuous dependence of the solution on the problem data in this case can be carried out just as in
Problem A0 in the coercive case.

Remark 6.4. By analogy with the non-coercive case, we can study the problem when on the part
S1 of the boundary instead of the Dirichlet condition (3.7) there is assigned the tractional boundary
condition r

S1
{T (∂, n)U}+ = Q, where Q ∈ [H̃ −1/2(S1)]

6. Moreover, we assume that the vector φ
appearing in condition (3.8) belongs to the space [H̃ −1/2(S2)]

3 and the conditions imposed on the
part S2 are the same as in Problem A0.

To reduce the above problem to the equivalent boundary variational inequality, we preliminarily
reduce the inhomogeneous equation (3.1) to a homogeneous one. In this connection, we consider the
following auxiliary problem.

In the domain Ω, find a weak solution U0 = (u0, ω0)
⊤ ∈ [H1(Ω)]6 of equation (3.1) with the

following condition on S:

r
S1

{
T (∂, n)U0

}+
= 0, r

S2
{u0}+ = 0, r

S2
{T U0}+ = 0.

By [23], this problem is uniquely solvable. In this regard, we also consider the following problem.
Problem C0. Find a vector function U = (u, ω)⊤ ∈ [H1(Ω)]6 which is a weak solution of the homo-
geneous equation

L(∂)U = 0 in Ω
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satisfying the inclusion {(T U)s}+ ∈ [L∞(S)]3 and the following conditions on S:

r
S1
{T (∂, n)U}+ = Q, r

S2
{MU}+ = φ− φ0,

φ0 = r
S2
{MU0}+ ∈ [H−1/2(S2)]

3, r
S2
{un}+ = 0;

if |{(T U)s}+| < g, then r
S2
{us}+ = 0, if |{(T U)s}+| = g, then there exist nonnegative functions λ1

and λ2 which do not vanish simultaneously, and λ1rS2
{us}+ = −λ2rS2

{(T U)s}+. In this case, we
obtain the following boundary variational inequality.

Find a function h0 = (h
(1)
0 , h

(2)
0 )⊤ ∈ K such that the inequality

⟨Ah0, h− h0⟩S + j1(h
(1))− j1(h

(1)
0 ) ≥

⟨
r
S1
Q, r

S1
(h− h0)

⟩
S1

+
⟨
r
S2
(φ−φ0), rS2

(h(2) − h
(2)
0 )

⟩
S2

(6.7)

holds for all h = (h(1), h(2))⊤ ∈ K, where j1(h(1)) =
∫
S2

g|h(1)s | dS and K defined by formula (6.3).

Now the necessary condition for the solvability of the variational inequality acquires the form∫
S2

g|ρs| dS −
∣∣∣⟨rS2

(φ− φ0), a
⟩
S2

+
⟨
r
S1
Q, r

S1
ξ
⟩
S1

∣∣∣ ≥ 0 (6.8)

for all ξ = (ρ, a)⊤ ∈ Λ(S), r
S2
ρn = 0. When inequality (6.8) is strict, then, just as in the non-coercive

case, one can show that condition (6.8) is sufficient for the solvability of inequality (6.7).
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ÒÄÆÉÖÌÄ. ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ, ÒÏÌËÄÁÉÝ ÍÀßÉ-
ËÏÁÒÉÅ ÀÌÏáÓÍÀÃÉÀ ßÀÒÌÏÄÁÖËÄÁÉÓ ÌÉÌÀÒÈ ÐÏËÖÓÉÓ ÛÄÌÈáÅÄÅÀÛÉ, ÃÀÌÔÊÉÝÄÁÖËÉÀ ÊÏÌ-
ÐËÄØÓÖÒ ÀÒÄÛÉ ÄÒÈÉ ÌÀÉÍÝ ÀÍÀËÉÆÖÒÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÈÄÏÒÄÌÄÁÉ ÊÏÛÉÓ ÀÌÏÝÀÍÉÓ-
ÈÅÉÓ ÃÀÌÀÔÄÁÉÈÉ ÐÉÒÏÁÉÈ. ÂÀÒÃÀ ÀÌÉÓÀ, ÛÄÓßÀÅËÉËÉÀ ÀÓÄÈÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÓÉÌÐÔÏÔÖÒÉ
ÚÏ×ÀØÝÄÅÀ ÀÌ ÀÒÄÛÉ.
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Introduction
R. Fuchs, Ch. Beriot, J. Bouquet, A. Lyapunov, H. Poincare, P. Painleve are the founders of the
theory that investigates the behavior of solutions of systems of ordinary differential equations in the
neighborhood of the singularity.

A separate class of problems in this area is the study of the existence and asymptotic behavior of
solutions of systems of differential equations that are not resolved relatively to the derivatives. Certain
types of systems not resolved relatively to the derivatives in a complex domain were investigated by
such scientists as M. Jwano [4], O Song Guk, Pak Ponk, Chol Permissible [12], V. Gromak and many
others.

One of the methods studying the systems of differential equations that are not resolved relatively
to the derivatives in the real-valued domain was suggested by R. Grabovskaya [3] and J. Diblic [1,2].
Later, this method in the case of a complex domain was developed by G. Samkova [7,8], N. Sharay [10],
E. Michalenko, D. Limanska [5, 6] and others. The present article is a continuation of the research
devoted to the systems of differential equations that are not resolved relatively to the derivatives in a
complex domain.

Let us consider the system of ordinary differential equations
A(z)Y ′ = B(z)Y + f(z, Y, Y ′), (0.1)

where the matrices A,B : D1 → Cp×n, D1 = {z ∈ C : |z| < R1, R1 > 0}, the matrices A(z), B(z)
are analytic in the domain D10, D10 = D1 \ {0}, the pencil of matrices A(z)λ − B(z) is singular as
z → 0, the vector-function f : D1 × G1 × G2 → Cp, where domains Gk ⊂ Cn, 0 ∈ Gk, k = 1, 2, the
function f(z, Y, Y ′) is analytic in the domain D10 ×G10 ×G20, Gk0 = Gk \ {0}, k = 1, 2.

The main goal of our paper is to establish the existence and to study the asymptotic behavior of
solutions of the system of differential equations (0.1) in the domain with the point z = 0 on its border,
under the conditions that p < n, the matrix A(z) is analytic in the domain D1 and rankA(z) = p in
this domain.

1 On some singular Cauchy problem for a system of
ordinary differential equations, not resolved relatively
to the derivatives

Let us consider the system of differential equations
zlY ′

1 = zlP (z)Y1 + F (z, Y1, Y
′
1), (1.1)

where l ∈ Z, Y1 = col(Y11(z), . . . , Y1p(z)), Y1 : D1 → Cp, the matrix P (z) is analytic in the domain
D1, F : D1 × G11 × G21 → Cp, Gj1 ⊂ Cp, j = 1, 2, F (z, Y1, Y ′

1) is analytic vector-function in the
domain D1 ×G11 ×G21, F (0, 0, 0) = 0.

We study the questions of the existence of analytic solutions of system (1.1) that satisfy the initial
condition

Y1(z) → 0 for z → 0, z ∈ D10, (1.2)
and the additional condition

Y ′
1(z) → 0 for z → 0, z ∈ D10. (1.3)

According to the method of analytic continuation of solutions [3], system (1.1) will be investigated
over two sets of curves. We analytically continue solutions from the curve of the first set to some
domain by using the curves of the second set.

1.1 Introduction of some intermediary notations
For arbitrary fixed t1 > 0, v1, v2 ∈ R, v1 < v2, let us introduce the following intermediary sets:

Ǐ =
{
(t, v) ∈ R2 : t ∈ (0, t1), v ∈ (v1, v2)

}
,

Lv0(t1) =
{
(t, v) ∈ R2 : t ∈ (0, t1), v = v0 ∈ (v1, v2)

}
,
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v0 is a fixed number.
For arbitrary fixed t0 ∈ (0, t1), Ot1(t0) = {(t, v) ∈ R2 : t = t0, v ∈ (v1, v2)}.
For z = z(t, v) = teiv, let us assign for set Ǐ ⊂ R2 the set I ⊂ C, I = {z = teiv ∈ C : t ∈

(0, t1), v ∈ (v1, v2)}.

Definition 1.1. Let p, g : Ǐ → [0,+∞). We say that the function p(t, v) possesses property Q1

relative to the function g(t, v) for v = v0 ∈ (v1, v2), if the function p(t, v0) is of higher-order of
smallness relative to the function g(t, v0) as t→ +0.

Definition 1.2. Let p, g : Ǐ → [0,+∞). We say that the function p(t, v) possesses property Q2

relative to the function g(t, v), if there exist C1 ≥ 0, C2 ≥ 0 such that in the set Ǐ the inequalities

C1 · g(t, v) ≤ p(t, v) ≤ C2 · g(t, v)

hold.

Let us introduce the following intermediary vector-functions:

φ(0)(z) = (φ
(0)
1 (z), . . . , φ(0)

p (z)), φ(0) : I → Cp,

ψ(0)(t, v) = (ψ
(0)
1 (t, v), . . . , ψ(0)

p (t, v)), ψ
(0)
j : Ǐ → [0;+∞), j = 1, p.

For z = z(t, v) = teiv, we have

ψ
(0)
j (t, v) = |φ(0)

j (z(t, v))|, j = 1, p.

Definition 1.3. We say that the analytic on the set I vector-function φ(0)(z) possesses the property
T0, if for any z ∈ I, for the counterpart vector-functions ψ(0)

j (t, v) the conditions

ψ
(0)
j (t, v) > 0, (ψ

(0)
j (t, v))′t > 0, (ψ

(0)
j (t, v))′v ≥ 0,

ψ
(0)
j (+0, v) = 0, (ψ

(0)
j (+0, v))′t = 0, j = 1, p uniformly in v ∈ (v1, v2)

are fulfilled.

1.2 System (1.1) on the set Lv0(t1)

Let us consider system (1.1) over the interval Lv0(t1) for an arbitrary fixed v0 ∈ (v1, v2).
For z = z(t, v0) = teiv0 , in system (1.1) we write each vector-function and matrix in the algebraic

form and separate real and imaginary parts. Introduce the following designations:

Y1(z(t, v0)) = Ỹ1(t), Ỹ1(t) = Ỹ11(t) + iỸ12(t); Ỹ1j(t) = col(Ỹ1j1(t), . . . , Ỹ1jp(t)), j = 1, 2,

P (z(t, v0)) = ∥p̃jk(t)∥pj,k=1 = P̃1(t) + iP̃2(t), P̃s(t) = ∥p̃jks(t)∥pj,k=1, s = 1, 2,

where

p̃jk(t) = p̃jk1(t) + ip̃jk2(t), j, k = 1, p,

F
(
z(t, v0), Y1(z(t, v0)), Y

′
1(z(t, v0))

)
= F̃ (t, Ỹ1, Ỹ

′
1),

F̃
(
t, Ỹ1, Ỹ

′
1

)
= col

(
F̃1(t, Ỹ1, Ỹ

′
1), . . . , F̃p(t, Ỹ1, Ỹ

′
1)
)
,

F̃j(t, Ỹ1, Ỹ
′
1) = F̃1j(t, Ỹ1, Ỹ

′
1) + iF̃2j(t, Ỹ1, Ỹ

′
1), j = 1, p.

Due to the fact that for each v ∈ [v1, v2] we have the equality

Ỹ ′
1(t) =

(
Y1(z(t, v))

)′
t
=
dY1
dz

· dz
dt

= Y ′
1(z) · eiv,

then for z = z(t, v0) = teiv0 system (1.1) takes the form

tl(Ỹ ′
11 + iỸ ′

12) = tl(P̃1 + iP̃2)(Ỹ11 + iỸ12)e
iv0 + e(1−l)iv0

(
Re F̃ (t, Ỹ1, Ỹ ′

1) + i Im F̃ (t, Ỹ1, Ỹ
′
1)
)
. (1.4)
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Let us introduce the matrices and the vector-function

P̃ (t) =

(
P̃1(t) −P̃2(t)

P̃2(t) P̃1(t)

)
,

Q̃1(v0) =

(
cos(v0)E − sin(v0)E
sin(v0)E cos(v0)E

)
, Q̃2(v0) =

(
cos((l − 1)v0)E sin((l − 1)v0)E
− sin((l − 1)v0)E cos((l − 1)v0)E

)
,

f̃
(
t, Ỹ11, Ỹ12, Ỹ

′
11, Ỹ

′
12

)
= col

(
F̃11 · · · F̃1pF̃21 · · · F̃2p

)
,

where E is the p× p identity matrix.
Equating the real and imaginary parts of the vector-functions from the left– and right-hand sides

of system (1.4), system (1.4) reduces to

tl

(
Ỹ ′
11(t)

Ỹ ′
12(t)

)
= tlP̃ (t)Q̃1(v0)

(
Ỹ11(t)

Ỹ12(t)

)
+ Q̃2(v0)f̃

(
t, Ỹ11, Ỹ12, Ỹ

′
11, Ỹ

′
12

)
. (1.5)

This implies that system (1.1) over the interval Lv0(t1) for an arbitrary fixed v0 ∈ (v1, v2) reduces
to the system of real differential equations (1.5).

1.3 System (1.1) on the set Ot1(t0)

Let us consider system (1.1) over the arc of circle Ot1(t0) for an arbitrary fixed t0 ∈ (0, t1).
For z = z(t, v0) = teiv0 , in system (1.1) we write each vector-function and matrix in the algebraic

form and separate real and imaginary parts. Let us introduce the following designations:

Y1(z(t0, v)) = Ŷ1(v), Ŷ1(v) = Ŷ11(v) + iŶ12(v);

Ŷ1j(v) = col
(
Ŷ1j1(v), . . . , Ŷ1jp(v)

)
, j = 1, 2,

P (z(t0, v)) = ∥p̂jk(v)∥pj,k=1 = P̂1(v) + iP̂2(v), P̂s(v) = ∥p̂jks(v)∥pj,k=1, s = 1, 2,

where

p̂jk(v) = p̂jk1(v) + ip̂jk2(v), j, k = 1, p,

F
(
z(t0, v), Y1(z(t0, v)), Y

′
1(z(t0, v))

)
= F̂ (v, Ŷ1, Ŷ

′
1),

F̂ (v, Ŷ1, Ŷ
′
1) = col

(
F̂1(v, Ŷ1, Ŷ

′
1), . . . , F̂p(v, Ŷ1, Ŷ

′
1)
)
,

F̂j(v, Ŷ1, Ŷ
′
1) = F̂1j(v, Ŷ1, Ŷ

′
1) + iF̂2j(v, Ŷ1, Ŷ

′
1), j = 1, p.

Due to the fact that for each t ∈ (0, t1) we have the equality

Ŷ ′
1(v) =

(
Y1(z(t, v))

)′
t
=
dY1
dz

· dz
dv

= Y ′
1(z) · iteiv,

then for z = z(t0, v) = t0e
iv, system (1.1) reduces to the form

tl−1
0 (Ŷ ′

11 + iŶ ′
12) = itl0(P̂1 + iP̂2)(Ŷ11 + iŶ12)e

iv + e(1−l)iv
(

Re F̂ (v, Ŷ1, Ŷ ′
1) + i Im F̂ (v, Ŷ1, Ŷ

′
1)
)
. (1.6)

Let us introduce matrices and the vector-function

P̂ (v) =

(
P̂1(v) −P̂2(v)

P̂2(v) P̂1(v)

)
,

Q̂1(v) =

(
− sin(v)E − cos(v)E
cos(v)E − sin(v)E

)
, Q̂2(v) =

(
sin((l − 1)v)E − cos((l − 1)v)E
cos((l − 1)v)E sin((l − 1)v)E

)
,

f̂
(
v, Ŷ11, Ŷ12, Ŷ

′
11, Ŷ

′
12

)
= col(F̂11 · · · F̂1pF̂21 · · · F̂2p),

where E is the p× p identity matrix.
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Equating the real and imaginary parts of the vector-functions from the left– and right-hand sides
of system (1.6), system (1.6) reduces to

tl−1
0

(
Ŷ ′
11(v)

Ŷ ′
12(v)

)
= tl0P̂ (v)Q̂1(v)

(
Ŷ11(v)

Ŷ12(v)

)
+ Q̂2(v)f̂

(
v, Ŷ11, Ŷ12, Ŷ

′
11, Ŷ

′
12

)
. (1.7)

This implies that system (1.1) over the arc of the circle Ot1(t0) for an arbitrary fixed t0 ∈ (0, t1)
reduces to the system of real differential equations (1.7).

1.4 On some classes of systems of form (1.1)
Definition 1.4. We say that the matrix P (z) possesses property S2l relative to the vector-function
φ(0)(z), if the following conditions are fulfilled:

(1) For each v0 ∈ (v1, v2), the functions (ψ
(0)
j (t, v))′t possess property Q1 relative to the functions

|p̃jj(t)|ψ(0)
j (t, v), j = 1, p, for v = v0 ∈ (v1, v2).

(2) The functions tl(ψ(0)
j (t, v)))′v possess property Q2 relative to the functions tl−1|p̂jj(v)|ψ(0)

j (t, v),
j = 1, p.

(3) For each v0 ∈ (v1, v2), the functions |p̃jk(t)|ψ(0)
k (t, v) possess property Q1 relative to the functions

|p̃jj(t)|ψ(0)
j (t, v), j, k = 1, p, j ̸= k, for v = v0 ∈ (v1, v2).

(4) The functions tl|p̂jk(v)|ψ(0)
k (t, v)) possess property Q2 relative to the functions tl−1(ψ

(0)
j (t, v))′v,

j, k = 1, p, j ̸= k.

Let us define the sets

Ω̃
(
δ, φ(0)(z(t, v0))

)
=
{
(t, Ỹ11, Ỹ12) : t ∈ (0, t1), Ỹ

2
11j + Ỹ 2

12j < δ2j (ψ
(0)
j (t, v0))

2
, j = 1, p

}
,

v0 is fixed on (v1, v2),

Ω̂
(
σ, φ(0)(z(t0, v))

)
=
{
(v, Ŷ11, Ŷ12) : v ∈ (v1, v2), Ŷ

2
11j + Ŷ 2

12j < σ2
j (ψ

(0)
j (t0, v))

2, j = 1, p
}
,

t0 is fixed on (0, t1), where δ = (δ1, . . . , δp), σ = (σ1, . . . , σp), δj , σj ∈ R \ {0}, j = 1, p.

Definition 1.5. We say that the vector-function F (z, Y1, Y
′
1) possesses property M2l relative to the

vector-function φ(0)(z), if the following conditions hold:

(1) For each v0 ∈ (v1, v2), when (t, Ỹ11, Ỹ12) ∈ Ω̂(σ, φ(0)(z(t, v0))), the functions
F̃kj(t, Ỹ11, Ỹ12, Ỹ

′
11, Ỹ

′
12) possess property Q1 relative to the vector-functions tl|p̃jj(t)|ψ(0)

j (t, v),
j = 1, p, k = 1, 2, for v = v0 ∈ (v1, v2).

(2) For each (v, Ŷ11, Ŷ12) ∈ Ω̂(σ, φ(0)(z(t0, v))) the functions F̂kj(v, Ŷ11, Ŷ12, Ŷ
′
11, Ŷ

′
12) possess proper-

ty Q2 relative to vector-functions tl|p̂jj(v)|ψ(0)
j (t, v), j = 1, p, k = 1, 2.

Let us introduce intermediary functions α̃jk(t), α̂jk(v), j, k = 1, p,

cos(α̃jk(t)) =
p̃jk1(t)√

(p̃jk1(t))2 + (p̃jk2(t))2
,

sin(α̃jk(t)) =
p̃jk2(t)√

(p̃jk1(t))2 + (p̃jk2(t))2
,

j, k = 1, p, (1.8)

cos(α̂jk(t)) =
p̂jk1(t)√

(p̂jk1(t))2 + (p̂jk2(t))2
,

sin(α̂jk(t)) =
p̂jk2(t)√

(p̂jk1(t))2 + (p̂jk2(t))2
,

j, k = 1, p. (1.9)
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Without loss of generality, let us suppose that t1 ≤ R1 and introduce the domains Λ+.k(t1),
k ∈ {+,−} defined as follows:

Λ+.+(t1) =
{
(t, v) : cos

(
(l − 1)v + α̃jj(t)

)
> 0, sin

(
(l − 1)v + α̂jj(v)

)
> 0,

j = 1, p, t ∈ (0, t1), v ∈ (v1, v2)
}
;

Λ+.−(t1) =
{
(t, v) : cos((l − 1)v + α̃jj(t)) > 0, sin((l − 1)v + α̂jj(v)) < 0,

j = 1, p, t ∈ (0, t1), v ∈ (v1, v2)
}
.

Definition 1.6. We say that system (1.1) belongs to the class C+.k, k ∈ {+,−}, if for the matrix
P (z) = P (teiv) the condition (t, v) ∈ Λ+.k(t1), k ∈ {+,−} is true.

1.5 On the existence of a solution of problem (1.1), (1.2), (1.3)
Let us introduce the domains G+.k(t1) = {z = z(t, v) : 0 < |z| < t1, (t, v) ∈ Λ+.k(t1)}, k ∈ {+,−}.

Theorem 1.1. For system (1.1), let the following conditions be fulfilled:

(1) The matrix P (z) is analytic in the domain D1 and possesses property S2l relative to the analytic
vector-function φ(0)(z).

(2) The vector-function F (z, Y1, Y
′
1) is analytic in the domain D1 × G11 × G21, F (0, 0, 0) = 0 and

possesses property M2l relative to the analytic vector-function φ(0)(z).

(3) System (1.1) belongs to one of the classes C+.k, k ∈ {+,−}.

Then for each k ∈ {+,−} and for some t∗ ∈ (0, t1) there exist analytic solutions Y1(z) of system
(1.1) that satisfy the initial condition Y1(z0) = Y10 for z0 ∈ G+.k(t

∗), Y10 ∈ {Y1 : |Y1j(z0)| <
δj |φ(0)

j (z0)|, δj > 0, j = 1, p}. These solutions are analytic in the domain D1 ∩G+.k(t
∗) and satisfy

the inequalities
|Y1j(z)|2 < δ2j |φ

(0)
j (z)|2, j = 1, p. (1.10)

Proof. (1) Let us consider system (1.1) over the interval Lv0(t1) for an arbitrary fixed v0 ∈ (v1, v2).
We introduce the sets

Ω̃j

(
δ, φ(0)(z(t, v0))

)
=
{
(t, Ỹ11, Ỹ12) : Ỹ

2
11j + Ỹ 2

12j < δ2j (ψ
(0)
j (t, v0))

2, t ∈ (0, t1)
}
, j = 1, p.

Thus the set Ω̃(δ, φ(0)(z(t, v0))) can be considered as intersection of the sets Ω̃j of the form

Ω̃
(
δ, φ(0)(z(t, v0))

)
=

p∩
j=1

Ω̃j

(
δ, φ(0)(z(t, v0))

)
.

A part of the boundary of the set Ω̃j , j ∈ {1, 2, . . . , p}, will be denoted by

∂Ω̃j

(
δ, φ(0)(z(t, v0))

)
=
{
(t, Ỹ11, Ỹ12) : Ỹ

2
11j + Ỹ 2

12j = δ2j (ψ
(0)
j (t, v0))

2,

Ỹ 2
11k + Ỹ 2

12k < δ2k(ψ
(0)
j (t, v0))

2, k = 1, p, k ̸= j, t ∈ (0, t1)
}
.

Assume
Φ̃j(t, Ỹ (t)) = Ỹ 2

11j(t) + Ỹ 2
12j(t)− δ2j (ψ

(0)
j (t, v0))

2, j ∈ {1, 2, . . . , p}.

Then the outward normal vector for the surface ∂(Ω̃j)(δ, ψ(z(t, v0))), for the fixed j ∈ {1, . . . , p}, will
take the form

N j

2
= (−δ2jψ

(0)
j (t, v0))

(
(ψ

(0)
j (t, v0))

′
t, 0, . . . , 0, Ỹ11j , 0, . . . , 0, Ỹ12j , 0, . . . , 0

)
.
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Let T be a slope-field vector of system (1.5) at an arbitrary fixed point (t∗, Ỹ11(t
∗), Ỹ12(t

∗)) ∈
∂Ω̃j(δ, φ

(0)(z(t, v0))), j ∈ {1, . . . , p}.
Consider the dot product

(
tlT ,

N j

2

)
= −tlδ2jψ

(0)
j (t, v0)(ψ

(0)
j (t, v0))

′
t

+ tl
(
p̃jj1(t) cos((l − 1)v0)− p̃jj2(t) sin((l − 1)v0)

)
δ2j
(
ψ
(0)
j (t, v0)

)2
+ tl

p∑
k=1, k ̸=j

(
p̃jk1(t) cos

(
((l − 1)v0)− p̃jk2(t) sin((l − 1)v0)

)(
Ỹ11kỸ11j + Ỹ12kỸ12j

))
+ tl

p∑
k=1, k ̸=j

(
p̃jk1(t) sin

(
((l − 1)v0) + p̃jk2(t) cos((l − 1)v0)

)(
Ỹ11kỸ12j − Ỹ12kỸ11j

))
+
(
F̃1j cos((l−1)v0)+F̃2j sin((l−1)v0)

)
Ỹ11j+

(
−F̃1j sin((l−1)v0)+F̃2j cos((l−1)v0)

)
Ỹ12j , j = 1, p.

Since by condition the matrix P (z) possesses property S2l and the vector-function F (z, Y1, Y
′
1)

possesses property M2l relative to the vector-function φ(0)(z), we have

(
tlT ,

N j

2

)
∼
√
(p̃jj1(t))2 + (p̃jj2(t))2

(
cos((l − 1)v0 + α̃jj(t))

)
, j = 1, p,

as t→ +0, where the functions α̃jj(t) are defined by equalities (1.8).
According to the fact that system (1.1) pertains to one of the classes C+.k(t, v), k ∈ {+,−}, there

exists t∗ such that for t ∈ (0, t∗) the inequality (tlT ,
Nj

2 ) > 0, j = 1, p, holds true. Thus, for t ∈ (0, t∗),
∂Ω̃(δ, φ(0)(z(t, v0))) is the surface without contact for system (1.5). Moreover, the integral curve enters
the domain Ω̃(δ, φ(0)(z(t, v0))) as the variable t decreases.

According to the topological principle of T. Wazewski [13], at least one smooth integral curve of
system (1.5) goes through every point of the set Ω̃(δ, φ(0)(z(t, v0)))∪∂Ω̃(δ, φ(0)(z(t, v0)))∩(t = t∗). All
integral curves of this system going through the points Ω̃(δ, φ(0)(z(t, v0)))∪∂Ω̃(δ, φ(0)(z(t, v0)))∩ (t =

t∗), remain in the domain Ω̃(δ, φ(0)(z(t, v0))) for (t, v0) ∈ Λ+.k(t
∗), k ∈ {+,−}, v0 ∈ (v1, v2). Moreover,

the inequalities
|Y1sj(z(t, v0))|2 < δ2j

(
ψ
(0)
j (t, v0)

)2
, j = 1, p, s = 1, 2, (1.11)

are fulfilled for (t, v0) ∈ Λ+.k(t
∗), k ∈ {+,−}.

(2) Consider system (1.1) over the arc of circle Ot1(t0) for an arbitrary fixed t0 ∈ (0, t1).
Let us introduce the sets

Ω̂j

(
σ, φ(0)(z(t0, v))

)
=
{
(v, Ŷ11, Ŷ12) : Ŷ

2
11j + Ŷ 2

12j < σ2
j (ψ

(0)
j (t0, v))

2, v ∈ (v1, v2)
}
, j = 1, p.

Thus the set Ω̂(σ, φ(0)(z(t0, v))) can be considered as the intersection of sets Ω̂j of the form

Ω̂(σ, φ(0)(z(t0, v))) =

p∩
j=1

Ω̂j

(
σ, φ(0)(z(t0, v))

)
.

A part of the boundary of the set Ω̂j , j ∈ {1, 2, . . . , p} is denoted by

∂Ω̂j

(
σ, φ(0)(z(t0, v))

)
=
{
(v, Ŷ11, Ŷ12) : Ŷ

2
11j + Ŷ 2

12j = σ2
j (ψ

(0)
j (t0, v))

2,

Ŷ 2
11k + Ŷ 2

12k < σ2
k(ψ

(0)
j (t0, v))

2, k = 1, p, k ̸= j, t ∈ (0, t1)
}
.
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Let T be a slope-field vector of system (1.7) at an arbitrary fixed point (t∗, Ŷ11(t
∗), Ŷ12(t

∗)) ∈
∂Ω̂j(σ, φ(z(t0, v))), for the fixed j ∈ {1, . . . , p},(

tl−1
0 T ,

N j

2

)
= −tl−1

0 σ2
jψ

(0)
j (t0, v)(ψ

(0)
j (t0, v))

′
v

+ tl0

(
p̂jj1(v) cos((l − 1)v)− p̂jj2(v) sin((l − 1)v)

)
σ2
j (ψ

(0)
j (t0, v))

2

+ tl0

p∑
k=1, k ̸=j

(
p̂jk1(v) cos

(
((l − 1)v)− p̂jk2(v) sin((l − 1)v)

)(
Ŷ11kŶ12j − Ŷ12kŶ11j

))
+ tl0

p∑
k=1, k ̸=j

(
− p̂jk1(v) sin

(
((l − 1)v)− p̂jk2(v) cos((l − 1)v)

)(
Ŷ12kŶ11j + Ŷ12kŶ12j

))
+
(
F̂1j sin((l − 1)v) + F̂2j cos((l − 1)v)

)
Ŷ11j +

(
F̂1j cos((l − 1)v) + F̂2j sin((l − 1)v)

)
Ŷ12j , j = 1, p.

Since by the condition the matrix P (z) possesses property S2l and the vector-function F (z, Y1, Y ’
1)

possesses property M2l relative to the vector-function φ(0)(z), we have(
tl−1
0 T ,

N j

2

)
∼
√
(p̂jj1(v))2 + (p̂jj2(v))2

(
sin((l − 1)v) + α̂jj(v)

)
, j = 1, p,

as t→ +0, v ∈ (v1, v2), where the functions α̂jj(v) are defined by equalities (1.9). Thus

sign
(
tl−1
0 T ,

N j

2

)
= sign

(
sin((l − 1)v) + α̂jj(v)

)
, j = 1, p, v ∈ (v1, v2).

Without loss of generality, we suppose that for each fixed t0 ∈ (0, t∗), ∂Ω̂(σ, φ(0))(z(t0, v)) ∈
Λ+.k(t

∗), k ∈ {+,−} is the surface without contact for system (1.7).
According to the fact that system (1.1) belongs to one of the classes C+.k(t, v), k ∈ {+,−},

any integral curve of system (1.7) going through the point of the set Ω̂(σ, φ(0)(z(t0, v))) ∩ (v = v0),
v0 ∈ (v1, v2), remains in the domain Ω̂(σ, φ(0)(z(t0, v))) under the condition that variable v decreases
if (t0, v0) ∈ Λ+.+(t

∗), and v increases if (t0, v0) ∈ Λ+.−(t
∗).

Moreover, the inequalities

|Y1sj(z(t0, v))|2 < σ2
j

(
ψ
(0)
j (t0, v)

)2
, j = 1, p, s = 1, 2, (1.12)

hold true for (t0, v) ∈ Λ+.k(t
∗), k ∈ {+,−}.

(3) Let us use the method of analytic continuation of solutions for the problems that are solved
relatively to the derivatives, i.e., the method suggested by R. Grabovskaya [3] and developed by
G. Samkova [7, 8] for the problems that are not solved relatively to the derivatives and also used by
D. Limanska and G. Samkova [6] in the proof of the third point of Theorem 2 [6].

Let us suppose that for vectors δ, σ ∈ Cp, δj ̸= 0, σj ̸= 0, j = 1, p, the inequalities
(δj)

2 < (σj)
2, j = 1, p, (1.13)

are true.
In the proof of item (1) of the theorem, we have got the fact that there are infinitely many

continuously differentiable solutions of system (1.5) over the interval v0 ∈ (v1, v2) for t ∈ (0, t∗), and
these solutions satisfy inequality (1.11). We denote a set of such solutions by {Y1(z(t, v0))}.

Any solution Y1(z(t, v0)) from the set {Y1(z(t, v0))} is analytically continuable from the interval
Lv0(t1), where (t, v) ∈ Λ+.k(t

∗), for fixed v0 ∈ (v1, v2), to the domain containing this interval, with
preservation of inequalities (1.12).

From the proof of item 2 of the theorem it follows that if inequalities (1.13) are fulfilled, then the
solution Y1(z(t, v)) for fixed v = v0 can be continued from the interval Lv0(t1) over the curves Ot1(t0)

to the set Ω̂(σ, φ(0)(z(t∗, v))) for t ∈ (0, |z(t0, v)| ]. We denote the obtained analytic continuation by
Y1(z). The set of solutions of system (1.4) is {Y1(z)}.

As a result, the solutions Y1(z) of system (1.1) are analytically continuable to the domainG+.k(t
∗)×

{Y : |Y1j | < δj |φ(0)
j (z(t0, v))|, j = 1, p}, and, moreover, in this domain solutions Y1(z) satisfy

inequality (1.10).
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2 The main results for system (0.1)
Let us consider the system of ordinary differential equations (0.1) under the conditions that p < n,
A(z) is an analytic matrix in the domain D1, and rankA(z) = p for z ∈ D1. Let us introduce the
function Y = col

(
Y1 Y2

)
, Y1 = col(Y11(z), . . . , Y1p(z)), Y2 = col(Y21(z), . . . , Y2n−p(z)), Y1 : D1 →

Cp, Y2 : D1 → Cn−p. Without loss of generality, we assume that the matrices A(z), B(z) and the
vector-function f(z, Y, Y ′) take the forms

A(z) =
(
A1(z) A2(z)

)
, B(z) =

(
B1(z) B2(z)

)
, f(z, Y, Y ′) = f∗(z, Y1, Y2, Y

′
1 , Y

′
2),

A1 : D1 → Cp×p, A2 : D1 → Cp×(n−p), B1 : D1 → Cp×p, B2 : D1 → Cp×(n−p), detA1(z) ̸= 0 for
z ∈ D1, f∗ : D1 ×G11 ×G12 ×G21 ×G22 → Cp, Gj1 ×Gj2 = Gj , Gj1 ⊂ Cp, Gj2 ⊂ Cn−p, j = 1, 2.

Due to the above-said, system (0.1) can be written as

Y ′
1 = A−1

1 (z)B1(z)Y1 +A−1
1 (z)B2(z)Y2 −A−1

1 (z)A2(z)Y
′
2 +A−1

1 (z)f∗(z, Y1, Y2, Y
′
1 , Y

′
2) (2.1)

Suppose that the matrices A−1
1 (z)B1(z), A−1

1 (z)A2(z), A−1
1 (z)B2(z) are analytic in the domain D10

and have removable singularity at the point z = 0.
Let us introduce

P (z) = A−1
1 (z)B1(z),

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) = A−1

1 (z)B2(z)Y2 −A−1
1 (z)A2(z)Y

′
2 +A−1

1 f∗(z, Y1, Y2, Y
′
1 , Y

′
2), (2.2)

then system (1.1) can be written as

Y ′
1 = P (z)Y1 + F ∗(z, Y1, Y2, Y

′
1 , Y

′
2), (2.3)

where P (z) is the matrix, analytic in the domain D10 having removable singularity at the point z = 0,
and P : D10 ×Cp×p, F ∗(z, Y1, Y2, Y

′
1 , Y

′
2) is the vector-function, analytic in the domain D10 ×G110 ×

G120 ×G210 ×G220, Gjk0 = Gjk \ {0}, j, k = 1, 2. Therefore, the vector-function F ∗(z, Y1, Y2, Y
′
1 , Y

′
2)

has isolated singularity at the point (0, 0, 0, 0, 0). This means that according to the theorem on the
isolated singularity of the function of several complex variables, the point (0, 0, 0, 0, 0) is a removable
singular point of that function.

Let us define the vector-function F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) at the point (0, 0, 0, 0, 0) in such a way that

it becomes analytic in the domain D1 × G11 × G12 × G21 × G22. Without loss of generality, assume
that F ∗(0, 0, 0, 0, 0) = 0.

By Hn−p
r we basically mean a class of (n − p)-dimensional analytic in the domain D10 functions

that have pole of r-order at the point z = 0.
Let us consider system (2.3) for an arbitrary fixed vector-function Y2 ∈ Hn−p

r . Then the function
Y2 = Y2(z) can be written as

Y2(z) = z−rY ∗
2 (z), (2.4)

where r ∈ N, Y ∗
2 (z) is an analytic vector-function in the domain D1 such that Y ∗

2 (0) ̸= 0. Moreover,
the function Y ∗

2 (z) is represented as a convergent power series for z ∈ D1. Therefore, (2.4) in the
domain D10 takes the form

Y2(z) =

∞∑
k=0

Ckz
k−r,

where Ck ∈ Cn−p, k = 0, 1, 2, . . . , 0 ̸= 0.
Since C0 ̸= 0, the vector-function Y ′

2(z) has a pole of r + 1-order at the point z = 0.
Since the vector-function F ∗(z, Y1, Y2, Y

′
1 , Y

′
2) is analytic in the domain D1×G11×G12×G21×G22

and F ∗(0, 0, 0, 0, 0) = 0, we get that F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) can be represented as a convergent power

series

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) =

∞∑
a+|j|+|k|+|b|+|d|=1

Cajkbdz
aY j

1 Y
k
2 (Y ′

1)
b(Y ′

2)
d
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near the point (0,0,0,0,0), where Cajkbd ∈ Cp, j = (j1, . . . , jp), (Y1)
j = (Y11)

j1 · · · (Y1p)jp , |j| =
j1+· · ·+jp, k = (k1, . . . , kn−p), (Y2)k = (Y21)

k1 · · · (Y2(n−p))
kn−p , |k| = k1+· · ·+kn−p, b = (b1, . . . , bp),

(Y ′
1)

b = (Y ′
11)

b1 · · · (Y ′
1p)

bp , |b| = b1 + · · · + bp, d = (d1, . . . , dn−p), (Y ′
2)

d = (Y ′
21)

d1 · · · (Y ′
2(n−p))

dn−p ,
|d| = d1 + · · ·+ dn−p.

Assume that there exist q ∈ N and s ∈ N such that
(1) for some a0 ∈ N, j0 = (j01, . . . , j0p), j1h ∈ N ∪ {0}, b0 = (b01, . . . , b0p), b0h ∈ N ∪ {0}, h = 1, p,

we have Ca0j0kb0d ̸= 0 for |k| = q, |d| = s;

(2) for any h,m ∈ N and u = 1, 2, . . . , n− p, c = 1, 2, . . . , n− p, we have Caj(k+heu)b(d+mec) = 0,
where eu is the (n− p)-dimensional uth orthogonal unit vector, and e is the (n− p)-dimensional cth
orthogonal unit vector.

Consequently, the summands in the power series expansion of function F ∗ in the neighbourhood of
the point (0, 0, 0, 0, 0), containing the maximum powers of vector-functions Y2 and Y ′

2 with non-zero
coefficients, take the form

Cajkbdz
aY j

1 Y
k
2 (Y ′

1)
b(Y ′

2)
d = Cajkbdz

aY j
1 (z

−rY ∗
2 )

k(Y ′
1)

b(z−rY ∗
2
′ − rz−r−1Y ∗

2 )
d

= Cajkbdz
a−rq−(r+1)sY j

1 (Y
∗
2 )

k
(Y ′

1)
b
(zY ∗

2
′ − rY ∗

2 )
d
,

for a = 0, 1, 2 . . . , |j| = 0, 1, 2, . . . , |b| = 0, 1, 2, . . . , |k| = q, |d| = s and, at least, if a = a0, j = j0,
b = b0.

Two logical cases are possible:
(1) a−rq−(r+1)s≥0. Then for an arbitrary fixed function Y2∈Hn−p

r , we have F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) =

F (z, Y1, Y
′
1), where F (z, Y1, Y ′

1) is analytic at the point (0,0,0), and system (2.1) is reduced to
the system

Y ′
1 = P (z)Y1 + F (z, Y1, Y

′
1). (2.5)

According to Theorem 1.1 of [6, p. 22], the sufficient conditions for the existence of analytic
solutions of the Cauchy problem (2.5), (1.2) with the additional condition (1.3) are found.

(2) a − rq − (r + 1)s < 0. Let us introduce l = rq + (r + 1)s − a, then the vector-function
F ∗(z, Y1, Y2, Y

′
1 , Y

′
2) may take the form

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) = z−l

∞∑
a+|j|+|k|+|b|+|d|=0

Cajkbdz
aY j

1 (Y
∗
2 )

k(Y ′
1)

b(zY ∗
2
′ − rY ∗

2 )
d

= z−lḞ (z, Y1, Y
∗
2 , Y

′
1 , Y

∗
2
′),

where Ḟ (z, Y1, Y
∗
2 , Y

′
1 , Y

∗
2
′) is the analytic vector-function in the domain D1 × G11 × G12 ×

G21 ×G22. Without loss of generality, we assume that Ḟ (z, Y1, Y ∗
2 , Y

′
1 , Y

∗
2
′) = F (z, Y1, Y

′
1), and

F (0, 0, 0) = 0.
According to (2.2), system (0.1) takes form (1.1). Let us consider the problem on the existence

and asymptotic behavior of the solutions of system (0.1) that satisfy the initial condition (1.2) and
the additional condition (1.3).
Theorem 2.1. Let p < n, A(z) be an analytic matrix in the domain D1, rankA(z) = p for z ∈ D1.
Moreover, let system (0.1) take form (2.3), and for Y2 ∈ Hn−p

r , conditions (1)–(3) of Theorem 1.1 be
true for the associate system (1.1).

Then for each k ∈ {+,−}, some t∗ ∈ (0, t1) and for each Y2 ∈ Hn−p
r there exist analytic solu-

tions Y (z) = (Y11(z), . . . , Y1p(z), Y21(z), . . . , Y2n−p(z)) of system (1.1). The first p-elements of these
solutions are analytic in the domain D1 ∩G+.k(t

∗) and satisfy inequality (1.10).
Proof. According to Theorem 1.1, the solution Y1(z) of system (1.1) is analytically continuable on
G+.k(t

∗) × {Y : |Y1j | < δj |φj(z)|, j = 1, p}. Moreover, the solution satisfies inequality (1.10)
in this domain. Therefore, system (0.1), for an arbitrary fixed function Y2 ∈ Hn−p

r , has solutions
Y = (Y1(z), Y2(z)), the first p-elements of which are analytic in the domain G+.k(t

∗) × {Y : |Y1j | <
δj |φj(z)|, j = 1, p} and satisfy inequality (1.10) for z ∈ D1 ∩G+.k(t

∗).



124 D. E. Limanska, G. E. Samkova

References
[1] J. Diblík, Asymptotic properties of solutions of the system of first-order equations and n-order

equations which is not resolved relatively to the highest derivative. Thesis of the Candidate of
Physical and Mathematical Sciences (Odessa), 1979.

[2] J. Diblík, One theorem on asymptotic behaviour of solutions of a certain system of quasilinear
differential equations not solved with respect to derivatives. Riv. Mat. Univ. Parma, IV. Ser. 13
(1987), 413–419.

[3] R. G. Grabovskaja, The asymptotic behavior of the solution of a system of two first order non-
linear differential equations. (Russian) Differencial’nye Uravnenija 11 (1975), no. 4, 639–644.

[4] M. Iwano, On an n-parameter family of solutions of a nonlinear n-system with an irregular type
singularity. Ann. Mat. Pura Appl. (4) 140 (1985), 57–132.

[5] D. Limanska, On behavior of solutions to some differential systems partially solved with respect
to derivatives in the case of a pole. Nonlinear Oscillations 20 (2017), no. 1, 113–126.

[6] D. Limanska and G. Samkova, Behavior of the solutions of some systems of differential equations
which are partially resolved relatively to the derivatives. (Russian) Visnyk Odesk. Nats. Univers.
Mat. i Mekh. 19 (2014), no. 1(21), 16–28.

[7] G. Samkova, Existence and asymptotic behavior of analytic solutions of the certain singular
differential systems which is not resolved relatively to derivatives. (Russian) Differencial’nye
Uravnenija 27 (1991), no. 11, 2012–2013.

[8] G. E. Samkova and N. V. Sharaǐ, On the investigation of a semi-explicit system of differential
equations in the case of a variable matrix pencil. (Russian) Nelīnīǐnī Koliv. 5 (2002), no. 2,
224–236; translation in Nonlinear Oscil. (N. Y.) 5 (2002), no. 2, 215–226.

[9] A. M. Samojlenko, M. I. Shkil’ and V. L. Yakovets’, Linear systems of differential equations with
degenerations. (Ukrainian) Vyshcha Shkola, Kiev, 2000.

[10] N. V. Sharaj and G. Ye. Samkova, Asymptotic of solutions of some semi-explicit systems of
differential equations. (Ukrainian) Nauk. Visn. Chernivets’kogo Univ., Mat. 314-315 (2006),
181–188.

[11] N. I. Shkil’, I. I. Starun and V. P. Yakovets, Asymptotic integration of linear systems of ordinary
differential equations. Textbook. (Russian) Vyshcha Shkola, Kiev, 1989.

[12] O Song Guk, Pak Ponk, Chol Permissible, Boundary condition of a system of linear ordinary
differential equations in a closed angle domain of complex plane. Kwahagwon Thongbo Bull.
Acad. Sci. DPR Korea 2001, no. 3, 2–4.

[13] T. Ważewski, Sur l’évaluation du domaine d’existence des fonctions implicites réelles ou com-
plexes. (French) Ann. Soc. Polon. Math. 20 (1947), 81–120 (1948).

(Received 14.12.2017)

Authors’ address:

Odessa I. I. Mechnikov National University, 2 Dvoryanskaya St., Odessa 65082, Ukraine.
E-mail: liman.diana@gmail.com; samkovagalina@i.ua



Memoirs on Differential Equations and Mathematical Physics
Volume 74, 2018, 125–140

Tea Shavadze

VARIATION FORMULAS OF SOLUTIONS FOR CONTROLLED
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH THE
CONTINUOUS INITIAL CONDITION WITH REGARD
FOR PERTURBATIONS OF THE INITIAL MOMENT
AND SEVERAL DELAYS



Abstract. Variation formulas of solutions for nonlinear controlled functional differential equations
are proved which show the effect of perturbations of the initial moment, constant delays and also that
of the continuous initial condition.
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ÒÄÆÉÖÌÄ. ÀÒÀßÒ×ÉÅÉ ÓÀÌÀÒÈÉ ×ÖÍØÝÉÏÍÀËÖÒ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ-
ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ×ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ
ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ×ÏÈÄÁÉÓ Ä×ÄØÔÉ, ÀÂÒÄÈÅÄ ÖßÚÅÄÔÉ ÓÀßÚÉÓÉ ÐÉÒÏÁÉÓ Ä×ÄØÔÉ.
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1 Introduction and formulation of main results
The term “variation formula of a solution” has been introduced by R. V. Gamkrelidze and proved
in [2] for the ordinary differential equation. The effects of perturbation of the initial moment and the
discontinuous initial condition in the variation formulas of solutions (shortly, variation formulas) were
revealed by T. A. Tadumadze in [4] for the delay differential equation.

In the present paper, for the controlled functional differential equation

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t)

)
with the continuous initial condition

x(t) = φ(t), t ≤ t0,

the variation formulas are proved in the framework of new wide classes of variations of the initial data.
The continuity of the initial condition means that the values of the initial function and the trajectory
always coincide at the initial moment, i.e., x(t0) = φ(t0). In [5,9], the variation formulas were proved
for the equations

ẋ(t) = f
(
t, x(t), x(t− τ)

)
, t ∈ [t0, t1],

ẋ(t) = f
(
t, x(t), x(t− τ), u(t)

)
, t ∈ [t0, t1],

respectively, in the case where the initial moment and delay variations had the same signs. In this
paper, the essential novelty is that here we consider the equation with several delays, the variation
formulas are proved for the controlled functional differential equations with several delays and the
variations of the initial moment and delays are, in general, of different signs.

The variation formula plays the basic role in proving of the necessary conditions of optimality
[2,3]. The variation formulas for various classes of controlled functional differential equations without
perturbation of delays are derived in [1, 3, 7, 8].

Let I = [a, b] be a finite interval and 0 < θi1 < θi2, i = 1, . . . , s, be the given numbers; suppose that
O ⊂ Rn and U0 ⊂ Rr are the open sets. Let the n-dimensional function f(t, x, x1, . . . , xs, u) satisfy the
following conditions: for almost all fixed t ∈ I, the function f(t, · ) : O1+s × U0 → Rn is continuously
differentiable; for each fixed (x, x1, . . . , xs, u) ∈ O1+s×U0, the functions f(t, x, x1, . . . , xs, u), fx(t, · ),
fxi

(t, · ), i = 1, . . . , s, and fu(t, · ) are measurable on I; for arbitrary compact sets K ⊂ O, U ⊂ U0,
there exists a function mK,U (t) ∈ L1(I,R+), R+ = [0,∞) such that

|f(t, x, x1, . . . , xs, u)|+ |fx(t, · )|+
s∑

i=1

|fxi
(t, · )|+ |fu(t, · )| ≤ mK,U (t)

for all (x, x1, . . . , xs, u) ∈ K1+s × U and for almost all t ∈ I.
Let Φ be a set of continuous functions φ : I1 = [τ̂ , b] → O, where τ̂ = a−max{θ12, . . . , θs2} and let

Ω be a set of measurable functions u(t), t ∈ I, satisfying the condition clu(I) ⊂ U0 and be compact
in Rr.

To each element µ = (t0, τ1, . . . , τs, φ, u) ∈ Λ = [a, b)× [θ11, θ12]× · · · × [θs1, θs2]×Φ×Ω we assign
the delay controlled functional differential equation

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t)

)
(1.1)

with the continuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0]. (1.2)

Definition 1.1. Let µ = (t0, τ1, . . . , τs, φ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ [τ̂ , t1], t1 ∈ (t0, b],
is called a solution of equation (1.1) with the initial condition (1.2) or a solution corresponding to the
element µ and defined on the interval [τ̂ , t1] if it satisfies condition (1.2) and is absolutely continuous
on the interval [t0, t1], and satisfies equation (1.1) almost everywhere (a.e.) on [t0, t1].
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Let us introduce a set of variations:

V =
{
δµ = (δt0, δτ1, . . . , δτs, δφ, δu) : |δt0| ≤ α, |δτi| ≤ α, i = 1, . . . , s,

δφ =

k∑
i=1

λiδφi, |λi| ≤ α, ∥δu∥ ≤ α, i = 1, . . . , k
}
, (1.3)

where δφi ∈ Φ − φ0, i = 1, . . . , k, and φ0 ∈ Φ are fixed functions; α > 0 is a fixed number and
∥δu∥ = sup{|δu(t)| : t ∈ I}.

Let x0(t) be a solution corresponding to the element µ0 = (t00, τ10, . . . , τs0, φ0, u0) ∈ Λ and defined
on the interval [τ̂ , t10], where t00, t10 ∈ (a, b), t00 < t10 and τi0 ∈ (θi1, θi2), i = 1, . . . , s.

There exist the numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ (0, ε1) × V we have
µ0 + εδµ ∈ Λ and a solution x(t;µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 corresponds to it
(see Lemma 2.2).

Due to the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t) on the interval
[τ̂ , t10 + δ1]. Therefore, in the sequel, the solution x0(t) is assumed to be defined on the interval
[τ̂ , t10 + δ1].

Let us define the increment of the solution x0(t) = x(t;µ0):

∆x(t) = ∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t), (t, ε, δµ) ∈ [τ̂ , t10 + δ1]× (0, ε1)× V. (1.4)

Theorem 1.1. Let the function φ0(t), t ∈ I1, be absolutely continuous. Let the functions φ̇0(t) and
f(w, u), (w, u) ∈ I × O1+s × U0, be bounded, where w = (t, x, x1, . . . , xs). Moreover, there exist the
finite limits

lim
t→t00−

φ̇0(t) = φ̇−
0 , lim

w→w0

f(w, u0(t)) = f−, w ∈ (a, t00]×O1+s,

where w0 = (t00, φ0(t00), φ0(t00 − τ10), . . . , φ0(t00 − τs0)). Then there exist the numbers ε2 ∈ (0, ε1)
and δ2 ∈ (0, δ1) such that for arbitrary (t, ε, δµ) ∈ [t00, t10 + δ2]× (0, ε2)× V −, we have

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ), 1 (1.5)

where V − = {δµ ∈ V : δt0 ≤ 0} and

δx(t; δµ) = Y (t00; t)(φ̇
−
0 − f−)δt0 + β(t; δµ), (1.6)

β(t; δµ) = Y (t00; t)δφ(t00) +

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ) dξ

−
t∫

t00

Y (ξ; t)
[ s∑

i=1

fxi [ξ]ẋ0(ξ − τi0)δτi

]
dξ +

t∫
t00

Y (ξ; t)fu[ξ]δu(ξ) dξ, (1.7)

where Y (ξ; t) is the n× n-matrix function satisfying the equation

Yξ(ξ; t) = −Y (ξ; t)fx[ξ]−
s∑

i=1

Y (ξ + τi0; t)fxi
[ξ + τi0], ξ ∈ [t00, t], (1.8)

and the condition

Y (ξ; t) =

{
Υ for ξ = t,

Θ for ξ > t.
(1.9)

Here,
fxi

=
∂

∂xi
f, fxi

[ξ] = fxi

(
ξ, x0(ξ), x0(ξ − τ10), . . . , x0(ξ − τs0), u0(ξ)

)
,

Υ is the identity matrix and Θ is the zero matrix.
1Here and throughout the paper, the symbols O(t; εδµ), o(t; εδµ) stand for quantities (scalar or vector) having the

corresponding order of smallness with respect to ε uniformly with respect to (t, δµ).
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Some comments. The function δx(t; δµ) is called the first variation of the solution x0(t), t ∈ [t00, t10+
δ2], and expression (1.6) is called the variation formula. On the basis of the Cauchy formula for
solutions of the linear delay functional differential equation, we conclude that the function

δx(t) =

{
δφ(t), t ∈ [τ̂ , t00),

δx(t; δµ), t ∈ [t00, t10 + δ2],

is a solution of the equation

δ̇x(t) = fx[t]δx(t) +

s∑
i=1

fxi
[t]δx(t− τi0)−

s∑
i=1

fxi
[t]ẋ0(t− τi0)δτi + fu[t]δu(t)

with the initial condition

δx(t) = δφ(t), t ∈ [τ̂ , t00), δx(t00) = (φ̇−
0 − f−)δt0 + δφ(t00).

The addend −
t∫

t00

Y (ξ; t)
[ s∑
i=1

fxi
[ξ]ẋ0(ξ − τi0)δτi

]
dξ in formula (1.7) is the effect of perturbations of

the delays τi0, i = 1, . . . , s.
The expression Y (t00; t)(φ̇

−
0 − f−)δt0 is the effect of the continuous initial condition (1.2) and of

the perturbation of the initial moment t00.

The expression Y (t00; t)δφ(t00) +
s∑

i=1

t00∫
t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ) dξ in formula (1.6) is the

effect of perturbation of the initial function φ0(t).

The expression
t∫

t00

Y (ξ; t)δu[ξ] dξ in formula (1.7) is the effect of perturbation of the control fun-

ction u0(t).

Theorem 1.2. Let the function φ0(t), t ∈ I1, be absolutely continuous. Let the functions φ̇0(t) and
f(w, u), (w, u) ∈ I ×O1+s × U0, be bounded. Moreover, there exist the finite limits

lim
t→t00+

φ̇0(t) = φ̇+
0 , lim

w→w0

f(w) = f+, w ∈ [t00, b)×O1+s.

Then for each t̂0 ∈ (t00, t10), there exist the numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary
(t, ε, δµ) ∈ [t̂0, t10 + δ2]× (0, ε2)× V +, where V + = {δµ ∈ V : δt0 ≥ 0}, formula (1.5) holds, where

δx(t; δµ) = Y (t00; t)(φ̇
+
0 − f+)δt0 + β(t; δµ). (1.10)

The following assertion is a corollary to Theorems 1.1 and 1.2.

Theorem 1.3. Let the assumptions of Theorems 1.1 and 1.2 be fulfilled. Moreover, φ̇−
0 − f− =

φ̇+
0 − f+ := f̂ . Then for each t̂0 ∈ (t00, t10), there exist the numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1)

such that for arbitrary (t, ε, δµ) ∈ [t̂0, t10 + δ2] × (0, ε2) × V formula (1.5) holds, where δx(t; δµ) =

Y (t00; t)f̂ δt0 + β(t; δµ).

All assumptions of Theorem 1.3 are satisfied if the function f(t, x, x1, . . . , xs, u) is continuous and
bounded, the function φ0(t) is continuously differentiable and the function u0(t) is continuous at the
point t00. Clearly, in this case,

f̂ = φ̇0(t00)− f
(
t00, φ0(t00), φ0(t00 − τ10), . . . , φ0(t00 − τs0), u0(t00)

)
.

2 Auxiliary assertions
To each element µ = (t0, τ1, . . . , τs, φ, u) ∈ Λ we assign the controlled functional differential equation

ẏ(t) = f(t0, τ1, . . . , τs, φ, y, u)(t) (2.1)
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with the initial condition
y(t0) = φ(t0), (2.2)

where

f(t0, τ1, . . . , τs, φ, y, u)(t) = f
(
t, y(t), h(t0, φ, y)(t− τ1), . . . , h(t0, φ, y)(t− τs), u(t)

)
and h(t0, φ, y)(t) is the operator given by the formula

h(t0, φ, y)(t) =

{
φ(t), t ∈ [τ̂ , t0),

y(t), t ∈ [t0, b].
(2.3)

Definition 2.1. Let µ = (t0, τ1, . . . , τs, φ, u) ∈ Λ. An absolutely continuous function y(t) = y(t;µ) ∈
O, t ∈ [r1, r2] ⊂ I, is called a solution of equation (2.1) with the initial condition (2.2) or a solution
corresponding to the element µ and defined on the interval [r1, r2] if t0 ∈ [r1, r2], y(t0) = φ(t0) and
the function y(t) satisfies equation (2.1) (a.e.) on [r1, r2].

Remark 2.1. Let y(t;µ), t∈ [r1,r2], be a solution corresponding to the element µ=(t0,τ1, . . . ,τs, φ, u)∈
Λ. Then the function

x(t;µ) = h(t0, φ, y( · ;µ))(t), t ∈ [τ̂ , r2], (2.4)
is the solution of equation (1.1) with the initial condition (1.2) (see Definition 1.1 and (2.3)).

Lemma 2.1. Let y0(t) be a solution corresponding to the element µ0 = (t00, τ10, . . . , τs0, φ0, u0) ∈ Λ
and defined on [r1, r2] ⊂ (a, b); let t00 ∈ [r1, r2), τi0 ∈ (θi1, θi2), i = 1, . . . , s, and let K1 ⊂ O be a
compact set containing a neighborhood of the set φ0(I1) ∪ y0([r1, r2]). Then there exist the numbers
ε1 > 0 and δ1 > 0 such that, for any (ε, δµ) ∈ (0, ε1) × V , we have µ0 + εδµ ∈ Λ. In addition, to
this element there corresponds a solution y(t;µ0 + εδµ) defined on the interval [r1 − δ1, r2 + δ1] ⊂ I.
Moreover, {

φ(t) = φ0(t) + εδφ(t) ∈ K1, t ∈ I1,

y(t;µ0 + εδµ) ∈ K1, t ∈ [r1 − δ1, r2 + δ1],
(2.5)

lim
ε→0

y(t;µ0 + εδµ) = y(t;µ0) uniformly for (t, δµ) ∈ [r1 − δ1, r2 + δ1]× V.

This lemma is a result of Theorem 3.1 in [6].

Lemma 2.2. Let x0(t) be a solution corresponding to the element µ0 = (t00, τ10, . . . , τs0, φ0, u0) ∈ Λ
and defined on [τ̂ , t10] (see Definition 1.1), let t00, t10 ∈ (a, b), τi0 ∈ (θi1, θi2), i = 1, . . . , s, and let
K1 ⊂ O be a compact set containing a neighborhood of the set φ0(I1)∪x0([t00, t10]). Then there exist the
numbers ε1 > 0 and δ1 > 0 such that, for any (ε, δµ) ∈ (0, ε1)×V , we have µ0+εδµ ∈ Λ. In addition,
to this element there corresponds a solution x(t;µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1.
Moreover,

x(t;µ0 + εδµ) ∈ K1, t ∈ [τ̂ , t10 + δ1]. (2.6)

It is easy to see that if in Lemma 2.1 one put r1 = t00, r2 = t10, then x0(t) = y0(t), t ∈ [t00, t10],
and x(t;µ0 + εδµ) = h(t0, φ, y( · ;µ0 + εδµ))(t), (t, ε, δµ) ∈ [τ̂ , t10 + δ1]× (0, ε1)× V (see (2.4)). Thus,
Lemma 2.2 is a simple corollary of Lemma 2.1 (see (2.5)).

Remark 2.2. Due to the uniqueness, the solution y(t;µ0) on the interval [r1 − δ1, r2 + δ1] is a
continuation of the solution y0(t). Therefore, we can assume that the solution y0(t) is defined on the
interval [r1 − δ1, r2 + δ1].

Lemma 2.1 allows one to define the increment of the solution y0(t) = y(t;µ0):

∆y(t) = ∆y(t; εδµ) = y(t;µ0 + εδµ)− y0(t), (t, ε, δµ) ∈ [r1 − δ1, r2 + δ1]× (0, ε1)× V. (2.7)

Obviously,
lim
ε→0

∆y(t; εδµ) = 0 (2.8)

uniformly with respect to (t, δµ) ∈ [r1 − δ1, r2 + δ1]× V (see Lemma 2.1).
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Lemma 2.3. Let the conditions of Theorem 1.1 hold. Then there exist the numbers ε2 ∈ (0, ε1) and
δ2 ∈ (0, δ1) such that

max
t∈[t00,r2+δ2]

|∆y(t)| ≤ O(εδµ) (2.9)

for arbitrary (ε, δµ) ∈ (0, ε2)× V −. Moreover,

∆y(t00) = ε
[
δφ(t00) + (φ̇−

0 − f−)δt0
]
+ o(εδµ). (2.10)

Proof. Let ε′2 ∈ (0, ε1) be so small that for arbitrary (ε, δµ) ∈ (0, ε′2)× V − the inequalities

t0 + τi > t00, i = 1, . . . , s, (2.11)

hold, where t0 = t00+εδt0, τi = τi0+εδτi. On the interval [t00, r2+δ1], the function ∆y(t) = y(t)−y0(t)
satisfies the equation

∆̇y(t) = a(t; εδµ), (2.12)

where

a(t; εδµ) = f
(
t, y0(t) + ∆y(t), h(t0, φ, y0 +∆y)(t− τ1), . . . , h(t0, φ, y0 +∆y)(t− τs), u(t)

)
− f

(
t, y0(t), h(t00, φ0, y0)(t− τ10), . . . , h(t00, φ0, y0)(t− τs0), u0(t)

)
. (2.13)

We rewrite equation (2.12) in the integral form

∆y(t) = ∆y(t00) +

t∫
t00

a(ξ; εδµ) dξ.

Hence it follows that
|∆y(t)| ≤ |∆y(t00)|+ a1(t; t00, εδµ), (2.14)

where

a1(t; t00, εδµ) =

t∫
t00

|a(ξ; εδµ)| dξ, t ∈ [t00, r2 + δ1].

Let us prove formula (2.10). We have

∆y(t00) = y(t00;µ0 + εδµ)− y0(t00)

= φ0(t0) + εδφ(t0) +

t00∫
t0

f
(
t, y0(t) + ∆y(t), φ(t− τ1), . . . , φ(t− τs), u(t)

)
dt− φ0(t00) (2.15)

(see (2.11) and (2.3)). Since

t0∫
t00

φ̇0(t) dt = εφ̇−
0 δt0 + o(εδµ),

lim
ε→0

δφ(t0) = δφ(t00) uniformly with respect to δµ ∈ V −

(see (1.3)), we get

φ0(t0) + εδφ(t0)− φ0(t00) =

t0∫
t00

φ̇0(t) dt+ εδφ(t00) + ε
[
δφ(t0)− δφ(t00)

]
= ε

[
φ̇−δt0 + δφ(t00)

]
+ o(εδµ). (2.16)
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It is clear that if t ∈ [t0, t00], then

lim
ε→0

(
t, y0(t) + ∆y(t), φ(t− τ1), . . . , φ(t− τs)

)
= lim

t→t00−

(
t, y0(t), φ0(t− τ10), . . . , φ0(t− τs0)

)
= w0

(see (2.8)). Consequently,

lim
ε→0

sup
t∈[t0,t00]

∣∣f(t, y0(t) + ∆y(t), φ(t− τ1), . . . , φ(t− τs), u(t))− f−∣∣ = 0.

This relation implies that
t00∫
t0

f
(
t, y0(t) + ∆y(t), φ(t− τ1), . . . , φ(t− τs), u(t)

)
dt

=− εf−δt0 +

t00∫
t0

[
f(t, y0(t) + ∆y(t), φ(t− τ1), . . . , φ(t− τs), u(t))− f−] dt

=− εf−δt0 + o(εδµ). (2.17)

From (2.15), by virtue of (2.16) and (2.17), we obtain (2.10).
Now, let us prove inequality (2.9). First, we note that for any compact set K1 ⊂ O and U1 ⊂ U0,

there exists a function LK1,U1(t) ∈ L1(I,R+) such that

∣∣f(t, x, x1, . . . , xs, u1)− f(t, y, y1, . . . , ys, u2)
∣∣ ≤ LK1,U1

(t)
(
|x− y|+

s∑
i=1

|xi − yi|+ |u1 − u2|
)

for almost all t ∈ I and for any (x, y) ∈ K2, (xi, yi) ∈ K2, i = 1, . . . , s, u1, u2 ∈ U1.
Now, we estimate a1(t; t00, εδµ), t ∈ [t00, r2 + δ1]. Obviously,

a1(t; t00, εδµ) ≤
t∫

t00

LK1,U1(ξ)|∆y(ξ)| dξ +
s∑

i=1

a2i(t; t00, εδµ) + ε

t∫
t00

LK1,U1(ξ)|δu(ξ)| dξ, (2.18)

where

a2i(t; t00, εδµ) =

t∫
t00

LK1,U1
(ξ)

∣∣h(t0, φ, y0 +∆y)(ξ − τi)− h(t00, φ0, y0)(ξ − τi0)
∣∣ dξ

(see (2.13)).
Evidently,

ε

t∫
t00

LK1,U1(ξ)|δu(ξ)| dξ ≤ εα

∫
I

LK1,U1(t) dt = O(ε).

Let t00 + τi0 ≤ r2 and let ε′2 be so small that t00 + τi < r2 + δ1. Furthermore, let ρi1 = min{t0 +
τi, t00+τi0}, ρi2 = max{t00+τi, t00+τi0}. It is easy to see that ρi2 ≥ ρi1 > t00 and ρi2−ρi1 = O(εδµ).
Let t ∈ [t00, ρi1). Then for ξ ∈ [t00, t], we have ξ − τi < t0 and ξ − τi0 < t00. Therefore,

a2i(t; t00, εδµ) =

t∫
t00

LK1,U1
(ξ)|φ(ξ − τi)− φ0(ξ − τi0)| dξ.

From the boundedness of the function φ̇0(t), t ∈ I1, it follows that

|φ(ξ − τi)− φ0(ξ − τi0)| =
∣∣φ0(ξ − τi) + εδφ(ξ − τi)− φ0(ξ − τi0)

∣∣
= O(εδµ) +

∣∣∣∣
ξ−τi∫

ξ−τi0

φ̇0(t) dt

∣∣∣∣ ≤ O(εδµ). (2.19)
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Thus, for t ∈ [t00, ρi1], we have

a2i(t; t00, εδµ) ≤ O(εδµ), i = 1, . . . , s. (2.20)

Let t ∈ [ρi1, ρi2], then

a2i(t; t00, εδµ) ≤ a2i(ρi1; t00, εδµ) + a2i(ρi2; ρi1, εδµ) ≤ O(εδµ) + a2i(ρi2; ρi1, εδµ).

Let ρi1 = t0 + τi and ρi2 = t00 + τi, i.e. t0 + τi < t00 + τi0 < t00 + τi. We have

a2i(ρi2; ρi1, εδµ) ≤
t00+τi0∫
t0+τi

LK1,U1
(ξ)

∣∣y(ξ − τi;µ0 + εδµ)− φ0(ξ − τi0)
∣∣ dξ

+

t00+τi∫
t00+τi0

LK1,U1
(ξ)

∣∣y(ξ − τi;µ0 + εδµ)− y0(ξ − τi0)
∣∣ dξ

≤
t00+τi0∫
t0+τi

LK1,U1
(ξ)

∣∣y(ξ − τi;µ0 + εδµ)− φ(ξ − τi)
∣∣ dξ

+

t00+τi0∫
t0+τi

LK1,U1(ξ)|φ(ξ−τi)−φ0(ξ−τi0)| dξ+
t00+τi∫

t00+τi0

LK1,U1(ξ)
∣∣y(ξ−τi;µ0+εδµ)−φ(ξ−τi)

∣∣ dξ
+

t00+τi∫
t00+τi0

LK1,U1
(ξ)|φ(ξ − τi)− φ0(ξ − τi0)| dξ +

t00+τi∫
t00+τi0

LK1,U1
(ξ)|φ0(ξ − τi0)− y0(ξ − τi0)| dξ

≤ o(εδµ) +

t00+τi∫
t0+τi

LK1,U1
(ξ)

∣∣y(ξ − τi;µ0 + εδµ)− φ(ξ − τi)
∣∣ dξ

+

t00+τi∫
t00+τi0

LK1,U1
(ξ)|φ0(ξ − τi0)− y0(ξ − τi0)| dξ

= o(εδµ)+

t00∫
t0

LK1,U1(ξ+τi)|y(ξ;µ0+εδµ)−φ(ξ)| dξ+
t00+τi−τi0∫

t00

LK1,U1(ξ+τi0)|φ0(ξ)−y0(ξ)| dξ

(see (2.19)) with t00 + τi − τi0 > t00 + τi0 − τi0 = t00. The functions f(w, u), (w, u) ∈ I ×O1+s × U0,
and φ̇0(t), t ∈ I1, are bounded; therefore, we have

|y(ξ;µ0 + εδµ)− φ(ξ)|

=

∣∣∣∣φ(t0) +
ξ∫

t0

f(t0, τ1, . . . , τs, φ, y0 +∆y, u)(t) dt− φ(ξ)

∣∣∣∣ ≤ O(εδµ), ξ ∈ [t0, t00], (2.21)

|φ0(ξ)− y0(ξ)| =
∣∣∣∣φ0(ξ)− φ0(t00)−

ξ∫
t00

f(t00, τ10, . . . , τs0, φ0, y0, u0)(t) dt

∣∣∣∣ ≤ O(εδµ),

ξ ∈ [t00, t00 + τi − τi0].

Thus, a2i(ρi2; ρi1, εδµ) = o(εδµ). Let ρi1 = t0 + τi and ρi2 = t00 + τi0, then

a2i(ρi2; ρi1, εδµ) =

t00+τi0∫
t0+τi

LK1,U1(ξ)
∣∣y(ξ − τi;µ0 + εδµ)− φ0(ξ − τi0)

∣∣ dξ = o(εδµ).
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Let ρi1 = t00 + τi0 and ρi2 = t00 + τi, i.e., t00 + τi0 < t0 + τi < t00 + τi. We have

a2i(ρi2; ρi1, εδµ) ≤
t0+τi∫

t00+τi0

LK1,U1(ξ)|φ(ξ − τi)− y0(ξ − τi0)| dξ

+

t00+τi∫
t0+τi

LK1,U1
(ξ)

∣∣y(ξ − τi;µ0 + εδµ)− y0(ξ − τi0)
∣∣ dξ = o(εδµ).

Consequently, for t ∈ [t00, ρi2], inequality (2.20) holds.
Let t ∈ [ρi2, r2 + δ1], then t− τi ≥ t0 and t− τi0 ≥ t00. Therefore,

a2i(t; t00, εδµ) = a2i(ρi2; t00, εδµ) +

t∫
ρi2

LK1,U1
(ξ)

∣∣y0(ξ − τi) + ∆y(ξ − τi)− y0(ξ − τi0)
∣∣ dξ

≤ O(εδµ) +

t−τi∫
ρi2−τi

LK1,U1
(ξ + τi)|∆y(ξ)| dξ +

t∫
ρi2

LK1,U1
(ξ)|y0(ξ − τi)− y0(ξ − τi0)| dξ

≤ O(εδµ) +

t∫
t00

χ(ξ + τi)LK1,U1
(ξ + τi)|∆y(ξ)| dξ +

r2+δ1∫
ρi2

LK1,U1
(ξ)|y0(ξ − τi)− y0(ξ − τi0)| dξ,

where χ(ξ) is the characteristic function of the interval I.
Further, for ξ ∈ [ρi2, r2 + δ1],

|y0(ξ − τi)− y0(ξ − τi0)| ≤
ξ−τi∫

ξ−τi0

∣∣f(t00, τ10, . . . , τs0, y0, u0)(t)
∣∣ dt ≤ O(εδµ).

Thus, for t ∈ [t00, r2 + δ1], we get

a2i(t; t00, εδµ) ≤ O(εδµ) +

t∫
t00

χ(ξ + τi)LK1,U1
(ξ + τi)|∆y(ξ)| dξ. (2.22)

We now consider the case where t00 + τi0 > r2. Let δ2 ∈ (0, δ1) and ε′′2 ∈ (0, ε1) be so small numbers
that t00 + τi0 > r2 + δ2 and t0 + τi > r2 + δ2 for arbitrary (ε, δµ) ∈ (0, ε′′2)× V −.

It is easy to see that

a2i(t; t00, εδµ) ≤
t∫

t00

LK1,U1
(ξ)|φ(ξ − τi)− φ0(ξ − τi0)| dt ≤ O(εδµ).

Thus, for arbitrary (t, ε, δµ) ∈ [t00, r2 + δ2] × (0, ε2) × V − and i = 1, . . . , s, where ε2 = min(ε′2, ε′′2),
inequality (2.22) holds.

Consequently, we have

a1(t; t00, εδµ) ≤ O(εδµ)

+

t∫
t00

[
LK1,U1

(ξ) +

s∑
i=1

χ(ξ + τi)LK1,U1
(ξ + τi)

]
|∆y(ξ)| dξ, t ∈ [t00, r2 + δ1] (2.23)

(see (2.18)).
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According to (2.10) and (2.23), inequality (2.14) directly implies

|∆y(t)| ≤ O(εδµ) +

t∫
t00

[
LK1,U1(ξ) +

s∑
i=1

χ(ξ + τi)LK1,U1(ξ + τi)
]
|∆y(ξ)| dξ, t ∈ [t00, r2 + δ2]

from which, by the Gronwall lemma, we get (2.9).

The following lemma, with a minor modification can be proved analogously to Lemma 2.3.

Lemma 2.4. Let the conditions of Theorem 1.2 hold. Then there exist the numbers ε2 ∈ (0, ε1) and
δ2 ∈ (0, δ1) such that max

t∈[t0,r2+δ2]
|∆y(t)| ≤ O(εδµ) for arbitrary (ε, δµ) ∈ (0, ε2)× V +. Moreover,

∆y(t0) = ε
[
δφ(t00) + (φ̇+

0 − f+)δt0
]
+ o(εδµ).

3 Proof of Theorem 1.1
Let r1 = t00 and r2 = t10 in Lemma 2.1, then

x0(t) =

{
φ0(t), t ∈ [τ̂ , t00),

y0(t), t ∈ [t00, t10],

and for arbitrary (ε, δµ) ∈ (0, ε1)× V −,

x(t;µ0 + εδµ) =

{
φ(t) := φ0(t) + εδφ(t), t ∈ [τ̂ , t0),

y(t;µ0 + εδµ), t ∈ [t0, t10 + δ1]

(see (2.4)).
We note that δµ ∈ V −, i.e., t0 < t00, therefore, we have

∆x(t) =


εδφ(t) for t ∈ [τ̂ , t0),

y(t;µ0 + εδµ)− φ0(t) for t ∈ [t0, t00),

∆y(t) for t ∈ [t00, t10 + δ1]

(see (1.4) and (2.7)). By Lemma 2.3 and the relation |y(t;µ0 + εδµ) − φ0(t)| ≤ O(εδµ), t ∈ [t0, t00],
we have

|∆x(t)| ≤ O(εδµ) ∀ (t, ε, δµ) ∈ [τ̂ , t10 + δ2]× (0, ε2)× V −, (3.1)
∆x(t00) = ε

[
δφ(t00) + (φ̇−

0 − f−)δt0
]
+ o(εδµ). (3.2)

The function ∆x(t) satisfies the equation

∆̇x(t) = f
(
t, x0(t) + ∆x(t), x0(t− τ1) + ∆x(t− τ1), . . . , x0(t− τs) + ∆x(t− τs), u(t)

)
− f [t]

= fx[t]∆x(t) +

s∑
i=1

fxi
[t]∆x(t− τi0) + εfu[t]δu(t) + r(t; εδµ) (3.3)

on the interval [t00, t10 + δ2], where

r(t; εδµ) = f
(
t, x0(t) + ∆x(t), x0(t− τ1) + ∆x(t− τ1), . . . , x0(t− τs) + ∆x(t− τs), u(t)

)
−f [t]− fx[t]∆x(t)−

s∑
i=1

fxi
[t]∆x(t− τi0)− εfu[t]δu(t), (3.4)

f [t] = f
(
t, x0(t), x0(t− τ10), . . . , x0(t− τs0), u0(t)

)
,
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By using the Cauchy formula, one can represent the solution of equation (3.3) in the form

∆x(t) = Y (t00; t)∆x(t00) + ε

t∫
t00

Y (ξ; t)fu[t]δu(t) dt+

1∑
p=0

Rp(t; t00, εδµ), t ∈ [t00, t10 + δ2], (3.5)

where 

R0(t; t00, εδµ) =

s∑
i=1

Ri0(t; t00, εδµ),

Ri0(t; t00, εδµ) =

t00∫
t00−τi0

Y (ξ + τi0; t)fxi
[ξ + τi0]∆x(ξ) dξ,

R1(t; t00, εδµ) =

t∫
t00

Y (ξ; t)r(ξ; εδµ) dξ

(3.6)

and Y (ξ; t) is the matrix function satisfying equation (1.8) and condition (1.9). The function Y (ξ; t)
is continuous on the set Π = {(ξ, t) : t00 − δ2 ≤ ξ ≤ t, t ∈ [t00, t10 + δ2]} by Lemma 2.1.7 in [3, p. 22].
Therefore,

Y (t00; t)∆x(t00) = εY (t00; t)
[
δφ(t00) + (φ̇−

0 − f−)δt0
]
+ o(t; εδµ) (3.7)

(see (3.2)), where o(t; εδµ) = Y (t00; t)o(εδµ). One can readily see that

Ri0(t; t00, εδµ) = ε

t0∫
t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ) dξ +

t00∫
t0

Y (ξ + τi0; t)fxi [ξ + τi0]∆x(ξ) dξ

= ε

t00∫
t00−τi0

Y (ξ + τi0; t)fxi
[ξ + τi0]δφ(ξ) dξ + o(t; εδµ) (3.8)

(see (3.1)). Thus,

R0(t; t00, εδµ) = ε

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ) dξ + o(t; εδµ).

We introduce the notations:

f [t; θ, εδµ] = f
(
t, x0(t) + θ∆x(t), x0(t− τ10) + θ

(
x0(t− τ1)− x0(t− τ10) + ∆x(t− τ1)

)
, . . . ,

x0(t− τs0) + θ
(
x0(t− τs)− x0(t− τs0) + ∆x(t− τs)

)
, u0(t) + θεδu(t)

)
,

σ(t; θ, εδµ) = fx[t; θ, εδµ]− fx[t], ϱi(t; θ, εδµ) = fxi [t; θ, εδµ]− fxi [t],

ϑ(t; θ, εδµ) = fu[t; θ, εδµ]− fu[t].

It is easy to see that

f
(
t, x0(t) + ∆x(t), x0(t− τ1) + ∆x(t− τ1), . . . , x0(t− τs) + ∆x(t− τs), u0(t) + εδu(t)

)
− f [t]

=

1∫
0

d

dθ
f [t; θ, εδµ] dθ

=

1∫
0

{
fx[t; θ, εδµ]∆x(t)+

s∑
i=1

fxi
[t; θ, εδµ]

(
x0(t−τi)−x0(t−τi0)+∆x(t−τi)

)
+εfu[t; θ, εδµ]δu(t)

}
dθ
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=

[ 1∫
0

σ(t; θ, εδµ) dθ

]
∆x(t) +

s∑
i=1

[ 1∫
0

ϱi(t; θ, εδµ) dθ

](
x0(t− τi)− x0(t− τi0) + ∆x(t− τi)

)

+ε

[ 1∫
0

ϑ(t; θ, εδµ) dθ

]
δu(t)+fx[t]∆x(t)+

s∑
i=1

fxi
[t]
(
x0(t−τi)−x0(t−τi0)+∆x(t−τi)

)
+εfu[t]δu(t).

Taking into account the last relation for t ∈ [t00, t10 + δ2], we have

R1(t; t00, εδµ) =

6∑
p=2

Rp(t; t00, εδµ),

where

R2(t; t00, εδµ) =

t∫
t00

Y (ξ; t)σ1(ξ; εδµ)∆x(ξ) dξ, σ1(ξ; εδµ) =

1∫
0

σ(ξ; θ, εδµ) dθ,

R3(t; t00, εδµ) =

s∑
i=1

t∫
t00

Y (ξ; t)ϱi1(ξ; εδµ)
[
x0(ξ − τi)− x0(ξ − τi0) + ∆x(ξ − τi)

]
dξ,

ϱi1(ξ; εδµ) =

1∫
0

ϱi(ξ; θ, εδµ) dθ,

R4(t; t00, εδµ) =

s∑
i=1

t∫
t00

Y (ξ; t)fxi
[ξ]

[
x0(ξ − τi)− x0(ξ − τi0)

]
dξ,

R5(t; t00, εδµ) =

s∑
i=1

t∫
t00

Y (ξ; t)fxi
[ξ]

[
∆x(ξ − τi)−∆x(ξ − τi0)

]
dξ,

R6(t; t00, εδµ) = ε

t∫
t00

Y (ξ; t)ϑ1(ξ; εδµ)δu(ξ) dξ, ϑ1(ξ; εδµ) =

1∫
0

ϑ(ξ; θ, εδµ) dθ

(see (3.4)). The function x0(t), t ∈ [τ̂ , t10 + δ2], is absolutely continuous, then for each fixed Lebesgue
point ξi ∈ (t00, t10 + δ2) of function ẋ0(ξ − τi0), we get

x0(ξi − τi)− x0(ξi − τi0) =

ξi−εδτi∫
ξi

ẋ0(ς − τi0) dς = −εẋ0(ξi − τi0)δτi + γi(ξi; εδµ) (3.9)

where
lim
ε→0

γi(ξi; εδµ)

ε
= 0 uniformly for δµ ∈ V −. (3.10)

Thus, (3.9) is valid for almost all points of the interval (t00, t10 + δ2). From (3.9), taking into account
the boudedness of the function

ẋ0(t) =

{
φ̇0(t), t ∈ [τ̂ , t00],

f
(
t, x0(t), x0(t− τ10), . . . , x0(t− τs0), u0(t)

)
, t ∈ (t00, t10 + δ2],

it follows that
|x0(ξi − τi)− x0(ξi − τi0)| ≤ O(εδµ) and

∣∣∣γi(ξi; εδµ)
ε

∣∣∣ ≤ const. (3.11)
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Clearly,

|∆x(ξ − τi)−∆x(ξ − τi0)| =

{
o(ξ; εδµ) for ξ ∈ [t00, ρi1],

O(ξ; εδµ) for ξ ∈ [ρi1, ρi2]
(3.12)

(see (3.1)).
Let ξ ∈ [ρi2, t10 + δ1], then ξ − τi ≥ t00, ξ − τi0 ≥ t00. Therefore,

∣∣∆x(ξ − τi)−∆x(ξ − τi0)
∣∣ ≤ ξ−τi∫

ξ−τi0

|∆̇x(s)| ds ≤
ξ−τi∫

ξ−τi0

LK1,U1
(ς)

[
|∆x(ς)|

+

s∑
i=1

|x0(ς − τi)− x0(ς − τi0)|+ |∆x(ς − τi)|
]
dς + εα

ξ−τi∫
ξ−τi0

LK1,U1
(ς) dς = o(ξ; εδµ) (3.13)

(see (2.6), (3.1), (3.3) and (3.11)). According to (3.1), (3.9) and (3.11)–(3.13) for the expressions
Rp(t; t00, εδµ), p = 2, . . . , 6, we have

|R2(t; t00, εδµ)| ≤ ∥Y ∥O(εδµ)σ2(εδµ), σ2(εδµ) =

t10+δ1∫
t00

|σ1(ξ; εδµ)| dξ,

|R3(t; t00, εδµ)| ≤ ∥Y ∥O(εδµ)

s∑
i=1

ρi2(εδµ), ρi2(εδµ) =

t10+δ1∫
t00

|ρi1(ξ; εδµ)| dξ,

R4(t; t00, εδµ) = −ε

s∑
i=1

[ t∫
t00

Y (ξ; t)fxi [ξ]ẋ0(ξ − τi0) dξ

]
δτi +

s∑
i=1

γi1(t; εδµ),

|R5(t; t00, εδµ)| = o(t; εδµ),

|R6(t; t00, εδµ)| ≤ ε∥Y ∥ϑ2(εδµ), ϑ2(εδµ) =

t10+δ1∫
t00

|ϑ1(ξ; εδµ)| dξ,

where

∥Y ∥= sup
{
|Y (ξ; t)| : (ξ, t) ∈ Π

}
, γi1(t; εδµ) =

t∫
t00

Y (ξ; t)fxi [ξ]γi(ξ; εδµ) dξ.

Obviously, ∣∣∣γi1(t; εδµ)
ε

∣∣∣ ≤ ∥Y ∥
t10+δ1∫
t00

∣∣fxi
[ξ]

∣∣ ∣∣∣γi(ξ; εδµ)
ε

∣∣∣ dξ.
By the Lebesgue theorem on the passage to the limit under the integral sign, we have

lim
ε→0

σ2(εδµ) = 0, lim
ε→0

ρi2(εδµ) = 0, lim
ε→0

ϑ2(εδµ) = 0, lim
ε→0

∣∣∣γi1(t; εδµ)
ε

∣∣∣ = 0

uniformly for (t, δµ) ∈ [t00, t10 + δ2]× V − (see (3.10)). Thus,

Rp(t; t00, εδµ) = o(t; εδµ), p = 2, 3, 5, 6, (3.14)

R4(t; t00, εδµ) = −ε

s∑
i=1

[ t∫
t00

Y (ξ; t)fxi
[ξ]ẋ0(ξ − τi0) dξ

]
δτi (3.15)
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On the basis of (3.14), (3.15), we obtain

R1(t; t00, εδµ) = −ε

s∑
i=1

[ t∫
t00

Y (ξ; t)fxi
[ξ]ẋ0(ξ − τi0) dξ

]
δτi + o(t; εδµ). (3.16)

From (3.5), by virtue of (3.7), (3.8) and (3.16), we obtain (1.5), where δx(t; δµ) has the form (1.6).

4 Proof of Theorem 1.2
First of all, we note that δµ ∈ V +, i.e., t00 < t0, therefore, we have

∆x(t) =


εδφ(t) for t ∈ [τ̂ , t00),

φ(t)− y0(t) for t ∈ [t00, t0),

∆y(t) for t ∈ [t0, t10 + δ1].

In a similar way (see (2.21)), one can prove |φ(t)− y0(t)| = O(t; εδµ), t ∈ [t00, t0]. According to the
last relation and Lemma 2.4, we have

|∆x(t)| ≤ O(εδµ) ∀ (t, ε, δµ) ∈ [τ̂ , t10 + δ2]× [0, ε2]× V +,

∆x(t0) = ε
[
δφ(t00) + (φ̇+

0 − f+)δt0
]
+ o(εδµ).

Let t̂ ∈ (t00, t10) be a fixed point, and let ε2 ∈ (0, ε1) be so small that t0 < t̂ for arbitrary (ε, δµ) ∈
(0, ε2) × V +. The function ∆x(t) satisfies equation (3.3) on the interval [ t̂, t10 + δ2]; therefore, by
using the Cauchy formula, we can represent it in the form

∆x(t) = Y (t0; t)∆x(t0) + ε

t∫
t0

Y (ξ; t)fu[ξ]δu(ξ) dξ +

1∑
i=0

Ri(t; t0, εδµ) (4.1)

(see (3.6)). The matrix function Y (ξ; t) is continuous on [t00, t̂]× [t̂, t10 + δ2]; therefore,

Y (t0; t)∆x(t0) = εY (t00; t)[δφ(t00) + (φ̇+
0 − f+)δt0] + o(t; εδµ), (4.2)

where o(t; εδµ) = Y (t0, t)o(εδµ). Let us now transform

Ri0(t; t0, εδµ) = ε

t00∫
t0−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ) dξ +

t0∫
t00

Y (ξ + τi0; t)fxi [ξ + τi0]∆x(ξ) dξ

= ε

t00∫
t00−τ0

Y (ξ + τ0; t)fxi
[ξ + τi0; t]δφ(ξ) dξ + o(t; εδµ).

Thus,

R0(t; t0, εδµ) = ε

t00∫
t00−τ0

Y (ξ + τ0; t)fxi
[ξ + τi0; t]δφ(ξ) dξ + o(t; εδµ). (4.3)

In a similar way, with nonessential changes, for t ∈ [t̂, t10 + δ2] one can prove

R1(t; t0, εδµ) = −ε

s∑
i=1

t∫
t00

Y (ξ; t)
[
fxi [ξ]ẋ0(ξ − τi0)δτi

]
dξ + o(t; εδµ). (4.4)
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Finally, note that

ε

t∫
t0

Y (ξ; t)δfu[ξ]δu(ξ) dξ = ε

t∫
t00

Y (ξ; t)δfu[ξ]δu(ξ) dξ + o(t; εδµ) (4.5)

for t ∈ [t̂, t10 + δ2]. Taking into account (4.2)–(4.5), from (4.1), we obtain (1.5), where δx(t; εδµ) has
the form (1.10).
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Abstract. We prove the uniqueness theorem for the Neumann boundary value problem of statics of
the thermo-electro-magneto-elasticity theory in the case of a half-space. The corresponding unique
solution is represented explicitly by means of the inverse Fourier transform under some natural res-
trictions imposed on the boundary vector function.
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ÒÄÆÉÖÌÄ. ÍÀáÄÅÀÒÓÉÅÒÝÉÓ ÛÄÌÈáÅÄÅÀÛÉ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÈÄÒÌÏ-ÄËÄØÔÒÏ-ÌÀÂÍÄÔÏ ÃÒÄÊÀÃÏÁÉÓ ÈÄÏ-
ÒÉÉÓ ÍÄÉÌÀÍÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓÀÈÅÉÓ ÄÒÈÀÃÄÒÈÏÁÉÓ ÈÄÏÒÄÌÀ. ÂÀÒÊÅÄÖË ÁÖÍÄÁÒÉÅ ÛÄÆÙÖÃÅÄÁÛÉ,
ÒÏÌËÄÁÓÀÝ ÅÀÃÄÁÈ ÓÀÓÀÆÙÅÒÏ ÅÄØÔÏÒ-×ÖÍØÝÉÀÓ, ÛÄÓÀÁÀÌÉÓÉ ÍÄÉÌÀÍÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÄÒÈÀÃÄÒ-
ÈÉ ÀÌÏÍÀáÓÍÉ ßÀÒÌÏÃÂÄÍÉËÉÀ ÝáÀÃÉ ÓÀáÉÈ ÛÄÁÒÖÍÄÁÖËÉ ×ÖÒÉÄÓ ÂÀÒÃÀØÌÍÉÓ ÌÄÛÅÄÏÁÉÈ.
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1 Introduction
In the study of active material systems, there is significant interest in the coupling effects between
elastic, electric, magnetic and thermal fields.

Although natural materials rarely show full coupling between elastic, electric, magnetic and ther-
mal fields, some artificial materials do. In [16] it is reported that the fabrication of BaTiO3-CoFe2O4

composite had the magnetoelectric effect not existing in either constituent. Other examples of similar
complex coupling can be found in the references [1–7,9–11,14,17].

The mathematical model of the thermo-electro-magneto-elasticity theory is described by the non-
self-adjoint 6× 6 system of second order partial differential equations with the appropriate boundary
and initial conditions. The problem is to determine three components of the elastic displacement
vector, the electric and magnetic scalar potential functions and the temperature distribution. Other
field characteristics (e.g., mechanical stresses, electric and magnetic fields, electric displacement vector,
magnetic induction vector, heat flux vector and entropy density) can be then determined by the
gradient equations and the constitutive equations.

In the paper we prove the uniqueness theorem of solutions for Neumann boundary value problems
of statics for half-space.

Under some natural restriction on the boundary vector functions the corresponding unique solution
is represented by the inverse Fourier transform.

2 Basic equations and formulation of boundary value
problems

2.1 Field equations
Throughout the paper u = (u1, u2, u3)

⊤ denotes the displacement vector, σij is the mechanical
stress tensor, εkj = 2−1(∂kuj + ∂juk) is the strain tensor, E = (E1, E2, E3)

⊤ = − gradφ and
H = (H1,H2,H3) = − gradψ are electric and magnetic fields, respectively, D = (D1, D2, D3)

⊤ is
the electric displacement vector and B = (B1, B2, B3)

⊤ is the magnetic induction vector, φ and ψ
stand for the electric and magnetic potentials, ϑ is the temperature increment, q = (q1, q2, q3)

⊤ is the
heat flux vector, and S is the entropy density. We employ the notation ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂j ,
∂t = ∂/∂t; the superscript ( · )⊤ denotes transposition operation; the summation over the repeated
indices is meant from 1 to 3, unless stated otherwise.

In this subsection we collect the field equations of the linear theory of thermo-electro-magneto-
elasticity for a general anisotropic case and introduce the corresponding matrix partial differential
operators [12].
Constitutive relations:

σrj = σjr = crjklεkl − elrjEl − qlrjHl − λrjϑ, r, j = 1, 2, 3,

Dj = ejklεkl + κjlEl + ajlHl + pjϑ, j = 1, 2, 3,

Bj = qjklεkl + ajlEl + µjlHl +mjϑ, j = 1, 2, 3,

S = λklεkl + pkEk +mkHk + γϑ.

Fourier Law: qj = −ηjl∂lϑ, j = 1, 2, 3.
Equations of motion: ∂jσrj +Xr = ϱ∂2t ur, r = 1, 2, 3.
Quasi-static equations for electro-magnetic fields where the rate of magnetic field is small (electric
field is curl free) and there is no electric current (magnetic field is curl free): ∂jDj = ϱe, ∂jBj = 0.
Linearised equation of the entropy balance: T0∂tS −Q = −∂jqj ,
Here ϱ is the mass density, ϱe is the electric density, crjki are the elastic constants, ejki are the piezo-
electric constants, qjki are the piezomagnetic constants, κjk are the dielectric (permittivity) constants,
µjk are the magnetic permeability constants, ajk are the coupling coefficients connecting electric and
magnetic fields, pj and mj are constants characterizing the relation between thermodynamic processes
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and electro-magnetic effects, λjk are the thermal strain constants, ηjk are the heat conductivity co-
efficients, γ = ϱcT−1

0 is the thermal constant, T0 is the initial reference temperature, c is the specific
heat per unit mass, X = (X1, X2, X3)

⊤ is a mass force density, Q is a heat source intensity. The
constants involved in these equations satisfy the symmetry conditions

crjkl = cjrkl = cklrj , eklj = ekjl, qklj = qkjl, κkj = κjk,

λkj = λjk, µkj = µjk, ηkj = ηjk, akj = ajk, r, j, k, l = 1, 2, 3.
(2.1)

From physical considerations it follows (see, e.g., [8, 13])

crjklξrjξkl ≥ c0ξklξkl, κkjξkξj ≥ c1|ξ|2, µkjξkξj ≥ c2|ξ|2, ηkjξkξj ≥ c3|ξ|2, (2.2)

for all ξkj = ξjk ∈ R and for all ξ = (ξ1, ξ2, ξ3) ∈ R3, where c0, c1, c2 and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy and thermodynamical
laws insure positive definiteness of the matrix

Ξ =

[κkj ]3×3 [akj ]3×3 [pj ]3×1

[akj ]3×3 [µkj ]3×3 [mj ]3×1

[pj ]1×3 [mj ]1×3 γ


7×7

. (2.3)

Further we introduce the following generalised stress operator

T (∂, n) :=


[crjklnj∂l]3×3 [elrjnj∂l]3×3 [qlrjnj∂l]3×1 [−λrjnj ]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −pjnj
[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −mjnj

[0]1×3 0 0 ηjlnj∂l


6×6

.

Evidently, for a six vector U := (u, φ, ψ, ϑ)⊤ we have

T (∂, n)U = (σ1jnj , σ2jnj , σ3jnj ,−Djnj ,−Bjnj ,−qjnj)⊤. (2.4)

The components of the vector T U given by (2.4) have the physical sense: the first three components
correspond to the mechanical stress vector in the theory of thermo-electro-magneto-elasticity, the
forth, fifth and sixth ones are respectively the normal components of the electric displacement vector,
magnetic induction vector and heat flux vector with opposite sign.

From the above equations of dynamics, in the case of statics, we get the following equations

A(∂)U(x) = Φ(x),

where U = (u1, . . . , u6)
⊤ := (u, φ, ψ, ϑ)⊤ is the sought for vector function and Φ = (Φ1, . . . ,Φ6)

⊤ :=
(−X1,−X2,−X3,−ϱe, 0,−Q)⊤ is a given vector function; A(∂) = [Apq(∂)]6×6 is the matrix differential
operator

A(∂) =


[crjkl∂j∂l]3×3 [elrj∂j∂l]3×3 [qlrj∂j∂l]3×1 [−λrj∂j ]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −pj∂j
[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −mj∂j

[0]1×3 0 0 ηjl∂j∂l


6×6

.

From the symmetry conditions (2.1), inequalities (2.2) and positive definiteness of the matrix (2.3) it
follows that A(∂) is a formally non-self adjoint strongly elliptic operator.

2.2 Formulation of boundary value problems
Let R3 be divided by some plane into two half-spaces. Without loss of generality we can assume that
these half-spaces are

R3
1 :=

{
x | x = (x1, x2, x3) ∈ R3 and x3 > 0

}
,

R3
2 :=

{
x | x = (x1, x2, x3) ∈ R3 and x3 < 0

}
;
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n = (n1, n2, n3) = (0, 0,−1) is the outward unit normal vector with respect to R3
1; S := ∂R3

1,2.

Now we formulate the Neumann type boundary-value problems (N)± of the thermo-electro-mag-
netoelasticity theory for a half-space:

Find a solution vector U = (u, φ, ψ, ϑ)⊤ ∈ [C1(R3
1,2)]

6 ∩ [C2(R3
1,2)]

6 to the system of equations

A(∂)U = 0 in R3
1,2 (2.5)

satisfying the Neumann type boundary condition

{T (∂, n)U}± = F on S. (2.6)

The symbols { · }± denote the one-sided limits on S from R3
1 (sign “+”) and R3

2 (sign “−”).

We require that the boundary data involved in the above setting possess the following smoothness
property: F ∈

◦
C∞(R2), where

◦
C∞(R2) is the space of infinitely differentiable functions with compact

support.
Let Fx̃→ξ̃ and F−1

ξ̃→x̃
denote the direct and inverse generalized Fourier transforms in the space of

tempered distributions (the Schwartz space S ′(R2)) which for regular summable functions f and g
read as follows

Fx̃→ξ̃[f ] =

∫
R2

f(x̃) eix̃·ξ̃ dx̃,

F−1

ξ̃→x̃
[g] =

1

4π2

∫
R2

g(ξ̃) e−ix̃·ξ̃ dξ̃,

(2.7)

where x̃ = (x1, x2), ξ̃ = (ξ1, ξ2), dx̃ = dx1 dx2, x̃ · ξ̃ = x1ξ1 + x2ξ2.
Note that if f(x) = f(x1, x2, x3) = f(x̃, x3), then

Fx̃→ξ̃[∂xj
f(x)] = −iξjFx̃→ξ̃[f ] = −iξj f̂(ξ̃, x3), j = 1, 2,

and hence

Fx̃→ξ̃[∇xf(x)] =

−iξ1−iξ2
∂x3

Fx̃→ξ̃[f(x)] = P (−iξ̃, ∂x3)f̂(ξ̃, x3) (2.8)

with f̂(ξ̃, x3) = Fx̃→ξ̃[f ] and

P = P (−iξ̃, ∂x3
) = (−iξ1,−iξ2, ∂x3

)⊤. (2.9)

Applying Fourier transform (2.7) in (2.5)–(2.6) and taking into account (2.9) we arrive at the
problems:

A(P )Û(ξ̃, x3) = 0, x3 ∈ (0;+∞) or x3 ∈ (−∞; 0), (2.10){
T (∂, n)Û(ξ̃, x3)

}±
(x3→0±)

= F̂ (ξ̃). (2.11)

We see that (2.10) is the system of ordinary differential equations of second order for each ξ̃ ∈ R2.
We denote these problems by N̂±.

3 Uniqueness theorems
We start with constructing a system of linear independent solutions to system (2.10).

Let us denote by kj = kj(ξ̃), j = 1, 12, the roots of the equation

detA(−iξ) = 0 (3.1)
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with respect to ξ3, where A(−iξ) is the symbol matrix of the operator A(∂).
Note that detA(−iξ) is a homogeneous polynomial of order 12 and the equation (3.1) has no real

roots, Im kj ̸= 0, j = 1, 12. These roots are continuously dependent on the coefficients of (3.1) and
the number of roots with positive and negative imaginary parts are equal. Denote by k1, k2, . . . , k6
roots with positive imaginary parts and by k7, . . . , k12 with negative ones.

Let us construct the following matrices:

Φ(+)(ξ̃, x3) =

∫
ℓ+

A−1(−iξ) e−iξ3x3 dξ3, (3.2)

Φ(−)(ξ̃, x3) =

∫
ℓ−

A−1(−iξ) e−iξ3x3 dξ3, (3.3)

where ℓ+ (respectively, ℓ−) is a closed simple curve of positive counterclockwise orientation (respec-
tively, negative clockwise orientation) in the upper (respectively, lower) complex half-plane Re ξ3 > 0
(respectively, Re ξ3 < 0) enclosing all the roots with respect to ξ3 of the equation detA(−iξ) = 0 with
positive (respectively, negative) imaginary parts (see Fig. 1). Clearly, (3.2) and (3.3) do not depend
on the shape of ℓ+ (respectively, ℓ−).

Figure 1.

With the help of the Cauchy integral theorem for analytic functions, we conclude that the entries of
the matrix Φ(+)(ξ̃, x3) = [Φ

(+)
kj (ξ̃, x3)]6×6 are increasing exponentially as x3 → +∞ and are decreasing

exponentially as x3 → −∞ (since −iξ3x3 = −i(ξ′3 + iξ′′3 )x3 = −iξ′3x3 + ξ′′3x3).
Analogously, the entries of the matrix Φ(−)(ξ̃, x3) = [Φ

(−)
kj (ξ̃, x3)]6×6 are increasing exponentially

as x3 → −∞ and vanish exponentially as x3 → +∞.
Due to Lemma 3.1 in [15] the columns of Φ(±)(ξ̃, x3) are linearly independent solutions to sys-

tem (2.10).

Theorem 3.1. The boundary value problems N̂± (2.10)–(2.11) have only one solution in the space
of functions vanishing at infinity.
Proof. If x3 ∈ (0;+∞), then we look for a solution of the Neumann problem in the following form

Û(ξ̃, x3) = Φ(−)(ξ̃, x3)C, x3 > 0,

where C = (C1, . . . , C6) is unknown vector depending only on ξ̃.
From (2.11) we have

T (−iξ, n)Φ(−)(ξ̃, 0)C = F̂ (ξ̃)

and since det[T (−iξ, n)Φ(−)(ξ̃, 0)] ̸= 0, |ξ̃| ̸= 0, due to Lemma 3.1 in [15], we obtain

C =
[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
F̂ (ξ̃).
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Therefore the unique solution of N̂+ has the following form

Û(ξ̃, x3) = Φ(−)(ξ̃, x3)
[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
F̂ (ξ̃), x3 > 0. (3.4)

Similarly, if x3 ∈ (−∞; 0), then the unique solution of N̂− has the form

Û(ξ̃, x3) = Φ(+)(ξ̃, x3)
[
T (−iξ, n)Φ(+)(ξ̃, 0)

]−1
F̂ (ξ̃), x3 < 0. (3.5)

The theorem is proved.

Lemma 3.2. There hold the following relations

[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
=

[
[O(1)]5×5 [O(|ξ̃|−1)]5×1

[0]1×5 O(1)

]
6×6

. (3.6)

Proof. Note that

T (−iξ, n) :=


[crjklnj(−iξl)]3×3 [elrjnj(−iξl)]3×3 [qlrjnj(−iξl)]3×1 [−λrjnj ]3×1

[−ejklnj(−iξl)]1×3 κjlnj(−iξl) ajlnj(−iξl) −pjnj
[−qjklnj(−iξl)]1×3 ajlnj(−iξl) µjlnj(−iξl) −mjnj

[0]1×3 0 0 ηjlnj(−iξl)


6×6

.

It is clear (see Theorem 3.1) that

det T (−iξ, n) ̸= 0, |ξ| ̸= 0,

and

T (−iξ, n) =

[
[O(|ξ|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ|)

]
6×6

. (3.7)

It can easily be checked that det T (−iξ, n) = O(|ξ|6) and there exist constants c∗1 > 0 and c∗2 > 0 such
that

c∗1|ξ|6 ≤ | det T (−iξ, n)| ≤ c∗2|ξ|6. (3.8)

If Tc(−iξ, n) is the corresponding matrix of cofactors, then

[T (−iξ, n)]−1 =
1

det T (−iξ, n)
Tc(−iξ, n).

Taking into account (3.7) and (3.8) we can write

[T (−iξ, n)]−1 =
1

det T (−iξ, n)

[
[O(|ξ|5)]5×5 [O(|ξ|4)]5×1

[0]1×5 O(|ξ|5)

]
6×6

.

For arbitrary |ξ̃| ̸= 0 we obtain

[T (−iξ, n)]−1 =

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

. (3.9)

Note that (see Lemma 3.3 in [15])

[
Φ(−)(ξ̃, 0)

]−1
=

[
[O(|ξ̃|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ̃|)

]
6×6

. (3.10)
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Taking into account (3.9) and (3.10) we derive the following relations[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
=

[
Φ(−)(ξ̃, 0)

]−1
[T (−iξ, n)]−1

=

[
[O(|ξ̃|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ̃|)

]
6×6

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

=

[
[O(1)]5×5 [O(|ξ̃|−1)]5×1

[0]1×5 O(1)

]
6×6

.

Remark 3.3. For arbitrary x3 > 0 (see [15])

Φ(−)(ξ̃, x3) =

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

and due to (3.6)

Φ(−)(ξ̃, x3)
[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
=

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

. (3.11)

Similarly, for arbitrary x3 < 0

Φ(+)(ξ̃, x3)
[
T (−iξ, n)Φ(+)(ξ̃, 0)

]−1
=

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

. (3.12)

Theorem 3.4. The Neumann boundary value problems (2.5)–(2.6) have at most one solution U =

(u, φ, ψ, ϑ)⊤ in the space [C1(R3
1,2)]

6 ∩ [C2(R3
1,2)]

6 provided

ϑ(x) = O(|x|−1), (3.13)
∂αŨ(x) = O

(
|x|−1−|α| ln |x|

)
as |x| → ∞ (3.14)

for arbitrary multi-index α = (α1, α2, α3). Here Ũ = (u, φ, ψ)⊤.

Proof. Let U (1) = (u(1), φ(1), ψ(1), ϑ(1))⊤ and U (2) = (u(2), φ(2), ψ(2), ϑ(2)) be two solutions of the
problem under consideration with properties indicated in the theorem for R3

1. It is evident that the
difference

V = (u′, φ′, ψ′, ϑ′) = U (1) − U (2)

solves the corresponding homogeneous problem.
Therefore for the temperature function we get the separated homogeneous Neumann problem

[A(∂)V ]6 = ηjl∂j∂lϑ
′ = 0 in R3

1, (3.15)
{ηjlnj∂lϑ′}+ = 0 on S. (3.16)

By Green’s formula (see (2.83) in [12]) for B+(0;R) := {(x1, x2, x3) | x21 + x22 + x23 ≤ R2 and
x3 > 0} and (3.15)–(3.16) we have∫

B+(0;R)

ηjl∂lϑ
′∂jϑ

′ dx =

∫
∂B+(0;R)

{ηjlnj∂lϑ′}+{ϑ′}+ dS =

∫
Σ+(0;R)

{ηjlnj∂lϑ′}+{ϑ′}+ dΣ. (3.17)

Here Σ+(0;R) is the upper half sphere.
Taking the limit as R→ ∞ in (3.17) according to (3.13)–(3.14) we get∫

R3
1

ηjl∂lϑ
′∂jϑ

′ dx = 0.
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Due to (2.2) ϑ′ = const and from (3.13) we conclude that ϑ′ = 0.
Therefore the five dimensional vector Ṽ = (u′, φ′, ψ′)⊤ constructed by the first five components of

the solution vector V , solves the following homogeneous boundary value problem

Ã(∂)Ṽ = 0 in R3
1,

{T̃ (∂, n)Ṽ }+ = 0 on S,
(3.18)

where Ã(∂) is the 5×5 differential operator of statics of the electro-magneto-elasticity theory without
taking into account thermal effects (see [12]):

Ã(∂) = [Ãpq(∂)]5×5 :=

 [crjkl∂j∂l]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l

[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l


5×5

and T̃ (∂, n) is the corresponding 5× 5 generalized stress operator

T̃ (∂, n) = [T̃pq(∂, n)]5×5 :=

 [crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l

[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l


5×5

.

Using the limiting procedure as above in the corresponding Green’s identity for vectors satisfying
decay conditions (3.14) we obtain∫

R3
1

[
Ã(∂)Ṽ · Ṽ + Ẽ(Ṽ , Ṽ )

]
dx = lim

R→∞

∫
Σ+(0;R)

[T̃ Ṽ ]+ · [Ṽ ]+ dΣ, (3.19)

where Ẽ(Ṽ , Ṽ ) has the following form:

Ẽ(Ṽ , Ṽ ) = crjkl∂lu
′
k∂ju

′
r + κjl∂lφ

′∂jφ
′ + ajl(∂lφ

′∂jψ
′ + ∂jψ

′∂lφ
′) + µjl∂lψ

′∂jψ
′. (3.20)

If Ṽ is a solution of (3.18) satisfying (3.14), then from (3.19) we have∫
R3

1

Ẽ(Ṽ , Ṽ ) dx = 0. (3.21)

From (3.18), (3.20) and (3.21) along with (2.2) we get

u′(x) = a× x+ b, φ′(x) = b4, ψ′ = b5,

where a = (a2, a2, a3) and b = (b1, b2, b3) are arbitrary constant vectors and b4, b5 are arbitrary
constants. Now, in view of (3.14) we arrive at the equalities u′(x) = 0, φ′(x) = 0, ψ′(x) = 0 for all
x ∈ R3

1, consequently, U (1) = U (2) in R3
1.

The proof is similar for the domain R3
2.

Theorem 3.5. Let F ∈
◦
C∞(R2) and for arbitrary multi-index β = (β1, β2)∫

R2

F (x̃)x̃β dx̃ = 0, |β| = 0, 1, 2.

Then the Neumann boundary value problems (2.5)–(2.6) possess unique solutions which can be repre-
sented in the following form

U(x) = F−1

ξ̃→x̃

[
Φ(−)(ξ̃, x3)

[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
F̂ (ξ̃)

]
, x3 > 0, (3.22)

or

U(x) = F−1

ξ̃→x̃

[
Φ(+)(ξ̃, x3)

[
T (−iξ, n)Φ(+)(ξ̃, 0)

]−1
F̂ (ξ̃)

]
, x3 < 0. (3.23)
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Proof. It suffices to show that the vector functions (3.22) and (3.23) satisfy the conditions (3.13)–
(3.14). This will be done if we prove that the following relations hold for all x ∈ R3:

xjF−1

ξ̃→x̃
[Û(ξ̃, x3)] = O(1), j = 1, 2, 3, (3.24)

and
x2jF−1

ξ̃→x̃
[Û(ξ̃, x3)] = O(1), j = 1, 2, 3, (3.25)

where Û(ξ̃, x3) is defined by (3.4) or (3.5).
Under the restriction on F we conclude that F̂ ∈ S(R2) and F̂ (ξ̃) = O(|ξ̃|3) as |ξ̃| → 0, where S

is the space of rapidly decreasing functions. Therefore in view of (3.11)–(3.12) we have

∂Û(ξ̃, x3)

∂ξj
= O(1), |ξ̃| → 0,

∂Û(ξ̃, x3)

∂ξj
= O(|ξ̃|−k), |ξ̃| → ∞, k ≥ 2,

(3.26)

uniformly for all x ∈ R3.
For j = 1 or j = 2, we find

xj

∫
R2

Û(ξ̃, x3) e
−iξ̃·x̃ dξ̃ = i

∫
R2

Û(ξ̃, x3)
∂e−iξ̃·x̃

∂ξj
dξ̃ = i lim

R→∞

∫
K(0;R)

Û(ξ̃, x3)
∂e−iξ̃·x̃

∂ξj
dξ̃

= −i lim
R→∞

( ∫
K(0;R)

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃ −

∫
∂K(0;R)

Û(ξ̃, x3) e
−iξ̃·x̃ ξj

R
ds

)

= −i lim
R→∞

∫
K(0;R)

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃ = −i

∫
R2

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃, (3.27)

where K(0, R) is the circle of radius R centered at the origin.
It is clear that the relations (3.26) and (3.27) imply (3.24). The condition (3.25) can be proved

similarly if we note that

∂2Û(ξ̃, x3)

∂ξ2j
= O

(
|ξ̃|−1

)
, |ξ̃| → 0,

∂2Û(ξ̃, x3)

∂ξ2j
= O(|ξ̃|−k−1), |ξ̃| → ∞, k ≥ 2,

uniformly for all x ∈ R3.
For arbitrary x3 > 0 we can write

x3F−1

ξ̃→x̃
[Û(ξ̃, x3)] = x3

∫
R2

(∫
ℓ−

A−1(−iξ) e−iξ3x3 dξ3

)
[T (−iξ, n)Φ(−)(ξ̃, 0)]−1F̂ (ξ̃) e−iξ̃·x̃ dξ̃. (3.28)

Due to Lemma 3.3 in [15] the entries of the matrix A−1(−iξ) are homogeneous functions in ξ and

A−1(−iξ) =

[
[O(|ξ|−2)]5×5 [O(|ξ|−3)]5×1

[0]1×5 O(|ξ|−2)

]
6×6

. (3.29)

Using the Cauchy integral theorem for analytic functions and the relations (3.6), (3.29), from
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(3.28) we get

x3F−1

ξ̃→x̃
[Û(ξ̃, x3)]

= x3

∫
R2

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

] [
[O(1)]5×5 [O(|ξ̃|−1)]5×1

[0]1×5 O(1)

]
F̂ (ξ̃) dξ̃

= x3

∫
R2

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
F̂ (ξ̃) dξ̃ = I1 + I2,

where

I1 = x3

∫
|ξ|≤M

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
F̂ (ξ̃) dξ̃,

I2 = x3

∫
|ξ|>M

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
F̂ (ξ̃) dξ̃

for some positive number M .
Since F̂ (ξ̃) ∈ S(R2), it is easy to check that I1 = O(1) and I2 = O(1) and hence (3.24) holds.
We can prove the boundedness of the vector function x23F−1

ξ̃→x̃
[Û(ξ̃, x3)] quite similarly taking into

account that F̂ (ξ̃) = O(|ξ̃|3) as |ξ̃| → 0.
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Malkhaz Ashordia

ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM FOR
SYSTEMS OF NONLINEAR IMPULSIVE EQUATIONS

WITH FIXED IMPULSES POINTS

Abstract. The antiperiodic problem for systems of nonlinear impulsive equations with fixed points
of impulses actions is considered. The sufficient (among them effective) conditions for the well-
posedness of this problem are given.

ÒÄÆÉÖÌÄ. ×ÉØÓÉÒÄÁÖË ÉÌÐÖËÓÖÒ ßÄÒÔÉËÄÁÉÀÍ ÀÒÀßÒ×ÉÅ ÉÌÐÖËÓÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄ-
ÁÉÓÈÅÉÓ ÂÀÍáÉËÖËÉÀ ÀÍÔÉÐÄÒÉÏÃÖËÉ ÀÌÏÝÀÍÀ. ÌÏÝÄÌÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÊÏÒÄØÔÖËÏÁÉÓ
ÓÀÊÌÀÒÉÓÉ (ÌÀÈ ÛÏÒÉÓ Ä×ÄØÔÖÒÉ) ÐÉÒÏÁÄÁÉ.

2010 Mathematics Subject Classification: 34K10, 34K45.
Key words and phrases: Antiperiodic problem, nonlinear systems, impulsive equations, fixed
impulses points, well-posedness, effective conditions.

Let m0 be a fixed natural number, ω be a fixed positive real one, and 0 < τ1 < · · · < τm0
< ω be

fixed points (we assume τ0 = 0 and τm0+1 = ω, if necessary). Let T = {τl +mω : l = 1, . . . ,m0; m =
0,±1,±2, . . . }.

Consider the system of nonlinear impulsive equations with fixed impulses points
dx

dt
= f(t, x) almost everywhere on R \ T,

x(τ+)− x(τ−) = I(τ, x(τ)) for τ ∈ T

with the ω-antiperiodic condition

x(t+ ω) = −x(t) for t ∈ R,

where f = (fi)
n
i=1 is a vector-function belonging to the Carathéodory class Car(R × Rn,Rn), and

I = (Ii)
n
i=1 : T ×Rn → Rn is a vector-function such that I(τ, · ) is continuous for every τ ∈ T .

We assume that

f(t+ ω, x) = −f(t,−x) and I(τ + ω, x) = −I(τ,−x) for t ∈ R, τ ∈ T, x ∈ Rn.

Due to the above condition, if x : R → Rn is a solution of the given system, then the vector-function
y(t) = −x(t + ω) (t ∈ R) will likewise be a solution of that system. Moreover, it is evident that if
x : R → Rn is a solution of the given ω-antiperiodic problem, then its restriction on the closed interval
[0, ω] will be a solution of the problem

dx

dt
= f(t, x) almost everywhere on [0, ω] \ {τ1, . . . , τm0}, (1)

x(τl+)− x(τl−) = I(τl, x(τl)) (l = 1, . . . ,m0); (2)
x(0) = −x(ω). (3)
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Let now x : [0, ω] → Rn be a solution of system (1), (2) on [0, ω]. By x we designate the continuation
of this function on the whole R just as a solution of system (1), (2), as well. As above, the vector-
function y(t) = −x(t+ ω) (t ∈ R) will be a solution of system (1), (2). On the other hand, according
to equality (3), we have y(0) = −x(ω) = x(0). So, if we assume that system (1), (2) under the Cauchy
condition x(0) = c is uniquely solvable for every c ∈ Rn, then x(t + ω) = −x(t) for t ∈ R, i.e., x
is ω-antiperiodic. This means that the set of restrictions of the ω-antiperiodic solutions of system
(1), (2) on [0, ω] coincides with the set of solutions of problem (1), (2); (3).

In this connection, we consider the boundary value problem (1), (2); (3) on the closed interval [0, ω].
Below, we will give the sufficient conditions guaranteeing the well-posedness of this problem.

Consider a sequence of vector-functions fk ∈ Car([0, ω] × Rn,Rn) (k = 1, 2, . . . ), sequences of
points τlk (k = 1, 2, . . . ; l = 1, . . . ,m0), 0 < τ1k < · · · < τm0k < ω, and sequences of operators
Ik : {τ1k, . . . , τm0k} × Rn → Rn (k = 1, 2, . . . ) such that Ik(τlk, · ) (k = 1, 2, . . . ; l = 1, . . . ,m0) are
continuous.

In this paper, we establish the sufficient conditions guaranteeing both the solvability of the im-
pulsive systems

dx

dt
= fk(t, x) almost everywhere on [0, ω] \ {τ1k, . . . , τm0k}, (1k)

x(τlk+)− x(τlk−) = Ik(τlk, x(τlk)) (l = 1, . . . ,m0) (2k)

(k = 1, 2, . . . ) under condition (3) for any sufficiently large k and the convergence of their solutions
to a solution of problem (1), (2); (3), as k → +∞.

We assume that the above-described concept is fulfilled for problems (1k), (2k); (3) (k = 1, 2, . . . ),
as well.

The well-posed problem for the linear boundary value problem for impulsive systems with a finite
number of impulses points has been investigated in [5], where the necessary and sufficient conditions
were given for the case. Analogous problems are investigated in [1, 11–13] (see also the references
therein) for the linear and nonlinear boundary value problems for ordinary differential systems.

A good many issues on the theory of systems of differential equations with impulsive effect (both
linear and nonlinear) have been studied sufficiently well (for a survey of the results on impulsive
systems see, e.g., [2–4,6–9,14–16] and the references therein). But the above-mentioned works do not,
as we know, contain the results obtained in the present paper.

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ ; [a, b] (a, b ∈ R) is a closed interval.
Rn×m is the space of all real n×m-matrices X = (xij)

n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

|X| = (|xij |)n,mi,j=1, [X]+ = |X|+X
2 .

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

R(n×n)×m = Rn×n × · · · × Rn×n (m− times).
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix, inverse to X, the determinant
of X and the spectral radius of X; In×n is the identity n× n-matrix.

b∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m, i.e., the sum of total

variations of components of X; V (X)(t) = (v(xij)(t))
n,m
i,j=1, where v(xij)(a) = 0, v(xij)(t) =

t∨
a
(xij)

for a < t ≤ b.
X(t−) and X(t+) are the left and the right limits of the matrix-function X : [a, b] → Rn×m at the

point t (we will assume X(t) = X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary).
BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation X : [a, b] → Rn×m (i.e.,

such that
b∨
a
(X) < +∞).

C([a, b], D), where D ⊂ Rn×m, is the set of all continuous matrix-functions X : [a, b] → D.
Let Tm0 = {τ1, . . . , τm0}.
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C([a, b], D;Tm0) is the set of all matrix-functions X : [a, b] → D, having the one-sided limits
X(τl−) (l = 1, . . . ,m0) and X(τl+) (l = 1, . . . ,m0), whose restrictions to an arbitrary closed interval
[c, d] from [a, b] \ Tm0

} belong to C([c, d], D).
Cs([a, b],Rn×m;Tm0

) is the Banach space of all X ∈ C([a, b],Rn×m;Tm0
) with the norm ∥X∥s =

sup{∥X(t)∥ : t ∈ [a, b]}.
If y ∈ Cs([a, b],R;Tm0) and r ∈ ]0,+∞[, then U(y; r) = {x ∈ Cs([a, b],Rn;Tm0) : ∥x− y∥s < r}.
D(y, r) is the set of all x ∈ Rn such that inf{∥x− y(t)∥ : t ∈ [a, b]} < r.
C̃([a, b], D), where D⊂Rn×m, is the set of all absolutely continuous matrix-functions X : [a, b]→D.
C̃([a, b], D;Tm0) is the set of all matrix-functions X : [a, b] → D, having the one-sided limits

X(τl−) (l = 1, . . . ,m0) and X(τl+) (l = 1, . . . ,m0), whose restrictions to an arbitrary closed interval
[c, d] from [a, b] \ Tm0

belong to C̃([c, d], D).
If B1 and B2 are normed spaces, then an operator g : B1 → B2 (nonlinear, in general) is positive

homogeneous if g(λx) = λg(x) for every λ ∈ R+ and x ∈ B1.
An operator φ : C([a, b],Rn×m;Tm0

) → Rn is called nondecreasing if the inequality φ(x)(t) ≤
φ(y)(t) for t ∈ [a, b] holds for every x, y ∈ C([a, b],Rn×m;Tm0

) such that x(t) ≤ y(t) for t ∈ [a, b].
A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each of its components

is such.
L([a, b], D), where D ⊂ Rn×m, is the set of all measurable and integrable matrix-functions X :

[a, b] → D.
If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] ×D1, D2) is the Carathéodory class, i.e., the set of

all mappings F = (fkj)
n,m
k,j=1 : [a, b] ×D1 → D2 such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and

k ∈ {1, . . . , n}:

(a) the function fkj( · , x) : [a, b] → D2 is measurable for every x ∈ D1;

(b) the function fkj(t, · ) : D1 → D2 is continuous for almost every t ∈ [a, b], and sup{|fkj( · , x)| :
x ∈ D0} ∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Car0([a, b] × D1, D2) is the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] × D1 → D2 such that

the functions fkj( · , x( · )) (k = 1, . . . , n; j = 1, . . . ,m; ) are measurable for every vector-function
x : [a, b] → Rn with a bounded total variation.

We say that the pair {X; {Yl}ml=1}, consisting of a matrix-function X ∈ L([a, b],Rn×n) and of a
sequence of constant n×n matrices {Yl}ml=1}, satisfies the Lappo–Danilevskiĭ condition if the matrices
Y1, . . . , Ym are pairwise permutable and there exists t0 ∈ [a, b] such that

t∫
t0

X(τ) dX(τ) =

t∫
t0

dX(τ) ·X(τ) for t ∈ [a, b],

X(t)Yl = YlX(t) for t ∈ [a, b] (l = 1, . . . ,m).

M([a, b]×R+,R+) is the set of all functions ω ∈ Car([a, b]×R+,R+) such that the function ω(t, · )
is nondecreasing and ω(t, 0) = 0 for every t ∈ [a, b].

By a solution of the impulsive system (1), (2) we understand a continuous from the left vector-
function x∈ C̃([0, ω],Rn;Tm0) satisfying both system (1) for a.e. on [0, ω] \ Tm0 and relation (2) for
every l ∈ {1, . . . ,m0}.

Definition 1. Let ℓ : Cs([0, ω],Rn;Tm0
) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0

) → Rn
+ be, respectively,

a linear continuous and a positive homogeneous operators. We say that a pair (P, J), consisting of
a matrix-function P ∈ Car([0, ω] × Rn,Rn×n) and a continuous with respect to the last n-variables
operator J : Tm0 ×Rn → Rn, satisfies the Opial condition with respect to the pair (ℓ, ℓ0) if:

(a) there exist a matrix-function Φ ∈ L([0, ω],Rn×n
+ ) and constant matrices Ψl ∈ Rn×n (l =

1, . . . ,m0) such that

|P (t, x)| ≤ Φ(t) a.e. on [0, ω], x ∈ Rn,

|J(τl, x)| ≤ Ψl for x ∈ Rn (l = 1, . . . ,m0);
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(b)

det(In×n +Gl) ̸= 0 (l = 1, . . . ,m0) (4)

and the problem

dx

dt
= A(t)x a.e. on [0, ω] \ Tm0

, (5)

x(τl+)− x(τl−) = Gl x(τl) (l = 1, . . . ,m0), (6)
|ℓ(x)| ≤ ℓ0(x) (7)

has only the trivial solution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices
Gl, . . . , Gm0

for which there exists a sequence yk ∈ C̃([0, ω],Rn;Tm0
) (k = 1, 2, . . . ) such that

lim
k→+∞

t∫
0

P (τ, yk(τ)) dτ =

t∫
0

A(τ) dτ uniformly on [0, ω],

lim
k→+∞

J(τl, yk(τl)) = Gl (l = 1, . . . ,m0).

Remark 1. In particular, condition (4) holds if ∥Ψl∥ < 1 (l = 1, . . . ,m0).

As above, we assume that f = (fi)
n
i=1 ∈ Car([0, ω] × Rn,Rn×n) and, in addition, f(τl, x) is

arbitrary for x ∈ Rn (l = 1, . . . ,m0).
Let x0 be a solution of problem (1), (2); (3), and r be a positive number. Let us introduce the

following definition.

Definition 2. The solution x0 is said to be strongly isolated in the radius r if there exist matrix- and
vector-functions P ∈ Car([0, ω] × Rn,Rn×n) and q ∈ Car([0, ω] × Rn,Rn), continuous with respect
to the last n-variables operators J,H : Tm0

× Rn → Rn, linear continuous ℓ and ℓ̃ and a positive
homogeneous ℓ0 operators acting from Cs([0, ω],Rn;Tm0

) into Rn such that

(a) the equalities

f(t, x) = P (t, x)x+ q(t, x) for t ∈ [0, ω] \ Tm0
, ∥x− x0(t)∥ < r,

I(τl, x) = J(τl, x)x+H(τl, x) for ∥x− x0(τl)∥ < r (l = 1, . . . ,m0),

x(0) + x(ω) = ℓ(x) + ℓ̃(x) for x ∈ U(x0; r)

are valid;

(b) the functions α(t, ρ) = max{∥q(t, x)∥ : ∥x∥ ≤ ρ}, β(τl, ρ) = max{∥H(τl, x)∥ : ∥x∥ ≤ ρ} (l =

1, . . . ,m0) and γ(ρ) = sup{[|l̃(x)| − l0(x)]+ : ∥x∥s ≤ ρ} satisfy the condition

lim
ρ→+∞

1

ρ

(
γ(ρ) +

ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0; (8)

(c) the problem

dx

dt
= P (t, x)x+ q(t, x) a.e. on [0, ω] \ Tm0

,

x(τl+)− x(τl−) = J(τl, x(τl))x(τl) +H(τl, x(τl)) (l = 1, . . . ,m0);

ℓ(x) + ℓ̃(x) = 0

has no solution different from x0;

(d) the pair (P, J) satisfies he Opial condition with respect to the pair (ℓ, ℓ0).
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Remark 2. If ℓ(x) ≡ x(0) + x(ω) and ℓ0(x) ≡ 0, then we say that the pair (P, J) satisfies the Opial
ω-antiperiodic condition. In this case, condition (7) coincides with condition (3), and ℓ̃(x) ≡ 0 and
γ(ρ) ≡ 0 in Definitions 1 and 2.

Definition 3. We say that a sequence (fk, Ik) (k = 1, 2, . . . ) belongs to the set Wr(f, I;x
0) if:

(a) the equalities

lim
k→+∞

t∫
0

fk(τ, x) dτ =

t∫
0

f(τ, x) dτ uniformly on [0, ω],

lim
k→+∞

Ik(τlk, x) = I(τl, x) (l = 1, . . . ,m0)

are valid for every x ∈ D(x0; r);

(b) there exist a sequence of functions ωk ∈ M([a, b]× R+,R+) (k = 1, 2, . . . ) such that

sup
{ ω∫

0

ωk(t, r) dt : k = 1, 2, . . .

}
< +∞, (9)

sup
{ m0∑

l=1

ωk(τlk, r) : k = 1, 2, . . .

}
< +∞; (10)

lim
s→0+

sup
{ ω∫

0

ωk(t, s) dt : k = 1, 2, . . .

}
= 0, (11)

lim
s→0+

sup
{ m0∑

l=1

ωk(τlk, s) : k = 1, 2, . . .

}
= 0; (12)

∥fk(t, x)− fk(t, y)∥ ≤ ωk(t, ∥x− y∥) for t ∈ [0, ω] \ Tm0 , x, y ∈ D(x0; r) (k = 1, 2, . . . ),

∥Ik(τlk, x)− Ik(τlk, y)∥ ≤ ωk(τlk, ∥x− y∥) for x, y ∈ D(x0; r) (l = 1, . . . ,m0; k = 1, 2, . . . ).

Remark 3. If for every natural m there exists a positive number νm such that ωk(t,mδ) ≤ νmωk(t, δ)
for δ > 0, t ∈ [0, ω] \ Tm0 (k = 1, 2, . . . ), then estimate (9) follows from condition (11); analogously,
if ωk(τlk,mδ) ≤ νmωk(τlk, δ) for δ > 0 (l = 1, . . . ,m0; k = 1, 2, . . . ), then estimate (10) follows from
condition (12). In particular, the sequences of functions

ωk(t, δ) = max
{
∥fk(t, x)− fk(t, y)∥ : x, y ∈ U(0, ∥x0∥+ r), ∥x− y∥ ≤ δ

}
for t ∈ [0, ω] \ Tm0

(k = 1, 2, . . . ),

ωk(τlk, δ) = max
{
∥Ik(τlk, x)− Ik(τlk, y)∥ : x, y ∈ U(0, ∥x0∥+ r), ∥x− y∥ ≤ δ

}
(l = 1, . . . ,m0; k = 1, 2, . . . )

have the latters properties, respectively.

Definition 4. Problem (1), (2); (3) is said to be (x0; r)-correct if for every ε ∈ ]0, r[ and (fk, Ik)
+∞
k=1 ∈

Wr(f, I;x
0) there exists a natural number k0 such that problem (1k), (2k) has at last one ω-antiperiodic

solution contained in U(x0; r), and any such solution belongs to the ball U(x0; ε) for every k ≥ k0.

Definition 5. Problem (1), (2); (3) is said to be correct if it has a unique solution x0 and is (x0; r)-
correct for every r > 0.

Theorem 1. If problem (1), (2); (3) has a solution x0 strongly isolated in the radius r, then it is
(x0; r)-correct.



158 Malkhaz Ashordia

Theorem 2. Let the conditions

∥f(t, x)− P (t, x)x∥ ≤ α(t, ∥x∥) a.e. on [0, ω] \ Tm0 , x ∈ Rn, (13)
∥I(τl, x)− J(τl, x)x∥ ≤ β(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0), (14)
|x(0) + x(ω)− ℓ(x)| ≤ ℓ0(x) + ℓ1(∥x∥s) for x ∈ BV([0, ω],Rn) (15)

hold, where ℓ : Cs([0, ω],Rn;Tm0) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0) → Rn
+ are, respectively, a linear

continuous and a positive homogeneous operators, the pair (P, J) satisfies the Opial condition with
respect to the pair (ℓ, ℓ0); α ∈ Car([0, ω] × R+,R+) and β ∈ C(Tm0

× [0, ω],R+) are the functions,
nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0. (16)

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Theorem 3. Let conditions (13)–(15),

P1(t) ≤ P (t, x) ≤ P2(t) a.e. on [0, ω] \ {τ1, . . . , τm0
}, x ∈ Rn, (17)

J1l ≤ J(τl, x) ≤ J2l for x ∈ Rn (l = 1, . . . ,m0) (18)

hold, where P ∈ Car0([0, ω] × Rn,Rn×n), Pi ∈ L([0, ω],Rn×n), Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0);
ℓ : Cs([0, ω],Rn;Tm0) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0) → Rn

+ are, respectively, a linear continuous
and a positive homogeneous operators; α ∈ Car([0, ω] × R+,R+) and β ∈ C(Tm0 × [0, ω],R+) are
the functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such
that condition (16) holds. Let, moreover, condition (4) hold and problem (5), (6); (7) have only the
trivial solution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices Gl ∈ Rn×n

(l = 1, . . . ,m0) such that

P1(t) ≤ A(t) ≤ P2(t) a.e. on [0, ω] \ Tm0
, x ∈ Rn, (19)

J1l ≤ Gl ≤ J2l for x ∈ Rn (l = 1, . . . ,m0). (20)

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.

Remark 4. Theorem 3 is interesting only in the case where P /∈ Car([0, ω]×Rn,Rn×n), because the
theorem follows immediately from Theorem 2 in the case where P ∈ Car([0, ω]× Rn,Rn×n).

Theorem 4. Let conditions (15),

|f(t, x)− P (t)x| ≤ Q(t) |x|+ q(t, ∥x∥) a.e. on [0, ω] \ Tm0
, x ∈ Rn, (21)

|Il(x)− Jl x| ≤ Hl |x|+ h(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0) (22)

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl ∈ Rn×n and Hl ∈ Rn×n

+ (l = 1, . . . ,m0)
are the constant matrices, ℓ : Cs([0, ω],Rn;Tm0) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0) → Rn

+ are,
respectively, a linear continuous and a positive homogeneous operators; q ∈ Car([0, ω] × R+,Rn

+)
and h ∈ C(Tm0

× R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable, and

ℓ1 ∈ C(R,Rn
+) is a vector-function such that the condition

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

ω∫
0

∥q(t, ρ)∥ dt+
m0∑
l=1

∥h(τl, ρ)∥
)

= 0 (23)

holds. Let, moreover, the conditions

det(In×n + Jl) ̸= 0 (l = 1, . . . ,m0) (24)
∥Hl∥ · ∥(In×n + Jl)

−1∥ < 1 (j = 1, 2; l = 1, . . . ,m0) (25)
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hold and the system of impulsive inequalities∣∣∣dx
dt

− P (t)x
∣∣∣ ≤ Q(t)x a.e. on [0, ω] \ Tm0

, (26)∣∣x(τl+)− x(τl−)− Jlx(τl)
∣∣ ≤ Hl|x(τl)| (l = 1, . . . ,m0) (27)

have only the trivial solution satisfying condition (7). Then problem (1), (2); (3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.
Corollary 1. Let the conditions

|f(t, x)− P (t)x| ≤ q(t, ∥x∥) a.e. on [0, ω] \ Tm0 , x ∈ Rn, (28)
|I(τl, x)− Jlx| ≤ h(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0), (29)

|x(0) + x(ω)− ℓ(x)| ≤ ℓ1(∥x∥s) for x ∈ BV([0, ω],Rn) (30)

hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices satisfying
condition (24), ℓ : Cs([0, ω],Rn;Tm0

) → Rn is the linear continuous operator; q ∈ Car([0, ω]×R+,Rn
+)

and h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-functions, nondecreasing in the second variable, and
ℓ1 ∈ C(R,Rn

+) is a vector-function such that condition (23) holds. Let, moreover, the problem

dx

dt
= P (t)x a.e. on [0, ω] \ Tm0 , (31)

x(τl+)− x(τl−) = Jl x(τl) (l = 1, . . . ,m0); (32)
ℓ(x) = 0. (33)

have only the trivial solution. Then problem (1), (2); (3) is solvable. If, moreover, the problem has a
unique solution, then it is correct.
Remark 5. Let Y = (y1, . . . , yn) be a fundamental matrix, with columns y1, . . . , yn, of system
(31), (32). Then the homogeneous boundary value problem (31), (32); (33) has only the trivial solution
if and only if

det(ℓ(Y )) ̸= 0, (34)
where ℓ(Y ) = (ℓ(y1), . . . , ℓ(yn)).

If the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ condition, then the fundamental matrix Y
(Y (0) = In×n) of the homogeneous system (31), (32) has the form

Y (t) ≡ exp
( t∫

0

P (τ) dτ

)
·

∏
0≤τl<t

(In×n + Jl).

Theorem 5. Let the conditions∣∣f(t, x)− f(t, y)− P (t)(x− y)
∣∣ ≤ Q(t)|x− y| a.e. on [0, ω] \ Tm0 , x, y ∈ Rn, (35)∣∣I(τl, x)− I(τl, y)− Jl · (x− y)
∣∣ ≤ Hl|x− y| for x, y ∈ Rn (k = l, . . . ,m0), (36)∣∣x(0)− y(0) + x(ω)− y(ω)− ℓ(x− y)
∣∣ ≤ ℓ0(x− y) for x, y ∈ BV([0, ω],Rn)

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl ∈ Rn×n and Hl ∈ Rn×n

+ (l = 1, . . . ,m0)
are the constant matrices satisfying conditions (24) and (25), ℓ : Cs([0, ω],Rn;Tm0

) → Rn and
ℓ0 : Cs([0, ω], Rn;Tm0

) → Rn
+ are, respectively, linear continuous and positive homogeneous contin-

uous operators. Let, moreover, problem (26), (27); (7) have only the trivial solution. Then problem
(1), (2); (3) is correct.
Corollary 2. Let there exist a solution x0 of problem (1), (2); (3) and a positive number r > 0 such
that the conditions∣∣f(t, x)− f(t, x0(t))− P (t)(x− x0(t))

∣∣ ≤ Q(t)|x− x0(t)| a.a. [0, ω] \ Tm0
, ∥x− x0(t)∥ < r,∣∣I(τl, x)− I(τl, x

0(τl))− Jl · (x− x0(τl))
∣∣ ≤ Hl|x− x0(τl)| for ∥x− x0(τl)∥ < r (l = l, . . . ,m0),∣∣x(0)− x0(0) + x(ω)− x0(ω)− ℓ(x− x0)

∣∣ ≤ ℓ∗(|x− x0|) for x ∈ U(x0, r)



160 Malkhaz Ashordia

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl and Hl ∈ Rn×n (l = 1, . . . ,m0) are

the constant matrices satisfying conditions (24) and (25), ℓ : Cs([0, ω],Rn;Tm0
) → Rn and ℓ∗ :

Cs([0, ω],Rn;Tm0
) → Rn

+ are, respectively, linear continuous and positive homogeneous continuous
operators. Let, moreover, the system of impulsive inequalities∣∣∣dx

dt
− P (t)x

∣∣∣ ≤ Q(t)x a.e. on [0, ω] \ Tm0
,∣∣x(τl+)− x(τl−)− Jl · x(τl)

∣∣ ≤ Hl · x(τl) (l = 1, . . . ,m0)

have only the trivial solution under the condition |ℓ(x)| ≤ ℓ∗(|x|). Then problem (1), (2); (3) is (x0; r)-
correct.
Corollary 3. Let the components of the vector-functions f and Il (l = 1, . . . , n) have partial derivatives
by the last n variables belonging to the Carathéodory class Car([0, ω]×Rn,Rn). Let, moreover, x0 be
a solution of problem (1), (2); (3) such that the condition

det
(
In×n +Gl(x

0(τl))
)
̸= 0 (l = 1, . . . ,m0)

hold and the system
dx

dt
= F (t, x0(t))x almost everywhere on [0, ω] \ Tm0

,

x(τl+)− x(τl−) = Gl(x
0(τl)) · x(τl) (l = 1, . . . ,m0);

ℓ(x) = 0,

where F (t, x) ≡ ∂f(t,x)
∂x and Gl(x) ≡ ∂Il(x)

∂x , have only the trivial solution under condition (3). Then
problem (1), (2); (3) is (x0; r)-correct for any sufficiently small r.

In general, it is rather difficult to verify condition (34) directly even in the case if one is able to
write out the fundamental matrix of system (31), (32); (33). Therefore, it is important to seek for
effective conditions which would guarantee the absence of nontrivial ω-antiperiodic solutions of the
homogeneous system (31), (32); (33). Below, we will give the results concerning the question. Anal-
ogous results have been obtained in [2] for the general linear boundary value problems for impulsive
systems, and in [12] by T. Kiguradze for the case of ordinary differential equations.

In this connection, we introduce the operators. For every matrix-function X ∈ L([0, ω],Rn×n) and
a sequence of constant matrices Yk ∈ Rn×n (k = 1, . . . ,m0) we put[

(X,Y1, . . . , Ym0
)(t)

]
0
= In for 0 ≤ t ≤ ω,[

(X,Y1, . . . , Ym0
)(0)

]
i
= On×n (i = 1, 2, . . . ),

[
(X,Y1, . . . , Ym0

)(t)
]
i+1

=

t∫
0

X(τ) ·
[
(X,Y1, . . . , Ym0

)(τ)
]
i
dτ

+
∑

0≤τl<t

Yl ·
[
(X,Y1, . . . , Ym0

)(τl)
]
i

for 0 < t ≤ ω (i = 1, 2, . . . ). (37)

Corollary 4. Let conditions (28)–(30) hold, where

ℓ(x) ≡
ω∫

0

dL(t) · x(t),

P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices satisfying condition (24),
L ∈ L([0, ω],Rn×n); q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-functions
nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that condition (23)
holds. Let, moreover, there exist natural numbers k and m such that the matrix

Mk = −
k−1∑
i=0

ω∫
0

dL(t) ·
[
(P, Jl, . . . , Jm0

)(t)
]
i
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is nonsingular and
r(Mk,m) < 1, (38)

where the operators [(P, J1, . . . , Jm0)(t)]i (i = 0, 1, . . . ) are defined by (37), and

Mk,m =
[(
|P |, |J1|, . . . , |Jm0 |

)
(ω)

]
m

+

m−1∑
i=0

[(
|P |, |J1|, . . . , |Jm0 |

)
(ω)

]
i

ω∫
0

dV (M−1
k L)(t) ·

[(
|P |, |J1|, . . . , |Jm0 |

)
(t)

]
k
.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.

Corollary 5. Let conditions (28)–(30) hold, where

ℓ(x) ≡
n0∑
j=1

Ljx(tj), (39)

P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices satisfying condition (24),
tj ∈ [0, ω] and Lj ∈ Rn×n (j = 1, . . . , n0), L ∈ L([0, ω],Rn×n), ℓ : Cs([0, ω],Rn;Tm0

) → Rn is the
linear continuous operator; q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0 × R+;Rn×n
+ ) are the vector-

functions nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn
+) is a vector-function such that

condition (23) holds. Let, moreover, there exist natural numbers k and m such that the matrix

Mk =

n0∑
j=1

k−1∑
i=0

Lj

[
(P, Jl, . . . , Jm0)(tj)

]
i

is nonsingular and inequality (38) holds, where

Mk,m =
[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
m

+
(m−1∑

i=0

[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
i

) n0∑
j=1

|M−1
k Lj | ·

[(
|P |, |Jl|, . . . , |Jm0

|
)
(tj)

]
k
.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.

Corollary 5 for k = 1 and m = 1 has the following form.

Corollary 6. Let conditions (28)–(30) hold, where the operator ℓ is defined by (39), P ∈L([0, ω],Rn×n),
Jl ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices satisfying condition (24), tj ∈ [0, ω] and
Lj ∈ Rn×n (j = 1, . . . , n0); q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-
functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is the vector-function such that
condition (23) holds. Let, moreover,

det
( n0∑

j=1

Lj

)
̸= 0 and r(L0 A0) < 1,

where

L0 = In×n +
∣∣∣( n0∑

j=1

Lj

)−1∣∣∣ · n0∑
j=1

|Lj | and A0 =

ω∫
0

|P (t)| dt+
m0∑
l=1

|Jl|.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.
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Remark 6. If the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ condition, then condition (34)
has the forms

det
( ω∫

0

dL(t) · exp
( t∫

0

P (τ) dτ

)
·

∏
0≤τl<t

(In×n + Jl)

)
̸= 0,

det
( n0∑

j=1

Lj exp
( tj∫

0

P (τ) dτ

)
·

∏
0≤τl<tj

(In×n + Jl)

)
̸= 0

for the operators ℓ defined, respectively, in Corollary 4 and Corollary 5.

By Remark 2, in the case if ℓ(x) ≡ x(0) + x(ω) and ℓ0(x) ≡ 0, the results given above have,
respectively, the following forms.
Theorem 2′. Let conditions (13) and (14) hold, where the pair (P, J) satisfies the Opial ω-antipe-
riodic condition; α ∈ Car([0, ω] × R+,R+) is a function, nondecreasing in the second variable, and
β ∈ C(Tm0 × [0, ω],R+) is nondecreasing in the second variable function such that

lim
ρ→+∞

1

ρ

( ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0. (40)

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is cor-
rect.

Theorem 3′. Let conditions (13), (14), (17), (18) and (40) hold, where P ∈ Car0([0, ω]× Rn,Rn×n),
Pi ∈ L([0, ω],Rn×n), Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0); α ∈ Car([0, ω] × R+,R+) is a function,
nondecreasing in the second variable, and β ∈ C(Tm0

× [0, ω],R+) is nondecreasing in the second
variable function. Let, moreover, condition (4) hold and problem (5), (6); (3) have only the trivial so-
lution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices Gl ∈ Rn×n (l = 1, . . . ,m0)
satisfying conditions (19) and (20). Then problem (1), (2); (3) is solvable. If, moreover, the problem
has a unique solution, then it is correct.

Theorem 4′. Let conditions (21) and (22) hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ),

Jl ∈ Rn× and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are the constant matrices satisfying conditions (24) and

(25), q ∈ Car([0, ω]× R+,Rn
+), and h ∈ C(Tm0 × R+;Rn×n

+ ) are the vector-functions, nondecreasing
in the second variable, such that

lim
ρ→+∞

1

ρ

( ω∫
0

∥q(t, ρ)∥ dt+
m0∑
l=1

∥h(τl, ρ)∥
)

= 0. (41)

Let, moreover, the system of impulsive inequalities (26), (27) have only the trivial solution satisfying
condition (3). Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution,
then it is correct.

Corollary 1′. Let conditions (28), (29) and (40) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n

(l = 1, . . . ,m0) are the constant matrices satisfying condition (24), q ∈ Car([0, ω] × R+,Rn
+) and

h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-functions, nondecreasing in the second variable. Let, more-
over, problem (31), (32), (3) have only the trivial solution. Then problem (1), (2); (3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.

Theorem 5′. Let conditions (35) and (36) hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ),

Jl ∈ Rn×n and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are the constant matrices satisfying conditions (24) and

(25). Let, moreover, problem (26), (27); (7) have only the trivial solution. Then problem (1), (2); (3)
is correct.

Corollary 5′. Let conditions (28), (29) and (41) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l =
1, . . . ,m0) are the constant matrices satisfying condition (24); q ∈ Car([0, ω] × R+,Rn

+) and h ∈
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C(Tm0 × R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,

there exist natural numbers k and m such that the matrix

Mk =

k−1∑
i=0

[
(P, Jl, . . . , Jm0

)(ω)
]
i

is nonsingular and inequality (38) holds, where

Mk,m =
[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
m

+
(m−1∑

i=0

[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
i

)
|M−1

k | ·
[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
k
.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.

Corollary 5′ for k = 1 and m = 1 has the following form.
Corollary 6′. Let conditions (28), (29) and (41) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l =
1, . . . ,m0) are the constant matrices satisfying condition (24); q ∈ Car([0, ω] × R+,Rn

+) and h ∈
C(Tm0

× R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,

r(A0) <
1

2
,

where

A0 =

ω∫
0

|P (t)| dt+
m0∑
l=1

|Jl|.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 7. In the conditions of Corollary 6′, if the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ
condition, then condition (34) has the form

det
(
In×n + exp

( ω∫
0

P (τ) dτ

)
·
m0∏
l=1

(In×n + Jl)

)
̸= 0.

The analogous questions are investigated in [7] for system (1), (2) under the general nonlinear
boundary condition h(x) = 0, where h : C([0, ω],Rn;Tm0

) → Rn is a continuous vector-functional,
nonlinear, in general. The results given in the paper are the particular cases of the results obtained
in [7] for h(x) ≡ x(0) + x(ω).
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