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1 Introduction

Consider the differential equation
y™ = agp(t)y|n Jy||°, (1.1)

where g € {—1,1}, 0 € R, p: [a,w][—]0, +o0[ is a continuous function, —0o < a < w < +ool.
A solution y of the equation (1.1), which is nonzero on the interval [t,,w[C [a,w], is said to be a
P,,(Xo)-solution if it satisfies the following conditions:

ither 0 S (n=1)(£))?
lmy® ) = {0 G, W) (1.2)
ttw or =+ oo thw y(n)(t)y(nﬂ) (t)

We notice that the differential equation (1.1) is a special case of the differential equation of a more
general form

(n)

Y™ = aop(t)e(y),

where ag and p are the same as in the equation (1.1) and ¢ : Ay, —]0,400[ is a continuous and
regularly varying function as y — Y{ of the order v, Yj is equal either to zero or to oo, Ay, is some
one-sided neighborhood of Y.

The differential equation (1.1) belongs to the class of two-term non-autonomous equations with
regularly varying nonlinear function ¢(y) as y — 0 and y — +oco. In recent decades, the asymptotic
theory of such equations has been studied by many authors (see, e.g., monograph by V. Maric [8] and
the references therein concerning the second order equation; see also the papers by V. M. Evtukhov,
A. M. Samoilenko [6] and by V. M. Evtukhov, A. M. Klopot [4] for differential equations of order n).

In [6] and [4], for the two-term differential equations of n-th order with regularly varying nonlinear
function ¢(y) as y — 0 and y — +oo, the authors obtained asymptotic representation for all possible
types of P, (\g)-solutions and their derivatives up to the order n — 1, inclusive. However, the results
of these works do not cover the case where ¢(y) = y|ln|y||? is a regularly varying function of order
one. By such nonlinearity of the equation (1.1), not being a substantially non-linear, and due to the
asymptotic relation ¢(y) = 't as y — 0 (£00), the differential equation is asymptotically close
to the linear differential equation

y™ = agp(t)y, (1.3)

and therefore is of theoretical interest.

In [3], for the equation (1.1), the asymptotic behavior of F,,(Ag)-solutions as ¢ 1 w was investigated
when Ao € R\ {0,3,..., 22},

The aim of the present paper is to establish the existence conditions of P, (\g)-solutions of the
equation (1.1) in case Ag = 0, and to obtain asymptotic representations as ¢ T w for all such solutions

and their derivatives up to order n — 1, inclusive.

2 Auxiliary statements

To obtain our main results we need two lemmas, the first one is related to a priori asymptotic properties
of P, (0)-solutions and the other is about the existence of vanishing at a singular point solutions of a
system of quasi-linear differential equations.
To state the first one, we introduce the function
t—w if w<+oo.

From Lemma 10.6 introduced in [2, Ch. 3, § 10, pp. 143-144] we get the following statement.

1We assume that a > 1 for w = 400 and w — a < 1 for w < +o0.
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Lemma 2.1. Ifn > 2, then each P,,(0)-solution of the differential equation (1.1) satisfies the following
asymptotic relation ast T w:

- [ ()" _ T )|
y B () ~ my( D) (k=1,...,n—2), y" ()= O(T(t))’ (2.1)

and in case ltle % (finite or equal to +00) exists, the following relation holds:
w

y (1)
Ty (t)

y ™ (t) ~ — as t T w. (2.2)

Next, we consider a system of quasi-linear differential equations

Vg, h(t)[fk(t,vh...,vn)+Zc;ﬂ~v,} (k=1,n-1),
= (2.3)

v, = H(t) [fn(t,vl, ceeyUp) F Zcmvi},
i=1

in which ¢;; € R (k,i = 1,n), h, H : [to,w][— R\ {0} are continuously differentiable functions, and
fi t [to,w[ xR% (k= 1,n) are continuous functions satisfying the condition
2

ltiTmfk(t,vl, ...y 0y) =0 uniformly in (vq,...,v,) € RY, (2.4)
w 2

where )
1={0n v R <5 (=Tw)}.

[N

By Theorem 2.6 from [5] for the system of differential equations (2.3) the following lemma holds.

Lemma 2.2. Let the functions h and H satisfy the conditions

lim h—t)f /H )dr = %00, 1tiTrng(t)(M)/o.

Moreover, suppose the matrices C,, = (Cki)z,i=1 and Cp,_1 = (CkZ)Z;il are such that det C,, # 0 and

Crn-1 has no eigenvalues with zero real part. Then the system of differential equations (2.3) has at

least one solution (vg)y_q : [t1,w[[RY (t1 € [to,w]) that tends to zero as t T w. Furthermore, if among
2

the eigenvalues of matriz C,_1 there are m eigenvalues (taking into account the multiplicity) whose
real parts have a sign opposite to that of the function h(t) on the interval [to,w[, then if the inequality
H(t)(det Cy,)(det Cy,—1) > 0 holds on [tg,w], there exist m-parameter solutions of the system (2.3),
and there exists an m + 1-parameter family when the opposite inequality holds.

3 Main results

In order to formulate the main results, let us introduce the following auxiliary functions:

t

Put) = / p(r)dr, P(t) = / Pu(r) dr,
Ay

Ay

JA(t)=/p(T)W£_2(T)|lnlm(T)II"dT, I(t)=/JA(T) dr
A a



Asymptotic Representations of One Class of Solutions of n-th Order Nonautonomous ODE 5

where
a, if /p(T) dr = +o0, a, if /|P1(7')\ dr = +o0,
A1 = %y A2 = %
w, if /p(r) dr < o0, w, if /|P1(7')\ dr < oo.

o if ]/p<7nﬂ@<vn”*2un\wwwﬁnodr::4+oo,
A= @,
. if /p(T)\m(T)w-?\ In |y (7|7 dr < +o0.

a

When n = 2, i.e., in the case of a second order differential equation, the conditions of the existence
and asymptotic behavior of P, (0)-solutions were obtained in [1].

Theorem 3.1. Let n = 2 and o # 1, then the differential equation (1.1) has P, (0)-solutions if and
only if the following conditions hold:

PE(t)| Po(t)| ™7

1
lim | Py (t)| T = lim ——— = 1
lim [ P(2)) oo, lim o0 0, (3.1)
Moreover, each of these solutions admits the following asymptotic representations as t T w:
y'(t)

In|y(t)] = pl(1 = o) Po(t)| 77 [1 + o(1)], = agPi()|(1 — o) Pa(1)| 7 [1 + o(1))], (3-2)

y(t)

where pu = agsign[(1 — o) Pa(t)]. Furthermore, if the conditions (3.1) are valid, then the differential
equation (1.1) has a one-parametric (two-parametric) family of such solutions in the case where A} = w

(A1 = a).
For the case n > 2, the following theorem holds.

Theorem 3.2. Let n > 3 and suppose that

EROAD

tTw JA (t) (33)

exists (finite or equal to +00). Then the differential equation (1.1) has P, (0)-solutions if and only if
the following conditions hold:

. 3 Tt Ty () : _
limm, (t)J4(t) =0, lim O L dimI(t) = oo, (3.4)

and each of these solutions admits the following asymptotic representations ast T w:

O NINEA0) S

y(n—z)(t) = (n —k— 1)| [1 + 0(1)] (k =1,n-— 2)7 (35)
inly 20| = 22 01+ o(1)], (36)
v _ ol =27 o), 37

yr=A(t) - (n—2)!

Moreover, when the conditions (3.4) are satisfied, the differential equation (1.1) has an n—1-parametric
family of solutions that admits asymptotic representations (3.5)—(3.7) as t T w in case w = +o0, and
it has two-parametric family of solutions with such representations in case w < +00.
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Proof. Necessity. Let y : [t,,w[— R be an arbitrary P, (0)-solution of the equation (1.1). Then by
the definition of P, (Ag)-solution there exists ¢y € [t,,w[ such that In|y(¢)| # 0 on the interval [t,w]
and, by Lemma 2.1, the asymptotic relations (2.1) hold. According to the first asymptotic relation of
(2.1), we have the asymptotic representations (3.4) from which, in particular, we get

n—2 n—3
)~ B0, /0~ Ty D) as o1
This implies that
y(t) n-2
o6 " ST

and therefore
In|y(t)| ~ (n —2)In|7,(t)| as t 1T w.

By virtue of these asymptotic relations, from (1.1) we get

V) = G P 2Ol = 2 I Iy PO + (1) as 11w
o Y1) aoln — 27 p(H)mn 2 (1) )
SR () =2 [In |7, (6)]|7[1 + 0o(1)] as t 1T w. (3.8)
Since

(y‘”‘”(t))’ _y) [1 Ok
ynm2A)) g () ym (£)y =2 (t)
and, by the definition of P, (0)-solution,

(n—1) 2
lim O (t)z] =0,
Sy @Dy

we have

(y("‘”(t))’ AR
yr @),y
Therefore, the asymptotic relation (3.8) can be written as

as t T w.

(y("_l)(t)>’ _ aoln —2[7p(t)m ()
yn =2 (t) (n—2)!

Integrating this relation from ¢y to t, we obtain

[In |7, (O)]|7[1 + o(1)] as t 1 w.

t
(n—1) t __9|o
Y ) _ a0|n 2| n—2 o
m =co+ W p(r)my ()| I e (7)[[7[1 + o(1)] dT, (3.9)
to
where ¢ is a constant, or taking into account the choice of limit integration A in the function J4, we
get
y" () agln — 2|7

Yy D (5) =c+ mjA(t)[l +o(1)] as ttw,

where
2|17 i
e= o+ S o2l (7T + o) dr
(n —2)!
to

In the case where A = a, the integral on the right-hand side of (3.9) tends to +o00 as ¢ T w, and then
(3.9) can be written as

YD) _ agln— 2|7

y= D) (n—-2)!

Jat)[1+0(1)] as ¢t T w. (3.10)
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We will show that in case A = w, when the integral on the right-hand side of (3.9) tends to zero as
t 1 w, the relation (3.10) also holds, i.e., ¢ = 0. Indeed, if ¢ # 0, then from (3.9) we have

y(nfl) (t

Mzc—ko(l) as tTw

This representation for w = +oo (i.e., 7, (t) = ) contradicts the last relation of (2.1), and if w < +o0,
by integration we obtain

In|y™=2@t)| =c1+0(1) as tTw (c1 = const),

which is in contradiction with the first condition of (2.1) (when k = n — 2).

Therefore, in each of two possible cases under consideration the asymptotic relation (3.10) holds,
that is, (3.7) holds, and by the use of the last asymptotic relation of (2.1), the first condition of (3.4)
is satisfied.

Moreover, from (3.10) and (3.8) it follows that

y™() _ Ja(t)

()~ g O] as T

Then
Tty (1) _ m(t) T4 ()
ynmO(@) o Ja(t)
and, by virtue of the existence of the limit (3.3) (finite or equal to £00) and using Lemma 2.1, we

conclude that (2.2) holds, whereby from (3.11) follows the validity of the second condition of (3.4).
Finally, integrating (3.10) from ¢y to t we get

l1+0(1)] as tTw (3.11)

OH / Ja(7)[L + o(1)] dr.

to

Infy" =2 ()] = c+

Since, by the definition of P, (0)-solutions, gm In|y™=2)(t)] = +oo, the third condition of (3.4) is

fulfilled and it can be written as (3.6).

Sufficiency. Let n > 3 and the conditions (3.4) hold. We will show that in this case the differential
equation (1.1) has P, (0)-solutions admitting asymptotic representations (3.5)—(3.7) as t T w, and we
find out the quantities of solutions with such representations.

Since (40
To(t)Jalt
molt) () = =0 1),
from the conditions (3.4) we get
o my(t)Ja(t)
lim ————= =0. 12
R (O R (3.12)
Moreover, by the L’Hospital rule,
I(t) .
Y limay, (t)Ja(t) = 0. 3.13
T @]  om (1) Ja(t) (3:13)

Applying now to the equation (1.1) transformations

(k—1) T n—k—1
:Z(nQ)Ei; = [(TL (_t)]l _ 1)] [1 + vk(t)] (k =1ln- 2)7
(n—1) anln — 2l°
o~ 0l B+ a0 .14
Il (1)) = 2" =27 riyn 40,
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we obtain the system of differential equations

n—k—1

U;c = T(t) (UkJrl - vk) - OHT JA(t)(l +'Uk)(1 + 'Unfl) (k = m)v
0272::__;ZE5 __azgl—éif'JA(Q(14-vn_2)(1+—vn_1L
T (DO e
ALY W@t u)l7 | agn—2l° IO +v) |
T T T e s 14 )
Q) Ja(t)
vl = ;@ (14 vn_1) — ;@ (14 vy).
We set
_ 1 _ Jalt)
N (O
() = B 0a(0). ) = =0 o,
(t) = aoln =21 It In | - E 5|

(n—2)(n—2) In|r,(t)]’ Oa(t,v1) = (n—2)In|m ()]’

and rewrite this system in the form

v, = h(t)[fe(t,v1,...,vn) = (n—k = Dvg + (n —k — Dogya] (k=1,n—3),

Oy = h(t)[fa—2(t,v1,. .. vn)—vn,g],

Uy = B[ fa1 (b 01,y 0m) — 01 + Vn 1], (3.15)
vy, = H(t)[vn-1 —vn),

where

fk(tavla"'vvn) 52(t)(1+vk)(1+vn—l) (k:m),
fn_g(t,vl, e ,Un) = (51(t)(1 + Un_1)2 — 52(t)(1 + ’Un_l)7
fn,l(t,vl, . ,Un) = 51(t>(1 + Unfl)(l + Uy 1) - 52(t)(1 + ’Unfl)

(4 (1) S3(t) (1 + vy,)
SR s sy LR ICE Hm

|

Here, by the conditions (3.4) and (3.13),

lim&i(t) =0 (i=1,2,3) (3.16)

and

11
lim 04 (t,v,) = 0 uniforml €l-55)
tl/rrg 4(t,v1) uniformly in vq )
Taking into account these limit relations, we choose a number ¢ €]
lv1] < %, |vg| < § the inequalities

(3.17)
w[ such that for ¢ € [ty,w[ and

1831 +vn)
2 ’ 1+64(t,1)1)

hold. Next, we consider the system (3.15) on the set

1
< Z
-2

1 N
Q = [to,w[ xRY, where R} = {(vl,...wn) eR™: |y < 3 i= 1,n}.
2 2
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The right-hand sides of (3.15) are continuous on this set, the functions h, H are continuously differ-
entiable on the interval [tg,w|, and by the conditions (3.16), (3.17),

ltiTmfk(t,vl7 ..., Up) = 0 uniformly in (v1,...,v,) € RT.

w 2

Hence, the system of differential equations (3.15) is a quasilinear system of differential equations of
the type (2.3).

We show that for (3.15) all conditions of Lemma 2.2 are satisfied.
By virtue of the definition of functions I and J4,

t
/H(T)dTwln\JA(tﬂ — 400 as tTw.

Moreover,
H({t) _ mo(t)Ja(t) 1 (H (t)>’ o Te@JA()  mu(t)Jalt)
h(t) I(t) 7 H(t) \h(t) Jal(t) I(t)

and therefore, in view of the second conditions of (3.4) and (3.12), we obtain

H(t)_0 , 1 (H(t))’:

li =
e h() 7 the H(D)

h(t)
Thus the conditions (2.4) of Lemma 2.2 are satisfied for the system (3.15).

The matrices Cp,—1 and C,, of dimension (n — 1) x (n — 1) and n x n (respectively) from Lemma
2.2, in the case of the system of differential equations (3.15), have the form

—(n—-2) n-2 0 ... 0 0 O
0 ~(n—3) n-3 0 0 0
0 0 —(n—4) 0 0 0
Chq = : : : . : C C, = (Cn_l O”‘1>
n . . . . . . . ’ n €n—1 71 )
0 0 0 -2 2 0
0 0 0 0O -1 0
—1 0 0 0 0 1

where 0,,_1 is a zero column vector of dimension n — 1 and e, _; is a unit row vector of dimension
n — 1 with the last component equal to one.
These matrices are such that

detC,_1 = (—=1)"2(n—2)!, detC, = (—1)""*(n—2)!

and
det[C1 = pBus] = (1) H(p+n—2)(p+n—3)-(p+ 1)(p— 1),

where E,,_; is the identity matrix of dimension (n — 1) x (n — 1). Hence, in particular, we get that
the matrix C},_; has n — 1 nonzero real eigenvalues from which n —2 are negative and one is positive.

Thus, for (3.15) the conditions of Lemma 2.2 are satisfied. According to this lemma, (3.15) has at
least one solution (vg)7_; @ [t1,w][— R" (t1 € [to,w[), which tends to zero as t 1 w. Moreover, among
the eigenvalues of the matrix C,,_1 we have n — 2 positive and one negative, and det C,, det C,,_1 < 0.
By Lemma 2.2, if the inequality h(t) > 0 (resp., h(¢t) < 0) holds on the interval [to,w[, then (3.15)
has (n — 2)-parametric (resp., one-parametric) family of solutions vanishing at w in case H(t) < 0 on
[to,w[, and n — 1-parametric (resp., two-parametric) family of solutions in case H(t) > 0 on [to,w].

For the final conclusion on a number of vanishing solutions, as ¢ 1 w, of the system (3.15) it is
necessary to determine the signs of functions h and H on [to,w].

Since h(t) = 7 1(t), by the definition of 7, we have

1 if w=+4o0,
-1 if w< +o0.

sign h(t) = {
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For the function H, according to the definition of I we have

H(t) =

Jal(t Jal(t
alt) _ t"‘()' >0 if t € [to,w].
I(t)  [MJa(r)|dr
Using the obtained sign conditions for the functions A and H, we arrive at the following final conclusions
about a number of vanishing solutions as t T w for the system of differential equations (3.15):

(1) if w = +o0, then the system of differential equations (3.15) has n — l-parametric family of
vanishing solutions as t — +o0;

(2) if w < 400, then the system of differential equations (3.15) has two-parametric family of van-
ishing solutions as ¢t T w.

Using the substitution (3.14), every solution (vi)}_; : [t1,w[— R™ of (3.15) which tends to zero
corresponds to a solution y : [t1,w[— R of the differential equation (1.1) which admits as ¢ T w the
asymptotic representations (3.5)—(3.7). Using these representations and the condition (3.4), it is not
difficult to see that each such solution is P,,(“*=1)-solution of (1.1). O

n

Remark 3.3. When checking the fulfillment of the conditions (3.4), we may consider that owing to
the first of these conditions, the second and third conditions are equivalent, respectively, to

w

%iTmp(t)ﬂZ(tﬂ In |7, (¢)]|” =0 and /p(t)|7rw(t)|”71| In |7, (¢)]|7 dt = +oo.

a

Finally, pay attention to the fact that Theorem 3.2 covers the case o = 0, that is, when the
equation (1.1) is a linear differential equation of the form (1.3).
For (1.3), by Theorem 3.2 and with regard for Remark 3.3, the following corollary holds.

Corollary 3.4. Let n > 3 and suppose that the limit (3.3) exists (finite or equal to £00). Then the
linear differential equation (1.3) has P, (0)-solutions if and only if the following conditions hold:

7.rn71 “
lm " O  _ / mu (P p(r) dr = o0, lm(B)p(t) = 0, (3.18)
A[WZ_Q(T)p(T) dr o

and for each such solution the following asymptotic representations take place ast 1 w:

y4 00 ()

Y = ey o] (=T —2), (3.19)
Iy (0] = ~ =2 [ ) () drl+ (1), (3.20)

(n—1) o

v 0 Ol + ol (3:21)

I T (-2

Moreover, when the conditions (3.18) are satisfied, the differential equation (1.3) has n — 1-parametric
family of P, (0)-solutions with the representations (3.19)—(3.21) in case w = 400, and in case w < 00
(1.3) has two-parametric family.

This corollary in case w = 400 complements the results for linear differential equations with
asymptotically small coefficients given in [7, Ch. 1, Section 6, pp. 184-186].
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Abstract. In this paper, by applying a reversible three-term recurrence formula (R3TRF) (see [13,
Chapter 1]), we construct:

(1) power series expansions in closed forms of the grand confluent hypergeometric (GCH) equation,

(2) its integral forms for an infinite series and a polynomial which makes the leading non-constant
coefficient on the RHS of the recurrence relation terminated,

(3) generating functions for GCH polynomials which makes the leading coefficient on the RHS
terminated.
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1 Introduction

The equation

d*y 2 dy
x@—f—(um’ +5m+u)£+(9$+€w)y—0 (1.1)

is the grand confluent hypergeometric (GCH) differential equation where u, €, v, Q and w are real
or complex parameters [9,11]. The GCH ordinary differential equation is of Fuchsian types with
two singular points: one regular singular point which is zero with exponents {0,1 — v}, and another
irregular singular point which is infinity with an exponent /u. In contrast, the Heun equation
of Fuchsian types has four regular singularities. The Heun equation has four kinds of confluent
forms [20]: (1) confluent Heun (two regular and one irregular singularities), (2) doubly confluent
Heun (two irregular singularities), (3) biconfluent Heun (one regular and one irregular singularities),
(4) triconfluent Heun equations (one irregular singularity).

The BCH equation is derived from the GCH equation by changing all coefficients* [36]. The GCH
(or BCH) equation is applicable in the modern physics [1,21,22,35,37]. The BCH equation appears in
the radial Schrodinger equation with those potentials such as the rotating harmonic oscillator [30], the
doubly anharmonic oscillator [6,7,23], a three-dimensional anharmonic oscillator [17,18,23], Coulomb
potential with a linear confining potential [23,34] and other kinds of potentials [24, 25].

The fundamental solutions of the BCH equation for an infinite series and the BCH spectral
polynomials about x = 0 in the canonical form were obtained by applying the power series expan-
sion [2,15,19,39]. For the case of the irregular singular point x = oo, the three-term recurrence of the
power series in the BCH equation was derived [26,31], and the analytic solution of the BCH equation
was left as solutions of recurrences due to a 3-term recursive relation between successive coefficients in
its power series expansion of the BCH equation.t In comparison with the two term recursion relation
of the power series in a linear differential equation, analytic solutions in closed forms on the three-term
recurrence relation of the power series are unknown currently because of their complex mathematical
calculations.

As is known, there are no examples for analytic solutions of the BCH equation about z = 0
and x = oo in the form of definite or contour integrals containing the well-known special functions
such as o F} or 1 F}, consisting of two-term recursion relation in their power series of linear differential
equations. In place of describing the integral representation of the BCH equation involving only simple
functions, especially for confluent hypergeometric functions, the BCH equation is obtained by means
of Fredholm-type integral equations; such integral relationships express one analytic solution in terms
of another analytic solution [3-5,8,27-29].

2 The GCH equation about a regular singular point at zero

Assume that the solution of (1.1) is

y(z) = Z cnz™ A, (2.1)
n=0

where A is an indicial root. Substitute (2.1) into (1.1). We obtain a three-term recurrence relation for
the coefficients c,,:

Cn+1 = Apcn + Bncp—1, n>1, (22)

*For the canonical form of the BCH equation [36], replace y, ¢, v, 2 and w by —2, =8, 1 + a, v — a@ — 2 and
1/2(6/B8 + 1+ «) in (1.1). For DLFM version ( [32] or [38]), replace p and w by 1 and —g/e in (1.1).

TFor the special case, the explicit solutions of the BCH equation in the canonical form was constructed when one of
the coefficients 8 = 0 [16].
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where

B —e(n+w+A)

An = (n+1+Nn+v+A)’ (2:32)
_ Q4pn—-14N)

Bn = n+1+Nn+v+A)’ (2.:3b)

c1 = Aoco. (2.3c)

We have two indicial roots which are A =0 and 1 — v.

2.1 Power series

2.1.1 Polynomial of type 2

o0
By putting a power series y(z) = Y. c,z"** into a linear ordinary differential equation (ODE), the
n=0

recurrence relation between successive coeflicients starts to appear. In general, the recurrence relation
for a 3-term is given by (2.2) where ¢; = Agco and ¢p # 0. As is known, there are two types of power
series expansions for the two-term recurrence relation in a linear ODE such as a polynomial and an
infinite series. In contrast, there are an infinite series and three types of polynomials in the three term
recurrence relation of a linear ODE:

(1) polynomial which makes B, term terminated: A, term is not terminated, designated as ‘a
polynomial of type 17,

(2) polynomial which makes A, term terminated: B, term is not terminated, denominated as ‘a
polynomial of type 27,

(3) polynomial which makes A, and B,, terms terminated simultaneously.

For n =0,1,2,3,... in (2.2), the sequence ¢, is expanded to combinations of A4,, and B, terms.
It is suggested that a sub-power series y;(z), where [ € Ny, is constructed by observing the term of
sequence ¢, which includes [ terms of A/ s [10]. The power series solution is described by sums of

each y;(z) such as y(x) = > yn(z). By allowing for A, in the sequence ¢, to be the leading term
n=0

of each sub-power series y;(z), the general summation formulas of the 3-term recurrence relation in a
linear ODE are constructed for an infinite series and a polynomial of type 1, designated as ‘three-term
recurrence formula (3TRF).

Similarly, by allowing for B,, in the sequence ¢, to be the leading term of each sub-power series
in a function y(z) [13, Chapter 1], we have obtained the general summation formulas of the 3-term
recurrence relation in a linear ODE for an infinite series and a polynomial of type 2: the term of the
sequence ¢, which includes zero term of B,,’s, one term of B,’s, two terms of B,’s, three terms of
B,.’s, etc. is observed. These general summation expressions are denominated as ‘reversible three-
term recurrence formula (R3TRF).

In general, the GCH polynomial is defined as type 3 polynomial where A,, and B,, terms terminated.
For the type 3 GCH polynomial about z = 0, it has a fixed integer value of €2, just as it has a fixed
value of w. In the three-term recurrence relation, a polynomial of type 3 is categorized as a complete
polynomial. In Chapters 9 and 10 of [14], general solutions in series for the GCH polynomial of type 3
around x = 0 and = oo are constructed.

For type 1, the GCH polynomial about z = 0, pu, €, v and w are treated as free variables and 2 as
a fixed value. In [11,12], the analytic solutions of the GCH equation about the regular singular point
at = 0 are constructed by applying the three-term recurrence formula (3TRF) [10]:

(1) power series expansions in closed forms for an infinite series and a polynomial of type 1,
(2) their integral forms,

(3) generating functions for GCH polynomials of type 1.
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Four examples of the analytic wave functions and their eigenvalues in the radial Schrodinger
equation with certain potentials are presented:

(1) Schrodinger equation with the rotating harmonic oscillator and a class of confinement potentials,

(2

)
(3) the radial Schrodinger equation with confinement potentials,
)

(4

The Frobenius solutions in closed forms and their combined definite and contour integrals of these
four quantum mechanical wave functions are derived analytically.

For the GCH polynomial of type 2 about x = 0, u, €, v and €2 are treated as free variables and w
as a fixed value. In this paper, by applying R3TRF in Chapter 1 of [13], the power series expansions
are constructed in closed forms of the GCH equation about the regular singular point at x = 0 for
an infinite series and a polynomial of type 2. The integral forms of the GCH equation and their
generating functions for GCH polynomials of type 2 are derived analytically. Also, the Frobenius
solutions of the GCH equation about the irregular singular point at = oo by applying 3TRF [10] are
obtained analytically including their integral representations and generating functions for the GCH
polynomials of type 1.

In Chapter 1 of [13], the general expression of a power series of y(z) for a polynomial of type 2 is
defined by

the spin free Hamiltonian involving only scalar potential for the ¢ — ¢ system,

two interacting electrons in a uniform magnetic field and a parabolic potential.

Zyn = yo() +y1(2) +v2(z) +ys(x) + -
o ig—1 ag io—1 ig—1
- { ST A+ 30 { v L4 3 (T A)}

iOZO il 0 ’i():O ’Ll =0 ’LQ Z() ’L3 Z()

%) o ip—1 N-1 ak igp—1

+ Z { Z { io+1 H An H ( Z Bi2k+2k’+1 H Ai2k+1+2k>
N=2 ip=0 i1=0 k=1 dop=tio(k_1) 12k4+1=%2(k—1)
an ion—1
X Z ( H Ai2N+1+2N) } }mlzNJrQN}. (24)
IaN=lg(N-1) 2N+1=%2(N—1)

Here o; < a; only if i < j, where 4, j, a;, o; € Np.
For a polynomial, we need the condition

Aa;42: =0 where 4,0, =0,1,2,.... (2.5)
In this paper, the Pochhammer symbol (z),, is used to represent the rising factorial: (x), = F(Fx(:g)" )

In the above, «; is an eigenvalue that makes A4,, term terminated at certain value of the index n. (2.5)
makes each y;(x) where i = 0,1,2,... as the polynomial in (2.4). Replace «; by w; in (2.5) and put
n = w; + 2¢ in (2.3a) with the condition A, 2; = 0. Then we obtain eigenvalues w such that

w=—(w; +2i+ A).

n (2.3a), we replace w by —(w; + 2¢ + A) and insert it and (2.3b) in (2.4), where the index «; is
replaced by w;. After the replacement process, the general expression of a power series of the GCH
equation for a polynomial of type 2 is given by

y(x) = Zyn = yo0(2) +y1(2) + y2(2) +ys(z) + -

_ - (—wo)io io S (io +Q/p+A) (—wo)ig
“{Z (T Nig (v + V)i | +{Z (o + 2+ Mo 1+ T 1+ N + Vi
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0B+ Ni2+v+ N, 4
8 Z MEESYRCETES VA

11=10

— | < (0 +Q/pu+ ) (—wo)io
+Z{Z (lo+2+N)(io+1+v+X) (T4 N)i(v+ N

n=2 \ i0=0
x"‘l i (ik + 2k + Q/p+ )
B, S et 2k 2+ N+ 2k + T+ v+ )

(_Wk)ik (Qk +1+ >‘)i;%1 (Qk +v+ )\)ik—l }
(_wk)ik—l (2](5 +1+ >\)74k (2k +v+ )‘)Zk

o (—wn)i, 2n 14+ N Cn+v+ N,
n n n in n 9.
D D s S MINE  V r ey VA C (26)

where

n= —&x,

p=—pa?,

w=—(w; +2j+ ) as j,w; € No,

w; <wj; only if ¢ <j where 7,5 € Ny.
Put ¢y =1 as A = 0 for the first kind of independent solution of the GCH equation and as A =1 —v
for the second one in (2.6).

Remark 2.1. The power series expansion of the first kind GCH equation for a polynomial of type 2
about = 0 as w = —(w; + 2j), where j,w; € Ny, is

y(x) = QWf (,U/,E,V,Q,OJ = _(wj + 2])7p = _:u’l‘2777 = —&x

( O)’L zo - (ZO+Q/M) wo)o S 3 (2+V)io i1
71020(1) ()io +{ioz_:o(z'o+2)(20+1+u )io (V)io Z 21, ! }P

(io + /) (=wo)io
+ Z { Z (G0 +2)(io + 1+ v) (1)i,(¥)ig

RS (ik + 2k +Q/p) (—wn)ie (26 + Diy 2k + )iy,
" { 2 G T D2+ 1) (el ChF D G0, }

k=

N (—wn)i, (2n 4 1), (2 i ;
X Z ( w )n( n+ ) n—l( n+ V) n—1 nzn pn. (27)
G (Fwn)i (2t 1), (20 4 v)s,

For the minimum value of the first kind GCH equation for a polynomial of type 2 around x = 0,
we put wg =w; =wy =---=01in (2.7).

y(r) = QWOR<M7€ v,Qw=—2j;p=—pz’,n= —63:)

Q v 1 5
—|—f —— ur ), where — oo <z < 00.

o2 T2 2

&)
As in the above, 1 Fi(a,b,z) = ). EZ;W T

Remark 2.2. The power series expansion of the second kind GCH equation for a polynomial of type
2 about =0 as w = —(w; +2j + 1 — v), where j,w; € Ny, is

y(z) = RW[ (u,e,v,ﬁ,w = —(wj+2i+1—-v);p=—pa’,n= —633)
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— plv - (_Wo)io io
B { 2 Tl
{ Z (lo+1+Q/p—v)  (—wo)i, 3 (—w1)z:1(4 - V)fo (3)1:0 i }p

(io +3—v)(io +2) (2—1)i(1)i

oo wo

(o +1+Q/u—v) (w0
Z Z (lo+3—v)(i0+2) (2—v)i(1)s

0=

{ ’Lk +2k‘—|—1+Q//L— V) (_wk)ik(2k+2_y)ik—l(2k+ 1)ik—1 }
(g +2k+3—v)(ix +2k+2) (—wi)i,_, 2k +2—v);, (2k + 1),

’Lk lk,

(=wn)i, 1 (2n+2=v);, (2n+1);

in

o Z ( wn)zn (27L+2 )1n_1(2n+ ]-)in_l nin}pn}. (28)

Tn=fn—1

For the minimum value of the second kind GCH equation, for a polynomial of type 2 about z = 0,
we put wp =w; =wy =---=0in (2.8).

y(z) = RW(f%(u,s,z/,Q,w = 2§+ 1—-v);p=—pz? n= —em)

=gl 1F1(% — g + %,fg + %,f%,uxz), where — oo < z < 0.

In [11,12], Q is treated as a fixed value and p, €, v, w are treated as free variables to construct the GCH
polynomials of type 1 around « = 0: (1) if Q = —u(28; + j), where j, §; € Ny, an analytic solution of
the GCH equation turns to be the first kind of independent solution of the GCH polynomial of type
1; (2) if @ = —p(2¢; + j + 1 — v) where j,1; € Ny, an analytic solution of the GCH equation turns
to be the second kind of independent solution of the GCH polynomial of type 1.

In this paper, w is treated as a fixed value and p, €, v, Q) are treated as free variables to construct
the GCH polynomials of type 2 around = = 0: (1) if w = —(w; + 2j), where j,w; € Ny, an analytic
solution of the GCH equation turns to be the first kind of independent solution of the GCH polynomial
of type 2; (2) if w = —(w; + 25 + 1 — v), the analytic solution of the GCH equation turns to be the
second kind of independent solution of the GCH polynomial of type 2.

2.1.2 Infinite series

In Chapter 1 of [13], the general expression of a power series of y(x) for an infinite series is defined by

Zyn =yo(z) + y1(x) + y2(x) + ys(z) + - -

. { > (T )+ 3 (B T4 3 (1T Awes) b

i0=0 i1=0 ip=0 i1=0 i2=i0 13=10

[ ) i0—1 N-1 o] tor—1
+ { > {Bi0+1 1T 4. 11 ( > B[] Ai2k+1+2k>
2

N= i9=0 i1=0 k=1 dop=ta(k_1) t2k+1=%2(k—1)
o] ion—1
x Z ( H Ai2N+1+2N) }}$i2N+2N}- (2'9)
12N=lg(N-1) 2N+1=%2(N-1)

Substitute (2.3a)—(2.3c) into (2.9). The general expression of a power series of the GCH equation for
an infinite series about x = 0 is given by

Zyn =yo(z) + y1(x) + yo(x) + ys(z) + - -
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oo

NSRRI i { 20 (w + )i
= 0 +
ot { D YIRSy Z: (T Vo (v + Mg

w+2+)\)“(3+>\)10(2+1/+)\)10 il}
w+2+)\)i0(3+)\)i1(2+u+/\)i1n P

X
gk

- { i 200 (w + 2k + A)i 2k + 1+ N)ip, (2k + v 4+ A4, _,
] (WH2k+ XN, Ck+14+ N, Ck+v+ M),

=tk —1

20+ N (2n+1+4A); (2 Nins i
- (W+2n+ ), 2n+14+N);, ,2n+v+A);, zn}pn}, (2.10)

(wH+2n+A);, _,2n+14+XN);, 2n+v+N);,

in=tn—1

where )
(Zo + Q/M + )\)

(io+2+N(io+1+v+N)’
- (ik +2k+24+ N (i +2k+1+v+ )

Put ¢p= 1 as A = 0 for the first kind of independent solution of the GCH equation and as A =1 —v
for the second one in (2.10).

=) —

Remark 2.3. The power series expansion of the GCH equation of the first kind for an infinite series
about x = 0 using R3TRF is

y( ): QWR(M,E v, Q , Wi p = —Mx27n — _E.,L,)

m i oo (io + Q/ ) Wiy = @+2)5,(3)i(2+ )iy 4,
= Z 77 +{i0§_:0 (io+2)(ig + 14+ v) (1)iy (V)4 Z w ) ) — N }p

+i { = o+ ) (@
n=2 i

= (io +2)(i0 + 1+ v) (1)i, ()i

n—1 i lk—|—2k+Q/,u,) (W+2]€)1k(2k+ 1)ils:—l(2k+1/)ik—l }
5 (i +2k+2) (i + 2k + 14+ v) (w+2k);,_, 2k + 1), _, 2k +v);,

-1

s +2n);, 2n+1);, _,(2n+v); ;
y Z (w n), (2n i1 2R+ 1), zn}p’n (2.11)

(w+ 271)2“71 (2n+1);,_,(2n+v);,

i =tn_1
Remark 2.4. The power series expansion of the GCH equation of the second kind for an infinite
series about x = 0 using R3TRF is
y(z) = RW" (6,0, Q w; p = —pa®,n = —ex)

— gl-v S Mnio
2 B0,

— (o +1+Q/p—v) (W+1-0); = (W+3—1);(4—1);,(3)i,
{Z<io+3—v><z’o+2> CEDROD ~ 1) (3); }p

i0=0 i1=io

(io +3 = v)(io +2) (2= v)iy(1)i,

+i{i (o +1+Q/u—v) (w+1-v),

i (i +2k+14+Q/u—v)
(g +2k+3—v)(ix + 2k +2)

Ip=lk—1



Grand Confluent Hypergeometric Function using Reversible Three-Term Recurrence Formula 21

" (WH+2k+1-v);,2k+2—v);,_,(2k+1);,_, }
(WH+2k+1—-v)_,2k+2—v);,_,(2k+1);,

" i (wH+2n+1-v), Cn+2—-v),, ,2n+1); _, il
(w+2n+1—-v);, _,2n+2—-v);, _,(2n+1);, P

(2.12)

in=1ln—1

It is required that v # 0, —1, —2, ... for the first kind of independent solutions of the GCH equation
for an infinite series and a polynomial. But if it is not the case, its solutions will be divergent. And it
is required that v # 2,3,4, ... for the second kind of independent solutions of the GCH equation for
all cases.

Infinite series in this paper are equivalent to those in [11,12]. In this paper, B, is the leading term
in the sequence ¢, of analytic function y(x). In [11,12], A, is the leading term in the sequence ¢, of
analytic function y(x).*

2.2 Integral representation
2.2.1 Polynomial of type 2

Now I consider the combined definite and contour integral representation of the GCH equation by
using R3TRF. There is a generalized hypergeometric function such as

I = i ( wl)iz(2l+1+>‘)iz 1(2l+1/+)\)1’l 1
R G NN TS TPV CTE 7Y N

oo

i

By jBs (i1 — wy);n"

= . : — 1. 2.13
= (zl_1+21+)\)*1(u-1+21—1+u+A)*1(1)jj!’7 (2.13)
By using integral form of the beta function,
Bij=B(ii_1+20+X\j+1) = /dtl TR (PATA (2.14a)
1
Byj=DB(ii-1 +2l—1+v+N\j+1)= /dul upt RN L ) (2.14b)

0

Substitute (2.14a) and (2.14b) into (2.13) and the result divide by (41 + 2+ X) ({1 +2l =1+ v+ )\).
We get

i

(i—1+ 20+ N7} i (—w)iy 2L+ 14+ X, 2L+v+ )i,
(i1 +2l—1+v+A) (—wi)i_, L+14+ X)L+ v+ M),

=1

1 oo
/dt 2= 1“/d w2 (g ) Z (it 1 — “,” (n(1—t)(1 —w))’. (2.15)
0 i= )i d!
The integral form of the confluent hypergeometric function of the first kind is given by
= T nr exp(—2y)
Z ' P (O[() + ) (7) \%d'[}l — (I—w) . (216)
= )30 T 2wl (e + ) v (1 — )Y

*AsT(1/24v/2—-Q/(2p))/T(1/2+v/2) is multiplied by (2.11), the new (2.11) is equivalent to the first kind solution
of the GCH equation for an infinite series using 3TRF [11]. Again, as (—,u/2)1/2<17") r(1-9Q/(2n)/I'(3/2 —v/2) is
multiplied by (2.12), the new (2.12) corresponds to the second kind solution of the GCH equation for an infinite series
using 3TRF [11].
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Replacing ap, v and z in (2.16), respectively, by w; — 4,1, 1 and n(1 — ¢;)(1 — u;), we obtain

oo

5 = gt - g fon T

]jl wz+1 i 1(1_Ul)

Jj=

Substitute (2.17) into (2.15):

g = i +20+ M)t i (—w)iy CL+1+A); QL+ v+ N,
YT 2 —1Hv 4N Sl (—wp)i , U+14+X);,2L+v + N,
1 1
_ _ 1 exp (= g2y (L — ) (1 —w)) :

= [ dy t* 1+)‘/alu T fdv v tiugvy)-t. (2.18

[n ey X e — ()=, (2.15)
0 0

Substitute (2.18) into (2.6), where | = 1,2,3,...: apply K; into the second summation of the sub-

power series y1(z); apply Ko into the third summation and K; into the second summation of the
sub-power series y2(z); apply K3 into the forth summation, K5 into the third summation and K; into
the second summation of the sub-power series ys(x), etc.*

Theorem 2.5. The general representation in the form of an integral of the GCH polynomial of type 2
is given by

Zyn 7y0 )+yl(z)+y2($)+y3(q;)+...

1 1
wo
_ A (—wo)i, io dt t2(n B-14x [ L2 R DA
o {,ZO(HA) v+ Nio | *Z{ {/ " ot
0= 0 0

1 exXp ( o (1?{5,6) w”—k'i‘l,n(l —tn—)(1 — un—k))
X b dvnfk i ") +1
2mi Uniik (1 —vn—k)

= (V/p2n—k=1)43) Q/p+2(n—k—1)+)\}

n—k,n (wn*kwnawn—k,n) n—k,n

o (_WO)iO i n
g z_:() (L4 N)io (v + Ny wlvn}p } (2.19)

0=

where
b

nHtlulvl, where a < b,
l=a

n only if a > b.

Wq,b =

Here the first sub-integral form contains one term of By, ’s, the second one contains two terms of By s,
the third one contains three terms of By’s, etc.

Proof. In (2.6), the power series expansions of sub-summation terms yo(z), y1(z), y2(z) and y3(x) of
the GCH polynomial of type 2 are

Zyn ) = yo(x) + y1(x) + y2(z) +ya(z) + -, (2:20)

where

= coz P 2.21
= ot Z 1+/\101/+)\) T (221a)

*y1(z) means the sub-power series in (2.6), contains one term of By’s; y2(z) means the sub-power series in (2.6),
contains two terms of By,’s; y3(x) means the sub-power series in (2.6), contains three terms of By,’s, etc.
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_ S (io + 9/ + N (=w0)iy
yi(z) = Coffx{ Z (io + 2+ N)(io + L+ v+ X) (1+ N (v + Vi
Jir B4+ N (2+v+ Ny 4,
" Z B+ N 2+ v Ay | }p’ —
_ S (i + Q/u +\) (—wo)io
ya(x) = C"xk{ 2::0 (io+2+ Mo+ 1+v+X) (14 N)i@+ ANy

(3N GEREEN) ()G N,
(1 +44+ N1 +3+v+N) (—w1)ig(B+N)i, 2+ v+ N4,

Jia B+ N (d+v+ X)),
2.21
XlZZzl WQ 115+>\) (4+V+>\)12n p, ( C)
wo
A (o +Q/p+A) (=wo)i
ya (@) = co {Zoz::o (io+ 24 N)(io + L+ v+ A) (1+ A (v + A,
y i (1 +2+Qu+2)  (—w)i B+ N2+ v+ Ny
= (1 +4+N(1+34+v+A) (—w1)i B+ Ny, 24+ v+ )y
f: (2 +4+Q/n+A)  (~wa)in(5+ N0, (4+ v+ N,
iz + 64+ N iz +5+v+X) (—wo)iy 5+ Vi (4 + v+ N
XZ is (T4 Ny (6414 Ny, o L. (2.214)

i (T+ Ny (64 v+ Ny,

7.3 1,2

Put I =1 in (2.18) and insert it into (2.21b):

uy exp (= g2l —t)(1—u

W1+1(1 — 1)

(—wo)ig io
X { i;(lo +Q/p+N) (1 Y (OV Y (nt1ugvy) }p

1 1
v+ exp ( — ﬁl ’17(1 — 11 (1 — ’LL1)
= Col‘)\/dtl t%+>‘/du1 o %d’t}l ( (d—v) ) )
0

2mi v (1 — o)
0

wo
_ —Ww 1 i
< wy (M (w110, YD :( (Zwo)i —wi’y, (2.22)
. 10

where

w11 =71 H tlul’U[.
=1

Put I =2 in (2.18) and insert it into (2.21c):

1 1
24v+A exp(— Ln(l—tg)(l—’dz))
u
yQ(Z') = CO‘CC)\pQ/dtQ tg+>\/du2 2 - %dUQ (1 oj)gj»l
0

271 Uy (1 — v2)
0
_ Z —+ Q —+ A —wo )i
x wg I (1, 10, Y éu+2+>\ (io +Q/p+A) (—wo)i,

rt (i0+2+)\)(i0+1+y+)\) (T4+XN)ig(v+ N

)i, B+ N)ig2+v+ Ny
! 2.2
x Z Yio B+ N, (2+v 4+ M), W22 (2.23)

Zl Z(]
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where

Wa o =1 H tiugvy.
1=2

Put I =1 and n = we 2 in (2.18) and insert it into (2.23). We get

1

\ L N u2+v+>\
2 34+ 2
= dta t dug —=——
y2($) Cox” p / 2 1y / U2 o
0 0
exp(— g2yl —t2)(1—u)) _
8 fdvz ( - j—l ) Wy, éﬂ/u+2+/\)(w2 Qawz 2)w§éﬂ+2+/\
o (1= va) e
1
V exp 0 wa 2(1—t1)(1—ul)
X/dtl t%ﬂ/ uy f{ ~ T w)+1 )
) 2m v (1 = vy)
wo
—(Q/u+N) Q/p+A (—wo)i, io
X w (w1,20u, ,)w w3y, (2.24)
1,2 w 2,2 iOZ:O (1 T )\)zo(y+ A)zo 1,2

where

w2 =1 H tiugvy.
=1

By using similar process as in the previous cases for integral forms of y; (z) and y2(x), we obtain the
following integral form of the sub-power series expansion yz(x):

1
4+V+A
yg(x):cox’\p /dt t5+ / Us
0

211

Q/p+4+X
w3738w3,3 )wB 3

d eXP(_ i 10— )~ w)) a/pain
X U3 (1 — ) W33 (

I 24+v+A

u
dtQ tg+A/dU2 22?

X

—

0

p ex (—(1 v)w33(1 t2)(1 — ug)) L ut 2N
X V2 w2+1(1 _ U2) w2,3 (

1 1
l/+A
X /dt1 TR /
2m
0

0
exp wa 3(1 —t1)(1 —wy _
X %dvl (- ( o ( ) ) wlvéﬂ/’w’\)(

T o

Q/ 424X
8’w2 3)

W2,3 Wa 3

Q/ptx
w130 w
,Utlul—Q—l(l o Ul) 1,3 wl,a) 1,3
N (—wo)
—Wo)ig io
X w,, 2.25
2 T, (229)
where
3
w33 = Wthuwu
1=3
3
Wa 3 = UHfzuzUu
1=2
3
w3 = UthuzUz-

=1
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By repeating the above process, we obtain integral forms of all higher sub-summation terms y,,(x),
where m > 4. Substituting (2.21a), (2.22), (2.24), (2.25) and including integral forms of y,,, (z), m > 4,
into (2.20), we obtain (2.19). O

Put ¢y = 1 as A = 0 for the first kind of independent solution of the GCH equation and as A = 1—v
for the second kind one in (2.19).

Remark 2.6. The integral representation of the first kind GCH equation for a polynomial of type 2
about * = 0 as w = —(w; + 2j), where j,w; =0,1,2,..., is

y(x) = QW:;%J (/.l/,ﬁ, V,Q,OJ = _(w] + 2.])7p = _:U“TQ?TI = —6.13)

oo n—1 P L
— Py (—wo; i) +Z{H{/dtn s 2R 1/dun 2
k=0 %9

0
Vp—

f eXP s ) Wp—k41, n(]- - tn—k)(]- - un—k))
dvn k

n 1
U:I kk+ (1 —vn—i)

x wgi‘i,/;‘“(”"“*”<wn_k,nawnk,n>w2£*;ﬁ?(""€‘”} 1 Fy (~w; u;wl,n>}p“. (2.26)

Remark 2.7. The integral representation of the second kind GCH equation for a polynomial of type 2
about © =0 as w = —(w; +2j + 1 — v), where j,w; =0,1,2,..., is

y(z) = RW] (u,e,v,Q,w =—(wj+2j+1—v);jp=—pa’,n= —Ez)

e’} n—1 1
le_”{lFl(—wo;Q—Vm)‘i'Z { H {/dtn—k 20 V/dun— w2
=1 k=0

% eXp (1 Un k) Wnp—k+1, n(]-_tn k)(l_unfk))
dv,—y,

U:n kk—H(l — Un—k)

xwggi{::ﬂ(n_k)_l_”) (wn,k’nawn_km)w?ﬁ‘;ﬁf(n_k)_ } 1F1(—wo; 2 V;wl’n)}p”}. (2.27)

In the above equalities, 1 F (a; b; z) is a Kummer function of the first kind defined as

1Fi(a;b;2) = M(a,b, 2) Z =efM(b—a,b,—2)

n:O nn'
_ 1 F(]' _ a)r(b) f 2V a—1 b—a—1
- 271 ’ F(b—a) dvﬂ € J( UJ) (1 UJ)
I
= (a.) }{dv ey b1 - i)_“
211 v;
_ 1 - G)F(b)% 1=t a1 -b
= %mi TO_a) dvj e vi (1 =) (2.28)

2.2.2 Infinite Series

Let us consider the integral representation of the GCH equation about = 0 for an infinite series by

applying R3TREF. There is a generalized hypergeometric function which is given by

i (W+204+ N, 2L+ 14+ Ny, U+ v+ Ny,
W20+ N, QI4+14+ N, 2L+ v+ M),

i

M,

=1

oo

Bi,_ (w20 + X +i_q)ni- o (2.20)
; (1 + 20+ M) (G + 20— 14+ v+ XN)71(1), 4! ’

Jj=
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where
Bi, i =DB(i—1+2l4+Xj+1)B(ij_1 +20—1+v+Xj+1).

Substituting (2.14a) and (2.14b) into (2.29) and dividing the obtained equality by (i;—1+21+X)(i;—1+
20— 14+v+)), we get

i

i Aj (w204 N, 2L+ 14+ )i, U+ v + )iy,
(WAH+2l4+ N, QL+1+ N, 2L+ v+ M),

=t —1

1 1
_ o o w—|—2l—|—)\—|—2 j
:/ﬁnﬁl“*/ﬁmu?2++kmmlll§: J'lﬁ (n(1 —t)(1 —w))’, (2.30)
); 4!
0 0 J=

where

1
A, = .
=t (il_1+2l+>\)(il_1+217].+l/+/\)

n (2.28), replacing a, b and z, respectively, by w+ 20+ A+4;_1, 1 and n(1 —t;)(1 — u;), and inserting
the resulting equality into (2.30), we obtain

]

v i Ay (W42l + N 2L+ 1+ N 2L+ v+ )i,
: W20+ N)i, 2L+ 1+ N);, (2L + v + N,

=11
1

1
1 exp (— g2~ (1 —t)(1—w)) ,
20—14X 20—2+4v+A (1-w) i
/dtl i /dul “ %?{dw vf(‘””l*l*’\)(l ~ ) (ntiwwy)* =" . (2.31)
0 0

We substitute (2.31) into (2.10), where [ = 1,2,3,...: apply V; into the second summation of the
sub-power series y1 (z); apply Va2 into the third summation and V; into the second summation of the
sub-power series y»(x); apply V3 into the forth summation, V5 into the third summation and V; into
the second summation of the sub-power series y3(x), etc.*

Theorem 2.8. The general representation in the form of an integral of the GCH equation for an
infinite series about x = 0 using RSTRF is given by

Zy" = yo(x) + y1(x) + y2(z) + ys(z) + - -

YR~ (w+ Nig io

- {2_3 T+ Vo (v + 2z,
_ 1

D) { T { fats it fanaioves

- - 0 0

7{ exp (1”23” -y Wn—k+1, n(l—tnx)(1— Un—k))
dvn k

1

U;£w+2(n k)— 1+/\)(1 B Un_k)
x w,, S mE D) (wn_k,nawn,m)w,?i*,gjf(”"“‘”“}
w+A) .
x io \ ol 2.32
§%1+AMV+M “1 }p} (2:32)
1o

*y1(x) means the sub-power series in (2.10), contains one term of By’s; y2(x) means the sub-power series in (2.10),
contains two terms of By,’s; y3(x) means the sub-power series in (2.10), contains three terms of By ’s, etc. Or we replace
the finite summation with an interval [0, wo] by an infinite summation with an interval [0, oo] in (2.19). We also replace
wo and wp—j; by —(w + A) and substitute —(w + 2(n — k) + ) into the new (2.19). Its solution is likewise equivalent to
(2.32).
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Here the first sub-integral form contains one term of By,’s, the second one contains two terms of By, ’s,
the third one contains three terms of By’s, etc.”

Put cop= 1 as A = 0 for the first kind of independent solution of the GCH equation and as A = 1—v,
for the second kind one in (2.32).

Remark 2.9. The integral representation of the first kind GCH equation for an infinite series about
x = 0 applying R3TRF is

y(l’) - QWR(M,5,V Q) , Wy p = 7#’1’277’ — 751,)

—1F1(w1/77+2{ {/dtnkt”k)l/dunku"kl)Jr

1 €xXp ( m Wp—k+1, n(l - tnfk)(l - unfk))
s dvn—k (@t 2(n—R)=1)
™ Up—k (1 - 'U’n*k)
% w;ﬁ%{#-ﬂ(n—k—l))(wn_kmawnkm)wili;’i—,if(n—k—l)} VP (w; l/;wLn)}p". (2.33)

Remark 2.10. The integral representation of the second kind GCH equation for an infinite series
about x = 0 applying R3TRF is

y(r) = RWR(M75, v, Qw;p=—pa*n= —Ex)

1 1
= {Fl(w+1—z/2—1/77 +Z{ {/dtnkt2(n k)u/dun,kui(_"k—k)ﬂ
0 0

n=1
1 exp ( % Wn—k+1, n(l - tn—k)(l - un—k))
X 5— ¢ dvp—i B ) copy s
271, v (1 —vn_s)

xw;£52{5+2(n7k)7171’) (wnk,n[“)wn_km)wgiiﬁf(nk)1”} 1Fillw+1—-v;2—v; wlﬁn)}p”}. (2.34)

(2.33) multiplied by L/ 1%67/21”%52” ) g equivalent to the integral form of the first kind solu-
tion of the GCH equation for an infinite series applying 3TRF [11]. Also, (2.34) multiplied by
(—p/ 2)1/ 2“‘”% corresponds to the integral representation of the second kind solution of

the GCH equation for an infinite series applying 3TRF [11].

2.3 Generating function for the GCH polynomial of type 2

Now let us investigate generating functions for the type 2 GCH polynomials of the first and second
kind around x = 0.

Definition 2.11. Define

{sa “Saq41 - Sat2 " Sb—2 - Sp—1 - Sp, where a < b,
Sa,b =

Sq only if a =b,
, (2.35)

J
j = MSi,00 H tyug,
=i

where a,b,i,j € Ng, 0 <a<b<ooand 1 <i<j<o0.

*The method how to prove an integral for an infinite series is similar as an integral for a fixed value of w at
Subsection 2.2.1. Explicit proof for this integral is available on pages 250-253 in Chapter 6 [13].
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We have
5%

Z st = 5 at |s;| < 1. (2.36)
Si

wi=wj )

Theorem 2.12. The general expression of the generating function for the GCH polynomial of type 2
about x = 0 is given by

oo oo oo

> o Mt II{ > - 2 Y@ = [] e This0i)

wo=0 n=1 wp=wn_1 k=1 (1 a Sk,oo)

{If[l T~ /dtt /du uy exp( (lilj:w)nu—tl)(l_ul))

X w (Q/“H)(w 5’611)15?{MH (>\;80§@1,1)}P

1 1
o0 (o)
1 2n—1+4+X 2(n—1)+v+A Sn, 00
+Z{ H(l_w/dtn i) duy, uy, exp(—(in(l—tn)(l—unn
' 0

n=2 k=n 1- Sn,oo)

% w—(Q//L+2(TL 1)+)\)(w 8~ )~1§12(’7{L+2(71,—1)+)\

1 1 Sn_j ~ ) . ) . )
{/ ity 2071 / i a2 Ty Oyt ) (1t y))
n—j
0

n—1
<]1

nﬂn] n—j
=1

(1—sn—j)
0

<.

% wn<§’/“+2<” Jj— 1)+A)( By j,naan_j,n)ﬁg/’ﬂz(njI)H}T(A; 80;1ﬂ1,n)}p", (2.37)

where
o 5050 F(wo +7) +’Y —wp)i ;
T(Asso0in) = D w! (v { cor’ Z 1+>\ W+ ”}
UJ():O
~ 2 580 T(wo + 9/ —wo)i —j
T(Ass0: Bra) = ) MLO'T{ AZ 1+/\ =y w1?1}7
wo=0 ’ i0 —O
~ o~ 50° Dwo +7) (=wo)i —
Y (N s0:W1,0) = wool “To7 {coa:)‘ Z e 0 i }

Nio (v + Nig "

w():O

. . X550 D(wot+)
Proof. Applying the summation operator »: 27 =5 H { §
wo=0 Wn=Wn—1

integral of type 2 GCH polynomial y(x), we get

‘*’"} to the form of a general

oo SWOFwo-i-/ oo oo "
wza:z.!wﬂ{ £ e

0=0

Z w0+7 H{ Z }(yo(w)+y1(x)+y2(a:)+---). (2.38)

Applying the summation operator > ‘i‘;, ;’E’j; H { Z s@n} to (2.21a) and using (2.35)
wp=0 Wn=Wn—1
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and (2.36), we obtain

oo

PRRCE-Tetl ) KD RCE T

wo=0 n=1 wnpn=wp—1

- o~ 00 Dwo +7') 5 (—wo0)iq ;
: o, (2.39
[Il—amggzum o7 2 T A (23

Applying the summation operator Zio(: F(;?j,)vl) [T{ > s%} to(2.22)and using (2.35) and
0 n=1 wp=wnp—1

wo=

=0

(2.36), we get

oo 00 00 - 1
2 200 wo-i-’Y H{ . s }y1(x)=H 175,?00 /dt t1+)\/du1 o>
B 0

0 n=1  wp=wn-1 k=2
1 eXP( (1 1) (1 —t1)(1—u1)) & 51,00\ —(Q/pu4N) Q/ A
X5 dvy w(l—o) Z ( o ) Wy 1 (w1,10u, 1 )Jwy )y
wi=wo
80 F((UQ + ’7/) o WO io io
_ . 2.40
szowo [~ zz—:o 1+)\ v+ Ny WP (240)

(2.36) and inserting it into (2.40), we have

Replacing w;, w; and s;, respectively, by w1, wy an

1 1
— 56" D(wo+7) 1 { - } - 1 / 1+A/ +A
= sn )= —— [dist duy uy
2wt oy M 2 = I fanat [
n n—1 = 0 0

1 fd 1 exp (= 2y 11— 1) (1 —w)) W) (9 Y
2 (1—’()1)(’()1—51 ) “1 B

=1 50,00 \#0 I'(wo +7') A wom io
B A e e £ e )

By using Cauchy’s integral formula, the contour integrand has poles at v; =1 or 51 o, Where §1 o is
only inside the unit circle. As we compute the residue in (2.41), we obtain

1
o0 wo [e'¢) [e%e)
55° T'(wo +7') { Wn } / 1+,\/ VA
_ s dti t dui u
Pt ond | (DI VERS | e g Y
51.00 o .
X eXp ( 117 77(1 - tl)(l - ul)) (Q/lH_ )( 8151 1)w?{u+/\
(1—s1 OO)
55" I'(wo +7) { R (—wo)i, i }
X ———— { T w 0, 2.42
;;wo O P SN ey vl (G
where
1

W1,1 = N51,00 Htlul.
=1

00 Dleot) T LSS s ) to (2.24) and using (2.35) and

Applying the summation operator ) -2 Nea)
wp=0 o v n=1 wp=wp_1

(2.36), we obtain
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oo oo

ZSO UJO+'Y f{{ Z SZ"}yQ(JC)

wo=0 wO' Wn=Wn—-1
= / 2 (1 — ) (1
1 3+ 24v4r L exp (- T—v2) (1 —t2)(1 - ug))
=] +——— [ dt2 13 dug w2t — ¢ du,
(1= sk.00) 271 va(1 — vg)
k=3 0 0
oo 1 1
S92 0o _ . y
« Z (3}7) 2§Q/M+2+/\) (w2723w212)w%; +2+’\/dt1 t?”\/dul ot
w2 =Ww1 2 0 0
1 exp (— vy weal — )1 —w)) S N o/ /A
X o dvy nd—wu) Z (UT) Wy,2 (w1,200, 5 )W 5
w1 =wo
1 . (243
XZOMO, T z HMH) wio, 2. (2.43)
wo=

Replacing in (2.36) w;, w; and s;, respectively, by wa, wy an
into (2.43), we get

1

[e%s) S UJ +’V [e’s) Jo%S)
o
Z wo H{ Z Sin}yz(x) =~ /dt t3+>\/ iy U2V
wo=0 0 n=1 Wn=Wn_—1 k=3 k, oo ,
* omi : %d = ( - (1372%) i) - U2)) w @/ u+2+N) (w2 20, )wﬂ/u+2+x
271 U2 (1 — ’()2)(’()2 — 89, oo) 2,2 2,20w; » 2,2

1 1
« /dt t1+>‘/du uu+)\ 77{ eXp ) wa2(1—1t1)(1 — ul))
0 ' ’Ul(l 71)1)

0

(oo}
3 () (w0,

V1V
56 Dlwo +’Y'){ AN (—=wo)io : } 2
X — = T wi’y pp°. 2.44
P e B TR S PN (e N 24

By using Cauchy’s integral formula, the contour integrand has poles at vo =1 or sg o, where sg o is
only inside the unit circle. As we compute the residue in (2.44), we obtain

1 1
= so° FWO+'Y N { - w} - 1 / 3+A/ 2+4v+A
spmoey2(x) = — [ diat dugz u
2 W 2 =gy faens faee
82,00 Q/p+242 Q242
X exp ( - mn(l —ta)(1 —u2)>w (ot )(w 20, 2)w2,éu+ -
1 1 ~
1 exp (— g5 Wa2(1 —t1)(1 —w)
X /dtl t%'“‘/dul UTJ’_)\ —,%dvl ( (1=v) )
2mi v1(1 —v1)
0 0
30 () S a0, )i
wlZ
U1
wi=wo
o0 wo / wo
55" I'(wo +7") { A (—wo)i, e } 2
x ST 20 20TV ) ox @i, L o2, (2.45
wgz::o wo!  T(Y) XZIO L+ N)i (v + )5 2 )
where
2 2

Wa,2 = 152,00 thuu W12 = 182,0001 thul-
1=2 =1
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Replace in (2.36) w;, w; and s;, respectively, by wi, wy and j—i and insert the result into (2.45). We
have

1 1
— sg° T wo —I— ’y N = - 34 24
> hitor I Y srtuer =gy fand™ fau
=0 n=1 wp=wn—1 k=2 0 5
1
X exp ( - (1?%) n(l—tg)(l—ug)) ~7(9/,#2%\)( 2,205, , ~Q/M+2+>‘/dt t1+>‘/du uy
,00 0
exp )wz g(l—tl)(l—ul)) —(Q i+ Q) \
s ¢Pd " O pt
X j{ v1 (17111)(1)1751) Wy 5 (11,204, )7 5

1 501)“0 I'(wo +7/) { AN (—wo)i i } 2
X — ———= < w . (2.46
UJOZZO wo! ( (% F(’y/) 0 ng:O (1 + )‘)io(V + )‘)io 1,2 p ( )
By using Cauchy’s integral formula, the contour integrand has poles at v; = 1 or s1, where s; is only
inside the unit circle. As we compute the residue in (2.46), we obtain

oo

0o o 0o 1 1
50" “’0 +7 { w } 1 / 3+A/ 22
Cheat X)) = P E—— dt t du u
Z wo! };[1 Z n y2( ) ]};[2 (1 — Sk,oo) 2 1y 2 Uy

wo=0 Wn=Wn—_1

52,00 ~—(Q 242 ~Q 24X
XeXp(*mﬁ(lftQ)(lfuz))w (Q/p+2+ )( 3@22) zéu-i- +

1 ~
exp | — 7i1§ ’UJQQ(]. — tl)(]. — ’I.Ll)
/dtl t1+>\/du1 ull/Jr)\ ( (1—s1) ) wl (SZ/#+>\)( 20, 2)~Q/,u+>\
0

(1 - 81) 1,2
> 8(6)0 F(Lc)o + ’7 ,\ ~i 2
X —_— © 2.47
wz—:owol I'(y E:O z0V+/\) Wiy 0P, (2.47)
0= 0=

where
2
W12 = 51,00 | [ trwr-
=1

Applying the summation operator Sg, (wo-+') H { Z s@n} to (2.47) and using (2.35) and

w ()
(2.36), we get

0= Wn=Wn—1

o oo 9] ) 1 1
S0 wo +’Y son _ . e
ZWO H{ > }ys _Hl—s;mo /dt3t3 /d ul
wo=0 ne=l = Wp=wn_1 il3 J )
X exp ( _ %300 n(1 —t3)(1 — u3))w (2/ pt4+X) (5 ws s)wg/“+4+>\
(1 - 53,00)
1 1 sy _
exp (= g% W1 —ta) (1—u2) .
x/dt2 tg“/dm u§+u+>\ ( (1 2)(1 ) ) (Q/u+2+x) (w (%23) %u+2+/\
— 59

—Q/ A
8@1 3) o

1 1 _
exp (= 2y Was(l = t1)(1 —w1)) _
x/dtl t%+*/du1 AR ( a 1)(1 ) ) (Q/MH)(
— 51
0

Wy 3
0
oo wo
SO M A (—(.AJO),L'O ~7,0
X wozz:o wo!  T(¥) {Cox ioz::o (14N (v 4+ N4y P’ (2.48)
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where
3 3 3

W33 = 183,00 Htluh Wa,3 = 152,00 H tiug, W1,3 = 1NS1,00 thul-
1=3 =2 =1

By repeating the above process for all integral forms of higher sub-summation terms y,,(x), m > 3, we

o0 w
obtain every term > 500 F(wo'w H { Z 597 Yy (). If into (2.38) along with (2.39), (2.42),
QJO:O

wo! T(v)

Wn=Wn—1

(2.47), (2.48) we substitute all such terms, we obtain (2.37). O

Remark 2.13. The generating function for the first kind GCH polynomial of type 2 about = 0 as
w = —(w;j +2j), where j,w; =0,1,2,..., is

og:o wot 1;[ {wn_zw:nl Snn}QWji (ko &0, Qw5 p,m) = kl;[l [(E) A (50,005 1)

1—s
k1 koo

1
s 1 Q) ~ ~Q .
+ { II——— A=) /dh i1 /du1 uy I‘1 (s1 007751,U1777)w171/#(w1,15151,1)w17{”A(80;w1,1)}/>
C 0

S

/dt t2n= 1/du w2 DT 1 (Sn,005 try Un s 1)

_Skoo

xw;(ﬂ/wz(n 1>>(wn)na@’n)@%ﬂ+z<n 1)

el 1 1
2n=i)-1 2n—j—1)+v ) ~
<] {/dtn j b /dun—j (O Ly j(Sn—jitn—j, Un—j, Wn—j41,n)
0 0

<.

> ,w;if;/lt+2(n Jj— 1))(wn i O . ﬂ)wrfz/;;;Q(njl)}A(SO; @1,n)}Pn’ (2.49)

where
w=—(w;+2)), p=-pr® 7=—ex;
= 51,00
T (51,003 t1,u1,7) = €xp ( - ———n(l—t)1- u1)>;
(1—s1,0)
(E Sn,oo 1 1
n(Sn,00; tn, Un, = (77’ —ty - n);
(Sn, Un, 1) = €xp 0= o) n( )1 = un)
o N eXp(— (lszn 5) Wn—jt+1,n(1 _tn*j)(l_un*j))
Fn—j(sn—j§tn—jyun—j7wn—j+1,n) =
(1= sn—j)
and
_ 750,00
A(Sp.00;m) = (1 —80.00) Y €X (—7’)7
( 0, 77) ( 0, ) p (1 — 50700)
A(So;al’l) = (]. — So)_u exp ( — %)
A(so;wi,n) = (1 —s09) " exp ( — %).

Proof. The generating function for a confluent first kind Hypergeometric polynomial is given by

Z fT w0+7) 1R (~woiviz) = (1_t)_veXp(_ ﬁ) (2:50)
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Replacing ¢, v and z, respectively, by so.c0, ¥ and 7 in (2.50), we get

00 8{6}’000 F(WO + V) _y 150,00
S Ty e = s e (- ). @5y
wop=

Replacing ¢, v and z, respectively, by so, v and w; 1 in (2.50), we get

o~ 55° Dlwo +v) i N (1 eV (_ @1,130)

Zo wo!l  T() 1Fi(—wosvswy ) = (1 —s9) " exp T —s0))" (2.52)
wo=

Replacing ¢, v and z, respectively, by so, v and @w; ,, in (2.50), we get
> 550 T(wo +v) ~ _ W1 150
S0 Fy(—w0; 3 W) = (1= 50) ™ exp (= 7220, 2.53

> TGy s = (1) e (- e (2:53)
wo=

Taking ¢p = 1, A=0 and +' = v in (2.37) and substituting (2.51), (2.52) and (2.53) into the obtained
equality, we get the desired result. O

Remark 2.14. The generating function for the second kind GCH polynomial of type 2 about x =0
as w= —(w; +2j +1—v), where j,w; =0,1,2,... , is
oo (oo}

w _ o]
2 f;Ooo'F(wl“o(;—QV)y) H{ > S%)"}Rwoi(%&”aﬁvw;p,n)
=0

wo

1 1
1—v 2—v
= —B ; —— [ dt; t d r it
’ {_1 0= 500) “““”””“_I (1_%,00)0/ i /“ Honesit )

~(Q — ~ ~Q — ~
Xw1,§ fpt V)(wl,laal,l)wL{HH VB(So;le)}P
1

<
dtn tiniu / dun U?Lnilrn(sn,oo; tn7 U, 77)
0

« @;,Slﬂ/u+2nflfv) (@n,naa ; )w;l,(nuw%nflfu

+

K
——
e
o _

n—1 1 1
2(n—j)—v 2(n—j) -1 . m
X {/dtn—] tnfj dun—j Unij I‘n—j(sn—ﬁtn—j;un—jawn—j-i-l,n)
0

X ,{E;£(;,/nﬂ+2(n—j)_l—l/) (@n—j,naﬁnj,n)ai}/l}:‘;2(n_j)_l_y}B(SO; 'L’ULn) }pn}7 (254)

where
w=—(wj+2j+1-v); p=—pa? n=—cm;

A S )
F1(517oo;t1>U1,77)ZGXP(—i(l 1; )n(l—tl)(l—ul));
— 91,00

= sn,oo
Lo (et o) = 0 (= (22 (L= ) (1= ) )
n,o00

n—j

€xp ( B (1isn,j) wn—j+17n(1 - tn—j)(l - Un—j))
(1 —sn—j)

-
anj (Snfj; tnfja Unp—j, wnfjJrl,n) =



34 Yoon Seok Choun

and ns
B(s0.00;7) = (1 = S0.00)" 2 ex (—ﬁ),
(50,00:m) = ( 0,00) p (1 — $0.00)
B(so;w1,1) = (1 —50)" 2 exp ( - &Ul_’ljs))
B(so; W1,n) = (1 —s0)" % exp ( - (101_”::3))

Proof. Replacing t, v and z, respectively, by sg 00, 2 — v and 7 in (2.50), we get

— S0 I(wo+2—v) 9 150,00
’ Fi(—wo;2 — vin) = (1 — s0.00)" (- 2=, 2.
ZO wol T2 —0) 1F1(~wo vin) = ( 80,00) exp (1 — s0.0) (2.55)
wo= >
Replacing ¢, v and z, respectively, by sg, 2 — v and w; 1 in (2.50), we get
= 550 D(wo +2—v) _ 2 w1150
2 Ty MRCe2 i) = (L) e (- (2:56)
wo=
Replacing ¢, v and z, respectively, by so, 2 — v and wy 5, in (2.50), we get
580 T(wo +2—v) _ 5 W1 1 So
20 R (—wo; 2 — v ) = (1 — v (— ’ ) 2.57
> Ty MPCen2 v = (s e (- ey (2:57)
wo=
Taking ¢o =1, A\ =1 —v and 4/ = 2 — v in (2.37) and substituting (2.55), (2.56) and (2.57) into the
obtained equality, we get the desired result. O

3 GCH equation about an irregular singular point at infinity

Let z = % in (1.1) in order to get an analytic solution of the GCH equation about x = oo:

d? d
2 T;; +((2—v)2® —e2? — p2) d—z + (2 + ewz)y = 0. (3.1)

Assume that its solution is -
y(Z) = Z CTLZn+)\7 (32)
n=0

where A is indicial root. Substitute (3.2) into (3.1). For the coefficients ¢,, we get the following
three-term recurrence relation:

Cn41 = Ancn + Bncn—h n Z 1, (33)
where
€ (n—w-+A)
An = —— 5 34
pn+1—-Q/u+ N (3-4a)
Il n=14+Nn—-v+2A)
B, =—- , 3.4b
PRSI YRy (3:40)
c1 = AOCO- (34C)

We have an indicial root A = Q/pu.
Now, let us test for the convergence of the analytic function y(z). As n — oo, from (3.4a) and
(3.4b), we get

lim A, = -, (3.5a)
I

n—0o0

lim B, = -~ — co. (3.5b)
1

n—oo
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There are no analytic solutions for a polynomial of type 2 and infinite series. Since, by (3.5b), y(z)
is divergent as n — oo, there are only two types of analytic solutions of the GCH equation about
2 = oo such as polynomials of type 1 and of type 3. In Chapter 10 [14], the polynomial of type 3
about z = oo is derived: pu, g, ) are treated as free variables and v, w as fixed values. In this section,
we have constructed the power series expansion, an integral form and the generating function for the
GCH polynomial of type 1 about = = oo: u, €, w and €2 are treated as free variables and v as a fixed
value.

3.1 Power series for a polynomial of type 1

In [10], the general expression of a power series of y(z) for a polynomial of type 1 is given by

Zy" _yo )+y1($)+y2(a?)+y3(x)+...

Bo  io—1 io—1 in—1
= COLL)\{ Z ( H B211+1) 2o + Z {A220 H B221+1 Z ( H B2¢3+2)}$2i2+1

io =0 ll =0 lo 0 ’Ll =0 7,2 _ZQ i3:i0
%) io—1 N-1 B igp—1
+ E { § {A2ZO H BQzl+1 H ( § A2i2k+k H B2i2k+1+(k’+1))
N=2 *ipg=0 i1=0 lok=l2(k—1) 12k+1=%2(k—1)

BN 2N —1

x Y ( II B2i2N+1+(N+1))}}x2i2N+N}- (3.6)

IgN=la(N—1) 2N+1=%2(N—1)

Here 8; < B; only if ¢ < j, where 4, j, 5, 5; € No.
For a polynomial we need the following condition:

Bag,(i41) =0, where i =0,1,2,..., 5;=0,1,2,.... (3.7)

Here f; is an eigenvalue that makes B,, term terminated at a certain value of the index n. (3.7) turns
each y;(z), where ¢ = 0,1,2,..., into the polynomial in (3.6). Replace §8; by v; in (3.7) and put
n = 2v; + (i + 1) in (3.4b) with the condition Bj,,(;4+1) = 0. Then we obtain eigenvalues v of the
form

v=2u+i+1+ A\

n (3.4b), we replace v by 2v; +i+ 1+ A, and insert the obtained result and (3.4a) into (3.6), where
a variable x and an index [3; are, respectively, replaced by z and v;. Hence the general expression of
a power series of the GCH equation for a polynomial of type 1 about z = oo is given by

y(2) =D un(2) = y0(2) +y1(2) + y2(2) +y3(2) + -+~
n=0
_ A N (—1/0)10(%)10 io
= cpz {i;)(l_zfi_’_é)ion
n { i . (4o 1— 5 :2‘ %))\ (—1/0()22'0(%320 i (—Vl)u(% + %)11% - % + %)10 T]il}g
io=0 (io+3 — 2t 3) (1- ot 3 )io ii—io (=1)io (5 + 5)io (5 — .t 5 )iy

N i O (io—%43)  (—10)i(3)i
=0 (io-i-%—%—i—%) (1-2+3),
Q

xl:f{ i (.(ikJr’;“;;ré\) (—Vk)ik(§+§)ik(§+1—g,ﬂ'g)ik1}

(Bl )i, ),
TR S Tt A A (3.8)
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where

2
77:*22,
Me
£:_7z7
v=2v;+j+1+A,
1
z=—,
x
v; <wvj onlyif ¢ <j, where ¢,j,v;,v; €Ng....

Put co= 1, as A = Q/p in (3.8).

Remark 3.1. The power series expansion of the first kind GCH equation for a polynomial of type 1
about x = 00, as v = 2v; + j + 1+ Q/p, where j,v; € Ny, is

o & (_Vo)io(%)io o
:zu{z(l)zj n

+a0) (F10)i0 (55 )i0 s (=11)is (

o 35 LonEa ) il 5t it e
= (ot 3) (L)io = (—11)io (5 + %)io(%)il
N i o, (io— 5+ 5) (—v0)io (33 )io

n=2 i0=0 (7’0 + %) (1)i0

Un —Un)i, (5 Qgin % Pt .
x D (( e ’“‘Q)_( MR nln}s”}- (3.9)

in=In—1

For the minimum value of the first kind GCH equation for a polynomial of type 1 about x = oo,
in (3.9) we set vy =11 =19 =--- =0 and get

Q 1 2
() Q(ZW<H7€QWV_.]+1+7 *,52—52,7’]:7'22)
I T w J
—(2_
z O en_ (14 22) 70

From the above it follows that a polynomial of type 1 requires |i z| < 1 for the convergence of the
radius.

3.2 Integral representation for a polynomial of type 1
There is a generalized hypergeometric function such that

I zyl: (_Vl)iz(%+%)lz(%+1_Q—i_%)il 1
l:
(_l/l)il 1(% %)'Ll 1( +1_£+;\)
)

i

=i -1

_ it i Al —w)ilia + 5+ %) (3.10)

S -,

where ; Q )
Aj=B<Zlf1+§—@+§,J+1>.
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By using integral form of the beta function, we have

1

. l Q )\ G ti-1—-2 42 .

B(, S 42 1): dty T ETI TR gy

o1 2M+21+ /l (1-t)
0

Substitute (3.11) into (3.10), and divide L; by (ij—1 + § — ﬁ + 2). We obtain

G 1 i ( Vl)ZL(Q %)H( 1_£+%)iz 1
= 7
(i + 5 =50 +3) 57 (5 4+ 3, (5 +1— 35+ 3)i

2 2/1. 2 2 =11 —1

iy

F-1-42+3 oo (e — )1+ £+ 3); ,
= [aned B ey B 2B g e
0 =0 J
Tricomi’s function is defined by
I'(1-b) rb-1) ;.
U(a,b M(a,b e M(a—b+1,2—b,2).
(a, b, 2) NCETESY) (a,b,z) + Ta) z (a—b+1, ,2)

The contour integral form of (3.13) is given by (see [33])

]_"(1 ) (0+4)
) —a
b _ ,—ami d —zpr,a—1 1 b—a—1
Ula,b,z) = e™*™ ——— / pr e *Pip T (1 +pi) ;
where )

a#1,2,3,..., |phz|] <=

2
Also (3.13) is written as (see [33])

oo

—b+1 ,
U(a,b,z) =z “Za——'_)( N =27 3 Fy(a,a — b+ 1;—; —271).

j= 7

Replace a, b and z in (3.15), respectively, by 4,1 — v, —, + 1 — é — % and 77(177—1&) We get
2 (i1 — ) (-1 + £+ 3); ,
Z - 1 222 (n(1 —ty))?
= (1);

-1 i_1—V] l A
=\ 77 -1 — y T 1_7_73 )7
(n(l—tl)) U(” L=t 5@

where
-1
w=——.
n(l—t)
Replace a, b and z in (3.14), respectively, by 41 — v, —v + 1 — £ — % and 77(1_7_1”)
result into (3.16). We obtain
o, : LA ‘
Z (t1—1 — uz)j(llzfl +5+35); (1 — 1)) = I'(y —2217'1 +1)
=0 ( )j e
(0+) a )
Dl —1 —1(1+A)<77 —h )"l( i )”—1
x [ dpexp (— P (1) .
/ ERATE A VAL (1+2) n n(l —t)(1+p)

[e )

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

and insert the

(3.17)
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The Gamma function I'(z) is defined as follows:
/dul e “u;~!, where Re(z) > 0. (3.18)
0
Put z =y, —4;—1 + 1 in (3.18). We have
F(Vl - 7:l—1 + 1) = /dul e_ul’u,zll_ilil. (319)

Substitute (3.19) in (3.17) and insert the result into (3.12). We get

G 1 i ( Vl)u(é %) ( +17£+%)il 1 n
= 7
i+ =g +3) S, i B+ D (5 H1- 52+ 3

2]

U=r-1 pm 2
1 _Q I 1
/dtl i “*A)/dulf
2mi
0
v (1-t) '
Di 1 —1(+N) (777.14 —1 )Vz ( tipy )1171
X dp; ex <7> 1+ P (3.20
[ e (g i) ” i —waim) - %
Substitute (3.20) into (3.8), where | = 1,2,3,...: apply G into the second summation of the sub-

power series y1(2); apply Gs into the third summation and G; into the second summation of the
sub-power series yo(2); apply Gs into the forth summation, G5 into the third summation and G; into
the second summation of the sub-power series ys3(z), etc.*

Theorem 3.2. The general representation in the form of an integral of the GCH polynomial of type 1
about x = 0o is given by

Zy" _yO )+y1(2)+y2(z)+y3(z)+...

17 n—1
A 20: (—=10)io % ZO+Z L dt tz(n k—2— Q+A) d nk
= Cpz —(l—zﬂ By n—k lp_k Un—k €
0

i0=0 2
(0+)
-1 — 3 (n—k+A
X o [ dpnk pp (1 o) EOTHEY
S
X exp ( Prn—k ) (wn—k—‘anun_k(l — tn—k,‘))l’"—k
wniqu’n(l —tn—k) Prn—k

Ll _k—1—w Lin—k—1—-w Yo —10); AZ i
T el ST e e e
lo= 2

where
tip;
wi,j = ul(l —ti)(l—Fpi)’
n only if i > j.

where 1 < 7,

Here the first sub-integral form contains one term of Al s, the second one contains two terms of Ay,
the third one contains three terms of A,’s, etc.

*y1(z) means the sub-power series in (3.8), contains one term of Al s; y2(z) means the sub-power series in (3.8),
contains two terms of A}, s; y3(z) means the sub-power series in (3.8), contains three terms of A/ s, etc.
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Proof. In (3.8), the power series expansions of the sub-summation terms yo(2), y1(2), y2(2) and y3(2)

of the GCH polynomial of type 1 about x = co are

Zyn =yo(z

)t y1(2) +y2(2) +ys(2) +-- -,

where

im0 =20 %)lo
yi(z) = coz’\{ - ' (io ; % g %))\ (*Vos)zio(%zlo
i0=o(l0+§_ﬂ+§) (1= 55+ %)
2 )i+ 23— 5+ 3
o) = e { Z ; (o — % + %)A (—uogl()(%gm
ot s —o,+35) =5+ %)

UL (i d -2 ) )G+ 3)a (3 - ap D
x> (h+1- 2+ CoaE s 2B 24 Ay,
ir=ip \'1 20 T2 i\ T 2)io\2 ™ 2 T 2/01
o
o ()i (L4 9)n (2= 35 + )i
ootz =55 +3) (L= 55 + 3o
y i (h+3-24+2) ()G +3)a(G— 25+ i
o= g+ 3) ()i (5 + 2)ie (3 — 55 + 2
i (g +1—2+2) (=12)i(1+2)u(2- 3 +3)i
= G2+ 5 =5+ 3) () (1+3)0 (2 55 + 3)a
- <_V3)i3(% + %)ls(g - % + %)12 ia 3
x Z 5 5o a8
i ()i (54 2)ia (5 — 5 + 9)is
Put I =1 in (3.20) and insert the result into (3.23b). We get

X exp (n(1p_1 tl))pfl(l +p1)_%(1+x)( e t1)>

D1

(=100 (3)io ( t1p1 )’0
1 u1(1—t1)(1 +p1)

1 0o (0+)

L1 2 1
=z ¢ [ dty tf( ! “H\)/dul et — / dp,
2mi

oo

P 1 _l(1+,\)(77u1(1_t1)>ul
exp (=2 Yo (14 )b (=)
Pa /P (I +p1) o

(3.22)

(3.23a)

(3.23b)

(3.23¢)

(3.23d)

(3.24)
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where wy 1 = m . Put I =2 in (3.20) and insert the result into (3.23c). We get

1
1@
y2(2) :C()Z)\fz/dtg t22( g )/duQ [ p— / dps

1—1t2)\"2 —1(-w
Xexp( ) Y1+ p2)~ %(%A)(%) w2,5(1 +A)(w2723w2)2)w

;) (_VO)io<%)io L (_Vl)il(% + %)11(% - % + %) i
Z s e YD D e Y R

= 20 2/%0 41=4,

where wo o = m . Putl=1and n = wsys in (3.20) and insert the result into (3.25). We get

1 (0+)
F(=242 ) u2
y2(2) = coz A2 [ dty ty dus e "2 — dps
0

p — _1 1—1¢ V2o Ly 1
77(17_2@))1’2 1(1 + p2) 2(2H3) (%) wz,f ( )(w2,23w2,2)w22,2(
o (0+)

1

1— S)_,’_)\ B .

/dt1 t2( )/d ui e “1— / dp1 exp (p71>p11(1 +pp) 2N
) 2,2(1 —t1)

0

X exp ( 1—w+A)

1—¢ Vi _1(_gy 1(_w Vzéz i
% (%) w1’22( +/\)( a 22( +X) Z ( 0) 0(2)0. w21(327 (326)

— __tipr
where w12 = = Sarpy -

By using similar process as for the previous cases of integral forms of y; (z) and y2(2), the integral
form of the sub-power series expansion ys3(z) takes the form

1 oo (0+4)
14_0 1
yg(Z) :COZ)\gg/dtg t; (1 u"!‘)\)/dug P / dp3
211
0 0 e3¢}
D _ 1 uz(l —1 —1 (2wt 1 (2—wtA
X exp <73>p31(1+p3) ;wm(M) Wi O (15 40, od 27
n(1 —t3) P3
1 00 (0+)
/dt tz( +>\)/ P / dps
0 0
_ 1 w3 g3uUs(1—1 —l1—w L (1—w
y exp< P2 )p21(1 +p2) é(m)(M) wid 07 (10, yud {1
w3 3(1—12) D2
1 oo (0+)
L(-1-2+)) _ 1 D1 -1 —L(14x
dty 2 duy e — [ g (7) 1 B(1+N)
/ 1 / v e 2777, / P1EXp w273(17t1) pl ( +p1)
0 0
wo 3wy (1 — 1)\ "1 —1 (Cwia 1 (—wtr (—10)i0(3)i0 4
X ( =2 1( 1)) wl,??( " )(wl 38w1 3)’[1)12’; . )Z QO 2)\ - w1?37 (327)
b1 10=0 (1 E + 5)7‘.0
where
S l3ps
3,3 — 9
uz(1l —t3)(1 + p3)
W = tapa
T ug(1—t2)(1+p2)’
we e tipi
1,3 = .
u1(1 — tl)(]. +p1)
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By repeating this process for all higher terms of integral forms of sub-summation terms y,,(z), m > 4,
we obtain their integral forms. If we substitute (3.23a), (3.24), (3.26), (3.27) and the integral forms
of ym(2), m > 4, into (3.22), we obtain (3.21). O

Remark 3.3. The integral representation of the first kind GCH equation for a polynomial of type 1
about = oo as v = 2v; + j + 1 + Q/u where j,v; € Ny is

. Q
y(z) = Q(%)Wuj (M,E,Q,w, v=2v;+j+1+ E;z,f,n)

00 n—1 1
= zg{(—n)“‘JU( —v,—+1— % —77_1) +> { 11 { /dtn_k tz (n=hk=2)
n=1 k=0 0

00 (0+)
_ 1 _ C1(p_ka
X /dun,k e Un—k 27” / dpnfk pnik(]‘ +pn7k) 3 (n—k+3)
0 oo
X exp ( Pn—k ) (wn—k+1,nun—k(1 - tn—k))yn_k ;%k(?l*k*1*w+%)
wnkarl,n(l - tnfk) Pn—k ’

lin—k—1—w+2 Q
X (WD w2 “)}(—wl,n)"w( oot ~wih) }g”} (3.28)

where

1
z=—,

T
52_527

I

2
n==2%

1

Proof. Replace a, b and z, respectively, by —vg, —vg+ 1 — % and —n~! into (3.15):

8 (—0)in(3)i0 Q 1
—2=n) = (—n)"U( —vo,— o +1——,—n7"). (3.29)
T ( )

Replace a, b and z, respectively, by —vg, —vg + 1 — % and —w;}l into (3.15):

Vo A
—V0)ig\ 3 )i i 0 _
3 %w{m _ (—wLn)VoU( o~ +1— = —wljl). (3.30)
3=0 (1- ﬂ+§)io 2
Putting ¢cp = 1 and A = Q/p in (3.21) and substituting (3.29) and (3.30) into obtained equality we
get the result. O

3.3 Generating function of the GCH polynomial of type 1

Let us investigate the generating function for the first kind GCH polynomial of type 1 about x = co.
Definition 3.4. Define

Sq " Satl " Sat2' " Sp—2 - Sp—1- Sy, where a <b,
Sa,b = .
Sq only if a = b,

8itiWiy1,j

— , where 7 < j, (3.31)
ﬁ;'. o 1 + siui(l — ti)wi+17j J
w Si,00til) e
: only if i = j,

1+81‘700U7;(1 7@)77
where a,b,i,j € Ng, 0 <a<b<ooand 1 <i<j<o0.
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We have

”j

Zs - _is) at |s;] < 1. (3.32)

Vi =V,

Theorem 3.5. The general expression of the generating function for the GCH polynomial of type 1
about x = oo is given by

ZZH{Z 2 9(2) = T e X smi)

om0 v poi (1 Shoo)

2( 1=324X) —1 (14N
H = dt1 duy exp(—(1 = $1,00)u1)(1 + 81,00u1 (1 — t1)7) 2
0

X @11 . wH\)(

s )

o0 o0 o0
Z{ H 1—s /dt t2(n 2— +>\)/dun eXp(_(l_Sn,oo)un)(l—&-sn,ooun(l—tn)n)—%(”+>\)
koo
0

1 —Ww ~
w1,10g,, 1)w121( +A)'I'(/\; So;wm)}ﬁ

I (n—1—w+A) ~1 (n—1—w+N) — (n—j— 277+)\
X Wn, 3 (Wn,n 0, . ) Wnn H dtn i taj dun j

XeXp(f(]_ Sp— ])Un ])(1+Sn jUn— J(].ftn ])wn ]_Hn)**(” J+/\

~— 2(n j—1—w+A) ~ 1 (n—j—1-w+A)

X w, 2, (Wn—jn O, ;)W }T(/\;so;ﬁlm)}f", (3.33)

where

0oy v (_ A
S Vo) ( ) ~
T(A,SO,le) - E VO' {COZ)\ E QZO 2/\10 wi?1}7
vo=0 0 i0=0 ( T2 + 5)10

OO
Proof. Applying the summation operator l/o' H { Z ”"} to the form of a general integral
vo=0 n=1 vp=Vnp_1

of type 1 GCH polynomial y(z), we obtain

ZLH{Z ) =3 H{Z st b (o) + 1 (2) +92(2) + ). (3:34)
0=0 n=1 vnpn=Vn_1 Vo= 0 n=1 vp=Vn—1
Applying the summation operator H { Z stn} to (3.23a) by using (3.31) and (3.32),
Vo= 0 Vp=Vn_—1
we get
) vy OO S 0o 0o v 17 A
SOO { v } 1 SO?OO{ A - ( VO)%(i)’m i }
- sy Yo(z) = oz no b (3.35)
Zwill 2 Ho=o 2w Sa-g o
Applying the summation operato e I1{ X } to (3.24), by using (3.31) and (3.32)
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we get
(0+)

o §¥0 e} e} (—1- .
ZULO!H{ Z szn}yl(z) H 1_3koo /dt1 2 /dule 1T/dp1
vo=0 n=1 VUn=Vn—1 k= 2 50

X exp ( = ) t +p1)7%(1+>\) i (Sl,oonul(l - tl))yl

(1 —t1) i = 2
_ 1 (CwA s N (—0)i(3)i0
X Wy 12 ( " )(wl,lawl 1)w12,1( e Z 0| {cozk Z 1 Q . 2)\ . wlol E (3 36)
1/0:0 10:0 ( - ﬂ + 5)10

Replace v;, v; and s; by v, 1y and %11(17“) in (3.32). Substitute the new (3.32) into (3.36),

1 [e%e)

s v —LtN —
SET S = et fond O o

VO Sk oo
vo=0 Un=Vn—1 k72 0 0

(0+) 1
1 1 (14py)—2(HY L (—wt ) 1 (—wtA)
X — d ( ) i a 01 ;
27 PP Ga =)/ p - Stoonur(1—t1)  bL (w1180, s

o0 o vo ) (2D,
« 3 (W) 1 {coz’\ 3 Ww?l}f- (3.37)

py
V! — = 42,
vo=0 p1 0 i0=0 ( i 2 )io

By using Cauchy’s integral formula, the contour integrand has poles at p; = s1,00nu1(1 — t1), where
$1,00mu1(1 — 1) is inside the unit circle. Computing the residue in (3.37), we obtain

Zi?) H{ Z Vn}yl(z) 1*5koo O/d (=1=54+0)

vp=0 VUpn=Vn—1 k= 2

s

1 (Cwt) 1 (cwtd) = 8 Ao (C10)io(3)io i
B 00, ) 35 L $ G g e g

where
t1p1

ur (1 —=t1)(1 +p1)

w11 =

P1=581,c0Nu1(1—11)

o0 o0 (o)
Applying the summation operator Y. SL [IT{ X si} to(3.26), by using (3.31) and (3.32),

vo=0 n=1  VUpn=Vn_1
we have
oo oo o %) 1 %)
1 19245
Z SOI H{ Z s;jzn}yZ(Z) = H_i/dtQ tg( nt )/du2 e "2
=0 VO 1 = k= (1 Sk,OO)
Vo= n= VUn=Vnp—1 =3 9 0
(0+)
1 P2 (14 pg)~ 22+
-— dps exp ( )
2mi n(l—t2) P2

oo
s wo (1 —t9)\¥2 1 (1—wt+r 1 (1—wtA
X Z ( 2.oell 2( 2)) w2,22( ¢ )(w2,26w2,2)w22,2( o)
P2

Vo=Vr1
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(0+)

1
1(-1-2+%) p1 (1+py) 20+
dt; t? d ulf d
XO/ th / e / h exp( 22(1—t1)) D1

%)
81’(1)2’211,1(1 —tl) oo _L(— +A) 1 (—w+A)
X Z (p—l) 'LU1,22 “ (w1,25w1,2)w12,2 :

V1=Ulg
oo % Yy A
SOO{ A . (_Vo)io(i)io io } 2
x S0 ) a0l g dio i Le2 (339
2w\ g, e

Replace v;, v; and s;, respectively, by v2, v1 and W in (3.32) and the insert the result into
(3.39). We have

1 00

S —u
ST Y e - H1 /dtt Y fug e
1z Oyonl Vp=VU. k_3 _Skoo
00— n n—1 0 0

0+
xi( )dp exp( = ) (1t pe) 2200 w_%(l_wﬁ)(w o) )w%(l_wﬂ)
27 2 N1 —t2)/) pa — s2.conua(l —ta) 22 2,2%wz2,2)72,2

1 (04)
1(-1-24x) P (1+py)~ 30N
dt t2 du; e™" — d
x/ th / e / P exp( 22(1—t1)) »1

> 51,00MU2(1 — to)wo ouq (1 — ¢ — 1 (—wtA
o Z ( (1 —t2)wa guy ( 1)) wuz( )
P1p2

V1=Vg
oo Vo Yo _ ().
<Y B {an Y R e @)

By using Cauchy’s integral formula, the contour integrand has poles at pa = s2 sonua(1 — t3), where
S2,00Nu2(1 — t2) is inside the unit circle. Computing the residue in (3.40), we obtain

- 1
30 { yn} _ 1 gt t%(—%+x)
ST Y wehne =T i [t
vo=0 Vn=Vn_—1 k=3 ’ 0
2+ 1—w+A L (1—w4
. /du2 eXp(*(1*52700)“2>(1+52,oou2(1*tz)n) 2E 22( M@ 223w22)w5,2( "
0
1 00 (0+) 1
1 (—1-24)) uy 1 / D1 (1+py)~2 Y
dty t2 duy e — [ d ( )
/ 14 / uy € o P1 €Xp 22(1 7t1) 1
0 0 e’}
o0 ~
S1wWaouUl(l —t1)\Y1T —1 (—wtA L (—w+A
3 (Pt O a0, bl
V1=Vro
%) v 14 A
500{ A (F10)i0(3)io i | 22
x 30 20l ST R i, Le2 (3,41
vo=0 vo! i0=0 (1= 57+ %)
where
topa 82,00t2M

Wo2 =

u2(17t2)(1+p2) o ].+SQ,OO’U,2(].7152)’I7 ’

P2=52, coNua(l—12)

Replace v;, v; and s;, respectively, by v, vg and %ﬁ in (3.32) and insert the result in (3.41):
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0 vg oo o) 1
Z LH{ Z Szn}yz(z):g(llskoo)/db t2(—ﬂ+A)
0=0 n=1  vpn=vnp_1 = ’ 0

_1 A _1 w
X /du2 exp(—(1 — s3,00)u2) (1 + s2,00u2(1 — t2)n) 2 2+ )w2 z (1- +A)(

)

1 (1—w+A)
w2 28102 2)w22,2

1 oo (0+4)
3 (-1=040) D1
dty t7 " / — / dp; ex )
/ 1 P1 P 22(1 — t1)
0 0
1+p _5(1+)\) — L (—wtA L —wA
( 1) w1,22( " )(wl,Qawl,z)wlz,é )

p1 — s1Wa2u1 (1 —t1)

oo ~ Vo A

1—t1)\» 1 —Y0)io\3 )i i

o Z (80,1w272m( 1)) = {COZA Z (Os);o(z)wwgg}gi (3.42)
= P1 p! =0 1 .

By using Cauchy’s integral formula, the contour integrand has poles at p; = s1ws 2u1 (1 — t1), where
$1Wa ou1 (1 — t1) is inside the unit circle. Computing the residue in (3.42), we obtain

- e3¢} 1 e
Z % { Z sﬁ"}yz(z) :,}_[g)ﬂ—;od/dtg t;( 24 3)
- 0

vo=0 0° 21 " vn=vm_
2+ 1—w+A 11N
X ~/du2 exp(_(l - 82’Oo)u2)(1 + 32,001142(1 - tg)'ﬂ) ( " ) 2 2 ( * )( w2 281112 2)’11}22’2( N
0
1 00
e 1
/dtl 2 (=1=4+X) /dul exp(—(1 — 31)“1)(1 + syup (1 — tl)wzz)—f (1+X)
0 0

L (—whA) 1 (0t ) x50 N (—10)io(3)i0 ~
x 1‘01,22 (et )(w1,26ﬁ1,2)w12,2( ™ Z I/Lo' {COZ«)\ Z ﬁ wi‘fz 52, (343)
! : 5 )io

where _
S1t1ws2 2

B 1+ 81u1(1 — tl)lﬂg,g '

t1p1
up (1 — tl)(l +p1)

Wwi2 =

p1=s1W2,2u1(1—t1)

Applying the summation operator T H { Z ”"} to (3.27), by using (3.31) and (3.32), wi

have = e
o0 §¥0 [e's] oo o) 1
Z L H { Z }y3(2;) = H a 71816 ) /dt3 o 1(1-242)
0=0 n=1  vp=Vnp_1 k=4 »o0 0

23N ~—1 (2— w+)\)(

oo
- L(2—w+A
X /du3 exp(—(1 — 33,oo)u3)(1 + 83 00uz(1 — t3)77) 2 Wy 5 +2)
0

3 (
w3 38103 3)w?f,3

1 [e%e)
Q 1 —w
/dt tz( + )/du2 exp(i(l752)u2)(1+82u2(1,t2)@373)*%(2+>\)@;’§(1 +2)
0 0
1 [e%s}
1 —w Q )\ _ 1
x (W2,30%,, a)wf,:gl H)/dt t2( e )/dm exp(—(1 = s1)ur) (14 syus (1 — t1)Wa 3) 20
0 0

1wt 1 (cwtn) = 8 N (—0)io(3)i0 i
x 3 " @50, s Y Y %., {cozA > M—”(’_w;jg £, (3.44)

vo=0 ’ i0=0
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where
By g = t3ps _ $3.00l37 ’
; uz(1 —t3)(1 + ps3) Ppa—s3.conus(1—ts) 1+ s3.00us(l —t3)n
Ty g = tap2 _ Sotots 3 .
, uz(1 —t2)(1 4 p2) prmsa@esus(1—ts) LT soug(1l — ta)ws 3
By g = t1p1 _ $1t61Wa 3 -
Tow( =)+ | g 1y L s1ua(l — )W

By repeating this process for all higher terms of integral forms of the sub-summation y,,(z) terms,

where m > 3, we obtain every Z 1/0' H { Z s¥n bym(2) terms. Since we substitute (3.35),
n=1

vo=0 Vn—l/n 1

(3.38), (3.43), (3.44) and include all E 60 H { Z 54" }ym(2) terms, where m > 3, into (3.34),

vo=0 VUn=Vn—1

we obtain (3.33). O

Remark 3.6. The generating function for the first kind GCH polynomial of type 1 about x = oo as
v=2v;+j+14+Q/u, where j,v; € Ny, is

(oo}
> STl Y s @O ue e g
Vo= 0 VYn=Vn—1
1
G H Ao+ { [ s [
zn - @@
pale 1—8;“)0) 0,003 Pl 1—5koo )
oo
pat =5 (—wt ) 5 (—wt i) -
X/dm Ty (81,00 t1, U1, M)Wy 1 o (W110g, )Wy, A(So;wm)}f
0
1
1 1 (n-2)
— [ dt, t3
S gty e
k=n+1 ’ 0
o0
<~ —1 1— + A 1w+ £
x /dun I‘n(sn,oo;tnvunvn)wn;?l(n N )(wn7nawn,n)wﬁann wr)
0
n—1 1 oo
1 ig “ .
X {/dtn] tfb_(? ! )/dunfj anj(snfj;tnfj,unfjvwnfjJrl,n)
=19 0

Ll (n—f—1—w+) _ L m—g—1- Q _
Xﬁnfj(,n s +“)(wn*jﬂa@n—j,n)ws—(;nj ' w+“’)}A(80;w1,n)}€n}7 (345>

where
V:2Vj+j+1+%, 22%7 5:_%27 77:%22;
<> . R
T (51,003 t1,u1,7) = exp(—(1 = 81,00 )u1) (1 + 5100w (1 — t1)7) "2 FH0);
<>
I‘n(sn’m; tn, Un, 77) = exp(i(l - Sn,oo)un)(]- + Sn,ooun(]. — tn)n)_% (n+%)’
s ~
I‘nij (Snfj; bn—js Un—j> Wn—jt1, n)
-3 (n—j+3)

= exp(—(1 = sp—j)tn—;) (1 + $n—jtin—;(1 = tn—j) Wn—jt1,n)
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al’ld Q
A (50,003 1) = exP(80,00) (1 + 50,00m) 2,

~ ~ _
A(so;w1,1) = exp(so) (1 + sowi,1)” 2,
Q

A(s0;W1,n) = exp(so)(1 + soWi,n)” 2+ .

Proof. Replace a, b, j and z, respectively, by —vg, —v9 + 1 — a, ip and —z~! in (3.15). Applying the

o0 v

Y0
summation operator ‘;"7 to the resulting equality, we have
vo=0
10)
sq —502)
Z S0 Z = Z O —vy, —vo +1—a,—2z"1). (3.46)
v0=0 vo! i0=0 Vo=0

Replace a, b, p; and z, respectively, by —vg, —vp + 1 —a, p and —z~1 in (3.14):

(0+)
) |
U(—vp,—vo+1—a,—27") =™ % / dpeZp 11+ p)~= (3.47)
T
Insert (3.47) into (3.46):
o0 Vo 10 ( ) ( ) 1 (O+) o0
So —V0)ig\Q)ig iy . _q —a Spz\ Yo
s 5 Com@i o L gy 3 (9)
VOZZO V! i;) (1)4 2mi J VOZ_O D
) (0+) a )
»(14+p)~ ¢ _
Y A b 1 o (3.48
57 | et IS = expa) (14 s02) 7 (349)
o

Replace s, a and z, respectively, by 50 0, % and 7 in (3.48):

ZOWZ

vo=0 .1—0

Q)0 : 0

N = exp(s0,00)(1 + S0,00m) 2+ . (3.49)

Replace a and z, respectively, by % and wy 1 in (3.48):

o] 1/0 Yo io Q io
Z Z M W) = exp(so)(1 + 301171,1)_2% : (3.50)

1
PR
Replace a and z, respectively, by % and Wy, in (3.48):

x vo Yo (—p, i 2 4 .
Z S0 )il )io @, = exp(s0) (1 + so@1,) 2 . (3.51)
0 2 (1)i0 7 7

Putting cp= 1 and X = % in (3.33) and substitute (3.49), (3.50) and (3.51) into obtained equality we
get the result. O

4 Summary

The canonical form of the biconfluent Heun equation is defined by [26, 36]

d2
x—y+(1+a—5x—2x2)

Ty @Jr((y_a—2)x—%[6+(1+a)ﬁ])y=0

dx
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in which (a, 3,7,6) € C*. This equation has two singular points: of a regular singularity at x = 0
and of an irregular singularity at co. This equation is derived from the GCH equation by replacing
all coefficients u, €, v, Q and w, respectively, by —2, -8, 1+ a, vy —a —2 and 1/2(§/8+ 1+ «) in
(1.1) [9].

In previous two papers of the author [11,12], it was shown the way of deriving power series
expansions in closed forms of the GCH equation about = = 0 by applying 3TRF for an infinite series
of a polynomial of type 1 including their integral forms (each sub-integral y,,(x) of a general integral

[e.°]
y(x) = > ym(x) is composed of 2m terms of the definite integrals and m terms of the contour
m=0

integrals), and generating functions for the GCH polynomials of type 1 were analyzed.

In the present paper, it is shown how one can construct power series expansions in closed forms
and their integral forms of the GCH equation about x = 0 for an infinite series and a polynomial of
type 2 by applying R3TRF. This is performed by letting B,, in the sequence ¢, be the leading term
in the analytic function y(z). For a polynomial of type 2, we treat w as a fixed value and p, ¢, v, Q
as free variables.

The power series expansions and integral representations of the GCH equation about x = 0 for an
infinite series in the present paper are equivalent to an infinite series of the GCH equation in [11,12].
In this paper, B, is the leading term in the sequence ¢, in the analytic function y(z). In [11,12], 4,
is the leading term in the sequence ¢, in the analytic function y(x).

As we can see in [11,12], the power series expansions of the GCH equation for an infinite series
and a polynomial of type 1, the denominators and numerators in all B,, terms of each sub-power
series expansion Yy, (x), where m = 0,1,2, ..., arise with the Pochhammer symbol. In this paper, the
denominators and numerators in all 4,, terms of each sub-power series expansion y,,(x) arise likewise
with the Pochhammer symbol. Since we construct the power series expansions with Pochhammer
symbols in numerators and denominators, we are able to describe integral representations of the GCH
equation analytically. As we consider representations in closed form integrals of the GCH equation
about = = 0 by applying either 3TRF or R3TRF, a 1 F; function (the Kummer function of the first
kind) recurs in each of its sub-integral forms. It means that we are able to transform the GCH (or
BCH) functions about = 0 into any well-known special functions having two term recursive relation
between successive coefficients in the power series of their ODEs, because a 1 F; function arises in each
of sub-integral forms on the GCH equation. Having replaced 1 F; functions in their integral forms by
other special functions, we can rebuild the Frobenius solutions of the GCH equation about x = 0 in
a backward.

In [12] and in this paper, it is shown how to derive generating functions for type 1 and type 2 GCH
polynomials from their analytic integral representations. We are able to derive orthogonal relations,
recursion relations and expectation values of physical quantities from these two generating functions;
the processes for obtaining orthogonal and recursion relations of the GCH polynomials are similar to
the case of a normalized wave function for the hydrogen-like atoms.*

In Section 3, we construct the Frobenius solution of the GCH equation about x = oo for the
type 1 polynomial by applying 3TRF analytically [10]. Its integral representation and the generating
function for the GCH polynomial are likewise derived analytically. There are no such solutions for an
infinite series and for the type 2 polynomial, since the B, term is divergent in (3.5b) and the index
n — oo. Therefore, there are only two types of the analytic solution of the GCH equation about
x = oo such as the type 1 and type 3 polynomials. In comparison with integral forms of the GCH
polynomials of the type 1 and 2 around z = 0, a Tricomi’s function (Kummer’s function of the second
kind) recurs in each of sub-integral forms of the GCH polynomial of type 1 about x = co.

*For instance, in the quantum mechanical aspects, if the eigenenergy is contained in B, term in a 3-term recursive
relation between successive coefficients of the power series expansion, we have to apply the type 1 GCH polynomial. If
the eigenenergy is included in A, term in a 3-term recursive relation, we should apply the type 2 GCH polynomial. If
the first eigenenergy (mathematically, it is denoted by a spectral parameter) is included in A, term and the second one
is involved in B, terms, we must apply the type 3 GCH polynomial. In Chapters 9 and 10 of [14] we discuss about the
type 3 GCH polynomials.
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1 Statement of the problem

In a plane of variables x and ¢ we consider the hyperbolic second order system of the type
Lu := ugy — uge + Az, t)uy + Bz, t)ug + C(z, )u + f(x,t,u) = F(x,t), (1.1)

where A, B, C are the given square n-th order matrices, f = (f1,..., fn) and F = (Fi,..., F,) are
the given and u = (uq,...,u,) is an unknown vector functions, n > 2.

By D7 we denote an angular domain lying in the characteristic angle {(x,t) € R? : ¢ > |z|} and
bounded both by the characteristic segment v; 7 : = =%, 0 <t < T, and by the noncharacteristic
segments yor: ¢ =0,0<¢t<T,andvsr: t=T,0<z<T.

For system (1.1) in the domain Dp, we consider the boundary value problem which is formulated
as follows: find in the domain D7 a solution u = u(x,t) of system (1.1) by the boundary conditions

o =P =12, (1.2)
where ¢;, ¢ = 1,2, are the given on ; p vector functions satisfying at their common point O = O(0, 0)
the agreement condition ¢1(0) = ¢2(0). When T = oo, we have Do, @ ¢ > |z|, z > 0, and
Moo : T=1,0<1<00,Y200: ©=0,0<?<o0. In ascalar case, where n = 1, problem (1.1), (1.2)
is known as the first Darboux problem.

If in a linear case for a scalar hyperbolic equation the boundary value problems, in particular, the
Goursat and Darboux problems, are well studied [4,6,7,10,15,16], there arise additional difficulties
and new effects in passing to a hyperbolic system. First this has been observed by A. Bitsadze [5] who
constructed examples of second order hyperbolic systems for which the corresponding homogeneous
characteristic problem had a finite number, and in some cases, an infinite set of linearly independent
solutions. Later on, these problems for linear second order hyperbolic systems became a subject of
investigations (see [8,9]). In this direction, the work [3] is also noteworthy, in which by simple examples
the effect of lowest terms on the well-posedness of the problems under consideration has been revealed.
As is shown in [1,2,11-13], the presence of a nonlinear term in a scalar hyperbolic equation may affect
the well-posedness of the Darboux problem, when in one case this problem is globally solvable and
in other cases there may arise the so-called blow-up solutions. It should be noted that the above-
mentioned works do not contain linear terms involving the first order derivatives, since their presence
causes difficulties in investigating the problem, and not only of technical character.

In the present work, we investigate the Darboux problem for the nonlinear system (1.1) in the
presence of lowest terms involving the first order derivatives. The results obtained here are new even
in the case when (1.1) is a scalar hyperbolic equation.

Definition 1.1. Let 4, B,C,F € C(Dr), f € C(Dr x R") and ¢; € C*(vi 1), i = 1,2. The vector
function w is said to be a generalized solution of problem (1.1), (1.2) of the class C in the domain D,
if u € C(D7) and there exists a sequence of vector functions u™ € C?(D7) such that ™ — u and
Lu™ — F in the space C(Dr), and u™|,, , — ¢; in the space C* (v, 1), i = 1,2, as m — oo.

Remark 1.1. Obviously, the classical solution u € C2?(D7r) of problem (1.1),(1.2) is likewise a
generalized solution of that problem of the class C' in the domain Dp. Moreover, if a generalized
solution of problem (1.1),(1.2) of the class C' in the domain Dy belongs to the space C?(D7), then
this solution will likewise be a classical solution of that problem. It should also be noted that a
generalized solution of problem (1.1),(1.2) of the class C' in the domain Dy satisfies the boundary
conditions (1.2) in an ordinary classical sense. In case g2 = 0 in Definition 1.1, we will assume that
u™ € C3(Drive,r) = {v € C*(Dr) : v|y, , = 0}.

Definition 1.2. Let A, B,C, F € C(Dy,), f € C(Ds xR") and ¢; € C1(7;.00), i = 1,2. We say that
problem (1.1), (1.2) is locally solvable in the class C, if there exists the number Ty = To(F,v,72) > 0
such that for any T < Tp, problem (1.1), (1.2) has at least one generalized solution of the class C' in
the domain Dr.

Definition 1.3. Let A,B,C,F € C(Dw), f € C(Doo x R") and ¢; € Cl(vi00), i = 1,2. We say
that problem (1.1),(1.2) is globally solvable in the class C, if for any positive number T, problem
(1.1), (1.2) has at least one generalized solution of the class C in the domain Dr.
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Definition 1.4. Let A,B,C,F € C(Dy), f € C(Doo x R") and ¢; € C'(7i.00), i = 1,2. The vector
function u € C(D4,) is said to be a global generalized solution of problem (1.1), (1.2) of the class C,
if for any positive number T, the vector function U|p, is a generalized solution of that problem of
the class C in the domain Dry.

2 A priori estimate of a solution of problem (1.1),(1.2)

Let us consider the following conditions imposed on the vector function f = f(x,t, u):

| filx, t,w)|| < My + Msl|jul|, (z,t,u) € Dp xR™, i=1,2...,n, (2.1)

n
where M; = M;(T) = const >0, j = 1,2, |lul| = > |u|.
i=1
Assume

My = sup  max ((max {4 (e, t)], By (e, 0)],1C: (. 0)]} ).

(¢,)eDr 1<i,5<n

Lemma 2.1. Let F € C(Dr), ¢1 € C' (1), p2 = 0, and the vector function f € C(Dr x R")
satisfy condition (2.1). Then for a generalized solution uw = u(x,t) of problem (1.1),(1.2) of the class
C' in the domain Dt the a priori estimate

lule@,y < allFlle@m,) + e2lleillcrn r) +es (2.2)

is valid, where the nonnegative constants ¢; = ¢;(My, M1, M>,T), i =1,2,3, are independent of u, F
and @1, where ¢; >0,1=1,2, and

||UHC(ET) = Z ||UiHc(5T)7 ||F||c(ﬁT) = Z ||Fi|\c(ET)v
i=1 i=1

lerller e = D leniller o
i=1
Proof. Let u = u(x,t) be a generalized solution of problem (1.1),(1.2) of the class C' in the domain

Dyp. Then, according to Definition 1.1 and Remark 1.1, the vector function u € C(Dy) and there
exists a sequence of vector functions u™ € Cg (Dr,v27) such that

i " — oy, =0, lim [Lu” = Fllag,, = 0. (2.3)
,ﬂ}gnoo ||U |’)’1,T - S01“01('y1,rp) =0. (24)

Consider the vector function u™ € C3(Dr,~2.1) as a solution of the problem

Lu™ = F™, (2.5)
|“/1,T BREE vor 0. (26)

Here

F™ = Lu™, o =u™| (2.7)

Y1,7°
Multiplying both parts of system (2.5) scalarwise by ag—: and integrating over the domain D, :=
{(z,t) e Dp: t<7},0<7<T, we have

%/%(agij’agi:) dxdt/(é);z;n,a;;n) d:cdt+/(A(x,t) ag—:,ag—;n) dx dt
D, b, Fd
—I—/(B(x,t)a?gi:,a;itm) dxdt—|—/(c(x,t)um,8;7:) dx dt

D, D,

+/(f(x,t,um),ag:) da dt = / (Fm,ag;n) drdt,  (2.8)

D. D.
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n
where (v,w) = > v;w; is a scalar product in the space R™, v = (vy,...,v,),w = (wy,...,w,) € R™
i=1
Integrating by parts and applying Green’s formula, we obtain

[ = [ (G (55 e
:_a[[T (%ﬂ,%ﬂ)%dwél (%—:,%‘—:)W ds, (2.10)

where v = (v, 1) is the unit vector of the outer normal to the boundary 9D, of the domain D;.
Taking into account the fact that 0D, = 1 ; U, Uw,, where v; » = v, N{t <7}, i=1,2, and
wr=0D,N{t=71}={t=7, 0<z <7}, we have

1 1
(l/z,l/t)|7“ = <\ﬁ,*\ﬁ), (2.11)
(uw,yt)\mf =(-1,0), (Vm,yt)’wT =(0,1), (2.12)
(V2 — u3)|m =0, (2.13)
Vt‘vl,f < (2.14)

In view of (2.11)-(2.14) and the fact that u™|,, ., = 0, from (2.9) and (2.10) we arrive at

2 [ Cor ) =3 [ (G ) oy | (G e

b wr Yi,7
-3/ (iwz) dot g | (i(um?)utds, (2.15)
wro . T
‘/(igﬂ’%) da dt = ;/(iw;)?) da
D, o=l
+;/(zn:(uﬁ)2)ytds— / (Zn:u:gu:?)yids (2.16)
Y1, i=1 1.r i=1

By virtue of (2.13), it follows from (2.15) and (2.16) that

L] e [ (525 e

D. b,
= ;d[ <i—1 ((u?i)? + (%?)2)) dx —|—ny QLVt (; [(UZZ;Vt _ ugyzy + (u?t@)2(yt2 _ 1/3)]) ds
= %/ (Zn:l ((uf)® + (%?)2)) da + / 2% <§:1(ugyt - u;’;um)z) ds. (2.17)

Since (v % — Uy %) is the derivative to the tangent, i.e., it is an inner differential operator on
1,7, taking into account (2.6), we find that

|(uipve —uitva)|, | < lelillern. < Ifillor(m- (2.18)
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In view of (2.18) and the fact that v|,, = —% , (2.17) yields
1 0 sou™ Ou O2um u™
5/@(&’&)‘“” /<8x2’8t>dxdt
D, D,
1 - m\2 m\2 1 - m||2
> [ (30 (e + i ))daz—ﬁ / >l e 5

n

25 [ (X (i + ) ) do meb%TZH@ Wi (219)

W i=1

Let E = E(x,t) € C(Dr) be a square matrix of order n and u,v € R™.
If mg= su max |Ej;(x,t)|, then
o= o e 180

[(E(z,t)u,v) <Z|u1|) (im)
5 (ZW) +;m0(§:|”1‘|)2 moZluzl + = moZ|vz|2 (2.20)

Analogously, in view of condition (2.1), we have

|(f(x,t,u),v)| < (Ml + M2||u||) Z |vl|

i=1

1 - 2 1< 2
§(M1+M2||U|| (Z|’Uz|) §M12+M22(Z|Ui|) +§(Z|W|)
=1 =1
n n n
< M2+ M2n ui2+—( Vi 2). 9.21
< M;j 3 ;\ "+ 3 ;ll (2.21)

Taking into account inequalities (2.20), (2.21) and the definition of the number My, we obtain

[ (a5 0 o [ () 5
D,

.

+/(C(ac,t)um,ag—tm) dxdt—l—/(f(x,t,um),ag—:) dwdt’
D, D,
our " dup
D/( MOZ‘ Ui gM(J;‘gt’Z> dz dt
| Qi 2 TS R S WQ)
+/<nM0;‘ 3t‘)dxdt+D/T(2M0;|UZ| +2M0;’8t‘ dx dt

M? 4 M2 miz 1 ‘—‘ da dt
+/< i+ 2n;|ul|+2; 5t iy

T

n

< M} mes D, —|—(M2n+ My /Z| V2| dx dt
1=

+ZMO/Z;’6EJU:Z dxdt—&-(ZnMo—&-g)/‘%‘dedt
Fa=

D,
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o7

~ oul |2
< _t —t
M mes D, + (MEn + 200y + )/Z( ‘ ’ +| = ‘)dmdt

i=1
D,

n

_M3+M4/Z m m)2+(u;rtz)2) dl‘dt,

where

M3:M12meSD'r7 M4:M22n+2TLM0+g

By virtue of (2.19) and (2.22), it follows from (2.8) that
ou™
m
/ (F = ) da dt

D,
n 1 n
[ (2 (G + ) do = —= mesonr 3 It

i=1

>

DN | =

wr

n

My — M, / S ()2 + ()2 + (u)?) dadt,

D i=1

whence, owing to the fact that

8 n
Gm,“)g§§jw1 A
we get

n

%/ (D ((wm)? + (ui)?) da < M4/; (™2 + (W) + (u)?) da dt

o =1
1 1 n n
5 e Yl )+ Mt /Z P g [ S ded
D i=1
(M4+ )/Z w™)? 4 (uf)?) da dt
D. i=1
1 n . n
N DO R
D. =1 =1
Since u"(0,t) =0,i=1,...,n, we have

Hence, taking into account the Schwartz inequality, we get

T

(W™)2(z, ) < /12d0/ um) 07)da<x/( m) (JT)da<T/( ™2 o,

0 [

Arguing analogously and taking into account (2.6), we obtain

T

upor) =+ [ e, ds

x

(2.22)

(2.23)

(2.24)

(2.25)
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and, consequently,

(u:”>2<x,f>s2<soh><>+2(/7 (a:s)ds)2<2goh +2/12dt/ () d

x
T

— 2()2(x) + 2 — 2) / (W) (2, 1) dt < 2(}0)% () + 2T / (W) (. ) dt. (2.26)

T x

Integration of inequality (2.26) yields

T T T T

< 2/@;@)2(;1:) d:c+2T/ U(ug)Q(x,t) dt] dx:2/(<p71’})2(x) d:c+2T/(u§’tL)2 de dt
D

T 0 T 0

<22, ) + 2T / () (z, 1) di dt < 2T 2, + 2T / (w)? dedt,
D,

D,

from which it follows that

n

%/(Z(U’?)z) dz < T (167131 (.9 +T/Z(ug})2 dz dt.
i=1 i=1

wr i=1 - D,

Combining inequalities (2.24) and (2.27), we obtain

O =1
1 n
< (M4 3) [ 30 (@ + @ + ) dode
o i=1
1 - m\2 m
+§/Z(FZ )” dx dt + <f meS’YlT+T> Z”SOMHC“(%T)JFMB
D. =1 =1
Assume

T

/Xn: ((uf)? + (W) + (uf})?) dadt = /w(o') do,

D, =1 0

/3

D, =

3

(Fm™)? dxdt<mesDTZ||F 1Z(Dr)»
1 =1
from (2.28), in view of (2.29), we get

T

w(r) < Ms /w(U) do+Ms Y |IF/ G pgy + Mr D 16718 (y 1y + Ms,
5 i=1 i=1

(2.27)

(2.28)

(2.29)

(2.30)
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where
Ms =2M, +2T +1, Mg =mes Dy, M;=+2mesy,,+2T, Mg=2Ms. (2.31)
According to Gronwall’s lemma, it follows from (2.30) that
w(r) < [Mﬁ S NE™ME 0y + Mz > T2 0 1) + Ms| exp MsT, 0<7<T. (2.32)
i=1 i=1

By virtue of (2.25), (2.29) and (2.32), it is not difficult to see that

WP ar) T [ (i) do < Tulr)

wr

n n
< T[MG S IEM S p) + Me Y @t Gy ) + Ms| expMsT, 0<7<T. (2.33)

i=1 =1

3

1

< > Jai|, from (2.33) we obtain
1

Nl

a;)

i=1 i

M=

Taking into account the obvious inequality (

1™ lo@r = D 1 le@n
i=1

n n

<t (N2 ,,) " =n (X s @)

i=1 i—1 (®t)€DT

N
Nl

(NI

IA

n n
1 m m
ot (0T (040 3 VT gy M Y I+ M) x0T
=1 =1

n n 1
<n? (né (TMe)2 Y _IIF oyt n? (TM) 2D @Tllor g, 0 (TMS);) exp 5 MsT

i=1 i=1

yo 1 |
<n(T'Ms)? exp 5 MsT Y F ooy

i=1

: 1 N .1
+ ”(TM7); exp 5 M5TZ ||901i ||C('Yl,T) + ”(TMs); exp 3 MsT
i=1
=allF"™ @,y + e2llet o, + s (2.34)

Here
1 1 1 1 1 1
¢1 = n(TMg)? exp 3 MsT, c¢o =n(TM7)2 exp 3 MsT, ¢33 =n(TMsg)2 exp 3 MsT. (2.35)
By (2.3) and (2.4), passing in inequality (2.34) to the limit, as m — oo, we obtain an a priori

estimate (2.2) in which the constants ¢, co and c3 are given by equalities (2.35), and the constants Ms,
Mg, M7 and Mg in (2.35) are defined from (2.1), (2.23) and (2.31). In addition, ¢; > 0,i=1,2. O

3 Reduction of problem (1.1), (1.2) to a nonlinear system of
integral Volterra type equations

As a result of our passage to new independent variables & and 7:

f=5(+a), n=3(-a) (31)
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the domain D7 turns into a triangle Gp = OP; P of the plane Og¢,, where O = 0(0,0), P, = P;(T,0),
Py = P,(1T,1T), and problem (1.1), (1.2) can now be rewritten in the form

Lyv = ven + Av(§,mve + Bi(§,m)vy + c1 (& mv + f1(§,m,0) = Fu(§,m), (§n) € Gr, (32)
U|OP1:77:0, 0<e<T i(€), 0=<€<T,
U‘OPg:E:n, OSWS%T = ¢2(77)7 0 < n < T7 (34)

with respect to a new unknown vector function v(§,n) = u(§ —n,€ +n). Here

Ar(Em) = 5 (A€ —m €+ )+ BE—n.E + 1)),

Bign) = 3 (BE—n&+m) — A€ —n.€+m), .
Ca(&m) = O(6 —n.E+ ). '
Fl(&vn) :F(f—ﬂaf+77)7

fl(ganvv :f(£7n7§+773ru)7

P1(8) = ¢1(8),  Ya(n) = p2(2n). (3.6)

Below, it will be assumed that u € C?(Dr) is a classical solution of problem (1.1),(1.2), and
according to this fact, v € C?(Dr) is a classical solution of problem (3.2)—(3.4).
Consider first the case when in equation (3.2)

fl(fﬂ?»v) = 07 (37)
and the coefficients A1, B; and C; of that equation satisfy the following condition:
Biy+A1B;1 - Cy =0. (3.8)

When conditions (3.7) and (3.8) are fulfilled, equation (3.2) can be rewritten in the form

0 ov
(877 + 1) (Gg +Bw) =B, (€m) €O (3.9)
If we adopt the notation
0
w = a—z + By, (3.10)

then by virtue of (3.3) and (3.9), the vector function w = w(&, n) for fixed £ will be a solution of the
Cauchy problem

wy + A1 (§,nw = F1(§,m), (3.11)
w(§,0) = ¢1e(§) + Bi(&, 0)v1 (). (3.12)
Since under the above assumptions A; = A;(£,n) € C(Gr), therefore, as is known, there exists

the fundamental matrix X; = X1(§,n) of the corresponding to (3.11) homogeneous system satisfying
both the following matrix equality [14]

Xip+ A1 X1 =0 (3.13)

and the condition
det X1(&,m) #0, (&n) € Gr. (3.14)

Denote by K = K(&,n,() the Cauchy matrix of order n of system (3.13) which satisfies the
conditions
K, + A1 K =0, (3.15)
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where [ is the unit matrix of order n.
As is known, the Cauchy matrix K is given by the equality

where X; = X;(&,n) is the fundamental matrix satisfying conditions (3.13), (3.14) [14].
The Cauchy matrix K for the constant matrix A; is given by the equality [14]

K(&n,¢) = exp(Ai(¢ —n)). (3.18)

By virtue of (3.15) and (3.16), the unit solution of the Cauchy problem (3.11), (3.12) is defined by
the formula [14]

0

Owing to (3.18), in case the matrix A; is constant, formula (3.19) takes the form

n

w(€,n) = exp(—=A1n) (Y1e(€) + Bi(€0)11(€)) + /eXP(Al(C —n))F1(&, ) dC. (3.20)

0

Taking into account equalities (3.9)—(3.12), it follows from the above reasoning that a solution v
of problem (3.2)—(3.4) satisfies the Cauchy problem

%JrBw—w(&n), n<&{<T-n, (3.21)
1
(& me, =v2(m), 0<n< ST, (3.22)

where the vector function w = w(&,n) is given by formula (3.19).
Analogously to the matrix K, we denote by A = A(n, £, 0) the Cauchy matrix of the corresponding
to (3.21) homogeneous system which satisfies the conditions

Ae + Bi1A =0, (3.23)
and which is given by the equality
A(1,€,0) = Xa(n,€)X; ' (n,0), (3.25)

where X3(n, &) is the fundamental matrix for the corresponding to (3.21) homogeneous system.
When the matrix B; is constant, the Cauchy matrix A is given by the equality

A(n7 57 9) = eXp(Bl (9 - 5)) (326)

Owing to (3.23) and (3.24), the unique solution of the Cauchy problem (3.21), (3.22) is defined by
the formula [14]
9

o(Em) = A, €, m)al) + / A(1.€, 8)w(8,7) dob. (3.27)

n
By (3.26), when the matrix By is constant, formula (3.27) takes the form

£
v(€,m) = exp(By (1 — €))ba() + / exp(B1 (0 — €))w(6, ) db. (3.28)
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Substituting (3.19) for the vector function w(&, n) into the right-hand side of equality (3.27), we obtain

v(&,m) = A(n,&,n)a(n)

S

+ [ A0 [K(e,n,m (1c0) + B1(0.0001(0) + [ K0.0,0F2(0.) ¢ ao
0
3
A, €, (n) + / A1, £,0) [I(60,17,0) (11.£(0) + B (6,0)61(9)) ] do+
£ n !
+//An§9 (6.1.0)F1(6,¢) dCd6, (€.1) € G (3.20)
n 0
We rewrite equality (3.29) in the form
& n
//Rf 00, O)F1(6,0) dC dB + Fy(€.n), (6,) € G (3.30)
n 0
where
R(fﬂ??&@ = A(n7£va>K(97n’<)v (331)
3
FQ(&» 77) = A(777 ga 77)"/}2(77) + /A(na 57 9) [K(aa UB 0) (¢1£(0) + Bl(ea 0)1/11 (0))] de. (332)
n

In case the matrices Ay and B; are constant, by virtue of (3.18) and (3.26), equalities (3.31) and
(3.32) take the form

Fy(&,m) = exp(Bi(n — §))2(n)
¢

+ /exp(Bl(Q — &) [ exp(A1n) (v1e(0) + B1(0,0)41(0))] db. (3.34)

n

Consider now a general case when it is not necessary for conditions (3.7) and (3.8) to be fulfilled.
We rewrite system (3.2) in the form

(% +A1> (85 + Blv) = (B, + 1By — Ci)v — f1 + 1. (3.35)

Then, due to representation (3.30), the classical solution of problem (3.2)—(3.4) or, what comes to the
same, of problem (3.35),(3.3),(3.4), is given by the formula

£ n
o(En) = / / R(&, 150, 0)[(Buy-+ Ay By —C)o(6,C)— £1(60,C,0)] dCdb+ Fy(E.m), (€.m) € Gir, (3.36)
n 0

where
13

Fy(e,n) = / / R(&, 150, Q) F1(0,) dC O + Fy(€,m). (3.37)
n 0
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Remark 3.1. Equality (3.36) can be considered as a nonlinear system of integral Volterra type
equations which we rewrite as follows:

v = Lov + L3F1 + lo(v0,2), (3.38)
where the operator Lo acts according to the formula

&
(Lao)en) = [ [ REw0.0[(Bry+ 4181 - C060.0) — £1(6.6.0)] dCdb. (€ € G, (339)
n 0

and the operators L and [y, by virtue of (3.32) and (3.37), act by the formulas

En
(La3F1)(€,m) R(&§m;0,¢)F1(0,¢) dC do, (3.40)
-J]

3
(ZO (1/)1’ 1/)2))(& 77) = A(% fa 77)¢2 (77) + /A(n’ 57 0) [K(aa m, O) ('(/}15 (9) + Bl (97 0)1/}1 (0))] ) (341)
where (¢,7) € Gr.

4 Global solvability of problem (1.1), (1.2) in the class of
continuous functions

Remark 4.1. If we impose on the coefficients and on the vector function f appearing in equation
(1.1) the requirements of smoothness

A,Be C*Dy), CeC Dy), feC (DyxR"), (4.1)

and along with equalities (3.17) and (3.25) take into account the properties dealt with the smoothness
of solutions of the system of ordinary differential equations, we will have [14]

R(&,1;0,¢) € C*(Gr x Gr). (4.2)

Remark 4.2. Under conditions (4.1), in view of (4.2) for the operator Lq acting according to formula
(3.39), we have B B
Lyv € C*Y(Gr), if ve C*Gr), k=01, (4.3)

and, hence, the operator Ly : C¥(G7) — C*+1(Gr) will be continuous.
Arguing as above, we find that
LsFy, € C*Y(Gr), if Fy € C*(Gr), k=01, (4.4)
and -
lo(¥1,2) € CFYH(Gr), if o; € C*(OP),k=0,1,2; i=1,2. (4.5)
In addition, the operators Ls : C*(G7) — C**1(Gr) and Iy : CK(OP;) x CK(OPy) — C*(Gr) will be
continuous.

Remark 4.3. It can be easily verified that if u is a generalized solution of problem (1.1), (1.2) of the
class C in the domain Dy, then the vector function v(&,n) = u(é —n,& + ) will be a generalized
solution of problem (3.2)—(3.4) of the class C in the domain Gz in the following sense: v € C(Gr),
and there exists the sequence of vector functions v™ € C?(Gr) such that

mlgnoo [v™ — U”c ar) =0, mlgnoo [L1v™ — F1||c(§T) =0, (4.6)
=0, i=1,2, (4.7)

n}gnooHv ’ P,-*wichoa)

and the converse statement holds, too.
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Lemma 4.1. Let conditions (4.1) be fulfilled. Then the vector function will be a generalized solution
of problem (3.2)~(3.4) of the class C in the domain Gt if and only if v is a solution of the nonlinear
system of integral Volterra type equations (3.38) of the class C(Gr).

Proof. Let v € C(Gr) be a solution of system (3.38). Since the space C*(Gr), k = 1,2, is the dense
in C(Gr) and the space C*(OP;) is the dense in C'(OP;), i = 1,2, [17], there exists the sequence of
vector functions Fy,, € CY(Gr) (Vi € C?(OPF;), i = 1,2) such that

Jim [Py = Fill o,y =0 ( Jim ([ = dillcrop,y =0, i = 172)~ (4.8)

Analogously, since v € C(Gr), there exists the sequence of vector functions w,, € C?(Gr) such
that

nll)rréo |wn —vlle@,y =0 (4.9)
Let us now introduce the following sequence of vector functions:
Vn = Lowy + L3Fiy + lo(Y1n, Y2n).- (4.10)

By virtue of (4.1)-(4.5), the vector function v,, € C?(Gr), and owing to its construction, we will
have

U"|0P,i = in, i=1,2. (4.11)
Taking into account Remark 4.2 and the limiting equalities (4.8), (4.9), we find that
Un — [Lov + LsFy + lo(1h1,12)] (4.12)
in the space C(Gr), as n — co. At the same time, by equality (3.38), we have
Lov + LyFy + lo(1h1,102) = v. (4.13)
It follows from (4.12) and (4.13) that

n—oo

In view of equality (4.10) and Remark 4.2, as well as of the fact how we have obtained equality
(3.30), from the representation (3.9) we get

((577 + A1> (8811; + B1Un) = (B + A1B1 — Cr)w, — (f1(-,wn)) + Fin, (4.15)
vn|opi = Yin, i=1,2. (4.16)
By virtue of the representation of equation (3.2) by equality (3.35), from (4.15) we obtain
Liv, = (Biy + A1By — C1)(wn — vy) + (f1(+,v) — fi(-wn)) + Fin,
whence, in view of (4.9) and (4.14), we get

nh_}rgo |1 Lyv, — F1||C(5T) =0.
It follows from (4.16) and (4.8) that

Jim {jon|o,p, = Yilcrop,) =0, i=1,2.

The last two limiting equalities show that if v € C(Gr) is a solution of system (3.38), then the
vector function v will be a generalized solution of problem (3.2)—(3.4) of the class C' in the domain
Gr. Thus Lemma 4.1 is proved, since the converse statement can be easily verified. O
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As is known, the space C*(Gr) is compactly imbedded in the space C(Gr). Therefore, taking into
account Remark 4.2 and considering Ly as the operator acting in the space C(Gr) by formula (3.39),
the operator

L2 : C(éT) — C(GT)

will be compact. In addition, for the fixed 1, 12 and F}, the operators Ls and [y acting by formulas
(3.40) and (3.41) are constant, and hence their sum

LO = (L2 + L3F1 + l0(¢1, wg)) : C(éT) — C’(@T) (417)
will likewise be compact. By (4.17), system (3.38) can be rewritten in the form
v = L()U. (418)

Let v € C(Dr) be a solution of equation (4.18), and 1 = 0. Then, since v is connected with
u € C(Gr) by the equality v(&,n) = u(é —n,€ + 1), and u satisfies a priori estimate (2.2), in view
of Lemma 4.1 and Lemma 2.1, an a priori estimate of the same type will take place likewise for the
vector function v,

llle@r < allFllegy) + e2lletllorq ) + s, (4.19)

where the constants ¢;, i = 1,2,3, are defined from equalities (2.35). It should now be noted that
owing to Remark 4.3 and Lemma 4.1, if v € C(Gr) is a solution of equation v = 7Lgv, where
7 € [0, 1], then the same a priori estimate (4.19) with the constants ¢y, ¢3 and c3, independent in view
of (2.1),(2.23),(2.31) and (2.35) of v, F', 1 and 7, will be valid. Therefore, taking into account that
the operator Lo : C(Gr) — C(Gr) is continuous and compact, it follows from the Lere-Schauder
theorem [18] that equation (4.18) has at least one solution in the space C(Gr). This, in its turn, in
view of the above remarks, implies that problem (1.1),(1.2) has at least one generalized solution of
the class C' in the domain Dp. Thus, the following theorem is valid.

Theorem 4.1. Let conditions (2.1), (4.1) and F € C(Dr), ¢1 € C1(y1,7), 2 =0, be fulfilled. Then
problem (1.1), (1.2) has at least one generalized solution of the class C' in the domain Drp.

5 The smoothness and uniqueness of a solution of
problem (1.1), (1.2). The existence of a global solution
in the domain D,

By virtue of (4.3), (4.4) and (4.5), from Remark 4.3 and Lemma 4.1 follows

Lemma 5.1. Let the vector function u be a generalized solution of problem (1.1),(1.2) of the class
C' in the domain Dt in a sense of Definition 1.1, and in addition, the conditions of smoothness (4.1)
and F € CY(Dr), p1 € C*(v1,r), i = 1,2, hold. Then u belongs to the class C?(Dr) and is a classical
solution of problem (1.1), (1.2).

We say that the vector function f = f(x,t,u) satisfies the local Lipschitz condition on the set
ET x R if

| f(z,t,u2) = fla,t,ur)|| < M(T,R)|luz — usll, (z,t) € D, [lui]| <R, i=1,2, (5.1)

where M = M (T, R) = const > 0. Note that if f € C'(Dp x R"), then condition (5.1) will automa-
tically be fulfilled.

Lemma 5.2. If the vector function f € C(Dr xR™) satisfies condition (5.1), then problem (1.1), (1.2)
fails to have more than one generalized solution of the class C in the domain Dr.

Proof. Assume that problem (1.1), (1.2) has two generalized solutions u; and us of the class C' in the
domain Dr. According to Remark 1.1 and Definition 1.1, there exists a sequence of vector functions
ul' € C2(Dr,v2,r) such that

i o sl = im0~ Flewn = m [l = eillao,, =0 (62

m—oo Y1, T (m,71) o
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We introduce the notation w™ = uf* — uf*. It is easy to verify that w™ € C?(Dz) is a solution of
the following problem:

wyy — wie + Az, )wl + Bz, t)w)* + C(z, t)w™ + g™ = F™, (5.3)
wm|%yT = o7, m|72,T =0.
Here
9" = f@,tuz") — fa,t,u"), (
F™ = Luj' — Lul",
o = (g — )],

It follows from (5.2) that there exists a number d = const > 0 such that it does not depend on the
indices j and m, and [|u}"| o5, < d. Hence, by virtue of (5.1) and (5.5), we have

g™l < M(T, d)l[ug" — uy®|| = M(T, d)[jw™|]. (5:8)

Reasoning now for the solution w™ of problem (5.3), (5.4) in the same way as for the solution u™ of
problem (2.5), (2.6), owing to (5.8), we have to take in inequalities (2.1), (2.23), (2.28), (2.30) and
(2.34) the constants, corresponding to My, M3, Mg and c3, equal to zero. Consequently, instead of
inequality (2.34) we will have

lo e < EIE o + &7t (5.9)

Here, unlike (2.35), for the constants ¢; and ¢z we have
~ 1 1 — ~ 1 1 fd
1 = n(TMg)3 exp 3 MsT, ¢ =n(TM7)2 exp 5 MsT,
where Mg and My are defined from (2.31) and, in view of (2.23),
Ms=2M; +2T +1, My=M2(T,d)n + 2nMo + g .
It follows from (5.2), (5.6) and (5.7) that

n}iinm ||wm||C(5T) = ||ug — UlHC(ﬁT)’ mlgnoo HFm”C(ET) =0, (5.10)
mli_r)noo 1T et (a,0) = 0

If now we pass in inequality (5.9) to the limit, as m — oo, then due to the limiting equalities (5.10)
we get [luz — w15,y < 0, which implies that uz = u;. O

The consequence of Theorem 4.1 and Lemmas 5.1 and 5.2 is the following

Theorem 5.1. Let for any positive T conditions (2.1), (4.1) and F € C' (D), ¢1 € C*(71,00),
2 = 0 be fulfilled. Then problem (1.1),(1.2) has the unique classical solution u € C?*(Dy,) in the
domain Dy.

Proof. Tt follows from Theorem 4.1 and Lemmas 5.1 and 5.2 that in the domain Dy, where T =k € N,
there exists the unique classical solution uj, € C?(Dy, of problem (1.1),(1.2). In addition, ujy1|p, is
likewise the classical solution of problem (1.1), (1.2) in the domain Dy. Therefore, by Lemma 5.2, the
equality ug+1|p, = ux holds. This implies that the vector function u constructed in the domain Dy,
by the rule: u(z,t) = ug(x,t), where k = [¢t] + 1, [¢] is an integer part of the number, and (z,t) € Do,
is the unique classical solution of problem (1.1), (1.2) in the domain D. O
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Abstract. We prove the validity of regularizing properties of a double layer potential associated to
the fundamental solution of a nonhomogeneous second order elliptic differential operator with constant
coefficients in Schauder spaces by exploiting an explicit formula for the tangential derivatives of the
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1 Introduction

In this paper, we consider the double layer potential associated to the fundamental solution of a second
order differential operator with constant coefficients. Throughout the paper, we assume that

n e N\{0,1},

where N denotes a set of natural numbers including 0. Let o €]0,1[, m € N\ {0}. Let  be a bounded
open subset of R™ of the class C"™*. Let v = (v;);=1,...» denote the external unit normal to 9. Let
N3 denote the number of multi-indices v € N with |y| < 2. For each

a=(ay)y<2 € C, (1.1)
we set
a® = (a)1j=1,m, Y =(0))j=1,..0, a=aq,
with a;; = 2_1ael+ej for j #1, aj; = ac,1e;, and aj = ac,, where {¢; : j =1,...,n} is the canonical

basis of R”. We note that the matrix a(® is symmetric. Then we assume that a € CN? satisfies the
following ellipticity assumption

T { ;2 a”@} >0, (1.2)

and we consider the case in which
a; €ER Vij=1,...,n. (1.3)

Introduce the operators

Pla, DJu = Z Oz, (102, u) + Zal&mu + au,

1j=1 1=1
n n

Bov = E Eﬂyl@xjv—g vav,
lj=1 =1

for all u,v € C%(Q), a fundamental solution S, of P[a, D], and the double layer potential

w09, 50 )@) = [ WwBE, (Sule ~ ) do,
o0

n

= */u(y) > aumly) %(I —y)doy, — /u(y) > v aSa(z —y)do, Yz eR", (14)
89 Li=1 / 59 =1

where the density (or the moment) p is a function from 0 to C. Here the subscript y of Wy means
that we take y as a variable of the differential operator ﬂy The role of the double layer potential in
the solution of boundary value problems for the operator P[a, D] is well known (cf. e.g., Giinter [14],
Kupradze, Gegelia, Basheleishvili and Burchuladze [20], Mikhlin [23]).

The analysis of the continuity and compactness properties of the integral operator associated to
the double layer potential is a classical topic. In particular, it has long been known that if u is of the
class C™, then the restriction of the double layer potential to the sets

Qt=Q, QO =R"\cQ

can be extended to a function of C™*(c1 Q") and to a function of C/=*(cl2™), respectively (cf., e.g.,
Miranda [24], Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5]).
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In case n = 3 and Q is of the class C1'® and S, is the fundamental solution of the Laplace operator,
it has long been known that w[0€,a, Sa, -]jsq is a linear and compact operator in C1*(09Q) and is
linear and continuous from C°(9Q) to C%*(9Q) (cf. Schauder [30], [31], Miranda [24].)

In case n = 3, m > 1 and  is of the class C™"! and if Pla, D] is the Laplace operator, Giinter [14,
Ch. II, § 21, Thm. 3] has proved that w[0€2,a, Sa, -]jsq is bounded from Cm=1e(90) to C™(H0)
for o/ €]a, 1] and, accordingly, is compact in C"™*(99).

Fabes, Jodeit and Riviere [12] have proved that if 2 is of the class C* and if Pla, D] is the Laplace
operator, then w[0Q,a, Sa, -|jsq is compact in LP(9€2) for p €]1,+o0[. Later, Hofmann, M. Mitrea
and Taylor [16] have proved the same compactness result under more general conditions on 9.

In case n = 2 and Q is of the class C?®, and if P[a, D] is the Laplace operator, Schippers [32] has
proved that w[0€2, a, Sa, - ]j9q is continuous from C°(9Q) to C1*(99).

In case n = 3 and Q is of the class C?, and if P[a, D] is the Helmholtz operator, Colton and Kress [2]
have developed works of Giinter [14] and Mikhlin [23] and proved that the operator w[0€2,a, Sa, - ]ja0
is bounded from C%(92) to C1(d€) and, accordingly, is compact in C*<(9).

Wiegner [36] has proved that if v € N™ has odd length and  is of the class C™%, then the
operator with kernel (x — y)Y|z — y|~ ™D~ is continuous from C™~1*(9Q) to C™1(clQ) (and
a corresponding result holds for the exterior of Q).

In case n = 3, m > 2 and Q is of the class C"™ %, and if Pla, D] is the Helmholtz operator,
Kirsch [18] has proved that the operator w[0€2,a, Sa, - |90 is bounded from C™~1*(9Q) to C™(992)
and, accordingly, is compact in C™*(99).

von Wahl [35] has considered the case of Sobolev spaces and proved that if Q is of the class C*° and
Sa is the fundamental solution of the Laplace operator, then the double layer improves the regularity
of one unit on the boundary.

Later on, Heinemann [15] has developed the ideas of von Wahl in the frame of Schauder spaces
and proved that if Q is of the class C™*® and S, is the fundamental solution of the Laplace operator,
then the double layer improves the regularity of one unit on the boundary, i.e., w[0Q,a, Sa, - |j90 is
linear and continuous from C™%(9Q) to C™+1.2(9).

Maz’ya and Shaposhnikova [22] have proved that w[0€2,a, Sa, -]jsq is continuous in fractional
Sobolev spaces under sharp regularity assumptions on the boundary and if Pla, D] is the Laplace
operator.

Mitrea [26] has proved that the double layer of second order equations and systems is compact in
C%8(9Q) for B €]0,a] and bounded in C%(9€) under the assumption that € is of the class C**.
Then by exploiting a formula for the tangential derivatives such results have been extended to the
compactness and boundedness results in C*#(9Q) and C1*(99), respectively.

Mitrea, Mitrea and Verdera [28] have proved that if ¢ is a homogeneous polynomial of odd order,
then the operator with kernel g(x — y)|z — y|~(»~1~dee(@) maps C%*(9NQ) to CH*(cl ).

In this paper, of special interest are the regularizing properties of the operator w[0€2,a, Sa, -]ja0
in Schauder spaces under the assumption that 2 is of the class C"®. We prove our statements by
exploiting tangential derivatives and an inductive argument to reduce the problem to the case of
the action of w[0), a, Sa, - ]jaq on C%(09) instead of flattening the boundary with parametrization
functions as done by the other authors. We mention that the idea of exploiting an inductive argument
together with the formula for the tangential gradient in order to prove the continuity and compactness
properties of the double layer potential has been used by Kirsch [18, Thm. 3.2] in case n = 3, Pla, D]
equals the Helmholtz operator and S, is the fundamental solution satisfying the radiation condition.
The tangential derivatives of f € C1(92) are defined by the equality

of _ of
My fl=v,=— — v, =—— o0
wlfl=m oz, v ox; on
for all I,r € {1,...,n}. Here f denotes an extension of f to an open neighbourhood of 0f2, and one

can easily verify that M;,.[f] is independent of the specific choice of the extension fof f. Then we
prove an explicit formula for

M, [w[09, a, Sa, ]| (x) — w[09,a, Sa, My, [1]] (x) Va0 (1.5)
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for all u € C1(9Q) and I,r € {1,...,n} (see formula (9.1)).

We note that Giinter [14, Ch. II, § 10, (42)] presents the formula for the partial derivatives of
the double layer with respect to the variables in R™ in case n = 3 and P[a, D] equals the Laplace
operator (see (7.1) for the case of the Laplace operator). A similar formula can be found in Kupradze,
Gegelia, Basheleishvili and Burchuladze [20, Ch. V, § 6, (6.11)] for the elastic double layer potential
in case n = 3. Schwab and Wendland [33] have proved that the difference in (1.5) can be written
in terms of pseudodifferential operators of order —1. Dindos and Mitrea have proved a number of
properties of the double layer potential. In particular, [7, Prop. 3.2] proves the existence of integral
operators such that the gradient of the double layer potential corresponding to the Stokes system can
be written as a sum of such integral operators applied to the gradient of the moment of the double
layer. Duduchava, Mitrea, and Mitrea [11] analyze various properties of the tangential deriatives.
Duduchava [10] investigates partial differential equations on hypersurfaces and the Bessel potential
operators. In particular, [10, point B of the proof of Lem. 2.1] analyzes the commutator properties both
of the Bessel potential operator and of a tangential derivative. Hofmann, Mitrea and Taylor [16, (6.2.6)]
prove a general formula for the tangential derivatives of the double layer potential corresponding to
the second order elliptic homogeneous equations and systems in explicit terms.

Formula (9.1), we have computed here, extends the formula of [21] for the Laplace operator, which
has been computed with arguments akin to those of Giinter [14, Ch. II, § 10, (42)], and a formula of [8]
for the Helmholtz operator, and can be considered as a variant of the formula of Hofmann, Mitrea
and Taylor [16, (6.2.6)] for the second order nonhomogeneous elliptic differential operator Pla, D).

Formula (9.1) involves auxiliary operators, which we analyze in Section 8. We have based our
analysis of the auxiliary operators involved in formula (9.1) on the introduction of boundary norms
for weakly singular kernels and on the result of the joint continuity of weakly singular integrals both
on the kernel of the integral and on the functional variable of the corresponding integral operator (see
Section 6). For fixed choices of the kernel and for some choices of the parameters, such lemmas are
known (cf. e.g., Kirsch and Hettlich [19, Thm. 3.17, p. 121]). The authors believe that the methods
of Section 6 may be applied to simplify also the exposition of other classical proofs of properties of
layer potentials.

By exploiting formula (9.1), we can prove that w[02,a, Sa, -]jaq induces a linear and continuous
operator from C™(99) to the generalized Schauder space C™“=(9Q) of functions with m-th order
derivatives which satisfy a generalized w,-Ho6lder condition with

wa(r) ~r%Inr| as r — 0,

and that w[0Q, a, Sa, -]jso induces a linear and continuous operator from C™?(9€2) to C™*(0%) for
all 8 €]0,a]. In particular, the double layer potential has a regularizing effect on the boundary if Q
is of the class C™. As a consequence of our result, w[0Q,a, Sa, - |jso induces a compact operator
from C™(9N) to itself, and from C™«=(-)(9Q) to itself, and from C™*(9N) to itself when Q is of the
class C™“,

2 Notation

We denote the norm on a normed space X by || - ||x. Let X and ) be normed spaces. We endow
the space X x Y with the norm defined by ||(z,y)|lxxy = ||lzllx + |lyl|y for all (z,y) € X x Y, while
we use the Euclidean norm for R™. For standard definitions of Calculus in normed spaces, we refer to
Deimling [6]. If A is a matrix with real or complex entries, then A denotes the transpose matrix of
A. The set M, (R) denotes the set of n x n matrices with real entries. Let D C R™. Then clD denotes
the closure of D, and dD denotes the boundary of D, and diam(D) denotes the diameter of D. The
symbol | - | denotes the Euclidean modulus in R™ or in C. For all R €]0,4+o00[, z € R"™, x; denotes the
j-th coordinate of x, and B,,(x, R) denotes the ball {y € R" : |z — y| < R}. Let Q be an open subset
of R™. The space of m times continuously differentiable complex-valued functions on €2 is denoted by
C™ (£, C) or, more simply, by C™(Q). Let s € N\ {0}, f € (C™(£2))*. Then Df denotes the Jacobian

matrix of f. Let n = (N1,...,mn) € N* || =m + -+ + n,. Then D"f denotes 88#. The

z]t...0zn"
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subspace of C™(2) of those functions f whose derivatives D" f of order |n| < m can be extended with
continuity to cl€ is denoted by C™(clQ).
The subspace of C™(cl Q) whose derivatives up to order m are bounded is denoted by Cy"(cl Q).

Then Cj"(cl ) endowed with the norm || fllc;n1 o) = > sup|D"f| is a Banach space.
In|<m cl 2

Now, let w be a function of ]0, +o00[ to itself such that

w is increasing and lim w(r) =0, (2.1)

r—0t

w(at)

sup < 400,
(a,t)€[1,+o0[x]0, ool A(t)
and
sup w H(r)r < co. (2.2)
re0,1]

If f is a function from a subset D of R™ to C, we set

[f(x) = f(y)]

) :m,ye]]]),x#y}.

|f : Dlu.y Esup{
If |f @ Dy < oo, we say that the function f is w(-)-Holder continuous. Sometimes we simply
write |fl,(.) instead of |f : D[,c.y. If w(r) =7 and |f : D[,.) < oo, then we say that f is Lipschitz
continuous and we set Lip(f) = |f : D[y(.). The subspace of C°(D) whose functions are w(-)-
Holder continuous is denoted by C%«(*)(ID), and the subspace of C°(D) whose functions are Lipschitz
continuous is denoted by Lip(D).
Let Q be an open subset of R™. The subspace of C™(cl §2) whose functions have m-th order
derivatives that are w(-)-Hélder continuous is denoted by C™(*)(cl Q). We set

(e Q) = ™) (e Q) N CP(cl Q).
The space C;n’w( ' )(CIQ), equipped with its usual norm

”f”C;"’“’(')(cl Q) = ”f”Cg"’(cl Q) + Z |an : Q‘w() )

[nl=m

is well-known to be a Banach space.

Obviously, C;n’w(')(cl Q) = ™) (cl Q) if Q is bounded (in this case, we shall always drop the
subscript b). The subspace of C™ (cl Q) of those functions f such that fici onE, (0,r)) € ™) (el (N
B, (0, R))) for all R €]0,+oc[ is denoted by CI-“{ ) (cl Q). Clearly, C"“'(cl Q) = C™«()(cl Q) if
2 is bounded.

Of particular importance is the case in which w(-) is the function r¢ for some fixed « €]0,1]. In
this case, we simply write |- : c1Q|, instead of |- : c1Q[pa, C™(cl Q) instead of C™"" (cl ), and
C;"(cl Q) instead of C;W’TQ (cl ©2). We observe that property (2.2) implies that

Cml e Q) € (e Q).

For the definition of a bounded open Lipschitz subset of R", we refer, e.g., to Nedas [29, §1.3]. Let
m € N\ {0}. We say that a bounded open subset £ of R™ is of the class C"™® if for every P € 0
there exist an open neighborhood W of P in R", and a diffeomorphism ¢ € C™*(clB,,R") of
B, = {x € R" : |z|] < 1} onto W such that ¥(0) = P, y({z € B, : =z, = 0}) = WnNoQ,
Y{z € B, : z, <0}) =WNAQ (¢ is said to be a parametrization of 90 around P). Now, let
Q be bounded and of class C"™“. By the compactness of 92 and by definition of a set of the class
C™*, there exist Pp,..,P, € 09, and parametrizations {¢;};=1,...,, with ¢; € C™%(clB,,,R") such

that U ¢¥s({z €B,, : x, =0}) =90. Let h € {1,...,m}. Let w be as in (2.1), (2.2). Let
=1

1=

sup W (r)r® < oo. (2.3)
re]0,1]
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We denote by C™“()(99) the linear space of functions f of 92 to C such that f o ¢;(-,0) €
Ch()(clB,_,) foralli =1,...,r, and we set

Ifllonwcr ooy = sup [If o 9i(+,0)llonwcam, 1) V€ el )(09).

1= , ey T

It is well known that by choosing a different finite family of parametrizations as {t; };=1,._,, we would
obtain an equivalent norm. In case w(-) is the function r, we have the spaces C"%(992).

It is known that (C™<()(9Q), | - lcnwc)(a0)) is complete. Moreover, condition (2.3) implies that
the restriction operator is linear and continuous from C™~()(c1Q) to C*+(*)(99Q).

We denote by do the area element of a manifold imbedded in R™ and retain the standard notation
for the Lebesgue spaces.

Remark 2.1. Let m € N\ {0}, a €]0,1[. Let £ be a bounded open subset of R™ of the class C™.

Let w be as in (2.1), (2.2). If h € {1,...,m}, h < m, then m —1 > 1 and Q is of the class
C™=bL1 and condition (2.2) implies the validity of condition (2.3) with « replaced by 1. Thus we can
consider the space C™“(*)(9Q) even if we do not assume condition (2.3). If instead of h we take m,
the definition we gave requires (2.3).

Remark 2.2. Let w be as in (2.1), D be a subset of R™ and let f be a bounded function from D to
C, a €]0,+00[. Then

wp @ 1)

z,y€D, |[z—y|>a LU(|.’IJ - y|)

2
< su .
S o) S £l
Thus the difficulty of estimating the Holder quotient w of a bounded function f lies entirely

in case 0 < |z —y| < a. Then we have the following well known extension result. For a proof, we refer
to Troianiello [34, Thm. 1.3, Lem. 1.5].

Lemma 2.1. Let m € N\ {0}, a €]0,1[, j € {0,...,m}, Q be a bounded open subset of R™ of
the class C™®, and let R €]0,4o00[ be such that c1Q} C B, (0,R). Then there exists a linear and
continuous extension operator ‘~’ of CH*(9Q) to CH*(c1B,(0, R)), which takes u € CH*(99Q) to
a map i € CP*(clB,(0,R)) such that Bjaa = p and the support of p is compact and contained in
B, (0, R). The same statement holds by replacing C™< by C™ and C’* by C7.

Let © be a bounded open subset of R of the class C'. The tangential gradient Dyq f of f € C1(92)
is defined as

Dyof = Df— (v- Df)u on 01,

where fis an extension of f of the class C! in an open neighborhood of 052, and we have

of
oz,

— (v Df ZM“” v; on Of)
1=1

forall r € {1,...,n}. Ifais as in (1.1), (1.2), then we also set

_ o Dfa(z)y
Daf = (Da,rf)rzl,‘..,n = Df - m v on 0f).

Since
n

ra E AlpVh
_9f Dfa®y Z
a?"f ax — ta (Q)V Vp = er,« W on 0f2 (24)

for all r € {1,...,n}, Daf is independent of the specific choice of the extension fof f. We also need
the following well known consequence of the Divergence Theorem.
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Lemma 2.2. Let Q be a bounded open subset of R™ of the class C. If , 1 € C1(9R), then

/Mlj[SOWdUZ */SDMlj[T/J] do
89

o0
foralll,je{l,...,n}.

Next, we introduce the following auxiliary Lemmas, whose proof is based on the definition of the
norm in a Schauder space.

Lemma 2.3. Let m € N\ {0}, a €]0,1]. Let w be as in (2.1), (2.2), (2.3), and let Q be a bounded
open connected subset of R™ of the class C™“. Then the following statements hold:

(i) A function f € C*(99Q) belongs to C™<()(9Q) if and only if M;,.[f] € C™ 1<) (9Q) for all
L,re{l,...,n}.

(i) The norm || - |[¢m.w()(aq) s equivalent to the norm on () (09) defined by

Ifleowy + Y 1Ml flll crracrony ¥ F € CT)(09).
lir=1

We have the following (see also Remark 2.1)

Lemma 2.4. Let m € N\ {0}, a €]0,1]. Let Q be a bounded open connected subset of R™ of class
C™* and let h € {1,...,m}. Then the following statements hold:

(i) Let h < m and w be as in (2.1), (2.2). Then M,; is linear and continuous from C"+()(9Q)
to Ch=1wC)(9Q) for all 1,5 € {1,...,n}. If we further assume that w satisfies condition (2.3),
then the same statement holds also for h = m.

(i) Let h < m, w be as in (2.1), (2.2), and let a be as in (1.1), (1.2). Then the function from
Che()(99Q) to CP=1w0) (90, R™), which takes f to Daf is linear and continuous. If we further
assume that w satisfies condition (2.3), then the same statement holds also for h = m.

(i) Let h < m and w be as in (2.1), (2.2). Then the space C"*()(ON) is continuously imbedded
into C"=L1(0R). If we further assume that w satisfies condition (2.3), then the same statement
holds also for h = m.

(iv) Let h < m. Let a1, ¢ be as in (2.1), (2.2), and let the condition sup 5 ' (r)iy(r) < oo hold.
relo,1]

Then CM¥1()(99Q) is continuously imbedded into C™¥2()(0Q). If we further assume that 1,
satisfies condition (2.3) for j € {1,2}, then the same statement holds also for h = m.

(v) Leth < m. Letiy, 1o, 13 be asin (2.1), (2.2), and let the conditions sup sup ;(r)3*(r) < oo
j=1,2r€]0,1]

hold. Then the pointwise product is bilinear and continuous from C™¥1(:)(9Q) x Ch¥2()(9Q)
to CM¥s0)(9Q). If we further assume that 1; satisfies condition (2.3) for j € {1,2,3}, then the
same statement holds also for h = m.

Lemma 2.5. Let Q be a bounded open Lipschitz subset of R™. Let 1, a, 13 be as in (2.1), (2.2),

and let the conditions sup sup w.j(r)wgl(r) < oo hold. Then the pointwise product is bilinear and
j=1,2r€]0,1]

continuous from C*¥1()(9Q) x CO¥2()(9Q) to CO¥3(+)(9Q).

3 Preliminary inequalities

We first introduce the following elementary lemma on matrices.
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Lemma 3.1. Let A € M,(R) be invertible. Let |A| = sup |Az|. Then the following statements hold:

|z|=1
(i) If 7o = max{|A|,|AL|}, then
3w < |Az| < malz| Yo e R™.
(i) If r €]0,400[, then
A" 2|7 < |A|"|z|T" Yo e R™\ {0}.
Proof. Statement (i) is well known. We now consider statement (ii). Let € R™\ {0}. Then we have
x| = [AAT2) < A]AT 2]
Hence, |[A~1z| > |A|7}|z| and the statement follows. O

Then we introduce the following elementary lemma, which collects either the known inequalities
or the variants of the known inequalities, which we will need in the sequel.

Lemma 3.2. Let v € R and A € M, (R) be invertible. The following statements hold:
(i)
1 / " /
517" =yl < 2" —yl < 202" —yl,

1
52 |Az" — Ay| < |[Ax” — Ay| < 273 |A2’ — Ay,
A

forall ',z e R", o' £ 2", y € R"\ B, (', 2]z' — 2"]).
(i)
o —y[r < 2PN~y o =y < 2D’ — gy,
Az’ — Ay[" < 2r3) A" — Ay[7, A2 — Ay[ < (2r3)1|A2" — Ay[7,
forall ',z e R™, o/ £ 2", y € R"\ B, (', 2]2' — 2"]).

(i)

|l2/ =y — " —y["| < @ = 1)’ —y|" Vy e R™\B, (2, 22" —2"]),
forall ', x" e R, o # 2.
(iv) There exist m., m~(A) €]0,+o00[ such that
/

[|2" = y|" = |2” =y < myla’ — 2] =y,

[[Az" — Ay|" — [Az” — Ay["]| < my(A)[Az’ — Az"||Az" — Ay}

forall ', 2" e R™, o/ £ 2", y € R"\ B, (', 2]2' — 2"]).

|In]2’ — gl — Inja” — yl| < 20’ — 2" |2’ — 4|1 Vy € R"\Bu(e/, 20’ — o)),
forall ', 2" e R"™, ' # 2.
Proof. The first two inequalities of statement (i) follow by the triangular inequality. Further, we have
A2’ — Ayl < male! — y| < ma2la” — o] < 273[Aa” — Ay,

and thus the first of the second two inequalities of statement (i) holds true. The second of the second
two inequalities of statement (i) can be proved by interchanging the roles of 2’ and z”.
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It now suffices to prove only the second inequalities in statements (ii), (iv). Indeed, the first
inequalities follow by the second ones and by the equality 74 = 1 when A is the identity matrix.

The first of the second inequalities in (ii) for v > 0 follows by raising the inequality |Az’ — Ay| <
(272)|Az"" — Ay| of statement (i) to the power . For v < 0 the same inequality follows by raising the
inequality |Az” — Ay| < (273)|Az’ — Ay| of statement (i) to the power v. The second of the second
inequalities of (ii) can be proved by interchanging the roles of 2’ and z”.

Statement (iii) follows by a direct application of (ii). To prove (iv) and (v), we follow Cialdea [1, § 8].
First consider (iv) and assume that |Az’ — Ay| < |Az” — Ay|. By the Lagrange Theorem, there exists
¢ € [|Az" — Ay|, |Az" — Ay|] such that

1Az — Ay|” — [Az” — Ay[| < [y]¢77 Az’ — Ay| — [Az” — Ay]|.
If v > 1, then the inequality ¢ < |Az” — Ay| and (i) imply
O <A = Ayt < (270) A — Ay
If v < 1, then the inequalities ¢ > |Az’ — Ay| and 754 > 1 imply
¢TSI Ayt < 7R AY - Ay
Then we have
A2 — Ay|” — [Az” — Ay[| < [4|(273) " ][A2" — Ay| — [A2” — Ag|[|A2’ — Ayt (3.0)

which implies the validity of (iv). Similarly, in case |Az’ — Ay| > |Az” — Ay, we can prove that (3.1)
holds with 2’ and 2" interchanged. Thus (i) implies the validity of (iv).

We now consider statement (v) and assume that |2/ — y| < |2” — y|. By the Lagrange Theorem,
there exists ¢ € [|z' —yl,|z” — y|] such that

[Infa’ =yl —In 2" —y|| < M2’ =yl = |2" —y|| < o' — "] (3-2)
By the above assumption, (7! < |2/ — y|~!, and thus statement (v) follows. Similarly, if |2/ — y| >
|#" — y|, we can prove that (3.2) holds with 2’ and z” interchanged and (i) implies that (7! <
|#” — y|~t < 2|2’ — y|~t, which yields the validity of (v). O
Lemma 3.3. Let G be a nonempty bounded subset of R™. Then the following statements hold:
(i) Let F € Lip(8B,, x [0,diam (G)]) with
: |F(0",r") = F(0",r")] .
Lip(F) = { =0 =] 2 (0,0, (07,0 € OB, x [0,diam (G)], (0',r") # (0",r") 5.
Then
’F(fylf vl) f(x“ylf’z®‘<Lpuw@+dmm«nﬂfx” (33)
— | —y|) - Fl——=,]2" — <Li .
] el ]

Vy e G\B, (', 2]z —z"])
for all 2’ 2" € G, 2’ # 2". In particular, if f € C1(0B,, x R,C), then

x’—y x//_y
gl ) = (e = )

2" —y|
|J)/ —l‘”| :

My —sup{‘f<
2" €@, ' #£3", ye G\B,(z,2]" — z”|)} < 0.
(i) Let W be an open neighbourhood of cl(G — G). Let f € C*(W,C). Then

Mﬁc Esup{‘f(x'fy) — fl@" =y’ =" 22" €G, 2l £,y € G} < o0.

Here G — G ={y1 —y2: y1,y2 € G}.
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Proof. First we consider statement (i). The Lipschitz continuity of F implies that the left-hand side
of (3.3) is less or equal to

T

7 —y "_y

L- F ’ _ ‘ /_ _ /I_
(P [ 5= = Ll = vl = e
1 1 ’+
" =yl o’ —yll |
” 9 r
e -} < Tl o {20

1
< Lip<F>{|x” 4 Al == =yl 1o x"|}

|a" — 2| |a" — x
=" =yl —y| [z —yl

< Lip<F>{|x" 4

and thus inequality (3.3) holds true.

Since dB,, x R is a manifold of the class C*° imbedded into R™*1, there exists F' € C1(R"*1)
which extends f. Since 9B, x [0, diam (G)] is a compact subset of R"*! F is Lipschitz continuous on
0B, x [0,diam (G)], and the second part of statement (i) follows by inequality (3.3).

We now consider statement (ii). Since f € C*(W,C), f is Lipschitz continuous on the compact set
cl (G — G), and statement (ii) follows. O

We have the following well-known statement.

Lemma 3.4. Let a €]0,1] and 2 be a bounded open connected subset of R"™ of the class C1'*. Then
there exists cq,o > 0 such that

v(y) - (z —y)| < cqalz —y|'™™ Va,yedQ.

Next, we introduce a list of classical inequalities which can be verified by exploiting the local
parametrizations of 9.

Lemma 3.5. Let Q be a bounded open Lipschitz subset of R™. Then the following statements hold:
(i) Let y €] —oo,n—1[. Then

/ dO'y

c = sup — < +00.

Q,y v

€0 |(E - y‘
oN

(i) Let vy €] —oo,n—1[. Then

do
/A / 1—(n—1
Co = sup |2’ — 2|~ (r= D+ ,797 < +00.
z! a0, x' Fx’ |.’L‘ - y‘
By, (z/,3|x’ —x''|)NOQ

(iii) Lety €n—1,400[. Then

do
o= sup |2/ — 2| (= e 5
z!,x!" €0, x' #x’ |ZIJ - y|
OB, (z/,2|z' —a|)
is finite.
(iv)
. —1 dO’
el = sup |In |2’ — 2" 7 < +00.
x/, 2" €8, 0< |z’ —x'|<1/e |£L’ _y‘

OQ\B,, (z’,2|z’—z''|)
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4 Preliminaries on the fundamental solution

First we introduce a formula for the fundamental solution of P[a, D]. For this, we follow a formulation
of Dalla Riva [3, Thm. 5.2, 5.3] and Dalla Riva, Morais and Musolino [5, Thm. 3.1, 3.2] (see also
John [17], Miranda [24] for homogeneous operators, and Mitrea and Mitrea [27, p. 203]).

Theorem 4.1. Let a be as in (1.1), (1.2). Let Sa be a fundamental solution of Pla, D]. Then there
exist a real analytic function Ag from 0B, to C, a real analytic function A; from 0B, x R to C,
by € C, a real analytic function By from R™ to C, B1(0) =0, and a real analytic function C from R™
to C such that

Sale) = ol Ao () + 1ol Ay (.1l ) + bolnfa] + By (2)In |o] + C(a) (4.1)

xT
|| |’

for all x € R™\ {0}, and both by and By equal zero if n is odd. Moreover,

T

|x\2’"A0< >+627nboln|x\

]

is a fundamental solution for the principal part Y Oy /(ai;0-;) of Pla,D]. Here 3, denotes the
1j=1
Kronecker symbol. Namely,

don=114dfn=2, 62, =0 if n>2.

Corollary 4.1. Let a be as in (1.1), (1.2). Let S, be a fundamental solution of Pla, D). Then the
following statements hold:
(i) If n > 3, then there exists one and only one fundamental solution of the principal part
n

> 0z, (a0s,) of Pla, D] which is positively homogeneous of degree 2 —n in R™ \ {0}.
1j=1

(i) If n = 2, then there exists one and only one fundamental solution S(x) of the principal part

Xn: Oz (a150;) of Pla, D] such that

Lj=1

Bo = lim o)

z—0 In |.’L‘|

eC, / Sdo=0,
OB,
and S(x) — Boln|z| is positively homogeneous of degree 0 in R™ \ {0}.

Proof. We retain the notation of Theorem 4.1. We first consider statement (i). By Theorem 4.1,
the function |x|2’”A0(ﬁ) is a fundamental solution of the principal part of P[a, D] and is, clearly,

positively homogeneous of degree 2 —n. Now assume that u is a fundamental solution of the principal
part of Pla, D] and u is positively homogeneous of degree 2 — n in R™ \ {0}. Then the difference

w(z) = |x|2’”A0(|z—|) —u(z)

defines an entire real analytic function in R™ and is positively homogeneous of degree 2—n in R™\ {0}.
In particular,
N 2w(A) = w(z) V(A x) €]0,+oo] x(R™\ {0}),

and, accordingly,
A=DHBI DAy (A\r) = DPw(z) V(A z) €]0, 400 x(R™\ {0})

for all 3 € N*. Then by letting A tend to 0%, we obtain D’w(0) = 0 for all 3 € N*. Since w is real
analytic, we deduce that w is equal to 0 in R™ and thus statement (i) holds.
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Now assume that n = 2. By Theorem 4.1, the function
S()A(x) 1/Ad+b1||
x) = — ) - = o njz
0 2] o 0 0
OB,

is a fundamental solution of the principal part of Pla, D] and satisfies the conditions of statement (ii).
Suppose that u is another fundamental solution. Then the difference

T 1
w(z) = A0<m) ~ 5 / Agdo + b In |x| — u(x)
OB,

defines an entire real analytic function in R™ and we have

Ao(l‘%‘) 27r f AO dO’

0= hmM— lim OB + by — hmM
z—=0In ||  =—0 In || =0 In |z|
and, accordingly,
bo = lim @ =peC.
z—0 In |z|

Then our assumption implies that the real analytic function
u(z) — Boln |z| = u(x) — by In ||

is positively homogeneous of degree 0 in R™ \ {0}. Hence, there exists a function g from 0B,, to C
such that

u(z) —boln|z| = go(%) Ve eR"\ {0}.

In particular, gq is real analytic and

w(z) = A0<|§—‘> - % / Apdo + boln |x| — (go(%> =+ bo 1n|x\)

OB,
(1) / odo = 90(37)-

Moreover, w must be positively homogeneous of degree 0 in R™ \ {0}. Since w is continuous at 0, w
must be constant in the whole R™. Since

/wdo: /Sda—/udazo,

GBH BBn a]Bn
such a constant must equal 0 and thus

AO<£) 217r /AodU—go(m) for all x € R™\ {0}.

|z|
Hence,
1
u(z) = A0(|x| —%/Aoda—i—bolnm
OB,

and statement (ii) follows. O
We can introduce the following

Definition 4.1. Let a be as in (1.1), (1.2). We define the normalized fundamental solution of the
principal part of Pla, D], to be the only fundamental solution of Corollary 4.1.
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By Theorem 4.1 and Corollary 4.1, the normalized fundamental solution of the principal part of

Pla, D] equals
o (1)
]
if n > 3, and
T 1
Ao(m> - / Ag do + by In |z
OB,

if n = 2, where Ap and by are as in Theorem 4.1. We now see that if the principal coefficients of
Pla, D] are real, then the normalized fundamental solution of the principal part of P[a, D] has a very
specific form. To do so, we introduce the fundamental solution S,, of the Laplace operator. Namely,
we set

i1n|:1:\ Ve eR"\ {0}, if n=2,
Sn(x) = %n 1 2-n R™ 0 i 9
m‘l’| T € \{ }, irn>2,

where s,, denotes the (n — 1)-dimensional measure of 9B,,. Then we have the following elementary
statement, which can be verified by the chain rule and by Corollary 4.1 (cf. e.g., Dalla Riva [4]).

Lemma 4.1. Let a be as in (1.1), (1.2), (1.3). Then there exists an invertible matriz T € M,(R)
such that
a® =1T! (4.2)

and the function
1

S, () = ——= S, (T '2) VxecR"\{0},
det a(®
coincides with the normalized fundamental solution of the principal part of Pla,D] if n > 3, and
coincides with the normalized fundamental solution of the principal part of Pla, D] up to an additive
constant if n = 2.

Theorem 4.1, Corollary 4.1 and Lemma 4.1 imply the validity of the following

Corollary 4.2. Leta be as in (1.1), (1.2), (1.3), T € M, (R) be as in (4.2) and let S, be a fundamental
solution of Pla, D].

Then there exist a real analytic function Ay from OB, x R to C, a real analytic function By from
R™ to C, B1(0) =0, and a real analytic function C from R™ to C such that

1 -1 3—n T
Sal) = < Sul(T12) 4 |2 Al(m,|x|)+(Bl(x)+b0(1—527n))ln|x\+C’(x), (4.3)

for all x € R™\ {0}, and both by and By equal zero if n is odd. Moreover,

1
Vdet a(?

is a fundamental solution for the principal part of Pla, D].

Sp (T )

Next we prove the following technical statement.

Lemma 4.2. Let a be as in (1.1), (1.2), Sa be a fundamental solution of Pla, D] and let G be a
nonempty bounded subset of R™.

(i) Lety € [0,1]. Then

CO,SE,,G,n—l—'y = sup |x‘n717'y|sa(x)| < +00. (44)
0<|z|<diam (G)

If n > 2, then (4.4) holds also for v =1.
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(ii)

o~ _ 2" — y|" ! / "
Co,s.,¢ = sup T =] ’Sa(:v —y) = Sa(z” — y)| :

2" € Ga' £a”, y € G\ By, 2z’ x"')} <o

Proof. Statement (i) is an immediate consequence of formula (4.1). Now prove statement (ii). For
this, we resort to formula (4.1) and set

A(0,7) = Ag(0) +rA1(0,r) ¥ (0,7) € OB, x R,
B(z) =by+ Bi(z) VzeR".

Then Lemmas 3.2 and 3.3 imply

|Sa(z’ —y) — Sa(2” —y)| < |2/ —y[*"

' —y " —y
A(ETE ) - a(E )
" =y 2" —y|
r —y —-n —n
, I/_ I_ _ /l_ /_ /_ _ //_
Al |2" =y~ — 2" —y[>7"| + | In |2’ =y |B(2' —y) — B(z" — )|

+|B(@" = y)| | In|z’ —y| = In|z"” —y|| + |C(a’ —y) — C(=" —y)|

- R U
<l =y Mae S s Ay,
|2’ —y| OB, x [0,diam (G)] |z" — yl
N 2
+ | In |2/ —yHMB,Gm’ -2 + sup |B|2|y| —i—Mcgix — "

Since A is continuous on the compact set B,, x [0,diam (G)], and B and C are continuous on the
compact set cl (G — G), there exists ¢ > 0 such that

‘Sa(a:' —y) — Sa(z” — y)’ <clz' - :v”|{\$c’ —yl' "+ +In|z’ —y| + 1}

1

2" —y]
S c|x’ —.’E”| |.’E/ _y|1—n{1 + |$/ _y|n—2 + ‘.’EI _y|n—11n|x/ _y‘ + |{L'/ _y|n—1}7

and thus statement (ii) holds. O

Lemma 4.3. Let a be as in (1.1), (1.2), (1.3), T € M,(R) be as in (4.2). Let Sa be a fundamental
solution of Pla, D], By, C be as in Corollary 4.2, and let G be a nonempty bounded subset of R™.
Then the following statements hold:

(i) There exists a real analytic function As from OB, x R to C™ such that

1
DSa(z) = ——— [T 'z| 2t (aP) !
) = e T )

+ix|2—"A2(| . |2l) + DBi(z) |z + DC(z) Vo e R"\{0}. (45)

(if)
Cl.s..c = sup ||~ DSq(z)| < 400
0<|z|<diam (G)

(iii)
Cls..c = sup { '~ y',,| |DSa(z’ —y) — DSa(2” — y)| :

oo € Cal £, y e G\ Bu(', 2 — x"”} <00
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Proof. By formula (4.3) and by the chain rule, we have

1 xt T
DSa(z) = ——— T '2| 2 (@) '+ B=n)|z]> " — A (—, |z
() = — s [0l (@) 7 3= e s ()
0Ay [ x at
3—n DA i I — —1 -2 1 — -
ol Dt (ol ol = @ afal el 4 5 ()
t
+ DBy(z)In |z + (Bi(2) + bo(1 — 62.)) — + DC(x) (4.6)

R

for all x € R™\ {0}, where by A; we have still denote any real analytic extension of the function A4;
of Corollary 4.2 to an open neighbourhood of dB,, x R in R"*! and where z ® = denotes the matrix
(x125)1,j=1,...n- Next, we consider the term B;(z)/|z|. By the Fundamental Theorem of Calculus, we
have

||

Bl(@:/DBl(témedt Vo e R\ {0}. (4.7)

Thus, if we set

1
B(0,7) = /DBl(ter)Hdt ¥(0,r) €R" x R,
0

the function 8 will be real analytic and will satisfy the equality

Bi(z) _ 502 e R
S _5(‘x|,| ) VaeR™\{0}. (4.8)
Define
t 0A t
As(0,r)=(3—n)0"A1(0,7)+ DAL(0,r)[I — 0 0] + W(@,r)@ r

+ B(0,7)r" 20 + 30y (1 — dam) V(0,r) € 0B, xR.

By the real analyticity of A; and (3, and by the equality r"~30by(1 — d2,,) = 0 if n = 2, the function
Ay is real analytic. Hence, equalities (4.6) and (4.8) imply the validity of statement (i).
Next, we turn to the proof of statement (ii). By Lemma 3.1(ii) and by the Schwartz inequality, we
have
T2 [o (@) 1] < Jo] '] |(a@) Y.

Hence, formula (4.5) implies that

. 1 (-
2" | DSa(2)] < = 171" (@) 7]

spVdet al

+{lea(55 1) + (el alel) DB @) + ol DCo) |

for all z € R™\ {0}. Then the continuity of Az on the compact set 0B, x [0,diam(G)] and the
continuity of DB; and DC on the compact set c1B,, (0, diam (G)) imply the validity of statement (ii).

We now turn to statement (iii). Let 2/,2” € G, 2’ # 2", y € G\ B, (2,2]2' — 2”|). By statement
(i), we have

|DSa(z’ —y) — DSa(a” —y)|

<

1 ‘ -1/, 7
< —F|IT" (2" —y
spVdet a2 | ( )
/ —
|3;'/ _ y|2—nA2( z

7@ = )" (@) = T @ =) T - y)t(a@))‘l‘

"

_ r -y
o =l = =P A (1 )

+ |33H

r-y
|2/ — yl

+ ’ In |z’ —y|DBy(z' —y) —In|z" — y|DBy (2" — y)‘ + ’DC(m' —y) — DC(2" — y)| . (4.9)
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We first estimate the first summand in the right-hand side of inequality (4.9). By the triangular
inequality, we have

T~ (2" —y)| 7" (@ =) (@) = T " —y)| (@ y)t(a(”)‘l‘

< Jo =yl [@) | T @ - )= T - gl

+ 2’ =2 (@) T @ =) (4.10)
Thus Lemmas 3.1(ii), 3.2(ii),(iv) with v = —n, A = T~! imply that
G ) e A € ) B R e | A e e A
< mon(TH|TH T ! — ool =y (4.11)
T (" =) AT —yI™", |2 =y < 272" =y 7"

Next, we estimate the second summand in the right-hand side of inequality (4.9). By Lemmas 3.2(iv)
and 3.3(i), the second summand is less or equal to
/

" —
A2 (7297 |J)” _ y|>‘
—

Hl‘l _ y‘2—n _ |l‘” _ y|2—n’ |x//

"

' —y " —y
Az(ma " — y|) - A2(m7 |z — y|)‘

n
Smale’—a ey s Aol -y (M 6 )l a7 (412)
OB, x[0,diam(G)]

=+ |33/ _ y|2—n

j=1

Further, we estimate the third summand in the right-hand side of inequality (4.9). By Lemmas 3.2(v)
and 3.3(ii), the third summand is less or equal to

|In|z’ —y| —In|z"” —y|| [IDB1 (2" — y)| + |In |2’ — y|| |DB1(2' — y) — DBy (2" — y)|

n
< 2|m/ 7.’£H| |x/ 7y|*1 sup |DB1‘ + (ZM& G)|$/ ,x/l‘ |1n|x/ 7y|‘
G-G =1 Owj?

< |z’ —2"|]2" - y"{?x' — gyt sup. |DB| + (ZM%G) 2" —y|*|In|z’ — yH} . (4.13)
- =

Finally, Lemma 3.3(ii) implies that

IDC(' —y) - DC@" = y)] < (Y Mge o)l — 2"
=1

<l —a"|la =yl (Do Mge o) swp -yt (414)
= 927/ (2 y)EGXG
Thus inequalities (4.9)—(4.14) imply the validity of statement (iii). O

5 Preliminary inequalities on the boundary operator

Let us turn to estimate the kernel By, | (Sa(z —y)) of the double layer potential of (1.4). We will

do it under assumption (1.3). For this, we introduce some basic inequalities for Bf, , (Sa(z —y)) by
means of the following

Lemma 5.1. Let a be as in (1.1), (1.2), (1.3), T € M, (R) be as in (4.2) and let S, be a fundamental
solution of Pla, D].

Let a €]0,1] and Q be a bounded open subset of R™ of the class C1:*. Then the following statements
hold:
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(i) If a €]0,1], then
b, = sup {x B y|n—1—a|Bg‘Ly(Sa(ac - y))| D x,y €00, x # y} < +o0. (5.1)
If n > 2, then (5.1) holds also for a = 1.
(i)
[ — M|B* (S('— ))7‘3* (S(”f ))|
0.0 =80\ T o [Ba,y(Sale’ —y .y (Salz” —y))| :

2" €0, & £ yed\B,(a, 22 — a:”)} < +00.

Proof. By Lemma 4.3(i), we have

By, (Sa(z —y)) = — DSa(z — y)a®v(y) — v (y)a) Sa(z — y)

1
= Tz —y)| (. —y)v
e T ) ) )
o =y Ao (S Jz = yl)a®u(y) — DBy (@ — y)aPu(y) |z — |
|z —yl
— DC(z — y)aPu(y) — v'(y)aMSa(z —y) Y,y €0Q, z#y. (5.2)

By Lemmas 3.1(ii), 3.4, 4.2(i), and by the equality in (5.2), we have

—n+l+at+n—1—a
yl

|z —y|" 77| Bg,, (Salz —y))| < ca,alT|"|z -

spVdet a2

r—y n—l—«
oy )|l et e =yl DBy )

o =y a® | | As

+lz —y[" 7@ [DC(z — y)| + [aV|Cos50,00,n-1-a

for all x,y € 99, x # y. If either « €]0, 1] or & €]0,1] and n > 2, then the right-hand side is bounded
for z,y € 09, x # y. Hence, we conclude that statement (i) holds true.

Next, we consider statement (ii).

| By (Sa(a’ =) = Bg , (Sa(z” — y))]
T =y @ =) vy) — 1T @ =)@ - ) ()|
B spVdet a2

1

' —y z" —y
+ |a(2)| ’A2(|x,_ya |z — y|> - A2(m7 |z — y\)

2" —y
A2(|$N — y| ) |x// - y|>
+1a?|| DB (2" —y) = DB (2" —y)| | In|a’ —y[|+]a®| [DB1 (" —y)| | In |2/ —y|—In 2" —y]|

+1a®||DC(a’ —y) — DO — )| +1aD|[Sala’ ) Sa(a” —1)]  (5.3)

|2’ =y

+ a®)|

Hx/ o y|27n o |£L’H o y|27n|

for all 2/, 2" € O, o’ £ 2", y € N\ B, (2,2]|2" — 2”]). Denote by J; the first term in the right-hand
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side of (5.3). By Lemmas 3.1(ii), 3.2(ii),(iv) with v = —n, A = T~!, and by Lemma 3.4, we have
1
spVdet a2
AT @ =) =T @ =)@ =) ) |[HIT @ =) @ =) )|}
1
S -
spVdet a(2)
% {m,n(T*1)||T*1x’ T T — T71y|7n71| 2’ — y["eq.q

J1

IN

+ 2T’ — "o — 2w ()|} (5.4)
for all ', 2" € 9Q, o' # ", y € 00\ B, (2/,2|z" — 2”|). Note that
(2" = 2")'v(y)| < [(@" —2") (v(y) — v(a")] + | = 2") v(a")|
<’ —a”|plale’ = yI* + cqale’ — 2T <o = 2" |2" — y|*([V]a + co.a)
and, accordingly,
B T T ey g
1S Sn\/m n Yy z Yy CQ,a
+ 2T’ — y| "0’ — y|* (Ve + caa) | (5:5)
for all 2/, 2" € 9Q, o’ # 2", y € 0N\ B, (2, 2|2 — z”|). Next, we denote by J the sum of the terms

different from J; in the right-hand side of (5.3). Then Lemma 3.2(iv),(v) and Lemmas 3.3, 4.2(ii)
imply that

n ! 1
r —X _ —
T2 < 1@ (30 My 00) Ty a®] s gk’ [~y
=1 |2’ —y| OB, x[0,diam (8)]
n / "
. x' — 2|
1013 Moz oo )’ = o [Infa’ ~ yi] +[a®| sup_ |DBy 2!
o jZ:; By 200 | [[1n] I+ |8Q—8Q| | 2" —y|
+ Mela' — 2| + & la®| 2" — 2" (5.6)
r — X a T E—— :
C 0,554,002 ‘Jfl — y|n_1

for all o', 2" € 09, o’ # 2", y € 00\ B, (2, 2]z’ — 2”|). By inequalities (5.3), (5.5), (5.6), we conclude
that statement (i) holds. O

6 Boundary norms for kernels

For each subset A of R™, we find it convenient to set
Ar={(z,y) e AxA: z=y}.

We now introduce a class of functions on (9Q)? \ Apq which may carry a singularity as the variable
tends to a point of the diagonal, just as in the case of the kernels of integral operators corresponding
to layer potentials defined on the boundary of an open subset €2 of R™.

Definition 6.1. Let G be a nonempty bounded subset of R™. Let v1, 72, 73 € R. We denote by
K1 7275 (G) the set of continuous functions K from (G x G) \ Ag to C such that

1K,y oy e =00 {2 =y K (@,9)] 2y € G, @ 4y}

x — |2
+ sup {M |K(2',y) — K(2",y)|: 2/,2" € G, 2’ #2", y € G\ B,(2/,2|2' — x”)} < +00.
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One can easily verify that (Ky, 1,4, (G), || - llc,, 4, ., (c)) is a Banach space.
Remark 6.1. Let a be as in (1.1), (1.2) and S, be a fundamental solution of P[a, D].

(i) Let G be a nonempty bounded subset of R™. Then Lemma 4.2 implies that Sa(z — y) €
Kn-1—~n-1,1(G) for all v € [0,1] and the same membership holds also for v =1 if n > 2. If we
further assume that a satisfies (1.3), then Lemma 4.3 implies that %Sa(m —y) € Kno1.01(G)

forall j € {1,...,n}.

(i) Let a satisfy (1.3), a €]0,1[ and let Q be a bounded open subset of R™ of the class C1**. Then
Lemma 5.1 implies that B, | (Sa(z —v)) € Knc1—an—a,1(0).

For each 0 €]0, 1], we define the function wy( ) from |0, +o00[ to itself by setting

911 0
wo(r) = {r [Inr|, r€]0,r],

rf|lnrgl, r €]lre, +oof,

where

e 1 if 0 =1.

Obviously, wg( ) is concave and satisfies (2.1), (2.2), and (2.3) with o = 6. We also note that if D is
a subset of R™, then the continuous imbedding

infe-1/0 et} 4
7nez{mln{e ,e? 9} if 6€]0,1[,

Gy () € 6 (D)

holds for all § €]0,0[. We now consider the properties of an integral operator with a kernel in the
class K., 4,45 (09).

Proposition 6.1. Let Q2 be a bounded open Lipschitz subset of R™. Lety; €] —oo,n—1[, 72, 73 € R.
Then the following statements hold:

(D) If (K, 1) € Kqy ya,ys (0) X L®(09), then the function K(z, - )u(-) is integrable in 02 for all
x € 09, and the function u[0Q, K, u] from 0Q to C defined by

u[0Q, K, u( /K (z,y)uly)doy, Vo e (6.1)

is continuous. Moreover, the bilinear map from K, ~, ~, (0Q) x L>=(99Q) to C°(98), which takes
(K, p) to ul0Q, K, p], is continuous.

(i) Ifnen—2n—1[, 2 €n—1,+o0[, 13 €]0,1], (n — 1) — v + 73 €]0,1], then the bilinear
map from Ko, 5 (0) x L®(9Q) to the space CO™MI=1)=71,(n=1)=2+%}(9Q) which takes
(K, ) to [0, K, p], is continuous.

(i) If 1 € In—2,n—1[, 72 =n-— 1, v3 €]0,1], then the bilinear map from ICy, ~, -, (02) x L™(02)
to the space COmax{r"==m wvs (N} AN, which takes (K, ) to u[oSY, K, u] is continuous.

Proof. By definition of the norm in Iy, 4, ,(0€2), we have

K (2, y)u()| < 1Kk, ., 0 00 l1tll 2o 002 Py Y (2,y) € (0% \ Dag -
Then the function K(z, - )u(-) is integrable in 99 for all x € 91, and the Vitali Convergence The-
orem implies that [0, K, u] is continuous on 9 (cf., e.g., Folland [13, (2.33), pp. 60, 180].) By

Lemma 3.5(i), we also have

‘/ny y) doy,

SNK ks, g g @) 11l Lo (00200 4, - (6.2)
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Hence, statement (i) follows. Next, we turn to estimate the Holder coefficient of u[0€2, K, ] under
the assumptions of statements (ii) and (iii). Let z/,2” € 99Q, ' # z’’. By Remark 2.2, there is
no loss of generality in assuming that 0 < |2’ — 2| < r,,. Then the inclusion B, (z',2|z" — z"|) C
B, (x”,3|x’ — 2”'|) and the triangular inequality imply that

uf69, K, 1)(a’) — uldQ, K, (x| < ||l e (om) / K (2!, )| do
By (z/,2|z' —z''|)NOQ
s [ Rl [ K@) K6 day}- (6.3)
B (z/,3|z’ —2'|)NOQ OQ\B,, (z’, 2|z’ —z''|)

From Lemma 3.5(ii) it follows that

|K (2, y)| doy + / (K (2", y)| do,
B, (z/,2|2' —a"|)NOQ By, (z”,3]x’ —z"'[)NOQ
doy doy
< Kl’cwlywzﬁg(aﬂ){ =y " |2 —y|m }
B, (z,2|z'—z'|)NOQ B, (z",3|2’ =z [)NOQ
<K, 1y g (002600, |27 — 2|07 (6.4)

Moreover, we have

/ " |l’/ — x”PS
|K (2, y) — K(z",y)| doy < ||K|lx., ., .00 Wd% (6.5)
IQ\B,, (z’, 2|z’ —z'']) OQ\B,, (z’ 2|z’ —z''|)
both in case 72 €]n — 1,4+00[ and 72 = n — 1 and for all v3 €]0, 1].
Under the assumptions of statement (ii), Lemma 3.5(iii) yields
|2 — 2" —1)—+
T g Yoy S el a0 T (6.6)
OO\B,, (2, 2|z’ —z''|)
Instead, under the assumptions of statement (iii), Lemma 3.5(iv) implies that
‘xl — CC//|73 v | ) " / "
OQ\B,, (z’,2|z’ —x'"|)
Inequalities (6.2)—(6.7) imply the validity of statements (ii), (iii). O

Note that Proposition 6.1(ii) for n =3, 91 =2 —a, 2 =3 — «, 73 = 1 and for fixed K is known
(see Kirsch and Hettlich [19, § 3.1.3, Thm. 3.17 (a)]). Next, we introduce two technical lemmas, which
we need to define an auxiliary integral operator.

Lemma 6.1. Let Q be a bounded open Lipschitz subset of R™, o, 8 €]0,1] and v2 € R, v3 €]0,1].
If vo — B > n — 1, we further require that v3 + (n — 1) — (72 — 8) > 0.
Then there exists ¢ > 0 such that the function u[0Q, K, p] defined by (6.1) satisfies the inequality

[ul0Q, K, p)(a") — u[dQ, K, p](z")| < el Kllici_ry—any o 02 |1llcos poyw(lz” — 2"])
+ lllco ooy |09, K, 1](2") — u[0Q, K, 1](z")| Va',2" € 0 (6.8)
Jor all (K, 1) € K(n—1)—a,,~5 (092) x C®P(09Q), where

Tmin{aJr,@;’YS} ’Lf Yo — ﬂ <n— 17
w(r) = maX{Ta+6,w73(T)} if v—B=n—1, Vr €]0,4o0|.
rmin{a+57’73+("_1)_(72—ﬁ)}_ Zf Yo — ﬁ >n— 1’
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Proof. By Remark 2.2 and Proposition 6.1(i), it suffices to consider the case 0 < |2’ — 2”| < r.,. By
the triangular inequality, we have

|u[0, K, ) (2) — u[09, K, ) (2")|

\ / K@, )] (uly) - w(e')) do

+Iu(x’)‘ [5G - K6 ] da|. 69
oN

By exploiting the inclusion B, (2/,2|z’ — z”|) C B,(z”, 3|z’ — 2”|), the triangular inequality, Lem-
mas 3.2(i), 3.5(ii), and the inequality

ly—a'|’ <l|y—2"|° + 2" — 2”7,

we have

/ (K, y) — K=" 9)] (u(y) — (') do,

oN
< / K y)| |y — 2'|P doy ||l oo 00
By (2,22’ —z'' |)NOQ
+ / K (2", )l ly — '[P dory |l oo cony
B, (z',3|z’ —z'' |)NOQY
+ / |K(xl7y) _K(x/lay)‘ |y—xl"8d0'y||/1,||co,ﬁ(39)

OO\B,, (z/,2|z' —z''|)
doy
|y _ x/‘(n—l)—(a-&-ﬁ)
B, (z/,2|z' —z''|)NOQY
‘1:/ _ z//|ﬁ

< ||K||’C<n71>fa,72,73(8Q)||M||cow6(asz)

+ |y _ w//|(n—1)—oz dO'y
By, (z",3|x’—z'|)NOQ
n doy
|y — x/'|("*1)*(a+ﬁ)
B, (2 ,3|z’ —z''|)NOQ

o — 2"’ —y|”
|2’ — y|2 Y

+
OO\B,, (2, 2|z’ —z''|)
SNE k1) o ms (@) L1l 005 (002)
//|OL

x{2c§a,(n_1>_<a+m|x'—x”|a+ﬂ+x el o1yl —

do
e D 6.10
T N = (6.10)
OQ\B,, (a’, 2|z’ —z''|)

At this point we distinguish three cases. If 9 — 8 < n — 1, then by Lemma 3.5(i)

day doy
PR } laf —yp? < o

OQ\B,, (z/,2|x’ —z'"|)

and thus inequalities (6.9) and (6.10) imply that there exists ¢ > 0 such that inequality (6.8) holds
with w(r) = poir{etfst If 45 — 8 =n — 1, then by Lemma 3.5(iv)

doy "

W < CQ ’ In
OO\B,, (z’,2|x’—z''|)
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and thus inequalities (6.9) and (6.10) imply that there exists ¢ > 0 such that inequality (6.8) holds
with w(r) = max{r**# w., (r)}. If v9 — 8 > n — 1, then by Lemma 3.5(iii)

dgy o ‘x/ o
|$/ _ y|72_5 = "Qy2—-p
OQ\B,, (', 2|z’ —z''|)

| D= =8)

and thus inequalities (6.9) and (6.10) imply that there exists ¢ > 0 such that inequality (6.8) holds
with w(r) = prin{etBastn=1=(r2-A} 0

We also point out the validity of the following ‘folklore’ Lemma.

Lemma 6.2. Let Q be a bounded open Lipschitz subset of R™, v4 €] —oo,n — 1], G be a subset of
R". Let K € C°((G x 02) \ Apq) be such that

fn= s o=yl K ()] < +oo.
(z,y)€(GXx0Q)\Aso

Let p € L™ (09). Then the function K(x, - )u(-) is integrable in Q for all x € G and the function
ub[0Q, K, 1] from G to C defined by

[8QK,u /Ka:y y)do, Yz eG

is continuous. If sup [ |m y\“ < 00, then uf[08), K, ] satisfies the inequality
zeGHN

’u (09, K, p](z)] < sup/| Ky |l L0y Vo eq. (6.11)

|’Yl

Proof. The integrability of K (z, - )u(-) follows from the inequality

Ky, HMHLw(aQ)

K (2, y)u(y)| < rvEL S o9
Since sup [ |$ yl“ < 00, inequality (6.11) follows and the Vitali Convergence Theorem implies that
z€G o0
uf[09Q, K, 1] is continuous on G (cf., e.g., Folland [13, (2.33) pp. 60, 180]). O

We now introduce an auxiliary integral operator and deduce some properties which we will need
in the sequel by applying Proposition 6.1 and Lemma 6.1.

Lemma 6.3. Let 0 €]0,1] and Q be a bounded open Lipschitz subset of R™. Then the following
statements hold:

(i) Let Z € CO((c1Q x 9Q) \ Agq) satisfy the inequality

kn—1lZ] = sup lz —y|" " Z (2, y)| < +oo. (6.12)
(x,y)E(lexBQ)\AGQ

Let (f,pu) € C%9(clQ) x L>®(0Q) and H'[Z, f] be the function from (c1Q x Q) \ Agq to C
defined by

HYZ, fl(z,y) = (f(x) — fFW)Z(xz,y) V(2,y) € (1Q x 9Q) \ Mg .

If v € clQ, then the function H®[Z, f](z, -) is Lebesgue integrable in OS2 and the function
Q*1Z, f, 1] from clQ to C defined by

Q*Z, f, 1 /HﬂZf (z,y)p(y)do, Vel
o

s continuous.
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(i) The map H from K,—1,1(00) x C%%(9Q) to Ky—1-.n-10(0Q), which takes (Z,g) to the
function from (02)? \ Agq to C defined by

H(Z, g)(z,y) = (9(z) — 9(W)) Z(z,y) ¥ (z,y) € (09)*\ Aoq,
is bilinear and continuous.
(ii) The map Q from Kpn_1,.1(09) x C%?(9Q) x L>(Q) to CO«()(d), which takes (Z,g,u) to
the function from 992 to C defined by

QlZ, g, pl(x /HZg z,y)u(y)doy Ve df,

is trilinear and continuous.

(iv) Let a €]0,1[, B8 €]0,1]. Then there ezists q €0, 4o0[ such that

Q[Z. 9, u)(z") = Q[Z, g, 1)(z")| < all Zllic,, ... co0 19l o o0y 1ell 0.5 () 2" — 2|
+ lulleooey |Q1Z, 9, 1](2") — Q[Z,9,1](2")| Va',2" € 99
for all (Z, g, 1) € Kp—1.n1(09) x C%2(99) x C%8(99Q).
Proof. By assumption (6.12) and by the Holder continuity of f, we have
|/l
o=y

for all (z,y) € (c1Q x IN) \ Agq. Thus Lemma 6.2 implies the validity of statement (i).
By the Holder continuity of g, we have

|Hﬁ[Z,f](1'7y)| < anl[Z]

g
H(Z olw)] < s 12y ¥ @9 € O\ Do (613

Now, let o/, 2" € 9Q, 2’ # 2", y € 90\ B, (2, 2|2’ — 2”|). Then we have

|H[Z, g)(«',y) — H[Z, g)(=",y)| < lg(@") — g()||Z(",y) — Z(",y)| + |g(z") — g(z")| | Z(2", )]
a2 } . (6.14)

2 —yl°la’ —a"] | v
|2 —y[" | —y|* !

smwwwmwmmmﬂm{

Since |2’ — 2| < |2' — yl|, we have |2/ — 2”[*7% < |2’ — y|'*~?. Moreover, Lemma 3.2(i) implies that
|2 —y| > 1|2’ — y| and thus the term in braces in the right-hand side of (6.14) is less or equal to

|:17/7y| |:L'/7:17"|0 2”71|I/7x”|9 . ‘I/7I”|9

<14y T 6.15
RTINS  E o)

Thus inequalities (6.13)—(6.15) imply that
|H[Z, 9]”;(”7179,”71’8(69) <2"Zlk,_1 r @)l gllcoo a0 - (6.16)
Hence statement (ii) holds true. We now turn to prove (iii). By Proposition 6.1(iii) with v; =
n—1—60,v%9=n—1,~3 =0, the map u[aQ , -] is continuous from K,,_1_g n_1,0(9Q) x L>(0N) to
COmax{r"= D7D (M} (90)) = COwel (am Then statement (ii) implies that w[0Q, H[-, -], -] is

continuous from K, 1 ,.1(9) x C%?(9Q) x L=(9N) to C*<*()(99Q). Since
w00, H(Z, g], 1 /HZg z,y)pu(y)doy, Ve df, (6.17)
statement (iii) holds true. Since C°#1(99) is continuously imbedded into C%72(9€2) whenever 0 <

B2 < 1 <1, we can assume that a4+ S < 1. Then by equality (6.17), by Lemma 6.1 with v =n —1,
v3 = a and by statement (ii) with § = a, statement (iv) holds true. O
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7 Preliminaries on layer potentials

Let a be as in (1.1), (1.2), S, be a fundamental solution of Pla, D] and let © be a bounded open
Lipschitz subset of R™. If p € L°°(99), Lemma 4.2(i) ensures the convergence of the integral

v[09, Sa, /S z—y)uy)do, VYzeR",

which defines the single layer potential relative to u, S,. We collect in the following statement some
known properties of the single layer potential which we will exploit in the sequel (cf. Miranda [24],
Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5] and the references therein).

Theorem 7.1. Let a be as in (1.1), (1.2), S, be a fundamental solution of Pla,D], o €]0,1],
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™. Then the following
statements hold:

(i) If p € C™=1(09), then the function v* [0, Sa, u] = v[0R, Sa, pt]|aq belongs to C™(c1Q) and
the function v=[0S), Sa, ] = V[0, Sa, p]jc - belongs to C\)% (c1Q2™). Moreover, the map which
takes pu to the function vT[0Q, Sa, p] is continuous from C™=12(9Q) to C™*(c1Q) and the map
from the space C™~1*(8Q) to C™*(clB, (0, R) \ Q) which takes p to v™ [0, Sa, pjc1B, (0, R\
is continuous for all R €]0,+oo[ such that c1Q2 C B, (0, R).

(i) Letl e {1,...,n}. If p € C%*(09Q), then we have the following jump relation

9 -

50100 Sa (@) = F o m(2) /azls yu(y)do, Vacof,
l

2v(z)ta@v(z)

where the integral in the right-hand side exists in the sense of the principal value.

We now introduce the following refinement of a classical result for the homogeneous second order
elliptic operators (cf. Miranda [25]).

Theorem 7.2. Let a be as in (1.1), (1.2), Sa be a fundamental solution of Pla, D], 2 be a bounded
open Lipschitz subset of R™ and let v €]0,1[. Then the operator v[0S2, Sa, -]jaq from L>°(08) to
CO7(02) which takes p to v[0K, Sa, 1ljaq is continuous.

If, in addition, we assume that n > 2, then v[0Q, Sa, -|jsq is continuous from L>(0Q) to
Co1()(9Q).

Proof. By Lemma 4.2, we have Sa(2 —y) € K(—1)—y,n-1,1(09Q), and also Sa(z —y) € Ky—2n—1,1(99)
if we assume that n > 2. Since

v[@Q, Saa ,U']\BQ = u[@Q, Sa<l' - y)a p,] )

Proposition 6.1(iii) implies that v[0€, Sa, -] is continuous from L>(9Q) to COmax{r"w1(M}(9Q) =
C%7(99), and also that v[0€, Sa, -] is continuous from L (9Q) to COmaxirwi(m}(9Q) = CO«1()(90)
if we assume that n > 2. O

Next, we turn to the double layer potential and introduce the following technical result (cf. Mi-
randa [24], Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5] and the references
therein).

Theorem 7.3. Let a be as in (1.1), (1.2), S, be a fundamental solution of Pla,D], o €]0,1[,
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™. Then the following
statements hold:

(i) If p € C%*(9Q), then the restriction w[0,a, Sa, pu]jq can be extended uniquely to a continuous
function wt [0S, a, Sa, p] from cl to C, and w[0Q,a, Sa, p]jo- can be extended uniquely to a
continuous function w [0, a, Sa, p] from c1Q~ to C, and we have the following jump relation

w09, a, Sa, p](z) = :I:% pw(x) + w0, a, Sa, pl(x) Ve dfd.
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(i) If p € C™(99Q), then wt[0Q,a, Sa, u] belongs to C™*(clN) and w [0, a, Sa, u] belongs to
Ci*(clQ).  Moreover, the map from the space C™*(9) to C"™(clQ) which takes p to
wt[0Q, a, Sa, | is continuous and the map from the space C™*(9Q) to C™*(c1B, (0, R) \ )
which takes pu to w™[0Q, a, Sa, f1]|aB, (0,r)\o 8 continuous for all R €]0,+oo[ such that c1Q C

B, (0, R).

(iii) Letr € {1,...,n}. Ifp € C"™*(9Q) and U is an open neighborhood of 9Q in R™ and i € C™(U),
fioq = p, then the equality

2 o Suil) = Y g [ e =) S @) - 150) 2 ()] do

ox 0
r = A Yr

+ / [DSa(z — 1)a® + aSa(z — )] ve()uly) doy

o0
— /ax,‘sa(a: - y)l/t(y)a(l)u(y) do, VzeR"\0Q (7.1)
o

holds.

Note that formula (7.1) for the Laplace operator with n = 3 can be found in Giinter [14, Ch. 2, § 10,
(42)]. By combining Theorems 7.1 and 7.3, we deduce that under the assumptions of Theorem 7.3(jii),
the equality

0
ox,

- d
wh (09,2, Sa, ] = Y alj 5 vt [0, Sa, M (1] + DvT[09, Sa, vpp]aV)

jl=1

+ avt[09Q, Sa, vpu] — 0 v [0Q, Sa, (v'aV)u] on clQ (7.2)

ox,

holds.
Next, we introduce a result proved by Schauder [30, Hilfsatz VII, p. 112] for the Laplace operator,
which we extend here to the second order elliptic operators by exploiting Proposition 6.1.

Theorem 7.4. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], o €]0,1]
and let Q be a bounded open subset of R™ of the class C1*. If p € L>=(99), then w[0Q, a, Sa, ujo0 €
C%2(09Q). Moreover, the operator from L>®(9S) to CO*(9Y) which takes p to w[0S,a, Sa, tjaq is
continuous.

Proof. By Lemma 5.1, the function Ka(z,y) = Bg, ,(Sa(z —y)) belongs to K —1)—a,n—a,1(052). Since
w[aQ7 a, Sa7 HMOQ = u[@Q, K37 ,u] s

Proposition 6.1(ii) implies that the function w[0Q,a, Sa, -]jsq is continuous from L*>(9Q) to

CO,min{a,(nfl)f(nfa)Jrl} (89) _ C«O,a(aQ). 0

8 Auxiliary integral operators

In order to compute the tangential derivatives of the double layer potential, we introduce the following
two statements which concern two auxiliary integral operators. To shorten our notation, we define
the function © from (R™ x R™)\ Ag~ to R™\ {0} as follows:

Oz, y)=x—y V(z,y) € (R"xR")\ Agn. (8.1)

Theorem 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla,D] and
r€{l,...,n}. Then the following statements hold:
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(i) Let Q be a bounded open Lipschitz subset of R™ and 6 €]0,1]. If (f, ) € C%%(c1Q) x L>(09),
then the function

# 853
ox,

06, L.n](5) = [(f2) = J0) 52 (a ~ ply) doy, Y€ D

o0

Q

s continuous.

(i) Let a €]0,1[, 5,0 €]0,1], m € N\ {0} and Q be a bounded open subset of R™ of the class C™.
Then the map Q¥[252 00, -, -] from C™10(c1Q) x C™18(aQ) to C™—tmin{eB0} (1 Q) which

ox,.
takes (f,u) to Qﬁ[% 00, f, u] is bilinear and continuous.

Proof. By Lemma 4.3(ii), statement (i) is an immediate consequence of Lemma 6.3(i). Consider
statement (ii). By treating separately the cases x € 9Q and = € Q, and exploiting Theorem 7.1(ii),
we have

058, 0 0
§[92a _ 9 o+ _ +
Q57 0O Fo](@) = Fw) 50" 109 Sa, pl(w) — 507 (00, S, ful(x),
for all « € c1§2. Then the statement follows by Theorem 7.1(i) and by the continuity of the pointwise
product in Schauder spaces. O

Theorem 8.2. Let a be as in (1.1), (1.2), (1.3) and Sa be a fundamental solution of Pla, D]. Then
the following statement holds:

(i) Let Q be a bounded open Lipschitz subset of R™ and 6 €]0,1]. Then the bilinear map Q[gi: o
0, -, -] from C%?(9Q) x L>(99Q) to CO«()(9Q), which takes (g, 1) to the function

0Sa
ox,

26,9.4)() = [(90) ~90) 52 (0 - puly)do, Voo, (52)

[5}9]

Q

1S continuous.

(i) Let a €]0,1[, B €]0,1]. Let Q be a bounded open subset of R™ of the class C1*. Then the
bilinear map Q[g—ij 00, -, -] from C%(9Q) x C¥P(9N) to C**(99), which takes (g,u) to
Q[g—ij 00,4, ul, is continuous.

Proof. By Lemma 4.3, we have gfj € Kno1.0,1(09). Then Lemma 6.3(iii) implies the validity of
statement (i).

We now consider statement (ii). By statement (i) and by the continuity of the inclusion of C*#(99)
into L (99), we already know that Q[g—ij 00, -, -]is continuous from C%(92) x C*#(98) to CO(0NQ).
Then it suffices to show that Q[gTSj 00, -, -] is continuous from C%*(9Q) x C%#(99Q) to the semi-
normed space (C%%(99), |- : 9Q|,). By Lemma 6.3(iv), there exists g €]0, +oo[ such that

Q522 00.g.] ) - Q[ 522 0 0.0 0"

6I‘T axr
9Sa )
: qH oz, @‘ ICn,lynJ(aQ)HgHCO‘O‘(aQ)”MHCOvB(E)Q)lfL‘/ — |
9Sa / 05, )
+ llulleo @) Q[axr 06,9,1} (z') - Q[axT 0679,1} (") (8.3)

for all /., 2" € 9Q. Let R €]0, +oo[ be such that c1Q C B, (0, R). Let ‘* ~’ be an extension operator
as in Lemma 2.1, defined on C%%(99). Since

0Sa
oz,

0Sa
oz,

Q[ 09,9,1}(@:@1{ 09,5,1}@) Va e dQ,
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Theorem 8.1(ii) implies that Q[% 00, -,1] is continuous from C%*(9N) to itself and, accordingly,
there exists ¢’ €]0, +o00[ such that

lo[52 06,011 < dlgllonnony Vg € CO(00). (8.4
€02 (59)

Combining inequalities (8.3) and (8.4), we deduce that Q[% 00, -, -] is continuous from C%(9Q) x

COB(09) to (CO*(Q), |- : 09|,) and thus the proof is complete. O

In the next lemma, we introduce a formula for the tangential derivatives of Q[ 95 50, g, ).

Lemma 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], a €]0,1][,
0 €]0,1]. Let Q be a bounded open subset of R™ of class C*<, r € {1,...,n} and let g € C19(9Q),
u e CHOQ). Then Q[gi: 00,g,u] € CHON) and the formula

My [Q[ 522 0 0.9.1)] :m(@@[gj 06, Dasg.11)(2) ~ 1(1)Q

+u(7)Q [o@ g,z [Z;;}Z;LVMH(@
o o a3 22

PEA My [g)p 95a Vit
+ Z asni (2 { [a ° 0. yta@)y}(xHQ oz, OG’Q’M}”{W} (=)

s,h=1

08,

oz, 00, Da,l97 U} (Z‘)

0Sa Mhr[g]ﬂ 054 Vip
- aae {elG oo iy | +e gt 000 [ ] |

) T
s,h=1 v as

n

0Sa Vily 0Sa ViVp
_Zas{yl |:7 @7gamu:|(‘r)_yj(x)Q|:axs 097971/75(1(2)”/4(1')}

o{ 010 @010 S0 205 ) ) = i) 00 S ) 0)

Vilr

- [,,l (z)v [ag, Sarg u} (z) — v;(z)v [aQ, Sa, g %u} (:c)} } (8.5)

holds for all x € O and 1,5 € {1,...,n}. (For Q see (8.2).)

Proof. Let R €]0,400[ be such that c1Q C B,(0,R). Let ‘~’ be an extension operator as in
Lemma 2.1, defined either on C1(99Q) or on C1*(9€) depending on whether it has been applied
to g € CL9(99) or to v € CL(9Q) for I =1,...,n

Now, fix 3 €]0, min{#, a}[ and first prove the formula under the assumption u € C1#(0Q). By
Theorem 8.1(ii), we already know that QF [% 00, g, 1] belongs to C(c1€). Then we find it convenient
to introduce the notation ’

of
Oz,

of

M} [f)(z) = (@) 5 (2) = D () 5o (@) Vo€

for all f € C1(c1Q). If necessary, we write M}

1,z 10 emphasize that we are taking x as variable of the

differential operator Mlﬁj Next, we fix € (2 and compute

~ - 0 0Sa -
eagalu (x)_yj(m)%Qn Oz O@vgvﬂ“ (1’)

e >8% Qﬁ[

Ty
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Clearly,
0 0S.
f a ~
5 @ [ 5o 0,5, 1) (x)
= [ %) 2L sae - yuty)d +/<~<)—~<>)‘92 Sal — y)uly) d
= oz xaxr al\l — Y)ply)aoy gz gly 02,0z, al\l —Y)uly)aoy .
o0 o0

To shorten our notation, we set

o [o9g, . 0

Ji(z) = | 57 (2) 5= Sale —y)uly) doy .
o0 : "
Then we have
@2 00.5.u)w)

_ ~ ~ - vs(y)asnvn(y) O 0

— 1) 8{ @)= 300) 3. SR o Lo Snta =t
=)~ @) =500 3 () 5 ~10) 5 ) [ Sate )]

0 5=
AspV ( )
Z z/t(y;ba(};)i(y) (y) dory

N 0 (@®v(y))s
aé(g(x) —9()) ;Msl,y {37:7 Sa(z — y)} A ()a®u(y) n(y) doy
_ [y A N Ll 1)) :
- aé > Moty [56) ~50)] g1 Sl ) i s ) o,
n a®).
= [ 360 =) 5 S — ) Ma [P ] ) o,

aq =1

Since M1,y [g(x) = 9(y)] = —Malgl(y), we have

0 0Sa - ag 0
Qo0 g.u)w) = oL <x>aé o Sale — uly) do,
- 0 (@),
—aé 2 Malg)(y) Dz, Sa(z —y) S ()a@ () (y) doy
n a®y
+ [ 306 ~500) 5 Sale — ) Ma [P ] ) o,
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Accordingly, we have

M, [Qu [% o@@uﬂ(gg) = Mlﬂ[gﬂ(gj)/ 9

n

a®vy
{m( )Msj[zﬂ(y)—Dj(x)Msl[m(y)}aisa( _ o (@)

— . r—y) S (@)au(y) w(y) doy
a@v), _ a@ ),
+f Z Sate = {0 [ w0 - mina[ G ] ) ao,
o0 =1
- / Z - 3y, [axr I*y)] (@®v),(y) Dl(x)?;g;a(g?i 8”@) (y)do, . (8.6)
89

We now consider the first two terms in the right-hand side of formula (8.6). By the obvious identity

9 Dga®y ) Dga®v
# _ ~ g ~} o~ [ ~ g ~} .
My 9] =w [78%_ g Sia@5 v; vj s g S @7 | in clQ,

by the corresponding formula for M;;[g] on 0€2, by formula (2.4) and by straightforward computations
we obtain

afjr Sale — y)uly) doy

a®y
/Z 1/1 oz (x)Msz[é](y)} 6% Sa(z —y) g (y

A g)a@u(y) Y
90 s=1

~ 0 - Dj(z)aPv

(z) [a%_g(a:)— a(% } / = y) do,
~ 0 - Dy(x a(2)

~5y(0) | ) - DR ) / _ y)do,

e /[8% _Vty;j” }(Z i) y 0 g

) 2 A (y)

Tl / {Zays

o

~—
~—
w

asth( ) Dg(y)a®u(y)
U (y)a@v(y) v (y)a@D(y)

X (ﬁs(y)%)} ({% Sa(r —y)uly) doy,

_ d D§(y)aPo(y) _ L asnvn(y) d

+’/j(x)/ [aylg(y) MW@)]( ; Us(y) (hih) oz,
oN s,h=1

@) Sa(r —y)u(y) doy
» _ n 0 - asplV ( ) ( ) @ ( )
o0 s,h=1

X (Z(y) W) } aixr Salr —y)p(y)doy . (8.7)

Since

~ LA asnvh(y)
V(y):VQ/)’ (sﬁzzlys(y)gt(y;la(’;);(y)) =1 VyeaQ,
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we have

—~ 0 _ asvn(y)  Dg(y)a®o(y) 5 asnVh(y) _
{s,%::l 0. "W T a3 T T ()a®iy) ( ) 'Iﬁ(y)a@)ﬁ(y))} -

for all y € 9 and, accordingly, the right-hand side of (8.7) equals

o _ Dgadv _ o _ Dga®v _
8 5= . — g —g—
( )Q |:8$r ) axj g uta@)u V]Hu:|( ) V]( )Q [axr ’ 8xl g l/ta(Q)V Vl?/’[’:| (Z‘) .

Consider the third term in the right-hand side of formula (8.6) and note that

3200 - 50 o ute = {ans G2 ) - e[ G2 ] )} ao,
90 5= 1 r
o[G0 3t [l
— 7;(2)Q* Bia 00,9, Zn: Mg [% uH (). (8.8)
r s=1

Next, we consider the last integral in the right-hand side of formula (8.6) and note that if « € ) and
y € 0f2, we have

0 0
%; % |:ash

1

]—I—Zas— a(x —y) +aSa(z—y)=0.

S Ts
S

Thus we obtain

= > () 51 0) ) [ Salo=w)] 404 0) D e 5 Sale—v) +ri (aSale ).

s,h=1 s=1 s

and we note that the first parenthesis in the right-hand side equals M}, ,. The last integral in the
right-hand side of formula (8.6) equals

/ Z asnVa(y a [i Sa(w—y)} gl(x)zj ) - 7, Em)yl(y) u(y) doy

s A oz, Hy)a®v(y)
-/ (ﬁ(w)ﬁ(y)){ > oMy [ 5 Sale )]
90 s,h=1
~ 0 vi(z)v;(y) — vi(@)v(y) o
) Y0 Sale =) e usale — ) LT )
=3t [ @)~ ) M [ 1 Sl — )]
s,h=1 50 s
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We now consider separately each of the terms in the right-hand side of (8.9). By Lemma 2.2 and the
equality —Mp, ,[9(z) — §(y)] = Mpry[G(y)], the first integral in the right-hand side of (8.9) equals

[ @) = 56 My [ 5 Sula = )]

o0

+55(0) [ 00) ~ 50) e Sale — )M [ ) o,
1919)

= —ia >{Qﬁ[ 0075, (o >+Q“[ o@g,Mm[;(gH(@}

+%<x>{@ﬁ S2oom Mol ) 1 [8

S

Next, we note that the second integral in the right-hand side of (8.9) equals

- ~ aSa ~ i ~ i
S0 B [0 0 0.5, 2 ] (@) - (@ [ 0.5 ] )

s=1

ViVr

+ a{ﬁ(m) {DZ (x)v {GQ, Sa, mu} () — vj(z)v {BQ, Sa, %u} (m)]

Vivy

— [Dl(x)v{aQ,Sa,g i@y }(m)— i (x)v [8(2 Sa, g tVl(VT)VM} (w)}}

By combining formulas (8.6)—(8.10), we obtain
M [
n@@ [P0, L DIy k) sae oo @,g,ZMgJ [Z ] |@
@ G005 Y M3 S ]
=

~ 95, My, _ :
+ Z axshl/l(l‘>{Qﬁ|:axs O@;Vj7 I/t’;([zg)]l/ ]( )+Qu|: o®7g>Mh’r |:th;7(éj;yj|:|(x)}

0 _ Dga?v _
aaTjg_ Jta (2) l/j,/J/i|(.’E)

00,7, u” () = T (2)Qf {gij

5
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= - 0Sa My,
- Z ashyj(x){Qn[axSO@7ylth];([2g)]:6:|( >+Qﬁ|: 09 g’MhT|:tZl(/;)]/i|:|(x)}

s,h=1
= oS Vil ViVy
— b | ZPa G # 5
o G 0 0.3 0 n] @) -7 [ L ),
~ Ver I/ZV’I“
-~ o{gto) e 00 50, L ] ) - [ e )0
_ ViVyp Vll/r
_ [yl(x)v[aﬁ,sa,gyt;@)y ] [89 Sasg —ih— M} (x)} } (8.11)
Under our assumptions, the first argument of the maps Qﬁ[g—fj 00, -, ]and Qﬁ[g%‘ 00, -, -], which

appear in the right-hand side of (8.11) belongs to the space C*™*{:}(c1Q) and the second argument
of the maps Q”[ZTS: 00, -, ], Q”[g—ij 00, -, -], which appear in the right-hand side of (8.11) belongs
to C°(09). By Theorem 7.1(i) with m = 1, the single layer potentials in the right-hand side of (8.11)
are continuous in = € c1Q2. Then Theorem 8.1(i) implies that the right-hand side of (8.11) defines a
continuous function of the variable z € clQ. Since  is of the class C%* and § € 019(clQ) and since
we are assuming that u € C1#(99Q), Theorem 8.1(ii) implies that Mji [Qﬁ[ 2 0 0, g, u]] belongs to
C%(cl1Q). Hence, the equation of (8. 11) must hold for all z € clQ and in partlcular, for all z € 9.
Since Qﬁ[‘g—fi 00, -, -]= Q[‘gi*‘ 00, -, -] and Ml‘i = M;; on 09, we conclude that (8.5) holds.

Next, we assume that e E Cl(aﬂ) We denote by P, [g, 1] the right-hand side of (8.5). By Theo-
rem 8.2(i), the operators Q[ %%00,9, -], Q[as“ 00, D, jg, -], Q[aijG vy, | are linear and continuous
from the space C°(9Q) to CO((’?Q) By Theorem 7.2 and by the continuity of the pointwise product in
C°(99), the operator P,j.[g, -] is continuous from C?(9Q) to C°(0). In particular, Q[gf:‘ 00,g,u,
Pyjrlg, n] € C°(09).

We now show that the weak M;;-derivative of Q[gi: 00,g, -] in 0Q coincides with P;,[g, 1]

Considering both an extension of y of the class C'! with a compact support in R” and a sequence of
mollifiers of such an extension, and then taking the restriction to 9€2, we can conclude that there exists
a sequence of functions {up}pen in C?(9€2) converging to p in C1(9€2). We note that if o € C*(9Q),
then the validity of (8.5) for u, € C2(09) C C1#(09), the membership of Q[252 0O, g, 11] in C*(9Q)
(see Theorem 8.1(ii)) and Lemma 2.2 imply that

. 0S4
/Q ® 00, .| Myly ]da:bgr& Q[5,% 00,9, Myl do
o0
= _bliﬁlo/M” o@ e ubHsado—— lim /ng ub]wda——/szr[g,u]@do-

o0

Hence, P;;[g, 1] coincides with the weak M;;-derivative on[‘gfj 00, g,pu] foralll,j € {1,...,n}. Since
both Pj;[g, 1] and Q[ 95260, g, u] are the continuous functions, it follows that Q[gfj 00, g, u] € C1(0Q)
and M, [Q[sz 00,q, ]] = Py-[g, p], classically. Hence (8.5) holds also for p € C1(09). O

By exploiting formula (8.5), we can prove the following theorem.

Theorem 8.3. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], a €]0,1][,
m € N\ {0}. Let Q be a bounded open subset of R™ of the class C™ and let r € {1,...,n}. Then
the following statements hold:

(i) Let 0 €]0,1]. Then the bilinear map Q[asﬂ 00, -, -] from the space C™~19(9Q) x C™1(9N)
to C™m—1ws( )(QQ)} which takes a pair (g, ) to Q[amj 00,9, ], is continuous.

(i) Let B8 €]0,1]. Then the bilinear map Q[as“ 00, -, -] from the space C™~1*(9) x C™~1F(5Q)
to C™=1(9), which takes a pair (g, i) to Q[ 522 00,9, 4, is continuous.
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Proof. We first prove statement (i). We proceed by induction on m. Case m = 1 holds by Theo-
rem 8.2(i). We now prove that if the statement holds for m, then it holds for m + 1. Thus we now
assume that Q is of the class C™ % and we turn to prove that Q[% 00, -, -] is bilinear and

continuous from C™?(9Q) x C™(9N) to C™+¢()(9Q). By Lemma 2.3(ii), it suffices to prove that
the following two statements hold:

) Q[% 00, -, -] is continuous from C™%(9Q) x C™(IN) to C°(IN);

(Jj) My, [Q[ﬁsa 00O, -, -]] is continuous from C™?(9Q) x C™(9N) to the space C™~1<o()(9Q) for

l‘

alll,j€{1,..., }

Statement (j) holds by the case m = 1, and by the imbedding of C™?(99) x C™(9£2) into C*?(99) x
C°(09). We now prove statement (] _]) Smce m+ 1 > 2, Lemma 8.1 and the inductive assumption
imply that we can actually apply M;; to Q[ %2 6@, -, -]. We find it convenient to denote by Pi;.[g, 1]
the right-hand side of formula (8.5). Then we have

asa m m
My; [Q[aT o @,g,uH = Pyrlg.p] V(g,p) € C™P(0Q) x C™(09).

By Lemma 2.4 and the membership of v in C™<(99Q, R"), which is contained in C™~%(9Q, R"),
by the continuity of the pointwise product in Schauder spaces, by the continuity of the imbedding
of C™(09) into C™~1(9N) and of C™(9Q) into C™19(9N), by the inductive assumption on the
continuity of Q[g%: 00, -, -], by the continuity of v[0, Sa, -]jan from C™m=L2(9Q) to C™*(99Q) C
Cm=19(00Q), and by the continuity of the imbedding of C™(9Q) into C™~1:%(9Q) and of C™(9N)
into C™~1«0(*)(90), and by the continuity of D, from C™¢(99) to C™1¢(9N), we conclude that
Pyjr[+, -] is bilinear and continuous from C™?(9Q) x C™(9Q) to C™~1«e()(9Q), and the proof of
statement (jj) and, accordingly, of statement (i) is complete. The proof of statement (ii) follows the
lines of the proof of statement (i), by replacing the use of Theorem 8.2(i) with that of Theorem
8.2(ii). O

Definition 8.1. Let a be as in (1.1), (1.2), (1.3), S, be a fundamental solution of Pla, D], o €]0, 1]
and let Q be a bounded open subset of R™ of the class C*®. Then we set

i) = {2500 0025 o0s] - o[22 0.n.]

r=1

ox
+ a{gv[@Q,Sa,hu] hv[0R, Sa, gu] }

for all (g, h, p) € (C%*(02))? x C°(89).

Since

9(@)h(y)—g(y)h(z) = [g(x)h(z)—g(y)h(y)] —g(x)[h(z) = h(y)]—g(y)[h(z)=h(y)] Vz,ycd,

we have

n

Rlg il = [ {32 e 5 Sule =) + aSalo = )} [oe)hly) — 9] ) do, Vi € 09,

an =1

Since R is a composition of the operator Q[g—i‘: 00, -, ] and of a single layer potential, Theo-
rems 7.1, 7.2 and 8.3, the continuity of the product in Schauder spaces and also of the imbeddings of
C™=1(0Q) into C™=22(9N) for m > 2, of C™~1H%(9NQ) into C™~1@=(-)(9Q) and also of C™F(9N)
into C™~12(9Q), imply that the following theorem is valid.

Theorem 8.4. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], o €]0,1][,
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™*. Then the following statements
hold:
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(i) The trilinear map R from the space (C™~1(982))% x C™~1(9Q) to C™~1wa()(99), which takes
a triple (g, h, 1) to R[g, h, p], is continuous.

(i) Let B €]0,1]. Then the trilinear map R from the space (C™~12(002))2 x C™=1A(9Q) to
C™=L2(9Q), which takes a triple (g, h, 1) to R[g, h, ], is continuous.

9 Tangential derivatives and regularizing properties of the
double layer potential

We now exploit Theorems 7.3, 7.4, Lemma 8.1 and Theorems 8.3, 8.4 in order to prove a formula for
the tangential derivatives of the double layer potential, which generalizes the corresponding formula
of Hofmann, Mitrea and Taylor [16, (6.2.6)] for homogeneous operators. We do so by means of the
following

Theorem 9.1. Leta be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], « €]0,1] and
let Q be a bounded open subset of R™ of the class C*. If up € C1(99Q), then w[0€Y, a, Sa, p1]joq € C(99Q)
and

My [w[09,2, Sa, 1] ] = w[09,a, Sa, Mi;[u]]

\BQ} |02

+ zn: abr{Q[gi: 0 ©, v, My [u]] _Q[% 00, yj,er[u}}}

b,r=1

+u-a(1){Q[gij O@,Vj7/$i| - Q[gia 097%#}}

o®7y-a(1),u}

J
—v- a(l)v[aﬂ, Sa, My;[u]] + v[0€, Sa, v - aM My, (W] + Rlvi,vj, 1] on 99 (9.1)

foralll,je{l,...,n}. (For @ see (8.2).)

Proof. Fix 3 €]0,a|. First consider the specific case in which p € C18(9Q). Let R €]0,+oo| be
such that c1Q C B, (0, R). Let ‘ ~’ be an extension operator of C1-#(9Q) to C*#(c1B,, (0, R)) as in
Lemma 2.1. By Theorem 7.3(i),(ii), we have w*[0Q, a, Sa, ] € C1A(clQ) and

1
M; [wh [0, a, Sa, pljoa] = 3 M (1] + My; [w[OS2, a, Sa, 1l joa] - (9.2)

By the definition of M;; and by equality (7.2), we obtain

Mlj [w+[897 a, Sa7 /“L]\QQ} =U i w+[695 a, Saa /U’] 0 w+[397 a, Sa7 /J’]

o) i o
= ul{ i abriv"r (092, Sa, M [u]] +iabiv+[89 Sa, Vi)
Pt Y = O Y
0. S (0 0] + [0, S v
8.13]‘
—u»[ z": ap iv+ (092, Sa, My (1] +Zn:abiv+[89 Sa, V1]
J = s axb y May T ot axb yMay
_ 9 T[99, Sa, (' - V)] + av?[09, Sa, Vlu]]
8931
:iab Vliv+[695 M; [u]]—uiv"‘[aﬂS M, [1]]
T a.’rb sy May Jr J axb y Mas T

b,r=1
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- 9 0
n 09, Sa, vy — v; 2 0 t[09, Sa
2 ab{ul azbv [09Q, Sa, v —v; 8acbv (092, S ,Z/lu]}

~ {4 5 0¥ 10 50,0 )] =y 7109, -0V}
+a{ylv[8Q,Sa,1/ju} — I/jv[aﬂ,Sa,Vlu]} on 0. (9.3)

We now consider the first term in braces in the right-hand side of (9.3) and note that

{ i« Mib 109, Sa, Mjp ] () — v a%”+ [OQ,Sa,MlT[u]](x)}
v (z)vp(z) 9
S Ml (o) + Vl(x)aé s Sale = )My () doy

vy (@) o
+ gl My pl(w) = y(0) [ 5 Sl = )M (0)do,

o0
) —vi(x)Mjr [ (2) + v; () Mir [p] ()
2vt (z)a@v(z)

+ / 8%:;, Sa(z — y){vi(z) M [1](y) — vj(2) My [p](y) } doy . (9.4)
)

=up(z

Further, we note that

0 0 0 0
[Vle,.[u} — Z/le,.[,uH =y, 37'“ — Y, 37# vy 87# + vjv, aul = —v, M;[p] on 0Q. (9.5)
r J r
Then we obtain
i _Vler[u] +Vle'r[:u/]
ort 2wta@y
b,r=1
> VbV
v Myjlp]  br=1 1
szl Wrls 5 o) = i@y, M) = §Mlj[,u] on 0f. (9.6)

Consider the term in braces in the argument of the integral in the right-hand side of (9.4) and note
that equality (9.5) yields

vi(x) Mj [p)(y) — vj(x) Mir[u](y)

= (@) = @) M pl () + W) M (1) (y) = v () Mir [ (9)] = v (@) = v; ()] M [p] (y)
= [n(z) - Vz(y)] el () = v () Myl (y) = v (@) = vi)IMie [l (y) Yo,y € 092, (9.7)
We now consider the term in the second braces in the right-hand side of equality (9.3) and we note that
() o 010, Susvypl(a) = 1 (2) a% " 108, Sa s @)
— (o) g Y + e / Vs )ty do
e Q(I)ﬂ))() nlalz) - vy(z) [ 8% Sale — )y uty) do,
0

/ 5 Sale = 9@ ) ~ @) do, V€ 00, 99)
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Next, we consider the term in the third braces in the right-hand side of equality (9.3) and we note that

n(e) g v

= —y(x) ME% (Vt(x) a(l))ﬂ( )+ vz )/% Salx — y)yt(y) 'a(l)ﬂ(y) doy

J

09, Sa, (v - eV (z) — v (2) 0

307V 02 S (' aM)p) ()

+vj(x) 21ﬁ(:1:y)l(§?2))1/(:v) (V' (z) - a(l) —vj(x / o2, a(T — a(l)u(y) doy

= —ua) [ [0(2)-a) = (0) - 0] - Salo — 9)n(e) dor

J
o0

+ule) [0) o) 8‘9 Sale — y)puly) dor,
oN

T v;(x) / (/' (x) - V) — (' (y) - )] ai Salx — y)uly) do,
o0

(@) [01@)-a) o Sule — y)uty) do,
onN

S— / (/' () - V) — (W (y) - )] ai Salz — y)uly) do,

o0

1y(a) [ [07@)-a) = 0) )] 5 Sale — 9)ulw) do,
onN

@) a) [ (o) 5= @) 5

) Sa(e —y)nly) do,

T v;(x) / [(v(2) - o) — (' (3) - aD)] ai Sal — y)uly) dor,

o0

+ (V' (x) - a) (Vz(x)—w(y))i‘Sa(l”—y)u(y) doy— [ (vi(z)—v;(y)) 0 Sa(z—y)u(y) doy
Ox; A ox;
o0

+0@)-a) [ () 5~ ) 2 )Sale = wut)da,  (09)

oN

for all z € 992. By Lemma 2.2, the last integral in the right-hand side of (9.9) equals

/Mljy (x —y)p(y) doy = /S (x —y)Mi;[p)(y) doy, Yo € 0. (9.10)

Thus the last term in the right-hand side of (9.9) equals

V(@) - ) / Sale = y) My () dor 84 (4 (2) - a®) = (W1(y) - a V)] Salr — ) Mis ) () dor
—I—/(u (y) - aM)Sa(x — y) My, (1) (y) do, Y € 9. (9.11)

o0
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The last term in braces of equation (9.3) equals

[ 8ula = @) - vi@mw]ut) o, Vo€ o0, (012)
o0

Combining (9.2)-(9.4), (9.6)—(9.12), we obtain

n

My [w]09, 8, Sa, ] (1) = 3 abr{ [ 040) = 10) 5 Sl = )M i) o,

b,r=1 90

- / (vi(z) = vi(y)) a%, Salz — y) M, [1](y) doy, — / vr(y) a%, Sa(r — y)Mi;[u](y) day}

o0 o0

+ bz a / ai Sa(z — 1) [(@); ) — v; (@) ()] () do,
=1 50

(M) - a<1>>{ / (ni(z) () ai Salz—y)uly) do, - / (3(2) ;) a% Salz—)u(y) doy}
o0 o0

—/[(Vt(x) -aM) = (W (y) - al")] Salz—y) My; 1) (y) day—/(vt(y)-a(”)Sa(x—y)sz[M](y) do,
oQ o0

ta / Sal — 1) () (v) — vi (@Y ()| ily) doy Y € 09,
o0

which we rewrite as

g 95, 05,
My 2.2, S ) @) = 32 abr{Q[ Sor © O My ] (2) — Q[ 2 0, uj,Mzr[umx)}
Fu(@Q[ 52 00,00, 4] (2) 1, ()Q[ 2 0 0.1 -0V, ] 0)
J

# oo a8 My D] ) + (400 Q[ 52 0 0.15.] () - Q[ T2 00 1)

- (V(x) - a(l))v[aﬁ, Sa, Mlj[u]] (x) + v[@Q, Sa, (V- a(l))Mlj[uH (x) + Ry, vy, pl(x) Yz edfd.

Thus we have proved formula (9.1) for u € C%5(99).

Next, we assume that u € C'(9€). We denote by Tj;[u] the right-hand side of (9.1). By the
continuity of M;; from C'(99Q) to C°(9R), of w[d€, a, Sa, -]joq and v[09Q, Sa, -]jsq from CY(8Q) to
C%*(09Q), of Q[gij 00, -, -] from C%(9) x C°(9N) to CO¥=(9Q), of R from (C**(9))% x C°(99)
to C%%=(9Q), and by the continuity of the pointwise product in Schauder spaces, we can conclude
that the operators w[0,a, Sa, -]ja0 and Tj;[-] are continuous from C*(92) to C**(99) and from
C1(80) to CO»=(1)(99), respectively. In particular, Tj;[u] and w[0Q, a, Sa, u]jsn belong to C°(ON).
We now show that the weak M;;-derivative of w[0€), a, Sa, u]jon coincides with Tj;[u].

By arguing just as at the end of the proof of Lemma 8.1, there exists a sequence of functions
{up}pen in CH(09), which converges to p in C1(99Q). Note that if ¢ € C1(9€), then the validity
of (9.1) for pu, € CH*(09), the membership of w[0, a, Sa, tp]jp0 in C12(09), the above-mentioned
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continuity of w[0€), a, Sa, -]jaq, and also Lemma 2.2 imply that

/ w[aQ7 a, Sa’ :LL]WQMU [QD] do = b1i>nolo w[@Q, a, Saa Hb]|6QMlj [‘P] do
o0 [519)

= *bli}c}o/sz [w[0%, a, Sa, w] 00w do = *blingo/ﬂj[ub]@dm: */sz[u]sod:u
[ol9) o0 o

Hence, Tj;[u] coincides with the weak Mjj-derivative of w[0€, a, Sa, 1] jaq for all [, j in {1,...,n}. Since
both Tj;[u] and w[0Q,a, Sa, it]jpo are the continuous functions, it follows that w[0Q,a, Sa, ujsa €
C1(0%2) and M;;[w[0Q, a, Sa, u]ja0] = Ti;[p], classically. Hence (9.1) holds also for p € C*'(0). O

Using formula (9.1), we now prove the following result, which says that the double layer potential
on 0N has a regularizing effect.

Theorem 9.2. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], « €10,1[,
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™*. Then the following statements
hold:

(i) The operator w[0S2,a, Sa, -]jaq is linear and continuous from C™(0Q) to Cmwa()(00).

(ii) Let B €]0,a]. Then the operator w[0S2,a, Sa, -]jaq is linear and continuous from C™P(99) to
Cm™(00).

Proof. We prove statement (i) by induction on m. As in the previous proof, we denote by Tj;[u] the
right-hand side of formula (9.1). We first consider the case m = 1. By Lemma 2.3(ii) and formula
(9.1), it suffices to prove that the following two statements hold:

() w[69,a, Sa, -Jjaq is continuous from C* () to CO(€);
(i) Ti;[-] is continuous from C1(9N) to COw=()(9Q) for all I, j € {1,...,n}.

Theorem 7.4 implies the validity of (j). Statement (jj) follows by the continuity of the pointwise
product in Schauder spaces, by the continuity of M;; from C*(99) to C°(992), by the continuity of
0[O, Sa, -]joe and of w[0€, a, Sa, -]jsq from CO(9Q) to C*(9N) (cf. Theorems 7.2, 7.4), and also
by the continuity of Q[422 0 ©, -, -] from C**(99) x C°(9Q) to CO<=()(9Q) (cf. Theorem 8.2(i))
and by the continuity of R from (C’O’a(aQ))2 x C%(99) to CO«=(-)(99) (cf. Theorem 8.4(i).)

Next, we assume that € is of the class C™*1:® and we turn to prove that w[0€,a, Sa, Jjaq is
continuous from C™*+1(9Q) to C™+1w=(-)(9Q). By Lemma 2.3(ii) and formula (9.1), it suffices to
prove that the following two statements hold:

(a) w[0R, a, Sa, -]jaq is continuous from C™H1(9Q) to CO(0);

(b) Ty;[-] is continuous from C™+1(9Q) to C™«=()(9Q). for all I, j € {1,...,n}.

Statement (a) holds by the inductive assumption. We now prove statement (b). Since € is of the
class ™19 then v is of the class C"™%(9€2). Theorem 8.3(i) ensures that Q[g—i‘: 00,v-aM, -] and

Q[g—fj 0 ©,v;, -] are continuous from C™(9N) to C"™ ¥ (0Q) for all I, j, r in {1,...,n}. Since M;; is
continuous from C™*1(9Q) to C™(9€2), the inductive assumption implies that w[0€2, a, Sa, My;[ -]} 90
is continuous from C™+1(99Q) to C™«=()(9Q) for all I, j in {1,...,n}.

Since Mj; is continuous from C™+1(9Q) to C™ 1*(9€) and v[0€, Sa, -]jaq is continuous from
Cm=52(9Q) to C™*(9Q), ve (C™*(N))" and C™(9Q) is continuously imbedded into
Cmwa()(90), we conclude that v[0Q, Sa, Mi;[-]]joq and v[0€, Sa, v - a(l)Mlj[~]]|ag are continuous
from the space C"+1(99Q) to C™«=()(9Q) for all I, j in {1,...,n}. Moreover, R is continuous from
(C™(992))? x C™(99) to C™«=(-)(9Q) (cf. Theorem 8.4(i)). Then statement (b) holds true.

Statement (iii) can be proved by the same argument of the proof of statement (i) by exploiting
Theorem 8.3(ii) instead of Theorem 8.3(i) and Theorem 8.4(ii) instead of Theorem 8.4(i). O
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Since C™«=()(9Q) is compactly imbedded into C™(9€) and C™(9N) is compactly imbedded
into C™#(9Q) for all 8 €]0,a[, we have the following immediate consequence of Theorem 9.2.

Corollary 9.1. Under the assumptions of Theorem 9.2, the linear operator w[0S2,a, Sa, -]jaq is
compact from C™(0Q) to itself, from C™<=()(9N) to itself and from C™(IN) to itself.

10 Other layer potentials associated to Pla, D]

Another relevant layer potential operator associated to the analysis of boundary value problems for
the operator P[a, D] is the following

wi[0Q, a, Sa, p](x) = /u(y)DSa(x —9)aPu(z)do, YxedQ,
oN

which we now turn to consider.

Theorem 10.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of Pla, D], a €]0,1][,
m € N\ {0} and let Q be a bounded open subset of R™ of the class C™*. Then the following statements
hold:

(i) The operator w.[0S,a, Sa, *]joq is linear and continuous from C™~1(9Q) to C™~1w=(-)(9Q).
(i) Let B €]0,a]. Then the operator w.[09Q,a, Sa, - |jaq is linear and continuous from cm=18(00)
to C™=12(90Q).
Proof. First note that

n

0102880 pl(0) = 3 an [ 0(@)5 - Sule — p)uty) do,

b,r=1 90
- r0Sa T - 0]
= Z aprQ |92, ° O, vr p| () + Z Apr / vr(y) achSa(x —y)uly) doy
b,r=1 b,r=1 90
n 95, } n 9
= 3 Q5,2 0 Omnn]@) = [ nl) 3 awnl) g Sale—v)do,
b,r=1 -OTb . b,r=1 Yo
, 89 ,
& 195, 1
= 3 Q[ 22 06,11, (0) w00, 8, S0 @) ~ 0109 Su, @ Ox)  (10)

b,r=1

for all z € 9 and u € C°(99).

If m = 1, then Theorem 7.2 implies that v[0€2, Sa, - ]jaq is linear and continuous from C™~*(9Q)
to C™ =L (9Q).

If m > 1, then C™~1(9Q) is continuously imbedded into C™~2%(92) and Theorem 7.1 implies
that v[0Q, Sa, - ]jaq is linear and continuous from C™~%%(98) to C™~1*(982). Hence, v[0S2, Sa, - 100
is continuous from the space C™~1(99) to C™~1(9Q) for all m > 1. Then formula (10.1), the
continuity of the imbedding of C™~1(9€2) into C™~1%=(9Q) and Theorems 8.3(i), 9.2(i) imply the
validity of statement (i).

We now consider statement (ii). Since v[0€, Sa, -]ja0 is continuous from C™~1#(9%2) to C™#(0%)
and C™#(9Q) is continuously imbedded into C™~1:%(99), the operator v[d2, Sa, ]jaq is continuous
from C™~18(9Q) into C™~1*(99Q). Then formula (10.1) and Theorems 8.3(ii), 9.2(ii) imply the
validity of statement (ii). O

Since the space C™~1«=(*)(9Q) is compactly imbedded into C™~1(99), and C™~1(9Q) is com-
pactly imbedded into C™~18(9Q) for all 8 €]0, a, we have the following immediate consequence of
Theorem 10.1(ii).

Corollary 10.1. Under the assumptions of Theorem 10.1, w, [0, Sa, -]jaq is compact from C™=1(00)
to itself, from C™=1wa()(90) to itself and from C™~ 12 (0N) to itself.
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1 Introduction

Consider the differential equation

n—1

y(n) = ap(t) H cpj(y(])), (1.1)
j=0
where n > 2, a € {—1,1}, p: [a, +00[ = ]0, +00[ is a continuous function, a € R, ¢, : AY; =10, +o0|
are the continuous functions regularly varying, as y() — Y;, of order o4, j = 0,n—1, AYj is a
one-sided neighborhood of the point Y, Y; € {0, +oo}.
Equation (1.1) is a particular case of the equation

m n—1
y™ =" api(t) [ ors(?),
k=1 i=o

which is comprehensively studied by V. M. Evtukhov and A. M. Klopot [1,2], M. M. Klopot [3,4].
Here n > 2, ag, € {—1,1} (k = 1,m), px : [a,w[—]0,400] (k = 1,m) are continuous functions,
—00 < a <w < 400, i+ AY; —1]0,4+00[ (k =1,m, j = 0,n — 1) are continuous functions regularly
varying, as y/) — Y;, of order o;, AY; is a one-sided neighborhood of the point Y}, which is equal
either to 0 or to +oo.

From the above-mentioned results, the necessary and sufficient existence conditions of the so-
called Pyoo(Y0, ..., Y,_1, Ag)-solutions of equation (1.1) can be obtained for all Ay (—oo < A\g < +00).
Moreover, asymptotic representations as ¢ — 400 of such solutions and their derivatives of order up
to n — 1 can be established.

It follows directly from the definition of these solutions that the conditions

li (j)(t)—Y» (j=0,n—1) li M_)\ (1.2)
A e Y IO RIO |
hold.
However, the set of monotonous solutions of equation (1.1), defined in some neighborhood of +oo,
can also have the solutions for each of which there exists a number k& € {1,...,n} such that
y ") =c+0(1) (c#0) as t — +oo. (1.3)

When k = 1,2, or the functions ¢;(y?) (i = n — k + 1,n — 2) tend to the positive constants, as
y — Y}, a question on the existence of solutions of type (1.3) of equation (1.1) can be resolved without
any assumption like the last condition in (1.2). Otherwise, we will not be able to get asymptotic
formulas of these solutions and their derivatives of order up to n — 1 directly from equation (1.1).

Some results concerning the existence of solutions of type (1.3) have been obtained in Corollary 8.2
of the monograph by I. T. Kiguradze and T. A. Chanturiya [5, Ch. II, § 8, p. 207] for the equations
of general type. But these results provide for a considerably strict restriction to the (n — k + 1)-st
derivative of a solution. In order to get new results with less strict restrictions to the behaviour
of this and the subsequent derivatives of order < n — 1 in case k € {3,...,n} and not all o;(y?)
(i=n—k+ 1,n — 2) tend to a positive constant, as *) — Y;, we formulate the following definition.

Definition 1.1. A solution y of the differential equation (1.1) is called (for k € {3,...,n}) a P¥ __(Ao)-
solution, where —oo < Ag < 400, if it is defined on the interval [tg, +00[ C [a, +0o] and satisfies the
conditions (1) 12
. (n—k) (1) — . [y~ ()] _
Jm y () =c (e#0),  lm y=2) ()y (1) Ao- (1.4)

It is obvious that by virtue of the first relation in (1.4), for these solutions the following represen-
tations
ct7L—l—k+1

Tk oWl (= Lnk) as b oo (L5)

y () =

1For Y; = Zo0 here and in the sequel, all numbers in the neighborhood of AY; are assumed to have constant sign.
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hold, and ¢ € AY,,_g.

It readily follows from the form of equation (1.1) that y(™ (¢) has a constant sign in some neigh-
borhood of +oo. Then =Y (t) (I =1,k — 1) are strictly monotone functions in the neighborhood of
~+o0 and, by virtue of (1.3), can tend only to zero, as t — +o0. Therefore, it is necessary that

Yio1=0for j=n—-k+2,n. (1.6)
Let us introduce the numbers p; (j = 0,n — 1),

1 if Y; = 400, or Y; = 0 and AYj is a right neighborhood of the point 0,
Hi = -1 ifY; = —o0, or Y; = 0 and AYj is a left neighborhood of the point 0,

and assume that they satisfy the following conditions:

i1 >0 for j=0,n—k—1,
HjHj+1 J (1.7)
itjy1 <0 for j=n—-k+1,n—-2,

ofn—1 < 0. (1.8)

These conditions on p; (j = 0,n — 1) and « are necessary for the existence of P% _(Ag)-solutions of
equation (1.1) as long as for each of them in some neighborhood of +o0o

signy) (t) = p; (j=0,n—1), signy™(t) = a.

Besides, for such solutions it follows from (1.5) that

if g, 0, S
Y1 = oo 1 Hn—k = for j=1,n—k. (1.9)
—o0 if pnp_p <0

The aim of the present paper is to obtain the necessary and sufficient existence conditions of
Pk o (Xo)-solutions (k € {3,...,n}) of equation (1.1) for Ag € R\ {0, 3,..., %3 1}, and to establish
asymptotic, as ¢ — 400, formulas of their derivatives of order < n — 1. Moreover, a question on the
quantity of the studied by us solutions will be solved.

Tt is significant to note that by virtue of the results obtained by V. M. Evtukhov [6], the solutions
of equation (1.1) satisfy the following a priori asymptotic conditions.

Lemma 1.1. Let k € {3,...,n} and A\g € R\ {0,1,..., %, 1}. Then for each P (Xo)-solution
y : [to, +oo[ = R of equation (1.1) the following asymptotic, as t — +o0, relations hold:

[ — Dt
TL it = D)do — (n—i — 1)]

i=l

g0 (1) ~ y" V) l=n—k+2,n—1). (1.10)

2 Auxiliary notations and the main results

In equation (1.1), each of the functions ¢; (j = 0,n — 1), being a regularly varying function of order
o, as y¥) — Yj, can be represented (see [7, Ch. I, § 1, p. 10]) in the form

;) =1y L;(yD) (j=0,n—1), (2.1)

where L; : AY; —]0,400[ (j =0,n — 1) is a slowly varying function, as y) — Y;. According to the
definition and properties of slowly varying functions,

L;i(\yY)

lim .
Y9y Lj(y(]))
y(J')eij

=1 foreach A>0 (j=0,n—1), (2.2)
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and these limit relations hold uniformly with respect to A on an arbitrary interval [c,d] C]0,+o0].
Moreover, by virtue of Theorem 1.2 (see [7, Ch. I, § 2, p. 10]), there exist continuously differentiable
functions Lg; : AY; —]0,+00[ (j = 0,n — 1), slowly varying as yU) — Y;, such that

Ly DL ()
i B yLy W) g (2.3)
y(j)*)}/j LOJ(y(])) y(j)*})/j LOJ(y(]))
y(j)eAYj y(]‘)EAYj

Examples of functions, slowly varying as y — Y{, are the functions

|1n|y||717 ln’Yz |1n|y\|, Y1, 72 ERa

In |y| )

exp (|In]yl|®), 0<vy3 <1, exp (m

as well as the functions that have a nonzero finite limit as y — Y{, and others.
We say that a continuous function L : AYy —]0, 400, slowly varying as y — Yp, satisfies the
condition Sy if
L(peltoMInlvly — 1)1 4 0(1)] as y = Yy (y € AYy),
where p = signy.

The condition Sy is necessarily satisfied for functions L that have a nonzero finite limit, as y — Yj,
for functions of the form

L(y) = |lyll™, L(y) = [ ]y[|" | In|In]y|||™,
where 1,72 # 0, and for many others.

Remark 2.1. If a function L : AYy — 10, 400[, slowly varying as y — Yy, satisfies the condition Sy,
then for each function [ : AYy —]0,4+00[, slowly varying as y — Y, we have

L(yl(y)) = Ly)[1 +o(1)] as y = Yo (y € AY)).

Remark 2.2 (see [8]). If a function L : AYy —]0,+o0o[, slowly varying as y — Y, satisfies the
condition Sy and y : [tg, +00[ = AY) is a continuously differentiable function such that

. _ y't)  €®)
Jmov® =Yooy =

[r+0(1)] as t — 400,

where r is a nonzero real constant, £ is a real function, continuously differentiable in some neighborhood
of 400 and such that &'(t) # 0, then

L(y(t)) = L(ulg@)]")[1 + o(1)] as ¢ — +o0,
where p = signy(t) in some neighborhood of +oc.

Remark 2.3 (sce [2]). If a function L : AYy; —]0,4o0[, slowly varying as y — Yj, satisfies the
condition Sy and a function r : AYy x K — R, where K is compact in R™, is such that

lim 7(z,v) =0 uniformly with respect to v € K,
y*)AYO
yEAYy

then

L [147r(z,v)]In |z|
lim (ve )
yEAY)

=1 uniformly with respect to v € K,

where v = sign z.
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Besides these facts about the functions, regularly and slowly varying as y/) — Y; (j=0,n—-1),
we need the following auxiliary notations:

n—1 n—2

y=1= Y o5 v= Y ojn—j—1), ay=m—-Hr—(n—j—1) (j=Tn),
j=n—k+1 j=n—k+1
n—2 ()\0 _ 1)'Il—j—1 i 9 n—k I gj—1
o= T |Bei— 2 o =-Tl g5l
j=n—k+1 H ao; j=1
i=j+1

I(t) = pn—k(c)M(c) /P(T)T”Sﬁo(ﬂoT”f’“) o Oneg—1 (pn—k—17) dT,

A
where
—+oo
o i / P(T)T 00 (10" *) - k1 (ftn—k—17) dT = +00,
— ai
A= oo

400 if / p(T)TV(p0<MoT"_k> o Op—k—1(fp—k—17) dT < 00,

ai

a1 > a such that ,uj,lt"_k_j“ €AY;1 (j=1,n—k)fort>a.
The following assertions hold for equation (1.1).

Theorem 2.1. Let v # 0, k € {3,...,n} and Ao € R\ {0, 1 Srees k 2,1} Then, for the existence of

P* o (Xo)-solutions of equation (1.1), it is necessary that ¢ € AY,_y and along with (1.6)~(1.9) the
conditions

)\0<].7 aoj+1>0 (]:nfk+1,n72), (24)

() o
AT T a1 (2:5)

hold. Moreover, each solution of that kind admits along with (1.3) and (1.5) the asymptotic represen-
tations (1.10) as t — 400 and

V@) _
- = afin—17CI(#)[1 + o(1)]. (2.6)
H I» ([O\U l)t]" iz y(n—l)(t))
j=n—k+1 _71__[+1a01

Here we have the asymptotic, as t — 400, representations (1.10) and (2.6), written out implicitly.
Let us define conditions under which asymptotic, as t — +oo, representations of Pf_oo()\o)—solutions
of equation (1.1) and their derivatives of order < n — 1 can be written out in explicit form.

Theorem 2.2. Let v # 0, k € {3,...,n}, \g € R\ {0, 1 Sreees k 2,1} and the functions L; (j
n—k+1,n—1), slowly varying as yU ) — Y, satisfy the condition Sy. Then, in case of the existence
of ’Pﬁoo()\o)—solutions of equation (1.1), the following condition

—+oo

n—1 )
[rm TT Ll dr < 4o (27)

j=n—k+1

az

1
2Here and in the sequel, it is assumed that [[ = 1 if m > I.
m
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204 N
holds, where ay > ay such that uj,ltkozl €AY;_1 (j=n—k+2,n) fort> as, and each solution of
that kind admits along with (1.5) the following asymptotic, as t — +o00, representations:

e o — 1 k—2
YR () = c+ & 17(172 ) W (t)[1 + o(1)], (2.81)
aopg
i=n—k+2
B -1 n—lyn—Il—k+2
y=D(p) = En 1A M) f W H[1+o01)] l=n—k+2,n—1), (2.8,)
aop;
1=l
_ W' (t
YD) = et S (14 0(1)], (2.85)
where
t not N E
Wi(t) = /kaz ~CI(T) H L; (Mjr A0—1) dr.
Foo j=n—k+1

Theorem 2.3. Let v # 0, k € {3,...,n}, Ao € R\ {0, 3 Sreees k 271} c € AY, _, the conditions

(1.6)~(1.9), (2.4), (2.5), (2.7) hold and the functions L; (j = n—k+1,n—1), slowly varying as
y) — Y;, satisfy the condition So. In addition, let the inequality o,—1 # 1 hold and the algebraic
relative to p equation

j—1 k—2 k—2
On—j aon—1 ( aon—1 ) _ ( N On—1— 1) ( aon—1 ) 2.9
ZAO—I AO—1E”+AO—1 P -1 EP+AO—1 29)
have no roots with a zero real part. Then for Ao €]—o0, E=2[\{0, 3,..., 523} (X € [£=2,1]), equation

(1.1) has a (n—k+m++1)-parameter ((n—k~+m)-parameter, respectively) family of P¥ _(Xo)-solutions
that admit asymptotic, as t — +o0o, representations (1.5) and (2.8;) (i = 1,2,3), where m is a number
of roots (taking into account divisible) with a negative real part of the algebraic equation (2.9).

Proof of Theorems 2.1-2.2. Let y : [to, +00o[— AYy be an arbitrary P¥ __(Ag)-solution of equation
(1.1). Then, as it has been proved before formulations of the theorems, ¢ € AY,,_, the conditions
(1.6)—(1.9) hold and the asymptotic relations (1.3) and (1.5) are true. It follows from (1.5) that
G+D) — i
y ot _n—j—k e
0@ ; [14+0(1)] (j=0,n—k—1) as t — +oc.

Now, by taking into account representations (2.1) of the functions ¢;(y)) (j = 0,n —k — 1),
regularly varying as ¢ — +o00, and the fact that relations (2.2) hold uniformly with respect to A on an
arbitrary interval [dy, d2] C]0, 4+00[, we have

Ctn—j—k+1

Pj—1 (m [1 + 0(1)])
ct" J—k+1 oj—1 Ctnfjkarl
_’n—j—k+1) [1—|—O(1)} J l(m[l—FO(l)D
=l T et T o)
- ’m ajil‘Pj—l(ﬂj—ﬂ”*j*kH)[l +o(1)] (j=1,n—k) as t — +oo0.

Therefore, by virtue of (1.1), we obtain

y ™ (t)
Pn-1 (YD () - ka1 (Y TED(D))
= aM(c)p(t)eo(pot™ ") o1 (uit"F 1) - o _w(e)[1 + 0(1)] as t — +oo. (2.10)
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It follows from the second relation in (1.4) that
y™) 1
y=D(t) (Ao — 1)t

Then, by virtue of (1.7), the first inequality in (2.4) is true, namely, A\ < 1.
Furthermore, Lemma 1.1 implies that the asymptotic relations (1.10) hold, and therefore

[14+0(1)] as t = 4o0. (2.11)

G+ (¢
yy(j)(t()) - (/\C;(’]j)t M+0(1)] j=n—Fk+1Ln—2) as t — +oc. (2.12)

Hence, by virtue of (1.7) and the first inequality in (2.4), the second one in (2.4) is true.
Taking into account (2.1) and (1.10), we rewrite (2.10) as
—k—

() (£) |y (=D ()7~
! ,fff'y o _ M (c)Cp(t)t” ¢n—k( H (it TR + o(1)]. (2.13)
[T Liy9() =0

j=n—k+1

Integrating this relation from ¢y to ¢ if A = a; and from t to +o00 if A = 400, we have

n n—1 y—1 4 n—k—1
JEEEWTRONT e @0 4@) [ oo TT st + o1
BT L9 3 <o
j=n—k+1
t n—k—1 ‘
— aM()Cn_i(c) / p) TT st 4)dr [1+ o(1)
A 7=0
=aCI(t)[1+0o(1)] as t — 400, (2.14)

where B € {tg, +00}.

(n—1)
Let us compare the integral occurring on the left-hand side with the expression J” O

T Lo

Taking into account (2.3), the second condition in (1.4) and (2.11), by the l’Hospital_rule in the Stolz
form, we have

"D @
n—1

I1 lLoj(y‘”(t))

j=n—k+

lim
t—+4o00

[ RO @ g
BT L)

j=n—k+1
n—1
I L,y9"®) . ) ; |
= fiy lim IR : N . (y(J)(t)Laj(y(”(t)) Y1 (1) y<n71)(t)>
= Un—1 0o n—1 - : ) & =
o Loj(yD (1)) i Y Loy @) Yy (t)  y™(t)

j=n—k+1

= Hn-17-
By virtue of this limit relation and (2.3), from (2.14) we obtain
"D r

T Lo

j=n—k+1

= ap,—17CI(t)[1 + o(1)] as t = +oo.

Hence, taking into account (1.10) and the properties of regularly varying functions, we establish the
asymptotic representations (2.6), as t — +o00. In addition, they, together with (2.13), imply that

y () I
Ym0~ AI(0)

[1+0(1)] as t — +oo,
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and, by virtue of (2.11), the limit relation (2.5) holds. Thus assertions of Theorem 2.1 are true.
Let us additionally suppose that the functions L; (j = n — k + 1,n — 1), slowly varying as t — 400,
satisfy the condition Sp. Then, by virtue of (2.11) and (2.12), the assertions

y(j+1)(t) _ 1 {aoj_H
t

GI0) )\0_14—0(1)} as t—+oo (j=n—k+1,n-1)

hold, and therefore, by Remark 2.2 and the second inequality in (2.4), we have

Ao — Dtn—i—1 20541 e
L, (wzﬂ"-“(ﬂ) — Lyt )14 o(1)] as t = +o0 (j=n—kF Lu—1).
H [
i=j+1

It follows from the obtained relations and (2.6) that for ¢ — +o00

n—1 1

20541 ¥
W) = pna|yCI®) [T Ly (st )| 11+ 0],
j=n—k+1

This, together with (1.10), implies that

_ Hn—1[(do — DY

y=D (1) —
I aoi
=1

1

n—1
a0j+1 v
c1@) [T £i(mt™e)
j=n—k+1

X l4+0o1)] Il=n—k+2,n—1) as t = +oo.

Integrating this relation for [ = n — k 4 2 from ¢, to ¢, where t, = max{as,to}, we have

y R (t) =y ()

t n—1 1
pn—1[(Ao — 1)]]672 — Q041 [ Y
1 il ro2her@) IT Li(wm )| L+ o()dr.
aoi i j=n—k+l
i=n—k+2
By virtue of the first condition in (1.4), we find that
t n—1 1
lim [ 7%72|I(7) H L; (p o ) ’ [14 o(1)]dr = const
{00 _ o A
t J=n=

and therefore, by the comparison criterion, the assertion (2.7) holds. Using Proposition 6 of the
monograph [9, Ch. V, § 3, p. 293] on the asymptotic calculation of integrals, for the (n — k)-th
derivative of a solution we get the representation form (2.8;).

Consequently, the asymptotic relations (1.3), (1.10) and (2.6), as t — +00, can be rewritten in the
form (2.8;) (¢ = 1,2,3). The proof of Theorems 2.1-2.2 is complete. O

Proof of Theorem 2.3. Let us show that, for this ¢ from the hypothesis of the theorem, equation (1.1)
has at least one P (Ao)-solution that is defined on some interval [to, +00[C [a, +oo[ and admits the
asymptotic representations (1.5) and (2.8;) (¢ = 1,2,3), as t — +o00. Moreover, consider the problem
on evaluating a number of such solutions. At the same time note that by virtue of the first inequality
in (2.4), in case A\g > 1, the differential equation (1.1) does not have P¥__()¢)-solutions.
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Applying the transformation

Ctn7l7k+1

YD () = TR l+u@®) (=T,n—Fk),

/jfnfl(>\0 - 1)k_2

n—1

y"R(t) = c+

ao;
i=n—k42 (2.15)

- _ 1 )n—lyn—l—k+2 —

_ Hn 1(Ao n71) t W' [ +v(t)] Il=n—k+2,n—1),
I ao:
i=l

Yyt = pn_y % 1+ vn ()],

y0 (1)

to equation (1.1), we obtain the system of differential equations

—l—-k+1 JE—
= vt u] (=Tn—k—1),

t
1 [ o1 Mg — 1)F2
'U;hlc = n & l(ni)l ) W(t)[l + Un—k-i-l] — Un—k|,
& H ap;
/(ti):n—k—i-Z
%
U1 = 7W(t) [— Up—k+1 + 'Unflc+2];
a 2.16
'Ul/ _ = 0l [1 + 'Ul+1] ( )
Do — 1
1 W (t)

—g(n—l—k+2)[1+vl]— l+vy] (=n—-k+2,n-1),

v;:% |:(2+k w{;;i((i))t)[lJrvn]

ap(t)eo (G [L+01]) - @nm1 (a1 27 ($)[1 + v,))
i i 1 F W (1) |

w(t)

Consider the resulting system on the set Q" = [tg, +oo[ xR, where R} = {(vq,...,v,) € R" :
2 2
lvjl <%, j=T1,n}and ty > as is chosen, by virtue of (2.7), so that for t > t; and (vi,...,v,) € R%‘
the conditions hold:

Ctn—j—k+1
(n—j—k+1)!

- Ao — 1 k—2
ca F (Ao —1) W[+ vn—pt1(t)] € AY—y,

n—1

[1+vi(t)] €AYy (j=1,n—k),

ao;
i=n—k+2
pin1(Ng — 1) Ign Ik
n—1
aog
=7

W/ (#)[1+v(t) €AYy (j=n—k+2,n—1),

W' (t
Hn—1 tk_(g) []- + Un(t)] S Aynfl.

As the functions ¢, (y)) (j € {0,...,n—1}\ {n — k}) are representable as (2.1) and the relations
(2.2) hold uniformly with respect to A on an arbitrary interval [d;,ds] C]0,+o00[, and in addition,
by virtue of the continuity of the function ¢, (y("=*)), (2.7) and the fact that the functions L;
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(j=n—-k+1,n—1), slowly varying as t — 400, satisfy the condition Sy, we have

ctnfkfj Ctnfkr 7

%‘(m 1 +vj+1]> = %(m)(l +vj41)% (1 +Rj(t,vj+1))
¢ 7 o . D ———
= ‘m @i (pt" ) (L 4 vi40)7 (14 R(t,0541)) (5 =0,n—k=1),
n— Ao — 1 nijiltnfjfk""l
(pj<NL 1(Ao nzl W’(t)[l+vj+1]>
H a4
i=j+1
No— L) i
= ‘(On—l) @j(ﬂjt k J+1W/(t))(l+vj+1) ’(1+Rj(t,vj+1))
ag;
i=j+1
Ao — )i 40j+1 ) S —
= ‘(Onl) L)D](th XUJ*I )(1 +Uj+1)aj (1 + Rj(t7v]+l)) (] =n— k + 1’n _ 2)’
ag;
i=j+1

Pr1 (17 FW ()L + va]) = @no1 (1" W () (1 + v2)7"* (14 Rp—1(t,vn))
= on—1(n—1t20"1)(1 + v,)7" " (1 + Rn-a(t, 'Un))a

k=2
wn_k<c+ pn1 00 = D7 gy 4 vn_kﬂm]) = o b1+ R ity n511)),

n—1

Qo;
i=n—k+2
where the functions R;(t,vj4+1) (j = 0,n — 1) tend to zero, as t — +oo uniformly with respect to

vi+1 € [=3, 3]
It follows from the form of W (t) and (2.7) that

W' (t)t 1
=k—-14+ ——
t%lgloo W(t) + Ao — 1’
W"(t)t 1
=k—-24+ ——
0 NPV
and both of these limits are nonzero in case Ao €] — 00,1[\{0, 3, .. u} Therefore, using the
aforementioned representations and (2.5), the system of equations (2. 16) n be rewritten in the form

k1 B
”f:%[—UH'WH] (I=1,n—-k-1),

/ —
Up—k =

| =

[ — Un—k + Yn—k,l(ta Uty alun)]7
(2.17)

1 a Qa —_—
’Ullzg |:_)\0()_Z1Ul+>\ 0_llvl+1+)/l,1(t7vl7"'avn):| (l:n_k+1?n_1)a

1 , L
;L ;I:ZA —1 j+ Z )\03711 J+ /\0171 Un+ZYnZtU17..., ):|)

j=n—k+2

where

pn—1(Ao — 1)F=2

n—1
C H aopg
1=n—k+2
W (t)t
—k 1—
W (t) + Ao — 1"

W) (14 vn—gt1),

Ynfk:,l(t7 Viy.-- 7Un) =

Yn—k+1,1(ta V.- 7vn) =
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W"(t)t 1 E—
Yia(t = —k+2-— l=n—-k+2,n-1
l,l( U1, 7'Un) W/(t) + Ao — 1 ( n +2,n )a
n—1 n
1 )oi-1
Varltvn, o 00) = 1oy (J];[O (14 R;(t,v,11)) — 1) H (1 + ;)7
j#
W ()t 1
otk )1 ,
+( + Wﬁ)+M—1[+w
Ynz(t,’Ul,...,’Un)— O_1< H 1+1} Oj—1 __ 1_[1 ’UjO'j_l—l).
J:
k4 j#n—k+1
At the same time we note here that
tilin }/jl(t v1,..,00) =0 (j=n—k,n)
uniformly with respect to (vi,...,v,) € R?, and
2
1 Yng(t ’Ul,...,’Un)_
[o1 ]+ +|vn|=0 |1] 4+ -+ + |vg]
uniformly with respect to t € [tg, +00f.
The characteristic equation of the matrix consisting of coefficients of vy, ..., v, in system (2.17),

—~ Aon—
[T(o+ (=) (p+5ntit)
Pl Ao —1
o = a i a o = a
n—j On—I ( On—I ) B ( _ Yn-17 ) ( On—I ) -0
i o1 &—1E’HNP1 VI § A v
has a zero root if % =0 (in case A\g = £=2), n — k negative roots p = —(n — 1) (I = k,n— 1)

and k — 1 roots of the algebraic equation (2.9), among which there are no any roots (according to the
hypothesis of the theorem) with a zero real part.

Consequently, we get the system of differential equations that for Ag €] — 00,1[\{0, 3, ..., %
satisfies all assumptions of Theorem 2.2 in [10]. This theorem implies that the system (2.17) has at
least one solution (v;)7_; : [t1, +0o[— R% (t1 € [tg, +00]) that tends to zero as t — +oc0. By virtue of

2
the transformation (2.15), each solution of this kind corresponds to a P¥__(Ag)-solution of equation
(1.1) that admits the asymptotic representations (1.5) and (2.8;) (i =1,2,3) as t — 4o0.

Moreover, in accordance with this theorem, if there are m (taking into account divisible) roots

with a negative real part of the algebraic equation (2.9), then in case \g €] — o0, k 2[\{0,1,..., %
(Mo €] Z 2:1[) there exists an (n — k 4+ m + 1)-parameter ((n — k 4+ m)-parameter, respectively) family

of P¥_(\o)-solutions of equation (1.1) with the found representations.

Consider now the case A\g = % . Applying the change of variables

vi =2 (j=1,n—k),
bt = (218)
Vjt+1 = Zj G=n—-k+1,n-1),
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we reduce (2.16) to the system of differential equations
, n—Il—-k+1

: [—Zl+21+1] (l: 1,n—k—1),

[— 2ok + Zn-ki(t, 21, .., 20)],

1-k -
2] = — [—aozzl+a0121+1 +Z171(t,21,...,zn)] (l=n—-k+1,n-2),

/
Zp_ {E 0j—1%5 + E Oj-12j-1
j=n— k+2

+(Jn71 - 1)Zn71 + Z Zn,i(t; Zlye-- 7Zn)} )
i=1

(2.19)

. (1)
Zn = W(t) [_Zn + Zn—k-&-l],

where
Zim(t, 21,y 2n) = Ym (01, oy Unky Unkt 2, - s Uns Un—k+1) (m=1,2, j=n—k,n)
are such that
t_l}in Zia(t,z1,...,2n) =0

uniformly with respect to (z1,...,2,) € R%, and
2

lim 8Zn,2(t, ARERE ,Zn)
|21 |4+ 4] 2n | —0 0z

uniformly with respect to t € [tg, +00].
It follows from the form of W (t) and (2.7) that t_lgn W(t) =

()t /W/ dt adW/(t)<Oast>t
1m +00 I .
troo Wt W (t) 0

The characteristic equation of the matrix consisting of coefficients of z1,...,2z,-1 (the coefficient
of z, differs from 0) in system (2.19),

k—1 k—

[Leo+m-n][>a0- anJH 1~ F)aon 1>H<p+<1—k>a0m>
1=k

Jj=2 =
—(P—(l—k’ On— 1_1 HP“‘l— aOn—l) =0,

has n — k negative roots p = —(n —1) (I = k,n — 1) and k — 1 roots of the algebraic equation (2.9),
as \g = % , among which there are no any roots (according to the hypothesis of the theorem) with
a zero real part.

Consequently, system (2.19) satisfies all assumptions of Theorem 2.6 in [10]. Hence it has at least
one solution (z;)7_; : [t1, +oo[ = ]Rg (t1 € [to,+oo[) that tends to zero as t — 4o00. By virtue of

transformations (2.15) and (2.18), each solution of this kind corresponds to the P¥__(£=2)-solution

of equation (1.1) that admits asymptotic representations (1.5) and (2.8;) (¢ = 1,2,3) as t — +o0.

As pp = —(n—1) (I = k,n — 1) are negative roots, then, in accordance with this theorem, there
certainly exists an (n — k)-parameter family of such solutions. Moreover, there exists an (n — k +m)-
parameter family of solutions with the above found representations, where m is a number of roots
(taking into account divisible) with a negative real part of the algebraic equation (2.9), as A\g = %
The proof of the theorem is complete.
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Abstract. For the linear homogeneous system of differential equations, coefficients of which are
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and frequency, the conditions of existence of the linear transformation with coefficients of similar
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1 Introduction

This article continues the research started by the author in [1] on the problem of the block separation
of the linear homogeneous system of differential equations, whose coefficients are represented by an
absolutely and uniformly convergent Fourier series with slowly varying in some sense coefficients and
frequency. Now we study a special case which by the conditions of the theorem proved in [1] is not
covered.

2 Basic notations and definitions
Let G={t,e: teR, € €[0,&], €0 € RT}.

Definition 2.1. We say that a function p(t, €), generally complex-valued, belongs to the class S(m;eg),
m € NU{0}, if t,e € G and

1) p(t,e) € C™(G) with respect to t;

dFp(t
2) % = e*pi(t,e), sup pi(t,e)| < +00 (0 < k < m).

Slowly variability of a function is understood in the sense of its belonging to the class S(m;ey).
As examples of functions of this class may serve, in general, complex-valued, bounded together with
their derivatives up to and including the order m functions that depend on the “slow time” 7 = &t:
sin T, arctg 7 etc.

Definition 2.2. We say that a function f(¢,¢,0(t,¢)) belongs to the class F(m;eo;6), m € N U {0},
if it can be represented as

f(t,e,0(t Z fn(t,e) exp(ind(t, )),

n=—oo
and

d¥f.(t,e)

= ek fun(t,e) (n€ Z,0 <k <m);

1) fa(t,e) € S(m;eo),

def
2) 1 fllFemicoi0) = Z Z sup|fnk (t,e)] < 4oo,

k=0n=—oc0

t

3) 0(t,e) = /(p(T, g)dr, o(t,e) € RT, o(t,e) € S(m;ep), igf(p(h&) > 0.
0

Some properties of functions from the class F(m;¢eo; 0) are described in [1].
For any function f(t,e,0) € F(m;ep;0) denote

27

Tu(f) = 5= [ Hte,u)expl—inu) du, 1(7) = £ = To().

0

We say that the function f(¢,e,0) € F(m;eo; 0) satisfies condition (A), if Fo( )=0.
Let A(t,e,0) = (a;js(t,€,0)) ;777 o= 1> @js € F(mie030) (j = 1,M; s =1,K). Denote

HAHF(m i€030) ma‘X Z Ha]l t 2 G)HF(m i€050)
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3 Statement of the problem

We consider the system of differential equations

dx
L= Hi(p)x1 + p(Bu(t,e,0)z1 + Bia(t,,0)x2),

dt (3.1)

dx
7; = Hy(p)xs + (B2 (t,€,0)x1 + Baal(t, €, 0)z2),
where 1 = colon(x11,...,21N, ), 2 = colon(za, ..., Tan,),
ipp 0 0 0 ireg 0 0 0
1 ipp 0 0 1 re 0 0
Hl(@) S e 5 HQ(QO) =] e e
0 0 ipp 0 0 0 e 0
0 o .- 1 ipy 0 0o -+ 1 ire

are the Jordan blocks of dimensions Ny and No, respectively (N1 +No = N); p,r € Z; Bji(t,¢,0) are
the (N; x Ni)-matrices with elements from the class F'(m;e;0); ¢(t,¢) is the function appearing in
the definition of the class F'(m;e;0); p € (0,1). In this sense, we are dealing with the resonance case.
Just as in [1], we study the question of the existence as well as the properties of the transformation

of the form
x5 = le(t, g, 9, H)gl + LjQ(t, g, 9, u)gg, ] = 1, 2, (32)

where the elements Lj; (j,k = 1,2) of (N; x Nji)-matrices belong to the class Fi(m — 1;e1;6) (0 <
g1 < g9), reducing the system (3.1) to the form
dz;

ﬂ = DN1 (taeaoau)ila

d ~
d7t2 = DN2(t3530nU')x23 (33)

where the elements Dy, (j = 1,2) of (N; x N;)-matrices also belong to the class F'(m — 1;;0).
Performing in the system (3.1) the transformation

ipb iro
zy = ey, x3=¢€""Yyo,

where y; = colon(y11,...,Y1n,), Y2 = colon(ya1, . .., Y2n,), We obtain
1 _ B )y + B 0
o mhn + p(Bui(t,e,0)y1 + Bia(t,e,0)y2), @0
J N N )
% = Jn,y2 + pu(Bai(t,e,0)y1 + Baa(t, €, 0)y2),
where
0 O 0 0 0 O 0 0
1 0 0 0 1 0 0 0
R R R e
0 0 0 0 0 0 0 0
0 0 1 0 0 O 1 0

are the Jordan blocks of dimensions N1 and Nj, respectively, whose diagonal elements are equal to
zero, and all elements of matrices Bji (¢, €, 6) belong to the class F(m;eg;6).

Thus, the problem of the existence of transformation (3.2) reduces to the problem of the existence
of the transformation

Yy = 21 +NQ12(t,€a9mu)227 Y2 = H’QZl(tagaaﬂu‘)Zl +227 (35)
leading the system (3.4) to the form

dz1 dzo
E :DNl(t,E,07H)Zl7 E :DNg(t7€797N)227
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where Dy, , Dy, are matrices of dimensions (N7 x N71) and (N2 x N3), respectively.
The matrices @12, Q21 must satisfy the system of matrix-equations

dQ;x
dt

= JNJ.ij — ij;JNk + éjk(t,& 9)
+ (B (t,e,0)Qjk — Qi Bri(t,e,0)) — p*QinBijQjk, j,k=1,2 (j #k).  (3.6)
Then _ -

Dy, = Jn, + pBi1(t,e,0) + p?Bia(t,e,0)Qa1(t, 6,0, 1),
DN2 = JN1 + MEQQ(t7E,0) + M2§21(t7679)Q12(t,€, 97/L)

It is easy to see that the system (3.6) is divided into two independent matrix-equations, each of
which has the form
dX

o = I X = Xk + F(t,e,0) + n(A(t,e,0)X — XB(t,e,0)) — W’ XR(t,e,0)X, (3.8)

(3.7)

where X = (xjs)j:LM; s=1,K>

0 0 0 0 0 0 0 0
10 00 10 0 0
Ju= | s Tk =
0 0 0 0 0 0 0 0
0 0 10 0 0 10

are the Jordan blocks of dimensions M and K, respectively, whose diagonal elements are equal to
zero, F' = (fjs);—1ar. s=110 A = (4)s)j s=17r> B = (0js); o7 B = (rjs) =7, =737~ All elements
of matrices F', A, B, R belong to the class F(m;eq;6).

Therefore the problem of the existence of transformation (3.5), where all elements of matrices Q12,
Q21 belong to the class F(m — 1;e*;6) (0 < £* < g9), reduces to the problem of the existence of a
particular solution X of the equation (3.8) such that z;, € F(m —1;¢%;0) (j =1,M; s =1, K).

In [1], the conditions of the existence of such a solution are obtained when one of the sets of
assumptions I, I [l is fulfilled.

I (1) M < K;
(2) Vi(F) =0, where Vi = colon(vyy (¢, €), ..., v1m (2, €),

v1(t,€) ZFO fsx—jrs(te,0)) (1 =1,M);

s=1

) igf|F0(b1K(t7s,6))| >0

I (1) M = K;
(2) Va(F) =0, where Vo = colon(vay (t,€), ..., v (¢, €),

vo;(t,€) ZFO fsk—jts(t,€,0)) (j =1, M);

s=1

3) igf‘Fo(alM(t,e,G) — blM(t,&e))’ >0

. (1) M > K;
(2) V3(F) =0, where V3 = colon(vsy(t,€),...,v3K(t,€),

v3;(t,€) ZFO fsx—j+s(t,€,0)) (1= );

s=1

(3) igf|Fo(a1M(t,e,9))| > 0.
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In this paper it is assumed that the condition (2) in each of sets I, I, Ill is satisfied. But instead
of the condition (3) it is accordingly supposed that

Fo(blK(t,E,e)) =0 (M < K),
Fo(alM(t,€,0)71)1]»[(75,8,9)) EO (M K),
To(arn(t,e,0) =0 (M > K).

4 Auxiliary results

As in [1], along with the equation (3.8) we consider an auxiliary matrix-equation

o(t,e) wa JuE —EJk + F(t,e,0) + p(A(t,e,0)= — EB(t,¢,0)) — p’ZR(t, e, 0)Z, (4.1)

where t, ¢ are considered as constants, = = (5]-5)].:1, TR F, A, B, R are the same as in the
equation (3.8).

In accordance with the Poincaré method of small parameter [2], we construct an approximate
2m-periodic with respect to 6 solution of the equation (4.1) in the form of the sum

29—
E= ZEtsG (4.2)

where E, = (&,55) =T s=T. K" The coefficients =, are determined from the following chain of linear
nonhomogeneous matrix differential equations:

d=

o(t,e) d“eo = JuZo — EoJk + F(t,¢,0), (4.3)
d= -
plt.e) — 91 = JuE1 — E1Jk + A(t,£,0)2 — 2 B(t, £, 6), (4.4)
o(t,e) — W = JmEe — EoJi + A(t,e,0)21 — E1B(t,¢,0) — ZoR(t, €, 0)=0, (4.5)
dz, _ - -
o(t,e) e JuE, —EL Ik + Alt,e,0)=,_1 — E,_1B(t,¢,0)
v—2
— Y EiR(t,e,0)8, 51, v =32 L
=0

First, we consider the case M < K.
In scalar form, the equation (4.3) can be written as a following system of differential equations:

d
Qﬁ(t, 5) g;gK = flK(taea 9)3
p(t,e) Kogrc _ =& -1,k + fix(t,e,0) (j=2,M),
d&o,1s —_— '
(p(t,é‘) dé = 760,1,5-&-1 + fls(t7€70) (S = I’K - 1)7
%oga _ 0) (j=20 s=TK_1
o(t,e) w0 —&0,j-1,s — E0,4,s41 T fis(t6,0) (j=2,M; s=1,K—1).

The condition | (2) ensures the existence of a 2w-periodic with respect to 6 solution of the equation
(4.3) of the form

Zo(t,e,0) = CSV(t,€) + Ly (F(t,¢,0)), (4.7)
where the (M x K)-matrix C(gl)(t ¢) has the form
Mt e) 0 0 0 -~ 0
CW(ey= | @ He) @t o0 0 0 (4.8)
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with c(()ll) (t,e),.. .,c(()ll\)/[(t,e) as yet unknown scalar functions of the class S(m;eq), L1(F(t,¢,0)) =
(&o,5s(t, €, 9))j:1,fM; 17> and &o ;s are defined from the following equalities:

g(),lK(t7579) =I(fix(t,e,0)) + pik(t,e),

€o,jr(t,6,0) = 1(&0 -1,k (t,6,0) + fix(t,6,0)) +pjx(t,e) (j =2,M),

Coa1(t,e,0) = I(fi1(t,,0) 50,12(15,5,9)) + p11(t,e),

€o.s(t,e,0) = I(frs(t.e,0) — E0,1.541(t,6,0)) + prs(tie) (s=1,K — 1),

€0,35(t,6,0) = I(Co,5-1,5(t,2,0) = &0j.s11(t:6,0) + fis(t,2,0)) +pjs(t,e) (G =2,M; s=T,K —1),

where pjs(t,€) are the functions from the class S(m;eo) determined from the condition: all right-hand
sides of the equations in (4.6) must satisfy condition (A). It is easy to verify that p;s(¢,e) can be
represented as some linear combinations of functions T'o(fag(t,€,0)) (a =1,M; =1, K).

We now define the matrix C’él) (t,e) from the condition
Vi(A(t,e,0)Z0 — EoB(t,e,0)) =
By virtue of (4.7), this condition can be rewritten as
Vi(A(t,,0)CS — CSVB(t,e,0)) = (Ll(F(t, £, 0)B(t,e,0) — At, e, 0)L(F(t, e, 9))). (4.9)

In scalar form, the condition (4.9) can be written as a triangular with respect to céll), .. .,céﬁ\)/l

system of linear algebraic equations:

Zg tscoz —h(l)(ts) j=1M,

where g( )( €), h§1)(t75) € S(m;ep) and g](;)(t@) =To(bik(t,€,0)) (j =1, M) are the know functions.
Suppose that

g (te)=0 (j,l=T,M, 1<), (4.10)
h(t,e)=0 (j =T1,M). (4.11)
Then
Vi(A(t,€,0)Co — CoB(t,e,6)) =0 (4.12)
for any matrix Cj of the form (4.8). Besides,
Vi (A(t, e, 0)L1(F(t,e,0)) — Li(F(t,e,0)B(t,e, 9)) —0. (4.13)

Therefore the equation (4.9) is satisfied for any matrix C(()l) of the form (4.8).
The equalities (4.12), (4.13) ensure the existence of a 2m-periodic with respect to § solution of the
equation (4.4) having the form

E1(t,e,0) = CM(t,€) + Ly (A(t,e,0)Z0 — S0 B(t,,0)), (4.14)
where
V(¢ e) 0 0 0 -+ 0
C,fl)(tﬁ): 0512)(75,5) cgll)(t,s) 0 0 -~ 0
dite) ehyate) o ke 0 o0

The solution (4.14) can be written as

Ei(te,0) = C(t,€) + Ly (A(t2,0)C" — C§VB(t,2,0)) + Fi(t, e,0), (4.15)
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where F(t,e,0) = L1(AL1(F) — L1(F)B) does not depend on Cél)
We write down the conditions of the existence of a 2m-periodic with respect to 8 solution of the
equation (4.5):
Vv (A(t, £, 0)E, — E1B(,¢,0) — EoR(t,¢, 9)50) —0.

Taking into account the equalities (4.7) and (4.15), this condition can be rewritten (for brevity, we
omit the arguments ¢, €, 6) as

vi(act —cWB) + 1 (ALl(ACél) —c{VB) — Ly(ACSV — cg”B)B) +Vi(AF, — F\B)
Vi(CSVRCSY) = Vi (Ly (F)RCSY + CV RLy(F)) = Vi (L (F)RLy (F)) = 0. (4.16)

Due to (4.12), the condition (4.16) can be rewritten as
Vi (ALl(ACél) —cVB) — Ly(ACSY — cgl)B)B)
—Vi(Li(F)RCY + CSVRLy (F)) = Vi(CSVRCV) + UM =0, (4.17)

where UM = UM(t, ) is the known M-vector that does not depend on C(l)
(1 ) (1)

In scalar form, the equation (4.17) can be written as a nonlinear with respect to cgy’, ..., ¢y
system of algebraic equations

oW (t e cly),....cl) =0, j=T1, (4.18)

with quadratic nonlinearities.
Suppose that the system (4.18) has a solution 0811)7 . 7081]\)4 such that

1 1
a@”,..., o))

> 0. (4.19)
oy, ... el

inf | det
G
Then the equation (4.5) has a 27w-periodic with respect to 6 solution Es(t, €, 8) belonging to the class
F(m;eo;0).
We now consider the equation for the vector-function =,,5 and distinguish in it explicitly the
terms which depend on 2,41, =,:

d=, _ _ - -
</7(t7€) T—H = JM.:,/_;'_Q — :y+2JK —+ A(t,@, 0):41,4_1 — Zy+1B(t,€, 0)
v—1
— EoR(t,e,0)2, —E,R(t,e,0)Z, ZE (t,e,0)2,_;. (4.20)
=1
For o = 0,v + 1, we have
Za(t,e,0) = CV(t,e) + Za(t,e,0), (4.21)

where C&l)(t, £) is the (M x K)-matrix of the form (4.8), and Z,(¢, £, 6) is the known vector-function
belonging to the class F'(m;eq;0).

We suppose that the matrices Zy(t,¢,0),Z1(¢,¢,0),...,ZE,-1(t, €, 0) are completely defined, includ-
ing the matrix C’l(,l_)l(t, ¢), and the matrix Cﬁl)(t, £), Cl(iir)l(t7 ¢) have to be defined.

We write down the conditions of the existence of a 2m-periodic with respect to 8 solution of the

equation (4.20) as follows:

Vl (A(t, g, 0)5,,_;,.1 — Ey+1B(t, g, 9) — E.()R(t, g, G)Ey)
v—1
~Vi(E R(t,e,0)Z0 + Y EiR(t,e,0)2,1) = 0. (4.22)
=1
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Represent the matrix E,,_H as
Zo =300 + BN, (4.23)

where Effll is a 2m-periodic with respect to 8 solution of the equation

dE,
o(t,e) daﬂ = JuEBus1 — Bup1Ji + Alt,e,0)C D (t,e) — CV(t,e)B(t, €, 0) (4.24)
and l(,:i is a 2mw-periodic with respect to 6 solution of the equation

v

1
d=, - - = = - -
o(t,e) d9+1 = JnSui1 — Spiidi + At e, 02, —E,B(t,2,0) — S ER(t,e,0)S,_1_;.
=1

The condition of the existence of a 2m-periodic with respect to 6 solution of the equation (4.24)
has the form
Vi(A(t e, 0)CLY = GV B(t,2,0)) =

By (4.12), this equality holds for any matrix C, of the kind

cp1(t,e) 0 0 0 --- 0
Cy(t7€) _ Cu2(t75) Cl,l(t7<€) 0 0o --- 0
CuM(t,E) Cu. M 1('&)5) Cyl(t,E) 0 0

Therefore the equation (4.24) has a 27-periodic with respect to 6 solution of the kind

=0, = Li(A(t,e,0)C) — CVB(t,e,6)).

Taking into account (4.21) and (4.23), the condition (4.22) can be rewritten as

Vi(A(t,e,0)CY, = C1B(t2,0) + Vi (Alt,2, ) B, + BT — BV + EUY)B(te,0))
= V1 (BoR(t,e,0)2, + ELR(t,£,0)Z0) + Vi'(t,e) =0, (4.25)

where Vi*(t, ) is the known M-vector belonging to the class S(m;eg).
Based on (4.12), (4.21) and (4.23), we can rewrite (4.25) as

Vi (A(t, e,0)L1 (A(t,e,0)C) — CVB(t,2,0)) — Ly (A(t,e,0)C) — CVB(t,2,0)) B(t, e, a))
—Vi(Li(F)R(t,e,0)C) + CVR(t,&,0) Ly (F))
—Vi(CoR(t,,0)CP + CVR(t,2,0)Co) + ZM (t,e) =0, (4.26)

where Z(M(t,¢) is the known M-vector belonging to the class S(m; ).
It is not difficult to establish the validity of the relations

a M+1-p

ij Z Ta4+1—3,1+8-1Y1s if ﬂ <M,
j=1 =1
0, if 8> M,

(XRY )as =

where X, Y are the (M x K)-matrices of the kind (4.8). It follows that in a scalar form the equation
(4.26) can be written as

2

aq)(l (t,e, c(l), . c(l)
oL our) &) =2(te), j=1,M, (4.27)
AtV v
0l
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where u(-l)(t, ¢) are the known functions belonging to the class S(m;eg). By the condition (4.19), the

j
system (4.27) has a unique solution c,(jll) (t,e),..., c(ull\)/f(t, ¢) belonging to the class S(m;eg).

Thus, all the matrices Z,(t,¢,6) (v = 0,2¢ — 1) are completely defined and belong to the class
F(m;eo;0). Therefore, by (4.2), the matrix E(t,¢,0, 1) is also completely defined Vu € (0,1) and
belongs to the class F(m;eq;6).

Lemma 4.1. Let the equation (3.8) satisfy the following conditions:
(1) M < K;
(2) Vi(F(t,2,0)) = 0;
(3) the equalities (4.10), (4.11) hold;
(4) the system (4.18) has a solution satisfying the condition (4.19).
Then there exists py € (0,1) such that for any p € (0, p1) there exists a transformation of the form
X =Z(t,e,0, 1) + P(t,e,0, )Y U(t, e, 0, ), (4.28)

where the matriz Z(t,e,0, 1) is defined by the equality (4.2) and the elements of the (M x M)-matriz
® and those of the (K x K)-matriz U belong to the class F(m;eg;0) ¥V € (0, p1), which reduces the
equation (3.8) to the form

dY q q
S =Y Yk + (Z U“(t,a);/)y - Y(Z Ulg(t,zs)ul)
=1 =1
+ €(U1 (t7 &, 05 M)Y - YU?(tv g, 05 ,LL)) + qu+1 (Wl (ta & 07 M)Y - YW?(tv & 97 .U’)>
+eH; (t> €, 97 I'L) + :u’2qH2 (ta g, 07 /j/) + /’[/YRI (t7 g, 97 M)K (429)

where the elements of matrices Uy, Up (I = 1,q) belong to the class S(m;eq), and the elements of
matrices Uy, Uz, Wi, Wy, H1, Ha, Ry of the corresponding dimensions belong to the class F(m —
1;520;0).

Proof. Substituting N
X =Z(t,e,0, 1)+ X

in (3.8), where X is a new unknown matrix, we obtain

dX _
—— = JuX — XJg +eHs(t,e,0, 1) + p*THy(t, e, 0, 1)

dt
+ (zq:Pz(t,e, 9)MZ>)~( - X(Zq: Qlt.e, 9)“1)
=1 =1

+ T (W (e, 0,m) X — XW3(te,0,p) + p* X R(t,e,0)X. (4.30)

By Lemma 1 from [1], using the substitution of the kind

X = (EM + i D(t,e, G)MZ)Y<EK + i W (t, e, e)ﬂl)a
I=1 =1

where E);, Ex are the identity matrices of dimensions M and K, respectively, the elements of the
(M x M)-matrices ®; and those of (K x K)-matrices ¥; (I = 1, q) belong to the class F(m;e;0), we
reduce the equation (4.30) to the form (4.29). O

We now consider the case M = K. The condition Il (2) ensures the existence of a 2w-periodic with
respect to 6 solution of the equation (4.3), which is of the form

So(t,e,0) = CP (t,e) + Ly(F(t,z,0))
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with
D (t,e) 0 0
) )
C§P(t,e) = | o2 (t.e) e (te) 0 ) (4.31)
2 2 2
cSu(te) e i(te) o c(te)

where the linear matrix-operator Lo(F') can be constructed similarly to the operator Li(F). The
matrix 052) is defined from the equation

Va(A(t,2,0)C? — C? B(t,¢,0)) = Vs (LQ(F(t, £,0)B(t,2,0) — A(t, 2, 0)Lo(F(t, e, 9))). (4.32)

In scalar form, the condition (4.32) can be written as a triangular with respect to C’éf), co Cé?g[
system of linear algebraic equations:

J

2 2 2 .
S g (te)ey) = 0P (te), j=1,M,
=1

where gﬁ) (t,e),hgg) (t,e) € S(m;ep) and gﬁ) (t,e) = Tolarn(t,e,0) — bip(t,e,0)) (j =1, M) are the
know functions.
Suppose that

Then
V2(A(t’ &, 0)00 - C’OB(ta &, 0)) =0

for any Cj of the kind (4.31), and
Va(La(F(t,2,0))B(t,2,0) — At,2,0)La(F(t,,0)) ) = 0.

Therefore the equation (4.32) is satisfied for any C((JQ) of the kind (4.31).
Similarly to the case M < K, we define the matrix 052)(t, ¢) from the equation

Va(AL2(ACE - € B) - La(ac - ' B)B)

— Va(Ly(F)RCS? + CP RLy(F)) = Va(CSPRCP) + U =0, (4.35)

where U?) = U?)(¢,¢) is the known M-vector, which does not depend on C’éz).
(2) (2)

In scalar form, the equation (4.35) can be written as a nonlinear with respect to cgy’, ..., ¢y
system of algebraic equations

@gZ)(t,s,céi),...,cé%\)/[) =0, j=1,M, (4.36)

with quadratic nonlinearities.
Suppose that the system (4.36) has a solution 0621)7 ... ,c((ﬁv)[ such that

2 2

> 0. (4.37)
oy, ... e

inf | det
G

Lemma 4.2. Let the equation (3.8) satisfy the following conditions:
(1) M=K;
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(2) Va(F(t,e,0)) =0
(3) the equalities (4.33), (4.34) hold;
(4) the system (4.36) has a solution satisfying the condition (4.37).

Then there exists pa € (0,1) such that for any p € (0, pg) there exists a transformation of the
form (4.28), where the matriz E(t,¢,0, 1) is defined by (4.2) and the elements of the (M x M)-matriz
® and those of the (K x K)-matriz U belong to the class F(m;eo;0) ¥V u € (0, p2), which reduces the
equation (3.8) to the form (4.29).

Proof of Lemma 4.2 is similar to that of Lemma 4.1.

Finally, we consider the case M > K.

The condition Il (2) ensures the existence of a 2w-periodic with respect to 8 solution of the equation
(4.3), which has the form

So(t,e,0) = C (t,e) + Ly(F(t,,0))

with
0 0 0
0 0 0
(3)
C(()?’)(t,e): cor (t€) 0 0 ) (4.38)
te) e -0
cm(tie) e i(te) o et e)

where the linear matrix-operator L3(F) is constructed similarly to the operator L;(F'). The matrix
Cég) is defined from the equation

Vs(A(te,0)C — CB(t,¢,0)) = Vs (Lg(F(t, £,0))B(t,e,0) — A(t, e, 0)Ls(F(t, e, 9))). (4.39)

In scalar form, the condition (4.39) can be written as a triangular with respect to cé?i), .. 06‘2

system of linear algebraic equations:

1,K

) )

j
Zg]l (t,e Coz = h(g)(t €), j=

where g(l (t,e), h(g) (t,e) € S(m;ep) and g( )(t e) = Tola1n(t,€,0)) (j = 1, K) are the known func-
tions.
Suppose that

Then
Vg (A(t,&, 9)00 — C()B(t,&, 0)) =0

for any Cy of the kind (4.38) and
Va(La(F(t,2,0)B(t,2,0) — Alt,=,0)Ly(F\(t,2,0))) =

Therefore the equation (4.39) is satisfied for any Cé?’) of the kind (4.38).
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Define the matrix 083) (t,€) from the equation

Va(ALs(ACSY — Cf¥ B) — Ly(ACS — ¢ B)B)
— Va(L3(F)RCS + C RL3(F)) - Va(CSVRCY) + U®) =0,  (4.42)

where U®) = UG)(¢,¢) is the known M-vector, which does not depend on C(gS).
(3) (3)

In scalar form, the equation (4.42) can be written as a nonlinear with respect to ¢y, ..., o
system of algebraic equations

oW (t e, ey, . cip) =0, j=1K, (4.43)

with quadratic nonlinearities.
Suppose that the system (4.43) has a solution céﬁ% .. c,(f}z such that

3 3
a@?,..., o)

> 0. (4.44)
3 2
8(0(()1), .. cé&)

inf | det
G

Lemma 4.3. Let the equation (3.8) satisfy the following conditions:
1) M > K;
(2) Va(F(t,¢e,0)) =
(3) the equalities (4.40), (4.41) hold;
(4) the system (4.43) has a solution, which satisfy the condition (4.44).

Then there exists us € (0,1) such that for any p € (0, u3) there exists a transformation of the
form (4.28), where the matriz E(t,e,0, 1) is defined by (4.2) and the elements of the (M x M)-matriz
® and those of the (K x K)-matriz U belong to the class F(m;eo;0) Vi € (0, pus), which reduces the
equation (3.8) to the form (4.29).

Proof of Lemma 4.3 is similar to that of Lemma 4.1, too.

Introduce the matrices

Ui(t,e, p) = ZUllte Us(t,e, p) = ZUlgte ,

where Ujy,Ue (I = 1,q) are defined in Lemma 4.1.

Lemma 4.4. Let the equation (4.29) satisfy the following conditions:

(1) eigenvalues \;(t,e, 1) (j =1, M) of the matriz Jy + Ur(t,e, 1) and Xos(t,e,p) (s = 1,K) of
the matriz Ji + Us(t, e, u) are such that

igf\Re(Alj(tvs,u)—Ags(t,&u))\ZVOM"O (70>0, 0<q<q j=1,M; s=1K);

(2) there exist a (M x M)-matriz Py(t,e, p) and a (K x K)-matriz Pa(t,e, 1) such that

(a) all the elements of these matrices belong to the class S(m;eg) C F(m;eo;0);
(b) Hpj_l(taﬁﬂ)”}(m%ﬂ) S Ml/“Lia: Ml S (07+OO)) ac [O7QL .] = 172;

(C) Pfl(JM-’-ﬁl)Pl :Al(t,&f,u), PQ(JK+6[2)P;1 = AQ(t,E, ,u), where A1 :diag()\u, ey )\1M);
Ay = diag(Aa1, ..., Aok );

3) ¢g>qp+a—-1/2.
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Then there exist uy € (0,1) and K4 € (0,400) such that for any u € (0, pg) the matriz differential
equation (4.29) has a particular solution Y (t,e,0, 1) all elements of which belong to the class F(m —
L;e1(p); 0), where e1(p) = min(eg, Kqp2?t201),

Proof of Lemma 4.4 is completely analogous to that of Lemma 3 in [1].

The following Lemma is an immediate consequence of the above ones.

Lemma 4.5. Let the equation (3.8) satisfy all conditions of Lemma 4.1 (in case M < K), or Lem-
ma 4.2 (in case M = K), or Lemma 4.3 (in case M > K), and the equation (4.29), obtained from (3.8)
by means of the transformation (4.28), satisfy all conditions of Lemma 4.4. Then there exist us € (0,1)
and K5 € (0,400) such that for any u € (0, us) the equation (3.8) has a particular solution belonging
to the class F(m — 1;e2(p);0), where ea(u) = Ksp??22=1 and qo, o are defined in Lemma 4.4.

5 The basic result

Based on the above reasoning in Section 3 and Lemma 4.5 we obtain the following result.

Theorem. Let each of the equations (3.6) satisfy all conditions of Lemma 4.5. Then there exist
e € (0,1) and Kg € (0,+00) such that for any pu € (0, ug) there exists a transformation of the
form (3.2) with coefficients from the class F(m — 1;e3(p);0), where e3(p) = Kep??22=1 (qq, o are
defined in Lemma 4.4), which reduces the system (3.1) to the block-diagonal form (3.3). The matrices
Dn,, Dy, are defined by (3.7).
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MALKHAZ ASHORDIA

ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM
FOR SYSTEMS OF NONLINEAR IMPULSIVE DIFFERENTIAL EQUATIONS
WITH FIXED IMPULSES POINTS

Abstract. The antiperiodic problem for systems of nonlinear impulsive equations with fixed points
of impulses actions is considered. The sufficient (among them effective) conditions for the well-
posedness of this problem are given.
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Key words and phrases: Antiperiodic problem, nonlinear systems, impulsive equations, fixed
impulses points, well-posedness, effective conditions.

Let mg be a fixed natural number, w be a fixed positive real number, and 0 < 71 < -+ < 7y, < w be

fixed points (we assume 79 = 0 and Typ4+1 = w, if necessary). Let T = {n+mw: I =1,...,mp; m =
0,+1,42,...}.
Consider the system of nonlinear impulsive differential equations with fixed impulses points
dx

i f(t,z) almost everywhere on R\ T,

z(t+) —x(r—) = I(1,2(7)) for 7 €T,
under the w-antiperiodic problem
2(t+w) = —x(t) for t € R,
where f = (f;)_, is a vector-function belonging to the Carathéodory class Car([R x R™,R"™), and

I=(L),:Tx R"— R" is a vector-function such that I(7, -) is continuous for every 7 € T,,,.
We assume that

f+w,z)=—f(t,—z) and I(t +w,x) = —I(r,—x), teR, 7€T, xR

In view of this condition, if z : R — R™ is a solution of the given system, then the vector-function
y(t) = —z(t + w) (¢t € R) will be a solution of the system, as well. Moreover, it is evident that if
z : R — R"™ is a solution of the given w-antiperiodic problem, then its restriction on the closed interval
[0, w] will be a solution of the problem

Z—f = f(t,x) almost everywhere on [0,w]\ {71,.-.,Tme}, (1)
x(n+) —x(n—) =I(m,z(n)) (I=1,...,mp); (2)
2(0) = —z(w). (3)

Let now « : [0,w] — R™ be a solution of the system on [0,w]. By 2 we designate the continuation
of this function on the whole R as a solution of the system (1),(2). As above, the vector-function
y(t) = —z(t + w) (¢ € R) will be the solution of the system (1),(2). On the other hand, according
to the equality (3), we have y(0) = —z(w) = x(0). Thus, if we assume that the system (1), (2) under
the Cauchy condition z(0) = ¢ is uniquely solvable for every ¢ € R™, then x(t +w) = —z(t) for t € R,
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i.e., x is w-antiperiodic. This means that the set of restrictions of the w-antiperiodic solutions of the
system (1), (2) on [0,w] coincides with the set of solutions of the problem (1), (2); (3).

In this connection we consider the boundary value problem (1), (2); (3) on the closed interval [0, w].
Below, we will give the sufficient conditions guaranteeing the well-posedness of this problem.

Consider a sequence of vector-functions fi € Car([0,w] x R*,R™) (k = 1,2,...), the sequences
of points i, (k = 1,2,...; I =1,...,mp), a < 71 < -+ < Timek < b, a sequences of operators
Iy {Tiky oo, T} X R® = R™ (k= 1,2,...) such that Iy(mk, -) (k=1,2,...; I =1,...,mp) are
continuous.

In this paper the sufficient conditions are established which guarantee both the solvability of the
impulsive systems (k= 1,2,...)

d
@ _ fr(t,z) almost everywhere on [0,w] \ {T1k,- -\ Tmok}s (1x)

dt
.%‘(le—i-) — x(le—) = Ik(le,x(le)) (l =1,... ,mo) (2k)

under the condition (3) for any sufficient large k and the convergence of its solutions to a solution of
the problem (1), (2);(3) as k — +o0.

We assume that the circumscribed above concept is fulfilled for the problems (1), (2x); (3) (k =
1,2,...), as well.

The well-posed problem for the linear boundary value problem for impulsive systems with a finite
number of impulses points is investigated in [5], where the necessary and sufficient conditions are given
for the case. Analogous problems are investigated in [2,12-14] (see also the references therein) for the
linear and nonlinear boundary value problems for ordinary differential systems.

Quite a number of issues on the theory of systems of differential equations with impulsive effect
(both linear and nonlinear) have been studied sufficiently well (for a survey of the results on impulsive
systems see, e.g., [1,3,4,6-10,15-17] and the references therein). But the above-mentioned works, as
we know, do not contain the results obtained in the present paper.

Throughout the paper, the following notation and definitions will be used.

R =] — 00, +00[, Ry =[0,400][, [a,b] (a,b € R) is a closed segment.

n

R"™™ is the space of all real n x m-matrices X = (2;); ;= with the norm || X|| = jJnax PBREZTIE

=1,..,m /=]
1X] = (Jaig Dy, DX = 25

RY™ = {(wig)i 2ty - 2y 20 (i=1,...,n; j=1,...,m)}.

R(xm)xm — RX1 o RPX™ (1m-times).

R™ = R™*! is the space of all real column n-vectors = = (z;)7;; R% = R'*".

If X € R™*" then X!, det X and r(X) are, respectively, the matrix inverse to X, the determinant

of X and the spectral radius of X; I,,«,, is the identity n X n-matrix.
b
V(X)) is the total variation of the matrix-function X : [a,b] — R™*™, i.e., the sum of total variations

a
t

of the latter components; V(X)(t) = (v(zi;)(t));2,, where v(zi;)(a) = 0, v(zi;)(t) = V(wi;) for
a<t<b. ‘

X (t—) and X (t+) are the left and the right limits of the matrix-function X : [a,b] — R™*"™ at the
point ¢ (we assume X (t) = X (a) for t < a and X (t) = X (b) for t > b, if necessary).

BV ([a,b], R"*™) is the set of all matrix-functions of bounded variation X : [a,b] — R™™ (i.e.,

b
such that \/(X) < +00).

a

C(la,b], D), where D C R™*™, is the set of all continuous matrix-functions X : [a,b] — D.

Let Ty = {71, Tmg }-

C(la,b], D; Ty, ), is the set of all matrix-functions X : [a,b] — D having the one-sided limits X (1;—)
(Il=1,...,mp) and X(1y+) (I = 1,...,mg) whose restrictions to an arbitrary closed interval [c, d]
from [a, b] \ T}y, belong to C([c,d], D).

Cy([a,b],R™*™; T, ) is the Banach space of all X € C([a,b],R"*™;T,,,) with the norm || X||s =
sup X (1)) : ¢ € [a, b}
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If y € Cs([a,b], R; T, ) and r €]0, +o00|, then

Uly;r) = {x € Cs([a,b],R™; Trny) : llz — ylls < r}.

D(y,r) is the set of all x € R™ such that inf{||x — y(¢)| : ¢ € [a,b]} < r.

5([a, b], D), where D C R™*™ is the set of all absolutely continuous matrix-functions X : [a,b] —
D.

C([a,b), D; T,y is the set of all matrix-functions X : [a,b] — D having the one-sided limits X (r,—)
(Il=1,...,mp) and X(m;+) (I = 1,...,mg) whose restrictions to an arbitrary closed interval [c, d]
from [a,b] \ T, belong to C([c,d], D).

If B; and B, are the normed spaces, then an operator g : By — By (nonlinear, in general) is
positive homogeneous if g(Az) = Ag(z) for every A € Ry and = € By.

An operator ¢ : C([a,b],R"*™;T,,,) — R" is called nondecreasing if the inequality ¢(x)(t) <
o(y)(t) for t € [a,b] holds for every z,y € C([a,b], R"*™; T,,,) such that z(¢) < y(t) for ¢ € [a, ]].

A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each of its components
is such.

L([a,b], D), where D C R™ ™, is the set of all measurable and integrable matrix-functions X :
[a,b] — D.

If D; C R™ and Dy C R™*™, then Car([a,b] x D1, Ds) is the Carathéodory class, i.e., the set of
all mappings F' = (fx;)j; : [a,b] x D1 — D3 such that for each i € {1,...,1}, j € {1,...,m} and
ke{l,...,n}

(a) the function fg;(-, ) : [a,b] — D5 is measurable for every x € Dy;
(b) the function fi;(¢, -): D1 — Ds is continuous for almost every ¢ € [a, b], and
sup{|fx;(-,2)|: = € Do} € L([a,b], R; gir) for every compact Dy C D;.

Car®([a,b] x Dy, Ds) is the set of all mappings F' = (fx;);/~; : [a,b] X D1 — Dy such that the
functions fi;(-,z(-)) (i=1,...,l; k=1,...,n) are measurable for every vector-function z : [a, b] —
R™ with bounded total variation.

We say that the pair {X;{Y;}]”,} consisting of the matrix-function X € L([a, ], R"*") and of a
sequence of constant n x n matrices {Y;}”, } satisfies the Lappo-Danilevskil condition if the matrices
Yi,...,Y,, are pairwise permutable and there exists tg € [a, b] such that

/X )dX (T /dX ) for t € [a,b)

and
XY, =Y X(¢) for t €la,b] (I=1,...,m).

M ([a,b] x Ry, Ry ) is the set of all functions w € Car([a, b] x Ry, Ry ) such that the function w(t, -)
is nondecreasing and w(t,0) = 0 for every ¢ € [a, b].

By a solution of the impulsive system (1), (2) we understand a continuous from the left vector-
function 2 € C([0,w], R™; Ty, ) satisfying both the system (1) for a.e. on [0,w] \ T}, and the relation
(2) for every I € {1,...,mq}.

Definition 1. Let ¢ : Cs([0,w],R™;T},,,) — R™ and €y : Cs([0,w],R™; T,,) — RY be, respectively,
a linear continuous and a positive homogeneous operators. We say that a pair (P,J), consisting of
a matrix- function P € Car([0,w] x R, R™*"™) and a continuous with respect to the last n-variables
operator J : x R™ — R"™, satisfies the Opial condition with respect to the pair (¢, £y) if:

mo

(a) there exist a matrix-function ® € L([0,w], R} ") and a constant matrices ¥; € R™*™ (I =
1,...,mg) such that

|P(t,z)| < ®(t) a.e. on [0,w], = €R",

and
|[J(m,2)| < ¥ for z e R* (I=1,...,mp);
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det(Inxn +Gi) #0 (I=1,...,mo) (4)
and the problem
illf A(t)z a.e. on [0,w] \ Tings (5)
z(n+) —x(n—)=Grz(n) (I=1,...,mp); (6)
[t(z)| < bo() (7)

has only a trivial solution for every matrix-function A € L([0,w], R"*™) and constant matrices
Gy, ...,Gn, for which there exists a sequence yi € C([0,w],R™;T},,) (k=1,2,...) such that
¢

lim [ P(r,yx(7))dr = /A(T) dr uniformly on [0,w]
k—4o00
0

and
lim J(m,ye(m)) =G (I=1,...,mp).

k— o0
Remark 1. In particular, the condition (4) holds if
H\IIIH <1 (l = 1,...,m0).
As above, we assume that f = (f;)"; € Car([0,w] x R™,R"*™) and, moreover, f(7,x) is arbitrary
forx e R” (I=1,...,mp).
Let 2° be a solution of the problem (1),(2);(3), and r be a positive number. We introduce the
following

Definition 2. A solution 2V is said to be strongly isolated in the radius r if there exist the matrix-
and the vector-functions P € Car([0,w] x R",R™*™) and ¢ € Car([0,w] x R™,R™), a continuous with
respect to the last n-variables operators J, H : T,,, x R"® — R"”, linear continuous operators ¢ and ¢
and a positive homogeneous operator ¢y acting from C,([0, w], R" T, ) into R™ such that:
(a) the equalities
ft.x) = P(t,x)x +q(t,x) for t € [0,w]\ Ty, [lo—2@t)] <1,

I(r,2) = J(7,2)x + H(m,x) for ||xfx ()|l <r I=1,...,mp)

and B
2(0) 4+ z(w) = £(x) + £(x) for x € U(z";7r)
are valid,;
(b) the functions a(t,p) = max{|lq(t,z)[| : [lzl| < p}, B(7,p) = max{[|H(n,z)| : =] < p}

(I=1,...,mo) and v(p) = sup{[[l(z)] — lo(x)]+ : ||z||s < p} satisfy the condition
pl}gloop< —|—/oztpdt+25n, >—O; (8)
0

(c) the problem
dx
dt
z(n+) —xz(n—) = J(m,z(n))x(n) + H(m,z(n)) I=1,...,mp);

U(z) +0(z) =0

=P(t,x)x+q(t,z) ae. on [0,w]\ T,

has no solution different from z°.

(d) the pair (P, J) satisfies the Opial condition with respect to the pair (¢, £y).
Remark 2. If /(x) = 2(0) + z(w) and ¢o(x) = 0, then we say that the pair (P, J) satisfies the Opial

w-antiperiodic condition. In this case, the condition (7) coincides with the condition (3), and £(z) = 0
and v(p) = 0 in Definitions 1 and 2.
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Definition 3. We say that a sequence (fx, Ix) (k =1,2,...) belongs to the set W,.(f, I;°) if:
(a) the equalities

k—4oc0

t t
lim /fk(r,x) dT:/f(T,x) dr uniformly on [0,w]
0 0

and

lim Ip(mg,z) =I(m,z) (I=1,...,mp)
k— o0

are valid for every x € D(z%r);

(b) there exists a sequence of functions wy € M ([a,b] x Ry, Ry) (k=1,2,...) such that

w

sup{/wk(t,r)dt: k;:l,?,...}<+oo, (9)
0
mo
sup{Zwk(leJ): k:1,2,...} < 4005 (10)
=1
lim sup{/wk(t,s)dt: k:1,2,...}:0, (11)
s—0+
0
mo
li { , ;k:1,2,...}:0; 12
Jim, sup ;Wk('rlk s) (12)

||fk(t,:17) - fk(t,y)H < wk(t, |z — y||) for t € [0,w]\ Trng, 2,y € D(a%7) (k=1,2,...),
Hlk(nk,a:) - Ik(le,y)H < wi (T, ||z — yl|) for =,y € D(%r) (I1=1,...,mg; k=1,2,...).
Remark 3. If for every natural m there exists a positive number v,, such that
wi(t,mé) < vpwi(t,d) for § >0, t€[0,w]\ T, (k=1,2,...),
then the estimate (9) follows from the condition (11); analogously, if
wi (11K, mO) < vpmwi (11, 0) for § >0, (I=1,...,mg; k=1,2,...),

then the estimate (10) follows from the condition (12). In particular, the sequences of functions

wr(t, 8) = max { || fu(t, @) = fult.p)]| - 2y € U0, 2% +7), Jlz—yll <3}
for t € [0,w]\ T, (k=1,2,...)

and

wi(Tik, 0) = maX{HIk(le,x) — Li(mus )| 2y €U0, 2% +7), flo—yll < 5}
(Il=1,....mo; k=1,2,...)
have the latters’ properties, respectively.

Definition 4. The problem (1),(2);(3) is said to be (z°;r)-correct if for every € €]0,r[ and
(fk,lk);fl’ € W,.(f,I;2°) there exists a natural number ko such that the problem (1), (2x) has
at last one w-antiperiodic solution contained in U(z%;r), and any such solution belongs to the ball
U(2%¢) for every k > ko.

Definition 5. The problem (1), (2);(3) is said to be correct if it has a unique solution z° and it is
(2% r)-correct for every r > 0.

Theorem 1. If the problem (1), (2);(3) has a solution 2°, strongly isolated in the radius r, then it is
(205 7)-correct.
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Theorem 2. Let the conditions

Hf(t,x) — P(Lx)x” < alt,||z|]) a.e on [0,w]\ Ty, z€R™, (13)
HI(Tl,x) — J(Tbl'){L‘H < B(m,||z||) for z € R™ (I=1,...,myp) (14)

and
’33(0) + z(w) — é(az)} < Llo(z) + 1(||z||s) for x € BV([0,w],R™) (15)

hold, where € : Cs([0,w],R"™; Ty, ) — R™ and €y : Cs([0,w], R™; T}y ) — R are, respectively, a linear
continuous and a positive homogeneous operators, the pair (P,J) satisfies the Opial condition with
respect to the pair (£,4y); a € Car([0,w] x Ry, Ry) and B € C(Tim, X [0,w],R}) are the functions,
nondecreasing in the second variable, and ¢, € C(R,R%) is a vector-function such that

1 [ o
lim = (1)) + [ alt,p)di+S B(r,p)) =0. (16)
( p O/ p ; , p)

p—r+o00 p

Then the problem (1),(2);(3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Theorem 3. Let the conditions (13)—(15),
Pi(t) < P(t,z) < Po(t) a.e. on [0,w]\ {71, ,Tmo}, = €R", (17)
and
Ju < J(m,x) < Joy for x e R™ (I=1,...,mp) (18)
hold, where P € Car®([0,w] x R", R™*") P, € L([0,w],R™*"), Jy € R™*" (i=1,2; 1 =1,...,mq);
0: Cs([0,w],R™; Tpy) — R™ and £y = C([0,w],R™; Ty, ) — R% are, respectively, a linear continuous
and a positive homogeneous operators; a € Car([0,w] X Ry, Ry) and B € C(Ty, X [0,w],Ry) are the
functions, nondecreasing in the second variable, and £, € C(R,R") is a vector-function such that the
condition (16) holds. Let, moreover, the condition (4) hold and the problem (5),(6),(7) have only

a trivial solution for every matriz-function A € L([0,w],R™*™) and constant matrices G; € R™*"
(I=1,...,mg) such that
Py(t) < A(t) < Pa(t) a.e. on [0,w]\ Ty, = € R, (19)
and
Ju <G < Jy for x € R (121,...,m0). (20)
Then the problem (1),(2);(3) is solvable. If, moreover, the problem has a unique solution, then it is

correct.

Remark 4. Theorem 3 is of interest only in the case P ¢ Car([0,w] xR™, R™*™), because the theorem
immediately follows from Theorem 2 in the case P € Car(]0,w] x R™ R™*™).

Theorem 4. Let the conditions (15),
[f(t,2) = P(t) x| < Q(t) [z + q(t, [[z]]) a-e. on [0,w]\ Tng, = €R", (21)
and
|Ii(x) — Jyz| < Hy|z| + h(m, ||z||) for z € R™ (I=1,...,mq) (22)
hold, where P € L([0,w],R™*™), Q € L([0,w],R}*"™), J; € R™*"™ and H; € RY™ (1 =1,...,myg) are
constant matrices, £ : Cs([0,w],R™; T,,) — R™ and £y : Cs([0,w], R™; T)p) — R} are, respectively, a
linear continuous and a positive homogeneous operators; q¢ € Car([0,w] x Ry, R%}) and h € C(Trp, x

RJF;RiX”) are the vector-functions, nondecreasing in the second variable, and ¢; € C(R,R%) is a
vector-function such that the condition

p—r—+o00 p

1 [ oo
im = [lte(p)ll + [ llg(t, p)lldt + ) _|h(mi,p)l| ) = 0. (23)
( p 0/ q(t,p l; 1P )

holds. Let, moreover, the conditions

det(Ian+Jl) 7é 0 (Z = 17...,7’710) (24)
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and
IH | - ||(Znxn + 1) 7Y <1 (G=1,2 1=1,...,mp) (25)
hold and the system of impulsive inequalities
d
CT;E - P(t)z‘ <Q(t)z a.e. on [0,w]\ Ty, (26)
|z(m+) — a(n—) = Jiw(n)| < Hylz(n)|] (1=1,...,mq) (27)

have only a trivial solution satisfying the condition (7). Then the problem (1), (2);(3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.

Corollary 1. Let the conditions

|f(t,z) — P(t) x| < q(t,||z]]) a.e. on [0,w]\ Tm,, x€R", (28)
|I(r,2) — Jiz| < h(m, ||zl|) for z € R™ (I=1,...,mo) (29)

and
|x(0) +z(w) — €(x)| <l (JJz|ls) for = € BV([0,w],R™) (30)

hold, where P € L([0,w],R™*™), J, € R™" (I = 1,...,mg) are constant matrices satisfying the
condition (24), £ : Cs([0,w],R™; T}y, ) — R™ is the linear continuous operator; q € Car([0,w] xR, R%)
and h € C(Tm, x R;RY ™) are the vector-functions, nondecreasing in the second variable, and
t1 € C(R,RY) is a vector-function such that the condition (23) holds. Let, moreover, the problem

dx

i Pt)z a.e. on [0,w]\ Ty, (31)
z(nt) —a(n—) = Jiz(n) (=1,...,mp); (32)
U(z) = 0. (33)

have only a trivial solution. Then the problem (1), (2);(3) is solvable. If, moreover, the problem has
a unique solution, then it is correct.

Remark 5. Let Y = (y1,...,y,) be a fundamental matrix, with columns y,...,y,, of the system
(31), (32). Then the homogeneous boundary value problem (31), (32);(33) has only a trivial solution
if and only if

det(¢(Y)) # 0, (34)
where £(Y) = (L(y1), ..., 4(yn)).

If the pair {P;{J;};29 } satisfies the Lappo-Danilevskil condition, then the fundamental matrix ¥’
(Y (0) = I,xn) of the homogeneous system (31), (32) has the form

Y (t) = exp (/tp(r) dT) T Gosen + ).
0

o< <t

Theorem 5. Let the conditions

[f(t,2) = fty) = P(t) (z = y)| < Q)|z —y| a.e. on [0,w]\ Ty, z,y € R", (35)
‘I(Tl,.’IJ)—I(Thy)—Jl (m—y)’ < Hjlx —y| for x,y e R™ (k=1,...,mp) (36)

and
|2(0) — y(w) + 2(w) — y(w) — Lz — y)| < lo(x —y) for z,y € BV([0,w],R")

hold, where P € L([0,w],R"*"), @ € L([0,w],R}*™), J; € R™*™ and H; € R}*™ (I = 1,...,mq)
are constant matrices satisfying the conditions (24) and (25), ¢ : Cy([0,w],R™; T}y,) — R™ and
by : Cs([0,w],R™; T3y ) — R are, respectively, linear continuous and positive homogeneous continuous

operators. Let, moreover, the problem (26), (27);(7) have only a trivial solution. Then the problem
(1),(2);(3) is correct.
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Corollary 2. Let there exist a solution z° of the problem (1), (2);(3) and a positive number r > 0
such that the conditions

|F(t,x) = f(t,2°(8)) = P(t) (x — 2°(t))

| <Q)|z —2°(t)| a.a. [0,0]\ Ty, |z —2°@)| <,
‘I(Tl,$) —I(r,2°(m)) — Ji (= —xo(n))’ < Hl|x—a:0(7'l)| for |lx —2°(n)|| <r (I=1,...,mp)

and
|2(0) — 2°(0) + 2(w) — 2%(w) — L(z — 2°)| < ¢*(Jz — 2°|) for x € U(a"r)

hold, where P € L([0,w],R"*"™), Q € L([0,w],R}*™), J;, H € R™*" (I =1,...,mq) are constant ma-
trices satisfying the conditions (24) and (25), £ : Cs([0,w],R™; Thpy ) = R™ and £* : Cs([0,w], R™; Tpp, ) —
R? are, respectively, linear continuous and positive homogeneous continuous operators. Let, moreover,
the system of impulsive inequalities

d

d—f - P(t)x‘ <Q)z a.e. on [0,w]\ Ty,
|£L‘(Tl+) - .T(Tl—) - Jl CU(Tl)‘ < Hl ':17(7'1) (l = 1, .. .,m())

have only a trivial solution under the condition
[£(z)] < € (|z)).
Then the problem (1), (2);(3) is (2°;r)-correct.

Corollary 3. Let the components of the vector-functions f and I; (I =1,...,n) have partial derivatives
by the last n variables belonging to the Carathéodory class Car([0,w] x R™ R™). Let, moreover, z° be
a solution of the problem (1), (2);(3) such that the condition

det (Inxn + Go(a®(m))) #0 (1 =1,....mo)
holds and the system

z—f = F(t,2°(t)) x almost everywhere on [0,w]\ Trn,,
z(n+) —x(n—=) = G(°(n) z(n) (=1,...,mp);

l(x) =0,

where F(t,x) = % and Gi(x) = agfc) , have only a trivial solution under the condition (3). Then

the problem (1), (2); (3) is (z°;7)-correct for any sufficiently small r.

In general, it is quite difficult to verify the condition (34) directly even in the case where one is able
to write out the fundamental matrix of the system (31), (32); (33). Therefore it is important to seek
for effective conditions which would guarantee the absence of nontrivial w-antiperiodic solutions of
the homogeneous system (31), (32); (33). Below we will give the results concerning the question under
consideration. Analogous results have been obtained in [3] for general linear boundary value problems
for impulsive systems, and in [14] by T. Kiguradze for the case of ordinary differential equations.

In this connection, we introduce the following operators. For every matrix-function X €
L(]0,w], R™*™) and a sequence of constant matrices Y, € R"*" (k =1,...,mg) we put

(X, Y1, Y )(B)], = In for 0 <t <w,
[(X,Y1,.. ., Vi )(0)], = Onsenn (i =1,2,...),

[(X,Yl,...,Ymo)(t)]Hl = /X(T) (X, Y1, Yo, ) (7)), dr
0

+ > V(X V1, Y ) ()], for 0<t<w (i=1,2,...). (37)

o< <t

Corollary 4. Let the conditions (28)—(30) hold, where

w

0(z) = / L) - x(b),

0
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P e L([0,w],R™™), J;, € R"™™™ (I = 1,...,mg) are constant matrices satisfying the condition (24),
L e L([0,w],R™"™); g € Car([0,w] x Ry, RY) and h € C(T,, x Ry;RY*™) are the vector-functions,
nondecreasing in the second variable, and £, € C(R,R") is a vector-function such that the condition
(23) holds. Let, moreover, there exist natural numbers k and m such that the matriz

1 w

[ a2 [P a0,
0

k

My=->"

i=0
is nonsingular and

r(Mim) < 1, (38)
where the operators [(P, Ji, ..., Jme)()]i (¢ =0,1,...) are defined by (37), and

My = [(IP|191], -5 [ Tmo ) (@)],

=

m—

n [(|P|,|J1|,...,|Jm0|><w>]i/dv<M;1c><t>. [P [ ) )],
0 0

1=

Then the problem (1),(2);(3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5. Let the conditions (28)—(30) hold, where
no
Uz) =Y La(ty), (39)
j=1

P e L([0,w],R™™™), J € R™*™ (I = 1,...,mq) are constant matrices satisfying the condition (24),
t; € [0,w] and L; € R™*™ (j =1,...,n9), £ € L([0,w],R™™™), £ : Cs([0,w],R™; T},,) — R™ is the
linear continuous operator; q € Car([0,w] x Ry,R?) and h € C(Tpn, x Ry ;RY*™) are the vector-
functions, nondecreasing in the second variable, and £, € C(R,R") is a vector-function such that the
condition (23) holds. Let, moreover, there exist natural numbers k and m such that the matriz
ng k—1
My =N "L (P, dmy ) ()],

j=11i=0

is nonsingular and the inequality (38) holds, where

Mk,m = [(|P|7|Jl|77|‘]mo|)(w)]m
+ ( Z [(|P|’ |Jl|7"'v|‘]mo|)(w)]i) Z|Mk_1£]| ' [(|P|a |Jl|7"'v|‘]mo|)(tj)]k'
i=0 j=1

Then the problem (1), (2);(3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5 has the following form for £k =1 and m = 1.

Corollary 6. Let the conditions (28)—(30) hold, where the operator £ is defined by (39), P €
L([0,w],R™*™), J; € R™™ (I = 1,...,mg) are constant matrices satisfying the condition (24),
t; € [0,w] and L; € R™™ (j =1,...,n0); q¢ € Car([0,w] x Ry, RY) and h € C(Tm, x Ry;RY*™) are
the vector-functions, nondecreasing in the second variable, and {1 € C(R,RY) is the vector-function
such that the condition (23) holds. Let, moreover,

det (Zﬁj) #0 and r(Lo4p) < 1,
=1
where
no

Lo=1I,xn+ ’(Z£J>1

j=1

no it mo
SO 12| and A0:/|P(t)|dt+Z|Jl|.
j=1 =1

0
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Then the problem (1), (2);(3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 6. If the pair {P; {J;}," } satisfies the Lappo-Danilevskii condition, then the condition (34)
has the forms

det <0/d£(t) - exp </P(T) d7> ] (InanrJl)) #0

0 o< <t
and
tj
10
det ( L;exp </P(T) d7> . H (Inxn + Jl)) #0
j=1 0 0<7<t;

for the operators ¢ defined, respectively, in Corollary 4 and Corollary 5.

By Remark 2, in the case where ¢(z) = z(0) + x(w) and ¢p(z) = 0, the results given above have the
following forms, respectively.

Theorem 2'. Let the conditions (13) and (14) hold, where the pair (P,J) satisfies the Opial w-
antiperiodic condition, o € Car([0,w] X Ry,Ry) and B € C(Ty, X [0,w],R4) are the functions,
nondecreasing in the second variable, such that

1/ i
Jim 2 ( / olt, ) dt+§/3<n,p>) 0. (40)

Then the problem (1), (2);(3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Theorem 3'. Let the conditions (13), (14), (17), (18) and (40) hold, where P € Car®([0,w] x
R™ R"*™), P; € L([0,w],R™*"™), Jy € R™*™ (1 =1,2; 1 =1,...,mp); o € Car([0,w] x Ry,Ry) and
B € C(Tm, % [0,w],Ry) are the functions, nondecreasing in the second variable. Let, moreover, the
condition (4) hold and the problem (5),(6);(3) have only a trivial solution for every matriz-function
A € L([0,w],R™™™) and constant matrices G; € R™*™ (I = 1,...,mq) satisfying the conditions (19)
and (20). Then the problem (1), (2);(3) is solvable. If, moreover, the problem has a unique solution,
then it is correct.

Theorem 4'. Let the conditions (21) and (22) hold, where P € L([0,w],R"*™), Q € L([0,w], R}*"™),
Ji € R™* and Hy e RT*"™ (I =1,...,mq) are the constant matrices satisfying the conditions (24) and
(25), g € Car([0,w] x Ry, RY), and h € C(Trm, x Ry RY™) are the vector-functions, nondecreasing
in the second variable, such that

17 -
i 1 ( / q<t,p>|dt+;||h<n,p>||) ~o. (an)

p—+—+o00 p

Let, moreover, the system of impulsive inequalities (26), (27) have only a trivial solution satisfying
the condition (3). Then the problem (1), (2);(3) is solvable. If, moreover, the problem has a unique
solution, then it is correct.

Corollary 1'. Let the conditions (28), (29) and (40) hold, where P € L([0,w],R"*"™), J, € R"*"
(I =1,...,mqg) are constant matrices satisfying the condition (24), ¢ € Car([0,w] x Ry, R%}) and
h € C(Ty, x Ry RY*™) are the vector-functions, nondecreasing in the second variable. Let, moreover,
the problem (31), (32), (3) have only a trivial solution. Then the problem (1), (2);(3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.

Theorem 5'. Let the conditions (35) and (36) hold, where P € L([0,w],R"*™), Q € L([0,w], R}*"™),
Ji € R and Hy € R*™ (I = 1,...,mg) are constant matrices satisfying the conditions (24)

and (25). Let, moreover, the problem (26),(27);(7) have only a trivial solution. Then the problem
(1),(2);(3) is correct.
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Corollary 5'. Let the conditions (28), (29) and (41) hold, where P € L([0,w],R™*™), J;, € R™*"
(I =1,...,mq) are constant matrices satisfying the condition (24); q € Car([0,w] x Ry, RY) and
h € C(Ty, x Ry RY*™) are the vector-functions, nondecreasing in the second variable. Let, moreover,
there exist natural numbers k and m such that the matriz
k—1
M= [(Pdr. . Jmy)(W)],
i=0

is nonsingular and the inequality (38) holds, where

My = [(1PL 1AL VoD @)],,
(32 L0PL 1L g @], )M - [OPL L - g D).

Then the problem (1), (2);(3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5" has the following form for k = 1 and m = 1.
Corollary 6'. Let the conditions (28), (29) and (41) hold, where P € L([0,w],R™*™), J; € R™*"

(I =1,...,mg) are constant matrices satisfying the condition (24); q¢ € Car([0,w] x Ry, R%}) and
h € C(Tm, x Ry; RI*™) are the vector-functions, nondecreasing in the second variable. Let, moreover,
1
T(AO) < § y
where

w mo
A =/|P<t>|dt+2ul|.
4 1=1

Then the problem (1), (2);(3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 7. In the conditions of Corollary ¢', if the pair {P; {.J;};" } satisfies the Lappo-Danilevskii
condition, then the condition (34) has the form

det (Imn + exp (O/P(T) dT) s + Jl)> #0.

=1

The analogous questions have been investigated in [7,8] for the system (1), (2) under the general
nonlinear boundary condition h(z) = 0, where h : C([0,w],R"™; T},,,) — R™ is a continuous vector-
functional which is nonlinear, in general. The results given in the paper are the particular cases of
the results obtained in [7,8] when h(z) = x(0) + z(w).
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GIORGI DEKANOIDZE

ON THE SOLVABILITY OF A BOUNDARY VALUE PROBLEM WITH
DIRICHLET AND POINCARE CONDITIONS IN THE
ANGULAR DOMAIN FOR ONE CLASS OF
NONLINEAR SECOND ORDER HYPERBOLIC SYSTEMS

Abstract. Darboux type problem with Dirichlet and Poincare boundary conditions for one class
of nonlinear second order hyperbolic systems is considered. The questions of existence and nonex-
istence, uniqueness and smoothness of global solution of this problem are investigated.
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In the plane of the variables x and t we consider a nonlinear second order hyperbolic system of
type

Lu : Utt — Ugy + A(I7t)ut + B(xat)ut + C(Zt,t)u + f(ZC,t,U) = F(IE,t), (1)
where A, B, C are given real n x n-matrices, f = (f1,..., fn) is a given nonlinear with respect to u real
vector-function, F = (Fi,..., F},) is a given and © = (uy, ..., u,) is an unknown real vector-function,

n > 2.

By Dr we denote a triangular domain lying inside the characteristic angle {(x,t) € R : t > |z|}
and bounded by the characteristic segment v, : o =¢, 0 <t < T, and segments y2;: = =0, 0 <
t<T,vs:: t=T,0<xz<T,of time and spatial type, respectively.

For the system (1), we consider a boundary value problem: find in the domain Dr a solution
u = u(z,t) of that system, satisfying on segments v, 7 and 2 7 the Dirichlet and Poincare conditions,
respectively,

u"YI,T =% (2)
(m1vs + p2ve)| =0, (3)
where ¢ = (¢1,...,¢n) is a given real vector-function and p;, ¢ = 1,2, are given real n X n-matrices.

In the case of T'= 0o we have Do :=1¢ > |z|, 2 >0, and 71,00 : =1, 0<t <00, Y200 : =0, 0<
t < oo.

Definition 1. Let A, B,C,F, f € C(Dy x R") and ¢ € C'(¢11), pi € Cly2,r), i = 1,2. We call a
vector-function u a generalized solution of the problem (1), (2), (3) of the class C' in the domain Dr
if w € C(Dr) and there exists a sequence of vector-functions

= CS(ET) = {v € C2(ﬁT) © (pvg + Mvt)‘wm = ()}
such that «™ — w and Lu™ — F in the space C(Dr), u™|,, ; — ¢ in the space C*(y1,1), as m — oc.

It is obvious that a classical solution u € C?(Dr) of the problem (1), (2), (3) represents a generalized
solution of this problem of the class C' in the domain D7 in the sense of Definition 1.

Definition 2. Let A, B,C, F, f € C(Do xR™) and ¢ € C(71,00), pti € C(Y2,00), i = 1,2. We say that
the problem (1), (2), (3) is locally solvable in the class C if there exists a number Ty = To(F, ) > 0
such that for T' < Tp this problem has a generalized solution of the class C' in the domain D7 in the
sense of the Definition 1.
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Definition 3. Let A, B,C,F,f € C(Ds x R") and ¢ € C'(71.00), tti € C(12.00), i = 1,2. We say
that the problem (1), (2),(3) is globally solvable in the class C' if for any T > 0 this problem has a
generalized solution of the class C' in the domain D7 in the sense of Definition 1.

Definition 4. Let A, B,C,F, f € C(Doo x R") and ¢ € C*(V1,00), ti € C(72.00), @ = 1,2. A vector-
function u € C(D4) is called a global generalized solution of the problem (1), (2), (3) of the class C
in the domain Dy if for any 7' > 0 the vector-function u|p, is a generalized solution of the class C
in the domain Dt in the sense of Definition 1.

If in the linear case for scalar hyperbolic equations the boundary value problems of Goursat and
Darboux type are well studied (see [5-7,9,12,16]), there arise additional difficulties and new effects
in passing to hyperbolic systems. This has been first noticed by A. V. Bitsadze [3] who constructed
examples of second order hyperbolic systems for which the corresponding homogeneous characteristic
problem has a finite number, and in some cases, an infinite of number of linearly independent solutions.
Later these problems for linear second order hyperbolic systems have become a subject of study in the
works [10,11]. In this direction it should also be noted the work [4], in which on the simple examples
it is revealed the effect of lowest terms on the correctness of these problems. As shown in [1,2,13-15],
the presence of the nonlinear term in the scalar hyperbolic equation may affect on the correctness
of the Darboux problem, when in some cases this problem is globally solvable, and in other cases
may arise the so-called blow up solutions. It should be noted that the above-mentioned works do
not contain linear terms involving the first order derivatives, since their presence causes difficulties in
investigating the problem, and not only of technical character. In this paper, we study the Darboux
type problem for nonlinear system (1) with lowest terms of the first order. The results presented here
are new in the case when (1) is a scalar hyperbolic equation.

Local solvability of the problem (1),(2),(3) in sense of Definition 2 holds under the additional
requirements

det(uz — ul)“%o #0 (4)
and
A,B e C?(Dy), CeC'(Dx), fEC (Dos xR, pi € CH(72,00)- (5)
Under the conditions given in the Definition 2, if we additionally require that
Il filx,t,u)|| < My + Ms|lul|, (z,t,u) € Do x R™, i=1,...,n, (6)
and
det Ml”‘/Q,T #0, (uf1u29,9)|v2j <0 V0 eR™, (7)

where M; = M;(T) = const > 0, j = 1,2, VT > 0; |lul| = 3 |wil, (-, -) is scalar product in the
i=1

Euclidean space R", then for a generalized solution of the problem (1),(2), (3) of the class C' in the
domain Dr the a priori estimate

lullo@r) < allFllomr) +eallllony, ») + s (8)
(D) (D) (v1,7)

is valid with nonnegative constants ¢; = ¢;(My, My, M2, T), i = 1,2, 3, not depending on u, F, ¢ and
where ¢; > 0, i = 1,2. Here My = My(A, B,C) = const > 0.

Under the conditions (4)—(7), from the a priori estimate (8) by virtue of Learay—Schauder’s theorem
there follows the global solvability of the problem (1), (2), (3) in the class C' in the sense of Definition 3.

Note also that in the above assumptions (4)—(7) there exists a unique global generalized solution
of the problem (1), (2), (3) of the class C in the domain D, in the sense of Definition 4.

Now consider the case when the condition (5) is violated, i.e.,

= Wbl

b)
lullwoo [ul]

and the problem (1), (2), (3) is not globally solvable, in particular, it does not have a global generalized
solution of the class C in the domain D, in the sense of Definition 4.



On the Solvability of a BVP with Dirichlet and Poincare Conditions in the Angular Domain. .. 153

Theorem. Let A= B =C =0, f = f(u) € C(R"), F € C(Dw), ¢ = 0. There exists numbers
liy . oyln, D0 || # 0 such that
i=1

Xn:llfl(u) <cy— Cl| ilzuz ’
i=1 i=1

where ¢y, c1 = const, ¢y > 0. Let the function Fy = Z I;F; — ¢ satisfies the following conditions:

1=1

Fy >0, F:Et’t>1>02t_k; co =const >0, 0 <k =const <2.

, B=const >1, (9)

Then there exists a finite positive number Ty = To(F') such that for T > Ty the problem (1), (2), (3)
does not have a generalized solution of the class C' in the domain Dr.

Corollary. Under the conditions of the theorem, although the problem is locally solvable, it does not
have a global generalized solution of the class C' in the domain Dy,

Now let us consider one class of vector-functions f satisfying the condition (9):

n
fi(ul, - ,un) = Zaij|Uj|ﬁij + bi, 1=1,...,n, (10)
j=1
where a;; = const > 0, b; = const, B;;j = const > 1; 4,j = 1,...,n. In this case we can take:
li =1y =---=1, =—1. Indeed, let us choose = const such that 1 < 8 < B;;;4,j =1,...,n. Itis
easy to verify that |s Bis > \5\6 —1Vs € (—o00,00). Now, using well - known inequality [8]
B

Vy=(y1,...,yn) €R", B =const>1,

n n
Z il > nl_ﬂ‘ Zyi
i—1 i=1

we receive

S flun ) 2 a0 3 g |ﬁw+zb >0 Y (sl 1)+ 30
P =1 i,j=1 =1

n n n n
= agn g |uj|5 —agn® + E b; > a0n2_ﬂ‘ E uj) + E b, — agn?, ag = min a;; > 0.
j=1 i=1 j=1 i=1 “J

Hence we have the inequality (9) in which: [y =ly="---=1,=—1, ¢g = aon? E b;, c1 = agn®>=P# > 0.
Note that the vector-function f, represented by the equalities (10), also satlbﬁes the condition (9)
with Iy =lp = --- =1, = —1 for less restrictive conditions when a;; = const > 0, but a;;, > 0, where
ki,...,ky is any fixed permutation of numbers 1,2,...,n.
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