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ÒÄÆÉÖÌÄ. n-ÖÒÉ ÒÉÂÉÓ ÀÒÀÀÅÔÏÍÏÌÉÖÒÉ ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ,
ÒÏÌËÄÁÉÝ ÂÀÒÊÅÄÖËÉ ÀÆÒÉÈ ÀáËÏÓ ÀÒÉÀÍ ßÒ×ÉÅ ÂÀÍÔÏËÄÁÄÁÈÀÍ, ÃÀÃÂÄÍÉËÉÀ ÆÏÂÉÄÒÈÉ
ÊËÀÓÉÓ ÀÌÏÍÀáÓÍÈÀ ÀÓÉÌÐÔÏÔÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ.
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1 Introduction
Consider the differential equation

y(n) = α0p(t)y| ln |y||σ, (1.1)

where α0 ∈ {−1, 1}, σ ∈ R, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞1.
A solution y of the equation (1.1), which is nonzero on the interval [ty, ω[⊂ [a, ω[ , is said to be a

Pω(λ0)-solution if it satisfies the following conditions:

lim
t↑ω

y(k)(t) =

{
either 0,

or ±∞
(k = 0, n− 1), lim

t↑ω

(y(n−1)(t))2

y(n)(t)y(n−2)(t)
= λ0. (1.2)

We notice that the differential equation (1.1) is a special case of the differential equation of a more
general form

y(n) = α0p(t)φ(y),

where α0 and p are the same as in the equation (1.1) and φ : ∆Y0
→ ]0,+∞[ is a continuous and

regularly varying function as y → Y0 of the order γ, Y0 is equal either to zero or to ±∞, ∆Y0
is some

one-sided neighborhood of Y0.
The differential equation (1.1) belongs to the class of two-term non-autonomous equations with

regularly varying nonlinear function φ(y) as y → 0 and y → ±∞. In recent decades, the asymptotic
theory of such equations has been studied by many authors (see, e.g., monograph by V. Maric [8] and
the references therein concerning the second order equation; see also the papers by V. M. Evtukhov,
A. M. Samoilenko [6] and by V. M. Evtukhov, A. M. Klopot [4] for differential equations of order n).

In [6] and [4], for the two-term differential equations of n-th order with regularly varying nonlinear
function φ(y) as y → 0 and y → ±∞, the authors obtained asymptotic representation for all possible
types of Pω(λ0)-solutions and their derivatives up to the order n− 1, inclusive. However, the results
of these works do not cover the case where φ(y) = y| ln |y||σ is a regularly varying function of order
one. By such nonlinearity of the equation (1.1), not being a substantially non-linear, and due to the
asymptotic relation φ(y) = y1+o(1) as y → 0 (±∞), the differential equation is asymptotically close
to the linear differential equation

y(n) = α0p(t)y, (1.3)

and therefore is of theoretical interest.
In [3], for the equation (1.1), the asymptotic behavior of Pω(λ0)-solutions as t ↑ ω was investigated

when λ0 ∈ R \ {0, 1
2 , . . . ,

n−2
n−1}.

The aim of the present paper is to establish the existence conditions of Pω(λ0)-solutions of the
equation (1.1) in case λ0 = 0, and to obtain asymptotic representations as t ↑ ω for all such solutions
and their derivatives up to order n− 1, inclusive.

2 Auxiliary statements
To obtain our main results we need two lemmas, the first one is related to a priori asymptotic properties
of Pω(0)-solutions and the other is about the existence of vanishing at a singular point solutions of a
system of quasi-linear differential equations.

To state the first one, we introduce the function

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞.

From Lemma 10.6 introduced in [2, Ch. 3, § 10, pp. 143–144] we get the following statement.

1We assume that a > 1 for ω = +∞ and ω − a < 1 for ω < +∞.
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Lemma 2.1. If n ≥ 2, then each Pω(0)-solution of the differential equation (1.1) satisfies the following
asymptotic relation as t ↑ ω:

y(k−1)(t) ∼ [πω(t)]
n−k−1

(n− k − 1)!
y(n−2)(t) (k = 1, . . . , n− 2), y(n−1)(t) = o

(y(n−2)(t)

πω(t)

)
, (2.1)

and in case lim
t↑ω

πω(t)y(n)(t)
y(n−1)(t)

(finite or equal to ±∞) exists, the following relation holds:

y(n)(t) ∼ −y(n−1)(t)

πω(t)
as t ↑ ω. (2.2)

Next, we consider a system of quasi-linear differential equations
v′k = h(t)

[
fk(t, v1, . . . , vn) +

n∑
i=1

ckivi

]
(k = 1, n− 1),

v′n = H(t)
[
fn(t, v1, . . . , vn) +

n∑
i=1

cnivi

]
,

(2.3)

in which cki ∈ R (k, i = 1, n), h,H : [t0, ω[→ R \ {0} are continuously differentiable functions, and
fk : [t0, ω[×Rn

1
2

(k = 1, n) are continuous functions satisfying the condition

lim
t↑ω

fk(t, v1, . . . , vn) = 0 uniformly in (v1, . . . , vn) ∈ Rn
1
2
, (2.4)

where
Rn

1
2
=

{
(v1, . . . , vn) ∈ Rn : |vi| ≤

1

2
(i = 1, n)

}
.

By Theorem 2.6 from [5] for the system of differential equations (2.3) the following lemma holds.

Lemma 2.2. Let the functions h and H satisfy the conditions

lim
t↑ω

H(t)

h(t)
= 0,

ω∫
t0

H(τ) dτ = ±∞, lim
t↑ω

1

H(t)

(H(t)

h(t)

)′
= 0.

Moreover, suppose the matrices Cn = (cki)
n
k,i=1 and Cn−1 = (cki)

n−1
k,i=1 are such that detCn ̸= 0 and

Cn−1 has no eigenvalues with zero real part. Then the system of differential equations (2.3) has at
least one solution (vk)

n
k=1 : [t1, ω[ [Rn

1
2

(t1 ∈ [t0, ω[) that tends to zero as t ↑ ω. Furthermore, if among
the eigenvalues of matrix Cn−1 there are m eigenvalues (taking into account the multiplicity) whose
real parts have a sign opposite to that of the function h(t) on the interval [t0, ω[ , then if the inequality
H(t)(detCn)(detCn−1) > 0 holds on [t0, ω[ , there exist m-parameter solutions of the system (2.3),
and there exists an m+ 1-parameter family when the opposite inequality holds.

3 Main results
In order to formulate the main results, let us introduce the following auxiliary functions:

P1(t) =

t∫
A1

p(τ) dτ, P2(t) =

t∫
A2

P1(τ) dτ,

JA(t) =

t∫
A

p(τ)πn−2
ω (τ)| ln |πω(τ)||σ dτ, I(t) =

t∫
a

JA(τ) dτ,
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where

A1 =


a, if

ω∫
a

p(τ) dτ = +∞,

ω, if
ω∫

a

p(τ) dτ < ∞,

A2 =


a, if

ω∫
a

|P1(τ)| dτ = +∞,

ω, if
ω∫

a

|P1(τ)| dτ < ∞.

A =


a, if

ω∫
a

p(τ)|πω(τ)|n−2| ln |πω(τ)||σ dτ = +∞,

ω, if
ω∫

a

p(τ)|πω(τ)|n−2| ln |πω(τ)||σ dτ < +∞.

When n = 2, i.e., in the case of a second order differential equation, the conditions of the existence
and asymptotic behavior of Pω(0)-solutions were obtained in [1].

Theorem 3.1. Let n = 2 and σ ̸= 1, then the differential equation (1.1) has Pω(0)-solutions if and
only if the following conditions hold:

lim
t↑ω

|P2(t)|
1

1−σ = +∞, lim
t↑ω

P 2
1 (t)|P2(t)|

σ
1−σ

p(t)
= 0, (3.1)

Moreover, each of these solutions admits the following asymptotic representations as t ↑ ω:

ln |y(t)| = µ|(1− σ)P2(t)|
1

1−σ [1 + o(1)],
y′(t)

y(t)
= α0P1(t)|(1− σ)P2(t)|

σ
1−σ [1 + o(1)], (3.2)

where µ = α0 sign[(1 − σ)P2(t)]. Furthermore, if the conditions (3.1) are valid, then the differential
equation (1.1) has a one-parametric (two-parametric) family of such solutions in the case where A1 = ω
(A1 = a).

For the case n > 2, the following theorem holds.

Theorem 3.2. Let n ≥ 3 and suppose that

lim
t↑ω

πω(t)J
′
A(t)

JA(t)
(3.3)

exists (finite or equal to ±∞). Then the differential equation (1.1) has Pω(0)-solutions if and only if
the following conditions hold:

lim
t↑ω

πω(t)JA(t) = 0, lim
t↑ω

πω(t)J
′
A(t)

JA(t)
= −1, lim

t↑ω
I(t) = ±∞, (3.4)

and each of these solutions admits the following asymptotic representations as t ↑ ω:

y(k−1)(t)

y(n−2)(t)
=

[πω(t)]
n−k−1

(n− k − 1)!
[1 + o(1)] (k = 1, n− 2), (3.5)

ln |y(n−2)(t)| = α0|n− 2|σ

(n− 2)!
I(t)[1 + o(1)], (3.6)

y(n−1)(t)

y(n−2)(t)
=

α0|n− 2|σ

(n− 2)!
JA(t)[1 + o(1)]. (3.7)

Moreover, when the conditions (3.4) are satisfied, the differential equation (1.1) has an n−1-parametric
family of solutions that admits asymptotic representations (3.5)–(3.7) as t ↑ ω in case ω = +∞, and
it has two-parametric family of solutions with such representations in case ω < +∞.
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Proof. Necessity. Let y : [ty, ω[→ R be an arbitrary Pω(0)-solution of the equation (1.1). Then by
the definition of Pω(λ0)-solution there exists t0 ∈ [ty, ω[ such that ln |y(t)| ̸= 0 on the interval [t0, ω[
and, by Lemma 2.1, the asymptotic relations (2.1) hold. According to the first asymptotic relation of
(2.1), we have the asymptotic representations (3.4) from which, in particular, we get

y(t) ∼ πn−2
ω (t)

(n− 2)!
y(n−2)(t), y′(t) ∼ πn−3

ω (t)

(n− 3)!
y(n−2)(t) as t ↑ ω.

This implies that
y′(t)

y(t)
∼ n− 2

πω(t)
as t ↑ ω

and therefore
ln |y(t)| ∼ (n− 2) ln |πω(t)| as t ↑ ω.

By virtue of these asymptotic relations, from (1.1) we get

y(n)(t) =
α0

(n− 2)!
p(t)πn−2

ω (t)|(n− 2) ln |πω(t)||σy(n−2)(t)[1 + o(1)] as t ↑ ω,

i.e.,
y(n)(t)

y(n−2)(t)
=

α0|n− 2|σp(t)πn−2
ω (t)

(n− 2)!
| ln |πω(t)||σ[1 + o(1)] as t ↑ ω. (3.8)

Since (y(n−1)(t)

y(n−2)(t)

)′
=

y(n)(t)

y(n−2)(t)

[
1− [y(n−1)(t)]2

y(n)(t)y(n−2)(t)

]
and, by the definition of Pω(0)-solution,

lim
t↑ω

[y(n−1)(t)]2

y(n)(t)y(n−2)(t)
= 0,

we have (y(n−1)(t)

y(n−2)(t)

)′
∼ y(n)(t)

y(n−2)(t)
as t ↑ ω.

Therefore, the asymptotic relation (3.8) can be written as(y(n−1)(t)

y(n−2)(t)

)′
=

α0|n− 2|σp(t)πn−2
ω (t)

(n− 2)!
| ln |πω(t)||σ[1 + o(1)] as t ↑ ω.

Integrating this relation from t0 to t, we obtain

y(n−1)(t)

y(n−2)(t)
= c0 +

α0|n− 2|σ

(n− 2)!

t∫
t0

p(τ)πn−2
ω (τ)| ln |πω(τ)||σ[1 + o(1)] dτ, (3.9)

where c0 is a constant, or taking into account the choice of limit integration A in the function JA, we
get

y(n−1)(t)

y(n−2)(t)
= c+

α0|n− 2|σ

(n− 2)!
JA(t)[1 + o(1)] as t ↑ ω,

where

c = c0 +
α0|n− 2|σ

(n− 2)!

A∫
t0

p(τ)πn−2
ω (τ)| ln |πω(τ)||σ[1 + o(1)] dτ.

In the case where A = a, the integral on the right-hand side of (3.9) tends to ±∞ as t ↑ ω, and then
(3.9) can be written as

y(n−1)(t)

y(n−2)(t)
=

α0|n− 2|σ

(n− 2)!
JA(t)[1 + o(1)] as t ↑ ω. (3.10)
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We will show that in case A = ω, when the integral on the right-hand side of (3.9) tends to zero as
t ↑ ω, the relation (3.10) also holds, i.e., c = 0. Indeed, if c ̸= 0, then from (3.9) we have

y(n−1)(t)

y(n−2)(t)
= c+ o(1) as t ↑ ω.

This representation for ω = +∞ (i.e., πω(t) = t) contradicts the last relation of (2.1), and if ω < +∞,
by integration we obtain

ln |y(n−2)(t)| = c1 + o(1) as t ↑ ω (c1 = const),

which is in contradiction with the first condition of (2.1) (when k = n− 2).
Therefore, in each of two possible cases under consideration the asymptotic relation (3.10) holds,

that is, (3.7) holds, and by the use of the last asymptotic relation of (2.1), the first condition of (3.4)
is satisfied.

Moreover, from (3.10) and (3.8) it follows that

y(n)(t)

y(n−1)(t)
=

J ′
A(t)

JA(t)
[1 + o(1)] as t ↑ ω.

Then
πω(t)y

(n)(t)

y(n−1)(t)
=

πω(t)J
′
A(t)

JA(t)
[1 + o(1)] as t ↑ ω (3.11)

and, by virtue of the existence of the limit (3.3) (finite or equal to ±∞) and using Lemma 2.1, we
conclude that (2.2) holds, whereby from (3.11) follows the validity of the second condition of (3.4).

Finally, integrating (3.10) from t0 to t we get

ln |y(n−2)(t)| = c+
α0|n− 2|σ

(n− 2)!

t∫
t0

JA(τ)[1 + o(1)] dτ.

Since, by the definition of Pω(0)-solutions, lim
t↑ω

ln |y(n−2)(t)| = ±∞, the third condition of (3.4) is
fulfilled and it can be written as (3.6).

Sufficiency. Let n ≥ 3 and the conditions (3.4) hold. We will show that in this case the differential
equation (1.1) has Pω(0)-solutions admitting asymptotic representations (3.5)–(3.7) as t ↑ ω, and we
find out the quantities of solutions with such representations.

Since
πω(t)JA(t) =

πω(t)JA(t)

I(t)
I(t),

from the conditions (3.4) we get

lim
t↑ω

πω(t)JA(t)

I(t)
= 0. (3.12)

Moreover, by the L’Hospital rule,

lim
t↑ω

I(t)

ln |πω(t)|
= lim

t↑ω
πω(t)JA(t) = 0. (3.13)

Applying now to the equation (1.1) transformations

y(k−1)(t)

y(n−2)(t)
=

[πω(t)]
n−k−1

(n− k − 1)!
[1 + vk(t)] (k = 1, n− 2),

y(n−1)(t)

y(n−2)(t)
=

α0|n− 2|σ

(n− 2)!
JA(t)[1 + vn−1(t)],

ln |y(n−2)(t)| = α0|n− 2|σ

(n− 2)!
I(t)[1 + vn(t)],

(3.14)
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we obtain the system of differential equations

v′k =
n− k − 1

πω(t)
(vk+1 − vk)−

α0|n− 2|σ

(n− 2)!
JA(t)(1 + vk)(1 + vn−1) (k = 1, n− 3),

v′n−2 = − vn−2

πω(t)
− α0|n− 2|σ

(n− 2)!
JA(t)(1 + vn−2)(1 + vn−1),

v′n−1 = −J ′
A(t)

JA(t)
(1 + vn−1)−

α0|n− 2|σ

(n− 2)!
JA(t)(1 + vn−1)

2

+
J ′
A(t)

JA(t)
(1 + v1)

| ln |π
n−2
ω (t)
(n−2)! (1 + v1)||σ

|n− 2|σ| ln |πω(t)||σ
∣∣∣1 + α0|n− 2|σ

(n− 2)!

I(t)(1 + vn)

ln |π
n−2
ω (t)
(n−2)! (1 + v1)|

∣∣∣σ,
v′n =

JA(t)

I(t)
(1 + vn−1)−

JA(t)

I(t)
(1 + vn).

We set

h(t) =
1

πω(t)
, H(t) =

JA(t)

I(t)
,

δ1(t) =
α0|n− 2|σ

(n− 2)!
πω(t)JA(t), δ2(t) =

πω(t)J
′
A(t)

JA(t)
+ 1,

δ3(t) =
α0|n− 2|σ

(n− 2)!(n− 2)

I(t)

ln |πω(t)|
, δ4(t, v1) =

ln | 1+v1
(n−2)! |

(n− 2) ln |πω(t)|
,

and rewrite this system in the form
v′k = h(t)

[
fk(t, v1, . . . , vn)− (n− k − 1)vk + (n− k − 1)vk+1

]
(k = 1, n− 3),

v′n−2 = h(t)
[
fn−2(t, v1, . . . , vn)− vn−2

]
,

v′n−1 = h(t)[fn−1(t, v1, . . . , vn)− v1 + vn−1],

v′n = H(t)[vn−1 − vn],

(3.15)

where

fk(t, v1, . . . , vn) = δ2(t)(1 + vk)(1 + vn−1) (k = 1, n− 3),

fn−2(t, v1, . . . , vn) = δ1(t)(1 + vn−1)
2 − δ2(t)(1 + vn−1),

fn−1(t, v1, . . . , vn) = δ1(t)(1 + vn−1)(1 + vn−1)− δ2(t)(1 + vn−1)

+ (1 + v1)
[
1 +

πω(t)J
′
A(t)

JA(t)
|1 + δ4(t, v1)|σ

∣∣∣1 + δ3(t)(1 + vn)

1 + δ4(t, v1)

∣∣∣σ].
Here, by the conditions (3.4) and (3.13),

lim
t↑ω

δi(t) = 0 (i = 1, 2, 3) (3.16)

and
lim
t↑ω

δ4(t, v1) = 0 uniformly in v1 ∈
[
− 1

2
,
1

2

]
. (3.17)

Taking into account these limit relations, we choose a number t0 ∈ ]a, ω[ such that for t ∈ [t0, ω[ and
|v1| ≤ 1

2 , |vn| ≤ 1
2 the inequalities

|δ4(t, v1)| ≤
1

2
,

∣∣∣δ3(t)(1 + vn)

1 + δ4(t, v1)

∣∣∣ ≤ 1

2

hold. Next, we consider the system (3.15) on the set

Ω = [t0, ω[×Rn
1
2
, where Rn

1
2
=

{
(v1, . . . , vn) ∈ Rn : |vi| ≤

1

2
, i = 1, n

}
.
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The right-hand sides of (3.15) are continuous on this set, the functions h, H are continuously differ-
entiable on the interval [t0, ω[, and by the conditions (3.16), (3.17),

lim
t↑ω

fk(t, v1, . . . , vn) = 0 uniformly in (v1, . . . , vn) ∈ Rn
1
2
.

Hence, the system of differential equations (3.15) is a quasilinear system of differential equations of
the type (2.3).

We show that for (3.15) all conditions of Lemma 2.2 are satisfied.
By virtue of the definition of functions I and JA,

t∫
t0

H(τ) dτ ∼ ln |JA(t)| −→ ±∞ as t ↑ ω.

Moreover,
H(t)

h(t)
=

πω(t)JA(t)

I(t)
,

1

H(t)

(H(t)

h(t)

)′
= 1 +

πω(t)J
′
A(t)

JA(t)
− πω(t)JA(t)

I(t)

and therefore, in view of the second conditions of (3.4) and (3.12), we obtain

lim
t↑ω

H(t)

h(t)
= 0, lim

t↑ω

1

H(t)

(H(t)

h(t)

)′
= 0.

Thus the conditions (2.4) of Lemma 2.2 are satisfied for the system (3.15).
The matrices Cn−1 and Cn of dimension (n− 1)× (n− 1) and n× n (respectively) from Lemma

2.2, in the case of the system of differential equations (3.15), have the form

Cn−1 =



−(n− 2) n− 2 0 . . . 0 0 0
0 −(n− 3) n− 3 . . . 0 0 0
0 0 −(n− 4) . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . −2 2 0
0 0 0 . . . 0 −1 0
−1 0 0 . . . 0 0 1


, Cn =

(
Cn−1 0n−1

en−1 −1

)
,

where 0n−1 is a zero column vector of dimension n − 1 and en−1 is a unit row vector of dimension
n− 1 with the last component equal to one.

These matrices are such that

detCn−1 = (−1)n−2(n− 2)!, detCn = (−1)n−1(n− 2)!

and
det[Cn−1 − ρEn−1] = (−1)n−1(ρ+ n− 2)(ρ+ n− 3) · · · (ρ+ 1)(ρ− 1),

where En−1 is the identity matrix of dimension (n − 1) × (n − 1). Hence, in particular, we get that
the matrix Cn−1 has n−1 nonzero real eigenvalues from which n−2 are negative and one is positive.

Thus, for (3.15) the conditions of Lemma 2.2 are satisfied. According to this lemma, (3.15) has at
least one solution (vk)

n
k=1 : [t1, ω[→ Rn (t1 ∈ [t0, ω[), which tends to zero as t ↑ ω. Moreover, among

the eigenvalues of the matrix Cn−1 we have n− 2 positive and one negative, and detCn detCn−1 < 0.
By Lemma 2.2, if the inequality h(t) > 0 (resp., h(t) < 0) holds on the interval [t0, ω[ , then (3.15)
has (n− 2)-parametric (resp., one-parametric) family of solutions vanishing at ω in case H(t) < 0 on
[t0, ω[, and n− 1-parametric (resp., two-parametric) family of solutions in case H(t) > 0 on [t0, ω[ .

For the final conclusion on a number of vanishing solutions, as t ↑ ω, of the system (3.15) it is
necessary to determine the signs of functions h and H on [t0, ω[ .

Since h(t) = π−1
ω (t), by the definition of πω we have

signh(t) =

{
1 if ω = +∞,

−1 if ω < +∞.
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For the function H, according to the definition of I we have

H(t) =
JA(t)

I(t)
=

|JA(t)|∫ t

a
|JA(τ)| dτ

> 0 if t ∈ [t0, ω[ .

Using the obtained sign conditions for the functions h and H, we arrive at the following final conclusions
about a number of vanishing solutions as t ↑ ω for the system of differential equations (3.15):

(1) if ω = +∞, then the system of differential equations (3.15) has n − 1-parametric family of
vanishing solutions as t → +∞;

(2) if ω < +∞, then the system of differential equations (3.15) has two-parametric family of van-
ishing solutions as t ↑ ω.

Using the substitution (3.14), every solution (vk)
n
k=1 : [t1, ω[→ Rn of (3.15) which tends to zero

corresponds to a solution y : [t1, ω[→ R of the differential equation (1.1) which admits as t ↑ ω the
asymptotic representations (3.5)–(3.7). Using these representations and the condition (3.4), it is not
difficult to see that each such solution is Pω(

n−i−1
n−i )-solution of (1.1).

Remark 3.3. When checking the fulfillment of the conditions (3.4), we may consider that owing to
the first of these conditions, the second and third conditions are equivalent, respectively, to

lim
t↑ω

p(t)πn
ω(t)| ln |πω(t)||σ = 0 and

ω∫
a

p(t)|πω(t)|n−1| ln |πω(t)||σ dt = +∞.

Finally, pay attention to the fact that Theorem 3.2 covers the case σ = 0, that is, when the
equation (1.1) is a linear differential equation of the form (1.3).

For (1.3), by Theorem 3.2 and with regard for Remark 3.3, the following corollary holds.

Corollary 3.4. Let n ≥ 3 and suppose that the limit (3.3) exists (finite or equal to ±∞). Then the
linear differential equation (1.3) has Pω(0)-solutions if and only if the following conditions hold:

lim
t↑ω

πn−1
ω (t)p(t)

t∫
A

πn−2
ω (τ)p(τ) dτ

= −1,

ω∫
a

|πω(τ)|n−1p(τ) dτ = +∞, lim
t↑ω

πn
ω(t)p(t) = 0, (3.18)

and for each such solution the following asymptotic representations take place as t ↑ ω:

y(k−1)(t)

y(n−2)(t)
=

[πω(t)]
n−k−1

(n− k − 1)!
[1 + o(1)] (k = 1, n− 2), (3.19)

ln |y(n−2)(t)| = − α0

(n− 2)!

t∫
a

p(τ)πn−1
ω (τ) dτ [1 + o(1)], (3.20)

y(n−1)(t)

y(n−2)(t)
= − α0

(n− 2)!
p(t)πn−1

ω (t)[1 + o(1)]. (3.21)

Moreover, when the conditions (3.18) are satisfied, the differential equation (1.3) has n− 1-parametric
family of Pω(0)-solutions with the representations (3.19)–(3.21) in case ω = +∞, and in case ω < ∞
(1.3) has two-parametric family.

This corollary in case ω = +∞ complements the results for linear differential equations with
asymptotically small coefficients given in [7, Ch. 1, Section 6, pp. 184–186].
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GRAND CONFLUENT HYPERGEOMETRIC FUNCTION
APPLYING REVERSIBLE THREE-TERM RECURRENCE FORMULA



Abstract. In this paper, by applying a reversible three-term recurrence formula (R3TRF) (see [13,
Chapter 1]), we construct:

(1) power series expansions in closed forms of the grand confluent hypergeometric (GCH) equation,

(2) its integral forms for an infinite series and a polynomial which makes the leading non-constant
coefficient on the RHS of the recurrence relation terminated,

(3) generating functions for GCH polynomials which makes the leading coefficient on the RHS
terminated.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÛÄØÝÄÅÀÃÉ ÓÀÌßÄÅÒÀ ÒÄÊÖÒÄÍÔÖËÉ ×ÏÒÌÖËÉÓ (R3TRF) (Éá. [13, Chap-
ter 1]) ÂÀÌÏÚÄÍÄÁÉÈ ÀÂÄÁÖËÉÀ:

(1) GCH ÂÀÍÔÏËÄÁÉÓ ßÀÒÌÏÃÂÄÍÀ áÀÒÉÓáÏÅÀÍÉ ÌßÊÒÉÅÉÓ ÓÀáÉÈ;

(2) ÉÍÔÄÂÒÀËÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ;

(3) GCH ÐÏËÉÍÏÌÈÀ ÌÀßÀÒÌÏÄÁÄËÉ ×ÖÍØÝÉÄÁÉ.
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1 Introduction

The equation

x
d2y

dx2
+ (µx2 + εx+ ν)

dy

dx
+ (Ωx+ εω)y = 0 (1.1)

is the grand confluent hypergeometric (GCH) differential equation where µ, ε, ν, Ω and ω are real
or complex parameters [9, 11]. The GCH ordinary differential equation is of Fuchsian types with
two singular points: one regular singular point which is zero with exponents {0, 1 − ν}, and another
irregular singular point which is infinity with an exponent Ω/µ. In contrast, the Heun equation
of Fuchsian types has four regular singularities. The Heun equation has four kinds of confluent
forms [20]: (1) confluent Heun (two regular and one irregular singularities), (2) doubly confluent
Heun (two irregular singularities), (3) biconfluent Heun (one regular and one irregular singularities),
(4) triconfluent Heun equations (one irregular singularity).

The BCH equation is derived from the GCH equation by changing all coefficients∗ [36]. The GCH
(or BCH) equation is applicable in the modern physics [1,21,22,35,37]. The BCH equation appears in
the radial Schrödinger equation with those potentials such as the rotating harmonic oscillator [30], the
doubly anharmonic oscillator [6,7,23], a three-dimensional anharmonic oscillator [17,18,23], Coulomb
potential with a linear confining potential [23, 34] and other kinds of potentials [24,25].

The fundamental solutions of the BCH equation for an infinite series and the BCH spectral
polynomials about x = 0 in the canonical form were obtained by applying the power series expan-
sion [2,15,19,39]. For the case of the irregular singular point x = ∞, the three-term recurrence of the
power series in the BCH equation was derived [26,31], and the analytic solution of the BCH equation
was left as solutions of recurrences due to a 3-term recursive relation between successive coefficients in
its power series expansion of the BCH equation.† In comparison with the two term recursion relation
of the power series in a linear differential equation, analytic solutions in closed forms on the three-term
recurrence relation of the power series are unknown currently because of their complex mathematical
calculations.

As is known, there are no examples for analytic solutions of the BCH equation about x = 0
and x = ∞ in the form of definite or contour integrals containing the well-known special functions
such as 2F1 or 1F1, consisting of two-term recursion relation in their power series of linear differential
equations. In place of describing the integral representation of the BCH equation involving only simple
functions, especially for confluent hypergeometric functions, the BCH equation is obtained by means
of Fredholm-type integral equations; such integral relationships express one analytic solution in terms
of another analytic solution [3–5,8, 27–29].

2 The GCH equation about a regular singular point at zero

Assume that the solution of (1.1) is

y(x) =

∞∑
n=0

cnx
n+λ, (2.1)

where λ is an indicial root. Substitute (2.1) into (1.1). We obtain a three-term recurrence relation for
the coefficients cn:

cn+1 = Ancn +Bncn−1, n ≥ 1, (2.2)

∗For the canonical form of the BCH equation [36], replace µ, ε, ν, Ω and ω by −2, −β, 1 + α, γ − α − 2 and
1/2(δ/β + 1 + α) in (1.1). For DLFM version ( [32] or [38]), replace µ and ω by 1 and −q/ε in (1.1).

†For the special case, the explicit solutions of the BCH equation in the canonical form was constructed when one of
the coefficients β = 0 [16].
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where

An =
−ε(n+ ω + λ)

(n+ 1 + λ)(n+ ν + λ)
, (2.3a)

Bn = − Ω+ µ(n− 1 + λ)

(n+ 1 + λ)(n+ ν + λ)
, (2.3b)

c1 = A0c0. (2.3c)

We have two indicial roots which are λ = 0 and 1− ν.

2.1 Power series
2.1.1 Polynomial of type 2

By putting a power series y(x) =
∞∑

n=0
cnx

n+λ into a linear ordinary differential equation (ODE), the

recurrence relation between successive coefficients starts to appear. In general, the recurrence relation
for a 3-term is given by (2.2) where c1 = A0c0 and c0 ̸= 0. As is known, there are two types of power
series expansions for the two-term recurrence relation in a linear ODE such as a polynomial and an
infinite series. In contrast, there are an infinite series and three types of polynomials in the three term
recurrence relation of a linear ODE:

(1) polynomial which makes Bn term terminated: An term is not terminated, designated as ‘a
polynomial of type 1’,

(2) polynomial which makes An term terminated: Bn term is not terminated, denominated as ‘a
polynomial of type 2’,

(3) polynomial which makes An and Bn terms terminated simultaneously.

For n = 0, 1, 2, 3, . . . in (2.2), the sequence cn is expanded to combinations of An and Bn terms.
It is suggested that a sub-power series yl(x), where l ∈ N0, is constructed by observing the term of
sequence cn which includes l terms of A′

ns [10]. The power series solution is described by sums of
each yl(x) such as y(x) =

∞∑
n=0

yn(x). By allowing for An in the sequence cn to be the leading term

of each sub-power series yl(x), the general summation formulas of the 3-term recurrence relation in a
linear ODE are constructed for an infinite series and a polynomial of type 1, designated as ‘three-term
recurrence formula (3TRF)’.

Similarly, by allowing for Bn in the sequence cn to be the leading term of each sub-power series
in a function y(x) [13, Chapter 1], we have obtained the general summation formulas of the 3-term
recurrence relation in a linear ODE for an infinite series and a polynomial of type 2: the term of the
sequence cn which includes zero term of Bn’s, one term of Bn’s, two terms of Bn’s, three terms of
Bn’s, etc. is observed. These general summation expressions are denominated as ‘reversible three-
term recurrence formula (R3TRF)’.

In general, the GCH polynomial is defined as type 3 polynomial whereAn andBn terms terminated.
For the type 3 GCH polynomial about x = 0, it has a fixed integer value of Ω, just as it has a fixed
value of ω. In the three-term recurrence relation, a polynomial of type 3 is categorized as a complete
polynomial. In Chapters 9 and 10 of [14], general solutions in series for the GCH polynomial of type 3
around x = 0 and x = ∞ are constructed.

For type 1, the GCH polynomial about x = 0, µ, ε, ν and ω are treated as free variables and Ω as
a fixed value. In [11,12], the analytic solutions of the GCH equation about the regular singular point
at x = 0 are constructed by applying the three-term recurrence formula (3TRF) [10]:

(1) power series expansions in closed forms for an infinite series and a polynomial of type 1,

(2) their integral forms,

(3) generating functions for GCH polynomials of type 1.
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Four examples of the analytic wave functions and their eigenvalues in the radial Schrödinger
equation with certain potentials are presented:

(1) Schrödinger equation with the rotating harmonic oscillator and a class of confinement potentials,

(2) the spin free Hamiltonian involving only scalar potential for the q − q̄ system,

(3) the radial Schrödinger equation with confinement potentials,

(4) two interacting electrons in a uniform magnetic field and a parabolic potential.

The Frobenius solutions in closed forms and their combined definite and contour integrals of these
four quantum mechanical wave functions are derived analytically.

For the GCH polynomial of type 2 about x = 0, µ, ε, ν and Ω are treated as free variables and ω
as a fixed value. In this paper, by applying R3TRF in Chapter 1 of [13], the power series expansions
are constructed in closed forms of the GCH equation about the regular singular point at x = 0 for
an infinite series and a polynomial of type 2. The integral forms of the GCH equation and their
generating functions for GCH polynomials of type 2 are derived analytically. Also, the Frobenius
solutions of the GCH equation about the irregular singular point at x = ∞ by applying 3TRF [10] are
obtained analytically including their integral representations and generating functions for the GCH
polynomials of type 1.

In Chapter 1 of [13], the general expression of a power series of y(x) for a polynomial of type 2 is
defined by

y(x) =

∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + y3(x) + · · ·

= c0x
λ

{
α0∑

i0=0

( i0−1∏
i1=0

Ai1

)
xi0 +

α0∑
i0=0

{
Bi0+1

i0−1∏
i1=0

Ai1

α1∑
i2=i0

( i2−1∏
i3=i0

Ai3+2

)}
xi2+2

+

∞∑
N=2

{
α0∑

i0=0

{
Bi0+1

i0−1∏
i1=0

Ai1

N−1∏
k=1

( αk∑
i2k=i2(k−1)

Bi2k+2k+1

i2k−1∏
i2k+1=i2(k−1)

Ai2k+1+2k

)

×
αN∑

i2N=i2(N−1)

( i2N−1∏
i2N+1=i2(N−1)

Ai2N+1+2N

)}}
xi2N+2N

}
. (2.4)

Here αi ≤ αj only if i ≤ j, where i, j, αi, αj ∈ N0.
For a polynomial, we need the condition

Aαi+2i = 0 where i, αi = 0, 1, 2, . . . . (2.5)

In this paper, the Pochhammer symbol (x)n is used to represent the rising factorial: (x)n = Γ(x+n)
Γ(x) .

In the above, αi is an eigenvalue that makes An term terminated at certain value of the index n. (2.5)
makes each yi(x) where i = 0, 1, 2, . . . as the polynomial in (2.4). Replace αi by ωi in (2.5) and put
n = ωi + 2i in (2.3a) with the condition Aωi+2i = 0. Then we obtain eigenvalues ω such that

ω = −(ωi + 2i+ λ).

In (2.3a), we replace ω by −(ωi + 2i + λ) and insert it and (2.3b) in (2.4), where the index αi is
replaced by ωi. After the replacement process, the general expression of a power series of the GCH
equation for a polynomial of type 2 is given by

y(x) =

∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + y3(x) + · · ·

= c0x
λ

{
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

ηi0 +

{ ω0∑
i0=0

(i0 +Ω/µ+ λ)

(i0 + 2 + λ)(i0 + 1 + ν + λ)

(−ω0)i0
(1 + λ)i0(ν + λ)i0
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×
ω1∑

i1=i0

(−ω1)i1(3 + λ)i0(2 + ν + λ)i0
(−ω1)i0(3 + λ)i1(2 + ν + λ)i1

ηi1
}
ρ

+

∞∑
n=2

{
ω0∑

i0=0

(i0 +Ω/µ+ λ)

(i0 + 2 + λ)(i0 + 1 + ν + λ)

(−ω0)i0
(1 + λ)i0(ν + λ)i0

×
n−1∏
k=1

{ ωk∑
ik=ik−1

(ik + 2k +Ω/µ+ λ)

(ik + 2k + 2 + λ)(ik + 2k + 1 + ν + λ)

×
(−ωk)ik(2k + 1 + λ)ik−1

(2k + ν + λ)ik−1

(−ωk)ik−1
(2k + 1 + λ)ik(2k + ν + λ)ik

}
×

ωn∑
in=in−1

(−ωn)in(2n+ 1 + λ)in−1(2n+ ν + λ)in−1

(−ωn)in−1(2n+ 1 + λ)in(2n+ ν + λ)in
ηin

}
ρn

}
, (2.6)

where 
η = −εx,
ρ = −µx2,
ω = −(ωj + 2j + λ) as j, ωj ∈ N0,

ωi ≤ ωj only if i ≤ j where i, j ∈ N0.

Put c0 = 1 as λ = 0 for the first kind of independent solution of the GCH equation and as λ = 1− ν
for the second one in (2.6).

Remark 2.1. The power series expansion of the first kind GCH equation for a polynomial of type 2
about x = 0 as ω = −(ωj + 2j), where j, ωj ∈ N0, is

y(x) = QWR
ωj

(
µ, ε, ν,Ω, ω = −(ωj + 2j); ρ = −µx2, η = −εx

)
=

ω0∑
i0=0

(−ω0)i0
(1)i0(ν)i0

ηi0 +

{ ω0∑
i0=0

(i0 +Ω/µ)

(i0 + 2)(i0 + 1 + ν)

(−ω0)i0
(1)i0(ν)i0

ω1∑
i1=i0

(−ω1)i1(3)i0(2 + ν)i0
(−ω1)i0(3)i1(2 + ν)i1

ηi1
}
ρ

+

∞∑
n=2

{
ω0∑

i0=0

(i0 +Ω/µ)

(i0 + 2)(i0 + 1 + ν)

(−ω0)i0
(1)i0(ν)i0

×
n−1∏
k=1

{ ωk∑
ik=ik−1

(ik + 2k +Ω/µ)

(ik + 2k + 2)(ik + 2k + 1 + ν)

(−ωk)ik(2k + 1)ik−1
(2k + ν)ik−1

(−ωk)ik−1
(2k + 1)ik(2k + ν)ik

}

×
ωn∑

in=in−1

(−ωn)in(2n+ 1)in−1
(2n+ ν)in−1

(−ωn)in−1(2n+ 1)in(2n+ ν)in
ηin

}
ρn. (2.7)

For the minimum value of the first kind GCH equation for a polynomial of type 2 around x = 0,
we put ω0 = ω1 = ω2 = · · · = 0 in (2.7).

y(x) = QWR
0

(
µ, ε, ν,Ω, ω = −2j; ρ = −µx2, η = −εx

)
= 1F1

( Ω

2µ
,
ν

2
+

1

2
,−1

2
µx2

)
, where −∞ < x <∞.

As in the above, 1F1(a, b, x) =
∞∑

n=0

(a)n
(b)n

xn

n! .

Remark 2.2. The power series expansion of the second kind GCH equation for a polynomial of type
2 about x = 0 as ω = −(ωj + 2j + 1− ν), where j, ωj ∈ N0, is

y(x) = RWR
ωj

(
µ, ε, ν,Ω, ω = −(ωj + 2j + 1− ν); ρ = −µx2, η = −εx

)
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= x1−ν

{
ω0∑

i0=0

(−ω0)i0
(2− ν)i0(1)i0

ηi0

+

{ ω0∑
i0=0

(i0 + 1 + Ω/µ− ν)

(i0 + 3− ν)(i0 + 2)

(−ω0)i0
(2− ν)i0(1)i0

ω1∑
i1=i0

(−ω1)i1(4− ν)i0(3)i0
(−ω1)i0(4− ν)i1(3)i1

ηi1
}
ρ

+

∞∑
n=2

{
ω0∑

i0=0

(i0 + 1 + Ω/µ− ν)

(i0 + 3− ν)(i0 + 2)

(−ω0)i0
(2− ν)i0(1)i0

×
n−1∏
k=1

{ ωk∑
ik=ik−1

(ik + 2k + 1 + Ω/µ− ν)

(ik + 2k + 3− ν)(ik + 2k + 2)

(−ωk)ik(2k + 2− ν)ik−1
(2k + 1)ik−1

(−ωk)ik−1
(2k + 2− ν)ik(2k + 1)ik

}

×
ωn∑

in=in−1

(−ωn)in(2n+ 2− ν)in−1(2n+ 1)in−1

(−ωn)in−1(2n+ 2− ν)in(2n+ 1)in
ηin

}
ρn

}
. (2.8)

For the minimum value of the second kind GCH equation, for a polynomial of type 2 about x = 0,
we put ω0 = ω1 = ω2 = · · · = 0 in (2.8).

y(x) = RWR
0

(
µ, ε, ν,Ω, ω = −(2j + 1− ν); ρ = −µx2, η = −εx

)
= x1−ν

1F1

( Ω

2µ
− ν

2
+

1

2
,−ν

2
+

3

2
,−1

2
µx2

)
, where −∞ < x <∞.

In [11,12], Ω is treated as a fixed value and µ, ε, ν, ω are treated as free variables to construct the GCH
polynomials of type 1 around x = 0: (1) if Ω = −µ(2βj + j), where j, βj ∈ N0, an analytic solution of
the GCH equation turns to be the first kind of independent solution of the GCH polynomial of type
1; (2) if Ω = −µ(2ψj + j + 1 − ν) where j, ψj ∈ N0, an analytic solution of the GCH equation turns
to be the second kind of independent solution of the GCH polynomial of type 1.

In this paper, ω is treated as a fixed value and µ, ε, ν, Ω are treated as free variables to construct
the GCH polynomials of type 2 around x = 0: (1) if ω = −(ωj + 2j), where j, ωj ∈ N0, an analytic
solution of the GCH equation turns to be the first kind of independent solution of the GCH polynomial
of type 2; (2) if ω = −(ωj + 2j + 1 − ν), the analytic solution of the GCH equation turns to be the
second kind of independent solution of the GCH polynomial of type 2.

2.1.2 Infinite series

In Chapter 1 of [13], the general expression of a power series of y(x) for an infinite series is defined by

y(x) =

∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + y3(x) + · · ·

= c0x
λ

{ ∞∑
i0=0

( i0−1∏
i1=0

Ai1

)
xi0 +

∞∑
i0=0

{
Bi0+1

i0−1∏
i1=0

Ai1

∞∑
i2=i0

( i2−1∏
i3=i0

Ai3+2

)}
xi2+2

+

∞∑
N=2

{ ∞∑
i0=0

{
Bi0+1

i0−1∏
i1=0

Ai1

N−1∏
k=1

( ∞∑
i2k=i2(k−1)

Bi2k+2k+1

i2k−1∏
i2k+1=i2(k−1)

Ai2k+1+2k

)

×
∞∑

i2N=i2(N−1)

( i2N−1∏
i2N+1=i2(N−1)

Ai2N+1+2N

)}}
xi2N+2N

}
. (2.9)

Substitute (2.3a)–(2.3c) into (2.9). The general expression of a power series of the GCH equation for
an infinite series about x = 0 is given by

y(x) =

∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + y3(x) + · · ·
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= c0x
λ

{ ∞∑
i0=0

(ω + λ)i0
(1 + λ)i0(ν + λ)i0

ηi0 +

{ ∞∑
i0=0

Ξ(i0)(ω + λ)i0
(1 + λ)i0(ν + λ)i0

×
∞∑

i1=i0

(ω + 2 + λ)i1(3 + λ)i0(2 + ν + λ)i0
(ω + 2 + λ)i0(3 + λ)i1(2 + ν + λ)i1

ηi1
}
ρ

+

∞∑
n=2

{ ∞∑
i0=0

Ξ(i0)(ω + λ)i0
(1 + λ)i0(ν + λ)i0

×
n−1∏
k=1

{ ∞∑
ik=ik−1

Ξ(ik)(ω + 2k + λ)ik(2k + 1 + λ)ik−1
(2k + ν + λ)ik−1

(ω + 2k + λ)ik−1
(2k + 1 + λ)ik−1

(2k + ν + λ)ik

}

×
∞∑

in=in−1

(ω + 2n+ λ)in(2n+ 1 + λ)in−1
(2n+ ν + λ)in−1

(ω + 2n+ λ)in−1
(2n+ 1 + λ)in−1

(2n+ ν + λ)in
ηin

}
ρn

}
, (2.10)

where 
Ξ(i0) =

(i0 +Ω/µ+ λ)

(i0 + 2 + λ)(i0 + 1 + ν + λ)
,

Ξ(ik) =
(ik + 2k +Ω/µ+ λ)

(ik + 2k + 2 + λ)(ik + 2k + 1 + ν + λ)
.

Put c0= 1 as λ = 0 for the first kind of independent solution of the GCH equation and as λ = 1− ν
for the second one in (2.10).

Remark 2.3. The power series expansion of the GCH equation of the first kind for an infinite series
about x = 0 using R3TRF is

y(x) = QWR
(
µ, ε, ν,Ω, ω; ρ = −µx2, η = −εx

)
=

∞∑
i0=0

(ω)i0
(1)i0(ν)i0

ηi0 +

{ ∞∑
i0=0

(i0 +Ω/µ)

(i0 + 2)(i0 + 1 + ν)

(ω)i0
(1)i0(ν)i0

∞∑
i1=i0

(ω + 2)i1(3)i0(2 + ν)i0
(ω + 2)i0(3)i1(2 + ν)i1

ηi1
}
ρ

+

∞∑
n=2

{ ∞∑
i0=0

(i0 +Ω/µ)

(i0 + 2)(i0 + 1 + ν)

(ω)i0
(1)i0(ν)i0

×
n−1∏
k=1

{ ∞∑
ik=ik−1

(ik + 2k +Ω/µ)

(ik + 2k + 2)(ik + 2k + 1 + ν)

(ω + 2k)ik(2k + 1)ik−1
(2k + ν)ik−1

(ω + 2k)ik−1
(2k + 1)ik−1

(2k + ν)ik

}

×
∞∑

in=in−1

(ω + 2n)in(2n+ 1)in−1
(2n+ ν)in−1

(ω + 2n)in−1
(2n+ 1)in−1

(2n+ ν)in
ηin

}
ρn. (2.11)

Remark 2.4. The power series expansion of the GCH equation of the second kind for an infinite
series about x = 0 using R3TRF is

y(x) = RWR
(
µ, ε, ν,Ω, ω; ρ = −µx2, η = −εx

)
= x1−ν

{ ∞∑
i0=0

(ω + 1− ν)i0
(2− ν)i0(1)i0

ηi0

+

{ ∞∑
i0=0

(i0 + 1 + Ω/µ− ν)

(i0 + 3− ν)(i0 + 2)

(ω + 1− ν)i0
(2− ν)i0(1)i0

∞∑
i1=i0

(ω + 3− ν)i1(4− ν)i0(3)i0
(ω + 3− ν)i0(4− ν)i1(3)i1

ηi1
}
ρ

+

∞∑
n=2

{ ∞∑
i0=0

(i0 + 1 + Ω/µ− ν)

(i0 + 3− ν)(i0 + 2)

(ω + 1− ν)i0
(2− ν)i0(1)i0

×
n−1∏
k=1

{ ∞∑
ik=ik−1

(ik + 2k + 1 + Ω/µ− ν)

(ik + 2k + 3− ν)(ik + 2k + 2)
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×
(ω + 2k + 1− ν)ik(2k + 2− ν)ik−1

(2k + 1)ik−1

(ω + 2k + 1− ν)ik−1
(2k + 2− ν)ik−1

(2k + 1)ik

}
×

∞∑
in=in−1

(ω + 2n+ 1− ν)in(2n+ 2− ν)in−1(2n+ 1)in−1

(ω + 2n+ 1− ν)in−1(2n+ 2− ν)in−1(2n+ 1)in
ηin

}
ρn

}
. (2.12)

It is required that ν ̸= 0,−1,−2, . . . for the first kind of independent solutions of the GCH equation
for an infinite series and a polynomial. But if it is not the case, its solutions will be divergent. And it
is required that ν ̸= 2, 3, 4, . . . for the second kind of independent solutions of the GCH equation for
all cases.

Infinite series in this paper are equivalent to those in [11,12]. In this paper, Bn is the leading term
in the sequence cn of analytic function y(x). In [11, 12], An is the leading term in the sequence cn of
analytic function y(x).∗

2.2 Integral representation
2.2.1 Polynomial of type 2

Now I consider the combined definite and contour integral representation of the GCH equation by
using R3TRF. There is a generalized hypergeometric function such as

Il =

ωl∑
il=il−1

(−ωl)il(2l + 1 + λ)il−1
(2l + ν + λ)il−1

(−ωl)il−1
(2l + 1 + λ)il(2l + ν + λ)il

ηil

=

∞∑
j=0

B1,jB2,j(il−1 − ωl)jη
il−1

(il−1 + 2l + λ)−1(il−1 + 2l − 1 + ν + λ)−1(1)j j!
ηj . (2.13)

By using integral form of the beta function,

B1,j = B(il−1 + 2l + λ, j + 1) =

1∫
0

dtl t
il−1+2l−1+λ
l (1− tl)

j , (2.14a)

B2,j = B(il−1 + 2l − 1 + ν + λ, j + 1) =

1∫
0

dul u
il−1+2l−2+ν+λ
l (1− ul)

j . (2.14b)

Substitute (2.14a) and (2.14b) into (2.13) and the result divide by (il−1+2l+λ)(il−1+2l−1+ν+λ).
We get

(il−1 + 2l + λ)−1

(il−1 + 2l − 1 + ν + λ)

ωl∑
il=il−1

(−ωl)il(2l + 1 + λ)il−1
(2l + ν + λ)il−1

(−ωl)il−1
(2l + 1 + λ)il(2l + ν + λ)il

ηil

=

1∫
0

dtl t
2l−1+λ
l

1∫
0

dul u
2l−2+ν+λ
l (ηtlul)

il−1

∞∑
j=0

(il−1 − ωl)j
(1)j j!

(
η(1− tl)(1− ul)

)j
. (2.15)

The integral form of the confluent hypergeometric function of the first kind is given by

∞∑
j=0

(−α0)j
(γ)jj!

zj =
Γ(α0 + 1)Γ(γ)

2πiΓ(α0 + γ)

∮
dvl

exp(− zvl

(1−vl)
)

vα0+1
l (1− vl)γ

. (2.16)

∗As Γ(1/2+ν/2−Ω/(2µ))/Γ(1/2+ν/2) is multiplied by (2.11), the new (2.11) is equivalent to the first kind solution
of the GCH equation for an infinite series using 3TRF [11]. Again, as (−µ/2)1/2(1−ν) Γ(1 − Ω/(2µ))/Γ(3/2 − ν/2) is
multiplied by (2.12), the new (2.12) corresponds to the second kind solution of the GCH equation for an infinite series
using 3TRF [11].
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Replacing α0, γ and z in (2.16), respectively, by ωl − il−1, 1 and η(1− tl)(1− ul), we obtain
∞∑
j=0

(il−1 − ωl)j
(1)j j!

(
η(1− tl)(1− ul)

)j
=

1

2πi

∮
dvl

exp
(
− vl

(1−vl)
η(1− tl)(1− ul)

)
v
ωl+1−il−1

l (1− vl)
. (2.17)

Substitute (2.17) into (2.15):

Kl =
(il−1 + 2l + λ)−1

(il−1 + 2l − 1 + ν + λ)

ωl∑
il=il−1

(−ωl)il(2l + 1 + λ)il−1
(2l + ν + λ)il−1

(−ωl)il−1
(2l + 1 + λ)il(2l + ν + λ)il

ηil

=

1∫
0

dtl t
2l−1+λ
l

1∫
0

dul u
2l−2+ν+λ
l

1

2πi

∮
dvl

exp
(
− vl

(1−vl)
η(1− tl)(1− ul)

)
vωl+1
l (1− vl)

(ηtlulvl)
il−1 . (2.18)

Substitute (2.18) into (2.6), where l = 1, 2, 3, . . . : apply K1 into the second summation of the sub-
power series y1(x); apply K2 into the third summation and K1 into the second summation of the
sub-power series y2(x); apply K3 into the forth summation, K2 into the third summation and K1 into
the second summation of the sub-power series y3(x), etc.∗

Theorem 2.5. The general representation in the form of an integral of the GCH polynomial of type 2
is given by

y(x) =

∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + y3(x) + · · ·

= c0x
λ

{
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

ηi0 +

∞∑
n=1

{
n−1∏
k=0

{ 1∫
0

dtn−k t
2(n−k)−1+λ
n−k

1∫
0

dun−k u
2(n−k−1)+ν+λ
n−k

× 1

2πi

∮
dvn−k

exp
(
− vn−k

(1−vn−k)
wn−k+1,n(1− tn−k)(1− un−k)

)
v
ωn−k+1
n−k (1− vn−k)

× w
−(Ω/µ+2(n−k−1)+λ)
n−k,n (wn−k,n∂wn−k,n

)w
Ω/µ+2(n−k−1)+λ
n−k,n

}
×

ω0∑
i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

wi0
1,n

}
ρn

}
, (2.19)

where

wa,b =

η
b∏

l=a

tlulvl, where a ≤ b,

η only if a > b.

Here the first sub-integral form contains one term of Bn’s, the second one contains two terms of Bn’s,
the third one contains three terms of Bn’s, etc.

Proof. In (2.6), the power series expansions of sub-summation terms y0(x), y1(x), y2(x) and y3(x) of
the GCH polynomial of type 2 are

y(x) =

∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + y3(x) + · · · , (2.20)

where

y0(x) = c0x
λ

ω0∑
i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

ηi0 , (2.21a)

∗y1(x) means the sub-power series in (2.6), contains one term of Bn’s; y2(x) means the sub-power series in (2.6),
contains two terms of Bn’s; y3(x) means the sub-power series in (2.6), contains three terms of Bn’s, etc.
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y1(x) = c0x
λ

{ ω0∑
i0=0

(i0 +Ω/µ+ λ)

(i0 + 2 + λ)(i0 + 1 + ν + λ)

(−ω0)i0
(1 + λ)i0(ν + λ)i0

×
ω1∑

i1=i0

(−ω1)i1(3 + λ)i0(2 + ν + λ)i0
(−ω1)i0(3 + λ)i1(2 + ν + λ)i1

ηi1
}
ρ, (2.21b)

y2(x) = c0x
λ

{ ω0∑
i0=0

(i0 +Ω/µ+ λ)

(i0 + 2 + λ)(i0 + 1 + ν + λ)

(−ω0)i0
(1 + λ)i0(ν + λ)i0

×
ω1∑

i1=i0

(i1 + 2 + Ω/µ+ λ)

(i1 + 4 + λ)(i1 + 3 + ν + λ)

(−ω1)i1(3 + λ)i0(2 + ν + λ)i0
(−ω1)i0(3 + λ)i1(2 + ν + λ)i1

×
ω2∑

i2=i1

(−ω2)i2(5 + λ)i1(4 + ν + λ)i1
(−ω2)i1(5 + λ)i2(4 + ν + λ)i2

ηi2
}
ρ2, (2.21c)

y3(x) = c0x
λ

{ ω0∑
i0=0

(i0 +Ω/µ+ λ)

(i0 + 2 + λ)(i0 + 1 + ν + λ)

(−ω0)i0
(1 + λ)i0(ν + λ)i0

×
ω1∑

i1=i0

(i1 + 2 + Ω/µ+ λ)

(i1 + 4 + λ)(i1 + 3 + ν + λ)

(−ω1)i1(3 + λ)i0(2 + ν + λ)i0
(−ω1)i0(3 + λ)i1(2 + ν + λ)i1

×
ω2∑

i2=i1

(i2 + 4 + Ω/µ+ λ)

(i2 + 6 + λ)(i2 + 5 + ν + λ)

(−ω2)i2(5 + λ)i1(4 + ν + λ)i1
(−ω2)i1(5 + λ)i2(4 + ν + λ)i2

×
ω3∑

i3=i2

(−ω3)i3(7 + λ)i2(6 + ν + λ)i2
(−ω3)i2(7 + λ)i3(6 + ν + λ)i3

ηi3
}
ρ3. (2.21d)

Put l = 1 in (2.18) and insert it into (2.21b):

y1(x) = c0x
λρ

1∫
0

dt1 t
1+λ
1

1∫
0

du1
uν+λ
1

2πi

∮
dv1

exp
(
− v1

(1−v1)
η(1− t1)(1− u1)

)
vω1+1
1 (1− v1)

×
{ ω0∑

i0=0

(i0 +Ω/µ+ λ)
(−ω0)i0

(1 + λ)i0(ν + λ)i0
(ηt1u1v1)

i0

}
ρ

= c0x
λ

1∫
0

dt1 t
1+λ
1

1∫
0

du1
uν+λ
1

2πi

∮
dv1

exp
(
− v1

(1−v1)
η(1− t1)(1− u1)

)
vω1+1
1 (1− v1)

× w
−(Ω/µ+λ)
1,1 (w1,1∂w1,1

)w
Ω/µ+λ
1,1

ω0∑
i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

wi0
1,1, (2.22)

where

w1,1 = η

1∏
l=1

tlulvl.

Put l = 2 in (2.18) and insert it into (2.21c):

y2(x) = c0x
λρ2

1∫
0

dt2 t
3+λ
2

1∫
0

du2
u2+ν+λ
2

2πi

∮
dv2

exp
(
− v2

(1−v2)
η(1− t2)(1− u2)

)
vω2+1
2 (1− v2)

× w
−(Ω/µ+2+λ)
2,2 (w2,2∂w2,2)w

Ω/µ+2+λ
2,2

ω0∑
i0=0

(i0 +Ω/µ+ λ)

(i0 + 2 + λ)(i0 + 1 + ν + λ)

(−ω0)i0
(1 + λ)i0(ν + λ)i0

×
ω1∑

i1=i0

(−ω1)i1(3 + λ)i0(2 + ν + λ)i0
(−ω1)i0(3 + λ)i1(2 + ν + λ)i1

wi1
2,2, (2.23)
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where

w2,2 = η

2∏
l=2

tlulvl.

Put l = 1 and η = w2,2 in (2.18) and insert it into (2.23). We get

y2(x) = c0x
λρ2

1∫
0

dt2 t
3+λ
2

1∫
0

du2
u2+ν+λ
2

2πi

×
∮
dv2

exp
(
− v2

(1−v2)
η(1− t2)(1− u2)

)
vω2+1
2 (1− v2)

w
−(Ω/µ+2+λ)
2,2 (w2,2∂w2,2

)w
Ω/µ+2+λ
2,2

×
1∫

0

dt1 t
1+λ
1

1∫
0

du1
uν+λ
1

2πi

∮
dv1

exp
(
− v1

(1−v1)
w2,2(1− t1)(1− u1)

)
vω1+1
1 (1− v1)

× w
−(Ω/µ+λ)
1,2 (w1,2∂w1,2)w

Ω/µ+λ
2,2

ω0∑
i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

wi0
1,2, (2.24)

where

w1,2 = η

2∏
l=1

tlulvl.

By using similar process as in the previous cases for integral forms of y1(x) and y2(x), we obtain the
following integral form of the sub-power series expansion y3(x):

y3(x) = c0x
λρ3

1∫
0

dt3 t
5+λ
3

1∫
0

du3
u4+ν+λ
3

2πi

×
∮
dv3

exp
(
− v3

(1−v3)
η(1− t3)(1− u3)

)
vω3+1
3 (1− v3)

w
−(Ω/µ+4+λ)
3,3 (w3,3∂w3,3

)w
Ω/µ+4+λ
3,3

×
1∫

0

dt2 t
3+λ
2

1∫
0

du2
u2+ν+λ
2

2πi

×
∮
dv2

exp
(
− v2

(1−v2)
w3,3(1− t2)(1− u2)

)
vω2+1
2 (1− v2)

w
−(Ω/µ+2+λ)
2,3 (w2,3∂w2,3

)w
Ω/µ+2+λ
2,3

×
1∫

0

dt1 t
1+λ
1

1∫
0

du1
uν+λ
1

2πi

×
∮
dv1

exp
(
− v1

(1−v1)
w2,3(1− t1)(1− u1)

)
vω1+1
1 (1− v1)

w
−(Ω/µ+λ)
1,3 (w1,3∂w1,3)w

Ω/µ+λ
1,3

×
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

wi0
1,3, (2.25)

where 

w3,3 = η

3∏
l=3

tlulvl,

w2,3 = η

3∏
l=2

tlulvl,

w1,3 = η

3∏
l=1

tlulvl .
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By repeating the above process, we obtain integral forms of all higher sub-summation terms ym(x),
where m ≥ 4. Substituting (2.21a), (2.22), (2.24), (2.25) and including integral forms of ym(x), m ≥ 4,
into (2.20), we obtain (2.19).

Put c0 = 1 as λ = 0 for the first kind of independent solution of the GCH equation and as λ = 1−ν
for the second kind one in (2.19).
Remark 2.6. The integral representation of the first kind GCH equation for a polynomial of type 2
about x = 0 as ω = −(ωj + 2j), where j, ωj = 0, 1, 2, . . . , is

y(x) = QWR
ωj

(
µ, ε, ν,Ω, ω = −(ωj + 2j); ρ = −µx2, η = −εx

)
= 1F1(−ω0; ν; η) +

∞∑
n=1

{
n−1∏
k=0

{ 1∫
0

dtn−k t
2(n−k)−1
n−k

1∫
0

dun−k u
2(n−k−1)+ν
n−k

× 1

2πi

∮
dvn−k

exp
(
− vn−k

(1−vn−k)
wn−k+1,n(1− tn−k)(1− un−k)

)
v
ωn−k+1
n−k (1− vn−k)

× w
−(Ω/µ+2(n−k−1))
n−k,n (wn−k,n∂wn−k,n

)w
Ω/µ+2(n−k−1)
n−k,n

}
1F1(−ω0; ν;w1,n)

}
ρn. (2.26)

Remark 2.7. The integral representation of the second kind GCH equation for a polynomial of type 2
about x = 0 as ω = −(ωj + 2j + 1− ν), where j, ωj = 0, 1, 2, . . . , is

y(x) = RWR
ωj

(
µ, ε, ν,Ω, ω = −(ωj + 2j + 1− ν); ρ = −µx2, η = −εx

)
= x1−ν

{
1F1(−ω0; 2− ν; η) +

∞∑
n=1

{
n−1∏
k=0

{ 1∫
0

dtn−k t
2(n−k)−ν
n−k

1∫
0

dun−k u
2(n−k)−1
n−k

× 1

2πi

∮
dvn−k

exp
(
− vn−k

(1−vn−k)
wn−k+1,n(1− tn−k)(1− un−k)

)
v
ωn−k+1
n−k (1− vn−k)

×w−(Ω/µ+2(n−k)−1−ν)
n−k,n (wn−k,n∂wn−k,n

)w
Ω/µ+2(n−k)−1−ν
n−k,n

}
1F1(−ω0; 2− ν;w1,n)

}
ρn

}
. (2.27)

In the above equalities, 1F1 (a; b; z) is a Kummer function of the first kind defined as

1F1(a; b; z) =M(a, b, z) =

∞∑
n=0

(a)n
(b)nn!

, zn = ezM(b− a, b,−z)

= − 1

2πi
,
Γ(1− a)Γ(b)

Γ(b− a)

∮
dvj e

zvj (−vj)a−1(1− vj)
b−a−1

=
Γ(a)

2πi

∮
dvj e

vjv−b
j (1− z

vj
)−a

=
1

2πi
,
Γ(1− a)Γ(b)

Γ(b− a)

∮
dvj e

−
z vj
1−vj va−1

j (1− vj)
−b. (2.28)

2.2.2 Infinite Series

Let us consider the integral representation of the GCH equation about x = 0 for an infinite series by
applying R3TRF. There is a generalized hypergeometric function which is given by

Ml =

∞∑
il=il−1

(ω + 2l + λ)il(2l + 1 + λ)il−1
(2l + ν + λ)il−1

(ω + 2l + λ)il−1
(2l + 1 + λ)il(2l + ν + λ)il

ηil

=

∞∑
j=0

Bil−1,j(ω + 2l + λ+ il−1)jη
il−1

(il−1 + 2l + λ)−1(il−1 + 2l − 1 + ν + λ)−1(1)j j!
ηj , (2.29)
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where
Bil−1,j = B(il−1 + 2l + λ, j + 1)B(il−1 + 2l − 1 + ν + λ, j + 1).

Substituting (2.14a) and (2.14b) into (2.29) and dividing the obtained equality by (il−1+2l+λ)(il−1+
2l − 1 + ν + λ), we get

∞∑
il=il−1

Ail−1
(ω + 2l + λ)il(2l + 1 + λ)il−1

(2l + ν + λ)il−1

(ω + 2l + λ)il−1
(2l + 1 + λ)il(2l + ν + λ)il

ηil

=

1∫
0

dtl t
2l−1+λ
l

1∫
0

dul u
2l−2+ν+λ
l (ηtlul)

il−1

∞∑
j=0

(ω + 2l + λ+ il−1)j
(1)j j!

(
η(1− tl)(1− ul)

)j
, (2.30)

where
Ail−1

=
1

(il−1 + 2l + λ)(il−1 + 2l − 1 + ν + λ)
.

In (2.28), replacing a, b and z, respectively, by ω+2l+λ+ il−1, 1 and η(1− tj)(1−uj), and inserting
the resulting equality into (2.30), we obtain

Vl =

∞∑
il=il−1

Ail−1
(ω + 2l + λ)il(2l + 1 + λ)il−1

(2l + ν + λ)il−1

(ω + 2l + λ)il−1
(2l + 1 + λ)il(2l + ν + λ)il

ηil

=

1∫
0

dtl t
2l−1+λ
l

1∫
0

dul u
2l−2+ν+λ
l

1

2πi

∮
dvl

exp
(
− vl

(1−vl)
η(1− tl)(1− ul)

)
v
−(ω+2l−1+λ)
l (1− vl)

(ηtlulvl)
il−1 . (2.31)

We substitute (2.31) into (2.10), where l = 1, 2, 3, . . . : apply V1 into the second summation of the
sub-power series y1(x); apply V2 into the third summation and V1 into the second summation of the
sub-power series y2(x); apply V3 into the forth summation, V2 into the third summation and V1 into
the second summation of the sub-power series y3(x), etc.∗

Theorem 2.8. The general representation in the form of an integral of the GCH equation for an
infinite series about x = 0 using R3TRF is given by

y(x) =

∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + y3(x) + · · ·

= c0x
λ

{ ∞∑
i0=0

(ω + λ)i0
(1 + λ)i0(ν + λ)i0

ηi0

+

∞∑
n=1

{
n−1∏
k=0

{ 1∫
0

dtn−k t
2(n−k)−1+λ
n−k

1∫
0

dun−k u
2(n−k−1)+ν+λ
n−k

× 1

2πi

∮
dvn−k

exp
(
− vn−k

(1−vn−k)
wn−k+1,n(1− tn−k)(1− un−k)

)
v
−(ω+2(n−k)−1+λ)
n−k (1− vn−k)

× w
−(Ω/µ+2(n−k−1)+λ)
n−k,n (wn−k,n∂wn−k,n

)w
Ω/µ+2(n−k−1)+λ
n−k,n

}
×

∞∑
i0=0

(ω + λ)i0
(1 + λ)i0(ν + λ)i0

wi0
1,n

}
ρn

}
. (2.32)

∗y1(x) means the sub-power series in (2.10), contains one term of Bn’s; y2(x) means the sub-power series in (2.10),
contains two terms of Bn’s; y3(x) means the sub-power series in (2.10), contains three terms of Bn’s, etc. Or we replace
the finite summation with an interval [0, ω0] by an infinite summation with an interval [0,∞] in (2.19). We also replace
ω0 and ωn−j by −(ω+ λ) and substitute −(ω+ 2(n− k) + λ) into the new (2.19). Its solution is likewise equivalent to
(2.32).
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Here the first sub-integral form contains one term of Bn’s, the second one contains two terms of Bn’s,
the third one contains three terms of Bn’s, etc.∗

Put c0= 1 as λ = 0 for the first kind of independent solution of the GCH equation and as λ = 1−ν,
for the second kind one in (2.32).

Remark 2.9. The integral representation of the first kind GCH equation for an infinite series about
x = 0 applying R3TRF is

y(x) = QWR
(
µ, ε, ν,Ω, ω; ρ = −µx2, η = −εx

)
= 1F1(ω; ν; η) +

∞∑
n=1

{
n−1∏
k=0

{ 1∫
0

dtn−k t
2(n−k)−1
n−k

1∫
0

dun−k u
2(n−k−1)+ν
n−k

× 1

2πi

∮
dvn−k

exp
(
− vn−k

(1−vn−k)
wn−k+1,n(1− tn−k)(1− un−k)

)
v
−(ω+2(n−k)−1)
n−k (1− vn−k)

× w
−(Ω/µ+2(n−k−1))
n−k,n (wn−k,n∂wn−k,n

)w
Ω/µ+2(n−k−1)
n−k,n

}
1F1(ω; ν;w1,n)

}
ρn. (2.33)

Remark 2.10. The integral representation of the second kind GCH equation for an infinite series
about x = 0 applying R3TRF is

y(x) = RWR
(
µ, ε, ν,Ω, ω; ρ = −µx2, η = −εx

)
= x1−ν

{
1F1(ω + 1− ν; 2− ν; η) +

∞∑
n=1

{
n−1∏
k=0

{ 1∫
0

dtn−k t
2(n−k)−ν
n−k

1∫
0

dun−k u
2(n−k)−1
n−k

× 1

2πi

∮
dvn−k

exp
(
− vn−k

(1−vn−k)
wn−k+1,n(1− tn−k)(1− un−k)

)
v
−(ω+2(n−k)−ν)
n−k (1− vn−k)

×w−(Ω/µ+2(n−k)−1−ν)
n−k,n (wn−k,n∂wn−k,n

)w
Ω/µ+2(n−k)−1−ν
n−k,n

}
1F1(ω + 1− ν; 2− ν;w1,n)

}
ρn

}
. (2.34)

(2.33) multiplied by Γ(1/2+ν/2−Ω/(2µ))
Γ(1/2+ν/2) is equivalent to the integral form of the first kind solu-

tion of the GCH equation for an infinite series applying 3TRF [11]. Also, (2.34) multiplied by
(−µ/2)1/2(1−ν) Γ(1−Ω/(2µ))

Γ(3/2−ν/2) corresponds to the integral representation of the second kind solution of
the GCH equation for an infinite series applying 3TRF [11].

2.3 Generating function for the GCH polynomial of type 2
Now let us investigate generating functions for the type 2 GCH polynomials of the first and second
kind around x = 0.

Definition 2.11. Define
sa,b =

{
sa · sa+1 · sa+2 · · · sb−2 · sb−1 · sb, where a < b,

sa only if a = b,

w̃i,j = ηsi,∞

j∏
l=i

tlul,

(2.35)

where a, b, i, j ∈ N0, 0 ≤ a ≤ b ≤ ∞ and 1 ≤ i ≤ j ≤ ∞.
∗The method how to prove an integral for an infinite series is similar as an integral for a fixed value of ω at

Subsection 2.2.1. Explicit proof for this integral is available on pages 250–253 in Chapter 6 [13].
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We have
∞∑

ωi=ωj

sωi
i =

s
ωj

i

(1− si)
at |si| < 1. (2.36)

Theorem 2.12. The general expression of the generating function for the GCH polynomial of type 2
about x = 0 is given by

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y(x) =

∞∏
k=1

1

(1− sk,∞)
Υ(λ; s0,∞; η)

+

{ ∞∏
k=1

1

(1− sk,∞)

1∫
0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1 exp

(
− s1,∞

(1− s1,∞)
η(1− t1)(1− u1)

)

× w̃
−(Ω/µ+λ)
1,1 (w̃1,1∂w̃1,1

)w̃
Ω/µ+λ
1,1 Υ(λ; s0; w̃1,1)

}
ρ

+

∞∑
n=2

{ ∞∏
k=n

1

(1− sk,∞)

1∫
0

dtn t
2n−1+λ
n

1∫
0

dun u
2(n−1)+ν+λ
n exp

(
− sn,∞

(1− sn,∞)
η(1− tn)(1− un)

)
× w̃−(Ω/µ+2(n−1)+λ)

n,n (w̃n,n∂w̃n,n
)w̃Ω/µ+2(n−1)+λ

n,n

×
n−1∏
j=1

{ 1∫
0

dtn−j t
2(n−j)−1+λ
n−j

1∫
0

dun−j u
2(n−j−1)+ν+λ
n−j

exp
(
− sn−j

(1−sn−j)
w̃n−j+1,n(1−tn−j)(1−un−j)

)
(1− sn−j)

× w̃
−(Ω/µ+2(n−j−1)+λ)
n−j,n (w̃n−j,n∂w̃n−j,n

)w̃
Ω/µ+2(n−j−1)+λ
n−j,n

}
Υ(λ; s0; w̃1,n)

}
ρn, (2.37)

where 

Υ(λ; s0,∞; η) =

∞∑
ω0=0

sω0
0,∞

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

ηi0
}
,

Υ(λ; s0; w̃1,1) =

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

w̃i0
1,1

}
,

Υ(λ; s0; w̃1,n) =

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

w̃i0
1,n

}
.

Proof. Applying the summation operator
∞∑

ω0=0

s
ω0
0

ω0!
Γ(ω0+γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
to the form of a general

integral of type 2 GCH polynomial y(x), we get

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y(x)

=

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
(y0(x) + y1(x) + y2(x) + · · · ). (2.38)

Applying the summation operator
∞∑

ω0=0

s
ω0
0

ω0!
Γ(ω0+γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
to (2.21a) and using (2.35)
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and (2.36), we obtain

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y0(x)

=

∞∏
k=1

1

(1− sk,∞)

∞∑
ω0=0

sω0
0,∞

ω0!

Γ(ω0 + γ′)

Γ(γ′)
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

ηi0 . (2.39)

Applying the summation operator
∞∑

ω0=0

s
ω0
0

ω0!
Γ(ω0+γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
to (2.22) and using (2.35) and

(2.36), we get

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y1(x) =

∞∏
k=2

1

(1− sk,∞)

1∫
0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

× 1

2πi

∮
dv1

exp
(
− v1

(1−v1)
η(1− t1)(1− u1)

)
v1(1− v1)

∞∑
ω1=ω0

(s1,∞
v1

)ω1

w
−(Ω/µ+λ)
1,1 (w1,1∂w1,1)w

Ω/µ+λ
1,1

×
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

wi0
1,1

}
ρ. (2.40)

Replacing ωi, ωj and si, respectively, by ω1, ω0 and s1,∞
v1

in (2.36) and inserting it into (2.40), we have

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y1(x) =

∞∏
k=2

1

(1− sk,∞)

1∫
0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

× 1

2πi

∮
dv1

exp
(
− v1

(1−v1)
η(1− t1)(1− u1)

)
(1− v1)(v1 − s1,∞)

w
−(Ω/µ+λ)
1,1 (w1,1∂w1,1

)w
Ω/µ+λ
1,1

×
∞∑

ω0=0

1

ω0!

(s0,∞
v1

)ω0 Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

wi0
1,1

}
ρ. (2.41)

By using Cauchy’s integral formula, the contour integrand has poles at v1 = 1 or s1,∞, where s1,∞ is
only inside the unit circle. As we compute the residue in (2.41), we obtain

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y1(x) =

∞∏
k=1

1

(1− sk,∞)

1∫
0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

× exp
(
− s1,∞

(1− s1,∞)
η(1− t1)(1− u1)

)
w̃

−(Ω/µ+λ)
1,1 (w̃1,1∂w̃1,1

)w̃
Ω/µ+λ
1,1

×
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

w̃i0
1,1

}
ρ, (2.42)

where

w̃1,1 = ηs1,∞

1∏
l=1

tlul.

Applying the summation operator
∞∑

ω0=0

s
ω0
0

ω0!
Γ(ω0+γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
to (2.24) and using (2.35) and

(2.36), we obtain
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∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y2(x)

=

∞∏
k=3

1

(1− sk,∞)

1∫
0

dt2 t
3+λ
2

1∫
0

du2 u
2+ν+λ
2

1

2πi

∮
dv2

exp
(
− v2

(1−v2)
η(1− t2)(1− u2)

)
v2(1− v2)

×
∞∑

ω2=ω1

(s2,∞
v2

)ω2

w
−(Ω/µ+2+λ)
2,2 (w2,2∂w2,2

)w
Ω/µ+2+λ
2,2

1∫
0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

× 1

2πi

∮
dv1

exp
(
− v1

(1−v1)
w2,2(1− t1)(1− u1)

)
v1(1− v1)

∞∑
ω1=ω0

(s1
v1

)ω1

w
−(Ω/µ+λ)
1,2 (w1,2∂w1,2

)w
Ω/µ+λ
1,2

×
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

wi0
1,2

}
ρ2. (2.43)

Replacing in (2.36) ωi, ωj and si, respectively, by ω2, ω1 and s2,∞
v2

and inserting the obtained formula
into (2.43), we get

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y2(x) =

∞∏
k=3

1

(1− sk,∞)

1∫
0

dt2 t
3+λ
2

1∫
0

du2 u
2+ν+λ
2

× 1

2πi

∮
dv2

exp
(
− v2

(1−v2)
η(1− t2)(1− u2)

)
(1− v2)(v2 − s2,∞)

w
−(Ω/µ+2+λ)
2,2 (w2,2∂w2,2

)w
Ω/µ+2+λ
2,2

×
1∫

0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

1

2πi

∮
dv1

exp
(
− v1

(1−v1)
w2,2(1− t1)(1− u1)

)
v1(1− v1)

×
∞∑

ω1=ω0

(s1,∞
v1v2

)ω1

w
−(Ω/µ+λ)
1,2 (w1,2∂w1,2

)w
Ω/µ+λ
1,2

×
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

wi0
1,2

}
ρ2. (2.44)

By using Cauchy’s integral formula, the contour integrand has poles at v2 = 1 or s2,∞, where s2,∞ is
only inside the unit circle. As we compute the residue in (2.44), we obtain

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y2(x) =

∞∏
k=2

1

(1− sk,∞)

1∫
0

dt2 t
3+λ
2

1∫
0

du2 u
2+ν+λ
2

× exp
(
− s2,∞

(1− s2,∞)
η(1− t2)(1− u2)

)
w̃

−(Ω/µ+2+λ)
2,2 (w̃2,2∂w̃2,2

)w̃
Ω/µ+2+λ
2,2

×
1∫

0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

1

2πi

∮
dv1

exp
(
− v1

(1−v1)
w̃2,2(1− t1)(1− u1)

)
v1(1− v1)

×
∞∑

ω1=ω0

(s1
v1

)ω1

ẅ
−(Ω/µ+λ)
1,2 (ẅ1,2∂ẅ1,2

)ẅ
Ω/µ+λ
1,2

×
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

ẅi0
1,2

}
ρ2, (2.45)

where

w̃2,2 = ηs2,∞

2∏
l=2

tlul, ẅ1,2 = ηs2,∞v1

2∏
l=1

tlul.
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Replace in (2.36) ωi, ωj and si, respectively, by ω1, ω0 and s1
v1

and insert the result into (2.45). We
have

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y2(x) =

∞∏
k=2

1

(1− sk,∞)

1∫
0

dt2 t
3+λ
2

1∫
0

du2 u
2+ν+λ
2

× exp
(
− s2,∞

(1− s2,∞)
η(1−t2)(1−u2)

)
w̃

−(Ω/µ+2+λ)
2,2 (w̃2,2∂w̃2,2

)w̃
Ω/µ+2+λ
2,2

1∫
0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

× 1

2πi

∮
dv1

exp
(
− v1

(1−v1)
w̃2,2(1− t1)(1− u1)

)
(1− v1)(v1 − s1)

ẅ
−(Ω/µ+λ)
1,2 (ẅ1,2∂ẅ1,2

)ẅ
Ω/µ+λ
1,2

×
∞∑

ω0=0

1

ω0!

(s0,1
v1

)ω0 Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

ẅi0
1,2

}
ρ2. (2.46)

By using Cauchy’s integral formula, the contour integrand has poles at v1 = 1 or s1, where s1 is only
inside the unit circle. As we compute the residue in (2.46), we obtain

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y2(x) =

∞∏
k=2

1

(1− sk,∞)

1∫
0

dt2 t
3+λ
2

1∫
0

du2 u
2+ν+λ
2

× exp
(
− s2,∞

(1− s2,∞)
η(1− t2)(1− u2)

)
w̃

−(Ω/µ+2+λ)
2,2 (w̃2,2∂w̃2,2

)w̃
Ω/µ+2+λ
2,2

×
1∫

0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

exp
(
− s1

(1−s1)
w̃2,2(1− t1)(1− u1)

)
(1− s1)

w̃
−(Ω/µ+λ)
1,2 (w̃1,2∂w̃1,2

)w̃
Ω/µ+λ
1,2

×
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

w̃i0
1,2

}
ρ2, (2.47)

where

w̃1,2 = ηs1,∞

2∏
l=1

tlul.

Applying the summation operator
∞∑

ω0=0

s
ω0
0

ω0!
Γ(ω0+γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
to (2.47) and using (2.35) and

(2.36), we get

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
y3(x) =

∞∏
k=3

1

(1− sk,∞)

1∫
0

dt3 t
5+λ
3

1∫
0

du3 u
4+ν+λ
3

× exp
(
− s3,∞

(1− s3,∞)
η(1− t3)(1− u3)

)
w̃

−(Ω/µ+4+λ)
3,3 (w̃3,3∂w̃3,3

)w̃
Ω/µ+4+λ
3,3

×
1∫

0

dt2 t
3+λ
2

1∫
0

du2 u
2+ν+λ
2

exp
(
− s2

(1−s2)
w̃3,3(1−t2)(1−u2)

)
(1− s2)

w̃
−(Ω/µ+2+λ)
2,3 (w̃2,3∂w̃2,3

)w̃
Ω/µ+2+λ
2,3

×
1∫

0

dt1 t
1+λ
1

1∫
0

du1 u
ν+λ
1

exp
(
− s1

(1−s1)
w̃2,3(1− t1)(1− u1)

)
(1− s1)

w̃
−(Ω/µ+λ)
1,3 (w̃1,3∂w̃1,3

)w̃
Ω/µ+λ
1,3

×
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + γ′)

Γ(γ′)

{
c0x

λ
ω0∑

i0=0

(−ω0)i0
(1 + λ)i0(ν + λ)i0

w̃i0
1,3

}
ρ3, (2.48)
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where

w̃3,3 = ηs3,∞

3∏
l=3

tlul, w̃2,3 = ηs2,∞

3∏
l=2

tlul, w̃1,3 = ηs1,∞

3∏
l=1

tlul.

By repeating the above process for all integral forms of higher sub-summation terms ym(x), m > 3, we
obtain every term

∞∑
ω0=0

s
ω0
0

ω0!
Γ(ω0+γ′)

Γ(γ′)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
ym(x). If into (2.38) along with (2.39), (2.42),

(2.47), (2.48) we substitute all such terms, we obtain (2.37).

Remark 2.13. The generating function for the first kind GCH polynomial of type 2 about x = 0 as
ω = −(ωj + 2j), where j, ωj = 0, 1, 2, . . . , is

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + ν)

Γ(ν)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
QWR

ωj
(µ, ε, ν,Ω, ω; ρ, η) =

∞∏
k=1

1

(1− sk,∞)
A(s0,∞; η)

+

{ ∞∏
k=1

1

(1− sk,∞)

1∫
0

dt1 t1

1∫
0

du1 u
ν
1

↔
Γ1(s1,∞; t1, u1, η)w̃

−Ω/µ
1,1 (w̃1,1∂w̃1,1

)w̃
Ω/µ
1,1 A(s0; w̃1,1)

}
ρ

+

∞∑
n=2

{ ∞∏
k=n

1

(1− sk,∞)

1∫
0

dtn t
2n−1
n

1∫
0

dun u
2(n−1)+ν
n

↔
Γn(sn,∞; tn, un, η)

× w̃−(Ω/µ+2(n−1))
n,n (w̃n,n∂w̃n,n

)w̃Ω/µ+2(n−1)
n,n

×
n−1∏
j=1

{ 1∫
0

dtn−j t
2(n−j)−1
n−j

1∫
0

dun−j u
2(n−j−1)+ν
n−j

↔
Γn−j(sn−j ; tn−j , un−j , w̃n−j+1,n)

× w̃
−(Ω/µ+2(n−j−1))
n−j,n (w̃n−j,n∂w̃n−j,n

)w̃
Ω/µ+2(n−j−1)
n−j,n

}
A(s0; w̃1,n)

}
ρn, (2.49)

where

ω = −(ωj + 2j), ρ = −µx2, η = −εx;
↔
Γ1(s1,∞; t1, u1, η) = exp

(
− s1,∞

(1− s1,∞)
η(1− t1)(1− u1)

)
;

↔
Γn(sn,∞; tn, un, η) = exp

(
− sn,∞

(1− sn,∞)
η(1− tn)(1− un)

)
;

↔
Γn−j(sn−j ; tn−j , un−j , w̃n−j+1,n) =

exp
(
− sn−j

(1−sn−j)
w̃n−j+1,n(1− tn−j)(1− un−j)

)
(1− sn−j)

and 

A(s0,∞; η) = (1− s0,∞)−ν exp
(
− ηs0,∞

(1− s0,∞)

)
,

A(s0; w̃1,1) = (1− s0)
−ν exp

(
− w̃1,1s0

(1− s0)

)
,

A(s0; w̃1,n) = (1− s0)
−ν exp

(
− w̃1,ns0

(1− s0)

)
.

Proof. The generating function for a confluent first kind Hypergeometric polynomial is given by

∞∑
ω0=0

tω0

ω0!

Γ(ω0 + γ)

Γ(γ)
1F1(−ω0; γ; z) = (1− t)−γ exp

(
− zt

(1− t)

)
. (2.50)
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Replacing t, γ and z, respectively, by s0,∞, ν and η in (2.50), we get

∞∑
ω0=0

sω0
0,∞

ω0!

Γ(ω0 + ν)

Γ(ν)
1F1(−ω0; ν; η) = (1− s0,∞)−ν exp

(
− ηs0,∞

(1− s0,∞)

)
. (2.51)

Replacing t, γ and z, respectively, by s0, ν and w̃1,1 in (2.50), we get

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + ν)

Γ(ν)
1F1(−ω0; ν; w̃1,1) = (1− s0)

−ν exp
(
− w̃1,1s0

(1− s0)

)
. (2.52)

Replacing t, γ and z, respectively, by s0, ν and w̃1,n in (2.50), we get

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + ν)

Γ(ν)
1F1(−ω0; ν; w̃1,n) = (1− s0)

−ν exp
(
− w̃1,ns0

(1− s0)

)
. (2.53)

Taking c0 = 1, λ=0 and γ′ = ν in (2.37) and substituting (2.51), (2.52) and (2.53) into the obtained
equality, we get the desired result.

Remark 2.14. The generating function for the second kind GCH polynomial of type 2 about x = 0
as ω = −(ωj + 2j + 1− ν), where j, ωj = 0, 1, 2, . . . , is

∞∑
ω0=0

sω0
0

ω0!

Γ(ω0 + 2− ν)

Γ(2− ν)

∞∏
n=1

{ ∞∑
ωn=ωn−1

sωn
n

}
RWR

ωj
(µ, ε, ν,Ω, ω; ρ, η)

= x1−ν

{ ∞∏
k=1

1

(1− sk,∞)
B(s0,∞; η) +

{ ∞∏
k=1

1

(1− sk,∞)

1∫
0

dt1 t
2−ν
1

1∫
0

du1 u1
↔
Γ1(s1,∞; t1, u1, η)

× w̃
−(Ω/µ+1−ν)
1,1 (w̃1,1∂w̃1,1

)w̃
Ω/µ+1−ν
1,1 B(s0; w̃1,1)

}
ρ

+

∞∑
n=2

{ ∞∏
k=n

1

(1− sk,∞)

1∫
0

dtn t
2n−ν
n

1∫
0

dun u
2n−1
n

↔
Γn(sn,∞; tn, un, η)

× w̃−(Ω/µ+2n−1−ν)
n,n (w̃n,n∂w̃n,n

)w̃Ω/µ+2n−1−ν
n,n

×
n−1∏
j=1

{ 1∫
0

dtn−j t
2(n−j)−ν
n−j

1∫
0

dun−j u
2(n−j)−1
n−j

↔
Γn−j(sn−j ; tn−j , un−j , w̃n−j+1,n)

× w̃
−(Ω/µ+2(n−j)−1−ν)
n−j,n (w̃n−j,n∂w̃n−j,n

)w̃
Ω/µ+2(n−j)−1−ν
n−j,n

}
B(s0; w̃1,n)

}
ρn

}
, (2.54)

where

ω = −(ωj + 2j + 1− ν); ρ = −µx2, η = −εx;
↔
Γ1(s1,∞; t1, u1, η) = exp

(
− s1,∞

(1− s1,∞)
η(1− t1)(1− u1)

)
;

↔
Γn(sn,∞; tn, un, η) = exp

(
− sn,∞

(1− sn,∞)
η(1− tn)(1− un)

)
;

↔
Γn−j(sn−j ; tn−j , un−j , w̃n−j+1,n) =

exp
(
− sn−j

(1−sn−j)
w̃n−j+1,n(1− tn−j)(1− un−j)

)
(1− sn−j)
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and 

B(s0,∞; η) = (1− s0,∞)ν−2 exp
(
− ηs0,∞

(1− s0,∞)

)
,

B(s0; w̃1,1) = (1− s0)
ν−2 exp

(
− w̃1,1s0

(1− s0)

)
,

B(s0; w̃1,n) = (1− s0)
ν−2 exp

(
− w̃1,ns0

(1− s0)

)
.

Proof. Replacing t, γ and z, respectively, by s0,∞, 2− ν and η in (2.50), we get
∞∑

ω0=0

sω0
0,∞

ω0!

Γ(ω0 + 2− ν)

Γ(2− ν)
1F1(−ω0; 2− ν; η) = (1− s0,∞)ν−2 exp

(
− ηs0,∞

(1− s0,∞)

)
. (2.55)

Replacing t, γ and z, respectively, by s0, 2− ν and w̃1,1 in (2.50), we get
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + 2− ν)

Γ(2− ν)
1F1(−ω0; 2− ν; w̃1,1) = (1− s0)

ν−2 exp
(
− w̃1,1s0

(1− s0)

)
. (2.56)

Replacing t, γ and z, respectively, by s0, 2− ν and w̃1,n in (2.50), we get
∞∑

ω0=0

sω0
0

ω0!

Γ(ω0 + 2− ν)

Γ(2− ν)
1F1(−ω0; 2− ν; w̃1,n) = (1− s0)

ν−2 exp
(
− w̃1,ns0

(1− s0)

)
. (2.57)

Taking c0 = 1, λ = 1− ν and γ′ = 2− ν in (2.37) and substituting (2.55), (2.56) and (2.57) into the
obtained equality, we get the desired result.

3 GCH equation about an irregular singular point at infinity
Let z = 1

x in (1.1) in order to get an analytic solution of the GCH equation about x = ∞:

z4
d2y

dz2
+ ((2− ν)z3 − εz2 − µz)

dy

dz
+ (Ω + εωz)y = 0. (3.1)

Assume that its solution is
y(z) =

∞∑
n=0

cnz
n+λ, (3.2)

where λ is indicial root. Substitute (3.2) into (3.1). For the coefficients cn, we get the following
three-term recurrence relation:

cn+1 = Ancn +Bncn−1, n ≥ 1, (3.3)

where

An = − ε

µ

(n− ω + λ)

(n+ 1− Ω/µ+ λ)
, (3.4a)

Bn =
1

µ

(n− 1 + λ)(n− ν + λ)

(n+ 1− Ω/µ+ λ)
, (3.4b)

c1 = A0c0. (3.4c)

We have an indicial root λ = Ω/µ.
Now, let us test for the convergence of the analytic function y(z). As n → ∞, from (3.4a) and

(3.4b), we get

lim
n→∞

An = − ε

µ
, (3.5a)

lim
n→∞

Bn =
n

µ
→ ∞. (3.5b)
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There are no analytic solutions for a polynomial of type 2 and infinite series. Since, by (3.5b), y(z)
is divergent as n → ∞, there are only two types of analytic solutions of the GCH equation about
x = ∞ such as polynomials of type 1 and of type 3. In Chapter 10 [14], the polynomial of type 3
about x = ∞ is derived: µ, ε, Ω are treated as free variables and ν, ω as fixed values. In this section,
we have constructed the power series expansion, an integral form and the generating function for the
GCH polynomial of type 1 about x = ∞: µ, ε, ω and Ω are treated as free variables and ν as a fixed
value.

3.1 Power series for a polynomial of type 1
In [10], the general expression of a power series of y(x) for a polynomial of type 1 is given by

y(x) =

∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + y3(x) + · · ·

= c0x
λ

{
β0∑

i0=0

( i0−1∏
i1=0

B2i1+1

)
x2i0 +

β0∑
i0=0

{
A2i0

i0−1∏
i1=0

B2i1+1

β1∑
i2=i0

( i2−1∏
i3=i0

B2i3+2

)}
x2i2+1

+

∞∑
N=2

{ β0∑
i0=0

{
A2i0

i0−1∏
i1=0

B2i1+1

N−1∏
k=1

( βk∑
i2k=i2(k−1)

A2i2k+k

i2k−1∏
i2k+1=i2(k−1)

B2i2k+1+(k+1)

)

×
βN∑

i2N=i2(N−1)

( i2N−1∏
i2N+1=i2(N−1)

B2i2N+1+(N+1)

)}}
x2i2N+N

}
. (3.6)

Here βi ≤ βj only if i ≤ j, where i, j, βi, βj ∈ N0.
For a polynomial we need the following condition:

B2βi+(i+1) = 0, where i = 0, 1, 2, . . . , βi = 0, 1, 2, . . . . (3.7)

Here βi is an eigenvalue that makes Bn term terminated at a certain value of the index n. (3.7) turns
each yi(x), where i = 0, 1, 2, . . . , into the polynomial in (3.6). Replace βi by νi in (3.7) and put
n = 2νi + (i + 1) in (3.4b) with the condition B2νi+(i+1) = 0. Then we obtain eigenvalues ν of the
form

ν = 2νi + i+ 1 + λ.

In (3.4b), we replace ν by 2νi + i+ 1 + λ, and insert the obtained result and (3.4a) into (3.6), where
a variable x and an index βi are, respectively, replaced by z and νi. Hence the general expression of
a power series of the GCH equation for a polynomial of type 1 about x = ∞ is given by

y(z) =

∞∑
n=0

yn(z) = y0(z) + y1(z) + y2(z) + y3(z) + · · ·

= c0z
λ

{
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

ηi0

+

{ ν0∑
i0=0

(i0 − ω
2 + λ

2 )

(i0 +
1
2 − Ω

2µ + λ
2 )

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

ν1∑
i1=i0

(−ν1)i1( 12 + λ
2 )i1(

3
2 − Ω

2µ + λ
2 )i0

(−ν1)i0( 12 + λ
2 )i0(

3
2 − Ω

2µ + λ
2 )i1

ηi1
}
ξ

+

∞∑
n=2

{
ν0∑

i0=0

(i0 − ω
2 + λ

2 )

(i0 +
1
2 − Ω

2µ + λ
2 )

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

×
n−1∏
k=1

{ νk∑
ik=ik−1

(ik + k
2 − ω

2 + λ
2 )

(ik + k
2 + 1

2 − Ω
2µ + λ

2 )

(−νk)ik(k2 + λ
2 )ik(

k
2 + 1− Ω

2µ + λ
2 )ik−1

(−νk)ik−1
(k2 + λ

2 )ik−1
(k2 + 1− Ω

2µ + λ
2 )ik

}

×
νn∑

in=in−1

(−νn)in(n2 + λ
2 )in(

n
2 + 1− Ω

2µ + λ
2 )in−1

(−νn)in−1
(n2 + λ

2 )in−1
(n2 + 1− Ω

2µ + λ
2 )in

ηin

}
ξn

}
, (3.8)
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where 

η =
2

µ
z2,

ξ = − ε

µ
z,

ν = 2νj + j + 1 + λ,

z =
1

x
,

νi ≤ νj only if i ≤ j, where i, j, νi, νj ∈ N0 . . . .

Put c0= 1, as λ = Ω/µ in (3.8).

Remark 3.1. The power series expansion of the first kind GCH equation for a polynomial of type 1
about x = ∞, as ν = 2νj + j + 1 + Ω/µ, where j, νj ∈ N0, is

y(z) = Q(i)Wνj

(
µ, ε,Ω, ω, ν = 2νj + j + 1 +

Ω

µ
; z =

1

x
, ξ = − ε

µ
z, η =

2

µ
z2
)

= z
Ω
µ

{
ν0∑

i0=0

(−ν0)i0( Ω
2µ )i0

(1)i0
ηi0

+

{ ν0∑
i0=0

(i0 − ω
2 + Ω

2µ )

(i0 +
1
2 )

(−ν0)i0( Ω
2µ )i0

(1)i0

ν1∑
i1=i0

(−ν1)i1( 12 + Ω
2µ )i1(

3
2 )i0

(−ν1)i0( 12 + Ω
2µ )i0(

3
2 )i1

ηi1
}
ξ

+

∞∑
n=2

{
ν0∑

i0=0

(i0 − ω
2 + Ω

2µ )

(i0 +
1
2 )

(−ν0)i0( Ω
2µ )i0

(1)i0

×
n−1∏
k=1

{ νk∑
ik=ik−1

(ik + k
2 − ω

2 + Ω
2µ )

(ik + k
2 + 1

2 )

(−νk)ik(k2 + Ω
2µ )ik(

k
2 + 1)ik−1

(−νk)ik−1
(k2 + Ω

2µ )ik−1
(k2 + 1)ik

}

×
νn∑

in=in−1

(−νn)in(n2 + Ω
2µ )in(

n
2 + 1)in−1

(−νn)in−1(
n
2 + Ω

2µ )in−1(
n
2 + 1)in

ηin

}
ξn

}
. (3.9)

For the minimum value of the first kind GCH equation for a polynomial of type 1 about x = ∞,
in (3.9) we set ν0 = ν1 = ν2 = · · · = 0 and get

y(z) = Q(i)W0

(
µ, ε,Ω, ω, ν = j + 1 +

Ω

µ
; z =

1

x
, ξ = − ε

µ
z, η =

2

µ
z2
)

= z
Ω
µ

∞∑
n=0

(Ω/µ− ω)n
n!

ξn = z
Ω
µ

(
1 +

ε

µ
z
)−(Ω

µ−ω)

.

From the above it follows that a polynomial of type 1 requires | εµ z| < 1 for the convergence of the
radius.

3.2 Integral representation for a polynomial of type 1
There is a generalized hypergeometric function such that

Ll =

νl∑
il=il−1

(−νl)il( l
2 + λ

2 )il(
l
2 + 1− Ω

2µ + λ
2 )il−1

(−νl)il−1
( l
2 + λ

2 )il−1
( l
2 + 1− Ω

2µ + λ
2 )il

ηil

= ηil−1

∞∑
j=0

Aj(il−1 − νl)j(il−1 +
l
2 + λ

2 )j

(il−1 +
l
2 − Ω

2µ + λ
2 )

−1(1)j
ηj , (3.10)

where
Aj = B

(
il−1 +

l

2
− Ω

2µ
+
λ

2
, j + 1

)
.
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By using integral form of the beta function, we have

B
(
il−1 +

l

2
− Ω

2µ
+
λ

2
, j + 1

)
=

1∫
0

dtl t
il−1+

l
2−1− Ω

2µ+λ
2

l (1− tl)
j . (3.11)

Substitute (3.11) into (3.10), and divide Ll by (il−1 +
l
2 − Ω

2µ + λ
2 ). We obtain

Gl =
1

(il−1 +
l
2 − Ω

2µ + λ
2 )

νl∑
il=il−1

(−νl)il( l
2 + λ

2 )il(
l
2 + 1− Ω

2µ + λ
2 )il−1

(−νl)il−1
( l
2 + λ

2 )il−1
( l
2 + 1− Ω

2µ + λ
2 )il

ηil

=

1∫
0

dtl t
l
2−1− Ω

2µ+λ
2

l (ηtl)
il−1

∞∑
j=0

(il−1 − νl)j(il−1 +
l
2 + λ

2 )j

(1)j
(η(1− tl))

j . (3.12)

Tricomi’s function is defined by

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b, z) +

Γ(b− 1)

Γ(a)
z1−bM(a− b+ 1, 2− b, z). (3.13)

The contour integral form of (3.13) is given by (see [33])

U(a, b, z) = e−aπi Γ(1− a)

2πi

(0+)∫
∞

dpl e
−zplpa−1

l (1 + pl)
b−a−1, (3.14)

where
a ̸= 1, 2, 3, . . . , |ph z| < 1

2
π.

Also (3.13) is written as (see [33])

U(a, b, z) = z−a
∞∑
j=0

(a)j(a− b+ 1)j
(1)j

(−z−1)j = z−a
2F0(a, a− b+ 1;−;−z−1). (3.15)

Replace a, b and z in (3.15), respectively, by il−1 − νl, −νl + 1− l
2 − λ

2 and −1
η(1−tl)

. We get

∞∑
j=0

(il−1 − νl)j(il−1 +
l
2 + λ

2 )j

(1)j
(η(1− tl))

j

=
( −1

η(1− tl)

)il−1−νl

U
(
il−1 − νl,−νl + 1− l

2
− λ

2
, ϖ

)
, (3.16)

where
ϖ =

−1

η(1− tl)
.

Replace a, b and z in (3.14), respectively, by il−1 − νl, −νl + 1 − l
2 − λ

2 and −1
η(1−tl)

and insert the
result into (3.16). We obtain

∞∑
j=0

(il−1 − νl)j(il−1 +
l
2 + λ

2 )j

(1)j
(η(1− tl))

j =
Γ(νl − il−1 + 1)

2πi

×
(0+)∫
∞

dpl exp
( pl
η(1− tl)

)
p−1
l (1 + pl)

− 1
2 (l+λ)

(η(1− tl)

pl

)νl
( pl
η(1− tl)(1 + pl)

)il−1

. (3.17)
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The Gamma function Γ(z) is defined as follows:

Γ(z) =

∞∫
0

dul e
−uluz−1

l , where Re (z) > 0. (3.18)

Put z = νl − il−1 + 1 in (3.18). We have

Γ(νl − il−1 + 1) =

∞∫
0

dul e
−ulu

νl−il−1

l . (3.19)

Substitute (3.19) in (3.17) and insert the result into (3.12). We get

Gl =
1

(il−1 +
l
2 − Ω

2µ + λ
2 )

νl∑
il=il−1

(−νl)il( l
2 + λ

2 )il(
l
2 + 1− Ω

2µ + λ
2 )il−1

(−νl)il−1
( l
2 + λ

2 )il−1
( l
2 + 1− Ω

2µ + λ
2 )il

ηil

=

1∫
0

dtl t
1
2 (l−2−Ω

µ+λ)

l

∞∫
0

dul
1

2πi

×
(0+)∫
∞

dpl exp
( pl
η(1− tl)

)
p−1
l (1 + pl)

− 1
2 (l+λ)

(ηul(1− tl)

pl

)νl
( tlpl
ul(1− tl)(1 + pl)

)il−1

. (3.20)

Substitute (3.20) into (3.8), where l = 1, 2, 3, . . . : apply G1 into the second summation of the sub-
power series y1(z); apply G2 into the third summation and G1 into the second summation of the
sub-power series y2(z); apply G3 into the forth summation, G2 into the third summation and G1 into
the second summation of the sub-power series y3(z), etc.∗

Theorem 3.2. The general representation in the form of an integral of the GCH polynomial of type 1
about x = ∞ is given by

y(z) =

∞∑
n=0

yn(z) = y0(z) + y1(z) + y2(z) + y3(z) + · · ·

= c0z
λ

{
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

ηi0 +

∞∑
n=1

{
n−1∏
k=0

{ 1∫
0

dtn−k t
1
2 (n−k−2−Ω

µ+λ)

n−k

∞∫
0

dun−k e
−un−k

× 1

2πi

(0+)∫
∞

dpn−k p
−1
n−k(1 + pn−k)

− 1
2 (n−k+λ)

× exp
( pn−k

wn−k+1,n(1− tn−k)

)(wn−k+1,nun−k(1− tn−k)

pn−k

)νn−k

× w
− 1

2 (n−k−1−ω+λ)

n−k,n (wn−k,n∂wn−k,n
)w

1
2 (n−k−1−ω+λ)

n−k,n

} ν0∑
i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ+
λ
2 )i0

wi0
1,n

}
ξn

}
, (3.21)

where

wi,j =


tipi

ui(1− ti)(1 + pi)
, where i ≤ j,

η only if i > j.

Here the first sub-integral form contains one term of A′
ns, the second one contains two terms of An’s,

the third one contains three terms of An’s, etc.
∗y1(z) means the sub-power series in (3.8), contains one term of A′

ns; y2(z) means the sub-power series in (3.8),
contains two terms of A′

ns; y3(z) means the sub-power series in (3.8), contains three terms of A′
ns, etc.
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Proof. In (3.8), the power series expansions of the sub-summation terms y0(z), y1(z), y2(z) and y3(z)
of the GCH polynomial of type 1 about x = ∞ are

y(z) =

∞∑
n=0

yn(z) = y0(z) + y1(z) + y2(z) + y3(z) + · · · , (3.22)

where

y0(z) =

ν0∑
i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

ηi0 , (3.23a)

y1(z) = c0z
λ

{ ν0∑
i0=0

(i0 − ω
2 + λ

2 )

(i0 +
1
2 − Ω

2µ + λ
2 )

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

×
ν1∑

i1=i0

(−ν1)i1( 12 + λ
2 )i1(

3
2 − Ω

2µ + λ
2 )i0

(−ν1)i0( 12 + λ
2 )i0(

3
2 − Ω

2µ + λ
2 )i1

ηi1
}
ξ, (3.23b)

y2(z) = c0z
λ

{ ν0∑
i0=0

(i0 − ω
2 + λ

2 )

(i0 +
1
2 − Ω

2µ + λ
2 )

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

×
ν1∑

i1=i0

(i1 +
1
2 − ω

2 + λ
2 )

(i1 + 1− Ω
2µ + λ

2 )

(−ν1)i1( 12 + λ
2 )i1(

3
2 − Ω

2µ + λ
2 )i0

(−ν1)i0( 12 + λ
2 )i0(

3
2 − Ω

2µ + λ
2 )i1

×
ν2∑

i2=i1

(−ν2)i2(1 + λ
2 )i2(2−

Ω
2µ + λ

2 )i1

(−ν2)i1(1 + λ
2 )i1(2−

Ω
2µ + λ

2 )i2
ηi2

}
ξ2, (3.23c)

y3(z) = c0z
λ

{ ν0∑
i0=0

(i0 − ω
2 + λ

2 )

(i0 +
1
2 − Ω

2µ + λ
2 )

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

×
ν1∑

i1=i0

(i1 +
1
2 − ω

2 + λ
2 )

(i1 + 1− Ω
2µ + λ

2 )

(−ν1)i1( 12 + λ
2 )i1(

3
2 − Ω

2µ + λ
2 )i0

(−ν1)i0( 12 + λ
2 )i0(

3
2 − Ω

2µ + λ
2 )i1

×
ν2∑

i2=i1

(i2 + 1− ω
2 + λ

2 )

(i2 +
3
2 − Ω

2µ + λ
2 )

(−ν2)i2(1 + λ
2 )i2(2−

Ω
2µ + λ

2 )i1

(−ν2)i1(1 + λ
2 )i1(2−

Ω
2µ + λ

2 )i2

×
ν3∑

i3=i2

(−ν3)i3( 32 + λ
2 )i3(

5
2 − Ω

2µ + λ
2 )i2

(−ν3)i2( 32 + λ
2 )i2(

5
2 − Ω

2µ + λ
2 )i3

ηi3
}
ξ3. (3.23d)

Put l = 1 in (3.20) and insert the result into (3.23b). We get

y1(z) = c0z
λξ

1∫
0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1

× exp
( p1
η(1− t1)

)
p−1
1 (1 + p1)

− 1
2 (1+λ)

(ηu1(1− t1)

p1

)ν1

×
ν0∑

i0=0

(
i0 −

ω

2
+
λ

2

) (−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

( t1p1
u1(1− t1)(1 + p1)

)i0

= c0z
λξ

1∫
0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1

× exp
( p1
η(1− t1)

)
p−1
1 (1 + p1)

− 1
2 (1+λ)

(ηu1(1− t1)

p1

)ν1

× w
− 1

2 (−ω+λ)
1,1 (w1,1∂w1,1)w

1
2 (−ω+λ)
1,1

ν0∑
i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,1, (3.24)
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where w1,1 = t1p1

u1(1−t1)(1+p1)
. Put l = 2 in (3.20) and insert the result into (3.23c). We get

y2(z) = c0z
λξ2

1∫
0

dt2 t
1
2 (−Ω

µ+λ)

2

∞∫
0

du2 e
−u2

1

2πi

(0+)∫
∞

dp2

× exp
( p2
η(1− t2)

)
p−1
2 (1 + p2)

− 1
2 (2+λ)

(ηu2(1− t2)

p2

)ν2

w
− 1

2 (1−ω+λ)
2,2 (w2,2∂w2,2)w

1
2 (1−ω+λ)
2,2

×
ν0∑

i0=0

(i0 − ω
2 + λ

2 )

(i0 +
1
2 − Ω

2µ + λ
2 )

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

ν1∑
i1=i0

(−ν1)i1( 12 + λ
2 )i1(

3
2 − Ω

2µ + λ
2 )i0

(−ν1)i0( 12 + λ
2 )i0(

3
2 − Ω

2µ + λ
2 )i1

wi1
2,2. (3.25)

where w2,2 = t2p2

u2(1−t2)(1+p2)
. Put l = 1 and η = w2,2 in (3.20) and insert the result into (3.25). We get

y2(z) = c0z
λξ2

1∫
0

dt2 t
1
2 (−

Ω
µ+λ)

2

∞∫
0

du2 e
−u2

1

2πi

(0+)∫
∞

dp2

× exp
( p2
η(1− t2)

)
p−1
2 (1 + p2)

− 1
2 (2+λ)

(ηu2(1− t2)

p2

)ν2

w
− 1

2 (1−ω+λ)
2,2 (w2,2∂w2,2

)w
1
2 (1−ω+λ)
2,2

×
1∫

0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1 exp
( p1
w2,2(1− t1)

)
p−1
1 (1 + p1)

− 1
2 (1+λ)

×
(w2,2u1(1− t1)

p1

)ν1

w
− 1

2 (−ω+λ)
1,2 (w1,2∂w1,2

)w
1
2 (−ω+λ)
1,2

ν0∑
i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,2, (3.26)

where w1,2 = t1p1

u1(1−t1)(1+p1)
.

By using similar process as for the previous cases of integral forms of y1(z) and y2(z), the integral
form of the sub-power series expansion y3(z) takes the form

y3(z) = c0z
λξ3

1∫
0

dt3 t
1
2 (1−Ω

µ+λ)

3

∞∫
0

du3 e
−u3

1

2πi

(0+)∫
∞

dp3

× exp
( p3
η(1− t3)

)
p−1
3 (1 + p3)

− 1
2 (3+λ)

(ηu3(1− t3)

p3

)ν3

w
− 1

2 (2−ω+λ)
3,3 (w3,3∂w3,3)w

1
2 (2−ω+λ)
3,3

×
1∫

0

dt2 t
1
2 (−Ω

µ+λ)

2

∞∫
0

du2 e
−u2

1

2πi

(0+)∫
∞

dp2

× exp
( p2
w3,3(1−t2)

)
p−1
2 (1 + p2)

− 1
2 (2+λ)

(w3,3u2(1−t2)
p2

)ν2

w
− 1

2 (1−ω+λ)
2,3 (w2,3∂w2,3)w

1
2 (1−ω+λ)
2,3

×
1∫

0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1 exp
( p1
w2,3(1− t1)

)
p−1
1 (1 + p1)

− 1
2 (1+λ)

×
(w2,3u1(1− t1)

p1

)ν1

w
− 1

2 (−ω+λ)
1,3 (w1,3∂w1,3

)w
1
2 (−ω+λ)
1,3

ν0∑
i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,3, (3.27)

where 

w3,3 =
t3p3

u3(1− t3)(1 + p3)
,

w2,3 =
t2p2

u2(1− t2)(1 + p2)
,

w1,3 =
t1p1

u1(1− t1)(1 + p1)
.
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By repeating this process for all higher terms of integral forms of sub-summation terms ym(z), m ≥ 4,
we obtain their integral forms. If we substitute (3.23a), (3.24), (3.26), (3.27) and the integral forms
of ym(z), m ≥ 4, into (3.22), we obtain (3.21).

Remark 3.3. The integral representation of the first kind GCH equation for a polynomial of type 1
about x = ∞ as ν = 2νj + j + 1 + Ω/µ where j, νj ∈ N0 is

y(z) = Q(i)Wνj

(
µ, ε,Ω, ω, ν = 2νj + j + 1 +

Ω

µ
; z, ξ, η

)
= z

Ω
µ

{
(−η)ν0U

(
− ν0,−ν0 + 1− Ω

µ
,−η−1

)
+

∞∑
n=1

{
n−1∏
k=0

{ 1∫
0

dtn−k t
1
2 (n−k−2)

n−k

×
∞∫
0

dun−k e
−un−k

1

2πi

(0+)∫
∞

dpn−k p
−1
n−k(1 + pn−k)

− 1
2 (n−k+Ω

µ )

× exp
( pn−k

wn−k+1,n(1− tn−k)

)(wn−k+1,nun−k(1− tn−k)

pn−k

)νn−k

w
− 1

2 (n−k−1−ω+Ω
µ )

n−k,n

× (wn−k,n∂wn−k,n
)w

1
2 (n−k−1−ω+Ω

µ )

n−k,n

}
(−w1,n)

ν0U
(
− ν0,−ν0 + 1− Ω

µ
,−w−1

1,n

)}
ξn

}
, (3.28)

where 

z =
1

x
,

ξ = − ε

µ
z,

η =
2

µ
z2.

Proof. Replace a, b and z, respectively, by −ν0, −ν0 + 1− Ω
2µ and −η−1 into (3.15):

ν0∑
j=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

ηj = (−η)ν0U
(
− ν0,−ν0 + 1− Ω

µ
,−η−1

)
. (3.29)

Replace a, b and z, respectively, by −ν0, −ν0 + 1− Ω
2µ and −w−1

1,n into (3.15):
ν0∑
j=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wj
1,n = (−w1,n)

ν0U
(
− ν0,−ν0 + 1− Ω

µ
,−w−1

1,n

)
. (3.30)

Putting c0 = 1 and λ = Ω/µ in (3.21) and substituting (3.29) and (3.30) into obtained equality we
get the result.

3.3 Generating function of the GCH polynomial of type 1
Let us investigate the generating function for the first kind GCH polynomial of type 1 about x = ∞.
Definition 3.4. Define

sa,b =

{
sa · sa+1 · sa+2 · · · sb−2 · sb−1 · sb, where a < b,

sa only if a = b,

w̃i,j =


sitiw̃i+1,j

1 + siui(1− ti)w̃i+1,j
, where i < j,

si,∞tiη

1 + si,∞ui(1− ti)η
only if i = j,

(3.31)

where a, b, i, j ∈ N0, 0 ≤ a ≤ b ≤ ∞ and 1 ≤ i ≤ j ≤ ∞.
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We have
∞∑

νi=νj

sνi
i =

s
νj

i

(1− si)
at |si| < 1. (3.32)

Theorem 3.5. The general expression of the generating function for the GCH polynomial of type 1
about x = ∞ is given by

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y(z) =

∞∏
k=1

1

(1− sk,∞)
Υ(λ; s0,∞; η)

+

{ ∞∏
k=2

1

(1− sk,∞)

1∫
0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 exp(−(1− s1,∞)u1)(1 + s1,∞u1(1− t1)η)
− 1

2 (1+λ)

× w̃
− 1

2 (−ω+λ)
1,1 (w̃1,1∂w̃1,1

)w̃
1
2 (−ω+λ)
1,1 Υ(λ; s0; w̃1,1)

}
ξ

+

∞∑
n=2

{ ∞∏
k=n+1

1

(1−sk,∞)

1∫
0

dtn t
1
2 (n−2−Ω

µ+λ)
n

∞∫
0

dun exp(−(1−sn,∞)un)(1+sn,∞un(1−tn)η)−
1
2 (n+λ)

× w̃
− 1

2 (n−1−ω+λ)
n,n (w̃n,n∂w̃n,n

)w̃
1
2 (n−1−ω+λ)
n,n

n−1∏
j=1

{ 1∫
0

dtn−j t
1
2 (n−j−2−Ω

µ+λ)

n−j

∞∫
0

dun−j

× exp(−(1− sn−j)un−j)(1 + sn−jun−j(1− tn−j)w̃n−j+1,n)
− 1

2 (n−j+λ)

× w̃
− 1

2 (n−j−1−ω+λ)
n−j,n (w̃n−j,n∂w̃n−j,n

)w̃
1
2 (n−j−1−ω+λ)
n−j,n

}
Υ(λ; s0; w̃1,n)

}
ξn, (3.33)

where 

Υ(λ; s0,∞; η) =

∞∑
ν0=0

sν0
0,∞

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

ηi0
}
,

Υ(λ; s0; w̃1,1) =

∞∑
ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

w̃i0
1,1

}
,

Υ(λ; s0; w̃1,n) =

∞∑
ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

w̃i0
1,n

}
.

Proof. Applying the summation operator
∞∑

ν0=0

s
ν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
to the form of a general integral

of type 1 GCH polynomial y(z), we obtain

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y(z) =

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}(
y0(z) + y1(z) + y2(z) + · · ·

)
. (3.34)

Applying the summation operator
∞∑

ν0=0

s
ν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
to (3.23a) by using (3.31) and (3.32),

we get

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y0(z) =

∞∏
k=1

1

(1− sk,∞)

∞∑
ν0=0

sν0
0,∞

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

ηi0
}

(3.35)

Applying the summation operator
∞∑

ν0=0

s
ν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
to (3.24), by using (3.31) and (3.32),
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we get

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y1(z) =

∞∏
k=2

1

(1− sk,∞)

1∫
0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1

× exp
( p1
η(1− t1)

) (1 + p1)
− 1

2 (1+λ)

p1

∞∑
ν1=ν0

(s1,∞ηu1(1− t1)

p1

)ν1

× w
− 1

2 (−ω+λ)
1,1 (w1,1∂w1,1

)w
1
2 (−ω+λ)
1,1

∞∑
ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,1

}
ξ. (3.36)

Replace νi, νj and si by ν1, ν0 and s1,∞ηu1(1−t1)
p1

in (3.32). Substitute the new (3.32) into (3.36),

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y1(z) =

∞∏
k=2

1

(1− sk,∞)

1∫
0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

× 1

2πi

(0+)∫
∞

dp1 exp
( p1
η(1− t1)

) (1 + p1)
− 1

2 (1+λ)

p1 − s1,∞ηu1(1− t1)
w

− 1
2 (−ω+λ)

1,1 (w1,1∂w1,1
)w

1
2 (−ω+λ)
1,1

×
∞∑

ν0=0

(s0,∞ηu1(1− t1)

p1

)ν0 1

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,1

}
ξ. (3.37)

By using Cauchy’s integral formula, the contour integrand has poles at p1 = s1,∞ηu1(1 − t1), where
s1,∞ηu1(1− t1) is inside the unit circle. Computing the residue in (3.37), we obtain

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y1(z) =

∞∏
k=2

1

(1− sk,∞)

1∫
0

dt1 t
1
2 (−1−Ω

µ+λ)

1

×
∞∫
0

du1 exp(−(1− s1,∞)u1)(1 + s1,∞u1(1− t1)η)
− 1

2 (1+λ)

× w̃
− 1

2 (−ω+λ)
1,1 (w̃1,1∂w̃1,1

)w̃
1
2 (−ω+λ)
1,1

∞∑
ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

w̃i0
1,1

}
ξ, (3.38)

where
w̃1,1 =

t1p1
u1(1− t1)(1 + p1)

∣∣∣∣
p1=s1,∞ηu1(1−t1)

=
s1,∞t1η

1 + s1,∞u1(1− t1)η
.

Applying the summation operator
∞∑

ν0=0

s
ν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
to (3.26), by using (3.31) and (3.32),

we have

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y2(z) =

∞∏
k=3

1

(1− sk,∞)

1∫
0

dt2 t
1
2 (−Ω

µ+λ)

2

∞∫
0

du2 e
−u2

× 1

2πi

(0+)∫
∞

dp2 exp
( p2
η(1− t2)

) (1 + p2)
− 1

2 (2+λ)

p2

×
∞∑

ν2=ν1

(s2,∞ηu2(1− t2)

p2

)ν2

w
− 1

2 (1−ω+λ)
2,2 (w2,2∂w2,2

)w
1
2 (1−ω+λ)
2,2
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×
1∫

0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1 exp
( p1
w2,2(1− t1)

) (1 + p1)
− 1

2 (1+λ)

p1

×
∞∑

ν1=ν0

(s1w2,2u1(1− t1)

p1

)ν1

w
− 1

2 (−ω+λ)
1,2 (w1,2∂w1,2

)w
1
2 (−ω+λ)
1,2

×
∞∑

ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,2

}
ξ2. (3.39)

Replace νi, νj and si, respectively, by ν2, ν1 and s2,∞ ηu2(1−t2)
p2

in (3.32) and the insert the result into
(3.39). We have

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y2(z) =

∞∏
k=3

1

(1− sk,∞)

1∫
0

dt2 t
1
2 (−Ω

µ+λ)

2

∞∫
0

du2 e
−u2

× 1

2πi

(0+)∫
∞

dp2 exp
( p2
η(1− t2)

) (1 + p2)
− 1

2 (2+λ)

p2 − s2,∞ηu2(1− t2)
w

− 1
2 (1−ω+λ)

2,2 (w2,2∂w2,2
)w

1
2 (1−ω+λ)
2,2

×
1∫

0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1 exp
( p1
w2,2(1− t1)

) (1 + p1)
− 1

2 (1+λ)

p1

×
∞∑

ν1=ν0

(s1,∞ηu2(1− t2)w2,2u1(1− t1)

p1p2

)ν1

w
− 1

2 (−ω+λ)
1,2 (w1,2∂w1,2

)w
1
2 (−ω+λ)
1,2

×
∞∑

ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,2

}
ξ2. (3.40)

By using Cauchy’s integral formula, the contour integrand has poles at p2 = s2,∞ηu2(1 − t2), where
s2,∞ηu2(1− t2) is inside the unit circle. Computing the residue in (3.40), we obtain

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y2(z) =

∞∏
k=3

1

(1− sk,∞)

1∫
0

dt2 t
1
2 (−Ω

µ+λ)

2

×
∞∫
0

du2 exp
(
− (1− s2,∞)u2

)(
1 + s2,∞u2(1− t2)η

)− 1
2 (2+λ)

w̃
− 1

2 (1−ω+λ)
2,2 (w̃2,2∂w̃2,2

)w̃
1
2 (1−ω+λ)
2,2

×
1∫

0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1 exp
( p1
w̃2,2(1− t1)

) (1 + p1)
− 1

2 (1+λ)

p1

×
∞∑

ν1=ν0

(s1w̃2,2u1(1− t1)

p1

)ν1

w
− 1

2 (−ω+λ)
1,2 (w1,2∂w1,2

)w
1
2 (−ω+λ)
1,2

×
∞∑

ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,2

}
ξ2, (3.41)

where
w̃2,2 =

t2p2
u2(1− t2)(1 + p2)

∣∣∣∣
p2=s2,∞ηu2(1−t2)

=
s2,∞t2η

1 + s2,∞u2(1− t2)η
.

Replace νi, νj and si, respectively, by ν1, ν0 and s1w̃2,2u1(1−t1)
p1

in (3.32) and insert the result in (3.41):
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∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y2(z) =

∞∏
k=3

1

(1− sk,∞)

1∫
0

dt2 t
1
2 (−Ω

µ+λ)

2

×
∞∫
0

du2 exp(−(1− s2,∞)u2)
(
1 + s2,∞u2(1− t2)η

)− 1
2 (2+λ)

w̃
− 1

2 (1−ω+λ)
2,2 (w̃2,2∂w̃2,2

)w̃
1
2 (1−ω+λ)
2,2

×
1∫

0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 e
−u1

1

2πi

(0+)∫
∞

dp1 exp
( p1
w̃2,2(1− t1)

)

× (1 + p1)
− 1

2 (1+λ)

p1 − s1w̃2,2u1(1− t1)
w

− 1
2 (−ω+λ)

1,2 (w1,2∂w1,2)w
1
2 (−ω+λ)
1,2

×
∞∑

ν0=0

(s0,1w̃2,2u1(1− t1)

p1

)ν0 1

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

wi0
1,2

}
ξ2. (3.42)

By using Cauchy’s integral formula, the contour integrand has poles at p1 = s1w̃2,2u1(1− t1), where
s1w̃2,2u1(1− t1) is inside the unit circle. Computing the residue in (3.42), we obtain

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y2(z) =

∞∏
k=3

1

(1− sk,∞)

1∫
0

dt2 t
1
2 (−Ω

µ+λ)

2

×
∞∫
0

du2 exp(−(1− s2,∞)u2)
(
1 + s2,∞u2(1− t2)η

)− 1
2 (2+λ)

w̃
− 1

2 (1−ω+λ)
2,2 (w̃2,2∂w̃2,2

)w̃
1
2 (1−ω+λ)
2,2

×
1∫

0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 exp(−(1− s1)u1)
(
1 + s1u1(1− t1)w̃2,2

)− 1
2 (1+λ)

× w̃
− 1

2 (−ω+λ)
1,2 (w̃1,2∂w̃1,2

)w̃
1
2 (−ω+λ)
1,2

∞∑
ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

w̃i0
1,2

}
ξ2, (3.43)

where
w̃1,2 =

t1p1
u1(1− t1)(1 + p1)

∣∣∣∣
p1=s1w̃2,2u1(1−t1)

=
s1t1w̃2,2

1 + s1u1(1− t1)w̃2,2
.

Applying the summation operator
∞∑

ν0=0

s
ν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
to (3.27), by using (3.31) and (3.32), we

have

∞∑
ν0=0

sν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
y3(z) =

∞∏
k=4

1

(1− sk,∞)

1∫
0

dt3 t
1
2 (1−Ω

µ+λ)

3

×
∞∫
0

du3 exp(−(1− s3,∞)u3)
(
1 + s3,∞u3(1− t3)η

)− 1
2 (3+λ)

w̃
− 1

2 (2−ω+λ)
3,3 (w̃3,3∂w̃3,3

)w̃
1
2 (2−ω+λ)
3,3

×
1∫

0

dt2 t
1
2 (−Ω

µ+λ)

2

∞∫
0

du2 exp(−(1− s2)u2)(1 + s2u2(1− t2)w̃3,3)
− 1

2 (2+λ)w̃
− 1

2 (1−ω+λ)
2,3

× (w̃2,3∂w̃2,3
)w̃

1
2 (1−ω+λ)
2,3

1∫
0

dt1 t
1
2 (−1−Ω

µ+λ)

1

∞∫
0

du1 exp(−(1− s1)u1)
(
1 + s1u1(1− t1)w̃2,3

)− 1
2 (1+λ)

× w̃
− 1

2 (−ω+λ)
1,3 (w̃1,3∂w̃1,3

)w̃
1
2 (−ω+λ)
1,3

∞∑
ν0=0

sν0
0

ν0!

{
c0z

λ
ν0∑

i0=0

(−ν0)i0(λ2 )i0
(1− Ω

2µ + λ
2 )i0

w̃i0
1,3

}
ξ3, (3.44)
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where 

w̃3,3 =
t3p3

u3(1− t3)(1 + p3)

∣∣∣∣
p3=s3,∞ηu3(1−t3)

=
s3,∞t3η

1 + s3,∞u3(1− t3)η
,

w̃2,3 =
t2p2

u2(1− t2)(1 + p2)

∣∣∣∣
p2=s2w̃3,3u2(1−t2)

=
s2t2w̃3,3

1 + s2u2(1− t2)w̃3,3
,

w̃1,3 =
t1p1

u1(1− t1)(1 + p1)

∣∣∣∣
p1=s1w̃2,3u1(1−t1)

=
s1t1w̃2,3

1 + s1u1(1− t1)w̃2,3
.

By repeating this process for all higher terms of integral forms of the sub-summation ym(z) terms,
where m > 3, we obtain every

∞∑
ν0=0

s
ν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
ym(z) terms. Since we substitute (3.35),

(3.38), (3.43), (3.44) and include all
∞∑

ν0=0

s
ν0
0

ν0!

∞∏
n=1

{ ∞∑
νn=νn−1

sνn
n

}
ym(z) terms, where m > 3, into (3.34),

we obtain (3.33).

Remark 3.6. The generating function for the first kind GCH polynomial of type 1 about x = ∞ as
ν = 2νj + j + 1 + Ω/µ, where j, νj ∈ N0, is

∞∑
ν0=0

sν0
0

ν0!

∏
y∞n=1

{ ∞∑
νyn=νn−1

sνn
n

}
Q(i)Wνj

(µ, ε,Ω, ω, ν; z, ξ, η)

= z
Ω
µ

{ ∞∏
k=1

1

(1− sk,∞)
A(s0,∞; η) +

{ ∞∏
k=2

1

(1− sk,∞)

1∫
0

dt1 t
− 1

2
1

×
∞∫
0

du1
↔
Γ1(s1,∞; t1, u1, η)w̃

− 1
2 (−ω+Ω

µ )

1,1 (w̃1,1∂w̃1,1
)w̃

1
2 (−ω+Ω

µ )

1,1 A(s0; w̃1,1)

}
ξ

+

∞∑
n=2

{ ∞∏
k=n+1

1

(1− sk,∞)

1∫
0

dtn t
1
2 (n−2)
n

×
∞∫
0

dun
↔
Γn(sn,∞; tn, un, η)w̃

− 1
2 (n−1−ω+Ω

µ )
n,n (w̃n,n∂w̃n,n

)w̃
1
2 (n−1−ω+Ω

µ )
n,n

×
n−1∏
j=1

{ 1∫
0

dtn−j t
1
2 (n−j−2)
n−j

∞∫
0

dun−j

↔
Γn−j(sn−j ; tn−j , un−j , w̃n−j+1,n)

× w̃
− 1

2 (n−j−1−ω+Ω
µ )

n−j,n (w̃n−j,n∂w̃n−j,n
)w̃

1
2 (n−j−1−ω+Ω

µ )

n−j,n

}
A(s0; w̃1,n)

}
ξn

}
, (3.45)

where 

ν = 2νj + j + 1 + Ω
µ ; z = 1

x , ξ = − ε
µ z, η = 2

µ z
2;

↔
Γ1(s1,∞; t1, u1, η) = exp(−(1− s1,∞)u1)(1 + s1,∞u1(1− t1)η)

− 1
2 (1+Ω

µ );

↔
Γn(sn,∞; tn, un, η) = exp(−(1− sn,∞)un)(1 + sn,∞un(1− tn)η)

− 1
2 (n+Ω

µ );

↔
Γn−j(sn−j ; tn−j , un−j , w̃n−j+1,n)

= exp(−(1− sn−j)un−j)(1 + sn−jun−j(1− tn−j)w̃n−j+1,n)
− 1

2 (n−j+Ω
µ )
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and 
A(s0,∞; η) = exp(s0,∞)(1 + s0,∞η)

− Ω
2µ ,

A(s0; w̃1,1) = exp(s0)(1 + s0w̃1,1)
− Ω

2µ ,

A(s0; w̃1,n) = exp(s0)(1 + s0w̃1,n)
− Ω

2µ .

Proof. Replace a, b, j and z, respectively, by −ν0, −ν0 + 1− a, i0 and −z−1 in (3.15). Applying the
summation operator

∞∑
ν0=0

s
ν0
0

ν0!
to the resulting equality, we have

∞∑
ν0=0

sν0
0

ν0!

ν0∑
i0=0

(−ν0)i0(a)i0
(1)i0

zi0 =

∞∑
ν0=0

(−s0z)ν0

ν0!
U(−ν0,−ν0 + 1− a,−z−1). (3.46)

Replace a, b, pl and z, respectively, by −ν0, −ν0 + 1− a, p and −z−1 in (3.14):

U(−ν0,−ν0 + 1− a,−z−1) = eν0πi
ν0!

2πi

(0+)∫
∞

dp e
p
z p−ν0−1(1 + p)−a. (3.47)

Insert (3.47) into (3.46):

∞∑
ν0=0

sν0
0

ν0!

ν0∑
i0=0

(−ν0)i0(a)i0
(1)i0

zi0 =
1

2πi

(0+)∫
∞

dp e
p
z p−1(1 + p)−a

∞∑
ν0=0

(s0z
p

)ν0

=
1

2πi

(0+)∫
∞

dp e
p
z
(1 + p)−a

(p− s0z)
= exp(s0)(1 + s0z)

−a. (3.48)

Replace s0, a and z, respectively, by s0,∞, Ω
2µ and η in (3.48):

∞∑
ν0=0

sν0
0,∞

ν0!

ν0∑
i0=0

(−ν0)i0( Ω
2µ )i0

(1)i0
ηi0 = exp(s0,∞)(1 + s0,∞η)

− Ω
2µ . (3.49)

Replace a and z, respectively, by Ω
2µ and w̃1,1 in (3.48):

∞∑
ν0=0

sν0
0

ν0!

ν0∑
i0=0

(−ν0)i0( Ω
2µ )i0

(1)i0
w̃i0

1,1 = exp(s0)(1 + s0w̃1,1)
− Ω

2µ . (3.50)

Replace a and z, respectively, by Ω
2µ and w̃1,n in (3.48):

∞∑
ν0=0

sν0
0

ν0!

ν0∑
i0=0

(−ν0)i0( Ω
2µ )i0

(1)i0
w̃i0

1,n = exp(s0)(1 + s0w̃1,n)
− Ω

2µ . (3.51)

Putting c0= 1 and λ = Ω
µ in (3.33) and substitute (3.49), (3.50) and (3.51) into obtained equality we

get the result.

4 Summary
The canonical form of the biconfluent Heun equation is defined by [26,36]

x
d2y

dx2
+ (1 + α− βx− 2x2)

dy

dx
+

(
(γ − α− 2)x− 1

2
[δ + (1 + α)β]

)
y = 0
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in which (α, β, γ, δ) ∈ C4. This equation has two singular points: of a regular singularity at x = 0
and of an irregular singularity at ∞. This equation is derived from the GCH equation by replacing
all coefficients µ, ε, ν, Ω and ω, respectively, by −2, −β, 1 + α, γ − α − 2 and 1/2(δ/β + 1 + α) in
(1.1) [9].

In previous two papers of the author [11, 12], it was shown the way of deriving power series
expansions in closed forms of the GCH equation about x = 0 by applying 3TRF for an infinite series
of a polynomial of type 1 including their integral forms (each sub-integral ym(x) of a general integral
y(x) =

∞∑
m=0

ym(x) is composed of 2m terms of the definite integrals and m terms of the contour

integrals), and generating functions for the GCH polynomials of type 1 were analyzed.
In the present paper, it is shown how one can construct power series expansions in closed forms

and their integral forms of the GCH equation about x = 0 for an infinite series and a polynomial of
type 2 by applying R3TRF. This is performed by letting Bn in the sequence cn be the leading term
in the analytic function y(x). For a polynomial of type 2, we treat ω as a fixed value and µ, ε, ν, Ω
as free variables.

The power series expansions and integral representations of the GCH equation about x = 0 for an
infinite series in the present paper are equivalent to an infinite series of the GCH equation in [11,12].
In this paper, Bn is the leading term in the sequence cn in the analytic function y(x). In [11,12], An

is the leading term in the sequence cn in the analytic function y(x).
As we can see in [11, 12], the power series expansions of the GCH equation for an infinite series

and a polynomial of type 1, the denominators and numerators in all Bn terms of each sub-power
series expansion ym(x), where m = 0, 1, 2, . . . , arise with the Pochhammer symbol. In this paper, the
denominators and numerators in all An terms of each sub-power series expansion ym(x) arise likewise
with the Pochhammer symbol. Since we construct the power series expansions with Pochhammer
symbols in numerators and denominators, we are able to describe integral representations of the GCH
equation analytically. As we consider representations in closed form integrals of the GCH equation
about x = 0 by applying either 3TRF or R3TRF, a 1F1 function (the Kummer function of the first
kind) recurs in each of its sub-integral forms. It means that we are able to transform the GCH (or
BCH) functions about x = 0 into any well-known special functions having two term recursive relation
between successive coefficients in the power series of their ODEs, because a 1F1 function arises in each
of sub-integral forms on the GCH equation. Having replaced 1F1 functions in their integral forms by
other special functions, we can rebuild the Frobenius solutions of the GCH equation about x = 0 in
a backward.

In [12] and in this paper, it is shown how to derive generating functions for type 1 and type 2 GCH
polynomials from their analytic integral representations. We are able to derive orthogonal relations,
recursion relations and expectation values of physical quantities from these two generating functions;
the processes for obtaining orthogonal and recursion relations of the GCH polynomials are similar to
the case of a normalized wave function for the hydrogen-like atoms.∗

In Section 3, we construct the Frobenius solution of the GCH equation about x = ∞ for the
type 1 polynomial by applying 3TRF analytically [10]. Its integral representation and the generating
function for the GCH polynomial are likewise derived analytically. There are no such solutions for an
infinite series and for the type 2 polynomial, since the Bn term is divergent in (3.5b) and the index
n → ∞. Therefore, there are only two types of the analytic solution of the GCH equation about
x = ∞ such as the type 1 and type 3 polynomials. In comparison with integral forms of the GCH
polynomials of the type 1 and 2 around x = 0, a Tricomi’s function (Kummer’s function of the second
kind) recurs in each of sub-integral forms of the GCH polynomial of type 1 about x = ∞.

∗For instance, in the quantum mechanical aspects, if the eigenenergy is contained in Bn term in a 3-term recursive
relation between successive coefficients of the power series expansion, we have to apply the type 1 GCH polynomial. If
the eigenenergy is included in An term in a 3-term recursive relation, we should apply the type 2 GCH polynomial. If
the first eigenenergy (mathematically, it is denoted by a spectral parameter) is included in An term and the second one
is involved in Bn terms, we must apply the type 3 GCH polynomial. In Chapters 9 and 10 of [14] we discuss about the
type 3 GCH polynomials.
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ÒÄÆÉÖÌÄ. ÌÄÏÒÄ ÒÉÂÉÓ ÀÒÀßÒ×ÉÅ äÉÐÄÒÁÏËÖÒ ÓÉÓÔÄÌÀÈÀ ÄÒÈÉ ÊËÀÓÉÓÀÈÅÉÓ ÂÀÍáÉËÖËÉÀ
ÃÀÒÁÖÓ ÐÉÒÅÄËÉ ÀÌÏÝÀÍÀ. ÂÀÌÏÊÅËÄÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÂËÏÁÀËÖÒÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ,
ÄÒÈÀÃÄÒÈÏÁÉÓ ÃÀ ÓÉÂËÖÅÉÓ ÓÀÊÉÈáÄÁÉ.
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1 Statement of the problem
In a plane of variables x and t we consider the hyperbolic second order system of the type

Lu := utt − uxx +A(x, t)ux +B(x, t)ut + C(x, t)u+ f(x, t, u) = F (x, t), (1.1)

where A, B, C are the given square n-th order matrices, f = (f1, . . . , fn) and F = (F1, . . . , Fn) are
the given and u = (u1, . . . , un) is an unknown vector functions, n ≥ 2.

By DT we denote an angular domain lying in the characteristic angle {(x, t) ∈ R2 : t > |x|} and
bounded both by the characteristic segment γ1,T : x = t, 0 ≤ t ≤ T , and by the noncharacteristic
segments γ2,T : x = 0, 0 ≤ t ≤ T , and γ3,T : t = T , 0 ≤ x ≤ T .

For system (1.1) in the domain DT , we consider the boundary value problem which is formulated
as follows: find in the domain DT a solution u = u(x, t) of system (1.1) by the boundary conditions

u
∣∣
γi,T

= φi, i = 1, 2, (1.2)

where φi, i = 1, 2, are the given on γi,T vector functions satisfying at their common point O = O(0, 0)
the agreement condition φ1(O) = φ2(O). When T = ∞, we have D∞ : t > |x|, x > 0, and
γ1,∞ : x = t, 0 ≤ t <∞, γ2,∞ : x = 0, 0 ≤ t <∞. In a scalar case, where n = 1, problem (1.1), (1.2)
is known as the first Darboux problem.

If in a linear case for a scalar hyperbolic equation the boundary value problems, in particular, the
Goursat and Darboux problems, are well studied [4, 6, 7, 10, 15, 16], there arise additional difficulties
and new effects in passing to a hyperbolic system. First this has been observed by A. Bitsadze [5] who
constructed examples of second order hyperbolic systems for which the corresponding homogeneous
characteristic problem had a finite number, and in some cases, an infinite set of linearly independent
solutions. Later on, these problems for linear second order hyperbolic systems became a subject of
investigations (see [8,9]). In this direction, the work [3] is also noteworthy, in which by simple examples
the effect of lowest terms on the well-posedness of the problems under consideration has been revealed.
As is shown in [1,2,11–13], the presence of a nonlinear term in a scalar hyperbolic equation may affect
the well-posedness of the Darboux problem, when in one case this problem is globally solvable and
in other cases there may arise the so-called blow-up solutions. It should be noted that the above-
mentioned works do not contain linear terms involving the first order derivatives, since their presence
causes difficulties in investigating the problem, and not only of technical character.

In the present work, we investigate the Darboux problem for the nonlinear system (1.1) in the
presence of lowest terms involving the first order derivatives. The results obtained here are new even
in the case when (1.1) is a scalar hyperbolic equation.

Definition 1.1. Let A,B,C, F ∈ C(DT ), f ∈ C(DT × Rn) and φi ∈ C1(γi,T ), i = 1, 2. The vector
function u is said to be a generalized solution of problem (1.1), (1.2) of the class C in the domain DT ,
if u ∈ C(DT ) and there exists a sequence of vector functions um ∈ C2(DT ) such that um → u and
Lum → F in the space C(DT ), and um|γi,T

→ φi in the space C1(γi,T ), i = 1, 2, as m→ ∞.

Remark 1.1. Obviously, the classical solution u ∈ C2(DT ) of problem (1.1), (1.2) is likewise a
generalized solution of that problem of the class C in the domain DT . Moreover, if a generalized
solution of problem (1.1), (1.2) of the class C in the domain DT belongs to the space C2(DT ), then
this solution will likewise be a classical solution of that problem. It should also be noted that a
generalized solution of problem (1.1), (1.2) of the class C in the domain DT satisfies the boundary
conditions (1.2) in an ordinary classical sense. In case φ2 = 0 in Definition 1.1, we will assume that
um ∈ C2

0 (DT ; γ2,T ) := {v ∈ C2(DT ) : v|γ2,T
= 0}.

Definition 1.2. Let A,B,C, F ∈ C(D∞), f ∈ C(D∞×Rn) and φi ∈ C1(γi,∞), i = 1, 2. We say that
problem (1.1), (1.2) is locally solvable in the class C, if there exists the number T0 = T0(F, γ,γ2) > 0
such that for any T < T0, problem (1.1), (1.2) has at least one generalized solution of the class C in
the domain DT .

Definition 1.3. Let A,B,C, F ∈ C(D∞), f ∈ C(D∞ × Rn) and φi ∈ C1(γi,∞), i = 1, 2. We say
that problem (1.1), (1.2) is globally solvable in the class C, if for any positive number T , problem
(1.1), (1.2) has at least one generalized solution of the class C in the domain DT .
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Definition 1.4. Let A,B,C, F ∈ C(D∞), f ∈ C(D∞ × Rn) and φi ∈ C1(γi,∞), i = 1, 2. The vector
function u ∈ C(D∞) is said to be a global generalized solution of problem (1.1), (1.2) of the class C,
if for any positive number T , the vector function U |DT

is a generalized solution of that problem of
the class C in the domain DT .

2 A priori estimate of a solution of problem (1.1), (1.2)
Let us consider the following conditions imposed on the vector function f = f(x, t, u):

∥fi(x, t, u)∥ ≤M1 +M2∥u∥, (x, t, u) ∈ DT × Rn, i = 1, 2 . . . , n, (2.1)

where Mj =Mj(T ) = const ≥ 0, j = 1, 2, ∥u∥ =
n∑

i=1

|ui|.

Assume
M0 = sup

(x,t)∈DT

max
1≤i,j≤n

(
max

{
|Ai,j(x, t)|, |Bi,j(x, t)|, |Ci,j(x, t)|

})
.

Lemma 2.1. Let F ∈ C(DT ), φ1 ∈ C1(γ1,T ), φ2 = 0, and the vector function f ∈ C(DT × Rn)
satisfy condition (2.1). Then for a generalized solution u = u(x, t) of problem (1.1), (1.2) of the class
C in the domain DT the a priori estimate

∥u∥C(DT ) ≤ c1∥F∥C(DT ) + c2∥φ1∥C1(γ1,T ) + c3 (2.2)

is valid, where the nonnegative constants ci = ci(M0,M1,M2, T ), i = 1, 2, 3, are independent of u, F
and φ1, where ci > 0, i = 1, 2, and

∥u∥C(DT ) =

n∑
i=1

∥ui∥C(DT ), ∥F∥C(DT ) =

n∑
i=1

∥Fi∥C(DT ),

∥φ1∥C1(γ1,T ) =

n∑
i=1

∥φ1i∥C1(γ1,T ).

Proof. Let u = u(x, t) be a generalized solution of problem (1.1), (1.2) of the class C in the domain
DT . Then, according to Definition 1.1 and Remark 1.1, the vector function u ∈ C(DT ) and there
exists a sequence of vector functions um ∈ C2

0 (DT , γ2,T ) such that

lim
m→∞

∥um − u∥C(DT ) = 0, lim
m→∞

∥Lum − F∥C(DT ) = 0, (2.3)

lim
m→∞

∥∥um∣∣
γ1,T

− φ1

∥∥
C1(γ1,T )

= 0. (2.4)

Consider the vector function um ∈ C2
0 (DT , γ2,T ) as a solution of the problem

Lum = Fm, (2.5)
um

∣∣
γ1,T

= φm
1 , um

∣∣
γ2,T

= 0. (2.6)

Here
Fm = Lum, φm

1 = um
∣∣
γ1,T

. (2.7)

Multiplying both parts of system (2.5) scalarwise by ∂um

∂t and integrating over the domain Dτ :=
{(x, t) ∈ DT : t < τ}, 0 < τ ≤ T , we have

1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt−

∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt+

∫
Dτ

(
A(x, t)

∂um

∂x
,
∂um

∂t

)
dx dt

+

∫
Dτ

(
B(x, t)

∂um

∂t
,
∂um

∂t

)
dx dt+

∫
Dτ

(
C(x, t)um,

∂um

∂t

)
dx dt

+

∫
Dτ

(
f(x, t, um),

∂um

∂t

)
dx dt =

∫
Dτ

(
Fm,

∂um

∂t

)
dx dt, (2.8)
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where (v, w) =
n∑

i=1

viwi is a scalar product in the space Rn, v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn.

Integrating by parts and applying Green’s formula, we obtain
1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt =

1

2

∫
∂Dτ

(∂um
∂t

,
∂um

∂t

)
νt ds, (2.9)

−
∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt = −

∫
∂Dτ

(∂um
∂x

,
∂um

∂t

)
νx ds+

∫
Dτ

(∂um
∂x

,
∂2um

∂t∂x

)
dx dt

= −
∫

∂Dτ

(∂um
∂x

,
∂um

∂t

)
νx ds+

1

2

∫
Dτ

∂

∂t

(∂um
∂x

,
∂um

∂x

)
dx dt

= −
∫

∂Dτ

(∂um
∂x

,
∂um

∂t

)
νx ds+

1

2

∫
Dτ

(∂um
∂x

,
∂um

∂x

)
νt ds, (2.10)

where ν = (νx, νt) is the unit vector of the outer normal to the boundary ∂Dτ of the domain Dτ .
Taking into account the fact that ∂Dτ = γ1,τ ∪ γ2,τ ∪ωτ , where γi,τ = γi,τ ∩ {t ≤ τ}, i = 1, 2, and

ωτ = ∂Dτ ∩ {t = τ} = {t = τ, 0 ≤ x ≤ τ}, we have

(νx, νt)
∣∣
γ1,τ

=
( 1√

2
,− 1√

2

)
, (2.11)

(νx, νt)
∣∣
γ2,τ

= (−1, 0), (νx, νt)
∣∣
ωτ

= (0, 1), (2.12)

(ν2x − ν2t )
∣∣
γ1,τ

= 0, (2.13)

νt
∣∣
γ1,τ

< 0. (2.14)

In view of (2.11)–(2.14) and the fact that um|γ2,T
= 0, from (2.9) and (2.10) we arrive at

1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt =

1

2

∫
ωτ

(∂um
∂t

,
∂um

∂t

)
dx+

1

2

∫
γ1,τ

(∂um
∂t

,
∂um

∂t

)
νt ds

=
1

2

∫
ωτ

( n∑
i=1

(umit )
2
)
dx+

1

2

∫
γ1,τ

( n∑
i=1

(umit )
2
)
νt ds, (2.15)

−
∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt =

1

2

∫
ωτ

( n∑
i=1

(umix)
2
)
dx

+
1

2

∫
γ1,τ

( n∑
i=1

(umix)
2
)
νt ds−

∫
γ1,τ

( n∑
i=1

umixu
m
it

)
νx ds. (2.16)

By virtue of (2.13), it follows from (2.15) and (2.16) that

1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt−

∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt

=
1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
))
dx+

∫
γ1,τ

1

2νt

( n∑
i=1

[
(umixνt − umit νx)

2 + (umit )
2(ν2t − ν2x)

])
ds

=
1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
))
dx+

∫
γ1,τ

1

2νt

( n∑
i=1

(umixνt − umit νx)
2
)
ds. (2.17)

Since (νt
∂
∂x − νx

∂
∂t ) is the derivative to the tangent, i.e., it is an inner differential operator on

γ1,τ , taking into account (2.6), we find that∣∣(umixνt − umit νx)
∣∣
γ1,τ

∣∣ ≤ ∥φm
1i∥C1(γ1,τ ) ≤ ∥φm

1i∥C1(γ1,T ). (2.18)
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In view of (2.18) and the fact that νt|γ1,τ = − 1√
2

, (2.17) yields

1

2

∫
Dτ

∂

∂t

(∂um
∂t

,
∂um

∂t

)
dx dt−

∫
Dτ

(∂2um
∂x2

,
∂um

∂t

)
dx dt

≥ 1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
))
dx− 1√

2

∫
γ1,τ

n∑
i=1

∥φm
i ∥2C1(γ1,τ )

ds

≥ 1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
))
dx− mes γ1,T√

2

n∑
i=1

∥φm
1i∥2C1(γ1,T ). (2.19)

Let E = E(x, t) ∈ C(DT ) be a square matrix of order n and u, v ∈ Rn.
If m0 = sup

(x,t)∈DT

max
1≤i,j≤n

|Eij(x, t)|, then

|(E(x, t)u, v)| ≤ m0

( n∑
i=1

|ui|
)( n∑

i=1

|vi|
)

≤ 1

2
m0

( n∑
i=1

|ui|
)2

+
1

2
m0

( n∑
i=1

|vi|
)2

≤ n

2
m0

n∑
i=1

|ui|2 +
n

2
m0

n∑
i=1

|vi|2. (2.20)

Analogously, in view of condition (2.1), we have

|(f(x, t, u), v)| ≤ (M1 +M2∥u∥)
n∑

i=1

|vi|

≤ 1

2
(M1 +M2∥u∥)2 +

1

2

( n∑
i=1

|vi|
)2

≤M2
1 +M2

2

( n∑
i=1

|ui|
)2

+
1

2

( n∑
i=1

|vi|
)2

≤M2
1 +M2

2n

n∑
i=1

|ui|2 +
n

2

( n∑
i=1

|vi|2
)
. (2.21)

Taking into account inequalities (2.20), (2.21) and the definition of the number M0, we obtain∣∣∣∣ ∫
Dτ

(
A(x, t)

∂um

∂x
,
∂um

∂t

)
dx dt+

∫
Dτ

(
B(x, t)

∂um

∂t
,
∂um

∂t

)
dx dt

+

∫
Dτ

(
C(x, t)um,

∂um

∂t

)
dx dt+

∫
Dτ

(
f(x, t, um),

∂um

∂t

)
dx dt

∣∣∣∣
≤

∫
Dτ

(
n

2
M0

n∑
i=1

∣∣∣∂umi
∂x

∣∣∣2 + n

2
M0

n∑
i=1

∣∣∣∂umi
∂t

∣∣∣2) dx dt

+

∫
Dτ

(
nM0

n∑
i=1

∣∣∣∂umi
∂t

∣∣∣2) dx dt+

∫
Dτ

(
n

2
M0

n∑
i=1

|umi |2 + n

2
M0

n∑
i=1

∣∣∣∂umi
∂t

∣∣∣2) dx dt

+

∫
Dτ

(
M2

1 +M2
2n

n∑
i=1

|umi |2 + n

2

n∑
i=1

∣∣∣∂umi
∂t

∣∣∣2) dx dt

≤M2
1 mesDτ +

(
M2

2n+
n

2
M0

) ∫
Dτ

n∑
i=1

|(umi )2| dx dt

+
n

2
M0

∫
Dτ

n∑
i=1

∣∣∣∂umi
∂x

∣∣∣2 dx dt+ (
2nM0 +

n

2

) ∫
Dτ

∣∣∣∂umi
∂x

∣∣∣2 dx dt
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≤M2
1 mesDτ +

(
M2

2n+ 2nM0 +
n

2

) ∫
Dτ

n∑
i=1

(
(umi )2 +

∣∣∣∂umi
∂x

∣∣∣2 + ∣∣∣∂umi
∂t

∣∣∣2) dx dt

=M3 +M4

∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt, (2.22)

where
M3 =M2

1 mesDτ , M4 =M2
2n+ 2nM0 +

n

2
. (2.23)

By virtue of (2.19) and (2.22), it follows from (2.8) that∫
Dτ

(
Fm,

∂um

∂t

)
dx dt

≥ 1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
)
dx− 1√

2
mes γ1,T

n∑
i=1

∥φm
1i∥2C1(γ1,T )

−M3 −M4

∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt,

whence, owing to the fact that(
Fm,

∂um

∂t

)
≤ 1

2

n∑
i=1

(Fm
i )2 +

1

2

n∑
i=1

(umit )
2,

we get

1

2

∫
ωτ

( n∑
i=1

(
(umix)

2 + (umit )
2
)
dx ≤M4

∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt

+
1√
2

mes γ1,T
n∑

i=1

∥φm
1i∥2C1(γ1,T ) +M3 +

1

2

∫
Dτ

n∑
i=1

(umit )
2 dx dt+

1

2

∫
Dτ

n∑
i=1

(Fm
i )2 dx dt

≤
(
M4 +

1

2

) ∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt

+
1

2

∫
Dτ

n∑
i=1

(Fm
i )2 dx dt+

1√
2

mes γ1,T
n∑

i=1

∥φm
1i∥2C1(γ1,T ) +M3. (2.24)

Since umi (0, t) = 0, i = 1, . . . , n, we have

umi (x, τ) =

x∫
0

umix(σ, τ) dσ, 0 ≤ x ≤ τ.

Hence, taking into account the Schwartz inequality, we get

(umi )2(x, τ) ≤
x∫

0

12 dσ

x∫
0

(umix)
2(σ, τ) dσ ≤ x

τ∫
0

(umix)
2(σ, τ) dσ ≤ T

∫
ωτ

(umix)
2 dσ. (2.25)

Arguing analogously and taking into account (2.6), we obtain

umi (x, τ) = φm
1i +

τ∫
x

umit (x, s) ds
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and, consequently,

(umi )2(x, τ) ≤ 2(φm
1i)

2(x) + 2

( τ∫
x

umit (x, s) ds

)2

≤ 2(φm
1i)

2(x) + 2

τ∫
x

12 dt

τ∫
x

(umit )
2(x, t) dt

= 2(φm
1i)

2(x) + 2(τ − x)

τ∫
x

(umit )
2(x, t) dt ≤ 2(φm

1i)
2(x) + 2T

τ∫
x

(umit )
2(x, t) dt. (2.26)

Integration of inequality (2.26) yields

∫
ωτ

(umi )2 dx =

τ∫
0

(umi )2(x, τ) dx

≤ 2

τ∫
x

(φm
1i)

2(x) dx+ 2T

τ∫
0

[ τ∫
x

(umit )
2(x, t) dt

]
dx = 2

τ∫
0

(φm
1i)

2(x) dx+ 2T

∫
Dτ

(umit )
2 dx dt

≤ 2τ∥φm
1i∥2C1(γ1,τ )

+ 2T

∫
Dτ

(umit )
2(x, t) dx dt ≤ 2T∥φm

1i∥2C1(γ1,τ )
+ 2T

∫
Dτ

(umit )
2 dx dt,

from which it follows that

1

2

∫
ωτ

( n∑
i=1

(umi )2
)
dx ≤ T

n∑
i=1

∥φm
1i∥2C1(γ1,T ) + T

∫
Dτ

n∑
i=1

(umit )
2 dx dt. (2.27)

Combining inequalities (2.24) and (2.27), we obtain

1

2

∫
ωτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx

≤
(
M4 + T +

1

2

) ∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt

+
1

2

∫
Dτ

n∑
i=1

(Fm
i )2 dx dt+

( 1√
2

mes γ1,T + T
) n∑

i=1

∥φm
1i∥2C1(γ1,T ) +M3. (2.28)

Assume
w(τ) =

∫
ωτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx. (2.29)

Taking into account that∫
Dτ

n∑
i=1

(
(umi )2 + (umix)

2 + (umit )
2
)
dx dt =

τ∫
0

w(σ) dσ,

∫
Dτ

n∑
i=1

(Fm
i )2 dx dt ≤ mesDT

n∑
i=1

∥Fm
i ∥2C(DT ),

from (2.28), in view of (2.29), we get

w(τ) ≤M5

τ∫
0

w(σ) dσ +M6

n∑
i=1

∥Fm
i ∥2C(DT ) +M7

n∑
i=1

∥φm
i ∥2C1(γ1,T ) +M8, (2.30)
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where

M5 = 2M4 + 2T + 1, M6 = mesDT , M7 =
√
2 mes γ1,τ + 2T, M8 = 2M3. (2.31)

According to Gronwall’s lemma, it follows from (2.30) that

w(τ) ≤
[
M6

n∑
i=1

∥Fm
i ∥2C(DT ) +M7

n∑
i=1

∥φm
1i∥2C1(γ1,T ) +M8

]
expM5T, 0 ≤ τ ≤ T. (2.32)

By virtue of (2.25), (2.29) and (2.32), it is not difficult to see that

(umi )2(x, τ) ≤ T

∫
ωτ

n∑
i=1

(umix)
2 dx ≤ Tw(τ)

≤ T

[
M6

n∑
i=1

∥Fm
i ∥2C(DT ) +M7

n∑
i=1

∥φm
1i∥2C1(γ1,T ) +M8

]
expM5T, 0 ≤ τ ≤ T. (2.33)

Taking into account the obvious inequality
( n∑
i=1

a2i
) 1

2 ≤
n∑

i=1

|ai|, from (2.33) we obtain

∥um∥C(DT ) =

n∑
i=1

∥umi ∥C(DT )

≤n 1
2

( n∑
i=1

∥umi ∥2
C(DT )

) 1
2

= n
1
2

( n∑
i=1

sup
(x,t)∈DT

|umi (x, τ)|2
) 1

2

≤n 1
2

(
nT

[
M6

n∑
i=1

∥Fm
i ∥2

C(DT )
+M7

n∑
i=1

∥φm
1i∥2C1(γ1,τ )

+M8

]
expM5T

) 1
2

≤n 1
2

(
n

1
2 (TM6)

1
2

n∑
i=1

∥Fm
i ∥C(DT )+n

1
2 (TM7)

1
2

n∑
i=1

∥φm
1i∥C1(γ1,τ )+n

1
2 (TM8)

1
2

)
exp 1

2
M5T

≤n(TM6)
1
2 exp 1

2
M5T

n∑
i=1

∥Fm
i ∥C(DT )

+ n(TM7)
1
2 exp 1

2
M5T

n∑
i=1

∥φm
1i∥C(γ1,T ) + n(TM8)

1
2 exp 1

2
M5T

= c1∥Fm∥C(DT ) + c2∥φm
1 ∥C1(γ1,τ ) + c3. (2.34)

Here

c1 = n(TM6)
1
2 exp 1

2
M5T, c2 = n(TM7)

1
2 exp 1

2
M5T, c3 = n(TM8)

1
2 exp 1

2
M5T. (2.35)

By (2.3) and (2.4), passing in inequality (2.34) to the limit, as m → ∞, we obtain an a priori
estimate (2.2) in which the constants c1, c2 and c3 are given by equalities (2.35), and the constants M5,
M6, M7 and M8 in (2.35) are defined from (2.1), (2.23) and (2.31). In addition, ci > 0, i = 1, 2.

3 Reduction of problem (1.1), (1.2) to a nonlinear system of
integral Volterra type equations

As a result of our passage to new independent variables ξ and η:

ξ =
1

2
(t+ x), η =

1

2
(t− x), (3.1)
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the domain DT turns into a triangle GT = OP1P2 of the plane Oξη, where O = O(0, 0), P1 = P1(T, 0),
P2 = P2(

1
2 T,

1
2 T ), and problem (1.1), (1.2) can now be rewritten in the form

L1v := vξη +A1(ξ, η)vξ +B1(ξ, η)vη + c1(ξ, η)v + f1(ξ, η, v) = F1(ξ, η), (ξ, η) ∈ GT , (3.2)
v
∣∣
OP1:η=0, 0≤ξ≤T

= ψ1(ξ), 0 ≤ ξ ≤ T, (3.3)

v
∣∣
OP2:ξ=η, 0≤η≤ 1

2 T
= ψ2(η), 0 ≤ η ≤ T, (3.4)

with respect to a new unknown vector function v(ξ, η) = u(ξ − η, ξ + η). Here

A1(ξ, η) =
1

2

(
A(ξ − η, ξ + η) +B(ξ − η, ξ + η)

)
,

B1(ξ, η) =
1

2

(
B(ξ − η, ξ + η)−A(ξ − η, ξ + η)

)
,

C1(ξ, η) = C(ξ − η, ξ + η),

F1(ξ, η) = F (ξ − η, ξ + η),

f1(ξ, η, v) = f(ξ − η, ξ + η, v),

(3.5)

ψ1(ξ) = φ1(ξ), ψ2(η) = φ2(2η). (3.6)

Below, it will be assumed that u ∈ C2(DT ) is a classical solution of problem (1.1), (1.2), and
according to this fact, v ∈ C2(DT ) is a classical solution of problem (3.2)–(3.4).

Consider first the case when in equation (3.2)

f1(ξ, η, v) = 0, (3.7)

and the coefficients A1, B1 and C1 of that equation satisfy the following condition:

B1η +A1B1 − C1 = 0. (3.8)

When conditions (3.7) and (3.8) are fulfilled, equation (3.2) can be rewritten in the form( ∂

∂η
+A1

)(∂v
∂ξ

+B1v
)
= F1, (ξ, η) ∈ GT . (3.9)

If we adopt the notation
w =

∂v

∂ξ
+B1v, (3.10)

then by virtue of (3.3) and (3.9), the vector function w = w(ξ, η) for fixed ξ will be a solution of the
Cauchy problem

wη +A1(ξ, η)w = F1(ξ, η), (3.11)
w(ξ, 0) = ψ1ξ(ξ) +B1(ξ, 0)ψ1(ξ). (3.12)

Since under the above assumptions A1 = A1(ξ, η) ∈ C(GT ), therefore, as is known, there exists
the fundamental matrix X1 = X1(ξ, η) of the corresponding to (3.11) homogeneous system satisfying
both the following matrix equality [14]

X1η +A1X1 = 0 (3.13)

and the condition
detX1(ξ, η) ̸= 0, (ξ, η) ∈ GT . (3.14)

Denote by K = K(ξ, η, ζ) the Cauchy matrix of order n of system (3.13) which satisfies the
conditions

Kη +A1K = 0, (3.15)
K(ξ, ζ, ζ) = I, (3.16)
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where I is the unit matrix of order n.
As is known, the Cauchy matrix K is given by the equality

K(ξ, η, ζ) = X1(ξ, η)X
−1
1 (ξ, ζ), (3.17)

where X1 = X1(ξ, η) is the fundamental matrix satisfying conditions (3.13), (3.14) [14].
The Cauchy matrix K for the constant matrix A1 is given by the equality [14]

K(ξ, η, ζ) = exp(A1(ζ − η)). (3.18)

By virtue of (3.15) and (3.16), the unit solution of the Cauchy problem (3.11), (3.12) is defined by
the formula [14]

w(ξ, η) = K(ξ, η, 0)
(
ψ1ξ(ξ) +B1(ξ, 0)ψ1(ξ)

)
+

η∫
0

K(ξ, η, ζ)F1(ξ, ζ) dζ. (3.19)

Owing to (3.18), in case the matrix A1 is constant, formula (3.19) takes the form

w(ξ, η) = exp(−A1η)
(
ψ1ξ(ξ) +B1(ξ, 0)ψ1(ξ)

)
+

η∫
0

exp(A1(ζ − η))F1(ξ, ζ) dζ. (3.20)

Taking into account equalities (3.9)–(3.12), it follows from the above reasoning that a solution v
of problem (3.2)–(3.4) satisfies the Cauchy problem

∂v

∂ξ
+B1v = w(ξ, η), η ≤ ξ ≤ T − η, (3.21)

v(ξ, η)
∣∣
ξ=η

= ψ2(η), 0 ≤ η ≤ 1

2
T, (3.22)

where the vector function w = w(ξ, η) is given by formula (3.19).
Analogously to the matrix K, we denote by Λ = Λ(η, ξ, θ) the Cauchy matrix of the corresponding

to (3.21) homogeneous system which satisfies the conditions

Λξ +B1Λ = 0, (3.23)
Λ(η, θ, θ) = 1, (3.24)

and which is given by the equality

Λ(η, ξ, θ) = X2(η, ξ)X
−1
2 (η, θ), (3.25)

where X2(η, ξ) is the fundamental matrix for the corresponding to (3.21) homogeneous system.
When the matrix B1 is constant, the Cauchy matrix Λ is given by the equality

Λ(η, ξ, θ) = exp(B1(θ − ξ)). (3.26)

Owing to (3.23) and (3.24), the unique solution of the Cauchy problem (3.21), (3.22) is defined by
the formula [14]

v(ξ, η) = Λ(η, ξ, η)ψ2(η) +

ξ∫
η

Λ(η, ξ, θ)w(θ, η) dθ. (3.27)

By (3.26), when the matrix B1 is constant, formula (3.27) takes the form

v(ξ, η) = exp(B1(η − ξ))ψ2(η) +

ξ∫
η

exp(B1(θ − ξ))w(θ, η) dθ. (3.28)
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Substituting (3.19) for the vector function w(ξ, η) into the right-hand side of equality (3.27), we obtain

v(ξ, η) = Λ(η, ξ, η)ψ2(η)

+

ξ∫
η

Λ(η, ξ, θ)

[
K(θ, η, 0)

(
ψ1ξ(θ) +B1(θ, 0)ψ1(θ)

)
+

η∫
0

K(θ, η, ζ)F1(θ, ζ) dζ

]
dθ

= Λ(η, ξ, η)ψ2(η) +

ξ∫
η

Λ(η, ξ, θ)
[
K(θ, η, 0)

(
ψ1,ξ(θ) +B1(θ, 0)ψ1(θ)

)]
dθ+

+

ξ∫
η

η∫
0

Λ(η, ξ, θ)K(θ, η, ζ)F1(θ, ζ) dζ dθ, (ξ, η) ∈ GT . (3.29)

We rewrite equality (3.29) in the form

v(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)F1(θ, ζ) dζ dθ + F2(ξ, η), (ξ, η) ∈ GT . (3.30)

where

R(ξ, η; θ, ζ) = Λ(η, ξ, θ)K(θ, η, ζ), (3.31)

F2(ξ, η) = Λ(η, ξ, η)ψ2(η) +

ξ∫
η

Λ(η, ξ, θ)
[
K(θ, η, 0)

(
ψ1ξ(θ) +B1(θ, 0)ψ1(θ)

)]
dθ. (3.32)

In case the matrices A1 and B1 are constant, by virtue of (3.18) and (3.26), equalities (3.31) and
(3.32) take the form

R(ξ, η; θ, ζ) = exp
(
B1(θ − ξ) +A1(ζ − η)

)
, (3.33)

F2(ξ, η) = exp(B1(η − ξ))ψ2(η)

+

ξ∫
η

exp(B1(θ − ξ))
[

exp(A1η)
(
ψ1ξ(θ) +B1(θ, 0)ψ1(θ)

)]
dθ. (3.34)

Consider now a general case when it is not necessary for conditions (3.7) and (3.8) to be fulfilled.
We rewrite system (3.2) in the form( ∂

∂η
+A1

)(∂v
∂ξ

+B1v
)
= (B1η +A1B1 − C1)v − f1 + F1. (3.35)

Then, due to representation (3.30), the classical solution of problem (3.2)–(3.4) or, what comes to the
same, of problem (3.35), (3.3), (3.4), is given by the formula

v(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)
[
(B1η+A1B1−C1)v(θ, ζ)−f1(θ, ζ, v)

]
dζ dθ+F3(ξ, η), (ξ, η) ∈ GT , (3.36)

where

F3(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)F1(θ, ζ) dζ dθ + F2(ξ, η). (3.37)
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Remark 3.1. Equality (3.36) can be considered as a nonlinear system of integral Volterra type
equations which we rewrite as follows:

v = L2v + L3F1 + l0(ψ0, ψ2), (3.38)

where the operator L2 acts according to the formula

(L2v)(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)
[
(B1η +A1B1 − C1)v(θ, ζ)− f1(θ, ζ, v)

]
dζ dθ, (ξ, η) ∈ GT , (3.39)

and the operators L3 and l0, by virtue of (3.32) and (3.37), act by the formulas

(L3F1)(ξ, η) =

ξ∫
η

η∫
0

R(ξ, η; θ, ζ)F1(θ, ζ) dζ dθ, (3.40)

(l0(ψ1, ψ2))(ξ, η) = Λ(η, ξ, η)ψ2(η) +

ξ∫
η

Λ(η, ξ, θ)
[
K(θ, η, 0)

(
ψ1ξ(θ) +B1(θ, 0)ψ1(θ)

)]
, (3.41)

where (ξ, η) ∈ GT .

4 Global solvability of problem (1.1), (1.2) in the class of
continuous functions

Remark 4.1. If we impose on the coefficients and on the vector function f appearing in equation
(1.1) the requirements of smoothness

A,B ∈ C2(DT ), C ∈ C1(DT ), f ∈ C1(DT × Rn), (4.1)

and along with equalities (3.17) and (3.25) take into account the properties dealt with the smoothness
of solutions of the system of ordinary differential equations, we will have [14]

R(ξ, η; θ, ζ) ∈ C2(GT ×GT ). (4.2)

Remark 4.2. Under conditions (4.1), in view of (4.2) for the operator L2 acting according to formula
(3.39), we have

L2v ∈ Ck+1(GT ), if v ∈ Ck(GT ), k = 0, 1, (4.3)
and, hence, the operator L2 : Ck(GT ) → Ck+1(GT ) will be continuous.

Arguing as above, we find that

L3F1 ∈ Ck+1(GT ), if F1 ∈ Ck(GT ), k = 0, 1, (4.4)

and
l0(ψ1, ψ2) ∈ Ck+1(GT ), if ψi ∈ Ck(OPi), k = 0, 1, 2; i = 1, 2. (4.5)

In addition, the operators L3 : Ck(GT ) → Ck+1(GT ) and l0 : Ck(OP1)×Ck(OP2) → Ck(GT ) will be
continuous.

Remark 4.3. It can be easily verified that if u is a generalized solution of problem (1.1), (1.2) of the
class C in the domain DT , then the vector function v(ξ, η) = u(ξ − η, ξ + η) will be a generalized
solution of problem (3.2)–(3.4) of the class C in the domain GT in the following sense: v ∈ C(GT ),
and there exists the sequence of vector functions vm ∈ C2(GT ) such that

lim
m→∞

∥vm − v∥C(GT ) = 0, lim
m→∞

∥L1v
m − F1∥C(GT ) = 0, (4.6)

lim
m→∞

∥∥vm∣∣
OPi

− ψi

∥∥
C1(OPi)

= 0, i = 1, 2, (4.7)

and the converse statement holds, too.
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Lemma 4.1. Let conditions (4.1) be fulfilled. Then the vector function will be a generalized solution
of problem (3.2)–(3.4) of the class C in the domain GT if and only if v is a solution of the nonlinear
system of integral Volterra type equations (3.38) of the class C(GT ).

Proof. Let v ∈ C(GT ) be a solution of system (3.38). Since the space Ck(GT ), k = 1, 2, is the dense
in C(GT ) and the space C2(OPi) is the dense in C1(OPi), i = 1, 2, [17], there exists the sequence of
vector functions F1n ∈ C1(GT ) (ψin ∈ C2(OPi), i = 1, 2) such that

lim
n→∞

∥F1n − F1∥C(GT ) = 0
(

lim
n→∞

∥ψin − ψi∥C1(OPi) = 0, i = 1, 2
)
. (4.8)

Analogously, since v ∈ C(GT ), there exists the sequence of vector functions wn ∈ C2(GT ) such
that

lim
n→∞

∥wn − v∥C(GT ) = 0. (4.9)

Let us now introduce the following sequence of vector functions:

vn = L2wn + L3F1n + l0(ψ1n, ψ2n). (4.10)

By virtue of (4.1)–(4.5), the vector function vn ∈ C2(GT ), and owing to its construction, we will
have

vn
∣∣
OPi

= ψin, i = 1, 2. (4.11)

Taking into account Remark 4.2 and the limiting equalities (4.8), (4.9), we find that

vn −→
[
L2v + L3F1 + l0(ψ1, ψ2)

]
(4.12)

in the space C(GT ), as n→ ∞. At the same time, by equality (3.38), we have

L2v + L3F1 + l0(ψ1, ψ2) = v. (4.13)

It follows from (4.12) and (4.13) that

lim
n→∞

∥vn − v∥C(GT ) = 0. (4.14)

In view of equality (4.10) and Remark 4.2, as well as of the fact how we have obtained equality
(3.30), from the representation (3.9) we get( ∂

∂η
+A1

)(∂vn
∂ξ

+B1vn

)
= (B1η +A1B1 − C1)wn − (f1( · , wn)) + F1n, (4.15)

vn
∣∣
OPi

= ψin, i = 1, 2. (4.16)

By virtue of the representation of equation (3.2) by equality (3.35), from (4.15) we obtain

L1vn = (B1η +A1B1 − C1)(wn − vn) +
(
f1( · , vn)− f1( · , wn)

)
+ F1n,

whence, in view of (4.9) and (4.14), we get

lim
n→∞

∥L1vn − F1∥C(GT ) = 0.

It follows from (4.16) and (4.8) that

lim
n→∞

∥∥vn∣∣OPi
− ψi∥C1(OPi) = 0, i = 1, 2.

The last two limiting equalities show that if v ∈ C(GT ) is a solution of system (3.38), then the
vector function v will be a generalized solution of problem (3.2)–(3.4) of the class C in the domain
GT . Thus Lemma 4.1 is proved, since the converse statement can be easily verified.
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As is known, the space C1(GT ) is compactly imbedded in the space C(GT ). Therefore, taking into
account Remark 4.2 and considering L2 as the operator acting in the space C(GT ) by formula (3.39),
the operator

L2 : C(GT ) −→ C(GT )

will be compact. In addition, for the fixed ψ1, ψ2 and F1, the operators L3 and l0 acting by formulas
(3.40) and (3.41) are constant, and hence their sum

L0 := (L2 + L3F1 + l0(ψ1, ψ2)) : C(GT ) −→ C(GT ) (4.17)

will likewise be compact. By (4.17), system (3.38) can be rewritten in the form

v = L0v. (4.18)

Let v ∈ C(DT ) be a solution of equation (4.18), and ψ2 = 0. Then, since v is connected with
u ∈ C(GT ) by the equality v(ξ, η) = u(ξ − η, ξ + η), and u satisfies a priori estimate (2.2), in view
of Lemma 4.1 and Lemma 2.1, an a priori estimate of the same type will take place likewise for the
vector function v,

∥v∥C(GT ) ≤ c1∥F∥C(GT ) + c2∥φ1∥C1(γ1,T ) + c3, (4.19)

where the constants ci, i = 1, 2, 3, are defined from equalities (2.35). It should now be noted that
owing to Remark 4.3 and Lemma 4.1, if v ∈ C(GT ) is a solution of equation v = τL0v, where
τ ∈ [0, 1], then the same a priori estimate (4.19) with the constants c1, c2 and c3, independent in view
of (2.1), (2.23), (2.31) and (2.35) of v, F , φ1 and τ , will be valid. Therefore, taking into account that
the operator L0 : C(GT ) → C(GT ) is continuous and compact, it follows from the Lere–Schauder
theorem [18] that equation (4.18) has at least one solution in the space C(GT ). This, in its turn, in
view of the above remarks, implies that problem (1.1), (1.2) has at least one generalized solution of
the class C in the domain DT . Thus, the following theorem is valid.

Theorem 4.1. Let conditions (2.1), (4.1) and F ∈ C(DT ), φ1 ∈ C1(γ1,T ), φ2 = 0, be fulfilled. Then
problem (1.1), (1.2) has at least one generalized solution of the class C in the domain DT .

5 The smoothness and uniqueness of a solution of
problem (1.1), (1.2). The existence of a global solution
in the domain D∞

By virtue of (4.3), (4.4) and (4.5), from Remark 4.3 and Lemma 4.1 follows

Lemma 5.1. Let the vector function u be a generalized solution of problem (1.1), (1.2) of the class
C in the domain DT in a sense of Definition 1.1, and in addition, the conditions of smoothness (4.1)
and F ∈ C1(DT ), φ1 ∈ C2(γ1,T ), i = 1, 2, hold. Then u belongs to the class C2(DT ) and is a classical
solution of problem (1.1), (1.2).

We say that the vector function f = f(x, t, u) satisfies the local Lipschitz condition on the set
DT × R if∥∥f(x, t, u2)− f(x, t, u1)

∥∥ ≤M(T,R)∥u2 − u1∥, (x, t) ∈ DT , ∥ui∥ ≤ R, i = 1, 2, (5.1)

where M = M(T,R) = const ≥ 0. Note that if f ∈ C1(DT × Rn), then condition (5.1) will automa-
tically be fulfilled.

Lemma 5.2. If the vector function f ∈ C(DT ×Rn) satisfies condition (5.1), then problem (1.1), (1.2)
fails to have more than one generalized solution of the class C in the domain DT .

Proof. Assume that problem (1.1), (1.2) has two generalized solutions u1 and u2 of the class C in the
domain DT . According to Remark 1.1 and Definition 1.1, there exists a sequence of vector functions
umj ∈ C2

0 (DT , γ2,T ) such that

lim
m→∞

∥umj − uj∥C(DT ) = lim
m→∞

∥Lumj − F∥C(DT ) = lim
m→∞

∥∥um∣∣
γ1,T

− φ1

∥∥
C1(γ1,T )

= 0. (5.2)
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We introduce the notation wm = um2 − um1 . It is easy to verify that wm ∈ C2(DT ) is a solution of
the following problem:

wm
tt − wm

xx +A(x, t)wm
x +B(x, t)wm

t + C(x, t)wm + gm = Fm, (5.3)
wm

∣∣
γ1,T

= φm
1 , wm

∣∣
γ2,T

= 0. (5.4)

Here

gm = f(x, t, um2 )− f(x, t, um1 ), (5.5)
Fm = Lum2 − Lum1 , (5.6)
φm
1 = (um2 − um1 )

∣∣
γ1,T

. (5.7)

It follows from (5.2) that there exists a number d = const > 0 such that it does not depend on the
indices j and m, and ∥umj ∥C(DT ) ≤ d. Hence, by virtue of (5.1) and (5.5), we have

∥gm∥ ≤M(T, d)∥um2 − um1 ∥ =M(T, d)∥wm∥. (5.8)

Reasoning now for the solution wm of problem (5.3), (5.4) in the same way as for the solution um of
problem (2.5), (2.6), owing to (5.8), we have to take in inequalities (2.1), (2.23), (2.28), (2.30) and
(2.34) the constants, corresponding to M1, M3, M8 and c3, equal to zero. Consequently, instead of
inequality (2.34) we will have

∥wm
j ∥C(DT ) ≤ c̃1∥Fm∥C(DT ) + c̃2∥φm

1 ∥C1(γ1,T ). (5.9)

Here, unlike (2.35), for the constants c̃1 and c̃2 we have

c̃1 = n(TM6)
1
8 exp 1

2
M̃5T, c̃2 = n(TM7)

1
2 exp 1

2
M̃5T,

where M6 and M7 are defined from (2.31) and, in view of (2.23),

M̃5 = 2M̃4 + 2T + 1, M̃4 =M2(T, d)n+ 2nM0 +
n

2
.

It follows from (5.2), (5.6) and (5.7) that

lim
m→∞

∥wm∥C(DT ) = ∥u2 − u1∥C(DT ), lim
m→∞

∥Fm∥C(DT ) = 0,

lim
m→∞

∥φm
1 ∥C1(γ1,T ) = 0.

(5.10)

If now we pass in inequality (5.9) to the limit, as m→ ∞, then due to the limiting equalities (5.10)
we get ∥u2 − u1∥C(DT ) ≤ 0, which implies that u2 = u1.

The consequence of Theorem 4.1 and Lemmas 5.1 and 5.2 is the following

Theorem 5.1. Let for any positive T conditions (2.1), (4.1) and F ∈ C1(D∞), φ1 ∈ C2(γ1,∞),
φ2 = 0 be fulfilled. Then problem (1.1), (1.2) has the unique classical solution u ∈ C2(D∞) in the
domain D∞.

Proof. It follows from Theorem 4.1 and Lemmas 5.1 and 5.2 that in the domain DT , where T = k ∈ N ,
there exists the unique classical solution uk ∈ C2(Dk of problem (1.1), (1.2). In addition, uk+1|Dk

is
likewise the classical solution of problem (1.1), (1.2) in the domain Dk. Therefore, by Lemma 5.2, the
equality uk+1|Dk

= uk holds. This implies that the vector function u constructed in the domain D∞
by the rule: u(x, t) = uk(x, t), where k = [t] + 1, [t] is an integer part of the number, and (x, t) ∈ D∞,
is the unique classical solution of problem (1.1), (1.2) in the domain D∞.
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REGULARIZING PROPERTIES OF THE DOUBLE
LAYER POTENTIAL OF SECOND ORDER
ELLIPTIC DIFFERENTIAL OPERATORS



Abstract. We prove the validity of regularizing properties of a double layer potential associated to
the fundamental solution of a nonhomogeneous second order elliptic differential operator with constant
coefficients in Schauder spaces by exploiting an explicit formula for the tangential derivatives of the
double layer potential itself. We also introduce ad hoc norms for kernels of integral operators in order
to prove continuity results of integral operators upon variation of the kernel, which we apply to the
layer potentials.
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ÒÄÆÉÖÌÄ. ÏÒÌÀÂÉ ×ÄÍÉÓ ÐÏÔÄÍÝÉÀËÉÓ ÌáÄÁÉ ßÀÒÌÏÄÁÖËÉÓ ÝáÀÃÉ ×ÏÒÌÖËÉÓ ÂÀÌÏÚÄÍÄÁÉÈ
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÉÌ ÏÒÌÀÂÉ ×ÄÍÉÓ ÐÏÔÄÍÝÉÀËÉÓ ÒÄÂÖËÀÒÖËÉ ÈÅÉÓÄÁÄÁÉ, ÒÏÌÄËÉÝ ÃÀÊÀÅÛÉ-
ÒÄÁÖËÉÀ ÀÒÀÄÒÈÂÅÀÒÏÅÀÍÉ ÌÄÏÒÄ ÒÉÂÉÓ ÌÖÃÌÉÅÊÏÄ×ÉÝÉÄÍÔÄÁÉÀÍÉ ÄËÉ×ÓÖÒÉ ÃÉ×ÄÒÄÍÝÉÀ-
ËÖÒÉ ÏÐÄÒÀÔÏÒÉÓ ×ÖÍÃÀÌÄÍÔÖÒ ÀÌÏÍÀáÓÍÈÀÍ ÛÀÖÃÄÒÉÓ ÓÉÅÒÝÄÄÁÛÉ. ÀÂÒÄÈÅÄ ÛÄÌÏÙÄÁÖËÉÀ
ÓÐÄÝÉÀËÖÒÉ ÍÏÒÌÄÁÉ ÉÍÔÄÂÒÀËÖÒÉ ÏÐÄÒÀÔÏÒÄÁÉÓ ÂÖËÄÁÉÓÈÅÉÓ, ÒÀÈÀ ÃÀÌÔÊÉÝÄÁÖË ÉØÍÀÓ
ÉÍÔÄÂÒÀËÖÒÉ ÏÐÄÒÀÔÏÒÄÁÉÓ ÖßÚÅÄÔÏÁÀ ÂÖËÉÓ ÝÅËÉËÄÁÉÓÀÓ, ÒÏÌÄËÉÝ ÂÀÌÏÚÄÍÄÁÖËÉÀ
ÏÒÌÀÂÉ ×ÄÍÉÓ ÐÏÔÄÍÝÉÀËÄÁÉÓÈÅÉÓ.
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1 Introduction
In this paper, we consider the double layer potential associated to the fundamental solution of a second
order differential operator with constant coefficients. Throughout the paper, we assume that

n ∈ N \ {0, 1} ,

where N denotes a set of natural numbers including 0. Let α ∈ ]0, 1[ , m ∈ N\{0}. Let Ω be a bounded
open subset of Rn of the class Cm,α. Let ν ≡ (νl)l=1,...,n denote the external unit normal to ∂Ω. Let
N2 denote the number of multi-indices γ ∈ Nn with |γ| ≤ 2. For each

a ≡ (aγ)|γ|≤2 ∈ CN2 , (1.1)

we set
a(2) ≡ (alj)l,j=1,...,n, a(1) ≡ (aj)j=1,...,n, a ≡ a0 ,

with alj ≡ 2−1ael+ej for j ̸= l, ajj ≡ aej+ej , and aj ≡ aej , where {ej : j = 1, . . . , n} is the canonical
basis of Rn. We note that the matrix a(2) is symmetric. Then we assume that a ∈ CN2 satisfies the
following ellipticity assumption

inf
ξ∈Rn,|ξ|=1

Re
{ ∑

|γ|=2

aγξ
γ
}
> 0 , (1.2)

and we consider the case in which

alj ∈ R ∀ l, j = 1, . . . , n . (1.3)

Introduce the operators

P [a, D]u ≡
n∑

l,j=1

∂xl
(alj∂xj

u) +

n∑
l=1

al∂xl
u+ au ,

B∗
Ωv ≡

n∑
l,j=1

ajlνl∂xjv −
n∑
l=1

νlalv ,

for all u, v ∈ C2(Ω), a fundamental solution Sa of P [a, D], and the double layer potential

w
[
∂Ω,a, Sa, µ

]
(x) ≡

∫
∂Ω

µ(y)B∗
Ω,y

(
Sa(x− y)

)
dσy

= −
∫
∂Ω

µ(y)

n∑
l,j=1

ajlνl(y)
∂Sa
∂xj

(x− y) dσy −
∫
∂Ω

µ(y)

n∑
l=1

νl(y)alSa(x− y) dσy ∀x ∈ Rn , (1.4)

where the density (or the moment) µ is a function from ∂Ω to C. Here the subscript y of B∗
Ω,y means

that we take y as a variable of the differential operator B∗
Ω,y. The role of the double layer potential in

the solution of boundary value problems for the operator P [a, D] is well known (cf. e.g., Günter [14],
Kupradze, Gegelia, Basheleishvili and Burchuladze [20], Mikhlin [23]).

The analysis of the continuity and compactness properties of the integral operator associated to
the double layer potential is a classical topic. In particular, it has long been known that if µ is of the
class Cm,α, then the restriction of the double layer potential to the sets

Ω+ ≡ Ω , Ω− ≡ Rn \ clΩ

can be extended to a function of Cm,α(clΩ+) and to a function of Cm,αloc (clΩ−), respectively (cf., e.g.,
Miranda [24], Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5]).
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In case n = 3 and Ω is of the class C1,α and Sa is the fundamental solution of the Laplace operator,
it has long been known that w[∂Ω,a, Sa, · ]|∂Ω is a linear and compact operator in C1,α(∂Ω) and is
linear and continuous from C0(∂Ω) to C0,α(∂Ω) (cf. Schauder [30], [31], Miranda [24].)

In case n = 3, m ≥ 1 and Ω is of the class Cm+1 and if P [a, D] is the Laplace operator, Günter [14,
Ch. II, § 21, Thm. 3] has proved that w[∂Ω,a, Sa, · ]|∂Ω is bounded from Cm−1,α′

(∂Ω) to Cm,α(∂Ω)
for α′ ∈ ]α, 1[ and, accordingly, is compact in Cm,α(∂Ω).

Fabes, Jodeit and Rivière [12] have proved that if Ω is of the class C1 and if P [a, D] is the Laplace
operator, then w[∂Ω,a, Sa, · ]|∂Ω is compact in Lp(∂Ω) for p ∈ ]1,+∞[ . Later, Hofmann, M. Mitrea
and Taylor [16] have proved the same compactness result under more general conditions on ∂Ω.

In case n = 2 and Ω is of the class C2,α, and if P [a, D] is the Laplace operator, Schippers [32] has
proved that w[∂Ω,a, Sa, · ]|∂Ω is continuous from C0(∂Ω) to C1,α(∂Ω).

In case n = 3 and Ω is of the class C2, and if P [a, D] is the Helmholtz operator, Colton and Kress [2]
have developed works of Günter [14] and Mikhlin [23] and proved that the operator w[∂Ω,a, Sa, · ]|∂Ω
is bounded from C0,α(∂Ω) to C1,α(∂Ω) and, accordingly, is compact in C1,α(∂Ω).

Wiegner [36] has proved that if γ ∈ Nn has odd length and Ω is of the class Cm,α, then the
operator with kernel (x − y)γ |x − y|−(n−1)−|γ| is continuous from Cm−1,α(∂Ω) to Cm−1,α(clΩ) (and
a corresponding result holds for the exterior of Ω).

In case n = 3, m ≥ 2 and Ω is of the class Cm,α, and if P [a, D] is the Helmholtz operator,
Kirsch [18] has proved that the operator w[∂Ω,a, Sa, · ]|∂Ω is bounded from Cm−1,α(∂Ω) to Cm,α(∂Ω)
and, accordingly, is compact in Cm,α(∂Ω).

von Wahl [35] has considered the case of Sobolev spaces and proved that if Ω is of the class C∞ and
Sa is the fundamental solution of the Laplace operator, then the double layer improves the regularity
of one unit on the boundary.

Later on, Heinemann [15] has developed the ideas of von Wahl in the frame of Schauder spaces
and proved that if Ω is of the class Cm+5 and Sa is the fundamental solution of the Laplace operator,
then the double layer improves the regularity of one unit on the boundary, i.e., w[∂Ω,a, Sa, · ]|∂Ω is
linear and continuous from Cm,α(∂Ω) to Cm+1,α(∂Ω).

Maz’ya and Shaposhnikova [22] have proved that w[∂Ω,a, Sa, · ]|∂Ω is continuous in fractional
Sobolev spaces under sharp regularity assumptions on the boundary and if P [a, D] is the Laplace
operator.

Mitrea [26] has proved that the double layer of second order equations and systems is compact in
C0,β(∂Ω) for β ∈ ]0, α[ and bounded in C0,α(∂Ω) under the assumption that Ω is of the class C1,α.
Then by exploiting a formula for the tangential derivatives such results have been extended to the
compactness and boundedness results in C1,β(∂Ω) and C1,α(∂Ω), respectively.

Mitrea, Mitrea and Verdera [28] have proved that if q is a homogeneous polynomial of odd order,
then the operator with kernel q(x− y)|x− y|−(n−1)−deg(q) maps C0,α(∂Ω) to C1,α(clΩ).

In this paper, of special interest are the regularizing properties of the operator w[∂Ω,a, Sa, · ]|∂Ω
in Schauder spaces under the assumption that Ω is of the class Cm,α. We prove our statements by
exploiting tangential derivatives and an inductive argument to reduce the problem to the case of
the action of w[∂Ω,a, Sa, · ]|∂Ω on C0,α(∂Ω) instead of flattening the boundary with parametrization
functions as done by the other authors. We mention that the idea of exploiting an inductive argument
together with the formula for the tangential gradient in order to prove the continuity and compactness
properties of the double layer potential has been used by Kirsch [18, Thm. 3.2] in case n = 3, P [a, D]
equals the Helmholtz operator and Sa is the fundamental solution satisfying the radiation condition.
The tangential derivatives of f ∈ C1(∂Ω) are defined by the equality

Mlr[f ] ≡ νl
∂f̃

∂xr
− νr

∂f̃

∂xl
on ∂Ω

for all l, r ∈ {1, . . . , n}. Here f̃ denotes an extension of f to an open neighbourhood of ∂Ω, and one
can easily verify that Mlr[f ] is independent of the specific choice of the extension f̃ of f . Then we
prove an explicit formula for

Mlr

[
w[∂Ω,a, Sa, µ]

]
(x)− w

[
∂Ω,a, Sa,Mlr[µ]

]
(x) ∀x ∈ ∂Ω (1.5)



Regularizing Properties of the Double Layer Potential of Second Order Elliptic Differential Operators 73

for all µ ∈ C1(∂Ω) and l, r ∈ {1, . . . , n} (see formula (9.1)).
We note that Günter [14, Ch. II, § 10, (42)] presents the formula for the partial derivatives of

the double layer with respect to the variables in Rn in case n = 3 and P [a, D] equals the Laplace
operator (see (7.1) for the case of the Laplace operator). A similar formula can be found in Kupradze,
Gegelia, Basheleishvili and Burchuladze [20, Ch. V, § 6, (6.11)] for the elastic double layer potential
in case n = 3. Schwab and Wendland [33] have proved that the difference in (1.5) can be written
in terms of pseudodifferential operators of order −1. Dindoš and Mitrea have proved a number of
properties of the double layer potential. In particular, [7, Prop. 3.2] proves the existence of integral
operators such that the gradient of the double layer potential corresponding to the Stokes system can
be written as a sum of such integral operators applied to the gradient of the moment of the double
layer. Duduchava, Mitrea, and Mitrea [11] analyze various properties of the tangential deriatives.
Duduchava [10] investigates partial differential equations on hypersurfaces and the Bessel potential
operators. In particular, [10, point B of the proof of Lem. 2.1] analyzes the commutator properties both
of the Bessel potential operator and of a tangential derivative. Hofmann, Mitrea and Taylor [16, (6.2.6)]
prove a general formula for the tangential derivatives of the double layer potential corresponding to
the second order elliptic homogeneous equations and systems in explicit terms.

Formula (9.1), we have computed here, extends the formula of [21] for the Laplace operator, which
has been computed with arguments akin to those of Günter [14, Ch. II, § 10, (42)], and a formula of [8]
for the Helmholtz operator, and can be considered as a variant of the formula of Hofmann, Mitrea
and Taylor [16, (6.2.6)] for the second order nonhomogeneous elliptic differential operator P [a, D].

Formula (9.1) involves auxiliary operators, which we analyze in Section 8. We have based our
analysis of the auxiliary operators involved in formula (9.1) on the introduction of boundary norms
for weakly singular kernels and on the result of the joint continuity of weakly singular integrals both
on the kernel of the integral and on the functional variable of the corresponding integral operator (see
Section 6). For fixed choices of the kernel and for some choices of the parameters, such lemmas are
known (cf. e.g., Kirsch and Hettlich [19, Thm. 3.17, p. 121]). The authors believe that the methods
of Section 6 may be applied to simplify also the exposition of other classical proofs of properties of
layer potentials.

By exploiting formula (9.1), we can prove that w[∂Ω,a, Sa, · ]|∂Ω induces a linear and continuous
operator from Cm(∂Ω) to the generalized Schauder space Cm,ωα(∂Ω) of functions with m-th order
derivatives which satisfy a generalized ωα-Hölder condition with

ωα(r) ∼ rα| ln r| as r → 0,

and that w[∂Ω,a, Sa, · ]|∂Ω induces a linear and continuous operator from Cm,β(∂Ω) to Cm,α(∂Ω) for
all β ∈ ]0, α]. In particular, the double layer potential has a regularizing effect on the boundary if Ω
is of the class Cm,α. As a consequence of our result, w[∂Ω,a, Sa, · ]|∂Ω induces a compact operator
from Cm(∂Ω) to itself, and from Cm,ωα( · )(∂Ω) to itself, and from Cm,α(∂Ω) to itself when Ω is of the
class Cm,α.

2 Notation
We denote the norm on a normed space X by ∥ · ∥X . Let X and Y be normed spaces. We endow
the space X × Y with the norm defined by ∥(x, y)∥X×Y ≡ ∥x∥X + ∥y∥Y for all (x, y) ∈ X × Y, while
we use the Euclidean norm for Rn. For standard definitions of Calculus in normed spaces, we refer to
Deimling [6]. If A is a matrix with real or complex entries, then At denotes the transpose matrix of
A. The set Mn(R) denotes the set of n×n matrices with real entries. Let D ⊆ Rn. Then clD denotes
the closure of D, and ∂D denotes the boundary of D, and diam(D) denotes the diameter of D. The
symbol | · | denotes the Euclidean modulus in Rn or in C. For all R ∈ ]0,+∞[ , x ∈ Rn, xj denotes the
j-th coordinate of x, and Bn(x,R) denotes the ball {y ∈ Rn : |x− y| < R}. Let Ω be an open subset
of Rn. The space of m times continuously differentiable complex-valued functions on Ω is denoted by
Cm(Ω,C) or, more simply, by Cm(Ω). Let s ∈ N\{0}, f ∈ (Cm(Ω))s. Then Df denotes the Jacobian
matrix of f . Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1 + · · · + ηn. Then Dηf denotes ∂|η|f

∂x
η1
1 ...∂xηn

n
. The
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subspace of Cm(Ω) of those functions f whose derivatives Dηf of order |η| ≤ m can be extended with
continuity to clΩ is denoted by Cm(clΩ).

The subspace of Cm(cl Ω) whose derivatives up to order m are bounded is denoted by Cmb (cl Ω).
Then Cmb (cl Ω) endowed with the norm ∥f∥Cm

b (cl Ω) ≡
∑

|η|≤m
sup
cl Ω

|Dηf | is a Banach space.

Now, let ω be a function of ]0,+∞[ to itself such that

ω is increasing and lim
r→0+

ω(r) = 0 , (2.1)

sup
(a,t)∈[1,+∞[×]0,+∞[

ω(at)

aω(t)
< +∞,

and
sup
r∈ ]0,1[

ω−1(r)r <∞ . (2.2)

If f is a function from a subset D of Rn to C, we set

|f : D|ω( · ) ≡ sup
{ |f(x)− f(y)|

ω(|x− y|)
: x, y ∈ D, x ̸= y

}
.

If |f : D|ω( · ) < ∞, we say that the function f is ω( · )-Hölder continuous. Sometimes we simply
write |f |ω( · ) instead of |f : D|ω( · ). If ω(r) = r and |f : D|ω( · ) < ∞, then we say that f is Lipschitz
continuous and we set Lip(f) ≡ |f : D|ω( · ). The subspace of C0(D) whose functions are ω( · )-
Hölder continuous is denoted by C0,ω( · )(D), and the subspace of C0(D) whose functions are Lipschitz
continuous is denoted by Lip(D).

Let Ω be an open subset of Rn. The subspace of Cm(cl Ω) whose functions have m-th order
derivatives that are ω( · )-Hölder continuous is denoted by Cm,ω( · )(cl Ω). We set

C
m,ω( · )
b (cl Ω) ≡ Cm,ω( · )(cl Ω) ∩ Cmb (cl Ω) .

The space Cm,ω( · )b (clΩ), equipped with its usual norm

∥f∥
C

m,ω( · )
b (cl Ω)

= ∥f∥Cm
b (cl Ω) +

∑
|η|=m

|Dηf : Ω|ω( · ) ,

is well-known to be a Banach space.
Obviously, Cm,ω( · )b (cl Ω) = Cm,ω( · )(cl Ω) if Ω is bounded (in this case, we shall always drop the

subscript b). The subspace of Cm(cl Ω) of those functions f such that f|cl (Ω∩Bn(0,R)) ∈ Cm,ω( · )(cl (Ω∩
Bn(0, R))) for all R ∈ ]0,+∞[ is denoted by Cm,ω( · )loc (cl Ω). Clearly, Cm,ω( · )loc (cl Ω) = Cm,ω( · )(cl Ω) if
Ω is bounded.

Of particular importance is the case in which ω( · ) is the function rα for some fixed α ∈ ]0, 1]. In
this case, we simply write | · : clΩ|α instead of | · : clΩ|rα , Cm,α(cl Ω) instead of Cm,rα(cl Ω), and
Cm,αb (cl Ω) instead of Cm,r

α

b (cl Ω). We observe that property (2.2) implies that

Cm,1b (cl Ω) ⊆ C
m,ω( · )
b (cl Ω) .

For the definition of a bounded open Lipschitz subset of Rn, we refer, e.g., to Nečas [29, §1.3]. Let
m ∈ N \ {0}. We say that a bounded open subset Ω of Rn is of the class Cm,α if for every P ∈ ∂Ω
there exist an open neighborhood W of P in Rn, and a diffeomorphism ψ ∈ Cm,α(clBn,Rn) of
Bn ≡ {x ∈ Rn : |x| < 1} onto W such that ψ(0) = P , ψ({x ∈ Bn : xn = 0}) = W ∩ ∂Ω,
ψ({x ∈ Bn : xn < 0}) = W ∩ Ω (ψ is said to be a parametrization of ∂Ω around P ). Now, let
Ω be bounded and of class Cm,α. By the compactness of ∂Ω and by definition of a set of the class
Cm,α, there exist P1,…,Pr ∈ ∂Ω, and parametrizations {ψi}i=1,...,r, with ψi ∈ Cm,α(clBn,Rn) such
that

r∪
i=1

ψi({x ∈ Bn : xn = 0}) = ∂Ω. Let h ∈ {1, . . . ,m}. Let ω be as in (2.1), (2.2). Let

sup
r∈ ]0,1[

ω−1(r)rα <∞ . (2.3)
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We denote by Ch,ω( · )(∂Ω) the linear space of functions f of ∂Ω to C such that f ◦ ψi( · , 0) ∈
Ch,ω( · )(clBn−1) for all i = 1, . . . , r, and we set

∥f∥Ch,ω( · )(∂Ω) ≡ sup
i=1,...,r

∥f ◦ ψi( · , 0)∥Ch,ω( · )(cl Bn−1) ∀ f ∈ Ch,ω( · )(∂Ω).

It is well known that by choosing a different finite family of parametrizations as {ψi}i=1,...,r, we would
obtain an equivalent norm. In case ω( · ) is the function rα, we have the spaces Ch,α(∂Ω).

It is known that (Ch,ω( · )(∂Ω), ∥ · ∥Ch,ω( · )(∂Ω)) is complete. Moreover, condition (2.3) implies that
the restriction operator is linear and continuous from Ch,ω( · )(clΩ) to Ch,ω( · )(∂Ω).

We denote by dσ the area element of a manifold imbedded in Rn and retain the standard notation
for the Lebesgue spaces.

Remark 2.1. Let m ∈ N \ {0}, α ∈ ]0, 1[ . Let Ω be a bounded open subset of Rn of the class Cm,α.
Let ω be as in (2.1), (2.2). If h ∈ {1, . . . ,m}, h < m, then m − 1 ≥ 1 and Ω is of the class

Cm−1,1, and condition (2.2) implies the validity of condition (2.3) with α replaced by 1. Thus we can
consider the space Ch,ω( · )(∂Ω) even if we do not assume condition (2.3). If instead of h we take m,
the definition we gave requires (2.3).

Remark 2.2. Let ω be as in (2.1), D be a subset of Rn and let f be a bounded function from D to
C, a ∈ ]0,+∞[ . Then

sup
x,y∈D, |x−y|≥a

|f(x)− f(y)|
ω(|x− y|)

≤ 2

ω(a)
sup
D

|f | .

Thus the difficulty of estimating the Hölder quotient |f(x)−f(y)|
ω(|x−y|) of a bounded function f lies entirely

in case 0 < |x− y| < a. Then we have the following well known extension result. For a proof, we refer
to Troianiello [34, Thm. 1.3, Lem. 1.5].

Lemma 2.1. Let m ∈ N \ {0}, α ∈ ]0, 1[ , j ∈ {0, . . . ,m}, Ω be a bounded open subset of Rn of
the class Cm,α, and let R ∈ ]0,+∞[ be such that clΩ ⊆ Bn(0, R). Then there exists a linear and
continuous extension operator ‘ ∼ ’ of Cj,α(∂Ω) to Cj,α(clBn(0, R)), which takes µ ∈ Cj,α(∂Ω) to
a map µ̃ ∈ Cj,α(clBn(0, R)) such that µ̃|∂Ω = µ and the support of µ is compact and contained in
Bn(0, R). The same statement holds by replacing Cm,α by Cm and Cj,α by Cj.

Let Ω be a bounded open subset of Rn of the class C1. The tangential gradient D∂Ωf of f ∈ C1(∂Ω)
is defined as

D∂Ωf ≡ Df̃ − (ν ·Df̃)ν on ∂Ω ,

where f̃ is an extension of f of the class C1 in an open neighborhood of ∂Ω, and we have

∂f̃

∂xr
− (ν ·Df̃)νr =

n∑
l=1

Mlr[f ]νl on ∂Ω

for all r ∈ {1, . . . , n}. If a is as in (1.1), (1.2), then we also set

Daf ≡ (Da,rf)r=1,...,n ≡ Df̃ − Df̃a(2)ν

νta(2)ν
ν on ∂Ω .

Since

Da,rf =
∂f̃

∂xr
− Df̃a(2)ν

νta(2)ν
νr =

r∑
l=1

Mlr[f ]

( n∑
h=1

alhνh

νta(2)ν

)
on ∂Ω (2.4)

for all r ∈ {1, . . . , n}, Daf is independent of the specific choice of the extension f̃ of f . We also need
the following well known consequence of the Divergence Theorem.
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Lemma 2.2. Let Ω be a bounded open subset of Rn of the class C1. If φ, ψ ∈ C1(∂Ω), then∫
∂Ω

Mlj [φ]ψ dσ = −
∫
∂Ω

φMlj [ψ] dσ

for all l, j ∈ {1, . . . , n}.

Next, we introduce the following auxiliary Lemmas, whose proof is based on the definition of the
norm in a Schauder space.

Lemma 2.3. Let m ∈ N \ {0}, α ∈ ]0, 1]. Let ω be as in (2.1), (2.2), (2.3), and let Ω be a bounded
open connected subset of Rn of the class Cm,α. Then the following statements hold:

(i) A function f ∈ C1(∂Ω) belongs to Cm,ω( · )(∂Ω) if and only if Mlr[f ] ∈ Cm−1,ω( · )(∂Ω) for all
l, r ∈ {1, . . . , n}.

(ii) The norm ∥ · ∥Cm,ω( · )(∂Ω) is equivalent to the norm on Cm,ω( · )(∂Ω) defined by

∥f∥C0(∂Ω) +

n∑
l,r=1

∥∥Mlr[f ]
∥∥
Cm−1,ω( · )(∂Ω)

∀ f ∈ Cm,ω( · )(∂Ω) .

We have the following (see also Remark 2.1)

Lemma 2.4. Let m ∈ N \ {0}, α ∈ ]0, 1]. Let Ω be a bounded open connected subset of Rn of class
Cm,α, and let h ∈ {1, . . . ,m}. Then the following statements hold:

(i) Let h < m and ω be as in (2.1), (2.2). Then Mlj is linear and continuous from Ch,ω( · )(∂Ω)
to Ch−1,ω( · )(∂Ω) for all l, j ∈ {1, . . . , n}. If we further assume that ω satisfies condition (2.3),
then the same statement holds also for h = m.

(ii) Let h < m, ω be as in (2.1), (2.2), and let a be as in (1.1), (1.2). Then the function from
Ch,ω( · )(∂Ω) to Ch−1,ω( · )(∂Ω,Rn), which takes f to Daf is linear and continuous. If we further
assume that ω satisfies condition (2.3), then the same statement holds also for h = m.

(iii) Let h < m and ω be as in (2.1), (2.2). Then the space Ch,ω( · )(∂Ω) is continuously imbedded
into Ch−1,1(∂Ω). If we further assume that ω satisfies condition (2.3), then the same statement
holds also for h = m.

(iv) Let h < m. Let ψ1, ψ2 be as in (2.1), (2.2), and let the condition sup
r∈ ]0,1[

ψ−1
2 (r)ψ1(r) <∞ hold.

Then Ch,ψ1( · )(∂Ω) is continuously imbedded into Ch,ψ2( · )(∂Ω). If we further assume that ψj
satisfies condition (2.3) for j ∈ {1, 2}, then the same statement holds also for h = m.

(v) Let h < m. Let ψ1, ψ2, ψ3 be as in (2.1), (2.2), and let the conditions sup
j=1,2

sup
r∈ ]0,1[

ψj(r)ψ
−1
3 (r)<∞

hold. Then the pointwise product is bilinear and continuous from Ch,ψ1( · )(∂Ω) × Ch,ψ2( · )(∂Ω)
to Ch,ψ3( · )(∂Ω). If we further assume that ψj satisfies condition (2.3) for j ∈ {1, 2, 3}, then the
same statement holds also for h = m.

Lemma 2.5. Let Ω be a bounded open Lipschitz subset of Rn. Let ψ1, ψ2, ψ3 be as in (2.1), (2.2),
and let the conditions sup

j=1,2
sup
r∈ ]0,1[

ψj(r)ψ
−1
3 (r) < ∞ hold. Then the pointwise product is bilinear and

continuous from C0,ψ1( · )(∂Ω)× C0,ψ2( · )(∂Ω) to C0,ψ3( · )(∂Ω).

3 Preliminary inequalities
We first introduce the following elementary lemma on matrices.
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Lemma 3.1. Let Λ ∈Mn(R) be invertible. Let |Λ| ≡ sup
|x|=1

|Λx|. Then the following statements hold:

(i) If τΛ ≡ max{|Λ|, |Λ−1|}, then

τ−1
Λ |x| ≤ |Λx| ≤ τΛ|x| ∀x ∈ Rn .

(ii) If r ∈ ]0,+∞[ , then
|Λ−1x|−r ≤ |Λ|r|x|−r ∀x ∈ Rn \ {0} .

Proof. Statement (i) is well known. We now consider statement (ii). Let x ∈ Rn \ {0}. Then we have

|x| = |Λ(Λ−1x)| ≤ |Λ| |Λ−1x| .

Hence, |Λ−1x| ≥ |Λ|−1|x| and the statement follows.

Then we introduce the following elementary lemma, which collects either the known inequalities
or the variants of the known inequalities, which we will need in the sequel.

Lemma 3.2. Let γ ∈ R and Λ ∈Mn(R) be invertible. The following statements hold:

(i)

1

2
|x′ − y| ≤ |x′′ − y| ≤ 2|x′ − y| ,

1

2τ2Λ
|Λx′ − Λy| ≤ |Λx′′ − Λy| ≤ 2τ2Λ|Λx′ − Λy| ,

for all x′, x′′ ∈ Rn, x′ ̸= x′′, y ∈ Rn \ Bn(x′, 2|x′ − x′′|).

(ii)

|x′ − y|γ ≤ 2|γ||x′′ − y|γ , |x′′ − y|γ ≤ 2|γ||x′ − y|γ ,
|Λx′ − Λy|γ ≤ (2τ2Λ)

|γ||Λx′′ − Λy|γ , |Λx′′ − Λy|γ ≤ (2τ2Λ)
|γ||Λx′ − Λy|γ ,

for all x′, x′′ ∈ Rn, x′ ̸= x′′, y ∈ Rn \ Bn(x′, 2|x′ − x′′|).

(iii) ∣∣|x′ − y|γ − |x′′ − y|γ
∣∣ ≤ (2|γ| − 1)|x′ − y|γ ∀ y ∈ Rn \ Bn(x′, 2|x′ − x′′|) ,

for all x′, x′′ ∈ Rn, x′ ̸= x′′.

(iv) There exist mγ , mγ(Λ) ∈ ]0,+∞[ such that∣∣|x′ − y|γ − |x′′ − y|γ
∣∣ ≤ mγ |x′ − x′′| |x′ − y|γ−1,∣∣|Λx′ − Λy|γ − |Λx′′ − Λy|γ
∣∣ ≤ mγ(Λ)|Λx′ − Λx′′| |Λx′ − Λy|γ−1

for all x′, x′′ ∈ Rn, x′ ̸= x′′, y ∈ Rn \ Bn(x′, 2|x′ − x′′|).

(v) ∣∣ ln |x′ − y| − ln |x′′ − y|
∣∣ ≤ 2|x′ − x′′| |x′ − y|−1 ∀ y ∈ Rn \ Bn(x′, 2|x′ − x′′|) ,

for all x′, x′′ ∈ Rn, x′ ̸= x′′.

Proof. The first two inequalities of statement (i) follow by the triangular inequality. Further, we have

|Λx′ − Λy| ≤ τΛ|x′ − y| ≤ τΛ2|x′′ − y| ≤ 2τ2Λ|Λx′′ − Λy| ,

and thus the first of the second two inequalities of statement (i) holds true. The second of the second
two inequalities of statement (i) can be proved by interchanging the roles of x′ and x′′.
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It now suffices to prove only the second inequalities in statements (ii), (iv). Indeed, the first
inequalities follow by the second ones and by the equality τΛ = 1 when Λ is the identity matrix.

The first of the second inequalities in (ii) for γ ≥ 0 follows by raising the inequality |Λx′ − Λy| ≤
(2τ2Λ)|Λx′′ −Λy| of statement (i) to the power γ. For γ < 0 the same inequality follows by raising the
inequality |Λx′′ − Λy| ≤ (2τ2Λ)|Λx′ − Λy| of statement (i) to the power γ. The second of the second
inequalities of (ii) can be proved by interchanging the roles of x′ and x′′.

Statement (iii) follows by a direct application of (ii). To prove (iv) and (v), we follow Cialdea [1, § 8].
First consider (iv) and assume that |Λx′ − Λy| ≤ |Λx′′ − Λy|. By the Lagrange Theorem, there exists
ζ ∈ [|Λx′ − Λy|, |Λx′′ − Λy|] such that∣∣|Λx′ − Λy|γ − |Λx′′ − Λy|γ

∣∣ ≤ ∣∣γ|ζγ−1| |Λx′ − Λy| − |Λx′′ − Λy|
∣∣ .

If γ ≥ 1, then the inequality ζ ≤ |Λx′′ − Λy| and (i) imply

ζγ−1 ≤ |Λx′′ − Λy|γ−1 ≤ (2τ2Λ)
|γ−1||Λx′ − Λy|γ−1 .

If γ < 1, then the inequalities ζ ≥ |Λx′ − Λy| and τΛ ≥ 1 imply

ζγ−1 ≤ |Λx′ − Λy|γ−1 ≤ (2τ2Λ)
|γ−1||Λx′ − Λy|γ−1 .

Then we have∣∣|Λx′ − Λy|γ − |Λx′′ − Λy|γ
∣∣ ≤ |γ|(2τ2Λ)|γ−1|∣∣|Λx′ − Λy| − |Λx′′ − Λy|

∣∣ |Λx′ − Λy|γ−1 , (3.1)

which implies the validity of (iv). Similarly, in case |Λx′ − Λy| > |Λx′′ − Λy|, we can prove that (3.1)
holds with x′ and x′′ interchanged. Thus (ii) implies the validity of (iv).

We now consider statement (v) and assume that |x′ − y| ≤ |x′′ − y|. By the Lagrange Theorem,
there exists ζ ∈ [|x′ − y|, |x′′ − y|] such that∣∣ ln |x′ − y| − ln |x′′ − y|

∣∣ ≤ ζ−1| |x′ − y| − |x′′ − y| | ≤ ζ−1|x′ − x′′| . (3.2)

By the above assumption, ζ−1 ≤ |x′ − y|−1, and thus statement (v) follows. Similarly, if |x′ − y| >
|x′′ − y|, we can prove that (3.2) holds with x′ and x′′ interchanged and (i) implies that ζ−1 ≤
|x′′ − y|−1 ≤ 2|x′ − y|−1, which yields the validity of (v).

Lemma 3.3. Let G be a nonempty bounded subset of Rn. Then the following statements hold:

(i) Let F ∈ Lip(∂Bn × [0,diam (G)]) with

Lip(F ) ≡
{
|F (θ′, r′)− F (θ′′, r′′)|
|θ′ − θ′′|+ |r′ − r′′|

: (θ′, r′), (θ′′, r′′) ∈ ∂Bn × [0,diam (G)], (θ′, r′) ̸= (θ′′, r′′)

}
.

Then∣∣∣∣F( x′ − y

|x′ − y|
, |x′ − y|

)
− F

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ ≤ Lip(F )(2 + diam (G))
|x′ − x′′|
|x′ − y|

(3.3)

∀ y ∈ G \ Bn
(
x′, 2|x′ − x′′|

)
for all x′, x′′ ∈ G, x′ ̸= x′′. In particular, if f ∈ C1(∂Bn × R,C), then

Mf,G ≡ sup
{∣∣∣∣f( x′ − y

|x′ − y|
, |x′ − y|

)
− f

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ |x′ − y|
|x′ − x′′|

:

x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn
(
x′, 2|x′ − x′′|

)}
<∞ .

(ii) Let W be an open neighbourhood of cl (G−G). Let f ∈ C1(W,C). Then

M̃f,G ≡ sup
{∣∣f(x′ − y)− f(x′′ − y)

∣∣ |x′ − x′′|−1 : x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G
}
<∞ .

Here G−G ≡ {y1 − y2 : y1, y2 ∈ G}.
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Proof. First we consider statement (i). The Lipschitz continuity of F implies that the left-hand side
of (3.3) is less or equal to

Lip(F )
{∣∣∣ x′ − y

|x′ − y|
− x′′ − y

|x′′ − y|

∣∣∣+ ∣∣|x′ − y| − |x′′ − y|
∣∣}

≤ Lip(F )
{
|x′′ − y|

∣∣∣ 1

|x′′ − y|
− 1

|x′ − y|

∣∣∣+ 1

|x′ − y|
∣∣|x′′ − y| − |x′ − y|

∣∣+ |x′ − x′′|
}

≤ Lip(F )
{
|x′′ − y| |x′ − x′′|

|x′′ − y| |x′ − y|
+

|x′ − x′′|
|x′ − y|

+ |x′ − x′′|
}

≤ Lip(F )|x′ − x′′|
{
2 + |x′ − y|
|x′ − y|

}
,

and thus inequality (3.3) holds true.
Since ∂Bn × R is a manifold of the class C∞ imbedded into Rn+1, there exists F ∈ C1(Rn+1)

which extends f . Since ∂Bn× [0,diam (G)] is a compact subset of Rn+1, F is Lipschitz continuous on
∂Bn × [0,diam (G)], and the second part of statement (i) follows by inequality (3.3).

We now consider statement (ii). Since f ∈ C1(W,C), f is Lipschitz continuous on the compact set
cl (G−G), and statement (ii) follows.

We have the following well-known statement.

Lemma 3.4. Let α ∈ ]0, 1] and Ω be a bounded open connected subset of Rn of the class C1,α. Then
there exists cΩ,α > 0 such that∣∣ν(y) · (x− y)

∣∣ ≤ cΩ,α|x− y|1+α ∀x, y ∈ ∂Ω .

Next, we introduce a list of classical inequalities which can be verified by exploiting the local
parametrizations of ∂Ω.

Lemma 3.5. Let Ω be a bounded open Lipschitz subset of Rn. Then the following statements hold:

(i) Let γ ∈ ]−∞, n− 1[ . Then

c′Ω,γ ≡ sup
x∈∂Ω

∫
∂Ω

dσy
|x− y|γ

< +∞ .

(ii) Let γ ∈ ]−∞, n− 1[ . Then

c′′Ω,γ ≡ sup
x′,x′′∈∂Ω, x′ ̸=x′′

|x′ − x′′|−(n−1)+γ

∫
Bn(x′,3|x′−x′′|)∩∂Ω

dσy
|x′ − y|γ

< +∞ .

(iii) Let γ ∈ ]n− 1,+∞[ . Then

c′′′Ω,γ ≡ sup
x′,x′′∈∂Ω, x′ ̸=x′′

|x′ − x′′|−(n−1)+γ

∫
∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ

is finite.

(iv)

civΩ ≡ sup
x′,x′′∈∂Ω, 0<|x′−x′′|<1/e

∣∣ ln |x′ − x′′|
∣∣−1

∫
∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|n−1

< +∞ .
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4 Preliminaries on the fundamental solution
First we introduce a formula for the fundamental solution of P [a, D]. For this, we follow a formulation
of Dalla Riva [3, Thm. 5.2, 5.3] and Dalla Riva, Morais and Musolino [5, Thm. 3.1, 3.2] (see also
John [17], Miranda [24] for homogeneous operators, and Mitrea and Mitrea [27, p. 203]).

Theorem 4.1. Let a be as in (1.1), (1.2). Let Sa be a fundamental solution of P [a, D]. Then there
exist a real analytic function A0 from ∂Bn to C, a real analytic function A1 from ∂Bn × R to C,
b0 ∈ C, a real analytic function B1 from Rn to C, B1(0) = 0, and a real analytic function C from Rn
to C such that

Sa(x) = |x|2−nA0

( x

|x|

)
+ |x|3−nA1

( x

|x|
, |x|

)
+ b0 ln |x|+B1(x) ln |x|+ C(x) (4.1)

for all x ∈ Rn \ {0}, and both b0 and B1 equal zero if n is odd. Moreover,

|x|2−nA0

( x

|x|

)
+ δ2,nb0 ln |x|

is a fundamental solution for the principal part
n∑

l,j=1

∂xl
(alj∂xj ) of P [a, D]. Here δ2,n denotes the

Kronecker symbol. Namely,

δ2,n = 1 if n = 2, δ2,n = 0 if n > 2 .

Corollary 4.1. Let a be as in (1.1), (1.2). Let Sa be a fundamental solution of P [a, D]. Then the
following statements hold:

(i) If n ≥ 3, then there exists one and only one fundamental solution of the principal part
n∑

l,j=1

∂xl
(alj∂xj

) of P [a, D] which is positively homogeneous of degree 2− n in Rn \ {0}.

(ii) If n = 2, then there exists one and only one fundamental solution S(x) of the principal part
n∑

l,j=1

∂xl
(alj∂xj

) of P [a, D] such that

β0 ≡ lim
x→0

S(x)

ln |x|
∈ C ,

∫
∂Bn

S dσ = 0 ,

and S(x)− β0 ln |x| is positively homogeneous of degree 0 in Rn \ {0}.

Proof. We retain the notation of Theorem 4.1. We first consider statement (i). By Theorem 4.1,
the function |x|2−nA0(

x
|x| ) is a fundamental solution of the principal part of P [a, D] and is, clearly,

positively homogeneous of degree 2−n. Now assume that u is a fundamental solution of the principal
part of P [a, D] and u is positively homogeneous of degree 2− n in Rn \ {0}. Then the difference

w(x) ≡ |x|2−nA0

( x

|x|

)
− u(x)

defines an entire real analytic function in Rn and is positively homogeneous of degree 2−n in Rn \{0}.
In particular,

λn−2w(λx) = w(x) ∀ (λ, x) ∈ ]0,+∞[×(Rn \ {0}) ,

and, accordingly,

λ(n−2)+|β|Dβw(λx) = Dβw(x) ∀ (λ, x) ∈ ]0,+∞[×(Rn \ {0})

for all β ∈ Nn. Then by letting λ tend to 0+, we obtain Dβw(0) = 0 for all β ∈ Nn. Since w is real
analytic, we deduce that w is equal to 0 in Rn and thus statement (i) holds.
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Now assume that n = 2. By Theorem 4.1, the function

S(x) ≡ A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x|

is a fundamental solution of the principal part of P [a, D] and satisfies the conditions of statement (ii).
Suppose that u is another fundamental solution. Then the difference

w(x) ≡ A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x| − u(x)

defines an entire real analytic function in Rn and we have

0 = lim
x→0

w(x)

ln |x|
= lim
x→0

A0(
x
|x| )−

1
2π

∫
∂Bn

A0 dσ

ln |x|
+ b0 − lim

x→0

u(x)

ln |x|
,

and, accordingly,
b0 = lim

x→0

u(x)

ln |x|
≡ β0 ∈ C .

Then our assumption implies that the real analytic function

u(x)− β0 ln |x| = u(x)− b0 ln |x|

is positively homogeneous of degree 0 in Rn \ {0}. Hence, there exists a function g0 from ∂Bn to C
such that

u(x)− b0 ln |x| = g0

( x

|x|

)
∀x ∈ Rn \ {0} .

In particular, g0 is real analytic and

w(x) = A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x| −
(
g0

( x

|x|

)
+ b0 ln |x|

)
= A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ − g0

( x

|x|

)
.

Moreover, w must be positively homogeneous of degree 0 in Rn \ {0}. Since w is continuous at 0, w
must be constant in the whole Rn. Since∫

∂Bn

w dσ =

∫
∂Bn

S dσ −
∫
∂Bn

u dσ = 0,

such a constant must equal 0 and thus

A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ = g0

( x

|x|

)
for all x ∈ Rn \ {0}.

Hence,
u(x) = A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x|

and statement (ii) follows.

We can introduce the following

Definition 4.1. Let a be as in (1.1), (1.2). We define the normalized fundamental solution of the
principal part of P [a, D], to be the only fundamental solution of Corollary 4.1.
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By Theorem 4.1 and Corollary 4.1, the normalized fundamental solution of the principal part of
P [a, D] equals

|x|2−nA0

( x

|x|

)
if n ≥ 3, and

A0

( x

|x|

)
− 1

2π

∫
∂Bn

A0 dσ + b0 ln |x|

if n = 2, where A0 and b0 are as in Theorem 4.1. We now see that if the principal coefficients of
P [a, D] are real, then the normalized fundamental solution of the principal part of P [a, D] has a very
specific form. To do so, we introduce the fundamental solution Sn of the Laplace operator. Namely,
we set

Sn(x) ≡


1

sn
ln |x| ∀x ∈ Rn \ {0}, if n = 2 ,

1

(2− n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,

where sn denotes the (n − 1)-dimensional measure of ∂Bn. Then we have the following elementary
statement, which can be verified by the chain rule and by Corollary 4.1 (cf. e.g., Dalla Riva [4]).

Lemma 4.1. Let a be as in (1.1), (1.2), (1.3). Then there exists an invertible matrix T ∈ Mn(R)
such that

a(2) = TT t (4.2)

and the function
Sa(2)(x) ≡

1√
det a(2)

Sn(T
−1x) ∀x ∈ Rn \ {0} ,

coincides with the normalized fundamental solution of the principal part of P [a, D] if n ≥ 3, and
coincides with the normalized fundamental solution of the principal part of P [a, D] up to an additive
constant if n = 2.

Theorem 4.1, Corollary 4.1 and Lemma 4.1 imply the validity of the following

Corollary 4.2. Let a be as in (1.1), (1.2), (1.3), T ∈Mn(R) be as in (4.2) and let Sa be a fundamental
solution of P [a, D].

Then there exist a real analytic function A1 from ∂Bn × R to C, a real analytic function B1 from
Rn to C, B1(0) = 0, and a real analytic function C from Rn to C such that

Sa(x) =
1√

det a(2)
Sn(T

−1x) + |x|3−nA1

( x

|x|
, |x|

)
+

(
B1(x) + b0(1− δ2,n)

)
ln |x|+ C(x) , (4.3)

for all x ∈ Rn \ {0}, and both b0 and B1 equal zero if n is odd. Moreover,

1√
det a(2)

Sn(T
−1x)

is a fundamental solution for the principal part of P [a, D].

Next we prove the following technical statement.

Lemma 4.2. Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D] and let G be a
nonempty bounded subset of Rn.

(i) Let γ ∈ [0, 1[. Then

C0,Sa,G,n−1−γ ≡ sup
0<|x|≤diam (G)

|x|n−1−γ |Sa(x)| < +∞ . (4.4)

If n > 2, then (4.4) holds also for γ = 1.
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(ii)

C̃0,Sa,G ≡ sup
{
|x′ − y|n−1

|x′ − x′′|
∣∣Sa(x

′ − y)− Sa(x
′′ − y)

∣∣ :
x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn(x′, 2|x′ − x′′|)

}
<∞ .

Proof. Statement (i) is an immediate consequence of formula (4.1). Now prove statement (ii). For
this, we resort to formula (4.1) and set

A(θ, r) ≡ A0(θ) + rA1(θ, r) ∀ (θ, r) ∈ ∂Bn × R,
B(x) ≡ b0 +B1(x) ∀x ∈ Rn .

Then Lemmas 3.2 and 3.3 imply

∣∣Sa(x
′ − y)− Sa(x

′′ − y)
∣∣ ≤ |x′ − y|2−n

∣∣∣∣A( x′ − y

|x′ − y|
, |x′ − y|

)
−A

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣
+

∣∣∣∣A( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ ∣∣|x′ − y|2−n − |x′′ − y|2−n
∣∣+ ∣∣ ln |x′ − y|

∣∣ ∣∣B(x′ − y)−B(x′′ − y)
∣∣

+ |B(x′′ − y)|
∣∣ ln |x′ − y| − ln |x′′ − y|

∣∣+ ∣∣C(x′ − y)− C(x′′ − y)
∣∣

≤ |x′ − y|2−nMA,G
|x′ − x′′|
|x′ − y|

+
(

sup
∂Bn×[0,diam (G)]

|A|
)
m2−n

|x′ − x′′|
|x′ − y|n−1

+
∣∣ ln |x′ − y|

∣∣M̃B,G|x′ − x′′|+ sup
G−G

|B| 2 |x′ − x′′|
|x′ − y|

+ M̃C,G|x′ − x′′| .

Since A is continuous on the compact set ∂Bn × [0,diam (G)], and B and C are continuous on the
compact set cl (G−G), there exists c > 0 such that∣∣Sa(x

′ − y)− Sa(x
′′ − y)

∣∣ ≤ c|x′ − x′′|
{
|x′ − y|1−n +

1

|x′ − y|
+ ln |x′ − y|+ 1

}
≤ c|x′ − x′′| |x′ − y|1−n

{
1 + |x′ − y|n−2 + |x′ − y|n−1 ln |x′ − y|+ |x′ − y|n−1

}
,

and thus statement (ii) holds.

Lemma 4.3. Let a be as in (1.1), (1.2), (1.3), T ∈ Mn(R) be as in (4.2). Let Sa be a fundamental
solution of P [a, D], B1, C be as in Corollary 4.2, and let G be a nonempty bounded subset of Rn.
Then the following statements hold:

(i) There exists a real analytic function A2 from ∂Bn × R to Cn such that

DSa(x) =
1

sn
√

det a(2)
|T−1x|−nxt(a(2))−1

+ |x|2−nA2

( x

|x|
, |x|

)
+DB1(x) ln |x|+DC(x) ∀x ∈ Rn \ {0} . (4.5)

(ii)
C1,Sa,G ≡ sup

0<|x|≤diam (G)

|x|n−1|DSa(x)| < +∞ .

(iii)

C̃1,Sa,G ≡ sup
{
|x′ − y|n

|x′ − x′′|
∣∣DSa(x

′ − y)−DSa(x
′′ − y)

∣∣ :
x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn(x′, 2|x′ − x′′|)

}
<∞ .
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Proof. By formula (4.3) and by the chain rule, we have

DSa(x) =
1

sn
√

det a(2)
|T−1x|−nxt(a(2))−1 + (3− n)|x|2−n x

t

|x|
A1

( x

|x|
, |x|

)
+ |x|3−n

{
DA1

( x

|x|
, |x|

)[
|x|I − x⊗ x|x|−1

]
|x|−2 +

∂A1

∂r

( x

|x|
, |x|

) xt

|x|

}
+DB1(x) ln |x|+

(
B1(x) + b0(1− δ2,n)

) xt

|x|2
+DC(x) (4.6)

for all x ∈ Rn \ {0}, where by A1 we have still denote any real analytic extension of the function A1

of Corollary 4.2 to an open neighbourhood of ∂Bn × R in Rn+1 and where x⊗ x denotes the matrix
(xlxj)l,j=1,...,n. Next, we consider the term B1(x)/|x|. By the Fundamental Theorem of Calculus, we
have

B1(x)

|x|
=

1∫
0

DB1

(
t
x

|x|
|x|

) x

|x|
dt ∀x ∈ Rn \ {0} . (4.7)

Thus, if we set

β(θ, r) =

1∫
0

DB1(tθr)θ dt ∀ (θ, r) ∈ Rn × R ,

the function β will be real analytic and will satisfy the equality

B1(x)

|x|
= β

( x

|x|
, |x|

)
∀x ∈ Rn \ {0} . (4.8)

Define

A2(θ, r) ≡ (3− n)θtA1(θ, r) +DA1(θ, r)[I − θ ⊗ θ] +
∂A1

∂r
(θ, r)θtr

+ β(θ, r)rn−2θt + rn−3θtb0(1− δ2,n) ∀ (θ, r) ∈ ∂Bn × R .

By the real analyticity of A1 and β, and by the equality rn−3θtb0(1− δ2,n) = 0 if n = 2, the function
A2 is real analytic. Hence, equalities (4.6) and (4.8) imply the validity of statement (i).

Next, we turn to the proof of statement (ii). By Lemma 3.1(ii) and by the Schwartz inequality, we
have

|T−1x|−n |xt(a(2))−1| ≤ |x|1−n|T |n
∣∣(a(2))−1

∣∣ .
Hence, formula (4.5) implies that

|x|n−1|DSa(x)| ≤
1

sn
√

det a(2)
|T |n

∣∣(a(2))−1
∣∣

+

{
|x|A2

( x

|x|
, |x|

)
+
(
|x|n−1 ln |x|

)
DB1(x) + |x|n−1DC(x)

}
for all x ∈ Rn \ {0}. Then the continuity of A2 on the compact set ∂Bn × [0,diam(G)] and the
continuity of DB1 and DC on the compact set clBn(0,diam (G)) imply the validity of statement (ii).

We now turn to statement (iii). Let x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn(x′, 2|x′ − x′′|). By statement
(i), we have∣∣DSa(x

′ − y)−DSa(x
′′ − y)

∣∣
≤ 1

sn
√

det a(2)
∣∣∣|T−1(x′ − y)|−n(x′ − y)t(a(2))−1 − |T−1(x′′ − y)|−n(x′′ − y)t(a(2))−1

∣∣∣
+

∣∣∣∣|x′ − y|2−nA2

( x′ − y

|x′ − y|
, |x′ − y|

)
− |x′′ − y|2−nA2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣
+
∣∣∣ ln |x′ − y|DB1(x

′ − y)− ln |x′′ − y|DB1(x
′′ − y)

∣∣∣+ ∣∣DC(x′ − y)−DC(x′′ − y)
∣∣ . (4.9)
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We first estimate the first summand in the right-hand side of inequality (4.9). By the triangular
inequality, we have∣∣∣|T−1(x′ − y)|−n(x′ − y)t(a(2))−1 − |T−1(x′′ − y)|−n(x′′ − y)t(a(2))−1

∣∣∣
≤ |x′ − y|

∣∣(a(2))−1
∣∣ ∣∣∣|T−1(x′ − y)|−n − |T−1(x′′ − y)|−n

∣∣∣
+ |x′ − x′′|

∣∣(a(2))−1
∣∣ |T−1(x′′ − y)|−n . (4.10)

Thus Lemmas 3.1(ii), 3.2(ii),(iv) with γ = −n, Λ = T−1 imply that∣∣|T−1(x′ − y)|−n − |T−1(x′′ − y)|−n
∣∣ ≤ m−n(T

−1)|T−1x′ − T−1x′′| |T−1x′ − T−1y|−n−1

≤ m−n(T
−1)|T−1| |T |n+1|x′ − x′′| |x′ − y|−n−1 , (4.11)

|T−1(x′′ − y)|−n ≤ |T |n|x′′ − y|−n , |x′′ − y|−n ≤ 2n|x′ − y|−n .

Next, we estimate the second summand in the right-hand side of inequality (4.9). By Lemmas 3.2(iv)
and 3.3(i), the second summand is less or equal to

∣∣|x′ − y|2−n − |x′′ − y|2−n
∣∣ ∣∣∣∣A2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣
+ |x′ − y|2−n

∣∣∣∣A2

( x′ − y

|x′ − y|
, |x′ − y|

)
−A2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣
≤ m2−n|x′−x′′| |x′−y|2−n−1 sup

∂Bn×[0,diam(G)]

|A2|+|x′−y|2−n
( n∑
j=1

MA2,j ,G

)
|x′−x′′||x′−y|−1 . (4.12)

Further, we estimate the third summand in the right-hand side of inequality (4.9). By Lemmas 3.2(v)
and 3.3(ii), the third summand is less or equal to∣∣ ln |x′ − y| − ln |x′′ − y|

∣∣ |DB1(x
′′ − y)|+

∣∣ ln |x′ − y|
∣∣ ∣∣DB1(x

′ − y)−DB1(x
′′ − y)

∣∣
≤ 2|x′ − x′′| |x′ − y|−1 sup

G−G
|DB1|+

( n∑
j=1

M̃ ∂B1
∂xj

,G

)
|x′ − x′′|

∣∣ ln |x′ − y|
∣∣

≤ |x′ − x′′| |x′ − y|−n
{
2|x′ − y|n−1 sup

G−G
|DB1|+

( n∑
j=1

M̃ ∂B1
∂xj

,G

)
|x′ − y|n

∣∣ ln |x′ − y|
∣∣} . (4.13)

Finally, Lemma 3.3(ii) implies that

|DC(x′ − y)−DC(x′′ − y)| ≤
( n∑
j=1

M̃ ∂C
∂xj

,G

)
|x′ − x′′|

≤ |x′ − x′′| |x′ − y|−n
( n∑
j=1

M̃ ∂C
∂xj

,G

)
sup

(x′,y)∈G×G
|x′ − y|n . (4.14)

Thus inequalities (4.9)–(4.14) imply the validity of statement (iii).

5 Preliminary inequalities on the boundary operator
Let us turn to estimate the kernel B∗

Ω,y (Sa(x− y)) of the double layer potential of (1.4). We will
do it under assumption (1.3). For this, we introduce some basic inequalities for B∗

Ω,y (Sa(x− y)) by
means of the following
Lemma 5.1. Let a be as in (1.1), (1.2), (1.3), T ∈Mn(R) be as in (4.2) and let Sa be a fundamental
solution of P [a, D].

Let α ∈ ]0, 1] and Ω be a bounded open subset of Rn of the class C1,α. Then the following statements
hold:
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(i) If α ∈ ]0, 1[ , then

bΩ,α ≡ sup
{
|x− y|n−1−α∣∣B∗

Ω,y(Sa(x− y))
∣∣ : x, y ∈ ∂Ω, x ̸= y

}
< +∞ . (5.1)

If n > 2, then (5.1) holds also for α = 1.

(ii)

b̃Ω,α ≡ sup
{
|x′ − y|n−α

|x′ − x′′|
∣∣B∗

Ω,y(Sa(x
′ − y))−B∗

Ω,y(Sa(x
′′ − y))

∣∣ :
x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \ Bn(x′, 2|x′ − x′′|)

}
< +∞ .

Proof. By Lemma 4.3(i), we have

B∗
Ω,y(Sa(x− y)) =−DSa(x− y)a(2)ν(y)− νt(y)a(1)Sa(x− y)

=− 1

sn
√

det a(2)
|T−1(x− y)|−n(x− y)tν(y)

− |x− y|2−nA2

( x− y

|x− y|
, |x− y|

)
a(2)ν(y)−DB1(x− y)a(2)ν(y) ln |x− y|

−DC(x− y)a(2)ν(y)− νt(y)a(1)Sa(x− y) ∀x, y ∈ ∂Ω, x ̸= y . (5.2)

By Lemmas 3.1(ii), 3.4, 4.2(i), and by the equality in (5.2), we have

|x− y|n−1−α∣∣B∗
Ω,y(Sa(x− y))

∣∣ ≤ 1

sn
√

det a(2)
cΩ,α|T |n|x− y|−n+1+α+n−1−α

+ |x− y|2−1−α|a(2)|
∣∣∣A2

( x− y

|x− y|
, |x− y|

)∣∣∣+ |x− y|n−1−α∣∣ ln |x− y|
∣∣ |a(2)| |DB1(x− y)|

+ |x− y|n−1−α|a(2)| |DC(x− y)|+ |a(1)|C0,Sa,∂Ω,n−1−α

for all x, y ∈ ∂Ω, x ̸= y. If either α ∈ ]0, 1[ or α ∈ ]0, 1] and n > 2, then the right-hand side is bounded
for x, y ∈ ∂Ω, x ̸= y. Hence, we conclude that statement (i) holds true.

Next, we consider statement (ii).

∣∣B∗
Ω,y(Sa(x

′ − y))−B∗
Ω,y(Sa(x

′′ − y))
∣∣

≤
∣∣|T−1(x′ − y)|−n(x′ − y)tν(y)− |T−1(x′′ − y)|−n(x′′ − y)tν(y)

∣∣
sn

√
det a(2)

+ |a(2)|
∣∣∣∣A2

( x′ − y

|x′ − y|
, |x′ − y|

)
−A2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ |x′ − y|2−n

+ |a(2)|
∣∣∣∣A2

( x′′ − y

|x′′ − y|
, |x′′ − y|

)∣∣∣∣ ∣∣|x′ − y|2−n − |x′′ − y|2−n
∣∣

+ |a(2)|
∣∣DB1(x

′−y)−DB1(x
′′−y)

∣∣ ∣∣ ln |x′−y|
∣∣+|a(2)| |DB1(x

′′−y)|
∣∣ ln |x′−y|−ln |x′′−y|

∣∣
+ |a(2)|

∣∣DC(x′ − y)−DC(x′′ − y)
∣∣+ |a(1)|

∣∣Sa(x
′ − y)− Sa(x

′′ − y)
∣∣ (5.3)

for all x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \Bn(x′, 2|x′ − x′′|). Denote by J1 the first term in the right-hand
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side of (5.3). By Lemmas 3.1(ii), 3.2(ii),(iv) with γ = −n, Λ = T−1, and by Lemma 3.4, we have

J1 ≤ 1

sn
√

det a(2)

×
{∣∣|T−1(x′−y)|−n−|T−1(x′′−y)|−n

∣∣ ∣∣(x′−y)tν(y)∣∣+|T−1(x′′−y)|−n
∣∣(x′−x′′)tν(y)∣∣}

≤ 1

sn
√

det a(2)

×
{
m−n(T

−1)
∣∣|T−1x′ − T−1x′′| |T−1x′ − T−1y|−n−1

∣∣ |x′ − y|1+αcΩ,α

+ 2n|T |n|x′ − y|−n
∣∣(x′ − x′′)tν(y)

∣∣} (5.4)

for all x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \ Bn(x′, 2|x′ − x′′|). Note that∣∣(x′ − x′′)tν(y)
∣∣ ≤ ∣∣(x′ − x′′)t(ν(y)− ν(x′))

∣∣+ ∣∣(x′ − x′′)tν(x′)
∣∣

≤ |x′ − x′′| |ν|α|x′ − y|α + cΩ,α|x′ − x′′|1+α ≤ |x′ − x′′| |x′ − y|α(|ν|α + cΩ,α)

and, accordingly,

J1 ≤ |x′ − x′′|
sn

√
det a(2)

{
m−n(T

−1)|T−1| |T |n+1|x′ − y|−n−1|x′ − y|1+αcΩ,α

+ 2n|T |n|x′ − y|−n|x′ − y|α(|ν|α + cΩ,α)
}

(5.5)

for all x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \ Bn(x′, 2|x′ − x′′|). Next, we denote by J2 the sum of the terms
different from J1 in the right-hand side of (5.3). Then Lemma 3.2(iv),(v) and Lemmas 3.3, 4.2(ii)
imply that

J2 ≤ |a(2)|
( n∑
j=1

MA2,j ,∂Ω

) |x′−x′′|
|x′−y|

|x′−y|2−n+|a(2)| sup
∂Bn×[0,diam(∂Ω)]

|A2|m2−n|x′−x′′| |x′−y|1−n

+ |a(2)|
( n∑
j=1

M̃ ∂B1
∂xj

,∂Ω

)
|x′ − x′′|

∣∣ ln |x′ − y|
∣∣+ |a(2)| sup

∂Ω−∂Ω
|DB1| 2

|x′ − x′′|
|x′ − y|

+ M̃C |x′ − x′′|+ C̃0,Sa,∂Ω|a(1)|
|x′ − x′′|

|x′ − y|n−1
(5.6)

for all x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \Bn(x′, 2|x′ −x′′|). By inequalities (5.3), (5.5), (5.6), we conclude
that statement (ii) holds.

6 Boundary norms for kernels
For each subset A of Rn, we find it convenient to set

∆A ≡
{
(x, y) ∈ A×A : x = y

}
.

We now introduce a class of functions on (∂Ω)2 \∆∂Ω which may carry a singularity as the variable
tends to a point of the diagonal, just as in the case of the kernels of integral operators corresponding
to layer potentials defined on the boundary of an open subset Ω of Rn.

Definition 6.1. Let G be a nonempty bounded subset of Rn. Let γ1, γ2, γ3 ∈ R. We denote by
Kγ1,γ2,γ3(G) the set of continuous functions K from (G×G) \∆G to C such that

∥K∥Kγ1,γ2,γ3
(G) ≡ sup

{
|x− y|γ1 |K(x, y)| : x, y ∈ G, x ̸= y

}
+ sup

{
|x′ − y|γ2
|x′ − x′′|γ3

|K(x′, y)−K(x′′, y)| : x′, x′′ ∈ G, x′ ̸= x′′, y ∈ G \ Bn(x′, 2|x′ − x′′|)
}
< +∞ .
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One can easily verify that (Kγ1,γ2,γ3(G), ∥ · ∥Kγ1,γ2,γ3 (G)) is a Banach space.

Remark 6.1. Let a be as in (1.1), (1.2) and Sa be a fundamental solution of P [a, D].

(i) Let G be a nonempty bounded subset of Rn. Then Lemma 4.2 implies that Sa(x − y) ∈
Kn−1−γ,n−1,1(G) for all γ ∈ [0, 1[ and the same membership holds also for γ = 1 if n > 2. If we
further assume that a satisfies (1.3), then Lemma 4.3 implies that ∂

∂xj
Sa(x− y) ∈ Kn−1,n,1(G)

for all j ∈ {1, . . . , n}.

(ii) Let a satisfy (1.3), α ∈ ]0, 1[ and let Ω be a bounded open subset of Rn of the class C1,α. Then
Lemma 5.1 implies that B∗

Ω,y (Sa(x− y)) ∈ Kn−1−α,n−α,1(∂Ω).

For each θ ∈ ]0, 1], we define the function ωθ( · ) from ]0,+∞[ to itself by setting

ωθ(r) ≡

{
rθ| ln r|, r ∈ ]0, rθ] ,

rθθ | ln rθ|, r ∈ ]rθ,+∞[ ,

where

rθ ≡

{
min

{
e−1/θ, e

2θ−1
θ(1−θ)

}
if θ ∈ ]0, 1[ ,

e−1 if θ = 1.

Obviously, ωθ( · ) is concave and satisfies (2.1), (2.2), and (2.3) with α = θ. We also note that if D is
a subset of Rn, then the continuous imbedding

C
0,ωθ( · )
b (D) ⊆ C0,θ′

b (D)

holds for all θ′ ∈ ]0, θ[ . We now consider the properties of an integral operator with a kernel in the
class Kγ1,γ2,γ3(∂Ω).

Proposition 6.1. Let Ω be a bounded open Lipschitz subset of Rn. Let γ1 ∈ ]−∞, n−1[ , γ2, γ3 ∈ R.
Then the following statements hold:

(i) If (K,µ) ∈ Kγ1,γ2,γ3(∂Ω) × L∞(∂Ω), then the function K(x, · )µ( · ) is integrable in ∂Ω for all
x ∈ ∂Ω, and the function u[∂Ω,K, µ] from ∂Ω to C defined by

u[∂Ω,K, µ](x) ≡
∫
∂Ω

K(x, y)µ(y) dσy ∀x ∈ ∂Ω (6.1)

is continuous. Moreover, the bilinear map from Kγ1,γ2,γ3(∂Ω)×L∞(∂Ω) to C0(∂Ω), which takes
(K,µ) to u[∂Ω,K, µ], is continuous.

(ii) If γ1 ∈ [n − 2, n − 1[, γ2 ∈ ]n − 1,+∞[ , γ3 ∈ ]0, 1], (n − 1) − γ2 + γ3 ∈ ]0, 1], then the bilinear
map from Kγ1,γ2,γ3(∂Ω) × L∞(∂Ω) to the space C0,min{(n−1)−γ1,(n−1)−γ2+γ3}(∂Ω), which takes
(K,µ) to u[∂Ω,K, µ], is continuous.

(iii) If γ1 ∈ [n− 2, n− 1[, γ2 = n− 1, γ3 ∈ ]0, 1], then the bilinear map from Kγ1,γ2,γ3(∂Ω)×L∞(∂Ω)

to the space C0,max{r(n−1)−γ1 ,ωγ3 (r)}(∂Ω), which takes (K,µ) to u[∂Ω,K, µ] is continuous.

Proof. By definition of the norm in Kγ1,γ2,γ3(∂Ω), we have∣∣K(x, y)µ(y)
∣∣ ≤ ∥K∥Kγ1,γ2,γ3

(∂Ω)∥µ∥L∞(∂Ω)
1

|x− y|γ1
∀ (x, y) ∈ (∂Ω)2 \D∂Ω .

Then the function K(x, · )µ( · ) is integrable in ∂Ω for all x ∈ ∂Ω, and the Vitali Convergence The-
orem implies that u[∂Ω,K, µ] is continuous on ∂Ω (cf., e.g., Folland [13, (2.33), pp. 60, 180].) By
Lemma 3.5(i), we also have∣∣∣∣ ∫

∂Ω

K(x, y)µ(y) dσy

∣∣∣∣ ≤ ∥K∥Kγ1,γ2,γ3
(∂Ω)∥µ∥L∞(∂Ω)c

′
Ω,γ1 . (6.2)
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Hence, statement (i) follows. Next, we turn to estimate the Hölder coefficient of u[∂Ω,K, µ] under
the assumptions of statements (ii) and (iii). Let x′, x′′ ∈ ∂Ω, x′ ̸= x′′. By Remark 2.2, there is
no loss of generality in assuming that 0 < |x′ − x′′| ≤ rγ3 . Then the inclusion Bn(x′, 2|x′ − x′′|) ⊆
Bn(x′′, 3|x′ − x′′|) and the triangular inequality imply that

∣∣u[∂Ω,K, µ](x′)− u[∂Ω,K, µ](x′′)
∣∣ ≤ ∥µ∥L∞(∂Ω)

{ ∫
Bn(x′,2|x′−x′′|)∩∂Ω

|K(x′, y)| dσy

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

|K(x′′, y)| dσy +
∫

∂Ω\Bn(x′,2|x′−x′′|)

∣∣K(x′, y)−K(x′′, y)
∣∣ dσy} . (6.3)

From Lemma 3.5(ii) it follows that∫
Bn(x′,2|x′−x′′|)∩∂Ω

|K(x′, y)| dσy +
∫

Bn(x′′,3|x′−x′′|)∩∂Ω

|K(x′′, y)| dσy

≤ ∥K∥Kγ1,γ2,γ3
(∂Ω)

{ ∫
Bn(x′,2|x′−x′′|)∩∂Ω

dσy
|x′ − y|γ1

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

dσy
|x′′ − y|γ1

}
≤ ∥K∥Kγ1,γ2,γ3

(∂Ω)2c
′′
Ω,γ1 |x

′ − x′′|(n−1)−γ1 . (6.4)

Moreover, we have∫
∂Ω\Bn(x′,2|x′−x′′|)

∣∣K(x′, y)−K(x′′, y)
∣∣ dσy ≤ ∥K∥Kγ1,γ2,γ3

(∂Ω)

∫
∂Ω\Bn(x′,2|x′−x′′|)

|x′ − x′′|γ3
|x′ − y|γ2

dσy (6.5)

both in case γ2 ∈ ]n− 1,+∞[ and γ2 = n− 1 and for all γ3 ∈ ]0, 1].
Under the assumptions of statement (ii), Lemma 3.5(iii) yields∫

∂Ω\Bn(x′,2|x′−x′′|)

|x′ − x′′|γ3
|x′ − y|γ2

dσy ≤ c′′′Ω,γ2 |x
′ − x′′|(n−1)−γ2+γ3 . (6.6)

Instead, under the assumptions of statement (iii), Lemma 3.5(iv) implies that∫
∂Ω\Bn(x′,2|x′−x′′|)

|x′ − x′′|γ3
|x′ − y|γ2

dσy ≤ civΩ |x′ − x′′|γ3
∣∣ ln |x′ − x′′|

∣∣ . (6.7)

Inequalities (6.2)–(6.7) imply the validity of statements (ii), (iii).

Note that Proposition 6.1(ii) for n = 3, γ1 = 2 − α, γ2 = 3 − α, γ3 = 1 and for fixed K is known
(see Kirsch and Hettlich [19, § 3.1.3, Thm. 3.17 (a)]). Next, we introduce two technical lemmas, which
we need to define an auxiliary integral operator.

Lemma 6.1. Let Ω be a bounded open Lipschitz subset of Rn, α, β ∈ ]0, 1[ and γ2 ∈ R, γ3 ∈ ]0, 1].
If γ2 − β > n− 1, we further require that γ3 + (n− 1)− (γ2 − β) > 0.
Then there exists c > 0 such that the function u[∂Ω,K, µ] defined by (6.1) satisfies the inequality∣∣u[∂Ω,K, µ](x′)− u[∂Ω,K, µ](x′′)

∣∣ ≤ c∥K∥K(n−1)−α,γ2,γ3
(∂Ω)∥µ∥C0,β(∂Ω)ω(|x′ − x′′|)

+ ∥µ∥C0(∂Ω)

∣∣u[∂Ω,K, 1](x′)− u[∂Ω,K, 1](x′′)
∣∣ ∀x′, x′′ ∈ ∂Ω (6.8)

for all (K,µ) ∈ K(n−1)−α,γ2,γ3(∂Ω)× C0,β(∂Ω), where

ω(r) ≡


rmin{α+β,γ3} if γ2 − β < n− 1 ,

max
{
rα+β , ωγ3(r)

}
if γ2 − β = n− 1 ,

rmin{α+β,γ3+(n−1)−(γ2−β)}− if γ2 − β > n− 1 ,

∀ r ∈ ]0,+∞[ .



90 Francesco Dondi and Massimo Lanza de Cristoforis

Proof. By Remark 2.2 and Proposition 6.1(i), it suffices to consider the case 0 < |x′ − x′′| < rγ3 . By
the triangular inequality, we have∣∣u[∂Ω,K, µ](x′)− u[∂Ω,K, µ](x′′)

∣∣
≤

∣∣∣∣ ∫
∂Ω

[
K(x′, y)−K(x′′, y)

]
(µ(y)− µ(x′)) dσy

∣∣∣∣+ |µ(x′)|
∣∣∣∣ ∫
∂Ω

[
K(x′, y)−K(x′′, y)

]
dσy

∣∣∣∣ . (6.9)

By exploiting the inclusion Bn(x′, 2|x′ − x′′|) ⊆ Bn(x′′, 3|x′ − x′′|), the triangular inequality, Lem-
mas 3.2(i), 3.5(ii), and the inequality

|y − x′|β ≤ |y − x′′|β + |x′ − x′′|β ,

we have∣∣∣∣ ∫
∂Ω

[
K(x′, y)−K(x′′, y)

]
(µ(y)− µ(x′)) dσy

∣∣∣∣
≤

∫
Bn(x′,2|x′−x′′|)∩∂Ω

|K(x′, y)| |y − x′|β dσy∥µ∥C0,β(∂Ω)

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

|K(x′′, y)| |y − x′|β dσy∥µ∥C0,β(∂Ω)

+

∫
∂Ω\Bn(x′,2|x′−x′′|)

∣∣K(x′, y)−K(x′′, y)
∣∣ |y − x′|β dσy∥µ∥C0,β(∂Ω)

≤ ∥K∥K(n−1)−α,γ2,γ3
(∂Ω)∥µ∥C0,β(∂Ω)

{ ∫
Bn(x′,2|x′−x′′|)∩∂Ω

dσy
|y − x′|(n−1)−(α+β)

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

|x′ − x′′|β

|y − x′′|(n−1)−α dσy

+

∫
Bn(x′′,3|x′−x′′|)∩∂Ω

dσy
|y − x′′|(n−1)−(α+β)

+

∫
∂Ω\Bn(x′,2|x′−x′′|)

|x′ − x′′|γ3 |x′ − y|β

|x′ − y|γ2
dσy

}
≤ ∥K∥K(n−1)−α,γ2,γ3

(∂Ω)∥µ∥C0,β(∂Ω)

×
{
2c′′Ω,(n−1)−(α+β)|x

′ − x′′|α+β + |x′ − x′′|βc′′Ω,(n−1)−α|x
′ − x′′|α

+ |x′ − x′′|γ3
∫

∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ2−β

}
. (6.10)

At this point we distinguish three cases. If γ2 − β < n− 1, then by Lemma 3.5(i)∫
∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ2−β

≤
∫
∂Ω

dσy
|x′ − y|γ2−β

≤ c′Ω,γ2−β ,

and thus inequalities (6.9) and (6.10) imply that there exists c > 0 such that inequality (6.8) holds
with ω(r) = rmin{α+β,γ3}. If γ2 − β = n− 1, then by Lemma 3.5(iv)∫

∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ2−β

≤ civΩ
∣∣ ln |x′ − x′′|

∣∣ ,
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and thus inequalities (6.9) and (6.10) imply that there exists c > 0 such that inequality (6.8) holds
with ω(r) = max{rα+β , ωγ3(r)}. If γ2 − β > n− 1, then by Lemma 3.5(iii)∫

∂Ω\Bn(x′,2|x′−x′′|)

dσy
|x′ − y|γ2−β

≤ c′′′Ω,γ2−β |x
′ − x′′|(n−1)−(γ2−β) ,

and thus inequalities (6.9) and (6.10) imply that there exists c > 0 such that inequality (6.8) holds
with ω(r) = rmin{α+β,γ3+(n−1)−(γ2−β)}.

We also point out the validity of the following ‘folklore’ Lemma.

Lemma 6.2. Let Ω be a bounded open Lipschitz subset of Rn, γ1 ∈ ] −∞, n − 1[ , G be a subset of
Rn. Let K ∈ C0((G× ∂Ω) \∆∂Ω) be such that

κγ1 ≡ sup
(x,y)∈(G×∂Ω)\∆∂Ω

|x− y|γ1 |K(x, y)| < +∞ .

Let µ ∈ L∞(∂Ω). Then the function K(x, · )µ( · ) is integrable in ∂Ω for all x ∈ G and the function
u♯[∂Ω,K, µ] from G to C defined by

u♯[∂Ω,K, µ](x) ≡
∫
∂Ω

K(x, y)µ(y) dσy ∀x ∈ G

is continuous. If sup
x∈G

∫
∂Ω

dσy

|x−y|γ1 <∞, then u♯[∂Ω,K, µ] satisfies the inequality

∣∣u♯[∂Ω,K, µ](x)∣∣ ≤ sup
x∈G

∫
∂Ω

dσy
|x− y|γ1

κγ1∥µ∥L∞(∂Ω) ∀x ∈ G . (6.11)

Proof. The integrability of K(x, · )µ( · ) follows from the inequality∣∣K(x, y)µ(y)
∣∣ ≤ κγ1∥µ∥L∞(∂Ω)

|x− y|γ1
a.a. y ∈ ∂Ω .

Since sup
x∈G

∫
∂Ω

dσy

|x−y|γ1 <∞, inequality (6.11) follows and the Vitali Convergence Theorem implies that

u♯[∂Ω,K, µ] is continuous on G (cf., e.g., Folland [13, (2.33) pp. 60, 180]).

We now introduce an auxiliary integral operator and deduce some properties which we will need
in the sequel by applying Proposition 6.1 and Lemma 6.1.

Lemma 6.3. Let θ ∈ ]0, 1] and Ω be a bounded open Lipschitz subset of Rn. Then the following
statements hold:

(i) Let Z ∈ C0((clΩ× ∂Ω) \∆∂Ω) satisfy the inequality

κn−1[Z] ≡ sup
(x,y)∈(cl Ω×∂Ω)\∆∂Ω

|x− y|n−1|Z(x, y)| < +∞ . (6.12)

Let (f, µ) ∈ C0,θ(clΩ) × L∞(∂Ω) and H♯[Z, f ] be the function from (clΩ × ∂Ω) \ ∆∂Ω to C
defined by

H♯[Z, f ](x, y) ≡ (f(x)− f(y))Z(x, y) ∀ (x, y) ∈ (clΩ× ∂Ω) \∆∂Ω .

If x ∈ clΩ, then the function H♯[Z, f ](x, · ) is Lebesgue integrable in ∂Ω and the function
Q♯[Z, f, µ] from clΩ to C defined by

Q♯[Z, f, µ](x) ≡
∫
∂Ω

H♯[Z, f ](x, y)µ(y) dσy ∀x ∈ clΩ

is continuous.
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(ii) The map H from Kn−1,n,1(∂Ω) × C0,θ(∂Ω) to Kn−1−θ,n−1,θ(∂Ω), which takes (Z, g) to the
function from (∂Ω)2 \∆∂Ω to C defined by

H[Z, g](x, y) ≡ (g(x)− g(y))Z(x, y) ∀ (x, y) ∈ (∂Ω)2 \∆∂Ω ,

is bilinear and continuous.

(iii) The map Q from Kn−1,n,1(∂Ω) × C0,θ(∂Ω) × L∞(Ω) to C0,ωθ( · )(∂Ω), which takes (Z, g, µ) to
the function from ∂Ω to C defined by

Q[Z, g, µ](x) ≡
∫
∂Ω

H[Z, g](x, y)µ(y) dσy ∀x ∈ ∂Ω ,

is trilinear and continuous.

(iv) Let α ∈ ]0, 1[ , β ∈ ]0, 1]. Then there exists q ∈ ]0,+∞[ such that∣∣Q[Z, g, µ](x′)−Q[Z, g, µ](x′′)
∣∣ ≤ q∥Z∥Kn−1,n,1(∂Ω)∥g∥C0,α(∂Ω)∥µ∥C0,β(∂Ω)|x′ − x′′|α

+ ∥µ∥C0(∂Ω)

∣∣Q[Z, g, 1](x′)−Q[Z, g, 1](x′′)
∣∣ ∀x′, x′′ ∈ ∂Ω

for all (Z, g, µ) ∈ Kn−1,n,1(∂Ω)× C0,α(∂Ω)× C0,β(∂Ω).

Proof. By assumption (6.12) and by the Hölder continuity of f , we have∣∣H♯[Z, f ](x, y)
∣∣ ≤ |f |θ

|x− y|(n−1)−θ κn−1[Z]

for all (x, y) ∈ (clΩ× ∂Ω) \∆∂Ω. Thus Lemma 6.2 implies the validity of statement (i).
By the Hölder continuity of g, we have∣∣H[Z, g](x, y)

∣∣ ≤ |g|θ
|x− y|(n−1)−θ ∥Z∥Kn−1,n,1(∂Ω) ∀ (x, y) ∈ (∂Ω)2 \∆∂Ω . (6.13)

Now, let x′, x′′ ∈ ∂Ω, x′ ̸= x′′, y ∈ ∂Ω \ Bn(x′, 2|x′ − x′′|). Then we have∣∣H[Z, g](x′, y)−H[Z, g](x′′, y)
∣∣ ≤ |g(x′)− g(y)|

∣∣Z(x′, y)− Z(x′′, y)
∣∣+ |g(x′)− g(x′′)| |Z(x′′, y)|

≤ ∥g∥C0,θ(∂Ω)∥Z∥Kn−1,n,1(∂Ω)

{
|x′ − y|θ|x′ − x′′|

|x′ − y|n
+

|x′ − x′′|θ

|x′′ − y|n−1

}
. (6.14)

Since |x′ − x′′| ≤ |x′ − y|, we have |x′ − x′′|1−θ ≤ |x′ − y|1−θ. Moreover, Lemma 3.2(i) implies that
|x′′ − y| ≥ 1

2 |x
′ − y| and thus the term in braces in the right-hand side of (6.14) is less or equal to

|x′ − y| |x′ − x′′|θ

|x′ − y|n
+

2n−1|x′ − x′′|θ

|x′ − y|n−1
≤ (1 + 2n−1)

|x′ − x′′|θ

|x′ − y|n−1
. (6.15)

Thus inequalities (6.13)–(6.15) imply that∥∥H[Z, g]
∥∥
Kn−1−θ,n−1,θ(∂Ω)

≤ 2n∥Z∥Kn−1,n,1(∂Ω)∥g∥C0,θ(∂Ω) . (6.16)

Hence statement (ii) holds true. We now turn to prove (iii). By Proposition 6.1(iii) with γ1 =
n− 1− θ, γ2 = n− 1, γ3 = θ, the map u[∂Ω, · , · ] is continuous from Kn−1−θ,n−1,θ(∂Ω)×L∞(∂Ω) to
C0,max{r(n−1)−[(n−1)−θ],ωθ(r)}(∂Ω) = C0,ωθ( · )(∂Ω). Then statement (ii) implies that u[∂Ω,H[ · , · ], · ] is
continuous from Kn−1,n,1(∂Ω)× C0,θ(∂Ω)× L∞(∂Ω) to C0,ωθ( · )(∂Ω). Since

u
[
∂Ω,H[Z, g], µ

]
=

∫
∂Ω

H[Z, g](x, y)µ(y) dσy ∀x ∈ ∂Ω , (6.17)

statement (iii) holds true. Since C0,β1(∂Ω) is continuously imbedded into C0,β2(∂Ω) whenever 0 <
β2 ≤ β1 ≤ 1, we can assume that α+ β < 1. Then by equality (6.17), by Lemma 6.1 with γ2 = n− 1,
γ3 = α and by statement (ii) with θ = α, statement (iv) holds true.
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7 Preliminaries on layer potentials
Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D] and let Ω be a bounded open
Lipschitz subset of Rn. If µ ∈ L∞(∂Ω), Lemma 4.2(i) ensures the convergence of the integral

v[∂Ω, Sa, µ](x) ≡
∫
∂Ω

Sa(x− y)µ(y) dσy ∀x ∈ Rn ,

which defines the single layer potential relative to µ, Sa. We collect in the following statement some
known properties of the single layer potential which we will exploit in the sequel (cf. Miranda [24],
Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5] and the references therein).
Theorem 7.1. Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N \ {0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following
statements hold:

(i) If µ ∈ Cm−1,α(∂Ω), then the function v+[∂Ω, Sa, µ] ≡ v[∂Ω, Sa, µ]|cl Ω belongs to Cm,α(clΩ) and
the function v−[∂Ω, Sa, µ] ≡ v[∂Ω, Sa, µ]|cl Ω− belongs to Cm,αloc (clΩ−). Moreover, the map which
takes µ to the function v+[∂Ω, Sa, µ] is continuous from Cm−1,α(∂Ω) to Cm,α(clΩ) and the map
from the space Cm−1,α(∂Ω) to Cm,α(clBn(0, R) \ Ω) which takes µ to v−[∂Ω, Sa, µ]|cl Bn(0,R)\Ω
is continuous for all R ∈ ]0,+∞[ such that clΩ ⊆ Bn(0, R).

(ii) Let l ∈ {1, . . . , n}. If µ ∈ C0,α(∂Ω), then we have the following jump relation

∂

∂xl
v±[∂Ω, Sa, µ](x) = ∓ νl(x)

2ν(x)ta(2)ν(x)
µ(x) +

∫
∂Ω

∂xl
Sa(x− y)µ(y) dσy ∀x ∈ ∂Ω ,

where the integral in the right-hand side exists in the sense of the principal value.
We now introduce the following refinement of a classical result for the homogeneous second order

elliptic operators (cf. Miranda [25]).
Theorem 7.2. Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D], Ω be a bounded
open Lipschitz subset of Rn and let γ ∈ ]0, 1[ . Then the operator v[∂Ω, Sa, · ]|∂Ω from L∞(∂Ω) to
C0,γ(∂Ω) which takes µ to v[∂Ω, Sa, µ]|∂Ω is continuous.

If, in addition, we assume that n > 2, then v[∂Ω, Sa, · ]|∂Ω is continuous from L∞(∂Ω) to
C0,ω1( · )(∂Ω).
Proof. By Lemma 4.2, we have Sa(x− y) ∈ K(n−1)−γ,n−1,1(∂Ω), and also Sa(x− y) ∈ Kn−2,n−1,1(∂Ω)
if we assume that n > 2. Since

v[∂Ω, Sa, µ]|∂Ω = u
[
∂Ω, Sa(x− y), µ

]
,

Proposition 6.1(iii) implies that v[∂Ω, Sa, · ] is continuous from L∞(∂Ω) to C0,max{rγ ,ω1(r)}(∂Ω) =
C0,γ(∂Ω), and also that v[∂Ω, Sa, · ] is continuous from L∞(∂Ω) to C0,max{r,ω1(r)}(∂Ω) = C0,ω1(r)(∂Ω)
if we assume that n > 2.

Next, we turn to the double layer potential and introduce the following technical result (cf. Mi-
randa [24], Wiegner [36], Dalla Riva [3], Dalla Riva, Morais and Musolino [5] and the references
therein).
Theorem 7.3. Let a be as in (1.1), (1.2), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N \ {0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following
statements hold:

(i) If µ ∈ C0,α(∂Ω), then the restriction w[∂Ω,a, Sa, µ]|Ω can be extended uniquely to a continuous
function w+[∂Ω,a, Sa, µ] from clΩ to C, and w[∂Ω,a, Sa, µ]|Ω− can be extended uniquely to a
continuous function w−[∂Ω,a, Sa, µ] from clΩ− to C, and we have the following jump relation

w±[∂Ω,a, Sa, µ](x) = ±1

2
µ(x) + w[∂Ω,a, Sa, µ](x) ∀x ∈ ∂Ω .
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(ii) If µ ∈ Cm,α(∂Ω), then w+[∂Ω,a, Sa, µ] belongs to Cm,α(clΩ) and w−[∂Ω,a, Sa, µ] belongs to
Cm,αloc (clΩ−). Moreover, the map from the space Cm,α(∂Ω) to Cm,α(clΩ) which takes µ to
w+[∂Ω,a, Sa, µ] is continuous and the map from the space Cm,α(∂Ω) to Cm,α(clBn(0, R) \ Ω)
which takes µ to w−[∂Ω,a, Sa, µ]|cl Bn(0,R)\Ω is continuous for all R ∈ ]0,+∞[ such that clΩ ⊆
Bn(0, R).

(iii) Let r ∈ {1, . . . , n}. If µ ∈ Cm,α(∂Ω) and U is an open neighborhood of ∂Ω in Rn and µ̃ ∈ Cm(U),
µ̃|∂Ω = µ, then the equality

∂

∂xr
w[∂Ω,a, Sa, µ](x) =

n∑
j,l=1

alj
∂

∂xl

{∫
∂Ω

Sa(x− y)
[
νr(y)

∂µ̃

∂yj
(y)− νj(y)

∂µ̃

∂yr
(y)

]
dσy

}

+

∫
∂Ω

[
DSa(x− y)a(1) + aSa(x− y)

]
νr(y)µ(y) dσy

−
∫
∂Ω

∂xr
Sa(x− y)νt(y)a(1)µ(y) dσy ∀x ∈ Rn \ ∂Ω (7.1)

holds.

Note that formula (7.1) for the Laplace operator with n = 3 can be found in Günter [14, Ch. 2, § 10,
(42)]. By combining Theorems 7.1 and 7.3, we deduce that under the assumptions of Theorem 7.3(iii),
the equality

∂

∂xr
w+[∂Ω,a, Sa, µ] =

n∑
j,l=1

alj
∂

∂xl
v+

[
∂Ω, Sa,Mrj [µ]

]
+Dv+[∂Ω, Sa, νrµ]a

(1)

+ av+[∂Ω, Sa, νrµ]−
∂

∂xr
v+[∂Ω, Sa, (ν

ta(1))µ] on clΩ (7.2)

holds.
Next, we introduce a result proved by Schauder [30, Hilfsatz VII, p. 112] for the Laplace operator,

which we extend here to the second order elliptic operators by exploiting Proposition 6.1.

Theorem 7.4. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[
and let Ω be a bounded open subset of Rn of the class C1,α. If µ ∈ L∞(∂Ω), then w[∂Ω,a, Sa, µ]|∂Ω ∈
C0,α(∂Ω). Moreover, the operator from L∞(∂Ω) to C0,α(∂Ω) which takes µ to w[∂Ω,a, Sa, µ]|∂Ω is
continuous.

Proof. By Lemma 5.1, the function Ka(x, y) ≡ B∗
Ω,y(Sa(x−y)) belongs to K(n−1)−α,n−α,1(∂Ω). Since

w[∂Ω,a, Sa, µ]|∂Ω = u[∂Ω,Ka, µ] ,

Proposition 6.1(ii) implies that the function w[∂Ω,a, Sa, · ]|∂Ω is continuous from L∞(∂Ω) to
C0,min{α,(n−1)−(n−α)+1}(∂Ω) = C0,α(∂Ω).

8 Auxiliary integral operators
In order to compute the tangential derivatives of the double layer potential, we introduce the following
two statements which concern two auxiliary integral operators. To shorten our notation, we define
the function Θ from (Rn × Rn) \∆Rn to Rn \ {0} as follows:

Θ(x, y) ≡ x− y ∀ (x, y) ∈ (Rn × Rn) \∆Rn . (8.1)

Theorem 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D] and
r ∈ {1, . . . , n}. Then the following statements hold:
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(i) Let Ω be a bounded open Lipschitz subset of Rn and θ ∈ ]0, 1]. If (f, µ) ∈ C0,θ(clΩ)× L∞(∂Ω),
then the function

Q♯
[∂Sa
∂xr

◦Θ, f, µ
]
(x) =

∫
∂Ω

(f(x)− f(y))
∂Sa
∂xr

(x− y)µ(y) dσy ∀x ∈ clΩ

is continuous.

(ii) Let α ∈ ]0, 1[ , β, θ ∈ ]0, 1], m ∈ N \ {0} and Ω be a bounded open subset of Rn of the class Cm,α.
Then the map Q♯[∂Sa

∂xr
◦Θ, · , · ] from Cm−1,θ(clΩ)×Cm−1,β(∂Ω) to Cm−1,min{α,β,θ}(clΩ) which

takes (f, µ) to Q♯[∂Sa
∂xr

◦Θ, f, µ] is bilinear and continuous.

Proof. By Lemma 4.3(ii), statement (i) is an immediate consequence of Lemma 6.3(i). Consider
statement (ii). By treating separately the cases x ∈ ∂Ω and x ∈ Ω, and exploiting Theorem 7.1(ii),
we have

Q♯
[∂Sa
∂xr

◦Θ, f, µ
]
(x) = f(x)

∂

∂xr
v+[∂Ω, Sa, µ](x)−

∂

∂xr
v+[∂Ω, Sa, fµ](x),

for all x ∈ clΩ. Then the statement follows by Theorem 7.1(i) and by the continuity of the pointwise
product in Schauder spaces.

Theorem 8.2. Let a be as in (1.1), (1.2), (1.3) and Sa be a fundamental solution of P [a, D]. Then
the following statement holds:

(i) Let Ω be a bounded open Lipschitz subset of Rn and θ ∈ ]0, 1]. Then the bilinear map Q[∂Sa
∂xr

◦
Θ, · , · ] from C0,θ(∂Ω)× L∞(∂Ω) to C0,ωθ( · )(∂Ω), which takes (g, µ) to the function

Q
[∂Sa
∂xr

◦Θ, g, µ
]
(x) =

∫
∂Ω

(g(x)− g(y))
∂Sa
∂xr

(x− y)µ(y) dσy ∀x ∈ ∂Ω , (8.2)

is continuous.

(ii) Let α ∈ ]0, 1[ , β ∈ ]0, 1]. Let Ω be a bounded open subset of Rn of the class C1,α. Then the
bilinear map Q[∂Sa

∂xr
◦ Θ, · , · ] from C0,α(∂Ω) × C0,β(∂Ω) to C0,α(∂Ω), which takes (g, µ) to

Q[∂Sa
∂xr

◦Θ, g, µ], is continuous.

Proof. By Lemma 4.3, we have ∂Sa
∂xr

∈ Kn−1,n,1(∂Ω). Then Lemma 6.3(iii) implies the validity of
statement (i).

We now consider statement (ii). By statement (i) and by the continuity of the inclusion of C0,β(∂Ω)
into L∞(∂Ω), we already know that Q[∂Sa

∂xr
◦Θ, · , · ] is continuous from C0,α(∂Ω)×C0,β(∂Ω) to C0(∂Ω).

Then it suffices to show that Q[∂Sa
∂xr

◦ Θ, · , · ] is continuous from C0,α(∂Ω) × C0,β(∂Ω) to the semi-
normed space (C0,α(∂Ω), | · : ∂Ω|α). By Lemma 6.3(iv), there exists q ∈ ]0,+∞[ such that∣∣∣∣Q[∂Sa

∂xr
◦Θ, g, µ

]
(x′)−Q

[∂Sa
∂xr

◦Θ, g, µ
]
(x′′)

∣∣∣∣
≤ q

∥∥∥∂Sa
∂xr

◦Θ
∥∥∥
Kn−1,n,1(∂Ω)

∥g∥C0,α(∂Ω)∥µ∥C0,β(∂Ω)|x′ − x′′|α

+ ∥µ∥C0(∂Ω)

∣∣∣∣Q[∂Sa
∂xr

◦Θ, g, 1
]
(x′)−Q

[∂Sa
∂xr

◦Θ, g, 1
]
(x′′)

∣∣∣∣ (8.3)

for all x′, x′′ ∈ ∂Ω. Let R ∈ ]0,+∞[ be such that clΩ ⊆ Bn(0, R). Let ‘ ∼ ’ be an extension operator
as in Lemma 2.1, defined on C0,α(∂Ω). Since

Q
[∂Sa
∂xr

◦Θ, g, 1
]
(x) = Q♯

[∂Sa
∂xr

◦Θ, g̃, 1
]
(x) ∀x ∈ ∂Ω ,



96 Francesco Dondi and Massimo Lanza de Cristoforis

Theorem 8.1(ii) implies that Q[∂Sa
∂xr

◦ Θ, · , 1] is continuous from C0,α(∂Ω) to itself and, accordingly,
there exists q′ ∈ ]0,+∞[ such that∥∥∥∥Q[∂Sa

∂xr
◦Θ, g, 1

]∥∥∥∥
C0,α(∂Ω)

≤ q′∥g∥C0,α(∂Ω) ∀ g ∈ C0,α(∂Ω) . (8.4)

Combining inequalities (8.3) and (8.4), we deduce that Q[∂Sa
∂xr

◦Θ, · , · ] is continuous from C0,α(∂Ω)×
C0,β(∂Ω) to (C0,α(∂Ω), | · : ∂Ω|α) and thus the proof is complete.

In the next lemma, we introduce a formula for the tangential derivatives of Q[∂Sa
∂xr

◦Θ, g, µ].

Lemma 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
θ ∈ ]0, 1]. Let Ω be a bounded open subset of Rn of class C2,α, r ∈ {1, . . . , n} and let g ∈ C1,θ(∂Ω),
µ ∈ C1(∂Ω). Then Q[∂Sa

∂xr
◦Θ, g, µ] ∈ C1(∂Ω) and the formula

Mlj

[
Q
[∂Sa
∂xr

◦Θ, g, µ
]]

= νl(x)Q
[∂Sa
∂xr

◦Θ, Da,jg, µ
]
(x)− νj(x)Q

[∂Sa
∂xr

◦Θ, Da,lg, µ
]
(x)

+ νl(x)Q

[
∂Sa
∂xr

◦Θ, g,
n∑
s=1

Msj

[ n∑
h=1

ashνh
νta(2)ν

µ
]]
(x)

− νj(x)Q

[
∂Sa
∂xr

◦Θ, g,
n∑
s=1

Msl

[ n∑
h=1

ashνh
νta(2)ν

µ
]]
(x)

+

n∑
s,h=1

ashνl(x)

{
Q
[∂Sa
∂xs

◦Θ, νj ,
Mhr[g]µ

νta(2)ν

]
(x) +Q

[
∂Sa
∂xs

◦Θ, g,Mhr

[ νjµ

νta(2)ν

]]
(x)

}

−
n∑

s,h=1

ashνj(x)

{
Q
[∂Sa
∂xs

◦Θ, νl,
Mhr[g]µ

νta(2)ν

]
(x) +Q

[
∂Sa
∂xs

◦Θ, g,Mhr

[ νlµ

νta(2)ν

]]
(x)

}

−
n∑
s=1

as

{
νl(x)Q

[∂Sa
∂xs

◦Θ, g, νjνr
νta(2)ν

µ
]
(x)− νj(x)Q

[∂Sa
∂xs

◦Θ, g, νlνr
νta(2)ν

µ
]
(x)

}
− a

{
g(x)

[
νl(x)v[∂Ω, Sa,

νjνr
νta(2)ν

µ
]
(x)− νj(x)v

[
∂Ω, Sa,

νlνr
νta(2)ν

µ
]
(x)

]
−
[
νl(x)v

[
∂Ω, Sa, g

νjνr
νta(2)ν

µ
]
(x)− νj(x)v

[
∂Ω, Sa, g

νlνr
νta(2)ν

µ
]
(x)

]}
(8.5)

holds for all x ∈ ∂Ω and l, j ∈ {1, . . . , n}. (For Q see (8.2).)

Proof. Let R ∈ ]0,+∞[ be such that clΩ ⊆ Bn(0, R). Let ‘ ∼ ’ be an extension operator as in
Lemma 2.1, defined either on C1,θ(∂Ω) or on C1,α(∂Ω) depending on whether it has been applied
to g ∈ C1,θ(∂Ω) or to νl ∈ C1,α(∂Ω) for l = 1, . . . , n.

Now, fix β ∈ ]0,min{θ, α}[ and first prove the formula under the assumption µ ∈ C1,β(∂Ω). By
Theorem 8.1(ii), we already know that Q♯[∂Sa

∂xr
◦Θ, g, µ] belongs to C1(clΩ). Then we find it convenient

to introduce the notation

M ♯
lj [f ](x) ≡ ν̃l(x)

∂f

∂xj
(x)− ν̃j(x)

∂f

∂xl
(x) ∀x ∈ clΩ

for all f ∈ C1(clΩ). If necessary, we write M ♯
lj,x to emphasize that we are taking x as variable of the

differential operator M ♯
lj . Next, we fix x ∈ Ω and compute

ν̃l(x)
∂

∂xj
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x)− ν̃j(x)

∂

∂xl
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x) .
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Clearly,

∂

∂xl
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x)

=

∫
∂Ω

∂g̃

∂xl
(x)

∂

∂xr
Sa(x− y)µ(y) dσy +

∫
∂Ω

(g̃(x)− g̃(y))
∂2

∂xl∂xr
Sa(x− y)µ(y) dσy .

To shorten our notation, we set

J1(x) ≡
∫
∂Ω

∂g̃

∂xl
(x)

∂

∂xr
Sa(x− y)µ(y) dσy .

Then we have

∂

∂xl
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x)

= J1(x)−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s,h=1

νs(y)ashνh(y)

νt(y)a(2)ν(y)

∂

∂yl

[ ∂

∂xr
Sa(x− y)

]
µ(y) dσy

= J1(x)−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

(
νs(y)

∂

∂yl
− νl(y)

∂

∂ys

)[ ∂

∂xr
Sa(x− y)

]

×
n∑
h=1

ashνh(y)

νt(y)a(2)ν(y)
µ(y) dσy

−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

∂

∂ys

[ ∂

∂xr
Sa(x− y)

] n∑
h=1

ashνh(y)
νl(y)

νt(y)a(2)ν(y)
µ(y) dσy .

By Lemma 2.2, the second term in the right-hand side takes the form

∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

Msl,y

[ ∂

∂xr
Sa(x− y)

] (a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

= −
∫
∂Ω

n∑
s=1

Msl,y

[
g̃(x)− g̃(y)

] ∂

∂xr
Sa(x− y)

(a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

−
∫
∂Ω

n∑
s=1

(g̃(x)− g̃(y))
∂

∂xr
Sa(x− y)Msl

[ (a(2)ν)s
νta(2)ν

µ
]
(y) dσy .

Since Msl,y[g̃(x)− g̃(y)] = −Msl[g̃](y), we have

∂

∂xl
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]
(x) =

∂g̃

∂xl
(x)

∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

−
∫
∂Ω

n∑
s=1

Msl[g̃](y)
∂

∂xr
Sa(x− y)

(a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

+

∫
∂Ω

n∑
s=1

(g̃(x)− g̃(y))
∂

∂xr
Sa(x− y)Msl

[ (a(2)ν)s
νta(2)ν

µ
]
(y) dσy

−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

∂

∂ys

[ ∂

∂xr
Sa(x− y)

]
(a(2)ν(y))s

νl(y)

νt(y)a(2)ν(y)
µ(y) dσy .
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Accordingly, we have

M ♯
lj

[
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]]
(x) =M ♯

lj [g̃](x)

∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

−
∫
∂Ω

n∑
s=1

{
ν̃l(x)Msj [g̃](y)− ν̃j(x)Msl[g̃](y)

} ∂

∂xr
Sa(x− y)

(a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

+

∫
∂Ω

n∑
s=1

(g̃(x)− g̃(y))
∂

∂xr
Sa(x− y)

{
ν̃l(x)Msj

[ (a(2)ν)s
νta(2)ν

µ
]
(y)− ν̃j(x)Msl

[ (a(2)ν)s
νta(2)ν

µ
]
(y)

}
dσy

−
∫
∂Ω

(g̃(x)− g̃(y))

n∑
s=1

∂

∂ys

[ ∂

∂xr
Sa(x− y)

]
(a(2)ν)s(y)

ν̃l(x)νj(y)− ν̃j(x)νl(y)

νt(y)a(2)ν(y)
µ(y) dσy . (8.6)

We now consider the first two terms in the right-hand side of formula (8.6). By the obvious identity

M ♯
lj [g̃] = ν̃l

[ ∂

∂xj
g̃ − Dg̃a(2)ν̃

ν̃ta(2)ν̃
ν̃j

]
− ν̃j

[ ∂

∂xl
g̃ − Dg̃a(2)ν̃

ν̃ta(2)ν̃
ν̃l

]
in clΩ ,

by the corresponding formula for Mlj [g̃] on ∂Ω, by formula (2.4) and by straightforward computations,
we obtain

M ♯
lj [g̃](x)

∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

−
∫
∂Ω

n∑
s=1

{
ν̃l(x)Msj [g̃](y)− ν̃j(x)Msl[g̃](y)

} ∂

∂xr
Sa(x− y)

(a(2)ν(y))s
νt(y)a(2)ν(y)

µ(y) dσy

= ν̃l(x)

[
∂

∂xj
g̃(x)− Dg̃(x)a(2)ν̃(x)

ν̃t(x)a(2)ν̃(x)
ν̃j(x)

] ∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

− ν̃j(x)

[
∂

∂xl
g̃(x)− Dg̃(x)a(2)ν̃(x)

ν̃t(x)a(2)ν̃(x)
ν̃l(x)

] ∫
∂Ω

∂

∂xr
Sa(x− y)µ(y) dσy

− ν̃l(x)

∫
∂Ω

[
∂

∂yj
g̃(y)− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)
ν̃j(y)

]( n∑
s,h=1

ν̃s(y)
a
(2)
sh νh(y)

ν̃t(y)a(2)ν̃(y)

) ∂

∂xr
Sa(x− y)µ(y) dσy

+ ν̃l(x)

∫
∂Ω

ν̃j(y)

{ n∑
s,h=1

∂

∂ys
g̃(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)
− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)

×
(
ν̃s(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)

)} ∂

∂xr
Sa(x− y)µ(y) dσy

+ ν̃j(x)

∫
∂Ω

[
∂

∂yl
g̃(y)− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)
ν̃l(y)

]( n∑
s,h=1

ν̃s(y)
ashνh(y)

ν̃t(y)a(2)ν̃(y)

) ∂

∂xr
Sa(x− y)µ(y) dσy

− ν̃j(x)

∫
∂Ω

ν̃l(y)

{ n∑
s,h=1

∂

∂ys
g̃(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)
− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)

×
(
ν̃s(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)

)} ∂

∂xr
Sa(x− y)µ(y) dσy . (8.7)

Since

ν̃(y) = ν(y) ,
( n∑
s,h=1

ν̃s(y)
ashνh(y)

ν̃t(y)a(2)ν̃(y)

)
= 1 ∀ y ∈ ∂Ω ,
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we have { n∑
s,h=1

∂

∂ys
g̃(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)
− Dg̃(y)a(2)ν̃(y)

ν̃t(y)a(2)ν̃(y)

(
ν̃s(y)

ashνh(y)

ν̃t(y)a(2)ν̃(y)

)}
= 0

for all y ∈ ∂Ω and, accordingly, the right-hand side of (8.7) equals

ν̃l(x)Q
♯
[∂Sa
∂xr

◦Θ, ∂

∂xj
g̃ − Dg̃a(2)ν̃

νta(2)ν
ν̃j , µ

]
(x)− ν̃j(x)Q

♯
[∂Sa
∂xr

◦Θ, ∂

∂xl
g̃ − Dg̃a(2)ν̃

νta(2)ν
ν̃l, µ

]
(x) .

Consider the third term in the right-hand side of formula (8.6) and note that

∫
∂Ω

n∑
s=1

(g̃(x)− g̃(y))
∂

∂xr
Sa(x− y)

{
ν̃l(x)Msj

[ (a(2)ν)s
νta(2)ν

µ
]
(y)− ν̃j(x)Msl

[ (a(2)ν)s
νta(2)ν

µ
]
(y)

}
dσy

= ν̃l(x)Q
♯

[
∂Sa
∂xr

◦Θ, g̃,
n∑
s=1

Msj

[ (a(2)ν)s
νta(2)ν

µ
]]
(x)

− ν̃j(x)Q
♯

[
∂Sa
∂xr

◦Θ, g̃,
n∑
s=1

Msl

[ (a(2)ν)s
νta(2)ν

µ
]]

(x) . (8.8)

Next, we consider the last integral in the right-hand side of formula (8.6) and note that if x ∈ Ω and
y ∈ ∂Ω, we have

n∑
s,h=1

∂

∂xh

[
ash

∂

∂xs
Sa(x− y)

]
+

n∑
s=1

as
∂

∂xs
Sa(x− y) + aSa(x− y) = 0 .

Thus we obtain
n∑

s,h=1

ashνh(y)
∂

∂xr

[ ∂

∂ys
Sa(x− y)

]
=

n∑
s,h=1

ash

(
νh(y)

∂

∂yr
−νr(y)

∂

∂yh

)[ ∂

∂xs
Sa(x−y)

]
+νr(y)

n∑
s=1

as
∂

∂xs
Sa(x−y)+νr(y)aSa(x−y) ,

and we note that the first parenthesis in the right-hand side equals Mhr,y. The last integral in the
right-hand side of formula (8.6) equals

∫
∂Ω

(g̃(x)− g̃(y))

n∑
s,h=1

ashνh(y)
∂

∂ys

[ ∂

∂xr
Sa(x− y)

] ν̃l(x)νj(y)− ν̃j(x)νl(y)

νt(y)a(2)ν(y)
µ(y) dσy

=

∫
∂Ω

(g̃(x)− g̃(y))

{ n∑
s,h=1

ashMhr,y

[ ∂

∂xs
Sa(x− y)

]

+ νr(y)

n∑
s=1

as
∂

∂xs
Sa(x− y) + νr(y)aSa(x− y)

}
ν̃l(x)νj(y)− ν̃j(x)νl(y)

νt(y)a(2)ν(y)
µ(y) dσy

=

n∑
s,h=1

ash

∫
∂Ω

(g̃(x)− g̃(y))Mhr,y

[ ∂

∂xs
Sa(x− y)

]
× ν̃l(x)(ν̃j(y)− ν̃j(x)) + ν̃j(x)(ν̃l(x)− ν̃l(y))

νt(y)a(2)ν(y)
µ(y) dσy

+

∫
∂Ω

(g̃(x)− g̃(y))
[ n∑
s=1

as
∂

∂xs
Sa(x− y) + aSa(x− y)

] ν̃l(x)νj(y)− ν̃j(x)νl(y)

νt(y)a(2)ν(y)
νr(y)µ(y) dσy . (8.9)
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We now consider separately each of the terms in the right-hand side of (8.9). By Lemma 2.2 and the
equality −Mhr,y[g̃(x)− g̃(y)] =Mhr,y[g̃(y)], the first integral in the right-hand side of (8.9) equals∫
∂Ω

(g̃(x)− g̃(y))Mhr,y

[ ∂

∂xs
Sa(x− y)

]
× ν̃l(x)(ν̃j(y)− ν̃j(x)) + ν̃j(x)(ν̃l(x)− ν̃l(y))

νt(y)a(2)ν(y)
µ(y) dσy

=

∫
∂Ω

Mhr[g̃]
∂

∂xs
Sa(x− y)

(
− ν̃l(x)

ν̃j(x)− νj(y)

νt(y)a(2)ν(y)
+ ν̃j(x)

ν̃l(x)− νl(y)

νt(y)a(2)ν(y)

)
µ(y) dσy

+

∫
∂Ω

(g̃(x)− g̃(y))
∂

∂xs
Sa(x− y)

×
(
− ν̃l(x)Mhr

[ νjµ

νta(2)ν

]
(y) + ν̃j(x)Mhr

[ νlµ

νta(2)ν

]
(y)

)
dσy

= −ν̃l(x)
∫
∂Ω

(ν̃j(x)− νj(y))
∂

∂xs
Sa(x− y)

Mhr[g̃]

νt(y)a(2)ν(y)
µ(y) dσy

+ ν̃j(x)

∫
∂Ω

(ν̃l(x)− νl(y))
∂

∂xs
Sa(x− y)

Mhr[g̃]

νt(y)a(2)ν(y)
µ(y) dσy

− ν̃l(x)

∫
∂Ω

(g̃(x)− g̃(y))
∂

∂xs
Sa(x− y)Mhr

[ νjµ

νta(2)ν

]
(y) dσy

+ ν̃j(x)

∫
∂Ω

(g̃(x)− g̃(y))
∂

∂xs
Sa(x− y)Mhr

[ νlµ

νta(2)ν

]
(y) dσy

= −ν̃l(x)
{
Q♯

[∂Sa
∂xs

◦Θ, ν̃j ,
Mhr[g]µ

νta(2)ν

]
(x) +Q♯

[
∂Sa
∂xs

◦Θ, g̃,Mhr

[ νjµ

νta(2)ν

]]
(x)

}
+ ν̃j(x)

{
Q♯

[∂Sa
∂xs

◦Θ, ν̃l,
Mhr[g]µ

νta(2)ν

]
(x) +Q♯

[
∂Sa
∂xs

◦Θ, g̃,Mhr

[ νlµ

νta(2)ν

]]
(x)

}
. (8.10)

Next, we note that the second integral in the right-hand side of (8.9) equals

n∑
s=1

as

{
ν̃l(x)Q

♯
[∂Sa
∂xs

◦Θ, g̃, νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)Q

♯
[∂Sa
∂xs

◦Θ, g̃, νlνr
νta(2)ν

µ
]
(x)

}
+ a

{
g̃(x)

[
ν̃l(x)v

[
∂Ω, Sa,

νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)v

[
∂Ω, Sa,

νlνr
νta(2)ν

µ
]
(x)

]
−
[
ν̃l(x)v

[
∂Ω, Sa, g

νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)v

[
∂Ω, Sa, g

νlνr
νta(2)ν

µ
]
(x)

]}
.

By combining formulas (8.6)–(8.10), we obtain

M ♯
lj

[
Q♯

[∂Sa
∂xr

◦Θ, g̃, µ
]]
(x) = ν̃l(x)Q

♯
[∂Sa
∂xr

◦Θ, ∂

∂xj
g̃ − Dg̃a(2)ν̃

νta(2)ν
ν̃j , µ

]
(x)

− ν̃j(x)Q
♯
[∂Sa
∂xr

◦Θ, ∂

∂xl
g̃−Dg̃a(2)ν̃

νta(2)ν
ν̃l, µ

]
(x)+ν̃l(x)Q

♯

[
∂Sa
∂xr

◦Θ, g̃,
n∑
s=1

Msj

[ n∑
h=1

ashνh
νta(2)ν

µ
]]
(x)

− ν̃j(x)Q
♯

[
∂Sa
∂xr

◦Θ, g̃,
n∑
s=1

Msl

[ n∑
h=1

ashνh
νta(2)ν

µ
]]
(x)

+

n∑
s,h=1

ashν̃l(x)

{
Q♯

[∂Sa
∂xs

◦Θ, νj ,
Mhr[g]µ

νta(2)ν

]
(x) +Q♯

[
∂Sa
∂xs

◦Θ, g̃,Mhr

[ νjµ

νta(2) ν

]]
(x)

}
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−
n∑

s,h=1

ashν̃j(x)

{
Q♯

[∂Sa
∂xs

◦Θ, νl,
Mhr[g]µ

νta(2)ν

]
(x) +Q♯

[
∂Sa
∂xs

◦Θ, g̃,Mhr

[ νlµ

νta(2)ν

]]
(x)

}

−
n∑
s=1

as

{
ν̃l(x)Q

♯
[∂Sa
∂xs

◦Θ, g̃, νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)Q

♯
[∂Sa
∂xs

◦Θ, g̃, νlνr
νta(2)ν

µ
]
(x)

}
− a

{
g(x)

[
ν̃l(x)v

[
∂Ω, Sa,

νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)v

[
∂Ω, Sa,

νlνr
νta(2)ν

µ
]
(x)

]
−
[
ν̃l(x)v

[
∂Ω, Sa, g

νjνr
νta(2)ν

µ
]
(x)− ν̃j(x)v

[
∂Ω, Sa, g

νlνr
νta(2)ν

µ
]
(x)

]}
. (8.11)

Under our assumptions, the first argument of the maps Q♯[∂Sa
∂xr

◦Θ, · , · ] and Q♯[∂Sa
∂xs

◦Θ, · , · ], which
appear in the right-hand side of (8.11) belongs to the space C0,min{α,θ}(clΩ) and the second argument
of the maps Q♯[∂Sa

∂xr
◦Θ, · , · ], Q♯[∂Sa

∂xs
◦Θ, · , · ], which appear in the right-hand side of (8.11) belongs

to C0(∂Ω). By Theorem 7.1(i) with m = 1, the single layer potentials in the right-hand side of (8.11)
are continuous in x ∈ clΩ. Then Theorem 8.1(i) implies that the right-hand side of (8.11) defines a
continuous function of the variable x ∈ clΩ. Since Ω is of the class C2,α and g̃ ∈ C1,θ(clΩ) and since
we are assuming that µ ∈ C1,β(∂Ω), Theorem 8.1(ii) implies that M ♯

lj [Q
♯[∂Sa
∂xr

◦ Θ, g, µ]] belongs to
C0(clΩ). Hence, the equation of (8.11) must hold for all x ∈ clΩ and, in particular, for all x ∈ ∂Ω.
Since Q♯[∂Sa

∂xr
◦Θ, · , · ] = Q[∂Sa

∂xr
◦Θ, · , · ] and M ♯

lj =Mlj on ∂Ω, we conclude that (8.5) holds.
Next, we assume that µ ∈ C1(∂Ω). We denote by Pljr[g, µ] the right-hand side of (8.5). By Theo-

rem 8.2(i), the operators Q[∂Sa
∂xr

◦Θ, g, · ], Q[∂Sa
∂xr

◦Θ, Da,jg, · ], Q[∂Sa
∂xr

◦Θ, νl, · ] are linear and continuous
from the space C0(∂Ω) to C0(∂Ω). By Theorem 7.2 and by the continuity of the pointwise product in
C0(∂Ω), the operator Pljr[g, · ] is continuous from C0(∂Ω) to C0(∂Ω). In particular, Q[∂Sa

∂xr
◦Θ, g, µ],

Pljr[g, µ] ∈ C0(∂Ω).
We now show that the weak Mlj-derivative of Q[∂Sa

∂xr
◦Θ, g, · ] in ∂Ω coincides with Pljr[g, µ].

Considering both an extension of µ of the class C1 with a compact support in Rn and a sequence of
mollifiers of such an extension, and then taking the restriction to ∂Ω, we can conclude that there exists
a sequence of functions {µb}b∈N in C2(∂Ω) converging to µ in C1(∂Ω). We note that if φ ∈ C1(∂Ω),
then the validity of (8.5) for µb ∈ C2(∂Ω) ⊆ C1,β(∂Ω), the membership of Q[∂Sa

∂xr
◦Θ, g, µb] in C1(∂Ω)

(see Theorem 8.1(ii)) and Lemma 2.2 imply that∫
∂Ω

Q
[∂Sa
∂xr

◦Θ, g, µ
]
Mlj [φ] dσ = lim

b→∞

∫
∂Ω

Q
[∂Sa
∂xr

◦Θ, g, µb
]
Mlj [φ] dσ

= − lim
b→∞

∫
∂Ω

Mlj

[
Q
[∂Sa
∂xr

◦Θ, g, µb
]]
φdσ = − lim

b→∞

∫
∂Ω

Pljr[g, µb]φdσ = −
∫
∂Ω

Pljr[g, µ]φdσ .

Hence, Pljr[g, µ] coincides with the weak Mlj-derivative of Q[∂Sa
∂xr

◦Θ, g, µ] for all l, j ∈ {1, . . . , n}. Since
both Pljr[g, µ] andQ[∂Sa

∂xr
◦Θ, g, µ] are the continuous functions, it follows thatQ[∂Sa

∂xr
◦Θ, g, µ] ∈ C1(∂Ω)

and Mlj [Q[∂Sa
∂xr

◦Θ, g, µ]] = Pljr[g, µ], classically. Hence (8.5) holds also for µ ∈ C1(∂Ω).

By exploiting formula (8.5), we can prove the following theorem.

Theorem 8.3. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N \ {0}. Let Ω be a bounded open subset of Rn of the class Cm,α and let r ∈ {1, . . . , n}. Then
the following statements hold:

(i) Let θ ∈]0, 1]. Then the bilinear map Q[∂Sa
∂xr

◦ Θ, · , · ] from the space Cm−1,θ(∂Ω) × Cm−1(∂Ω)

to Cm−1,ωθ( · )(∂Ω), which takes a pair (g, µ) to Q[∂Sa
∂xr

◦Θ, g, µ], is continuous.

(ii) Let β ∈ ]0, 1]. Then the bilinear map Q[∂Sa
∂xr

◦Θ, · , · ] from the space Cm−1,α(∂Ω)×Cm−1,β(∂Ω)

to Cm−1,α(∂Ω), which takes a pair (g, µ) to Q[∂Sa
∂xr

◦Θ, g, µ], is continuous.
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Proof. We first prove statement (i). We proceed by induction on m. Case m = 1 holds by Theo-
rem 8.2(i). We now prove that if the statement holds for m, then it holds for m + 1. Thus we now
assume that Ω is of the class Cm+1,α, and we turn to prove that Q[∂Sa

∂xr
◦ Θ, · , · ] is bilinear and

continuous from Cm,θ(∂Ω) × Cm(∂Ω) to Cm,ωθ( · )(∂Ω). By Lemma 2.3(ii), it suffices to prove that
the following two statements hold:

(j) Q[∂Sa
∂xr

◦Θ, · , · ] is continuous from Cm,θ(∂Ω)× Cm(∂Ω) to C0(∂Ω);

(jj) Mlj [Q[∂Sa
∂xr

◦ Θ, · , · ]] is continuous from Cm,θ(∂Ω) × Cm(∂Ω) to the space Cm−1,ωθ( · )(∂Ω) for
all l, j ∈ {1, . . . , n}.

Statement (j) holds by the case m = 1, and by the imbedding of Cm,θ(∂Ω)×Cm(∂Ω) into C0,θ(∂Ω)×
C0(∂Ω). We now prove statement (jj). Since m + 1 ≥ 2, Lemma 8.1 and the inductive assumption
imply that we can actually apply Mlj to Q[∂Sa

∂xr
◦Θ, · , · ]. We find it convenient to denote by Pljr[g, µ]

the right-hand side of formula (8.5). Then we have

Mlj

[
Q
[∂Sa
∂xr

◦Θ, g, µ
]]

= Pljr[g, µ] ∀ (g, µ) ∈ Cm,θ(∂Ω)× Cm(∂Ω) .

By Lemma 2.4 and the membership of ν in Cm,α(∂Ω,Rn), which is contained in Cm−1,1(∂Ω,Rn),
by the continuity of the pointwise product in Schauder spaces, by the continuity of the imbedding
of Cm(∂Ω) into Cm−1(∂Ω) and of Cm,α(∂Ω) into Cm−1,θ(∂Ω), by the inductive assumption on the
continuity of Q[∂Sa

∂xr
◦ Θ, · , · ], by the continuity of v[∂Ω, Sa, · ]|∂Ω from Cm−1,α(∂Ω) to Cm,α(∂Ω) ⊆

Cm−1,θ(∂Ω), and by the continuity of the imbedding of Cm(∂Ω) into Cm−1,α(∂Ω) and of Cm(∂Ω)
into Cm−1,ωθ( · )(∂Ω), and by the continuity of Da from Cm,θ(∂Ω) to Cm−1,θ(∂Ω), we conclude that
Pljr[ · , · ] is bilinear and continuous from Cm,θ(∂Ω) × Cm(∂Ω) to Cm−1,ωθ( · )(∂Ω), and the proof of
statement (jj) and, accordingly, of statement (i) is complete. The proof of statement (ii) follows the
lines of the proof of statement (i), by replacing the use of Theorem 8.2(i) with that of Theorem
8.2(ii).

Definition 8.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[
and let Ω be a bounded open subset of Rn of the class C1,α. Then we set

R[g, h, µ] ≡
∑
r=1

ar

{
Q
[∂Sa
∂xr

◦Θ, gh, µ
]
− gQ

[∂Sa
∂xr

◦Θ, h, µ
]
−Q

[∂Sa
∂xr

◦Θ, h, gµ
]}

+ a
{
gv[∂Ω, Sa, hµ]− hv[∂Ω, Sa, gµ]

}
for all (g, h, µ) ∈ (C0,α(∂Ω))2 × C0(∂Ω).

Since

g(x)h(y)−g(y)h(x)=
[
g(x)h(x)−g(y)h(y)

]
−g(x)[h(x)−h(y)]−g(y)[h(x)−h(y)] ∀x, y∈∂Ω ,

we have

R[g, h, µ] =

∫
∂Ω

{ n∑
r=1

ar
∂

∂xr
Sa(x− y) + aSa(x− y)

}[
g(x)h(y)− g(y)h(x)

]
µ(y) dσy ∀x ∈ ∂Ω .

Since R is a composition of the operator Q[∂Sa
∂xr

◦ Θ, · , · ] and of a single layer potential, Theo-
rems 7.1, 7.2 and 8.3, the continuity of the product in Schauder spaces and also of the imbeddings of
Cm−1(∂Ω) into Cm−2,α(∂Ω) for m ≥ 2, of Cm−1,α(∂Ω) into Cm−1,ωα( · )(∂Ω) and also of Cm,β(∂Ω)
into Cm−1,α(∂Ω), imply that the following theorem is valid.

Theorem 8.4. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N\{0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following statements
hold:
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(i) The trilinear map R from the space (Cm−1,α(∂Ω))2×Cm−1(∂Ω) to Cm−1,ωα( · )(∂Ω), which takes
a triple (g, h, µ) to R[g, h, µ], is continuous.

(ii) Let β ∈ ]0, 1]. Then the trilinear map R from the space (Cm−1,α(∂Ω))2 × Cm−1,β(∂Ω) to
Cm−1,α(∂Ω), which takes a triple (g, h, µ) to R[g, h, µ], is continuous.

9 Tangential derivatives and regularizing properties of the
double layer potential

We now exploit Theorems 7.3, 7.4, Lemma 8.1 and Theorems 8.3, 8.4 in order to prove a formula for
the tangential derivatives of the double layer potential, which generalizes the corresponding formula
of Hofmann, Mitrea and Taylor [16, (6.2.6)] for homogeneous operators. We do so by means of the
following

Theorem 9.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ and
let Ω be a bounded open subset of Rn of the class C1,α. If µ ∈ C1(∂Ω), then w[∂Ω,a, Sa, µ]|∂Ω ∈ C1(∂Ω)
and

Mlj

[
w
[
∂Ω,a, Sa, µ

]
|∂Ω

]
= w

[
∂Ω,a, Sa,Mlj [µ]

]
|∂Ω

+

n∑
b,r=1

abr

{
Q
[∂Sa
∂xb

◦Θ, νl,Mjr[µ]
]
−Q

[∂Sa
∂xb

◦Θ, νj ,Mlr[µ]
]}

+ νlQ
[∂Sa
∂xj

◦Θ, ν · a(1), µ
]
− νjQ

[∂Sa
∂xl

◦Θ, ν · a(1), µ
]

+ ν · a(1)
{
Q
[∂Sa
∂xl

◦Θ, νj , µ
]
−Q

[∂Sa
∂xj

◦Θ, νl, µ
]}

− ν · a(1)v
[
∂Ω, Sa,Mlj [µ]

]
+ v

[
∂Ω, Sa, ν · a(1)Mlj [µ]

]
+R[νl, νj , µ] on ∂Ω (9.1)

for all l, j ∈ {1, . . . , n}. (For Q see (8.2).)

Proof. Fix β ∈ ]0, α[. First consider the specific case in which µ ∈ C1,β(∂Ω). Let R ∈ ]0,+∞[ be
such that clΩ ⊆ Bn(0, R). Let ‘ ∼ ’ be an extension operator of C1,β(∂Ω) to C1,β(clBn(0, R)) as in
Lemma 2.1. By Theorem 7.3(i),(ii), we have w+[∂Ω,a, Sa, µ] ∈ C1,β(clΩ) and

Mlj

[
w+[∂Ω,a, Sa, µ]|∂Ω

]
=

1

2
Mlj [µ] +Mlj

[
w[∂Ω,a, Sa, µ]|∂Ω

]
. (9.2)

By the definition of Mlj and by equality (7.2), we obtain

Mlj

[
w+[∂Ω,a, Sa, µ]|∂Ω

]
= νl

∂

∂xj
w+[∂Ω,a, Sa, µ]− νj

∂

∂xl
w+[∂Ω,a, Sa, µ]

= νl

[ n∑
b,r=1

abr
∂

∂xb
v+

[
∂Ω, Sa,Mjr[µ]

]
+

n∑
b=1

ab
∂

∂xb
v+[∂Ω, Sa, νjµ]

− ∂

∂xj
v+[∂Ω, Sa, (ν

t · a(1))µ] + av+[∂Ω, Sa, νjµ]
]

− νj

[ n∑
b,r=1

abr
∂

∂xb
v+

[
∂Ω, Sa,Mlr[µ]

]
+

n∑
b=1

ab
∂

∂xb
v+[∂Ω, Sa, νlµ]

− ∂

∂xl
v+[∂Ω, Sa, (ν

t · a(1))µ] + av+[∂Ω, Sa, νlµ]
]

=

n∑
b,r=1

abr

{
νl

∂

∂xb
v+

[
∂Ω, Sa,Mjr[µ]

]
− νj

∂

∂xb
v+

[
∂Ω, Sa,Mlr[µ]

]}
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+

n∑
b=1

ab

{
νl

∂

∂xb
v+[∂Ω, Sa, νjµ]− νj

∂

∂xb
v+[∂Ω, Sa, νlµ]

}
−
{
νl

∂

∂xj
v+[∂Ω, Sa, (ν

t · a(1))µ]− νj
∂

∂xl
v+[∂Ω, Sa, (ν

t · a(1))µ]
}

+ a
{
νlv[∂Ω, Sa, νjµ]− νjv[∂Ω, Sa, νlµ]

}
on ∂Ω . (9.3)

We now consider the first term in braces in the right–hand side of (9.3) and note that{
νl(x)

∂

∂xb
v+

[
∂Ω, Sa,Mjr[µ]

]
(x)− νj

∂

∂xb
v+

[
∂Ω, Sa,Mlr[µ]

]
(x)

}
= − νl(x)νb(x)

2νt(x)a(2)ν(x)
Mjr[µ](x) + νl(x)

∫
∂Ω

∂

∂xb
Sa(x− y)Mjr[µ](y) dσy

+
νj(x)νb(x)

2νt(x)a(2)ν(x)
Mlr[µ](x)− νj(x)

∫
∂Ω

∂

∂xb
Sa(x− y)Mlr[µ](y) dσy

= νb(x)
−νl(x)Mjr[µ](x) + νj(x)Mlr[µ](x)

2νt(x)a(2)ν(x)

+

∫
∂Ω

∂

∂xb
Sa(x− y)

{
νl(x)Mjr[µ](y)− νj(x)Mlr[µ](y)

}
dσy . (9.4)

Further, we note that[
νlMjr[µ]− νjMlr[µ]

]
= νlνj

∂µ

∂xr
− νlνr

∂µ

∂xj
− νjνl

∂µ

∂xr
+ νjνr

∂µ

∂xl
= −νrMlj [µ] on ∂Ω . (9.5)

Then we obtain
n∑

b,r=1

abrνb
−νlMjr[µ] + νjMlr[µ]

2νta(2)ν

=

n∑
b,r=1

abrνb
νrMlj [µ]

2νta(2)ν
=

n∑
b,r=1

νbabrνr

2νta(2)ν
Mlj [µ] =

1

2
Mlj [µ] on ∂Ω . (9.6)

Consider the term in braces in the argument of the integral in the right-hand side of (9.4) and note
that equality (9.5) yields

νl(x)Mjr[µ](y)− νj(x)Mlr[µ](y)

= [νl(x)− νl(y)]Mjr[µ](y) +
[
νl(y)Mjr[µ](y)− νj(y)Mlr[µ](y)

]
− [νj(x)− νj(y)]Mlr[µ](y)

= [νl(x)− νl(y)]Mjr[µ](y)− νr(y)Mlj [µ](y)− [νj(x)− νj(y)]Mlr[µ](y) ∀x, y ∈ ∂Ω . (9.7)

We now consider the term in the second braces in the right-hand side of equality (9.3) and we note that

νl(x)
∂

∂xb
v+[∂Ω, Sa, νjµ](x)− νj(x)

∂

∂xb
v+[∂Ω, Sa, νlµ](x)

= −νl(x)
νb(x)

2νt(x)a(2)ν(x)
νj(x)µ(x) + νl(x)

∫
∂Ω

∂

∂xb
Sa(x− y)νj(y)µ(y) dσy

+ νj(x)
νb(x)

2νt(x)a(2)ν(x)
νl(x)µ(x)− νj(x)

∫
∂Ω

∂

∂xb
Sa(x− y)νl(y)µ(y) dσy

=

∫
∂Ω

∂

∂xb
Sa(x− y)[νl(x)νj(y)− νj(x)νl(y)]µ(y) dσy ∀x ∈ ∂Ω . (9.8)
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Next, we consider the term in the third braces in the right-hand side of equality (9.3) and we note that

νl(x)
∂

∂xj
v+[∂Ω, Sa, (ν

t · a(1))µ](x)− νj(x)
∂

∂xl
v+[∂Ω, Sa, (ν

t · a(1))µ](x)

= −νl(x)
νj(x)

2νt(x)a(2)ν(x)
(νt(x) · a(1))µ(x) + νl(x)

∫
∂Ω

∂

∂xj
Sa(x− y)νt(y) · a(1)µ(y) dσy

+ νj(x)
νl(x)

2νt(x)a(2)ν(x)
(νt(x) · a(1))µ(x)− νj(x)

∫
∂Ω

∂

∂xl
Sa(x− y)νt(y) · a(1)µ(y) dσy

= −νl(x)
∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xj
Sa(x− y)µ(y) dσy

+ νl(x)

∫
∂Ω

(νt(x) · a(1)) ∂

∂xj
Sa(x− y)µ(y) dσy

+ νj(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xl
Sa(x− y)µ(y) dσy

− νj(x)

∫
∂Ω

(νt(x) · a(1)) ∂

∂xl
Sa(x− y)µ(y) dσy

= −νl(x)
∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xj
Sa(x− y)µ(y) dσy

+ νj(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xl
Sa(x− y)µ(y) dσy

+ (νt(x) · a(1))
∫
∂Ω

(
νl(x)

∂

∂xj
− νj(x)

∂

∂xl

)
Sa(x− y)µ(y) dσy

= −νl(x)
∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xj
Sa(x− y)µ(y) dσy

+ νj(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xl
Sa(x− y)µ(y) dσy

+ (νt(x) · a(1))
{∫
∂Ω

(νl(x)−νl(y))
∂

∂xj
Sa(x−y)µ(y) dσy−

∫
∂Ω

(νj(x)−νj(y))
∂

∂xl
Sa(x−y)µ(y) dσy

}

+ (νt(x) · a(1))
∫
∂Ω

(
νl(y)

∂

∂xj
− νj(y)

∂

∂xl

)
Sa(x− y)µ(y) dσy (9.9)

for all x ∈ ∂Ω. By Lemma 2.2, the last integral in the right-hand side of (9.9) equals

−
∫
∂Ω

Mlj,y[Sa(x− y)]µ(y) dσy =

∫
∂Ω

Sa(x− y)Mlj [µ](y) dσy ∀x ∈ ∂Ω . (9.10)

Thus the last term in the right-hand side of (9.9) equals

(νt(x) · a(1))
∫
∂Ω

Sa(x− y)Mlj [µ](y) dσy =

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

]
Sa(x− y)Mlj [µ](y) dσy

+

∫
∂Ω

(νt(y) · a(1))Sa(x− y)Mlj [µ](y) dσy ∀x ∈ ∂Ω . (9.11)
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The last term in braces of equation (9.3) equals∫
∂Ω

Sa(x− y)
[
νl(x)νj(y)− νj(x)νl(y)

]
µ(y) dσy ∀x ∈ ∂Ω . (9.12)

Combining (9.2)–(9.4), (9.6)–(9.12), we obtain

Mlj

[
w[∂Ω,a, Sa, µ]

]
(x) =

n∑
b,r=1

abr

{∫
∂Ω

(νl(x)− νl(y))
∂

∂xb
Sa(x− y)Mjr[µ](y) dσy

−
∫
∂Ω

(νj(x)− νj(y))
∂

∂xb
Sa(x− y)Mlr[µ](y) dσy −

∫
∂Ω

νr(y)
∂

∂xb
Sa(x− y)Mlj [µ](y) dσy

}

+

n∑
b=1

ab

∫
∂Ω

∂

∂xb
Sa(x− y)

[
νl(x)νj(y)− νj(x)νl(y)

]
µ(y) dσy

+ νl(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xj
Sa(x− y)µ(y) dσy

− νj(x)

∫
∂Ω

[
(νt(x) · a(1))− (νt(y) · a(1))

] ∂

∂xl
Sa(x− y)µ(y) dσy

− (νt(x) · a(1))
{∫
∂Ω

(νl(x)−νl(y))
∂

∂xj
Sa(x−y)µ(y) dσy−

∫
∂Ω

(νj(x)−νj(y))
∂

∂xl
Sa(x−y)µ(y) dσy

}

−
∫
∂Ω

[
(νt(x) · a(1))−(νt(y) · a(1))

]
Sa(x−y)Mlj [µ](y) dσy−

∫
∂Ω

(νt(y) · a(1))Sa(x−y)Mlj [µ](y) dσy

+ a

∫
∂Ω

Sa(x− y)
[
νl(x)νj(y)− νj(x)νl(y)

]
µ(y) dσy ∀x ∈ ∂Ω ,

which we rewrite as

Mlj

[
w[∂Ω,a, Sa, µ]

]
(x) =

n∑
b,r=1

abr

{
Q
[∂Sa
∂xb

◦Θ, νl,Mjr[µ]
]
(x)−Q

[∂Sa
∂xb

◦Θ, νj ,Mlr[µ]
]
(x)

}
+ νl(x)Q

[∂Sa
∂xj

◦Θ, νt · a(1), µ
]
(x)− νj(x)Q

[∂Sa
∂xl

◦Θ, νt · a(1), µ
]
(x)

+ w
[
∂Ω,a, Sa,Mlj [µ]

]
(x) + (νt(x) · a(1))

{
Q
[∂Sa
∂xl

◦Θ, νj , µ
]
(x)−Q

[∂Sa
∂xj

◦Θ, νl, µ
]
(x)

}
− (νt(x) · a(1))v

[
∂Ω, Sa,Mlj [µ]

]
(x) + v

[
∂Ω, Sa, (ν

t · a(1))Mlj [µ]
]
(x) +R[νl, νj , µ](x) ∀x ∈ ∂Ω .

Thus we have proved formula (9.1) for µ ∈ C1,β(∂Ω).
Next, we assume that µ ∈ C1(∂Ω). We denote by Tlj [µ] the right-hand side of (9.1). By the

continuity of Mlj from C1(∂Ω) to C0(∂Ω), of w[∂Ω,a, Sa, · ]|∂Ω and v[∂Ω, Sa, · ]|∂Ω from C0(∂Ω) to
C0,α(∂Ω), of Q[∂Sa

∂xr
◦Θ, · , · ] from C0,α(∂Ω)×C0(∂Ω) to C0,ωα(∂Ω), of R from (C0,α(∂Ω))2×C0(∂Ω)

to C0,ωα(∂Ω), and by the continuity of the pointwise product in Schauder spaces, we can conclude
that the operators w[∂Ω,a, Sa, · ]|∂Ω and Tlj [ · ] are continuous from C1(∂Ω) to C0,α(∂Ω) and from
C1(∂Ω) to C0,ωα( · )(∂Ω), respectively. In particular, Tlj [µ] and w[∂Ω,a, Sa, µ]|∂Ω belong to C0(∂Ω).
We now show that the weak Mlj-derivative of w[∂Ω,a, Sa, µ]|∂Ω coincides with Tlj [µ].

By arguing just as at the end of the proof of Lemma 8.1, there exists a sequence of functions
{µb}b∈N in C1,α(∂Ω), which converges to µ in C1(∂Ω). Note that if φ ∈ C1(∂Ω), then the validity
of (9.1) for µb ∈ C1,α(∂Ω), the membership of w[∂Ω,a, Sa, µb]|∂Ω in C1,α(∂Ω), the above-mentioned
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continuity of w[∂Ω,a, Sa, · ]|∂Ω, and also Lemma 2.2 imply that∫
∂Ω

w[∂Ω,a, Sa, µ]|∂ΩMlj [φ] dσ = lim
b→∞

∫
∂Ω

w[∂Ω,a, Sa, µb]|∂ΩMlj [φ] dσ

= − lim
b→∞

∫
∂Ω

Mlj

[
w[∂Ω,a, Sa, µb]|∂Ω

]
φdσ = − lim

b→∞

∫
∂Ω

Tlj [µb]φdx = −
∫
∂Ω

Tlj [µ]φdx .

Hence, Tlj [µ] coincides with the weak Mlj-derivative of w[∂Ω,a, Sa, µ]|∂Ω for all l, j in {1, . . . , n}. Since
both Tlj [µ] and w[∂Ω,a, Sa, µ]|∂Ω are the continuous functions, it follows that w[∂Ω,a, Sa, µ]|∂Ω ∈
C1(∂Ω) and Mlj [w[∂Ω,a, Sa, µ]|∂Ω] = Tlj [µ], classically. Hence (9.1) holds also for µ ∈ C1(∂Ω).

Using formula (9.1), we now prove the following result, which says that the double layer potential
on ∂Ω has a regularizing effect.

Theorem 9.2. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N\{0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following statements
hold:

(i) The operator w[∂Ω,a, Sa, · ]|∂Ω is linear and continuous from Cm(∂Ω) to Cm,ωα( · )(∂Ω).

(ii) Let β ∈ ]0, α]. Then the operator w[∂Ω,a, Sa, · ]|∂Ω is linear and continuous from Cm,β(∂Ω) to
Cm,α(∂Ω).

Proof. We prove statement (i) by induction on m. As in the previous proof, we denote by Tlj [µ] the
right-hand side of formula (9.1). We first consider the case m = 1. By Lemma 2.3(ii) and formula
(9.1), it suffices to prove that the following two statements hold:

(j) w[∂Ω,a, Sa, · ]|∂Ω is continuous from C1(∂Ω) to C0(∂Ω);

(jj) Tlj [ · ] is continuous from C1(∂Ω) to C0,ωα( · )(∂Ω) for all l, j ∈ {1, . . . , n}.

Theorem 7.4 implies the validity of (j). Statement (jj) follows by the continuity of the pointwise
product in Schauder spaces, by the continuity of Mlj from C1(∂Ω) to C0(∂Ω), by the continuity of
v[∂Ω, Sa, · ]|∂Ω and of w[∂Ω,a, Sa, · ]|∂Ω from C0(∂Ω) to C0,α(∂Ω) (cf. Theorems 7.2, 7.4), and also
by the continuity of Q[∂Sa

∂xr
◦ Θ, · , · ] from C0,α(∂Ω) × C0(∂Ω) to C0,ωα( · )(∂Ω) (cf. Theorem 8.2(i))

and by the continuity of R from
(
C0,α(∂Ω)

)2 × C0(∂Ω) to C0,ωα( · )(∂Ω) (cf. Theorem 8.4(i).)
Next, we assume that Ω is of the class Cm+1,α and we turn to prove that w[∂Ω,a, Sa, · ]|∂Ω is

continuous from Cm+1(∂Ω) to Cm+1,ωα( · )(∂Ω). By Lemma 2.3(ii) and formula (9.1), it suffices to
prove that the following two statements hold:

(a) w[∂Ω,a, Sa, · ]|∂Ω is continuous from Cm+1(∂Ω) to C0(∂Ω);

(b) Tlj [ · ] is continuous from Cm+1(∂Ω) to Cm,ωα( · )(∂Ω). for all l, j ∈ {1, . . . , n}.

Statement (a) holds by the inductive assumption. We now prove statement (b). Since Ω is of the
class Cm+1,α, then ν is of the class Cm,α(∂Ω). Theorem 8.3(i) ensures that Q[∂Sa

∂xr
◦Θ, ν · a(1), · ] and

Q[∂Sa
∂xr

◦Θ, νj , · ] are continuous from Cm(∂Ω) to Cm,ωα(∂Ω) for all l, j, r in {1, . . . , n}. Since Mlj is
continuous from Cm+1(∂Ω) to Cm(∂Ω), the inductive assumption implies that w[∂Ω,a, Sa,Mlj [ · ]]|∂Ω
is continuous from Cm+1(∂Ω) to Cm,ωα( · )(∂Ω) for all l, j in {1, . . . , n}.

Since Mlj is continuous from Cm+1(∂Ω) to Cm−1,α(∂Ω) and v[∂Ω, Sa, · ]|∂Ω is continuous from
Cm−1,α(∂Ω) to Cm,α(∂Ω), ν ∈ (Cm,α(∂Ω))n and Cm,α(∂Ω) is continuously imbedded into
Cm,ωα( · )(∂Ω), we conclude that v[∂Ω, Sa,Mlj [ · ]]|∂Ω and v[∂Ω, Sa, ν · a(1)Mlj [ · ]]|∂Ω are continuous
from the space Cm+1(∂Ω) to Cm,ωα( · )(∂Ω) for all l, j in {1, . . . , n}. Moreover, R is continuous from
(Cm,α(∂Ω))2 × Cm(∂Ω) to Cm,ωα( · )(∂Ω) (cf. Theorem 8.4(i)). Then statement (b) holds true.

Statement (iii) can be proved by the same argument of the proof of statement (i) by exploiting
Theorem 8.3(ii) instead of Theorem 8.3(i) and Theorem 8.4(ii) instead of Theorem 8.4(i).
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Since Cm,ωα( · )(∂Ω) is compactly imbedded into Cm(∂Ω) and Cm,α(∂Ω) is compactly imbedded
into Cm,β(∂Ω) for all β ∈ ]0, α[ , we have the following immediate consequence of Theorem 9.2.
Corollary 9.1. Under the assumptions of Theorem 9.2, the linear operator w[∂Ω,a, Sa, · ]|∂Ω is
compact from Cm(∂Ω) to itself, from Cm,ωα( · )(∂Ω) to itself and from Cm,α(∂Ω) to itself.

10 Other layer potentials associated to P [a, D]

Another relevant layer potential operator associated to the analysis of boundary value problems for
the operator P [a, D] is the following

w∗[∂Ω,a, Sa, µ](x) ≡
∫
∂Ω

µ(y)DSa(x− y)a(2)ν(x) dσy ∀x ∈ ∂Ω ,

which we now turn to consider.
Theorem 10.1. Let a be as in (1.1), (1.2), (1.3), Sa be a fundamental solution of P [a, D], α ∈ ]0, 1[ ,
m ∈ N\{0} and let Ω be a bounded open subset of Rn of the class Cm,α. Then the following statements
hold:

(i) The operator w∗[∂Ω,a, Sa, · ]|∂Ω is linear and continuous from Cm−1(∂Ω) to Cm−1,ωα( · )(∂Ω).

(ii) Let β ∈ ]0, α]. Then the operator w∗[∂Ω,a, Sa, · ]|∂Ω is linear and continuous from Cm−1,β(∂Ω)
to Cm−1,α(∂Ω).

Proof. First note that

w∗[∂Ω,a,Sa, µ](x) =
n∑

b,r=1

abr

∫
∂Ω

νr(x)
∂

∂xb
Sa(x− y)µ(y) dσy

=

n∑
b,r=1

abrQ
[∂Sa
∂xb

◦Θ, νr, µ
]
(x) +

n∑
b,r=1

abr

∫
∂Ω

νr(y)
∂

∂xb
Sa(x− y)µ(y) dσy

=

n∑
b,r=1

abrQ
[∂Sa
∂xb

◦Θ, νr, µ
]
(x)−

∫
∂Ω

µ(y)

n∑
b,r=1

abrνr(y)
∂

∂yb
Sa(x− y) dσy

=

n∑
b,r=1

abrQ
[∂Sa
∂xb

◦Θ, νr, µ
]
(x)− w[∂Ω,a, Sa, µ](x)− v[∂Ω, Sa, (a

(1)ν)µ](x) (10.1)

for all x ∈ ∂Ω and µ ∈ C0(∂Ω).
If m = 1, then Theorem 7.2 implies that v[∂Ω, Sa, · ]|∂Ω is linear and continuous from Cm−1(∂Ω)

to Cm−1,α(∂Ω).
If m > 1, then Cm−1(∂Ω) is continuously imbedded into Cm−2,α(∂Ω) and Theorem 7.1 implies

that v[∂Ω, Sa, · ]|∂Ω is linear and continuous from Cm−2,α(∂Ω) to Cm−1,α(∂Ω). Hence, v[∂Ω, Sa, · ]|∂Ω
is continuous from the space Cm−1(∂Ω) to Cm−1,α(∂Ω) for all m ≥ 1. Then formula (10.1), the
continuity of the imbedding of Cm−1,α(∂Ω) into Cm−1,ωα(∂Ω) and Theorems 8.3(i), 9.2(i) imply the
validity of statement (i).

We now consider statement (ii). Since v[∂Ω, Sa, · ]|∂Ω is continuous from Cm−1,β(∂Ω) to Cm,β(∂Ω)
and Cm,β(∂Ω) is continuously imbedded into Cm−1,α(∂Ω), the operator v[∂Ω, Sa, · ]|∂Ω is continuous
from Cm−1,β(∂Ω) into Cm−1,α(∂Ω). Then formula (10.1) and Theorems 8.3(ii), 9.2(ii) imply the
validity of statement (ii).

Since the space Cm−1,ωα( · )(∂Ω) is compactly imbedded into Cm−1(∂Ω), and Cm−1,α(∂Ω) is com-
pactly imbedded into Cm−1,β(∂Ω) for all β ∈ ]0, α[ , we have the following immediate consequence of
Theorem 10.1(ii).
Corollary 10.1. Under the assumptions of Theorem 10.1, w∗[∂Ω, Sa, · ]|∂Ω is compact from Cm−1(∂Ω)

to itself, from Cm−1,ωα( · )(∂Ω) to itself and from Cm−1,α(∂Ω) to itself.
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1 Introduction
Consider the differential equation

y(n) = αp(t)

n−1∏
j=0

φj(y
(j)), (1.1)

where n ≥ 2, α ∈ {−1, 1}, p : [a,+∞[→ ]0,+∞[ is a continuous function, a ∈ R, φj : ∆Yj → ]0,+∞[
are the continuous functions regularly varying, as y(j) → Yj , of order σj , j = 0, n− 1, ∆Yj is a
one-sided neighborhood of the point Yj , Yj ∈ {0,±∞}1.

Equation (1.1) is a particular case of the equation

y(n) =

m∑
k=1

αkpk(t)

n−1∏
j=0

φkj(y
(j)),

which is comprehensively studied by V. M. Evtukhov and A. M. Klopot [1, 2], M. M. Klopot [3, 4].
Here n ≥ 2, αk ∈ {−1, 1} (k = 1,m), pk : [a, ω[→ ]0,+∞[ (k = 1,m) are continuous functions,
−∞ < a < ω ≤ +∞, φkj : ∆Yj → ]0,+∞[ (k = 1,m, j = 0, n− 1) are continuous functions regularly
varying, as y(j) → Yj , of order σj , ∆Yj is a one-sided neighborhood of the point Yj , which is equal
either to 0 or to ±∞.

From the above-mentioned results, the necessary and sufficient existence conditions of the so-
called P+∞(Y0, . . . , Yn−1, λ0)-solutions of equation (1.1) can be obtained for all λ0 (−∞ ≤ λ0 ≤ +∞).
Moreover, asymptotic representations as t → +∞ of such solutions and their derivatives of order up
to n− 1 can be established.

It follows directly from the definition of these solutions that the conditions

lim
t→+∞

y(j)(t) = Yj (j = 0, n− 1), lim
t→+∞

[y(n−1)(t)]2

y(n−2)(t)y(n)(t)
= λ0 (1.2)

hold.
However, the set of monotonous solutions of equation (1.1), defined in some neighborhood of +∞,

can also have the solutions for each of which there exists a number k ∈ {1, . . . , n} such that

y(n−k)(t) = c+ o(1) (c ̸= 0) as t → +∞. (1.3)

When k = 1, 2, or the functions φi(y
(i)) (i = n− k + 1, n− 2) tend to the positive constants, as

y(i) → Yi, a question on the existence of solutions of type (1.3) of equation (1.1) can be resolved without
any assumption like the last condition in (1.2). Otherwise, we will not be able to get asymptotic
formulas of these solutions and their derivatives of order up to n− 1 directly from equation (1.1).

Some results concerning the existence of solutions of type (1.3) have been obtained in Corollary 8.2
of the monograph by I. T. Kiguradze and T. A. Chanturiya [5, Ch. II, § 8, p. 207] for the equations
of general type. But these results provide for a considerably strict restriction to the (n − k + 1)-st
derivative of a solution. In order to get new results with less strict restrictions to the behaviour
of this and the subsequent derivatives of order ≤ n − 1 in case k ∈ {3, . . . , n} and not all φi(y

(i))
(i = n− k + 1, n− 2) tend to a positive constant, as y(i) → Yi, we formulate the following definition.

Definition 1.1. A solution y of the differential equation (1.1) is called (for k ∈ {3, . . . , n}) a Pk
+∞(λ0)-

solution, where −∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0,+∞[⊂ [a,+∞[ and satisfies the
conditions

lim
t→+∞

y(n−k)(t) = c (c ̸= 0), lim
t→+∞

[y(n−1)(t)]2

y(n−2)(t)y(n)(t)
= λ0. (1.4)

It is obvious that by virtue of the first relation in (1.4), for these solutions the following represen-
tations

y(l−1)(t) =
ctn−l−k+1

(n− l − k + 1)!
[1 + o(1)] (l = 1, n− k) as t → +∞ (1.5)

1For Yj = ±∞ here and in the sequel, all numbers in the neighborhood of ∆Yj are assumed to have constant sign.
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hold, and c ∈ ∆Yn−k.
It readily follows from the form of equation (1.1) that y(n)(t) has a constant sign in some neigh-

borhood of +∞. Then y(n−l)(t) (l = 1, k − 1) are strictly monotone functions in the neighborhood of
+∞ and, by virtue of (1.3), can tend only to zero, as t → +∞. Therefore, it is necessary that

Yj−1 = 0 for j = n− k + 2, n. (1.6)

Let us introduce the numbers µj (j = 0, n− 1),

µj =

{
1 if Yj = +∞, or Yj = 0 and ∆Yj is a right neighborhood of the point 0,

−1 if Yj = −∞, or Yj = 0 and ∆Yj is a left neighborhood of the point 0,

and assume that they satisfy the following conditions:

µjµj+1 > 0 for j = 0, n− k − 1,

µjµj+1 < 0 for j = n− k + 1, n− 2,
(1.7)

αµn−1 < 0. (1.8)

These conditions on µj (j = 0, n− 1) and α are necessary for the existence of Pk
+∞(λ0)-solutions of

equation (1.1) as long as for each of them in some neighborhood of +∞

sign y(j)(t) = µj (j = 0, n− 1), sign y(n)(t) = α.

Besides, for such solutions it follows from (1.5) that

Yj−1 =

{
+∞ if µn−k > 0,

−∞ if µn−k < 0
for j = 1, n− k. (1.9)

The aim of the present paper is to obtain the necessary and sufficient existence conditions of
Pk
+∞(λ0)-solutions (k ∈ {3, . . . , n}) of equation (1.1) for λ0 ∈ R \ {0, 1

2 , . . . ,
k−3
k−2 , 1}, and to establish

asymptotic, as t → +∞, formulas of their derivatives of order ≤ n − 1. Moreover, a question on the
quantity of the studied by us solutions will be solved.

It is significant to note that by virtue of the results obtained by V. M. Evtukhov [6], the solutions
of equation (1.1) satisfy the following a priori asymptotic conditions.

Lemma 1.1. Let k ∈ {3, . . . , n} and λ0 ∈ R \ {0, 1
2 , . . . ,

k−3
k−2 , 1}. Then for each Pk

+∞(λ0)-solution
y : [t0,+∞[→ R of equation (1.1) the following asymptotic, as t → +∞, relations hold:

y(l−1)(t) ∼ [(λ0 − 1)t]n−l

n−1∏
i=l

[(n− i)λ0 − (n− i− 1)]

y(n−1)(t) (l = n− k + 2, n− 1). (1.10)

2 Auxiliary notations and the main results
In equation (1.1), each of the functions φj (j = 0, n− 1), being a regularly varying function of order
σj , as y(j) → Yj , can be represented (see [7, Ch. I, § 1, p. 10]) in the form

φj(y
(j)) = |y(j)|σjLj(y

(j)) (j = 0, n− 1), (2.1)

where Lj : ∆Yj → ]0,+∞[ (j = 0, n− 1) is a slowly varying function, as y(j) → Yj . According to the
definition and properties of slowly varying functions,

lim
y(j)→Yj

y(j)∈∆Yj

Lj(λy
(j))

Lj(y(j))
= 1 for each λ > 0 (j = 0, n− 1), (2.2)
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and these limit relations hold uniformly with respect to λ on an arbitrary interval [c, d] ⊂ ]0,+∞[ .
Moreover, by virtue of Theorem 1.2 (see [7, Ch. I, § 2, p. 10]), there exist continuously differentiable
functions L0j : ∆Yj → ]0,+∞[ (j = 0, n− 1), slowly varying as y(j) → Yj , such that

lim
y(j)→Yj

y(j)∈∆Yj

Lj(y
(j))

L0j(y(j))
= 1, lim

y(j)→Yj

y(j)∈∆Yj

y(j)L′
0j(y

(j))

L0j(y(j))
= 0. (2.3)

Examples of functions, slowly varying as y → Y0, are the functions

| ln |y||γ1 , lnγ2 | ln |y||, γ1, γ2 ∈ R,

exp
(
| ln |y||γ3

)
, 0 < γ3 < 1, exp

( ln |y|
ln | ln |y||

)
,

as well as the functions that have a nonzero finite limit as y → Y0, and others.
We say that a continuous function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the

condition S0 if
L(µe[1+o(1)] ln |y|) = L(y)[1 + o(1)] as y → Y0 (y ∈ ∆Y0),

where µ = sign y.
The condition S0 is necessarily satisfied for functions L that have a nonzero finite limit, as y → Y0,

for functions of the form

L(y) = | ln |y||γ1 , L(y) = | ln |y||γ1
∣∣ ln | ln |y||

∣∣γ2
,

where γ1, γ2 ̸= 0, and for many others.

Remark 2.1. If a function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the condition S0,
then for each function l : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, we have

L(yl(y)) = L(y)[1 + o(1)] as y → Y0 (y ∈ ∆Y0).

Remark 2.2 (see [8]). If a function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the
condition S0 and y : [t0,+∞[→ ∆Y0 is a continuously differentiable function such that

lim
t→+∞

y(t) = Y0,
y′(t)

y(t)
=

ξ′(t)

ξ(t)
[r + o(1)] as t → +∞,

where r is a nonzero real constant, ξ is a real function, continuously differentiable in some neighborhood
of +∞ and such that ξ′(t) ̸= 0, then

L(y(t)) = L(µ|ξ(t)|r)[1 + o(1)] as t → +∞,

where µ = sign y(t) in some neighborhood of +∞.

Remark 2.3 (see [2]). If a function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the
condition S0 and a function r : ∆Y0 ×K → R, where K is compact in Rn, is such that

lim
y→∆Y0
y∈∆Y0

r(z, v) = 0 uniformly with respect to v ∈ K,

then

lim
y→∆Y0
y∈∆Y0

L(ve[1+r(z,v)] ln |z|)

L(z)
= 1 uniformly with respect to v ∈ K,

where v = sign z.
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Besides these facts about the functions, regularly and slowly varying as y(j) → Yj (j = 0, n− 1),
we need the following auxiliary notations:

γ = 1−
n−1∑

j=n−k+1

σj , ν =

n−2∑
j=n−k+1

σj(n− j − 1), a0j = (n− j)λ0 − (n− j − 1) (j = 1, n),

C =

n−2∏
j=n−k+1

∣∣∣∣∣ (λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣∣
σj

, 2 M(c) =

n−k∏
j=1

∣∣∣ c

(n− j − k + 1)!

∣∣∣σj−1

,

I(t) = φn−k(c)M(c)

t∫
A

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ,

where

A =



a1 if
+∞∫
a1

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ = +∞,

+∞ if
+∞∫
a1

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ < +∞,

a1 ≥ a such that µj−1t
n−k−j+1 ∈ ∆Yj−1 (j = 1, n− k) for t ≥ a1.

The following assertions hold for equation (1.1).

Theorem 2.1. Let γ ̸= 0, k ∈ {3, . . . , n} and λ0 ∈ R \ {0, 1
2 , . . . ,

k−3
k−2 , 1}. Then, for the existence of

Pk
+∞(λ0)-solutions of equation (1.1), it is necessary that c ∈ ∆Yn−k and along with (1.6)–(1.9) the

conditions

λ0 < 1, a0j+1 > 0 (j = n− k + 1, n− 2), (2.4)

lim
t→+∞

tI ′(t)

I(t)
=

γ

λ0 − 1
(2.5)

hold. Moreover, each solution of that kind admits along with (1.3) and (1.5) the asymptotic represen-
tations (1.10) as t → +∞ and

|y(n−1)(t)|γ
n−1∏

j=n−k+1

Lj

( [(λ0−1)t]n−j−1

n−1∏
i=j+1

a0i

y(n−1)(t)
) = αµn−1γCI(t)[1 + o(1)]. (2.6)

Here we have the asymptotic, as t → +∞, representations (1.10) and (2.6), written out implicitly.
Let us define conditions under which asymptotic, as t → +∞, representations of Pk

+∞(λ0)-solutions
of equation (1.1) and their derivatives of order ≤ n− 1 can be written out in explicit form.

Theorem 2.2. Let γ ̸= 0, k ∈ {3, . . . , n}, λ0 ∈ R \ {0, 1
2 , . . . ,

k−3
k−2 , 1} and the functions Lj (j =

n− k + 1, n− 1), slowly varying as y(j) → Yj, satisfy the condition S0. Then, in case of the existence
of Pk

+∞(λ0)-solutions of equation (1.1), the following condition

+∞∫
a2

τk−2|I(τ)
n−1∏

j=n−k+1

Lj(µjτ
a0j+1
λ0−1 )|

1
γ dτ < +∞ (2.7)

2Here and in the sequel, it is assumed that
l∏
m

= 1 if m > l.
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holds, where a2 ≥ a1 such that µj−1t
a0j

λ0−1 ∈ ∆Yj−1 (j = n− k + 2, n) for t ≥ a2, and each solution of
that kind admits along with (1.5) the following asymptotic, as t → +∞, representations:

y(n−k)(t) = c+
µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + o(1)], (2.81)

y(l−1)(t) =
µn−1(λ0 − 1)n−ltn−l−k+2

n−1∏
i=l

a0i

W ′(t)[1 + o(1)] (l = n− k + 2, n− 1), (2.82)

y(n−1)(t) = µn−1
W ′(t)

tk−2
[1 + o(1)], (2.83)

where

W (t) =

t∫
+∞

τk−2

∣∣∣∣γCI(τ)

n−1∏
j=n−k+1

Lj

(
µjτ

a0j+1
λ0−1

)∣∣∣∣ 1
γ

dτ.

Theorem 2.3. Let γ ̸= 0, k ∈ {3, . . . , n}, λ0 ∈ R \ {0, 1
2 , . . . ,

k−3
k−2 , 1}, c ∈ ∆Yn−k, the conditions

(1.6)–(1.9), (2.4), (2.5), (2.7) hold and the functions Lj (j = n− k + 1, n− 1), slowly varying as
y(j) → Yj, satisfy the condition S0. In addition, let the inequality σn−1 ̸= 1 hold and the algebraic
relative to ρ equation

k−1∑
j=2

σn−j

λ0 − 1

j−1∏
l=1

a0n−l

λ0 − 1

k−2∏
l=j

(
ρ+

a0n−l

λ0 − 1

)
=

(
ρ− σn−1 − 1

λ0 − 1

) k−2∏
l=1

(
ρ+

a0n−l

λ0 − 1

)
(2.9)

have no roots with a zero real part. Then for λ0 ∈ ]−∞, k−2
k−1 [ \{0,

1
2 , . . . ,

k−3
k−2} (λ0 ∈ [k−2

k−1 , 1[), equation
(1.1) has a (n−k+m+1)-parameter ((n−k+m)-parameter, respectively) family of Pk

+∞(λ0)-solutions
that admit asymptotic, as t → +∞, representations (1.5) and (2.8i) (i = 1, 2, 3), where m is a number
of roots (taking into account divisible) with a negative real part of the algebraic equation (2.9).

Proof of Theorems 2.1–2.2. Let y : [t0,+∞[→ ∆Y0 be an arbitrary Pk
+∞(λ0)-solution of equation

(1.1). Then, as it has been proved before formulations of the theorems, c ∈ ∆Yn−k, the conditions
(1.6)–(1.9) hold and the asymptotic relations (1.3) and (1.5) are true. It follows from (1.5) that

y(j+1)(t)

y(j)(t)
=

n− j − k

t
[1 + o(1)] (j = 0, n− k − 1) as t → +∞.

Now, by taking into account representations (2.1) of the functions φj(y
(j)) (j = 0, n− k − 1),

regularly varying as t → +∞, and the fact that relations (2.2) hold uniformly with respect to λ on an
arbitrary interval [d1, d2] ⊂ ]0,+∞[ , we have

φj−1

( ctn−j−k+1

(n− j − k + 1)!
[1 + o(1)]

)
=

∣∣∣ ctn−j−k+1

(n− j − k + 1)!
[1 + o(1)]

∣∣∣σj−1

Lj−1

( ctn−j−k+1

(n− j − k + 1)!
[1 + o(1)]

)
=

∣∣∣ c

(n− j − k + 1)!

∣∣∣σj−1

tn−j−k+1Lj−1(µj−1t
n−j−k+1)[1 + o(1)]

=
∣∣∣ c

(n− j − k + 1)!

∣∣∣σj−1

φj−1(µj−1t
n−j−k+1)[1 + o(1)] (j = 1, n− k) as t → +∞.

Therefore, by virtue of (1.1), we obtain

y(n)(t)

φn−1(y(n−1)(t)) · · ·φn−k+1(y(n−k+1)(t))

= αM(c)p(t)φ0(µ0t
n−k)φ1(µ1t

n−k−1) · · ·φn−k(c)[1 + o(1)] as t → +∞. (2.10)
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It follows from the second relation in (1.4) that

y(n)(t)

y(n−1)(t)
=

1

(λ0 − 1)t
[1 + o(1)] as t → +∞. (2.11)

Then, by virtue of (1.7), the first inequality in (2.4) is true, namely, λ0 < 1.
Furthermore, Lemma 1.1 implies that the asymptotic relations (1.10) hold, and therefore

y(j+1)(t)

y(j)(t)
=

a0j+1

(λ0 − 1)t
[1 + o(1)] (j = n− k + 1, n− 2) as t → +∞. (2.12)

Hence, by virtue of (1.7) and the first inequality in (2.4), the second one in (2.4) is true.
Taking into account (2.1) and (1.10), we rewrite (2.10) as

y(n)(t)|y(n−1)(t)|γ−1

n−1∏
j=n−k+1

Lj(y(j)(t))

= αM(c)Cp(t)tνφn−k(c)

n−k−1∏
j=0

φj(µjt
n−k−j)[1 + o(1)]. (2.13)

Integrating this relation from t0 to t if A = a1 and from t to +∞ if A = +∞, we have
t∫

B

y(n)(τ)|y(n−1)(τ)|γ−1

n−1∏
j=n−k+1

Lj(y(j)(τ))

dτ = αM(c)Cφn−k(c)

t∫
B

p(τ)τν
n−k−1∏
j=0

φj(µjτ
n−k−j)[1 + o(1)] dτ

= αM(c)Cφn−k(c)

t∫
A

p(τ)τν
n−k−1∏
j=0

φj(µjτ
n−k−j) dτ [1 + o(1)]

= αCI(t)[1 + o(1)] as t → +∞, (2.14)

where B ∈ {t0,+∞}.
Let us compare the integral occurring on the left-hand side with the expression |y(n−1)(t)|γ

n−1∏
j=n−k+1

L0j(y(j)(t))

.

Taking into account (2.3), the second condition in (1.4) and (2.11), by the l’Hospital rule in the Stolz
form, we have

lim
t→+∞

|y(n−1)(t)|γ
n−1∏

j=n−k+1

L0j(y(j)(t))

t∫
B

y(n)(τ)|y(n−1)(τ)|γ−1

n−1∏
j=n−k+1

Lj(y(j)(τ))

dτ

= µn−1 lim
t→+∞

n−1∏
j=n−k+1

Lj(y
(j)(t))

n−1∏
j=n−k+1

L0j(y(j)(t))

[
γ −

n−1∑
j=n−k+1

(y(j)(t)L′
0j(y

(j)(t))

L0j(y(j)(t))

y(j+1)(t)

y(j)(t)

y(n−1)(t)

y(n)(t)

)]

= µn−1γ.

By virtue of this limit relation and (2.3), from (2.14) we obtain

|y(n−1)(t)|γ
n−1∏

j=n−k+1

Lj(y(j)(t))

= αµn−1γCI(t)[1 + o(1)] as t → +∞.

Hence, taking into account (1.10) and the properties of regularly varying functions, we establish the
asymptotic representations (2.6), as t → +∞. In addition, they, together with (2.13), imply that

y(n)(t)

y(n−1)(t)
=

I ′(t)

γI(t)
[1 + o(1)] as t → +∞,
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and, by virtue of (2.11), the limit relation (2.5) holds. Thus assertions of Theorem 2.1 are true.
Let us additionally suppose that the functions Lj (j = n− k + 1, n− 1), slowly varying as t → +∞,

satisfy the condition S0. Then, by virtue of (2.11) and (2.12), the assertions

y(j+1)(t)

y(j)(t)
=

1

t

[ a0j+1

λ0 − 1
+ o(1)

]
as t → +∞ (j = n− k + 1, n− 1)

hold, and therefore, by Remark 2.2 and the second inequality in (2.4), we have

Lj

(
[(λ0 − 1)t]n−j−1

n−1∏
i=j+1

a0i

y(n−1)(t)

)
= Lj(µjt

a0j+1
λ0−1 )[1 + o(1)] as t → +∞ (j = n− k + 1, n− 1).

It follows from the obtained relations and (2.6) that for t → +∞

y(n−1)(t) = µn−1

∣∣∣∣γCI(t)

n−1∏
j=n−k+1

Lj

(
µjt

a0j+1
λ0−1

)∣∣∣∣ 1
γ

[1 + o(1)].

This, together with (1.10), implies that

y(l−1)(t) =
µn−1[(λ0 − 1)t]n−l

n−1∏
i=l

a0i

×
∣∣∣∣γCI(t)

n−1∏
j=n−k+1

Lj

(
µjt

a0j+1
λ0−1

)∣∣∣∣ 1
γ

[1 + o(1)] (l = n− k + 2, n− 1) as t → +∞.

Integrating this relation for l = n− k + 2 from t∗ to t, where t∗ = max{a2, t0}, we have

y(n−k)(t) = y(n−k)(t∗)

+
µn−1[(λ0 − 1)]k−2

n−1∏
i=n−k+2

a0i

t∫
t∗

τk−2

∣∣∣∣γCI(τ)

n−1∏
j=n−k+1

Lj

(
µjτ

a0j+1
λ0−1

)∣∣∣∣ 1
γ

[1 + o(1)] dτ.

By virtue of the first condition in (1.4), we find that

lim
t→+∞

t∫
t∗

τk−2

∣∣∣∣I(τ) n−1∏
j=n−k+1

Lj

(
µjτ

a0j+1
λ0−1

)∣∣∣∣ 1
γ

[1 + o(1)] dτ = const

and therefore, by the comparison criterion, the assertion (2.7) holds. Using Proposition 6 of the
monograph [9, Ch. V, § 3, p. 293] on the asymptotic calculation of integrals, for the (n − k)-th
derivative of a solution we get the representation form (2.81).

Consequently, the asymptotic relations (1.3), (1.10) and (2.6), as t → +∞, can be rewritten in the
form (2.8i) (i = 1, 2, 3). The proof of Theorems 2.1–2.2 is complete.

Proof of Theorem 2.3. Let us show that, for this c from the hypothesis of the theorem, equation (1.1)
has at least one Pk

+∞(λ0)-solution that is defined on some interval [t0,+∞[⊂ [a,+∞[ and admits the
asymptotic representations (1.5) and (2.8i) (i = 1, 2, 3), as t → +∞. Moreover, consider the problem
on evaluating a number of such solutions. At the same time note that by virtue of the first inequality
in (2.4), in case λ0 > 1, the differential equation (1.1) does not have Pk

+∞(λ0)-solutions.
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Applying the transformation

y(l−1)(t) =
ctn−l−k+1

(n− l − k + 1)!
[1 + vl(t)] (l = 1, n− k),

y(n−k)(t) = c+
µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + vn−k+1(t)],

y(l−1)(t) =
µn−1(λ0 − 1)n−ltn−l−k+2

n−1∏
i=l

a0i

W ′(t)[1 + vl(t)] (l = n− k + 2, n− 1),

y(n−1)(t) = µn−1
W ′(t)

tk−2
[1 + vn(t)],

(2.15)

to equation (1.1), we obtain the system of differential equations

v′l =
n− l − k + 1

t
[−vl + vl+1] (l = 1, n− k − 1),

v′n−k =
1

t

[
µn−1(λ0 − 1)k−2

c
n−1∏

i=n−k+2

a0i

W (t)[1 + vn−k+1]− vn−k

]
,

v′n−k+1 =
W ′(t)

W (t)

[
− vn−k+1 + vn−k+2

]
,

v′l =
1

t

a0l
λ0 − 1

[1 + vl+1]

−1

t
(n− l − k + 2)[1 + vl]−

W ′′(t)

W ′(t)
[1 + vl] (l = n− k + 2, n− 1),

v′n =
1

t

[(
− 2 + k − W ′′(t)t

W ′(t)

)
[1 + vn]

+
αp(t)φ0

(
ctn−k

(n−k)! [1 + v1]
)
· · ·φn−1(µn−1t

2−kW ′(t)[1 + vn])

µn−1t1−kW ′(t)

]
.

(2.16)

Consider the resulting system on the set Ωn = [t0,+∞[×Rn
1
2

, where Rn
1
2

= {(v1, . . . , vn) ∈ Rn :

|vj | ≤ 1
2 , j = 1, n} and t0 ≥ a2 is chosen, by virtue of (2.7), so that for t > t0 and (v1, . . . , vn) ∈ Rn

1
2

the conditions hold:

ctn−j−k+1

(n− j − k + 1)!
[1 + vj(t)] ∈ ∆Yj−1 (j = 1, n− k),

c+
µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + vn−k+1(t)] ∈ ∆Yn−k,

µn−1(λ0 − 1)n−jtn−j−k+2

n−1∏
i=j

a0i

W ′(t)[1 + vj(t)] ∈ ∆Yj−1 (j = n− k + 2, n− 1),

µn−1
W ′(t)

tk−2
[1 + vn(t)] ∈ ∆Yn−1.

As the functions φj(y
(j)) (j ∈ {0, . . . , n− 1} \ {n− k}) are representable as (2.1) and the relations

(2.2) hold uniformly with respect to λ on an arbitrary interval [d1, d2] ⊂ ]0,+∞[ , and in addition,
by virtue of the continuity of the function φn−k(y

(n−k)), (2.7) and the fact that the functions Lj
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(j = n− k + 1, n− 1), slowly varying as t → +∞, satisfy the condition S0, we have

φj

( ctn−k−j

(n− k − j)!
[1 + vj+1]

)
= φj

( ctn−k−j

(n− k − j)!

)
(1 + vj+1)

σj
(
1 +Rj(t, vj+1)

)
=

∣∣∣ c

(n− k − j)!

∣∣∣σj

φj(µjt
n−k−j)(1 + vj+1)

σj
(
1 +Rj(t, vj+1)

)
(j = 0, n− k − 1),

φj

(
µn−1(λ0 − 1)n−j−1tn−j−k+1

n−1∏
i=j+1

a0i

W ′(t)[1 + vj+1]

)

=

∣∣∣∣ (λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣σj

φj

(
µjt

n−k−j+1W ′(t)
)
(1 + vj+1)

σj
(
1 +Rj(t, vj+1)

)

=

∣∣∣∣ (λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣σj

φj(µjt
a0j+1
λ0−1 )(1 + vj+1)

σj
(
1 +Rj(t, vj+1)

)
(j = n− k + 1, n− 2),

φn−1

(
µn−1t

2−kW ′(t)[1 + vn]
)
= φn−1(µn−1t

2−kW ′(t))(1 + vn)
σn−1

(
1 +Rn−1(t, vn)

)
= φn−1(µn−1t

1
λ0−1 )(1 + vn)

σn−1
(
1 +Rn−1(t, vn)

)
,

φn−k

(
c+

µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + vn−k+1(t)]

)
= φn−k(c)

(
1 +Rn−k(t, vn−k+1)

)
,

where the functions Rj(t, vj+1) (j = 0, n− 1) tend to zero, as t → +∞ uniformly with respect to
vj+1 ∈ [− 1

2 ,
1
2 ].

It follows from the form of W (t) and (2.7) that

lim
t→+∞

W ′(t)t

W (t)
= k − 1 +

1

λ0 − 1
,

lim
t→+∞

W ′′(t)t

W ′(t)
= k − 2 +

1

λ0 − 1
,

and both of these limits are nonzero in case λ0 ∈ ] − ∞, 1[ \{0, 1
2 , . . . ,

k−2
k−1}. Therefore, using the

aforementioned representations and (2.5), the system of equations (2.16) can be rewritten in the form

v′l =
n− l − k + 1

t
[−vl + vl+1] (l = 1, n− k − 1),

v′n−k =
1

t

[
− vn−k + Yn−k,1(t, v1, . . . , vn)

]
,

v′l =
1

t

[
− a0l

λ0 − 1
vl +

a0l
λ0 − 1

vl+1 + Yl,1(t, v1, . . . , vn)
]

(l = n− k + 1, n− 1),

v′n =
1

t

[ n−k∑
j=1

σj−1

λ0 − 1
vj +

n−1∑
j=n−k+2

σj−1

λ0 − 1
vj +

σn−1 − 1

λ0 − 1
vn +

2∑
i=1

Yn,i(t, v1, . . . , vn)
]
,

(2.17)

where

Yn−k,1(t, v1, . . . , vn) =
µn−1(λ0 − 1)k−2

c
n−1∏

i=n−k+2

a0i

W (t)(1 + vn−k+1),

Yn−k+1,1(t, v1, . . . , vn) =
W ′(t)t

W (t)
− k + 1− 1

λ0 − 1
,
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Yl,1(t, v1, . . . , vn) =
W ′′(t)t

W ′(t)
− k + 2− 1

λ0 − 1
(l = n− k + 2, n− 1),

Yn1(t, v1, . . . , vn) =
1

λ0 − 1

( n−1∏
j=0

(
1 +Rj(t, vj+1)

)
− 1

) n∏
j=1

j ̸=n−k+1

(1 + vj)
σj−1

+
(
− 2 + k − W ′′(t)t

W ′(t)
+

1

λ0 − 1

)
[1 + vn],

Yn2(t, v1, . . . , vn) =
1

λ0 − 1

( n∏
j=1

j ̸=n−k+1

(1 + vj)
σj−1 −

n∏
j=1

j ̸=n−k+1

vjσj−1 − 1
)
.

At the same time we note here that

lim
t→+∞

Yj,1(t, v1, . . . , vn) = 0 (j = n− k, n)

uniformly with respect to (v1, . . . , vn) ∈ Rn
1
2

, and

lim
|v1|+···+|vn|→0

Yn,2(t, v1, . . . , vn)

|v1|+ · · ·+ |vn|
= 0

uniformly with respect to t ∈ [t0,+∞[ .
The characteristic equation of the matrix consisting of coefficients of v1, . . . , vn in system (2.17),

n−1∏
l=k

(ρ+ (n− l))
(
ρ+

a0n−k+1

λ0 − 1

)

×
[ k−1∑

j=2

σn−j

λ0 − 1

j−1∏
l=1

a0n−l

λ0 − 1

k−2∏
l=j

(
ρ+

a0n−l

λ0 − 1

)
−
(
ρ− σn−1 − 1

λ0 − 1

) k−2∏
l=1

(
ρ+

a0n−l

λ0 − 1

)]
= 0,

has a zero root if a0n−k+1

λ0−1 = 0 (in case λ0 = k−2
k−1 ), n − k negative roots ρl = −(n − l) (l = k, n− 1)

and k− 1 roots of the algebraic equation (2.9), among which there are no any roots (according to the
hypothesis of the theorem) with a zero real part.

Consequently, we get the system of differential equations that for λ0 ∈ ] − ∞, 1[ \{0, 1
2 , . . . ,

k−2
k−1}

satisfies all assumptions of Theorem 2.2 in [10]. This theorem implies that the system (2.17) has at
least one solution (vj)

n
j=1 : [t1,+∞[→ Rn

1
2

(t1 ∈ [t0,+∞[) that tends to zero as t → +∞. By virtue of
the transformation (2.15), each solution of this kind corresponds to a Pk

+∞(λ0)-solution of equation
(1.1) that admits the asymptotic representations (1.5) and (2.8i) (i = 1, 2, 3) as t → +∞.

Moreover, in accordance with this theorem, if there are m (taking into account divisible) roots
with a negative real part of the algebraic equation (2.9), then in case λ0 ∈ ]−∞, k−2

k−1 [ \{0,
1
2 , . . . ,

k−3
k−2}

(λ0 ∈ ]k−2
k−1 ; 1[) there exists an (n− k+m+1)-parameter ((n− k+m)-parameter, respectively) family

of Pk
+∞(λ0)-solutions of equation (1.1) with the found representations.

Consider now the case λ0 = k−2
k−1 . Applying the change of variables


vj = zj (j = 1, n− k),

vn−k+1 = zn,

vj+1 = zj (j = n− k + 1, n− 1),

(2.18)
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we reduce (2.16) to the system of differential equations

z′l =
n− l − k + 1

t
[−zl + zl+1] (l = 1, n− k − 1),

z′n−k =
1

t

[
− zn−k + Zn−k,1(t, z1, . . . , zn)

]
,

z′l =
1− k

t

[
− a0lzl + a0lzl+1 + Zl,1(t, z1, . . . , zn)

]
(l = n− k + 1, n− 2),

z′n−1 =
1− k

t

[ n−k∑
j=1

σj−1zj +

n−1∑
j=n−k+2

σj−1zj−1

+(σn−1 − 1)zn−1 +

2∑
i=1

Zn,i(t, z1, . . . , zn)
]
,

z′n =
W ′(t)

W (t)
[−zn + zn−k+1],

(2.19)

where

Zj,m(t, z1, . . . , zn) = Yj,m(t, v1, . . . , vn−k, vn−k+2, . . . , vn, vn−k+1) (m = 1, 2, j = n− k, n)

are such that
lim

t→+∞
Zj,1(t, z1, . . . , zn) = 0

uniformly with respect to (z1, . . . , zn) ∈ Rn
1
2

, and

lim
|z1|+···+|zn|→0

∂Zn,2(t, z1, . . . , zn)

∂zk
= 0 (k = 1, n)

uniformly with respect to t ∈ [t0,+∞[ .
It follows from the form of W (t) and (2.7) that lim

t→+∞
W (t) = 0,

lim
t→+∞

W ′(t)t

W (t)
= 0,

+∞∫
t0

W ′(t)dt

W (t)
= ±∞ and W ′(t)

W (t)
< 0 as t > t0.

The characteristic equation of the matrix consisting of coefficients of z1, . . . , zn−1 (the coefficient
of zn differs from 0) in system (2.19),

n−1∏
l=k

(ρ+ (n− l))
[ k−1∑
j=2

(1− k)σn−j

j−1∏
l=1

((1− k)a0n−l)

k−2∏
l=j

(ρ+ (1− k)a0n−l)

−
(
ρ− (1− k)(σn−1 − 1)

) k−2∏
l=1

(ρ+ (1− k)a0n−l)
]
= 0,

has n− k negative roots ρl = −(n− l) (l = k, n− 1) and k − 1 roots of the algebraic equation (2.9),
as λ0 = k−2

k−1 , among which there are no any roots (according to the hypothesis of the theorem) with
a zero real part.

Consequently, system (2.19) satisfies all assumptions of Theorem 2.6 in [10]. Hence it has at least
one solution (zj)

n
j=1 : [t1,+∞[→ Rn

1
2

(t1 ∈ [t0,+∞[) that tends to zero as t → +∞. By virtue of
transformations (2.15) and (2.18), each solution of this kind corresponds to the Pk

+∞(k−2
k−1 )-solution

of equation (1.1) that admits asymptotic representations (1.5) and (2.8i) (i = 1, 2, 3) as t → +∞.
As ρl = −(n − l) (l = k, n− 1) are negative roots, then, in accordance with this theorem, there

certainly exists an (n− k)-parameter family of such solutions. Moreover, there exists an (n− k+m)-
parameter family of solutions with the above found representations, where m is a number of roots
(taking into account divisible) with a negative real part of the algebraic equation (2.9), as λ0 = k−2

k−1 .
The proof of the theorem is complete.
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Abstract. For the linear homogeneous system of differential equations, coefficients of which are
represented by an absolutely and uniformly convergent Fourier series with slowly varying coefficients
and frequency, the conditions of existence of the linear transformation with coefficients of similar
structure leading this system to a block-diagonal form in a special case are obtained.
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ÒÄÆÉÖÌÄ. ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ßÒ×ÉÅÉ ÄÒÈÂÅÀÒÏÅÀÍÉ ÓÉÓÔÄÌÉÓÈÅÉÓ, ÒÏÌËÉÓ
ÊÏÄ×ÉÝÉÄÍÔÄÁÉ ßÀÒÌÏÉÃÂÉÍÄÁÀ ÀÁÓÏËÖÔÖÒÀÃ ÃÀ ÈÀÍÀÁÒÀÃ ÊÒÄÁÀÃÉ ×ÖÒÉÄÓ ÌßÊÒÉÅÄÁÉÈ
ÍÄËÀ ÝÅËÀÃÉ ÊÏÄ×ÉÝÉÄÍÔÄÁÉÈ ÃÀ ÓÉáÛÉÒÉÈ, ÃÀÃÂÄÍÉËÉÀ ÀÍÀËÏÂÉÖÒÉ ÓÔÒÖØÔÖÒÉÓ ÊÏÄ×É-
ÝÉÄÍÔÄÁÉÓ ÌØÏÍÄ ÉÓÄÈÉ ßÒ×ÉÅÉ ÂÀÒÃÀØÌÍÉÓ ÀÒÓÄÁÏÁÉÓ ÐÉÒÏÁÄÁÉ, ÒÏÌÄËÓÀÝ ÄÒÈ ÓÐÄÝÉÀËÖÒ
ÛÄÌÈáÅÄÅÀÛÉ ÄÓ ÓÉÓÔÄÌÀ ÃÀäÚÀÅÓ ÖãÒÖË-ÃÉÀÂÏÍÀËÖÒ ×ÏÒÌÀÌÃÄ.
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1 Introduction
This article continues the research started by the author in [1] on the problem of the block separation
of the linear homogeneous system of differential equations, whose coefficients are represented by an
absolutely and uniformly convergent Fourier series with slowly varying in some sense coefficients and
frequency. Now we study a special case which by the conditions of the theorem proved in [1] is not
covered.

2 Basic notations and definitions
Let G = {t, ε : t ∈ R, ε ∈ [0, ε0], ε0 ∈ R+}.

Definition 2.1. We say that a function p(t, ε), generally complex-valued, belongs to the class S(m; ε0),
m ∈ N ∪ {0}, if t, ε ∈ G and

1) p(t, ε) ∈ Cm(G) with respect to t;

2) dkp(t, ε)

dtk
= εkp∗k(t, ε), sup

G
|p∗k(t, ε)| < +∞ (0 ≤ k ≤ m).

Slowly variability of a function is understood in the sense of its belonging to the class S(m; ε0).
As examples of functions of this class may serve, in general, complex-valued, bounded together with
their derivatives up to and including the order m functions that depend on the “slow time” τ = εt:
sin τ , arctg τ etc.

Definition 2.2. We say that a function f(t, ε, θ(t, ε)) belongs to the class F (m; ε0; θ), m ∈ N ∪ {0},
if it can be represented as

f(t, ε, θ(t, ε)) =

∞∑
n=−∞

fn(t, ε) exp(inθ(t, ε)),

and

1) fn(t, ε) ∈ S(m; ε0),
dkfn(t, ε)

dtk
= εkfnk(t, ε) (n ∈ Z, 0 ≤ k ≤ m);

2) ∥f∥F (m;ε0;θ)
def
=

m∑
k=0

∞∑
n=−∞

sup
G

|fnk(t, ε)| < +∞,

3) θ(t, ε) =

t∫
0

φ(τ, ε) dτ , φ(t, ε) ∈ R+, φ(t, ε) ∈ S(m; ε0), inf
G

φ(t, ε) > 0.

Some properties of functions from the class F (m; ε0; θ) are described in [1].
For any function f(t, ε, θ) ∈ F (m; ε0; θ) denote

Γn(f) =
1

2π

2π∫
0

f(t, ε, u) exp(−inu) du, I(f) = f − Γ0(f).

We say that the function f(t, ε, θ) ∈ F (m; ε0; θ) satisfies condition (A), if Γ0(f) ≡ 0.
Let A(t, ε, θ) = (ajs(t, ε, θ))j=1,M ; s=1,K , ajs ∈ F (m; ε0; θ) (j = 1,M ; s = 1,K). Denote

∥A∥∗F (m;ε0;θ)
= max

1≤j≤M

K∑
l=1

∥ajl(t, ε, θ)∥F (m;ε0;θ).
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3 Statement of the problem
We consider the system of differential equations

dx1

dt
= H1(φ)x1 + µ(B11(t, ε, θ)x1 +B12(t, ε, θ)x2),

dx2

dt
= H2(φ)x2 + µ(B21(t, ε, θ)x1 +B22(t, ε, θ)x2),

(3.1)

where x1 = colon(x11, . . . , x1N1
), x2 = colon(x21, . . . , x2N2

),

H1(φ) =


ipφ 0 · · · 0 0
1 ipφ · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · ipφ 0
0 0 · · · 1 ipφ

 , H2(φ) =


irφ 0 · · · 0 0
1 irφ · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · irφ 0
0 0 · · · 1 irφ


are the Jordan blocks of dimensions N1 and N2, respectively (N1+N2 = N); p, r ∈ Z; Bjk(t, ε, θ) are
the (Nj × Nk)-matrices with elements from the class F (m; ε; θ); φ(t, ε) is the function appearing in
the definition of the class F (m; ε; θ); µ ∈ (0, 1). In this sense, we are dealing with the resonance case.

Just as in [1], we study the question of the existence as well as the properties of the transformation
of the form

xj = Lj1(t, ε, θ, µ)x̃1 + Lj2(t, ε, θ, µ)x̃2, j = 1, 2, (3.2)

where the elements Ljk (j, k = 1, 2) of (Nj × Nk)-matrices belong to the class F (m − 1; ε1; θ) (0 <
ε1 ≤ ε0), reducing the system (3.1) to the form

dx̃1

dt
= DN1

(t, ε, θ, µ)x̃1,
dx̃2

dt
= DN2

(t, ε, θ, µ)x̃2, (3.3)

where the elements DNj (j = 1, 2) of (Nj ×Nj)-matrices also belong to the class F (m− 1; ε∗; θ).
Performing in the system (3.1) the transformation

x1 = eipθy1, x2 = eirθy2,

where y1 = colon(y11, . . . , y1N1
), y2 = colon(y21, . . . , y2N2

), we obtain

dy1
dt

= JN1y1 + µ(B̃11(t, ε, θ)y1 + B̃12(t, ε, θ)y2),

dy2
dt

= JN2
y2 + µ(B̃21(t, ε, θ)y1 + B̃22(t, ε, θ)y2),

(3.4)

where

JN1
=


0 0 · · · 0 0
1 0 · · · 0 0
. . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0

 , JN2
=


0 0 · · · 0 0
1 0 · · · 0 0
. . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0


are the Jordan blocks of dimensions N1 and N2, respectively, whose diagonal elements are equal to
zero, and all elements of matrices B̃jk(t, ε, θ) belong to the class F (m; ε0; θ).

Thus, the problem of the existence of transformation (3.2) reduces to the problem of the existence
of the transformation

y1 = z1 + µQ12(t, ε, θ, µ)z2, y2 = µQ21(t, ε, θ, µ)z1 + z2, (3.5)

leading the system (3.4) to the form

dz1
dt

= DN1
(t, ε, θ, µ)z1,

dz2
dt

= DN2
(t, ε, θ, µ)z2,
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where DN1 , DN2 are matrices of dimensions (N1 ×N1) and (N2 ×N2), respectively.
The matrices Q12, Q21 must satisfy the system of matrix-equations

dQjk

dt
= JNj

Qjk −QjkJNk
+ B̃jk(t, ε, θ)

+ µ
(
B̃jj(t, ε, θ)Qjk −QjkB̃kk(t, ε, θ)

)
− µ2QjkB̃kjQjk, j, k = 1, 2 (j ̸= k). (3.6)

Then
DN1 = JN1 + µB̃11(t, ε, θ) + µ2B̃12(t, ε, θ)Q21(t, ε, θ, µ),

DN2 = JN1 + µB̃22(t, ε, θ) + µ2B̃21(t, ε, θ)Q12(t, ε, θ, µ).
(3.7)

It is easy to see that the system (3.6) is divided into two independent matrix-equations, each of
which has the form

dX

dt
= JMX −XJK + F (t, ε, θ) + µ

(
A(t, ε, θ)X −XB(t, ε, θ)

)
− µ2XR(t, ε, θ)X, (3.8)

where X = (xjs)j=1,M ; s=1,K ,

JM =


0 0 · · · 0 0
1 0 · · · 0 0
. . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0

 , JK =


0 0 · · · 0 0
1 0 · · · 0 0
. . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0


are the Jordan blocks of dimensions M and K, respectively, whose diagonal elements are equal to
zero, F = (fjs)j=1,M ; s=1,K , A = (ajs)j,s=1,M , B = (bjs)j,s=1,K , R = (rjs)j=1,K; s=1,M . All elements
of matrices F , A, B, R belong to the class F (m; ε0; θ).

Therefore the problem of the existence of transformation (3.5), where all elements of matrices Q12,
Q21 belong to the class F (m − 1; ε∗; θ) (0 < ε∗ < ε0), reduces to the problem of the existence of a
particular solution X of the equation (3.8) such that xjs ∈ F (m− 1; ε∗; θ) (j = 1,M ; s = 1,K).

In [1], the conditions of the existence of such a solution are obtained when one of the sets of
assumptions I, II, III is fulfilled.

I. (1) M < K;

(2) V1(F ) ≡ 0, where V1 = colon(v11(t, ε), . . . , v1M (t, ε),

v1j(t, ε) =

j∑
s=1

Γ0(fs,K−j+s(t, ε, θ)) (j = 1,M);

(3) inf
G

∣∣Γ0(b1K(t, ε, θ))
∣∣ > 0.

II. (1) M = K;

(2) V2(F ) ≡ 0, where V2 = colon(v21(t, ε), . . . , v2M (t, ε),

v2j(t, ε) =

j∑
s=1

Γ0(fs,K−j+s(t, ε, θ)) (j = 1,M);

(3) inf
G

∣∣Γ0(a1M (t, ε, θ)− b1M (t, ε, θ))
∣∣ > 0.

III. (1) M > K;

(2) V3(F ) ≡ 0, where V3 = colon(v31(t, ε), . . . , v3K(t, ε),

v3j(t, ε) =

j∑
s=1

Γ0(fs,K−j+s(t, ε, θ)) (j = 1,K);

(3) inf
G

|Γ0(a1M (t, ε, θ))| > 0.
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In this paper it is assumed that the condition (2) in each of sets I, II, III is satisfied. But instead
of the condition (3) it is accordingly supposed that

Γ0(b1K(t, ε, θ)) ≡ 0 (M < K);

Γ0(a1M (t, ε, θ)− b1M (t, ε, θ)) ≡ 0 (M = K);

Γ0(a1M (t, ε, θ)) ≡ 0 (M > K).

4 Auxiliary results
As in [1], along with the equation (3.8) we consider an auxiliary matrix-equation

φ(t, ε)
dΞ

dθ
= JMΞ− ΞJK + F (t, ε, θ) + µ

(
A(t, ε, θ)Ξ− ΞB(t, ε, θ)

)
− µ2ΞR(t, ε, θ)Ξ, (4.1)

where t, φ are considered as constants, Ξ = (ξjs)j=1,M ; s=1,K , F , A, B, R are the same as in the
equation (3.8).

In accordance with the Poincaré method of small parameter [2], we construct an approximate
2π-periodic with respect to θ solution of the equation (4.1) in the form of the sum

Ξ =

2q−1∑
ν=0

Ξν(t, ε, θ)µ
ν , (4.2)

where Ξν = (ξν,js)j=1,M ; s=1,K . The coefficients Ξν are determined from the following chain of linear
nonhomogeneous matrix differential equations:

φ(t, ε)
dΞ0

dθ
= JMΞ0 − Ξ0JK + F (t, ε, θ), (4.3)

φ(t, ε)
dΞ1

dθ
= JMΞ1 − Ξ1JK +A(t, ε, θ)Ξ0 − Ξ0B(t, ε, θ), (4.4)

φ(t, ε)
dΞ2

dθ
= JMΞ2 − Ξ2JK +A(t, ε, θ)Ξ1 − Ξ1B(t, ε, θ)− Ξ0R(t, ε, θ)Ξ0, (4.5)

φ(t, ε)
dΞν

dθ
= JMΞν − ΞνJK +A(t, ε, θ)Ξν−1 − Ξν−1B(t, ε, θ)

−
ν−2∑
l=0

ΞlR(t, ε, θ)Ξν−2−l, ν = 3, 2q − 1.

First, we consider the case M < K.
In scalar form, the equation (4.3) can be written as a following system of differential equations:

φ(t, ε)
dξ0,1K
dθ

= f1K(t, ε, θ),

φ(t, ε)
dξ0,jK
dθ

= ξ0,j−1,K + fjK(t, ε, θ) (j = 2,M),

φ(t, ε)
dξ0,1s
dθ

= −ξ0,1,s+1 + f1s(t, ε, θ) (s = 1,K − 1),

φ(t, ε)
dξ0,js
dθ

= −ξ0,j−1,s − ξ0,j,s+1 + fjs(t, ε, θ) (j = 2,M ; s = 1,K − 1).

(4.6)

The condition I (2) ensures the existence of a 2π-periodic with respect to θ solution of the equation
(4.3) of the form

Ξ0(t, ε, θ) = C
(1)
0 (t, ε) + L1(F (t, ε, θ)), (4.7)

where the (M ×K)-matrix C
(1)
0 (t, ε) has the form

C
(1)
0 (t, ε) =


c
(1)
01 (t, ε) 0 · · · 0 0 · · · 0

c
(1)
02 (t, ε) c

(1)
01 (t, ε) · · · 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(1)
0M (t, ε) c

(1)
0,M−1(t, ε) · · · c

(1)
01 (t, ε) 0 · · · 0

 (4.8)
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with c
(1)
01 (t, ε), . . . , c

(1)
0M (t, ε) as yet unknown scalar functions of the class S(m; ε0), L1(F (t, ε, θ)) =

(ξ̃0,js(t, ε, θ))j=1,M ; s=1,K , and ξ̃0,js are defined from the following equalities:

ξ̃0,1K(t, ε, θ) = I(f1K(t, ε, θ)) + p1K(t, ε),

ξ̃0,jK(t, ε, θ) = I
(
ξ̃0,j−1,K(t, ε, θ) + fjK(t, ε, θ)

)
+ pjK(t, ε) (j = 2,M),

ξ̃0,11(t, ε, θ) = I
(
f11(t, ε, θ)− ξ̃0,12(t, ε, θ)

)
+ p11(t, ε),

ξ̃0,1s(t, ε, θ) = I
(
f1s(t, ε, θ)− ξ̃0,1,s+1(t, ε, θ)

)
+ p1s(t, ε) (s = 1,K − 1),

ξ̃0,js(t, ε, θ) = I
(
ξ̃0,j−1,s(t, ε, θ)− ξ̃0,j,s+1(t, ε, θ) + fjs(t, ε, θ)

)
+ pjs(t, ε) (j = 2,M ; s = 1,K − 1),

where pjs(t, ε) are the functions from the class S(m; ε0) determined from the condition: all right-hand
sides of the equations in (4.6) must satisfy condition (A). It is easy to verify that pjs(t, ε) can be
represented as some linear combinations of functions Γ0(fαβ(t, ε, θ)) (α = 1,M ; β = 1,K).

We now define the matrix C
(1)
0 (t, ε) from the condition

V1

(
A(t, ε, θ)Ξ0 − Ξ0B(t, ε, θ)

)
= 0.

By virtue of (4.7), this condition can be rewritten as

V1

(
A(t, ε, θ)C

(1)
0 − C

(1)
0 B(t, ε, θ)

)
= V1

(
L1(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L1(F (t, ε, θ))

)
. (4.9)

In scalar form, the condition (4.9) can be written as a triangular with respect to c
(1)
01 , . . . , c

(1)
0M

system of linear algebraic equations:
j∑

l=1

g
(1)
jl (t, ε)c

(1)
0l = h

(1)
j (t, ε), j = 1,M,

where g(1)jl (t, ε), h
(1)
j (t, ε) ∈ S(m; ε0) and g

(1)
jj (t, ε) = Γ0(b1K(t, ε, θ)) (j = 1,M) are the know functions.

Suppose that

g
(1)
jl (t, ε) ≡ 0 (j, l = 1,M, l ≤ j), (4.10)

h
(1)
j (t, ε) ≡ 0 (j = 1,M). (4.11)

Then
V1

(
A(t, ε, θ)C0 − C0B(t, ε, θ)

)
= 0 (4.12)

for any matrix C0 of the form (4.8). Besides,

V1

(
A(t, ε, θ)L1(F (t, ε, θ))− L1(F (t, ε, θ))B(t, ε, θ)

)
= 0. (4.13)

Therefore the equation (4.9) is satisfied for any matrix C
(1)
0 of the form (4.8).

The equalities (4.12), (4.13) ensure the existence of a 2π-periodic with respect to θ solution of the
equation (4.4) having the form

Ξ1(t, ε, θ) = C
(1)
1 (t, ε) + L1

(
A(t, ε, θ)Ξ0 − Ξ0B(t, ε, θ)

)
, (4.14)

where

C
(1)
1 (t, ε) =


c
(1)
11 (t, ε) 0 · · · 0 0 · · · 0

c
(1)
12 (t, ε) c

(1)
11 (t, ε) · · · 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(1)
1M (t, ε) c

(1)
1,M−1(t, ε) · · · c

(1)
11 (t, ε) 0 · · · 0

 .

The solution (4.14) can be written as

Ξ1(t, ε, θ) = C
(1)
1 (t, ε) + L1

(
A(t, ε, θ)C

(1)
0 − C

(1)
0 B(t, ε, θ)

)
+ F1(t, ε, θ), (4.15)
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where F1(t, ε, θ) = L1(AL1(F )− L1(F )B) does not depend on C
(1)
0 .

We write down the conditions of the existence of a 2π-periodic with respect to θ solution of the
equation (4.5):

V1

(
A(t, ε, θ)Ξ1 − Ξ1B(t, ε, θ)− Ξ0R(t, ε, θ)Ξ0

)
= 0.

Taking into account the equalities (4.7) and (4.15), this condition can be rewritten (for brevity, we
omit the arguments t, ε, θ) as

V1(AC
(1)
1 − C

(1)
1 B) + V1

(
AL1(AC

(1)
0 − C

(1)
0 B)− L1(AC

(1)
0 − C

(1)
0 B)B

)
+ V1(AF1 − F1B)

− V1(C
(1)
0 RC

(1)
0 )− V1

(
L1(F )RC

(1)
0 + C

(1)
0 RL1(F )

)
− V1(L1(F )RL1(F )) = 0. (4.16)

Due to (4.12), the condition (4.16) can be rewritten as

V1

(
AL1(AC

(1)
0 − C

(1)
0 B)− L1(AC

(1)
0 − C

(1)
0 B)B

)
− V1

(
L1(F )RC

(1)
0 + C

(1)
0 RL1(F )

)
− V1(C

(1)
0 RC

(1)
0 ) + U (1) = 0, (4.17)

where U (1) = U (1)(t, ε) is the known M -vector that does not depend on C
(1)
0 .

In scalar form, the equation (4.17) can be written as a nonlinear with respect to c
(1)
01 , . . . , c

(1)
0M

system of algebraic equations

Φ
(1)
j (t, ε, c

(1)
01 , . . . , c

(1)
0M ) = 0, j = 1,M, (4.18)

with quadratic nonlinearities.
Suppose that the system (4.18) has a solution c

(1)
01 , . . . , c

(1)
0M such that

inf
G

∣∣∣det ∂(Φ
(1)
1 , . . . ,Φ

(1)
M )

∂(c
(1)
01 , . . . , c

(1)
0M )

∣∣∣ > 0. (4.19)

Then the equation (4.5) has a 2π-periodic with respect to θ solution Ξ2(t, ε, θ) belonging to the class
F (m; ε0; θ).

We now consider the equation for the vector-function Ξν+2 and distinguish in it explicitly the
terms which depend on Ξν+1, Ξν :

φ(t, ε)
dΞν+2

dθ
= JMΞν+2 − Ξν+2JK +A(t, ε, θ)Ξν+1 − Ξν+1B(t, ε, θ)

− Ξ0R(t, ε, θ)Ξν − ΞνR(t, ε, θ)Ξ0 −
ν−1∑
l=1

ΞlR(t, ε, θ)Ξν−l. (4.20)

For α = 0, ν + 1, we have

Ξα(t, ε, θ) = C(1)
α (t, ε) + Ξ̃α(t, ε, θ), (4.21)

where C
(1)
α (t, ε) is the (M ×K)-matrix of the form (4.8), and Ξ̃α(t, ε, θ) is the known vector-function

belonging to the class F (m; ε0; θ).
We suppose that the matrices Ξ0(t, ε, θ),Ξ1(t, ε, θ), . . . ,Ξν−1(t, ε, θ) are completely defined, includ-

ing the matrix C
(1)
ν−1(t, ε), and the matrix C

(1)
ν (t, ε), C(1)

ν+1(t, ε) have to be defined.
We write down the conditions of the existence of a 2π-periodic with respect to θ solution of the

equation (4.20) as follows:

V1

(
A(t, ε, θ)Ξν+1 − Ξν+1B(t, ε, θ)− Ξ0R(t, ε, θ)Ξν

)
− V1

(
ΞνR(t, ε, θ)Ξ0 +

ν−1∑
l=1

ΞlR(t, ε, θ)Ξν−l

)
= 0. (4.22)
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Represent the matrix Ξ̃ν+1 as
Ξ̃ν+1 = Ξ̃

(∗)
ν+1 + Ξ̃

(∗∗)
ν+1, (4.23)

where Ξ̃
(∗)
ν+1 is a 2π-periodic with respect to θ solution of the equation

φ(t, ε)
dΞν+1

dθ
= JMΞν+1 − Ξν+1JK +A(t, ε, θ)C(1)

ν (t, ε)− C(1)
ν (t, ε)B(t, ε, θ) (4.24)

and Ξ̃
(∗∗)
ν+1 is a 2π-periodic with respect to θ solution of the equation

φ(t, ε)
dΞν+1

dθ
= JMΞν+1 − Ξν+1JK +A(t, ε, θ)Ξ̃ν − Ξ̃νB(t, ε, θ)−

ν−1∑
l=1

ΞlR(t, ε, θ)Ξν−1−l.

The condition of the existence of a 2π-periodic with respect to θ solution of the equation (4.24)
has the form

V1(A(t, ε, θ)C(1)
ν − C(1)

ν B(t, ε, θ)) = 0.

By (4.12), this equality holds for any matrix Cν of the kind

Cν(t, ε) =


cν1(t, ε) 0 · · · 0 0 · · · 0
cν2(t, ε) cν1(t, ε) · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cνM (t, ε) cν,M−1(t, ε) · · · cν1(t, ε) 0 · · · 0

 .

Therefore the equation (4.24) has a 2π-periodic with respect to θ solution of the kind

Ξ̃
(1)
ν+1 = L1

(
A(t, ε, θ)C(1)

ν − C(1)
ν B(t, ε, θ)

)
.

Taking into account (4.21) and (4.23), the condition (4.22) can be rewritten as

V1

(
A(t, ε, θ)C

(1)
ν+1 − C

(1)
ν+1B(t, ε, θ)

)
+ V1

(
A(t, ε, θ)(Ξ̃

(∗)
ν+1 + Ξ̃

(∗∗)
ν+1)− (Ξ̃

(∗)
ν+1 + Ξ̃

(∗∗)
ν+1)B(t, ε, θ)

)
− V1

(
Ξ0R(t, ε, θ)Ξν + ΞνR(t, ε, θ)Ξ0

)
+ V ∗

1 (t, ε) = 0, (4.25)

where V ∗
1 (t, ε) is the known M -vector belonging to the class S(m; ε0).

Based on (4.12), (4.21) and (4.23), we can rewrite (4.25) as

V1

(
A(t, ε, θ)L1

(
A(t, ε, θ)C(1)

ν − C(1)
ν B(t, ε, θ)

)
− L1

(
A(t, ε, θ)C(1)

ν − C(1)
ν B(t, ε, θ)

)
B(t, ε, θ)

)
− V1

(
L1(F )R(t, ε, θ)C(1)

ν + C(1)
ν R(t, ε, θ)L1(F )

)
− V1

(
C0R(t, ε, θ)C(1)

ν + C(1)
ν R(t, ε, θ)C0

)
+ Z(1)(t, ε) = 0, (4.26)

where Z(1)(t, ε) is the known M -vector belonging to the class S(m; ε0).
It is not difficult to establish the validity of the relations

(XRY )αβ =


α∑

j=1

xj

M+1−β∑
l=1

rα+1−j,l+β−1yl, if β ≤ M,

0, if β > M,

where X, Y are the (M ×K)-matrices of the kind (4.8). It follows that in a scalar form the equation
(4.26) can be written as

M∑
l=1

∂Φ
(1)
j (t, ε, c

(1)
01 , . . . , c

(1)
0M )

∂c
(1)
0l

c
(1)
νl = z

(1)
j (t, ε), j = 1,M, (4.27)
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where u
(1)
j (t, ε) are the known functions belonging to the class S(m; ε0). By the condition (4.19), the

system (4.27) has a unique solution c
(1)
ν1 (t, ε), . . . , c

(1)
νM (t, ε) belonging to the class S(m; ε0).

Thus, all the matrices Ξν(t, ε, θ) (ν = 0, 2q − 1) are completely defined and belong to the class
F (m; ε0; θ). Therefore, by (4.2), the matrix Ξ(t, ε, θ, µ) is also completely defined ∀µ ∈ (0, 1) and
belongs to the class F (m; ε0; θ).

Lemma 4.1. Let the equation (3.8) satisfy the following conditions:

(1) M < K;

(2) V1(F (t, ε, θ)) ≡ 0;

(3) the equalities (4.10), (4.11) hold;

(4) the system (4.18) has a solution satisfying the condition (4.19).

Then there exists µ1 ∈ (0, 1) such that for any µ ∈ (0, µ1) there exists a transformation of the form

X = Ξ(t, ε, θ, µ) + Φ(t, ε, θ, µ)YΨ(t, ε, θ, µ), (4.28)

where the matrix Ξ(t, ε, θ, µ) is defined by the equality (4.2) and the elements of the (M ×M)-matrix
Φ and those of the (K ×K)-matrix Ψ belong to the class F (m; ε0; θ) ∀µ ∈ (0, µ1), which reduces the
equation (3.8) to the form

dY

dt
= JMY − Y JK +

( q∑
l=1

Ul1(t, ε)µ
l
)
Y − Y

( q∑
l=1

Ul2(t, ε)µ
l
)

+ ε
(
U1(t, ε, θ, µ)Y − Y U2(t, ε, θ, µ)

)
+ µq+1

(
W1(t, ε, θ, µ)Y − YW2(t, ε, θ, µ)

)
+ εH1(t, ε, θ, µ) + µ2qH2(t, ε, θ, µ) + µY R1(t, ε, θ, µ)Y, (4.29)

where the elements of matrices Ul1, Ul2 (l = 1, q) belong to the class S(m; ε0), and the elements of
matrices U1, U2, W1, W2, H1, H2, R1 of the corresponding dimensions belong to the class F (m −
1; ε0; θ).

Proof. Substituting
X = Ξ(t, ε, θ, µ) + X̃

in (3.8), where X̃ is a new unknown matrix, we obtain

dX̃

dt
= JM X̃ − X̃JK + εH3(t, ε, θ, µ) + µ2qH4(t, ε, θ, µ)

+
( q∑

l=1

Pl(t, ε, θ)µ
l
)
X̃ − X̃

( q∑
l=1

Ql(t, ε, θ)µ
l
)

+ µq+1(W ∗
1 (t, ε, θ, µ)X̃ − X̃W ∗

2 (t, ε, θ, µ)) + µ2X̃R(t, ε, θ)X̃. (4.30)

By Lemma 1 from [1], using the substitution of the kind

X̃ =
(
EM +

q∑
l=1

Φl(t, ε, θ)µ
l
)
Y
(
EK +

q∑
l=1

Ψl(t, ε, θ)µ
l
)
,

where EM , EK are the identity matrices of dimensions M and K, respectively, the elements of the
(M ×M)-matrices Φl and those of (K ×K)-matrices Ψl (l = 1, q) belong to the class F (m; ε0; θ), we
reduce the equation (4.30) to the form (4.29).

We now consider the case M = K. The condition II (2) ensures the existence of a 2π-periodic with
respect to θ solution of the equation (4.3), which is of the form

Ξ0(t, ε, θ) = C
(2)
0 (t, ε) + L2(F (t, ε, θ))
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with

C
(2)
0 (t, ε) =


c
(2)
01 (t, ε) 0 · · · 0

c
(2)
02 (t, ε) c

(2)
01 (t, ε) · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(2)
0M (t, ε) c

(2)
0,M−1(t, ε) · · · c

(2)
01 (t, ε)

 , (4.31)

where the linear matrix-operator L2(F ) can be constructed similarly to the operator L1(F ). The
matrix C

(2)
0 is defined from the equation

V2

(
A(t, ε, θ)C

(2)
0 − C

(2)
0 B(t, ε, θ)

)
= V2

(
L2(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L2(F (t, ε, θ))

)
. (4.32)

In scalar form, the condition (4.32) can be written as a triangular with respect to C
(2)
01 , . . . , C

(2)
0M

system of linear algebraic equations:

j∑
l=1

g
(2)
jl (t, ε)c

(2)
0l = h

(2)
j (t, ε), j = 1,M,

where g
(2)
jl (t, ε), h

(2)
j (t, ε) ∈ S(m; ε0) and g

(2)
jj (t, ε) = Γ0(a1M (t, ε, θ) − b1M (t, ε, θ)) (j = 1,M) are the

know functions.
Suppose that

g
(2)
jl (t, ε) ≡ 0 (j, l = 1,M, l ≤ j), (4.33)

h
(2)
j (t, ε) ≡ 0 (j = 1,M). (4.34)

Then
V2(A(t, ε, θ)C0 − C0B(t, ε, θ)) = 0

for any C0 of the kind (4.31), and

V2

(
L2(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L2(F (t, ε, θ))

)
= 0.

Therefore the equation (4.32) is satisfied for any C
(2)
0 of the kind (4.31).

Similarly to the case M < K, we define the matrix C
(2)
0 (t, ε) from the equation

V2

(
AL2(AC

(2)
0 − C

(2)
0 B)− L2(AC

(2)
0 − C

(2)
0 B)B

)
− V2

(
L2(F )RC

(2)
0 + C

(2)
0 RL2(F )

)
− V2(C

(2)
0 RC

(2)
0 ) + U (2) = 0, (4.35)

where U (2) = U (2)(t, ε) is the known M -vector, which does not depend on C
(2)
0 .

In scalar form, the equation (4.35) can be written as a nonlinear with respect to c
(2)
01 , . . . , c

(2)
0M

system of algebraic equations

Φ
(2)
j (t, ε, c

(2)
01 , . . . , c

(2)
0M ) = 0, j = 1,M, (4.36)

with quadratic nonlinearities.
Suppose that the system (4.36) has a solution c

(2)
01 , . . . , c

(2)
0M such that

inf
G

∣∣∣∣det ∂(Φ
(2)
1 , . . . ,Φ

(2)
M )

∂(c
(2)
01 , . . . , c

(2)
0M )

∣∣∣∣ > 0. (4.37)

Lemma 4.2. Let the equation (3.8) satisfy the following conditions:

(1) M = K;
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(2) V2(F (t, ε, θ)) ≡ 0;

(3) the equalities (4.33), (4.34) hold;

(4) the system (4.36) has a solution satisfying the condition (4.37).

Then there exists µ2 ∈ (0, 1) such that for any µ ∈ (0, µ2) there exists a transformation of the
form (4.28), where the matrix Ξ(t, ε, θ, µ) is defined by (4.2) and the elements of the (M ×M)-matrix
Φ and those of the (K ×K)-matrix Ψ belong to the class F (m; ε0; θ) ∀µ ∈ (0, µ2), which reduces the
equation (3.8) to the form (4.29).

Proof of Lemma 4.2 is similar to that of Lemma 4.1.

Finally, we consider the case M > K.
The condition III (2) ensures the existence of a 2π-periodic with respect to θ solution of the equation

(4.3), which has the form
Ξ0(t, ε, θ) = C

(3)
0 (t, ε) + L3(F (t, ε, θ))

with

C
(3)
0 (t, ε) =



0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0

c
(3)
01 (t, ε) 0 · · · 0

c
(3)
02 (t, ε) c

(3)
01 (t, ε) · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(3)
0K(t, ε) c

(3)
0,K−1(t, ε) · · · c

(3)
01 (t, ε)


, (4.38)

where the linear matrix-operator L3(F ) is constructed similarly to the operator L1(F ). The matrix
C

(3)
0 is defined from the equation

V3

(
A(t, ε, θ)C

(3)
0 − C

(3)
0 B(t, ε, θ)

)
= V3

(
L3(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L3(F (t, ε, θ))

)
. (4.39)

In scalar form, the condition (4.39) can be written as a triangular with respect to c
(3)
01 , . . . , c

(3)
0K

system of linear algebraic equations:

j∑
l=1

g
(3)
jl (t, ε)c

(3)
0l = h

(3)
j (t, ε), j = 1,K,

where g
(3)
jl (t, ε), h

(3)
j (t, ε) ∈ S(m; ε0) and g

(3)
jj (t, ε) = Γ0(a1M (t, ε, θ)) (j = 1,K) are the known func-

tions.
Suppose that

g
(3)
jl (t, ε) ≡ 0 (j, l = 1,K, l ≤ j), (4.40)

h
(3)
j (t, ε) ≡ 0 (j = 1,K). (4.41)

Then
V3

(
A(t, ε, θ)C0 − C0B(t, ε, θ)

)
= 0

for any C0 of the kind (4.38) and

V3

(
L3(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L3(F (t, ε, θ))

)
= 0.

Therefore the equation (4.39) is satisfied for any C
(3)
0 of the kind (4.38).
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Define the matrix C
(3)
0 (t, ε) from the equation

V3

(
AL3(AC

(3)
0 − C

(3)
0 B)− L3(AC

(3)
0 − C

(3)
0 B)B

)
− V3

(
L3(F )RC

(3)
0 + C

(3)
0 RL3(F )

)
− V3(C

(3)
0 RC

(3)
0 ) + U (3) = 0, (4.42)

where U (3) = U (3)(t, ε) is the known M -vector, which does not depend on C
(3)
0 .

In scalar form, the equation (4.42) can be written as a nonlinear with respect to c
(3)
01 , . . . , c

(3)
0K

system of algebraic equations

Φ
(3)
j (t, ε, c

(3)
01 , . . . , c

(3)
0K) = 0, j = 1,K, (4.43)

with quadratic nonlinearities.
Suppose that the system (4.43) has a solution c

(3)
01 , . . . , c

(3)
0K such that

inf
G

∣∣∣∣det ∂(Φ
(3)
1 , . . . ,Φ

(3)
K )

∂(c
(3)
01 , . . . , c

(2)
0K)

∣∣∣∣ > 0. (4.44)

Lemma 4.3. Let the equation (3.8) satisfy the following conditions:

(1) M > K;

(2) V3(F (t, ε, θ)) ≡ 0;

(3) the equalities (4.40), (4.41) hold;

(4) the system (4.43) has a solution, which satisfy the condition (4.44).

Then there exists µ3 ∈ (0, 1) such that for any µ ∈ (0, µ3) there exists a transformation of the
form (4.28), where the matrix Ξ(t, ε, θ, µ) is defined by (4.2) and the elements of the (M ×M)-matrix
Φ and those of the (K ×K)-matrix Ψ belong to the class F (m; ε0; θ) ∀µ ∈ (0, µ3), which reduces the
equation (3.8) to the form (4.29).

Proof of Lemma 4.3 is similar to that of Lemma 4.1, too.
Introduce the matrices

Ũ1(t, ε, µ) =

q∑
l=1

Ul1(t, ε)µ
l, Ũ2(t, ε, µ) =

q∑
l=1

Ul2(t, ε)µ
l,

where Ul1, Ul2 (l = 1, q) are defined in Lemma 4.1.

Lemma 4.4. Let the equation (4.29) satisfy the following conditions:

(1) eigenvalues λ1j(t, ε, µ) (j = 1,M) of the matrix JM + Ũ1(t, ε, µ) and λ2s(t, ε, µ) (s = 1,K) of
the matrix JK + Ũ2(t, ε, µ) are such that

inf
G

∣∣Re
(
λ1j(t, ε, µ)− λ2s(t, ε, µ)

)∣∣ ≥ γ0µ
q0 (γ0 > 0, 0 < q0 ≤ q; j = 1,M ; s = 1,K);

(2) there exist a (M ×M)-matrix P1(t, ε, µ) and a (K ×K)-matrix P2(t, ε, µ) such that

(a) all the elements of these matrices belong to the class S(m; ε0) ⊂ F (m; ε0; θ);
(b) ∥P−1

j (t, ε, µ)∥∗F (mε0,θ)
≤ M1µ

−α, M1 ∈ (0,+∞), α ∈ [0, q], j = 1, 2;

(c) P−1
1 (JM+Ũ1)P1=Λ1(t, ε, µ), P2(JK+Ũ2)P

−1
2 = Λ2(t, ε, µ), where Λ1=diag(λ11, . . . , λ1M ),

Λ2 = diag(λ21, . . . , λ2K);

(3) q > q0 + α− 1/2.
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Then there exist µ4 ∈ (0, 1) and K4 ∈ (0,+∞) such that for any µ ∈ (0, µ4) the matrix differential
equation (4.29) has a particular solution Y (t, ε, θ, µ) all elements of which belong to the class F (m−
1; ε1(µ); θ), where ε1(µ) = min(ε0,K4µ

2q0+2α−1).

Proof of Lemma 4.4 is completely analogous to that of Lemma 3 in [1].
The following Lemma is an immediate consequence of the above ones.

Lemma 4.5. Let the equation (3.8) satisfy all conditions of Lemma 4.1 (in case M < K), or Lem-
ma 4.2 (in case M = K), or Lemma 4.3 (in case M > K), and the equation (4.29), obtained from (3.8)
by means of the transformation (4.28), satisfy all conditions of Lemma 4.4. Then there exist µ5 ∈ (0, 1)
and K5 ∈ (0,+∞) such that for any µ ∈ (0, µ5) the equation (3.8) has a particular solution belonging
to the class F (m− 1; ε2(µ); θ), where ε2(µ) = K5µ

2q0+2α−1 and q0, α are defined in Lemma 4.4.

5 The basic result
Based on the above reasoning in Section 3 and Lemma 4.5 we obtain the following result.

Theorem. Let each of the equations (3.6) satisfy all conditions of Lemma 4.5. Then there exist
µ6 ∈ (0, 1) and K6 ∈ (0,+∞) such that for any µ ∈ (0, µ6) there exists a transformation of the
form (3.2) with coefficients from the class F (m− 1; ε3(µ); θ), where ε3(µ) = K6µ

2q0+2α−1 (q0, α are
defined in Lemma 4.4), which reduces the system (3.1) to the block-diagonal form (3.3). The matrices
DN1

, DN2
are defined by (3.7).
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ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM
FOR SYSTEMS OF NONLINEAR IMPULSIVE DIFFERENTIAL EQUATIONS

WITH FIXED IMPULSES POINTS

Abstract. The antiperiodic problem for systems of nonlinear impulsive equations with fixed points
of impulses actions is considered. The sufficient (among them effective) conditions for the well-
posedness of this problem are given.
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ÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ ÉÌÐÖËÓÖÒÉ ØÌÄÃÄÁÄÁÉÓ ×ÉØÓÉÒÄÁÖËÉ ßÄÒÔÉËÄÁÉÈ. ÌÏÚÅÀÍÉËÉÀ
ÀÌ ÀÌÏÝÀÍÉÓ ÊÏÒÄØÔÖËÏÁÉÓ ÓÀÊÌÀÒÉÓÉ (ÌÀÈ ÛÏÒÉÓ Ä×ÄØÔÖÒÉ) ÐÉÒÏÁÄÁÉ.

2010 Mathematics Subject Classification: 34K10, 34K45.
Key words and phrases: Antiperiodic problem, nonlinear systems, impulsive equations, fixed
impulses points, well-posedness, effective conditions.

Let m0 be a fixed natural number, ω be a fixed positive real number, and 0 < τ1 < · · · < τm0
< ω be

fixed points (we assume τ0 = 0 and τm0+1 = ω, if necessary). Let T = {τl +mω : l = 1, . . . ,m0; m =
0,±1,±2, . . . }.

Consider the system of nonlinear impulsive differential equations with fixed impulses points
dx

dt
= f(t, x) almost everywhere on R \ T,

x(τ+)− x(τ−) = I(τ, x(τ)) for τ ∈ T,

under the ω-antiperiodic problem
x(t+ ω) = −x(t) for t ∈ R,

where f = (fi)
n
i=1 is a vector-function belonging to the Carathéodory class Car([R × Rn,Rn), and

I = (Ii)
n
i=1 : T ×Rn → Rn is a vector-function such that I(τ, · ) is continuous for every τ ∈ Tm0

.
We assume that

f(t+ ω, x) = −f(t,−x) and I(τ + ω, x) = −I(τ,−x), t ∈ R, τ ∈ T, x ∈ Rn.

In view of this condition, if x : R → Rn is a solution of the given system, then the vector-function
y(t) = −x(t + ω) (t ∈ R) will be a solution of the system, as well. Moreover, it is evident that if
x : R → Rn is a solution of the given ω-antiperiodic problem, then its restriction on the closed interval
[0, ω] will be a solution of the problem

dx

dt
= f(t, x) almost everywhere on [0, ω] \ {τ1, . . . , τm0}, (1)

x(τl+)− x(τl−) = I(τl, x(τl)) (l = 1, . . . ,m0); (2)
x(0) = −x(ω). (3)

Let now x : [0, ω] → Rn be a solution of the system on [0, ω]. By x we designate the continuation
of this function on the whole R as a solution of the system (1), (2). As above, the vector-function
y(t) = −x(t + ω) (t ∈ R) will be the solution of the system (1), (2). On the other hand, according
to the equality (3), we have y(0) = −x(ω) = x(0). Thus, if we assume that the system (1), (2) under
the Cauchy condition x(0) = c is uniquely solvable for every c ∈ Rn, then x(t+ ω) = −x(t) for t ∈ R,
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i.e., x is ω-antiperiodic. This means that the set of restrictions of the ω-antiperiodic solutions of the
system (1), (2) on [0, ω] coincides with the set of solutions of the problem (1), (2); (3).

In this connection we consider the boundary value problem (1), (2); (3) on the closed interval [0, ω].
Below, we will give the sufficient conditions guaranteeing the well-posedness of this problem.

Consider a sequence of vector-functions fk ∈ Car([0, ω] × Rn,Rn) (k = 1, 2, . . . ), the sequences
of points τlk (k = 1, 2, . . . ; l = 1, . . . ,m0), a < τ1k < · · · < τm0k < b, a sequences of operators
Ik : {τ1k, . . . , τm0k} × Rn → Rn (k = 1, 2, . . . ) such that Ik(τlk, · ) (k = 1, 2, . . . ; l = 1, . . . ,m0) are
continuous.

In this paper the sufficient conditions are established which guarantee both the solvability of the
impulsive systems (k = 1, 2, . . . )

dx

dt
= fk(t, x) almost everywhere on [0, ω] \ {τ1k, . . . , τm0k}, (1k)

x(τlk+)− x(τlk−) = Ik(τlk, x(τlk)) (l = 1, . . . ,m0) (2k)

under the condition (3) for any sufficient large k and the convergence of its solutions to a solution of
the problem (1), (2); (3) as k → +∞.

We assume that the circumscribed above concept is fulfilled for the problems (1k), (2k); (3) (k =
1, 2, . . . ), as well.

The well-posed problem for the linear boundary value problem for impulsive systems with a finite
number of impulses points is investigated in [5], where the necessary and sufficient conditions are given
for the case. Analogous problems are investigated in [2,12–14] (see also the references therein) for the
linear and nonlinear boundary value problems for ordinary differential systems.

Quite a number of issues on the theory of systems of differential equations with impulsive effect
(both linear and nonlinear) have been studied sufficiently well (for a survey of the results on impulsive
systems see, e.g., [1, 3, 4, 6–10,15–17] and the references therein). But the above-mentioned works, as
we know, do not contain the results obtained in the present paper.

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ , [a, b] (a, b ∈ R) is a closed segment.
Rn×m is the space of all real n×m-matrices X = (xij)

n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |,

|X| = (|xij |)n,mi,j=1, [X]+ = |X|+X
2 .

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

R(n×n)×m = Rn×n × · · · × Rn×n (m-times).
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the determinant
of X and the spectral radius of X; In×n is the identity n× n-matrix.

b∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m, i.e., the sum of total variations

of the latter components; V (X)(t) = (v(xij)(t))
n,m
i,j=1, where v(xij)(a) = 0, v(xij)(t) =

t∨
a
(xij) for

a < t ≤ b.
X(t−) and X(t+) are the left and the right limits of the matrix-function X : [a, b] → Rn×m at the

point t (we assume X(t) = X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary).
BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation X : [a, b] → Rn×m (i.e.,

such that
b∨
a
(X) < +∞).

C([a, b], D), where D ⊂ Rn×m, is the set of all continuous matrix-functions X : [a, b] → D.
Let Tm0 = {τ1, . . . , τm0}.
C([a, b], D;Tm0

), is the set of all matrix-functions X : [a, b] → D having the one-sided limits X(τl−)
(l = 1, . . . ,m0) and X(τl+) (l = 1, . . . ,m0) whose restrictions to an arbitrary closed interval [c, d]
from [a, b] \ Tm0

belong to C([c, d], D).
Cs([a, b],Rn×m;Tm0

) is the Banach space of all X ∈ C([a, b],Rn×m;Tm0
) with the norm ∥X∥s =

sup{∥X(t)∥ : t ∈ [a, b]}.
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If y ∈ Cs([a, b],R;Tm0) and r ∈]0,+∞[, then

U(y; r) =
{
x ∈ Cs([a, b],Rn;Tm0) : ∥x− y∥s < r

}
.

D(y, r) is the set of all x ∈ Rn such that inf{∥x− y(t)∥ : t ∈ [a, b]} < r.
C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous matrix-functions X : [a, b] →

D.
C̃([a, b], D;Tm0

) is the set of all matrix-functions X : [a, b] → D having the one-sided limits X(τl−)
(l = 1, . . . ,m0) and X(τl+) (l = 1, . . . ,m0) whose restrictions to an arbitrary closed interval [c, d]
from [a, b] \ Tm0

belong to C̃([c, d], D).
If B1 and B2 are the normed spaces, then an operator g : B1 → B2 (nonlinear, in general) is

positive homogeneous if g(λx) = λg(x) for every λ ∈ R+ and x ∈ B1.
An operator φ : C([a, b],Rn×m;Tm0

) → Rn is called nondecreasing if the inequality φ(x)(t) ≤
φ(y)(t) for t ∈ [a, b] holds for every x, y ∈ C([a, b],Rn×m;Tm0) such that x(t) ≤ y(t) for t ∈ [a, b].

A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each of its components
is such.

L([a, b], D), where D ⊂ Rn×m, is the set of all measurable and integrable matrix-functions X :
[a, b] → D.

If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] ×D1, D2) is the Carathéodory class, i.e., the set of
all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2 such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and

k ∈ {1, . . . , n}:
(a) the function fkj( · , x) : [a, b] → D2 is measurable for every x ∈ D1;
(b) the function fkj(t, · ) : D1 → D2 is continuous for almost every t ∈ [a, b], and

sup{|fkj( · , x)| : x ∈ D0} ∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Car0([a, b] × D1, D2) is the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] × D1 → D2 such that the

functions fkj( · , x( · )) (i = 1, . . . , l; k = 1, . . . , n) are measurable for every vector-function x : [a, b] →
Rn with bounded total variation.

We say that the pair {X; {Yl}ml=1} consisting of the matrix-function X ∈ L([a, b],Rn×n) and of a
sequence of constant n×n matrices {Yl}ml=1} satisfies the Lappo–Danilevskiĭ condition if the matrices
Y1, . . . , Ym are pairwise permutable and there exists t0 ∈ [a, b] such that

t∫
t0

X(τ) dX(τ) =

t∫
t0

dX(τ) ·X(τ) for t ∈ [a, b]

and
X(t)Yl = YlX(t) for t ∈ [a, b] (l = 1, . . . ,m).

M([a, b]×R+,R+) is the set of all functions ω ∈ Car([a, b]×R+,R+) such that the function ω(t, · )
is nondecreasing and ω(t, 0) = 0 for every t ∈ [a, b].

By a solution of the impulsive system (1), (2) we understand a continuous from the left vector-
function x∈ C̃([0, ω],Rn;Tm0

) satisfying both the system (1) for a.e. on [0, ω] \ Tm0
and the relation

(2) for every l ∈ {1, . . . ,m0}.

Definition 1. Let ℓ : Cs([0, ω],Rn;Tm0
) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0

) → Rn
+ be, respectively,

a linear continuous and a positive homogeneous operators. We say that a pair (P, J), consisting of
a matrix-function P ∈ Car([0, ω] × Rn,Rn×n) and a continuous with respect to the last n-variables
operator J : Tm0 ×Rn → Rn, satisfies the Opial condition with respect to the pair (ℓ, ℓ0) if:

(a) there exist a matrix-function Φ ∈ L([0, ω],Rn×n
+ ) and a constant matrices Ψl ∈ Rn×n (l =

1, . . . ,m0) such that

|P (t, x)| ≤ Φ(t) a.e. on [0, ω], x ∈ Rn,

and
|J(τl, x)| ≤ Ψl for x ∈ Rn (l = 1, . . . ,m0);
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(b)
det(In×n +Gl) ̸= 0 (l = 1, . . . ,m0) (4)

and the problem
dx

dt
= A(t)x a.e. on [0, ω] \ Tm0

, (5)

x(τl+)− x(τl−) = Gl x(τl) (l = 1, . . . ,m0); (6)
|ℓ(x)| ≤ ℓ0(x) (7)

has only a trivial solution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices
Gl, . . . , Gm0

for which there exists a sequence yk ∈ C̃([0, ω],Rn;Tm0
) (k = 1, 2, . . . ) such that

lim
k→+∞

t∫
0

P (τ, yk(τ)) dτ =

t∫
0

A(τ) dτ uniformly on [0, ω]

and
lim

k→+∞
J(τl, yk(τl)) = Gl (l = 1, . . . ,m0).

Remark 1. In particular, the condition (4) holds if
∥Ψl∥ < 1 (l = 1, . . . ,m0).

As above, we assume that f = (fi)
n
i=1 ∈ Car([0, ω]×Rn,Rn×n) and, moreover, f(τl, x) is arbitrary

for x ∈ Rn (l = 1, . . . ,m0).
Let x0 be a solution of the problem (1), (2); (3), and r be a positive number. We introduce the

following

Definition 2. A solution x0 is said to be strongly isolated in the radius r if there exist the matrix-
and the vector-functions P ∈ Car([0, ω]×Rn,Rn×n) and q ∈ Car([0, ω]×Rn,Rn), a continuous with
respect to the last n-variables operators J, H : Tm0

× Rn → Rn, linear continuous operators ℓ and ℓ̃
and a positive homogeneous operator ℓ0 acting from Cs([0, ω],Rn;Tm0) into Rn such that:

(a) the equalities
f(t, x) = P (t, x)x+ q(t, x) for t ∈ [0, ω] \ Tm0 , ∥x− x0(t)∥ < r,

I(τl, x) = J(τl, x)x+H(τl, x) for ∥x− x0(τl)∥ < r (l = 1, . . . ,m0)

and
x(0) + x(ω) = ℓ(x) + ℓ̃(x) for x ∈ U(x0; r)

are valid;
(b) the functions α(t, ρ) = max{∥q(t, x)∥ : ∥x∥ ≤ ρ}, β(τl, ρ) = max{∥H(τl, x)∥ : ∥x∥ ≤ ρ}

(l = 1, . . . ,m0) and γ(ρ) = sup{[|l̃(x)| − l0(x)]+ : ∥x∥s ≤ ρ} satisfy the condition

lim
ρ→+∞

1

ρ

(
γ(ρ) +

ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0; (8)

(c) the problem
dx

dt
= P (t, x)x+ q(t, x) a.e. on [0, ω] \ Tm0

,

x(τl+)− x(τl−) = J(τl, x(τl))x(τl) +H(τl, x(τl)) (l = 1, . . . ,m0);

ℓ(x) + ℓ̃(x) = 0

has no solution different from x0.
(d) the pair (P, J) satisfies the Opial condition with respect to the pair (ℓ, ℓ0).

Remark 2. If ℓ(x) ≡ x(0) + x(ω) and ℓ0(x) ≡ 0, then we say that the pair (P, J) satisfies the Opial
ω-antiperiodic condition. In this case, the condition (7) coincides with the condition (3), and ℓ̃(x) ≡ 0
and γ(ρ) ≡ 0 in Definitions 1 and 2.
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Definition 3. We say that a sequence (fk, Ik) (k = 1, 2, . . . ) belongs to the set Wr(f, I;x
0) if:

(a) the equalities

lim
k→+∞

t∫
0

fk(τ, x) dτ =

t∫
0

f(τ, x) dτ uniformly on [0, ω]

and
lim

k→+∞
Ik(τlk, x) = I(τl, x) (l = 1, . . . ,m0)

are valid for every x ∈ D(x0; r);
(b) there exists a sequence of functions ωk ∈ M([a, b]× R+,R+) (k = 1, 2, . . . ) such that

sup
{ ω∫

0

ωk(t, r) dt : k = 1, 2, . . .

}
< +∞, (9)

sup
{ m0∑

l=1

ωk(τlk, r) : k = 1, 2, . . .

}
< +∞; (10)

lim
s→0+

sup
{ ω∫

0

ωk(t, s) dt : k = 1, 2, . . .

}
= 0, (11)

lim
s→0+

sup
{ m0∑

l=1

ωk(τlk, s) : k = 1, 2, . . .
}
= 0; (12)

∥∥fk(t, x)− fk(t, y)
∥∥ ≤ ωk

(
t, ∥x− y∥

)
for t ∈ [0, ω] \ Tm0

, x, y ∈ D(x0; r) (k = 1, 2, . . . ),∥∥Ik(τlk, x)− Ik(τlk, y)
∥∥ ≤ ωk

(
τlk, ∥x− y∥

)
for x, y ∈ D(x0; r) (l = 1, . . . ,m0; k = 1, 2, . . . ).

Remark 3. If for every natural m there exists a positive number νm such that

ωk(t,mδ) ≤ νmωk(t, δ) for δ > 0, t ∈ [0, ω] \ Tm0 (k = 1, 2, . . . ),

then the estimate (9) follows from the condition (11); analogously, if

ωk(τlk,mδ) ≤ νmωk(τlk, δ) for δ > 0, (l = 1, . . . ,m0; k = 1, 2, . . . ),

then the estimate (10) follows from the condition (12). In particular, the sequences of functions

ωk(t, δ) = max
{∥∥fk(t, x)− fk(t, y)

∥∥ : x, y ∈ U
(
0, ∥x0∥+ r

)
, ∥x− y∥ ≤ δ

}
for t ∈ [0, ω] \ Tm0

(k = 1, 2, . . . )

and

ωk(τlk, δ) = max
{∥∥Ik(τlk, x)− Ik(τlk, y)

∥∥ : x, y ∈ U
(
0, ∥x0∥+ r

)
, ∥x− y∥ ≤ δ

}
(l = 1, . . . ,m0; k = 1, 2, . . . )

have the latters’ properties, respectively.

Definition 4. The problem (1), (2); (3) is said to be (x0; r)-correct if for every ε ∈ ]0, r[ and
(fk, Ik)

+∞
k=1 ∈ Wr(f, I;x

0) there exists a natural number k0 such that the problem (1k), (2k) has
at last one ω-antiperiodic solution contained in U(x0; r), and any such solution belongs to the ball
U(x0; ε) for every k ≥ k0.

Definition 5. The problem (1), (2); (3) is said to be correct if it has a unique solution x0 and it is
(x0; r)-correct for every r > 0.

Theorem 1. If the problem (1), (2); (3) has a solution x0, strongly isolated in the radius r, then it is
(x0; r)-correct.
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Theorem 2. Let the conditions∥∥f(t, x)− P (t, x)x
∥∥ ≤ α(t, ∥x∥) a.e. on [0, ω] \ Tm0

, x ∈ Rn, (13)∥∥I(τl, x)− J(τl, x)x
∥∥ ≤ β(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0) (14)

and ∣∣x(0) + x(ω)− ℓ(x)
∣∣ ≤ ℓ0(x) + ℓ1(∥x∥s) for x ∈ BV([0, ω],Rn) (15)

hold, where ℓ : Cs([0, ω],Rn;Tm0) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0) → Rn
+ are, respectively, a linear

continuous and a positive homogeneous operators, the pair (P, J) satisfies the Opial condition with
respect to the pair (ℓ, ℓ0); α ∈ Car([0, ω] × R+,R+) and β ∈ C(Tm0

× [0, ω],R+) are the functions,
nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0. (16)

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Theorem 3. Let the conditions (13)–(15),
P1(t) ≤ P (t, x) ≤ P2(t) a.e. on [0, ω] \ {τ1, . . . , τm0

}, x ∈ Rn, (17)
and

J1l ≤ J(τl, x) ≤ J2l for x ∈ Rn (l = 1, . . . ,m0) (18)
hold, where P ∈ Car0([0, ω] × Rn,Rn×n), Pi ∈ L([0, ω],Rn×n), Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0);
ℓ : Cs([0, ω],Rn;Tm0

) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0
) → Rn

+ are, respectively, a linear continuous
and a positive homogeneous operators; α ∈ Car([0, ω]× R+,R+) and β ∈ C(Tm0

× [0, ω],R+) are the
functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that the
condition (16) holds. Let, moreover, the condition (4) hold and the problem (5), (6), (7) have only
a trivial solution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices Gl ∈ Rn×n

(l = 1, . . . ,m0) such that
P1(t) ≤ A(t) ≤ P2(t) a.e. on [0, ω] \ Tm0

, x ∈ Rn, (19)
and

J1l ≤ Gl ≤ J2l for x ∈ Rn (l = 1, . . . ,m0). (20)
Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 4. Theorem 3 is of interest only in the case P /∈ Car([0, ω]×Rn,Rn×n), because the theorem
immediately follows from Theorem 2 in the case P ∈ Car([0, ω]× Rn,Rn×n).

Theorem 4. Let the conditions (15),
|f(t, x)− P (t)x| ≤ Q(t) |x|+ q(t, ∥x∥) a.e. on [0, ω] \ Tm0

, x ∈ Rn, (21)
and

|Il(x)− Jl x| ≤ Hl |x|+ h(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0) (22)
hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n

+ ), Jl ∈ Rn×n and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are

constant matrices, ℓ : Cs([0, ω],Rn;Tm0
) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0

) → Rn
+ are, respectively, a

linear continuous and a positive homogeneous operators; q ∈ Car([0, ω]× R+,Rn
+) and h ∈ C(Tm0 ×

R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a
vector-function such that the condition

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

ω∫
0

∥q(t, ρ)∥ dt+
m0∑
l=1

∥h(τl, ρ)∥
)

= 0. (23)

holds. Let, moreover, the conditions
det(In×n + Jl) ̸= 0 (l = 1, . . . ,m0) (24)
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and
∥Hl∥ ·

∥∥(In×n + Jl)
−1

∥∥ < 1 (j = 1, 2; l = 1, . . . ,m0) (25)
hold and the system of impulsive inequalities∣∣∣dx

dt
− P (t)x

∣∣∣ ≤ Q(t)x a.e. on [0, ω] \ Tm0 , (26)∣∣x(τl+)− x(τl−)− Jlx(τl)
∣∣ ≤ Hl |x(τl)| (l = 1, . . . ,m0) (27)

have only a trivial solution satisfying the condition (7). Then the problem (1), (2); (3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.

Corollary 1. Let the conditions

|f(t, x)− P (t)x| ≤ q(t, ∥x∥) a.e. on [0, ω] \ Tm0
, x ∈ Rn, (28)∣∣I(τl, x)− Jl x

∣∣ ≤ h(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0) (29)

and ∣∣x(0) + x(ω)− ℓ(x)
∣∣ ≤ ℓ1(∥x∥s) for x ∈ BV([0, ω],Rn) (30)

hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are constant matrices satisfying the
condition (24), ℓ : Cs([0, ω],Rn;Tm0

) → Rn is the linear continuous operator; q ∈ Car([0, ω]×R+,Rn
+)

and h ∈ C(Tm0 × R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable, and

ℓ1 ∈ C(R,Rn
+) is a vector-function such that the condition (23) holds. Let, moreover, the problem

dx

dt
= P (t)x a.e. on [0, ω] \ Tm0 , (31)

x(τl+)− x(τl−) = Jl x(τl) (l = 1, . . . ,m0); (32)
ℓ(x) = 0. (33)

have only a trivial solution. Then the problem (1), (2); (3) is solvable. If, moreover, the problem has
a unique solution, then it is correct.

Remark 5. Let Y = (y1, . . . , yn) be a fundamental matrix, with columns y1, . . . , yn, of the system
(31), (32). Then the homogeneous boundary value problem (31), (32); (33) has only a trivial solution
if and only if

det(ℓ(Y )) ̸= 0, (34)
where ℓ(Y ) = (ℓ(y1), . . . , ℓ(yn)).

If the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ condition, then the fundamental matrix Y
(Y (0) = In×n) of the homogeneous system (31), (32) has the form

Y (t) ≡ exp
( t∫

0

P (τ) dτ

)
·

∏
0≤τl<t

(In×n + Jl).

Theorem 5. Let the conditions∣∣f(t, x)− f(t, y)− P (t) (x− y)
∣∣ ≤ Q(t)|x− y| a.e. on [0, ω] \ Tm0 , x, y ∈ Rn, (35)∣∣I(τl, x)− I(τl, y)− Jl (x− y)
∣∣ ≤ Hl|x− y| for x, y ∈ Rn (k = l, . . . ,m0) (36)

and ∣∣x(0)− y(ω) + x(ω)− y(ω)− ℓ(x− y)
∣∣ ≤ ℓ0(x− y) for x, y ∈ BV([0, ω],Rn)

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl ∈ Rn×n and Hl ∈ Rn×n

+ (l = 1, . . . ,m0)
are constant matrices satisfying the conditions (24) and (25), ℓ : Cs([0, ω],Rn;Tm0

) → Rn and
ℓ0 : Cs([0, ω],Rn;Tm0

) → Rn
+ are, respectively, linear continuous and positive homogeneous continuous

operators. Let, moreover, the problem (26), (27); (7) have only a trivial solution. Then the problem
(1), (2); (3) is correct.
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Corollary 2. Let there exist a solution x0 of the problem (1), (2); (3) and a positive number r > 0
such that the conditions∣∣f(t, x)− f(t, x0(t))− P (t) (x− x0(t))

∣∣ ≤ Q(t)
∣∣x− x0(t)

∣∣ a.a. [0, ω] \ Tm0 , ∥x− x0(t)∥ < r,∣∣∣I(τl, x)− I
(
τl, x

0(τl)
)
− Jl (x− x0(τl))

∣∣∣ ≤ Hl

∣∣x− x0(τl)
∣∣ for ∥x− x0(τl)∥ < r (l = l, . . . ,m0)

and ∣∣x(0)− x0(0) + x(ω)− x0(ω)− ℓ(x− x0)
∣∣ ≤ ℓ∗

(
|x− x0|

)
for x ∈ U(x0, r)

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl,Hl ∈ Rn×n (l = 1, . . . ,m0) are constant ma-

trices satisfying the conditions (24) and (25), ℓ : Cs([0, ω],Rn;Tm0
)→ Rn and ℓ∗ : Cs([0, ω],Rn;Tm0

)→
Rn

+ are, respectively, linear continuous and positive homogeneous continuous operators. Let, moreover,
the system of impulsive inequalities∣∣∣dx

dt
− P (t)x

∣∣∣ ≤ Q(t)x a.e. on [0, ω] \ Tm0 ,∣∣x(τl+)− x(τl−)− Jl x(τl)
∣∣ ≤ Hl · x(τl) (l = 1, . . . ,m0)

have only a trivial solution under the condition
|ℓ(x)| ≤ ℓ∗(|x|).

Then the problem (1), (2); (3) is (x0; r)-correct.

Corollary 3. Let the components of the vector-functions f and Il (l = 1, . . . , n) have partial derivatives
by the last n variables belonging to the Carathéodory class Car([0, ω]×Rn,Rn). Let, moreover, x0 be
a solution of the problem (1), (2); (3) such that the condition

det
(
In×n +Gl(x

0(τl))
)
̸= 0 (l = 1, . . . ,m0)

holds and the system
dx

dt
= F (t, x0(t))x almost everywhere on [0, ω] \ Tm0

,

x(τl+)− x(τl−) = Gl(x
0(τl))x(τl) (l = 1, . . . ,m0);

ℓ(x) = 0,

where F (t, x) ≡ ∂f(t,x)
∂x and Gl(x) ≡ ∂Il(x)

∂x , have only a trivial solution under the condition (3). Then
the problem (1), (2); (3) is (x0; r)-correct for any sufficiently small r.

In general, it is quite difficult to verify the condition (34) directly even in the case where one is able
to write out the fundamental matrix of the system (31), (32); (33). Therefore it is important to seek
for effective conditions which would guarantee the absence of nontrivial ω-antiperiodic solutions of
the homogeneous system (31), (32); (33). Below we will give the results concerning the question under
consideration. Analogous results have been obtained in [3] for general linear boundary value problems
for impulsive systems, and in [14] by T. Kiguradze for the case of ordinary differential equations.

In this connection, we introduce the following operators. For every matrix-function X ∈
L([0, ω],Rn×n) and a sequence of constant matrices Yk ∈ Rn×n (k = 1, . . . ,m0) we put[

(X,Y1, . . . , Ym0)(t)
]
0
= In for 0 ≤ t ≤ ω,[

(X,Y1, . . . , Ym0)(0)
]
i
= On×n (i = 1, 2, . . . ),

[
(X,Y1, . . . , Ym0

)(t)
]
i+1

=

t∫
0

X(τ)
[
(X,Y1, . . . , Ym0

)(τ)
]
i
dτ

+
∑

0≤τl<t

Yl

[
(X,Y1, . . . , Ym0

)(τl)
]
i

for 0 < t ≤ ω (i = 1, 2, . . . ). (37)

Corollary 4. Let the conditions (28)–(30) hold, where

ℓ(x) ≡
ω∫

0

dL(t) · x(t),
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P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are constant matrices satisfying the condition (24),
L ∈ L([0, ω],Rn×n); q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0 × R+;Rn×n
+ ) are the vector-functions,

nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn
+) is a vector-function such that the condition

(23) holds. Let, moreover, there exist natural numbers k and m such that the matrix

Mk = −
k−1∑
i=0

ω∫
0

dL(t) ·
[
(P, Jl, . . . , Jm0

)(t)
]
i

is nonsingular and
r(Mk,m) < 1, (38)

where the operators [(P, J1, . . . , Jm0
)(t)]i (i = 0, 1, . . . ) are defined by (37), and

Mk,m =
[(
|P |, |J1|, . . . , |Jm0 |

)
(ω)

]
m

+

m−1∑
i=0

[(
|P |, |J1|, . . . , |Jm0

|
)
(ω)

]
i

ω∫
0

dV (M−1
k L)(t) ·

[(
|P |, |J1|, . . . , |Jm0

|
)
(t)

]
k
.

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5. Let the conditions (28)–(30) hold, where

ℓ(x) ≡
n0∑
j=1

Ljx(tj), (39)

P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are constant matrices satisfying the condition (24),
tj ∈ [0, ω] and Lj ∈ Rn×n (j = 1, . . . , n0), L ∈ L([0, ω],Rn×n), ℓ : Cs([0, ω],Rn;Tm0

) → Rn is the
linear continuous operator; q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-
functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that the
condition (23) holds. Let, moreover, there exist natural numbers k and m such that the matrix

Mk =

n0∑
j=1

k−1∑
i=0

Lj

[
(P, Jl, . . . , Jm0

)(tj)
]
i

is nonsingular and the inequality (38) holds, where

Mk,m =
[(
|P |, |Jl|, . . . , |Jm0 |

)
(ω)

]
m

+
(m−1∑

i=0

[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
i

) n0∑
j=1

|M−1
k Lj | ·

[(
|P |, |Jl|, . . . , |Jm0

|
)
(tj)

]
k
.

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5 has the following form for k = 1 and m = 1.

Corollary 6. Let the conditions (28)–(30) hold, where the operator ℓ is defined by (39), P ∈
L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are constant matrices satisfying the condition (24),
tj ∈ [0, ω] and Lj ∈ Rn×n (j = 1, . . . , n0); q ∈ Car([0, ω]× R+,Rn

+) and h ∈ C(Tm0
× R+;Rn×n

+ ) are
the vector-functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is the vector-function
such that the condition (23) holds. Let, moreover,

det
( n0∑

j=1

Lj

)
̸= 0 and r(L0A0) < 1,

where

L0 = In×n +

∣∣∣∣( n0∑
j=1

Lj

)−1
∣∣∣∣ · n0∑

j=1

|Lj | and A0 =

ω∫
0

|P (t)| dt+
m0∑
l=1

|Jl|.
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Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 6. If the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ condition, then the condition (34)
has the forms

det
( ω∫

0

dL(t) · exp
( t∫

0

P (τ) dτ

)
·

∏
0≤τl<t

(In×n + Jl)

)
̸= 0

and

det
( n0∑

j=1

Lj exp
( tj∫

0

P (τ) dτ

)
·

∏
0≤τl<tj

(In×n + Jl)

)
̸= 0

for the operators ℓ defined, respectively, in Corollary 4 and Corollary 5.

By Remark 2, in the case where ℓ(x) ≡ x(0)+x(ω) and ℓ0(x) ≡ 0, the results given above have the
following forms, respectively.
Theorem 2′. Let the conditions (13) and (14) hold, where the pair (P, J) satisfies the Opial ω-
antiperiodic condition, α ∈ Car([0, ω] × R+,R+) and β ∈ C(Tm0

× [0, ω],R+) are the functions,
nondecreasing in the second variable, such that

lim
ρ→+∞

1

ρ

( ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0. (40)

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Theorem 3′. Let the conditions (13), (14), (17), (18) and (40) hold, where P ∈ Car0([0, ω] ×
Rn,Rn×n), Pi ∈ L([0, ω],Rn×n), Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0); α ∈ Car([0, ω] × R+,R+) and
β ∈ C(Tm0

× [0, ω],R+) are the functions, nondecreasing in the second variable. Let, moreover, the
condition (4) hold and the problem (5), (6); (3) have only a trivial solution for every matrix-function
A ∈ L([0, ω],Rn×n) and constant matrices Gl ∈ Rn×n (l = 1, . . . ,m0) satisfying the conditions (19)
and (20). Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution,
then it is correct.

Theorem 4′. Let the conditions (21) and (22) hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ),

Jl ∈ Rn× and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are the constant matrices satisfying the conditions (24) and

(25), q ∈ Car([0, ω]× R+,Rn
+), and h ∈ C(Tm0

× R+;Rn×n
+ ) are the vector-functions, nondecreasing

in the second variable, such that

lim
ρ→+∞

1

ρ

( ω∫
0

∥q(t, ρ)∥ dt+
m0∑
l=1

∥h(τl, ρ)∥
)

= 0. (41)

Let, moreover, the system of impulsive inequalities (26), (27) have only a trivial solution satisfying
the condition (3). Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique
solution, then it is correct.

Corollary 1′. Let the conditions (28), (29) and (40) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n

(l = 1, . . . ,m0) are constant matrices satisfying the condition (24), q ∈ Car([0, ω] × R+,Rn
+) and

h ∈ C(Tm0 ×R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,

the problem (31), (32), (3) have only a trivial solution. Then the problem (1), (2); (3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.

Theorem 5′. Let the conditions (35) and (36) hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ),

Jl ∈ Rn×n and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are constant matrices satisfying the conditions (24)

and (25). Let, moreover, the problem (26), (27); (7) have only a trivial solution. Then the problem
(1), (2); (3) is correct.
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Corollary 5′. Let the conditions (28), (29) and (41) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n

(l = 1, . . . ,m0) are constant matrices satisfying the condition (24); q ∈ Car([0, ω] × R+,Rn
+) and

h ∈ C(Tm0
×R+;Rn×n

+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,
there exist natural numbers k and m such that the matrix

Mk =

k−1∑
i=0

[
(P, Jl, . . . , Jm0

)(ω)
]
i

is nonsingular and the inequality (38) holds, where

Mk,m =
[(
|P |, |Jl|, . . . , |Jm0 |

)
(ω)

]
m

+
(m−1∑

i=0

[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
i

)
|M−1

k | ·
[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
k
.

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Corollary 5′ has the following form for k = 1 and m = 1.
Corollary 6′. Let the conditions (28), (29) and (41) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n

(l = 1, . . . ,m0) are constant matrices satisfying the condition (24); q ∈ Car([0, ω] × R+,Rn
+) and

h ∈ C(Tm0
×R+;Rn×n

+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,

r(A0) <
1

2
,

where

A0 =

ω∫
0

|P (t)| dt+
m0∑
l=1

|Jl|.

Then the problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 7. In the conditions of Corollary 6′, if the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ
condition, then the condition (34) has the form

det
(
In×n + exp

( ω∫
0

P (τ) dτ

)
·
m0∏
l=1

(In×n + Jl)

)
̸= 0.

The analogous questions have been investigated in [7, 8] for the system (1), (2) under the general
nonlinear boundary condition h(x) = 0, where h : C([0, ω],Rn;Tm0

) → Rn is a continuous vector-
functional which is nonlinear, in general. The results given in the paper are the particular cases of
the results obtained in [7, 8] when h(x) ≡ x(0) + x(ω).
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Giorgi Dekanoidze

ON THE SOLVABILITY OF A BOUNDARY VALUE PROBLEM WITH
DIRICHLET AND POINCARE CONDITIONS IN THE

ANGULAR DOMAIN FOR ONE CLASS OF
NONLINEAR SECOND ORDER HYPERBOLIC SYSTEMS

Abstract. Darboux type problem with Dirichlet and Poincare boundary conditions for one class
of nonlinear second order hyperbolic systems is considered. The questions of existence and nonex-
istence, uniqueness and smoothness of global solution of this problem are investigated.
ÒÄÆÉÖÌÄ. ÌÄÏÒÄ ÒÉÂÉÓ ÀÒÀßÒ×ÉÅ äÉÐÄÒÁÏËÖÒ ÓÉÓÔÄÌÀÈÀ ÄÒÈÉ ÊËÀÓÉÓÀÈÅÉÓ ÂÀÍáÉËÖËÉÀ
ÃÀÒÁÖÓ ÀÌÏÝÀÍÀ ÃÉÒÉáËÄÓÀ ÃÀ ÐÖÀÍÊÀÒÄÓ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ. ÂÀÌÏÊÅËÄÖËÉÀ ÀÌ ÀÌÏ-
ÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÃÀ ÀÒÀÒÓÄÁÏÁÉÓ, ÄÒÈÀÃÄÒÈÏÁÉÓ ÃÀ ÓÉÂËÖÅÉÓ ÓÀÊÉÈáÄÁÉ.
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Key words and phrases: Nonlinear hyperbolic systems, Darboux type problem; existence, nonex-
istence, uniqueness and smoothness of solution.

In the plane of the variables x and t we consider a nonlinear second order hyperbolic system of
type

Lu : utt − uxx +A(x, t)ux +B(x, t)ut + C(x, t)u+ f(x, t, u) = F (x, t), (1)
where A, B, C are given real n×n-matrices, f = (f1, . . . , fn) is a given nonlinear with respect to u real
vector-function, F = (F1, . . . , Fn) is a given and u = (u1, . . . , un) is an unknown real vector-function,
n ≥ 2.

By DT we denote a triangular domain lying inside the characteristic angle {(x, t) ∈ R2 : t > |x|}
and bounded by the characteristic segment γ1,t : x = t, 0 ≤ t ≤ T , and segments γ2,t : x = 0, 0 ≤
t ≤ T , γ3,t : t = T, 0 ≤ x ≤ T , of time and spatial type, respectively.

For the system (1), we consider a boundary value problem: find in the domain DT a solution
u = u(x, t) of that system, satisfying on segments γ1,T and γ2,T the Dirichlet and Poincare conditions,
respectively,

u
∣∣
γ1,T

= φ, (2)

(µ1vx + µ2vt)
∣∣
γ2,T

= 0, (3)

where φ = (φ1, . . . , φn) is a given real vector-function and µi, i = 1, 2, are given real n× n-matrices.
In the case of T = ∞ we have D∞ := t > |x|, x > 0, and γ1,∞ : x = t, 0 ≤ t ≤ ∞, γ2,∞ : x = 0, 0 ≤
t ≤ ∞.
Definition 1. Let A,B,C, F, f ∈ C(DT × Rn) and φ ∈ C1(φ1,T ), µi ∈ C(γ2,T ), i = 1, 2. We call a
vector-function u a generalized solution of the problem (1), (2), (3) of the class C in the domain DT

if u ∈ C(DT ) and there exists a sequence of vector-functions

um ∈ C2
0 (DT ) :=

{
v ∈ C2(DT ) : (µ1vx + µ2vt)

∣∣
γ2,T

= 0
}

such that um → u and Lum → F in the space C(DT ), um|γ1,T
→ φ in the space C1(γ1,T ), as m → ∞.

It is obvious that a classical solution u ∈ C2(DT ) of the problem (1), (2), (3) represents a generalized
solution of this problem of the class C in the domain DT in the sense of Definition 1.
Definition 2. Let A,B,C, F, f ∈ C(D∞×Rn) and φ ∈ C1(γ1,∞), µi ∈ C(γ2,∞), i = 1, 2. We say that
the problem (1), (2), (3) is locally solvable in the class C if there exists a number T0 = T0(F,φ) > 0
such that for T < T0 this problem has a generalized solution of the class C in the domain DT in the
sense of the Definition 1.
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Definition 3. Let A,B,C, F, f ∈ C(D∞ × Rn) and φ ∈ C1(γ1,∞), µi ∈ C(γ2,∞), i = 1, 2. We say
that the problem (1), (2), (3) is globally solvable in the class C if for any T > 0 this problem has a
generalized solution of the class C in the domain DT in the sense of Definition 1.

Definition 4. Let A,B,C, F, f ∈ C(D∞ × Rn) and φ ∈ C1(γ1,∞), µi ∈ C(γ2,∞), i = 1, 2. A vector-
function u ∈ C(D∞) is called a global generalized solution of the problem (1), (2), (3) of the class C
in the domain D∞ if for any T > 0 the vector-function u|DT

is a generalized solution of the class C
in the domain DT in the sense of Definition 1.

If in the linear case for scalar hyperbolic equations the boundary value problems of Goursat and
Darboux type are well studied (see [5–7, 9, 12, 16]), there arise additional difficulties and new effects
in passing to hyperbolic systems. This has been first noticed by A. V. Bitsadze [3] who constructed
examples of second order hyperbolic systems for which the corresponding homogeneous characteristic
problem has a finite number, and in some cases, an infinite of number of linearly independent solutions.
Later these problems for linear second order hyperbolic systems have become a subject of study in the
works [10,11]. In this direction it should also be noted the work [4], in which on the simple examples
it is revealed the effect of lowest terms on the correctness of these problems. As shown in [1,2,13–15],
the presence of the nonlinear term in the scalar hyperbolic equation may affect on the correctness
of the Darboux problem, when in some cases this problem is globally solvable, and in other cases
may arise the so-called blow up solutions. It should be noted that the above-mentioned works do
not contain linear terms involving the first order derivatives, since their presence causes difficulties in
investigating the problem, and not only of technical character. In this paper, we study the Darboux
type problem for nonlinear system (1) with lowest terms of the first order. The results presented here
are new in the case when (1) is a scalar hyperbolic equation.

Local solvability of the problem (1), (2), (3) in sense of Definition 2 holds under the additional
requirements

det(µ2 − µ1)
∣∣
γ2,∞

̸= 0 (4)

and
A,B ∈ C2(D∞), C ∈ C1(D∞), f ∈ C1(D∞ × Rn), µi ∈ C1(γ2,∞). (5)

Under the conditions given in the Definition 2, if we additionally require that

∥fi(x, t, u)∥ ≤ M1 +M2∥u∥, (x, t, u) ∈ D∞ × Rn, i = 1, . . . , n, (6)

and
detµ1

∣∣
γ2,T

̸= 0, (µ−1
1 µ2θ, θ)

∣∣
γ2,T

≤ 0 ∀ θ ∈ Rn, (7)

where Mj = Mj(T ) = const ≥ 0, j = 1, 2, ∀T > 0; ∥u∥ =
n∑

i=1

|ui|, ( · , · ) is scalar product in the

Euclidean space Rn, then for a generalized solution of the problem (1), (2), (3) of the class C in the
domain DT the a priori estimate

∥u∥C(DT ) ≤ c1∥F∥C(DT ) + c2∥φ∥C1(γ1,T ) + c3, (8)

is valid with nonnegative constants ci = ci(M0,M1,M2, T ), i = 1, 2, 3, not depending on u, F , φ and
where ci > 0, i = 1, 2. Here M0 = M0(A,B,C) = const ≥ 0.

Under the conditions (4)–(7), from the a priori estimate (8) by virtue of Learay–Schauder’s theorem
there follows the global solvability of the problem (1), (2), (3) in the class C in the sense of Definition 3.

Note also that in the above assumptions (4)–(7) there exists a unique global generalized solution
of the problem (1), (2), (3) of the class C in the domain D∞ in the sense of Definition 4.

Now consider the case when the condition (5) is violated, i.e.,

lim
∥u∥→∞

∥f(x, t, u)∥
∥u∥

= ∞,

and the problem (1), (2), (3) is not globally solvable, in particular, it does not have a global generalized
solution of the class C in the domain D∞ in the sense of Definition 4.
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Theorem. Let A = B = C = 0, f = f(u) ∈ C(Rn), F ∈ C(D∞), φ = 0. There exists numbers
l1, . . . , ln,

n∑
i=1

|li| ̸= 0 such that

n∑
i=1

lifi(u) ≤ c0 − c1
∣∣ n∑
i=1

liui

∣∣∣β , β = const > 1, (9)

where c0, c1 = const, c1 > 0. Let the function F0 =
n∑

i=1

liFi − c0 satisfies the following conditions:

F0 ≥ 0, F (x, t)
∣∣
t≥1

≥ c2t
−k; c2 = const > 0, 0 ≤ k = const ≤ 2.

Then there exists a finite positive number T0 = T0(F ) such that for T > T0 the problem (1), (2), (3)
does not have a generalized solution of the class C in the domain DT .

Corollary. Under the conditions of the theorem, although the problem is locally solvable, it does not
have a global generalized solution of the class C in the domain D∞.

Now let us consider one class of vector-functions f satisfying the condition (9):

fi(u1, . . . , un) =

n∑
j=1

aij |uj |βij + bi, i = 1, . . . , n, (10)

where aij = const > 0, bi = const, βij = const > 1; i, j = 1, . . . , n. In this case we can take:
l1 = l2 = · · · = ln = −1. Indeed, let us choose β = const such that 1 < β < βi j ; i, j = 1, . . . , n. It is
easy to verify that |s|βij ≥ |s|β − 1 ∀ s ∈ (−∞,∞). Now, using well - known inequality [8]

n∑
i=1

|yi|β ≥ n1−β
∣∣∣ n∑
i=1

yi

∣∣∣β ∀ y = (y1, . . . , yn) ∈ Rn, β = const > 1,

we receive
n∑

i=1

fi(u1, . . . , un) ≥ a0

n∑
i,j=1

|uj |βij +

n∑
i=1

bi ≥ a0

n∑
i,j=1

(
|uj |β − 1

)
+

n∑
i=1

bi

= a0n

n∑
j=1

|uj |β − a0n
2 +

n∑
i=1

bi ≥ a0n
2−β

∣∣∣ n∑
j=1

uj

∣∣∣β +

n∑
i=1

bi − a0n
2, a0 = min

i,j
aij > 0.

Hence we have the inequality (9) in which: l1= l2= · · ·= ln=−1, c0 = a0n
2 −

n∑
i=1

bi, c1 = a0n
2−β > 0.

Note that the vector-function f , represented by the equalities (10), also satisfies the condition (9)
with l1 = l2 = · · · = ln = −1 for less restrictive conditions when aij = const ≥ 0, but aiki

> 0, where
k1, . . . , kn is any fixed permutation of numbers 1, 2, . . . , n.
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