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110 years have passed since the birthday of the outstanding Georgian scientist, a
public figure and a statesman, academician Viktor Kupradze. Mathematicians and
mechanicians throughout the world are well familiar with his name. Academician
Viktor Kupradze made a tremendous contribution to the theory of differential and
integral equations, problems of mathematical physics, the theory of elasticity and
applied mathematics.

Viktor Kupradze was born on 2 November 1903 in village Kela in Georgia, in
a railway worker’s family. Little Viktor went to the specialized school in Kutaisi,
where a comparatively extended course in mathematics was taught. Viktor’s turn
for mathematics attracted the attention of his teacher and, following his advice, in
1922 Kupradze became a student of the physico-mathematical faculty of the Tbil-
isi State University. In 1927 he graduated from the University with honours and as
nominee of professors Andria Razmadze and Nikoloz Muskhelishvili, founders of
the worldwide known Georgian mathematical school, was left at the University to
be prepared for research work. He became an assistant of A. Razmadze in math-
ematical analysis and an assistant of N. Muskhelishvili in theoretical mechanics.
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He also delivered lectures at the Tbilisi Polytechnical Institute. The scientific su-
pervisor of Viktor Kupradze, professor N. Muskhelishvili wrote in the testimonial:
“The post-graduate student has mastered quite well the main academic disciplines.
He has invariably shown the ability to independent, creative and critical thinking. I
can say with confidence that under proper conditions he will become an outstand-
ing specialist in applied mathematics”.

In 1930-1933 he was a post-graduate student at the Academy of Sciences of
the USSR in Leningrad (St. Petersburg), where his supervisors were the prominent
Russian scientists Alexei Krilov and Vladimir Smirnov.

In the period from 1933 to 1935 Kupradze worked as scientific secretary at the
Steklov Mathematical Institute of the Academy of Sciences of USSR. In 1935 he
defended his doctor’s thesis (skipping the candidate thesis) on the topic: “Bound-
ary Value Problems of the Electromagnetic Wave Theory”. In the same year
Kupradze returned to Tbilisi where he was appointed director of the Tbilisi Math-
ematical Institute (now Andrea Razmadze Mathematical Institute). During the
Great Patriotic War (the World War II) V. Kupradze served in the Soviet Army,
participated in the cruel battles for Crimean Peninsula. Due to his fluent German,
he was the Executive secretary of Editorial Board of the military newspaper “Zol-
datenvaarheit” published in German. In 1943 he was demobilized and appointed
pro-rector of the Thilisi State University, responsible for research work.

From 1944 to 1953 Kupradze was the Minister of Education of Georgia.

In 1946 he was elected Full Member of the Academy of Sciences of Georgia.

In 1954-1958 he held the position of the rector of Tbilisi State University.

In 1962 the Georgian Mathematical Society was re-founded and V. Kupradze
was elected its second president. The Society was first founded in 1923 by Andrea
Razmadze, who was the president until he passed away in 1929.

In 1963 Kupradze was elected academician-secretary of the department of math-
ematics and physics of the Academy of Sciences of Georgia, where he worked
fruitfully till 1981. At the same time he headed the chair of differential and inte-
gral equations of the Tbilisi State University. From 1947 to 1985 Kupradze was a
member of Presidium of the Georgian Academy of Sciences.

V. Kupradze widely participated also in the public life of Georgia and the for-
mer USSR. In 1947 he took part in the Congress of Asiatic and African Peoples
held in Delhi. From 1954 to 1963 he was Chairman of the Supreme Soviet (Par-
liament) of Georgia. In 1955 he was sent to the USA (New York) as a member of
Soviet delegation to the 10-th Session of the UN General Assembly. V. Kupradze
was actively involved in the international scientific cooperation. Being member of
various reputable organizations such as the National Committee of Soviet Mathe-
maticians, National Committee on Theoretical and Applied Mathematics, Bureau
of the Scientific Council on Plasticity and Strength of the Academy of Sciences of
the USSR. V. Kupradze played a significant role in strengthening scientific con-
tacts between the scientists of different countries. He was a member of the edi-
torial boards of domestic and international scientific journals, including “Uspekhi
Matematicheskikh Nauk”, “Differentsial’nye Uravneniya”, “Journal of Thermal
Stresses” etc.
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Special tribute must be given to V. Kupradze as an excellent teacher, thesis ad-
viser, and lecturer with a considerable personal charisma. For over 40 years he
had been the head of the chair of differential and integral equations at Tbilisi State
University and brought up several generations of Georgian mathematicians. He
had many disciples and followers throughout the countries he visited. Attracted
by Kupradze’s charisma, many of his pupils became famous scientists and fruit-
fully continue mathematical scientific and academic activities both in Georgia and
abroad.

V. Kupradze passed away on 25 April 1985, about 28 years ago, but all those
people who knew him will cherish the memory of his warm, unforgettable person-
ality and his profound intelligence.

The mathematical heritage of V. Kupradze is very rich. He began his scientific
activities in the late twenties of the 20th century. His fruitful and tireless work
actually has lasted about 55 years. V. Kupradze’s contributions to mathematics
and mechanics can be divided into six large groups:

e Problems related to the justification of Sommerfeld’s Radiation Condi-
tions and boundary value problems (BVP) for the Helmholtz equation;

e Diffraction and scattering of electro-magnetic waves;

e Mathematical problems of the theory of elasticity (BVPs of statics and
steady state oscillations, and initial boundary value problems of general
dynamics);

e Theory of one- and multi-dimensional singular integral equations and their
applications;

e Investigation of refined models of the theory of elasticity (Thermoelastic-
ity, Cosserat model etc.);

e Problems of numerical simulation and approximate solutions of BVPs of
mathematical physics, Method of Fundamental Solutions.

A short account of V. Kupradze’s contribution to the listed issues reads as fol-
lows.

1. Sommerfeld’s radiation principle originally formulated in 1912 by the out-
standing German physicist and mathematician A. Sommerfeld, concerns the exis-
tence and uniqueness of a solution to boundary value problems for the Helmholtz
equation,

Au(z) + k*u(r) =0, z€Q, (D
where A is the Laplace operator, k2 is a real valued constant, called the wavenum-
ber, and €2 is an unbounded domain in the n-dimensional Euclidean space R",
n = 2,3,.... The basic Dirichlet and Neumann boundary value problems, when
either the traces of the solution itself or of its normal derivative are prescribed on
the boundary I" := 0f2, have unique solutions only under special constraints on
the growth of u(x) at infinity

u(zx) = ﬁ(\x|177n) as |x| — oo, (2)
Ou(x) 1-n

5 +ikr=o(lz| 7 ) as r:=|z| — occ. 3)
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In 1934, V. Kupradze managed to substantiate this principle mathematically. He
reduced these problems to Fredholm type boundary integral equations and showed
the existence of a solution under sufficiently general conditions. Ten years later,
the same result was obtained by H. Weyl. Moreover, Kupradze predicted and later
I. Vekua and F. Rellich proved that the condition (2) is not independent and follows
from the radiation condition (3).

2. Electromagnetic wave diffraction problems. A series of V. Kupradze’s
investigations are devoted to the diffraction of electromagnetic sinusoidal waves
around an arbitrary plane contour, described by the Maxwell’s equations

1H 4 iwell =0
{cur +we in O cC R @)

curl £ — iwpH =0

with corresponding boundary and transmission conditions.

These problems were previously solved by A. Sommerfeld, V. Sternberg, H. Fre-
udental and other researchers for special domains with particular geometry. V. Kup-
radze made essential use of the method of integral equations.

He reduced the diffraction problems to equivalent boundary integral equations
and proved their unique solvability.

For these results, in 1938 Viktor Kupradze was awarded the prize at the All-
Union Competition of Young Scientists. It was included into the well-known
V. Smirnov’s university course on higher mathematics and translated into nearly
all languages of the world.

3. Basic boundary value problems of statics and stationary oscillations of
the elasticity theory. The approach developed for the Helmholtz equation, Viktor
Kupradze generalized to investigate the system of stationary oscillation equations
of elasticity

pAU(z) + (A + p) grad div U (z) + ow?U(z) =0, z € Q, %)

where U(z) := (Uy(x),Us(x)Us(x))T is the displacement vector, A and p are
Lamé constants, o is the density of the elastic material, while w is the oscillation
frequency. On the boundary of the domain €2 (occupied by an elastic body) there
is prescribed either the displacement vector

Ut(z) = F(z), = €09, (6)
or the stress vector

(TU)* () == 2u aggc) +

+ An(z)divU + pn(z) x curlU(z) = G(x), =€ 9Q. (7)

For the system (5) endowed with the boundary condition either (6) or (7),
V. Kupradze proved the uniqueness of a classical solution. Then he constructed
solutions of three types, which he called a simple-, a double- and an antenna-layer
potential. He investigated the fundamental properties of these potentials and de-
rived jump formulas; Theorems analogous to the Lyapunov—Tauber theorem were
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proved, stating that the normal derivative of a regular harmonic double-layer po-
tential is continuous up to the domain boundary (in contrast to the double layer
potential and the normal derivative of a single-layer potential, which are discon-
tinuous at the boundary). Furthermore, he proved an important fact that the above-
mentioned boundary value problems are solvable under quite general conditions.

One of the first significant results obtained by V. Kupradze jointly with S. Sobo-
lev concerns the wave propagation on the elastic body-fluid interface. The exis-
tence of a wave of a new type was established by mathematical means.

The basic boundary value problems of statics and steady-state oscillations of the
elasticity theory with the first and second type boundary conditions, V. Kupradze
reduced to equivalent systems of singular integral equations. In particular, he
investigated the mentioned BVPs for homogeneous and piecewise-homogeneous
elastic bodies showed that the corresponding boundary singular integral operators
are of normal type.

From the 40s investigation of two- and three-dimensional problems of the elas-
ticity theory held an ever growing place in the scientific activities of V. Kupradze
and his followers. Building up a strong research team, he was extending, to-
gether with his disciples, the potential method to the basic boundary value and
nonstandard transmission problems of the mathematical theory of elasticity. He
constructed the matrix of fundamental solutions of the system of steady state elas-
tic oscillations explicitly (now called “Kupradze’s matrix™) and formulated the
radiation conditions in the elasticity theory (known as the “Sommerfeld—Kupradze
principle”) which in the three-dimensional case read as follows,

U=U® +U®),
@) o 12y ® ») 2 _ 0w
AU + BUP) =0, curlUW =0, kj = ,
)\;—2/1
AUC) 4 U =0, divD® =0, k2 = 2 ®)
I
(p)
W) ik (@) = o(jal™") a5 7= Ja] = oo,
ous) :
W) i) (w) = o1l ) s 7= el = oo,

where U®) and U are the so-called longitudinal (potential) and transverse (so-
lenoidal) parts of the displacement vector U. These conditions have a crucial role
in the proof of uniqueness theorems for exterior BVPs.

4. Multidimensional singular integral equations and their applications.
In 1935, in his doctoral thesis V. Kupradze developed the method of potentials
for three-dimensional problems of diffraction. During the subsequent 40 years
V. Kupradze, and his collaborators developed and worked out the theory of singu-
lar integral equations on manifolds, generalizing results of S. Mikhlin and G. Gi-
raud for multidimensional singular integral equations. They successfully applied
the theory of singular potentials and newly created theory of singular integral equa-
tions to the analysis of boundary value problems of statics and steady state oscilla-
tions, as well as initial boundary value problems of general dynamics of the theory
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of elasticity. By the same approach, basic problems of some refined models of the
theory of elasticity (anisotropic elasticity, thermoelasticity, couple-stress elasticity
etc.) have been thoroughly studied. These results are exposed in the fundamental
monograph “Three Dimensional Problems of the Mathematical Theory of Elas-
ticity and Thermoelasticity” (V. Kupradze, T. G. Gegelia, M. O. Basheleishvili,
T. V. Burchuladze; North-Holland Publ. Comp., Amsterdam, 1979). This mono-
graph became a companion desk book for scientists working in the field.

5. Approximate solutions of boundary value problems of mathematical
physics. In the early 1960s, by modifying and generalizing Picone’s method
V. Kupradze found new effective effective of constructing approximate solutions
for a wide class of boundary value problems of mathematical physics. The method
can be used for plane and spatial, basic and mixed boundary value problems of stat-
ics and oscillation theory in the case of homogeneous and piecewise-homogeneous,
isotropic and anisotropic bodies. In the scientific literature this method is referred
to as “Method of Fundamental Solutions” (MFES).

The main idea of the MFS is to distribute the singularity poles {y }3>, of the
fundamental solution I'(x — y) of the differential operator outside the domain un-
der consideration, construct the set of functions {I'(z — yx)}72 ;, prove its density
properties in appropriate function spaces, and then approximate the solution by a

linear combination of the fundamental solutions, Z CrI'(x — yy,) with unknown

coefficients Cj, which are to be determined by satlsfylng the corresponding bound-
ary conditions. Starting from 1970s, the MFS gradually became a useful technique
for solving a large variety of physical and engineering problems.

The level of present-day computing facilities makes V. Kupradze’s methods
of constructing effective solutions even more important and enjoys ever growing
popularity among mathematicians and engineers.

The theory and the methods developed by V. Kupradze are widely and success-
fully applied to many theoretical and practical spheres of mathematical physics
and engineering even nowadays. That means that Viktor Kupradze as a celebrated
scientist is still alive — as an intellectual and spiritual bridge from the 20th century
to the 21st one.

R. Duduchava

Head of the Department of Mathematical Physics
A. Razmadze Mathematical Institute

of I. Javakhishvili Tbilisi State University

Thilisi, Georgia

D. Natroshvili

Head of the Department of Mathematics
of the Georgian Technical University
Thilisi, Georgia
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Viktor Kupradze’s Scientific Works and Articles

. On the definition of Green, Neumann and Klein functions for some simple

domains. (Georgian) Izv. Thiliss. Univ. 9 (1929), 219-240.

. To the question on distribution of elastic waves at the boundary of two

elastic media with different elastic properties (with S. L. Sobolev). (Rus-
sian) Trudy Seismologich. Inst. Acad, Nauk SSSR, 1930, No. 10, 1-23.

. Uber die Fortpflanzung der elastischen Schwingungen in Festen Medien.

(German) Trudy Mezhdunarodn. Seismicheskoi Conf. v Leningrade, L.,
1930, 131-137.

. On Mathie—Hankel’s functions. (Russian) Trudy Fiz.-Mat. Inst. im. V. A.

Steklova Acad. Nauk SSSR 4 (1933), 77-86.

. Difrazione della onde elastiche sopra un contorno ellittico. Atti della reale

Accademia Nazionale dei Lincei, ser. XI, XVIII (1933), fas. 3-4, 130-
139.

. Integral equations for electromagnetic waves. (Russian) Doklady AN SSSR

1(1934), No. 4, 161-165; In german: Integralgleichunger fiir elektromag-
netische Wellen. Doklady AN SSSR 1 (1934), No. 4, 166.

. The method of integral equations in diffraction theory. (Russian) Mat.

Sbornik 41 (1934), No. 4, 561-581 (German summary).

. Some problems of diffraction in the theory of elasticity. (Russian) Trudy

Fiz.-Mat. Inst. im. V.A. Steklov AN SSSR 5 (1934), 295-350.

. On A. Zommerfeld’s “radiation principle”. (Russian) Doklady AN SSSR 1

(1934), No. 2, 52-58; In German: Uber das “Ausstrahlungsprinzip” von
A. Sommerfeld. Doklady AN SSSR 1 (1934), No. 2, 55-58.

Solution of boundary value problems of Helmholtz equations in extraor-
dinary cases. (Russian) Doklady AN SSSR 2 (1934), No. 9, 521-526; In
German: Losung von Randwertproblemen fiir Helmholtz’sche Gleichun-
gen in den ausgenommenen Fillen. Doklady AN SSSR 2 (1934), No. 9,
524-526.

The existence and uniqueness theorems in the diffraction theory. (Rus-
sian) Doklady AN SSSR 1 (1934), No. 5, 235-240; In German: Exis-
tenzbeweis und Eindeuting keitstheorem in der Diffraktionstheorie. Dok-
lady AN SSSR 1 (1934), No. 5, 238-240.

The method of integral equations in the diffraction theory. (Russian) Mat.
Sbornik 41 (1935), No. 4, 561-581.

Generalized ‘“radiation principle” in the theory of elasticity. (Russian)
Doklady AN SSSR 2 (1935), No. 1, 14-19; In German: Das verallde-
menterte “Ausstrahlungsprinzip” in der Elastizitétstheorie. Doklady AN
SSSR 2 (1935), No. 1, 17-19.
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Basic problems of the mathematical theory of diffraction (Stationary pro-
cesses). (Russian) L.-M., Central Publishing Company of technical Liter-
ature, 1935, pp. 111.

The uniqueness theorem in stationary boundary value problems of the the-
ory of elasticity. (Russian) Doklady AN SSSR 2 (1935), No. 2, 100-102;
In German: Das Eindeutigkeitstheorem in den Randwertaufgaben der sta-
tionarein Elastizititstheorie. Doklady AN SSSR 2 (1935), No. 2, 102-104.

On Some singular integral equations of mathematical physics. (Russian)
Uspekhi Mat. Nauk, 1936, No. 2, 196-237.

Distribution of electromagnetic waves in an inhomogeneous medium.
(Russian) Doklady AN SSSR 1 (1936), No. 1, 6-8.

The uniqueness theorem in boundary value problems of the stationary the-
ory of elasticity. (Russian) Trudy Tbiliss. Univ. 2 (1936), 256-272.

To the investigation of electromagnetic oscillations in a plane inhomoge-
neous field. (Russian) Doklady AN SSSR XVI (1937), No. 3, 173-176.

Distribution of electromagnetic waves in an inhomogeneous medium.
(Russian) Trudy Tbiliss. Mat. Inst. 1 (1937), 115-123 (German sum-
mary).

The solution of general problem of diffraction of electromagnetic waves.
(Russian) Trudy Tbiliss. Mat. Inst. 2 (1937), 143-162 (German sum-
mary); Doklady AN SSSR XVI (1937), No. 1, 31-34.

Zur Frage der Ausbreitung elektromagnetischer Wellen in einem inhomo-
genen ebenen Medium. Composito Mathematica 6 (1938), fac. 2, 228-
234,

Some new applications of the resolvent theory to the boundary value prob-
lems of the potential theory. (Russian) Doklady AN SSSR XXIII (1939),
No. 1, 7-14.

Zur Frage der Ausbreitung elektromagnetischer Wellen in einem inhomo-
genen ebenen Medium. Compositio Math. 6 (1939), 228-234.

On the solution of the Dirichlet problem for multiply-connected domains.
(Russian) Mitt. Georg. Abt. Akad. Wiss. USSR [Soobshchenia Gruzin-
skogo Filiala Akad. Nauk SSSR] 1 (1940), 569-571.

Duality theorem in radiotelegraphy. (Russian) Mitt. Georg. Abt. Akad.
Wiss. USSR [Soobshchenia Gruzinskogo Filiala Akad. Nauk SSSR] 1
(1940), No. 8, 573-576.

Eindeutigkeitssatz in der Theorie der Fortpflanzung elektromagnetischer
harmonischer Schwingungen im inhomogenen dreidimensionalen Raum
(with D. Awazaschwili). (Russian) With complete German translation
Mitt. Georg. Abt. Akad. Wiss. USSR [Soobshchenia Gruzinskogo Fil-
iala Akad. Nauk SSSR] 1 (1940), 35-41.
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On the theory of integral equations with the principal Cauchy value inte-
grals. (Russian) Mitt. Akad. Wiss. Georgischen SSR [Soobshch. Akad.
Nauk Gruzin. SSR] 2 (1941), 23-28, 227-232.

On the theory of integral equations with integrals in the sense of Cauchy’s
principal values. (Russian) Bull. Acad. Sci. Georgian SSR [Soobshch.
Akad. Nauk Gruzin. SSR] 2 (1941), 587-596.

On a problem of equivalence in the theory of singular integral equations.
(Russian) Bull. Acad. Sci. Georgian SSR [Soobshch. Akad. Nauk Gruzin.
SSR] 2 (1941), 793-798.

Zur Theorie der Integralgleichungen mit dem Integral im Sinne des Cau-
chyschen Hauptwertes. (Russian) Bull. Acad. Sci. URSS. Sér. Math.
[Izvestia Akad. Nauk SSSR] 5 (1941), 255-262.

Duality theorem in wireless telegraphy. (Russian) Izv. Gruz. Industr. Inst.
im. S. M. Kirova, 1941, Book 14, 103-108.

On one composition formula of singular integrals. (Russian) Trudy Tbiliss.
Univ. XXIII (1942), 159-164.

To the theory of systems of singular integral equations. (Russian) Izv.
Gruz. Industr. Inst. im. S. M. Kirova, 1943, No. 15, 2—13.

A Letter to Editorial Board [dealing with the paper On some fundamental
properties of metaharmonic functions. (Russian) Bull. Acad. Sci. Geor-
gian SSR [Soobshch. Akad. Nauk Gruzin. SSR] 4 (1943), 281-288]. Bull.
Acad. Sci. Georgian SSR [Soobshch. Akad. Nauk Gruzin. SSR] 4 (1943),
No. 7, 733-734.

The Noether theorems for systems of singular integral equations. (Rus-
sian) Izv. Gruz. Industr. Inst. im. S. M. Kirova, 1943, No. 1(15), 315-321.

Certain new theorems on the equation of vibrations and their applications
to boundary problems. (Russian) Trav. Univ. Tbhilissi 26A, (1945), 1-11.

Solution of a fundamental boundary problem in the displacements for vi-
brations of an elastic medium. (Russian) Soobshch. Akad. Nauk Gruzin.
SSR. 9 (1948), 99-106.

Proof of theorems on the existence for the basic dynamical boundary value
problems of the theory of elasticity. (Russian) Scientific Session of Thilisi
State University (May 31 — June 5, 1948). Program of work and theses of
reports. Thilisi Univ. Press, Thilsi, 1948, p. 5.

A space problem on the oscillation of an elastic body with given displace-
ments on the boundary. (Russian) Doklady Akad. Nauk SSSR (N.S.) 67
(1949) 233-236.

The spatial dynamical problem of the theory of elasticity with given dis-
placements on the boundary. (Russian) Soobshch. Akad. Nauk Gruzin.
SSR. 10 (1949), 3-8.
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The spatial dynamical problem of the theory of elasticity with given
stresses on the boundary. (Russian) Soobshch. Akad. Nauk Gruzin. SSR.
10 (1949), 257-262.

Boundary problems of the theory of vibrations and integral equations.
(Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow—Leningrad, 1950,
280 pp.

On the boundary value problems of the steady vibrations of elastic bodies.
(Russian) Uspehi Matem. Nauk (N.S.) 5 (1950), No. 3(37), 190-193.

Efficient solution of some problems of the theory of elasticity. (Russian)
Enlarged Scientific Session of A. Razmadze Mathematical Institute (Jan-
uary 26-28, 1950). Program of the Work and Theses of Reports. Izdat.
Akad. Nauk Gruz. SSR, Tbilisi, 1950, p. 14.

Some new remarks to the theory of singular integral equations. (Russian)
Trudy Tbil. Univ. 42 (1951), 1-23.

Fundamental problems in the mathematical theory of diffraction (steady
state processes). Translated by C. D. Benster. NBS Rep. 2008, U. S.
Department of Commerce, National Bureau of Standards, Los Angeles,
Calif., 1952.

Boundary problems of the theory of steady elastic vibrations. (Russian)
Uspehi Matem. Nauk (N.S.) 8 (1953), No. 3(55), 21-74.

New integral equations of the theory of elasticity of anisotropic bodies
(with M. O. Basheleishvili). (Russian) Soobshch. Akad. Nauk Gruzin.
SSR 15 (1954), 327-334.

New integral equations of the anisotropic theory of elasticity and their ap-
plication to the solution of boundary problems (with M. O. Basheleishvili).
(Russian) Soobsc. Akad. Nauk Gruzin. SSR 15 (1954), 415-422.

Randwertaufgaben der Schwingungstheorie und integralgleichongen. Veb
Deutscher verlag der Wissenschaften, Berlin, 1956, 239 pp.

On some new works in the mathematical theory of elasticity at the Tbilisi
University. (Russian) Trudy 1l Vsesojuznogo Mat. s’ezda, Moscow, 1956.
Review reports. M., Izd. AN SSSR 3 (1958), 453-462.

On boundary problems in the theory of elasticity for piece-wise inhomo-
geneous bodies. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 22 (1959),
129-136.

Boundary problems in the theory of elasticity for piecewise non-homoge-
neous bodies. Soobshch. Akad. Nauk Gruzin. SSR 22 (1959), 265-271.

Theory of boundary problems for non-homogeneous elastic bodies. Fun-
damental theorem of equivalence. (Russian) Soobshch. Akad. Nauk
Gruzin. SSR 22 (1959), 401-408.



Viktor Kupradze 11

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

On boundary problems in the theory of elasticity for piecewise-inhomo-
geneous bodies. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 22 (1959),
521-528.

New boundary value problems of elasticity. (Russian) Trudy Thil. Univ.
76 (1959), 1-41.

On the boundary value problems of the theory of elasticity for piecewise
inhomogeneous media. (Russian). Trudy Vsesojuznogo Soveshchania po
Differents. Uravn. (Yerevan, November, 1958), pp. 102-106, Izd. Akad.
Nauk Arm. SSR, Yerevan, 1960.

Singular integral equations and boundary-value problems of elasticity the-
ory. (Russian) Tbiliss. Gos. Univ. Trudy Ser. Meh.-Mat. Nauk 84 (1962)
63-75.

The method of singular integral equations in the spatial theory of elastic-
ity. (Russian) Trudy Vsesojuzn. s’ezda po teoretich. i prikl. mekhanike,
1960. M.-L., Izd. AN SSSR, 1962, 374-383.

On one method of an approximate solution of some problems of diffrac-
tion. (Russian). The 2nd All-Union Symposium in Wave Diffraction Vtoroy
Vsesojuzn. Simpoz. po difraktsii voln (Gorkii, June 7—13, 1962), pp. 5-7,
Annotatsii dokladov. Izd. AN SSSR, Moscow, 1962.

An approximate method of solving certain boundary-value problems (with
M. A. Aleksidze). (Russian) Soobshch. Akad. Nauk Gruzin. SSR 30
(1963), 529-536.

Potential-theoretic methods in the theory of elasticity. (Russian) Gosu-
darstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963, 472 pp.

A general mixed boundary-value problem in elasticity theory and potential
theory (with T. V. Burchuladze). (Russian) Soobshch. Akad. Nauk Gruzin.
SSR 32 (1963), 27-34.

Progress in Solid Mechanics. Vol.III. Dynamical problems in elasticity
by V. D. Kupradze. Edited by I. N. Sneddon and R. Hill North-Holland
Publishing Co., Amsterdam, Interscience Publishers John Wiley & Sons,
Inc. New York, 1963.

The method of functional equations for the approximate solution of certain
boundary-value problems (with M. A. Aleksidze). (Russian) Zh. Vychisl.
Mat. i Mat. Fiz. 4 (1964), 683-715.

On an approximate solution of limiting problems of mathematical physics.
(Russian). The 3rd All-Union Symposium in Wave Diffraction Tretii Vs-
esojuzn. Symp. po difraktsii voln (Tbilisi, September, 24—-30, 1964), pp.
110-113, Referati dokladov, Nauka, Moscow, 1964.
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1. INTRODUCTION

One of the fundamental issues in analysis is that of correlating the regu-
larity of a geometric ambient to the well-posedness of boundary value prob-
lems arising naturally in that setting. For example, the treatment of elliptic
boundary value problems formulated on scales of Sobolev/Besov spaces for
differential operators with smooth coefficients is rather complete in the set-
ting of ¥>° manifolds. See, e.g., [7], [10], [L7]. By way of contrast, there are
many interesting open questions formulated in the presence of less regular
structures (see [8]).

Very often, a basic result which is used to jump-start the theory is the
classical Lax—Milgram lemma. However, while this requires very little regu-
larity for the objects involved, one is forced to stay within the constraints of
Hilbert space structures, which enter typically through the considerations
of L? (and various L?-based) spaces.

In this paper we explore the extent to which it is possible to depart from
this basic case and consider LP-based Sobolev spaces with p not necessarily
equal to 2. We do so without having to strengthen the original assumptions
pertaining to the nature of the coefficients (which are assumed to be only
bounded and measurable), and this naturally imposes limitations on the pa-
rameters intervening in the spaces involved. On the geometric side, the main
novelty is the fact that we succeed in formulating our main well-posedness
results in the rather general setting of Lipschitz manifolds. Not only does
this category of manifolds encompass many particular cases of great inter-
est for applications, but this also constitutes the minimally smooth setting
where our problems may be formulated and solved. As such, our results are
sharp from a multitude of perspectives.

The organization of the paper is as follows. In Section 2 we consider
weighted Sobolev spaces of arbitrary smoothness in Euclidean Lipschitz do-
mains and prove that Stein’s extension operator continues to work in this
setting. In turn, this is used to establish a very useful interpolation re-
sult (cf. Theorem 2.6). In Section 3 we study the trace theorem for such
weighted Sobolev spaces, while in Section 4 we construct a boundary ex-
tension operator (which serves as an inverse from the right for the trace
mapping). In Section 5 we treat boundary value problems for elliptic sys-
tems with bounded measurable coefficients in Euclidean Lipschitz domains.
Our main well-posedness result in this regard is contained in Theorem 5.1.
By means of counterexamples this is shown to be sharp. The scope of the
theory developed up to this point is enlarged in Section 6 through the con-
sideration of the class of weakly Lipschitz domains. Finally, in Section 7,
we further generalize these results to the setting of compact Lipschitz mani-
folds with boundary. This portion of our paper may be regarded as a natural
continuation of the work initiated in [4].
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2. WEIGHTED SOBOLEV SPACES AND STEIN’S EXTENSION OPERATOR

We shall also work with the following weighted version of classical Sobolev
spaces, which have been previously considered in [12].

Definition 2.1. If p € [1,00], a € (—=1/p,1 —1/p) and m € Ny are given
and €2 is a nonempty, proper, open subset of R"™, consider the weighted
Sobolev space WP (), defined as the space of locally integrable functions
w in © for which 9*u € L, (Q) (with derivatives taken in the sense of
distributions) whenever o € N has |a| < m, and

1/p
ullwmr ) = ( Z /|(8°‘u)($)|p dist(z, 0Q2)*P dm) <oo. (2.1)

la|<m

Finally, in the case when (2 is understood from the context, we shall employ
the notation

WIHP(R™) := {u € L}OC(R”) : 0% € L}OC(R”) whenever |a| < m, and

1/p
l|ullywmr @ny = Z (/|(8au)(x)|p dist(x, 0Q)P dz) < oo} (2.2)

|a\§m Rn

We wish to stress that W™P(R™) is not W ?(Q) corresponding to =
R”™ (which, incidentally, is not a permissible choice since Q) is assumed to
be a proper subset of R™). Instead, the named space should always be
understood in the sense of (2.2).

Hence, the case when ¢ = 0 in Definition 2.1 describes the standard
Sobolev spaces (LP-based, of order m) defined intrinsically in the open set
Q. In such a scenario, we omit including a(= 0) in the notation for these
spaces and simply write W"™P(Q).

Fix a Lipschitz domain €2 in R™ and recall from [1, Theorem 3.22, p. 68]
that, since € satisfies the so-called segment condition, the inclusion operator

€°(Q) — W™P(Q) has dense range, if p € [1,00), m € Ny. (2.3)

On the other hand, in the weighted case, given any Lipschitz domain €2,
60 (Q) — W ™P(Q) has dense range, (2.4)

if pe(l,00), meNy, and a € (—1/p,1—1/p). ’

This is proved much as in (2.3), the new key technical ingredient being the

fact that, given any Lipschitz domain 2 C R"™,
dist(-,00)" is a Muckenhoupt Ap,-weight in R" 05
whenever p € (1,00) and a € (—1/p,1—1/p). (25)

See [15] for more details in somewhat similar circumstances.
Let .£™ denote the Lebesgue measure in R"™.
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Definition 2.2. Assume that p € (1,00) and a € (—1/p,1 — 1/p) are
given, and that ) is a nonempty, proper, open subset of R™. In this context,
let LP(£2, dist(-,00)* £™) denote the weighted Lebesgue space consisting
of .Z"-measurable functions whose p-th power is absolutely integrable with
respect to the weighted measure dist(-,90Q)% £". Also, for each m €
Ny, define the weighted Sobolev space of negative order W, ™P () as the
subspace of the space of distributions 2’(2) given by

a

W, ™ P(Q) == {U € 7'(Q) : there exist
{fotjal<m C LP(Q, dist(-,00) £™)

such that u = Z 0% fo in @’(Q)}. (2.6)

|| <m

Equip this space with the norm

||u||Wn’77n,p(Q) =

= infaafa( > / |fa(33)|pdist(x,89)“pd1;>1/p. (2.7)

la|<m la|<m ¢
Finally, introduce
W™P(Q) := the completion of €>°(Q) in WP (1), (2.8)
and endow this space with the norm inherited from W2 ?(2).

The scales of spaces introduced above enjoy a number of useful properties,
some of which are discussed in the proposition below.

Proposition 2.3. Letp € (1,0), a € (=1/p,1 —1/p), and m € Ny be
given, and suppose € is a nonempty open subset of R™. Then W]™P(),
WP (Q), W, ™P(Q) are reflexive Banach spaces and

(Wrmr(@))* = W' (), (2.9)
where 1/p+1/p’ = 1.

Proof. Fix a,p as in the statement and let N be the number of multi-
indices o € Nj satisfying |o| < m. Define the injection j : WP(Q2) —
[LP (€2, dist( -, 0Q)* £™)]N by setting j(u) := {0u}jaj<m- Then j is an
isometry  identifying W™ P(Q2) with a closed subspace of
[LP(Q, dist(-,00)P £™)]N . Since the latter is a reflexive Banach space,
it follows that so is WP(2). Having established this, it follows from (2.8)
that W™P(Q) is also a reflexive Banach space. Finally, that W, ™?(Q) is
a reflexive Banach space will follow from what we have just established,
once we justify the duality formula (2.9). This, in turn, is a consequence of
the aforementioned isometric embedding of W/"P(f2) into a direct sum of
weighted Lebesgue spaces, the Hahn-Banach theorem, and Riesz represen-
tation formula. |
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Our next goal is to discuss the action of Stein’s extension operator in the
context of weighted Sobolev spaces. This requires some preparations and
we begin by recalling that the function ¢ : [1,00) — R given by

e

YO = — Am{ee ROy > (2.10)

0

has, according to [16, Lemma 1, p. 182], the following properties:
¥ € (1, 00)), (2.11)
/ BN =1, (2.12)
1

/A%(A) d\=0, Vk €N, (2.13)

1
PN =O0AN), VN eN as A — oo. (2.14)

In particular, (2.14) guarantees that |¢| decays at infinity faster than the
reciprocal of any polynomial.

On a different topic, recall from [16, Theorem 2, p. 171] that for any
closed set F' C R™ there exists a function p,eq : R — [0, 00) such that

Preg € CC R\ F), preg =~ dist(-,F) on R, (2.15)

and, with Ny := NU {0},
|0% preg ()| < Co [dist(z, F)] , Yae Ny and Vx e R"\ F. (2.16)
To proceed, let €2 be a graph Lipschitz domain in R™ and denote by

%2°(Q) the vector space of restrictions to 2 of functions from €>°(R™).
Also, if prey stands for the regularized distance function associated with €2,
we set p 1= Cpreq, where C' > 0 is a fixed constant chosen large enough so

that

1—-|af

p(z — sep) >2s, Yze€ I and Vs >0, (2.17)
where {e;}1<;j<n denotes the standard orthonormal basis in R™ (hence,
e, = (0,...,0,1) € R™). The above normalization condition on p ensures
that

T+ Mp(z)e, €Q, Yz e R"\Q and VA > 1. (2.18)

Let us also note that in the current case (i.e., when F := Q where Q is a
graph Lipschitz domain in R™), there holds

p € Lip(R™), (2.19)

where Lip(R") stands for the set of Lipschitz functions in R™.
The role of p is to permit us to define Stein’s extension operator (cf. [16,
(24), p. 182]) acting on u € €;°(Q2) according to

oo

(Eaogrr u)(x) := /u(m + Ap(z)en)p(N) dA, Vo € R", (2.20)
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Incidentally, the fact that

Ea—prr u € Lip(R") and (Sogrr u)|, = u, Yu € (), (2.21)

is a direct consequence of (2.19), (2.20) and (2.12).
We are now in a position to state the following extension result.

Theorem 2.4. Let Q) be a bounded Lipschitz domain in R™. Then there
exists a linear mapping

Sorn 1 €(Q) — Lip, (R") (2.22)

with the property that for each m € Ny the mapping &q_grn extends to a

bounded linear operator
Eqprn : WIHP(Q) — WP(R™)
(2.23)
such that (So—pn u)|, =u, Yue W "P(Q),

Q
provided
either p € (1,00) and a € (—1/p,1 —1/p),

(2.24)
orp=1anda=0.

Proof. In the case when (2 is a graph Lipschitz domain, it has been proved in
[3] that Stein’s extension operator (2.20) does the job. This result may then
be adjusted to the case when € is an arbitrary bounded Lipschitz domain.
One way to see this is to glue together the extension operators constructed
for various graph Lipschitz domains via arguments very similar to those in
[16, Section 3.3, p. 189-192]. Another, perhaps more elegant argument is
to change formula (2.20) to

(Gopntt)(z /u v+ Ap(@h(@) (NN, Ve R, (2.25)
1

where h € €°(R"”,R") is a suitably chosen vector field. In particular, it is
assumed that h is transversal to 02 in a uniform fashion, i.e., that for some
constant x > 0 there holds

v-h>k " tae. on 09, (2.26)

where v is the outward unit normal to , and #"~! is the (n — 1)-
dimensional Hausdorff measure in R™. The vector field h is a replacement
of e, and this permits us to avoid considering a multitude of special local
systems of coordinates. |

We conclude this section by discussing an important interpolation for-
mula for weighted Sobolev spaces of arbitrary order in Lipschitz domains
in Theorem 2.6 below. As a preamble, we first record the following folklore
interpolation result. Here and elsewhere [, -]y denotes the usual complex
interpolation bracket.
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Lemma 2.5. Assume that Xo, X, and Yy, Y1 are two compatible pairs
of Banach spaces such that {Yy, Y1} is a retract of {Xo, X1} (here and else-
where the “extension” and “restriction” operators are denoted by E and R,
respectively). Then for each 6 € (0,1) one has

[Yo, Yilo = R([Xo, X1]6). (2.27)

Here is the theorem advertised earlier, asserting that our class of weighted
Sobolev spaces is stable under complex interpolation. In this regard, we wish
to stress that the extension result from Theorem 2.4 plays a key role.

Theorem 2.6. Let Q2 be a Lipschitz domain in R™ and assume that, for
i€ {0,1}, we have 1 < p; < oo and —1/p; < a; <1—1/p;. Fiz § € (0,1)
and suppose that p € (0,00) and a € R are such that 1/p = (1—0)/po+6/p1
and a = (1 — 0)ag + 0ayr. Then for each m € Ny there holds

[Wan o (), WP ()] = WP (Q). (2.28)

Proof. The outline of the proof is as follows. First, from the well-known
interpolation results for Lebesgue spaces with change of measure (cf. [2,
Theorem 5.5.3, p. 120]) it follows that formula (2.28) holds in the particular
case when ©Q = R™ and m = 0. Making use of [14, Theorem 3.3] we then
allow m € Ny arbitrary via convolution with an appropriate Bessel potential.
With this in hand, (2.28) follows from (2.23) in Theorem 2.4 and the abstract
retract-type result from Lemma 2.5. O

3. THE TRACE THEOREM FOR WEIGHTED SOBOLEV SPACES

For each k € Ny U {oc}, we denote by €;*(R") the restrictions to R” of
compactly supported functions of class €% in R™. Recall that £ denotes
the n-dimensional Lebesgue measure in R" and, for each x € R’} , abbreviate
§(x) = dist(z, ORT). Next, for each p € (1,00) and each a € ( — ]%, 1-— %),
define the weighted Lebesgue space

LP(RT,6°P ™) = [P(R", 6°Pdz) = LP(R", 2°Pdzx) (3.1)

as the space of #£"-measurable functions f : Rt — R such that
1/p
[ fll e ey sar2my == </|f|p5“p d.i”") < 0. (3.2)
RZ

Moving on, given p € (1,00) and a € (—% ,1— %), define the homogeneous

weighted Sobolev space (of order one) in R’} by setting
Whe(RT) = {u €LL.(R"): due LP(R",§%dx), 1 < j < n} (3.3)

where each 0;u above is understood in the sense of distributions.
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Finally, for p € [1,00] and s € (0, 1), define the homogeneous Besov norm
I[Nl e 1y a8

W g ar”
Top Ao dy) . (3.4)

Moo= ([ [ =10

Rn—1Rn—1

After this preamble, we are ready to deal with the main technical step
in establishing the well-definiteness and boundedness of the trace operator
for weighted Sobolev spaces in the upper half-space.

Proposition 3.1. Let p € (1,00), pick a € (f% ,1— %), and set s :=
1—a—1/pe(0,1). Then for every u € €} (R) there holds

Hu\am BPP(Rn-1) <
< Cpan ||8nu||a£(1ﬂ£;5apdx) ||Vn,1quL;(aH;117{£pdx)’ 35)
where Vy_1u := (014, ..., 0p—1u), and the constant Cp o n € (0,00) is given
by
Cpam = [22p+a—2+1/p Lt (ap + 1)_a_1/p><
X (p(1 —a) — 1)22-ap+1/p 'Wn—z] 1/”. (3.6)

In particular, Cp q.n satisfies

2 a+1
a€ (1,00 = Cpan— (—a)fl(a n 1) Wn_o as p— 17, (3.7)
and
a€0,1)=Cpqn— 00 as p— oo. (3.8)

As a consequence of (3.5), for every u € €} (R%) there holds

lulorn || gr.r (gn-1y <

< Cp,a,n HVUHLP(R” ,80rdz) = Cp,a,n ||UHW5P(R1) (39)

Proof. Identifying OR"} = R" !, by definition we have

P u(z’,0) — u(y’, 0)”
[ulore [ o0 gn1) = / / P dy dz’.  (3.10)

' eRn—1 yleRn—l

Fix 2,y € R" 1 and let A\ € (0,00) be a fixed constant to be determined
later. By the triangle inequality and the fact that p € (1,00), we write

lu(z',0) — u(y’,0)|P < 22P=V(I, + I, + I3), (3.11)
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where

p
;

L= ‘u(:c’,O) —u(z', Az’ =)

[2 = ‘u(m',/\\m/ - y/l) - U(y/a)\|33/ - y/|) p’
I3 := ‘u(y’,)\h?/ - y’l) - u(y/,o)‘p'

Using this notation, we now have

(3.12)

H“bRi H%g’P(RH) S

3
I
2(p—1 J / /
<220y / / [y e (319)
]:lx'E]R"’l y'€Rn—1

From here, we wish to estimate the individual contributions from Iy, I, and
I3. In this vein, consider first

Il / /
/ / |x/ _ y/|n—1+8p dy dz’ =

' €Rn—1 y' cRn—1

’ _ / I o1\ |P
_ / / |u(x7o|2r u(z’, Az’ —y'|)| dy' da’.  (3.14)

! y/|n71+sp

x! ER”* 1 y/ ER‘VLf 1

Invoking the integral version of the (one-dimensional) mean value theorem
in the n** component then gives

[ [ MO
X

! _ y/|n—1+sp

1
= |

x/E]Rn—l y/eRn—l

w’ERn_l yleRn—l

p

X dy dx’' <

1
[ =1 @) (' 0= 0N )
0

1
P
<A / / 2/ — g/ [ 1rpG—D) X

r'eRn—1 yleRn—l
1

P
X </|(8nu)(a:’,t/\x'y’)|dt) dy' dz’, (3.15)
0

after changing ¢t — 1 —t and bringing the absolute value inside the integral.
For each fixed 2/ € R" ™!, we will use polar coordinates to write ¢/ = '+ pw,
where w € S""2 and p € (0,+00). Then, since 3y’ € R"~1, this implies
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dy' = p"2dpdw. Thus,

Il / /
[ | i

x'eRn—1 ’l/' cRn—1
1

/ / / T ETTe 1>(/| Onu)(@', Apt) |dt) dp dw da' =

z’eRn—1wesSn—2 0 0

=N w,_s / / T — </| (Opu) (2, Apt) |dt> dpdz’, (3.16)

z’€Rn—1

where w,,_» represents the area of the unit sphere in R*!. Let us make the
change of variables 6 := (Ap)t. This entails df = (Ap)dt and the interval
of integration changes from [0,1] to [0, Ap]. Therefore, the last integral in
(3.16) may be written as

[e%S) Ap
1 p
AP wy, o / /,0_1+p(1_3) (/ | (Opu) (2, 0)| Y d9) dpdx’ =
0

z’€Rn—1 0

o / ]op_l_si’<]p‘(8nu)(x’,9)’d9>pdpdx’. (3.17)
0

x’eRn—1 0

Make another change of variables by letting 1 := Ap. This yields dn = Adp
and the interval of integration changes from [0, Ap] to [0,7]. Consequently,
the last integral above becomes

/ 7 (Z)_Hp( j I(anu>(x’,0>|de>pi dn da’ =

z’eRn—1 0

APe / {7n1sp(/n|(8nu)(x/,0)|d@)pdn}dw/. (3.18)
0

z/€Rn—1 0

At this point we wish to apply Hardy’s inequality inside the curly brackets.
Recall (cf., e.g., [16, p. 272, A.4]) that this states that for ¢ € [1,00),
€ (0,00), and f : [0, 00] — [0, 00] measurable,

777‘1 (/f d9) dn< /f )9 0971 d. (3.19)

0

Since u € €} (R%) it follows that |(d,u)(2’, -)| is measurable and non-
negative. Moreover, s € (0,1) hence r := sp € (0,00). Thus, we are indeed
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in a position to use Hardy’s inequality with ¢ := p € (1, 00). Doing so gives

AP w, o / /_13p</|8ux9‘d9) dnds’ <

z/€Rn—1

< o n2 / /| u) (2, 0)P 6P df da’ =

x/eRn—1
:w% / | (@) (2)|” §(x)%P da, (3.20)
R}

where the last equality is due to Fubini. Putting everything together, we
have established

Vi !
/ / |n Trep dy dz’ <

z/€RP—1 y/€R"—1

<y 2 / |(Bn) ()| 6(2)® dr. (3.21)
J

By interchanging the roles of =’ and %/, a similar argument shows

/ / |” 1+sp dy' da' <

x/eRn—1 y reRn—1
< yep 2 / |(Onu) (@) [7 67 dz. (3.22)
s
R%
At this stage, we are left with estimating the contribution from I5. With

this goal in mind, apply the integral version of the mean value theorem in
R™ ! in order to write

I
/ / |2/ — g/ |t dy' da’ =

x/eRn—l yleRn—l

/ / (e, A" = y']) = wy', Alz” = '[P

|£17/ _ y/|n—1+sp

dy' dx’ =

r/eRn—1 y/G]Rn—l
1

1 /
/ / W=y /((%Alx’*y’l)*(y',k\x’*y/l))x

' eRn—1 yleRn—l 0

x (Vu) (t(ac’, Ma' —y'[) + (1 =) (v, A2’ — y'\)) dt

dy' dx’ =
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- ]

z’€R—1 y/eRn—1

1

P
/ (2" =y, 0) - (Vu)(ta' + (1 = t)y', A2’ — y/|) dt| dy' da’ <
0

/ / |n 1+sp x

xz'€Rn—1 y/eRn—1

1
x</|x’—y’
0

where the last step is based on the Cauchy—-Schwarz inequality. In turn, the
last expression in (3.23) may be dominated by

/ / |n 14+p(s— 1)

2/ ERn—1 ¢/ cRn—1

p
Vi—1u) (ta’ + (1 = t)y', A’ — y’\)‘ dt) dy' dx', (3.23)

P
x [/‘ Vaoiu) (tz' 4+ (1= t)y', Az’ —y’\)‘ dt} dy' dz’ =
0

1

/ / [/ |2 —yI” L+p(s— 1))1/p><

' ERn—1 yleRn—l 0

p
X ’(Vn1u)(tx'+(1—t)y',)\|:c’—y’|)‘dt] dy' dz'. (3.24)

We proceed by invoking the generalized Minkowski inequality which permits
us to estimate the last expression above by

U( / / x—y\” 1)

y'€Rn—1 g/ cRn—1

p /p qp
X ‘(Vn,lu) (v + (' —y'), A2’ — y’|)‘ dx’ dy’) dt} . (3.25)

Introducing 2’ := 2’ — ¢/, for each fixed ¢y’ € R"~!, and then using Fubini
further transforms this expression into

O] et

2/ €Rn—1 y/cRn—1

/ / /! P / / 1/17 b
X |(Vp—1u)(y' + 2", A|2'])| dy dz dt| . (3.26)
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Let us perform another change of variables by letting ¢ := 3/ + tz’ for
fixed t € [0,1] and fixed 2’ € R"~1. This implies d¢’ = dy’ and (3.26) now
becomes

UL ] et

2/ €Rn—1 ¢/ eRn—1

X [(Vooaw) (€ M) d dz’)l/p dtr -

/ / m‘(anlu)(ﬁ',AIZ’l)’pdf’dz’. (3.27)

zleRn—l gleR’n,—l

From here, pass to polar coordinates in the variable z’. Specifically, set 2z’ :=
(pw) /A where p € (0,00) and w € S™"~2. This entails d2’ = p" 2 /A" dpdw,
so we may write (3.27) as

1
/ / FIErTean) |(Vnoa) (&N dg dz' =

Z/€R7L71 5’6R’"’71
oo

n 2
= A 1// / n— 1+p(s 1)| n-1) (€, p)|" d¢’ dw dp =

05n—2¢/cRn—1

= )\p(s—l) wn,g/ / ‘(vnflu (5/3 p) ’ppap dél dp =

0 gleR‘n,—l

— N [ |(Vamr@)] )7 de, (325)
)

where the last equality uses Fubini.
At this stage, combining (3.28), (3.27), (3.26), (3.25), (3.24), and (3.23)
establishes

I
— 2 gyda <
’ ]R/ 14 R/ 1 |'I/7y/|n71+5p
z'eR? L y’eR"~

<y / (V) ()] 6(2) da. (3.29)
A

In concert, (3.29), (3.22), (3.21), and (3.13), then yield

2wy
HU|8R1H%€~F(RTL_1) < 22(17 1) (/\sp u;p 2)(

x / |(But)(@) [ §(2) dzt AP~ / (V) ()| 8(2) dq;) -
i

Ry
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2p—1
2P w9

= T Hanu“]j;p(]l@i,éapdx) AP+
+ 272w, o an_1u||§p(ﬂai,5apdx) APE=D = Axse 4 g aPGs=D 1 (3.30)

where we have set

22p—1 Wn—9
A = T Hanu”ip(Ri’éapdz) S [07 OQ) (3.31)
and
B:=22"2, anfluﬂ’zp(m’éapdw) €10, 00). (3.32)

We need to consider several cases for the constants A and B. If A =0
and B € [0, 00), then ||anu||Lp(]R1’§apdx) = 0 which forces u to be constant in
the last component; i.e, for each fixed 2’ € R"~1, there exists C,s € R such
that u(z’,t) = Cp for every t € (0,00). Since u € €} (R") (in particular, u
has compact support), this implies that C,» = 0 for every 2’ € R"~!. Hence,
u = 0 on the closure of the upper half-space and (3.5) is trivially valid in
this case. The case when B = 0 and A € [0,00) is handled in a similar
fashion. Finally, when A € (0,00) and B € (0, 00) define f : (0,00) — R by
setting

f(x) = Az + BaP~D = AP0~ L Ba=ap=l vz € (0,00).

We wish to minimize f. To this end, we begin by noting that f €% ((0, 0))

and
lim f(z) = lim (AzP3=971 4 Bgp=aP~1) = o,

: S E p(l—a)—1 —ap—1y _ (
zlirng f(x) zli%lJr(Ax + Bz ) = o0.
Moreover, since —2 —ap € (—p — 1, —1) implies —2 — ap < 0, we have
fl@) =0 2""[(p(1—a)—1)Az” — (ap+ 1) B] =0 <
<~ (p(1—a)—1)AzP —(ap+1) B=0. (3.34)
Solving the latter equation for x and denoting this solution as A gives
A= (ap+1)B r/f’
(p(1—a)—1)A
is the only local extreme point of f. To determine whether A is a local
maximum or local minumum for f, consider the second derivative of f, i.e.,

(@) = (p(1 —a) — 1) (p(1 — a) — 2) AaP= =34
+ (ap + 1)(ap +2) Bx~ 3, (3.36)

Evaluating f” at A then gives (after some elementary algebra)
F(N) = B3/ 4737 (p(1—a)—1) TP (ap + 1) 3P p> 0. (3.37)

As such, by the second derivative test, A is a local minimum for f. Combin-
ing (3.33) with the fact that A is the only local extreme point for f gives that
A is a global minimum for f. Recall that ||u[ors || zr.»(gn-1) does not depend
on \. Therefore, we may minimize the right-hand side of (3.30) by choosing

€ (0,0) (3.35)
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A as in (3.35). After a somewhat lengthy but elementary computation, this
choice yields

[ulors | 5p.0 o1y <

ap+2
_ —2—ap+1
< 92p 24+a+1/p Wrs p a ap+ /px

(ap ey P07

(a+1/p) (1—a—1/p)
X Haﬂu’ ;p(zlzi,gapdz)HVTklu’ iP(Ri,éadem)’ (3'38)

as desired. 0

We are now ready to state and prove the main result in this section.

Theorem 3.2. Assume that § is a bounded Lipschitz domain in R™ and
abbreviate §(z) = dist(x,0Q) for each x € R™. Also, let p € (1,00), pick

a€ (=5, 1- %), and set s :==1—a—1/p € (0,1). Then the restriction to
the boundary operator

€*(Q) > u+— u|6§2 € ¢°(09) (3.39)
extends to a mapping, henceforth called the trace operator,
Tr: WhP(Q) — BPP(09) (3.40)

which is well-defined, linear, and bounded. Concretely, Tr satisfies the esti-
mate

[ITr |

Brra) < C ||u||W;"’(Q)7 Vu e W P(Q), (3.41)

where the constant C' € (0,00) depends only on Q, n, p, and a.
Furthermore, the kernel of the trace operator (3.40) may be described as

{u eWIP(Q): Tru=0in Bg””(ﬁﬁ)} = WiP(Q). (3.42)

Proof. Via a localization argument (involving a partition of unity consisting
of smooth, compactly supported functions), and by locally flattening the
boundary of 2 via bi-Lipschitz maps (which preserve both the category of
Besov spaces and the class of weighted Sobolev spaces presently considered),
matters may be reduced to treating the case when 2 = R} and when the
Besov and Sobolev spaces in question are homogeneous. In such a scenario,
the desired conclusions in the first part of the statement follow from (3.9)
and a density argument (cf. (2.4)).

The right-to-left inclusion in (3.42) is clear, so we focus on the opposite
one. Specifically, pick u € W1P(Q) such that Tru = 0 in BP?(09), with
the goal of showing that u € W1P(). Let & be the extension of u to R"
taken to be zero outside Q. Then @ € LP(R™, 4 dz) and we claim that

9;(@) = d;u in Z'(R™), Vje{l,...,n}. (3.43)
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To this end, fix an arbitrary j € {1,...,n} and arbitrary ¢ € C°(R™).
Then,

(0;(@), 9) = — (7 0y0) =
— - [ )0 )@ o = - [ w@)Os)(e)da. (341

R™ Q
From (2.4) we know that 4°(Q) C WLP(Q) densely. Hence, there exists

a sequence {ug},cy C 6°() convergent to u in W2P(Q). This makes it
possible to write

/ u(z)(0j9)(z) de = klim uk(x)(059)(z) dz, (3.45)

—00

Q Q

hence, with ¢ denoting the surface measure on 02, and v = (vj)1<j<n
standing for the outward unit normal to §2, we have

(0(w), ) = = Tim [ up(2)(0;0) (x) do =

k—oco
Q

:klim [/(@uk)(a:)(p(x) dx—/ukgol/j da} =

/ Q o0
= /(@u)(ax)gp(w) dx — klim / upprj do =

Q o)
~ [ @@ ds - in [ (won)er; do -

Rn o)
= <5J\1;, ) — klim /Tr uy, pvj do. (3.46)

o0

As far as the last limit above is concerned, note that

‘ /Truk v do
o0

< llell Lo ooyl Trukll e gy — 0 as k — oo, (3.47)

< llell Lo o) | TruwllLeo0) <

since, by the continuity of the trace operator, Truy — Tru = 0 in B2P(0N)
as k — oo. Now, (3.43) follows from (3.46). In turn, (3.43) proves that

u e WhHP(R™). (3.48)
Moreover, using a partition of unity there is no loss of generality in assuming
that
suppu is contained in a neighborhood & of a point x, € 912,

near which 09 coincides with a Lipschitz graph. (3.49)
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In particular, we may assume that there is a truncated circular cone I with
vertex at the origin with the property that

z4+TCQ, Vae onon. (3.50)
To proceed, select n € C°(R™) such that

suppn €T, 0<n <1, /ndi”"ZL (3.51)
R”L

and, for each ¢ > 0, define 7. : R” — R by n.(x) := ¢ " n(z/¢e) for all
x € R™. Finally, for every ¢ € (0,1/2), define

Ue == (U1,
Then, clearly, u. € 6°(Q), and we claim that
Je, > 0 such that suppu. CQ, Ve € (0,e,). (3.52)
Indeed,
supp u. = supp(u*n.) C supp(u)+suppn. C (6NQ)+esuppn C Q, (3.53)

where the last inclusion (which uses the fact that suppn C TI') is valid for
€ > 0 small enough.

From (3.52) we may therefore conclude that u. € €°(f2) for € > 0 small,
and the proof of the membership u € W;p(Q) is finished once we show that

u. — u in WhHP(Q) as ¢ — 0. (3.54)

Since distributional derivatives commute with restrictions to €2, the claim in
(3.54) follows from the usual approximation to the identity argument bear-
ing in mind (3.43), (2.5), and the fact that the Hardy-Littlewood maximal
operator is bounded on weighted LP spaces when the weight in question
belongs to the Muckenhoupt A,, class. ([l

4. THE BOUNDARY EXTENSION THEOREM FOR WEIGHTED SOBOLEV
SPACES

The bulk of this section is devoted to proving the extension result stated
in Theorem 4.1 below. In the last part we make use of this theorem in order
to establish an interpolation formula which plays a basic role.

Theorem 4.1. Let Q@ C R"™ be a bounded Lipschitz domain, let p €
(1,00), a € (— %7 1— %), and set s :=1—a—1/p € (0,1). Then there exists
a mapping

Ex : BPP(0Q) — WEP(Q) (4.1)
that is linear, bounded, and satisfies

Tr(Ex(f)) = f, Vf € B2P(0Q). (4.2)
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Proof. We first focus on the case when 2 = R7. To this end, let n €
%> (R™) be a function such that suppn C B(0,4), n = 1 on B(0,2), and
0 <71 <1onR" Next, define the kernel

k:R? xRT — R (4.3)
by setting
T — xz— (2,0 -t
k(z,y) == 77( . y) [ / n(%) dz’} , (4.4)
Rn—1

Va = (z1,...,2,) ER}, Vy e R

We claim that & is a well-defined, non-negative function belonging to ¢'>° (R} x
M) Indeed, for each fixed point z = (2',z,) € R’} , we have

x—(Z,0)

- €(0,2) <= |z—(2,0)| <2z, <= 2’ €B,_1(z',V3x,). (4.5)

Since .,Sf”_l(Bn_l(x’, \/ga:n)) = c,a" ! (where B,,_1 is an (n — 1)-dime-
nsional ball) and 7 = 1 on B(0,2), we have a strictly positive lower bound
for the integral in the right-hand side of (4.4), namely

/

— 0

/ n(%z’)) dz' > cpa ™t (4.6)
n

Rr—1

In particular, it is meaningful to discuss the reciprocal of this number, for
which we have

-1

[/7’(95_950)) dzl] < eny " (4.7)

Rn—l
Having established this, the well-definedness and non-negativity of k follow

immediately. Also, by design,

/ k(x, (y',())) dy’' =1, Vo e R}. (4.8)
Rn—l

Concerning the regularity of k, this follows from the regularity of 7 and the
Leibniz rule, which give that for every multi-index «

O k(z,y) =

= > ﬂo,i,af{n(x;y)}a;{[ / n(gg_ij’o))dz’yl}, (4.9)

B+y=a o Rn—1
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then, finally, invoking the chain rule. For the last step, it helps to notice
that

/n(W)dz/— /n(m/;LZ/,l)dz’—

= (—z,)" ! / n(w', 1) dw’ = ca !, (4.10)

where ¢ := (=1)""t [ n(w’,1)dw’ is a real constant. Hence, on the one

]Rn—l
hand,
x —(2/,0) !
ot | [ (=) —conhn -
Rn—1 o
[v|—-1
_Je ( H (1-n —j))x,ll_”_hl, if v=1(0,...,0,7,), (4.11)

j=0 '

0, otherwise.

On the other hand, we have

2n(57)] =

,0
) Pgﬂ\ﬁ\f‘ﬁ‘(xl — Y, T — ynwfn)

s N(T—Y
=) (@ n)( - 7 : (4.12)
l51<18I " "
where, generally speaking, P%9(ty,...,tp,t,y1) is a homogeneous polyno-
mial of degree 7 in the variables ¢1,...,t,41; that is,
P’r&é(t) = Z ag76 t’y7 = (tla st tn+1) € Rn+1 ) (413)

[y|=r

where the ag*‘;’s are real-coefficients. Indeed, staring from the observation
that, for each j € {1,...,n} and for each differentiable function F, there

holds

n

Bz, [F(x - y)] - Z(akF)(x — y) Opkn = (Th = Ye)dm (4 149

2
x ZT T
n h—1 n n

formula (4.12) may be justified by induction on the length of the multi-index
B e Ng.
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In particular, from (4.12) we see that for each = (2/,z,) € R’ and
Yy € @ we have

Y e supp (8‘577) =
LTn
= |z —y| < 4z,

2lBl _
‘ 2I5I |,8| Y- Tn _ynvxn> < Cn,ﬁﬁ T 18l

— |02 [”<{nyﬂ‘ < Ca7 X0y <o (4.15)

Collectively, (4.9), (4.11), and (4.15) imply that the function k satisfies
[05F) (@, 9)| < Cra 2" X0y <t (4.16)
Vo= (2/,z,) ER}, VyeRY, VaeNj.
As a consequence,
‘k(m,y)‘ <cpT 1 "Xjo—y|<az,, ¥ (x,y) € R} x m (4.17)
and
(Vak)@9)] € e 02" Xpoyictans Vi = ('s20) € Y, Wy € BY. (415)

Moving on, consider the mapping & taking functions defined on OR"} =
R" ! to functions defined in R? according to the formula

(&) (@) ::/k(ax, (,0)) F(y) dyf, VeeRY, ¥ FeE R, (4.19)

Rn—1

Then, for each f € €.°(R"~!), we may employ (4.17) to conclude that & f is
well-defined. Also, thanks to (4.16), we have that & f inherits the regularity
of k,ie., &f € € (RY}).

We claim that for each p € (1,+00) and a € (— 2 51— 7) there exists
Ch.p.a € (0,+00) such that for each f € %CO(R"_l)

P a )|p /g0
/y (EN)(@)]" 22 dz < Cppa / / y_Z,|n 1+Spdydz, (4.20)
Rl Rt
where, as usual, s :==1—a—1/p € (0,1).

To justify (4.20), fix an arbitrary f € €.°(R"~!) and observe that (4.19)
implies that for each fixed 2/ € R?~!

FEN@] < [ [(Vakan 0D 156 = £ ', Yo e R (121)
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In turn, from (4.21), (4.18), and Hoélder’s inequality we obtain that for each
z = (2/,2,) € R} and each 2’ € R"!

I[V(fo“’f)}(w)|§0(xnn [ s dy,)”

lz—(y",0)[<4an

<Cayr oy 000 [ ) - f ' (122)

|z—(y’,0)|<4zn

At this stage, average the most extreme sides of (4.22) in 2’ € B,,_1(x, 4x,,) C
R" ! in order to obtain

IV (ER)@)] <
S | [ - selarar @)

|z—(2',0)|<4zy |2—(y’,0)|<4zn

for each x = (2, 2,) € R’}. Consequently,

[IvEnI@] ase iz <
iy

<c [ [lrw-ser

Rn—1Rn—1

/ A dx] dy' dz'. (4.24)

|lz—(2',0)|<4zp,
lz—(y’,0)|<4zy,

Observe that on the domain of integration of the inner-most integral we have
|2/ — 2| < V152, and |2’ —y'| < V15 x,, hence also |y — 2'| < 24/15x,, by
the triangle inequality. Bearing this in mind and using Fubini’s theorem,
we may estimate this inner-most integral by writing

/ fop*p*Q"*z dr <

|z—(2",0)| <4z,
lz—(y",0)|<4wn

oo

< / ( / ldx') PPN gy <

ly'—2"|/(2v15)  |a'—2'|<V15xp

9] o
ap—p—n-+1 _ n,a,p
<, / 2P dzx, = o (4.25)
ly'—2'|/(2v15)

where Cy, 4, > 0 is a finite constant, given that ap —p —n+1 < —1. At
this stage, (4.20) follows from (4.24) and (4.25).
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Moving on, we claim that for each radius R € (0,+00) there exists a
constant Cy, p . r € (0,+00) with the property that

/ (&) (@) 2% do <

R7NB(0,R)

< Chpar / fWPdy, YfeELR™). (4.26)
Rn—l

This estimate follows from a similar argument to that used in the verification
of (4.20) (making use of (4.17) in place of (4.18)).

The final property of the operator & we wish to establish is that for each
fedl®R)

& f extends continuously to M and

[(gf)|6R1](x’) — f(x/)7 Vo' e R = 8R1. (4.27)

To this end, fix f € € (R"!) along with some z/, € R"~!. Also, let some
arbitrary € > 0 be fixed. Since f is continuous at («7,,0), there exists 6 > 0
such that if y' € R" ™! satisfies |2/, —y| < d then |f(2,) — f(y')| < &. Then
for each x = (2, ) € R’} we may estimate

(65)(@) - £l = ] [ M6 o) (6 - sta))

Rn—1
[ Ikte 0| 17t = £ty

Rn—1

<C, ][ () — Fl)|dy' s (4.28)

|z’ —y'|<V15 zp

IN

where the equality is based on (4.8), while for the last inequality we have
used (4.17) and that the set {y/ € R*™1: |z — (y/,0)| < 4x,,} is contained
in the set {y/ € R*!: |2/ —¢/| < V152,}. Thus,

’(éaf)(x) — f(a:;)| <eif |2/ —2.| <d/2 and z, < 5/(2\/5), (4.29)

and the claims in (4.27) readily follow from this. In particular, Tr&f = f.
This completes the discussion in the case when @ = R} .

The general situation when (2 is an arbitrary bounded Lipschitz domain
may then be reduced to the case just treated via a smooth localization and
by locally flatenning the boundary via bi-Lipschitz maps (as we have done
in the past). Given that (€>°(R™)) |89 is dense in BP'P(0f2), the a priori
bounds established in the first part of the proof may be used to conclude
that all desired properties of the extension operator hold in this degree of
generality. (I
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In the last part of this section we once again revisit the issue of how
weighted Sobolev spaces behave under complex interpolation. Our first
result in this regard reads as follows.

Theorem 4.2. Let Q C R"™ be a bounded Lipschitz domain. Then

f 1,
{Wa p(Q)}1<p<oc, —1/p<a<l-1/p’

(woto (4.30)

(Q)}1<p<oo,71/p<a<171/p
are complex interpolation scales, in the following precise sense. Suppose
that, for j € {0,1}, we have 1 < p; < o0 and —1/p; < a; < 1 —1/p;.
Also, fix 0 € (0,1) and assume that p € (0,00) and a € R are such that
1/p=01-6)/po+0/p1 and a = (1 —8)ag + Oay. Then

[Wiro(Q), Wi{“(ﬂ)]g =Wl (Q), (4.31)
(W b (), W, P (Q)], = W, P (Q). (4.32)

In the proof of the above theorem the following abstract interpolation
result with constraints is going to be useful. For a proof, see [10, Theo-
rem 14.3, p. 97] (cf. also [8]).

Lemma 4.3. Let X;, Y;, Z;, 7 = 0,1, be Banach spaces such that
Xo N Xy is dense in both Xy and X1, and similarly for Zy, Z1. Suppose

that Y; — Z;, 7 = 0,1 and there exists a linear operator D such that
D : X; — Z; boundedly for j =0,1. Define the spaces
X;,(D)={veX;: DueY;}, j=0,1, (4.33)

equipped with the graph norm, i.e. ||ullx,(py = ||lullx; + [ Dully;, j = 0,1.
Finally, suppose that there exist continuous linear mappings K : Z; — X;
and R : Z; — Y; with the property D o K = I + R on the spaces Z; for
7 =0,1. Then

[Xo(D), X1(D)], = {u € [Xo, X1]o: Due [Yo,Yl]g}, 6e(0,1). (4.34)
We shall also need the well-known duality formula for the complex me-
thod of interpolation (see, for instance, [2]).

Lemma 4.4. Let Xy, X; be a compatible couple of reflexive Banach
spaces and let 6 € (0,1). Then

(X0, X1]o)" = [X5, X7lo- (4.35)
We are prepared to present the

Proof of Theorem 4.2. Formula (4.31) follows from Theorem 4.1 and Lem-
ma 4.3, used with

Xj =Wy Pi(Q), Y;:=0, and Z; := BY?i(0Q) (4.36)
(as usual, s; :==1—a; —1/p;), for j =0,1, and where
D:=Tr, K:=Ex, and R:=0. (4.37)
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That Do K = I+ R on Z; for j =0, 1 makes the object of (4.2), and (4.34)
becomes precisely (4.31), in light of (3.42). Finally, (4.32) is a consequence
of (4.31), Lemma 4.4, and Proposition 2.3. O

5. BOUNDARY PROBLEMS FOR ELLIPTIC SYSTEMS WITH BOUNDED
MEASURABLE COEFFICIENTS IN EUCLIDEAN LIPSCHITZ DOMAINS

The goal here is to prove the following sharp well-posedness result.

Theorem 5.1. Let Q C R"™ be a bounded, connected, Lipschitz domain
and assume that

A= (a?kﬁ) 1<5,k<n Jk € L>(Q), (5.1)
1<a,f<M

is a coefficient tensor satisfying the strong Legendre-Hadamard ellipticity
condition

Re Z Z DG ] = el (5.2)

7, k=1la, =1
V¢ = (&) 1<i<n e C"™ | for a.e. xze€Q,
1S6IM

for some ¢ € (0,00). Associated with the coefficient tensor A consider the
M x M second order system in divergence form

Lu:= (26 (ZZ@ 8ku5)> SQSM, u = (ug)i<p<m- (5.3)

j=1 k=1p3=1
Then there exists some € > 0 such that whenever
peE2—¢24¢), ac(-1/p,1-1/p)N(—c,e), s:=1—a—1/p, (5.4)
the Poisson boundary value problem with Dirichlet boundary data,
u € Wyr(Q),

Lu=feW (), (5.5)
Tru =g € BP?(9),

is well-posed. That is, assuming p, a, s are as in (5.4), for each £ € W 1P(Q)
and g € BPP(OQ) there exists a unique solution u of (5.5), which also
satisfies the estimate

oy < € (I,

where C' € (0, +00) is independent of £ and g.

)7 (5.6)

To set the stage, we first record a useful preliminary result in the propo-
sition below. General abstract stability results of this type have been es-
tablished in [9].
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Proposition 5.2. Suppose I is a convexr Euclidean set and (Xg)qer,
(Yg)qer are two complex interpolation scales of Banach spaces. In addition,
assume that T' is an operator such that

T: X, — Y, linearly and boundedly for each q € I, and

dg. €I such that T : X, —Y,, is an isomorphism. (5.7)

Then there exists a neighborhood O of q. such that T : X, — Y, is an
isomorphism for every q € 0.

We may now turn our attention to presenting the

Proof of Theorem 5.1. For starters, from the discussion in Section 2 we
know that

a

W, hP(Q) = {u € 2'(Q): 3hg,hy,..., h, € LP(Q,6dx)

such that u = hg + Z d;h; in _@'(Q)}, (5.8)
j=1

and the norm on this space is equivalent to

[ullyy 1.0 () = inf { > Nhjllze@.serds) © hoshas ... hn € LP(R, 6% da)
j=0

n
such that u = hy + Z 0;hj in @’(Q)}.
j=1
Granted these, it follows that
L:WkEP(Q) — W, 1P(Q) linearly and boundedly, (5.9)
whenever p € (1,00) and a € (—1/p,1—1/p). '

In addition, from the Lax—Milgram Lemma (which, in turn, makes use of
the strong ellipticity condition on L) we deduce that

L:Wh2(Q) — W~12(Q) isomorphically. (5.10)
Our next claim is that there exists € > 0 such that
L: WhP(Q) — W, P(Q) isomorphically
whenever p€ (2—¢,2+¢) and a € (—1/p,1 —1/p) N (—¢,¢).
This follows from (5.9), (5.10), and Proposition 5.2.

Having proved (5.11), the final step is to show that, for p, a as above
and with s := 1 —a — 1/p, the boundary value problem (5.5) is well-posed.
Uniqueness is clear from (5.11) and (3.42). For existence, let f € W, 1P(£2)
and g € BPP(09Q) be given. From Theorem 4.1, we know that v := Exg €

WLP(Q) satisfies Tr v = g. Moreover, since the operator Ex is bounded, we
have

(5.11)

||V||W;~P(Q) < Cllgllsrroa) - (5.12)
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where C € (0, 00) is independent of g. Consider the function fi=f—Lve
W, LP(Q) and note that

BE’P(SQ)) ) (5.13)

where C' € (0, 00) is independent of £ and g. Since L : WLP(Q) — W 1P(Q)
is an isomorphism and f € W, 1P(Q), it follows that w = L7}(f) €
Wh(Q) and Lw = f. Finally, take u:=v +w € W}IP(Q) and compute

Bl 1oy < € (Il 00y + gl

Iu=Lv+f=Lv+(f—Lv)=f (5.14)
and
Tru=Tr(Exg) + Tr (L7'(f)) =g+ Trw=g +0=g. (5.15)

This finishes the existence of a function u satisfying the boundary value
problem. O

Theorem 5.1 is sharp, in the sense that the membership of p to a small
neighborhood of 2 is a necessary condition, even when 2 C R" is a bounded
%> domain, and when a = 0 (i.e., in the unweighted case), if the coefficients
of the system L are merely bounded and measurable.

When n > 3, M = n, a counterexample may be produced by altering a
construction of E. De Giorgi from [5]. Specifically, consider 2 := {x € R™ :
|z] < 1} and, for each v € [0, §) and a, 8 € {1,...,n}, let Ayp be then xn
matrix whose (4, j)-entry is

a3l (x) = Sapdis+
v(n—9)(n —2)?

o p et

n xixa} {d n zxg
]5+n—2 ||

TP (5.16)

for each z € Q\ {0}. Obviously, afjg € L*(Q,.£") and a straightforward
calculation shows that

> D af@ed =

a,f=11,j=1
112 7(”‘7)(”_2)2(n i n = alila
=1+ 1) ;C + - i;fz B

for each ( = (Cia)lga,ign eR" and z € Q \ {0}. Given our assumptions on
v, it follows that the strong ellipticity condition holds:

)2 (5.17)

> > aif (@) = [¢)? Lmae. in Q (5.18)
a,B=11,j=1

V(= (Cia>1§a,i§n eR™.
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Now, the fact that v < n/2 ensures that the function

u(z) = ﬁ —x, Yo e\ {0}, (5.19)

belongs to W12(Q). Since by design u|89 = 0, we deduce that actually
u € WH2(Q). Furthermore, if

fo=(fioeos fo) with fii= =3 "% aaf] for 1<i<n,  (520)

a=1j=1
then clearly
fe [ whn(e), (5.21)
1<p<oo
while a direct computation shows that

D Oa(Aap(x)dsu) = f in 2'(Q). (5.22)

a,f=1

However, on the one hand v € W1?(Q) if and only if p < n/~, while on
the other hand n/y \, 2 as v /' n/2. By duality, (note that L is formally
self-adjoint), the same type of conclusion holds for p < 2.

6. THE SETTING OF WEAKLY LIPSCHITZ DOMAINS

A careful inspection of the arguments in the proof of Theorem 5.1 reveals
that we may relax the assumption on the domain 2, originally assumed to
be a Lipschitz domain. Specifically, it suffices to ask that 2 C R™ is a a
bounded, open set, with the property that for every xy € 02 there exist an
open neighborhood U of zg in R™ and a mapping F' = (Fy,..., F,): U — R”
with the following properties:

(i) F(U) is open and F': U — F(U) is a bi-Lipschitz map;

(ii) QNU ={z €U : F,(x) > 0}.
In the sequel, we shall refer to such a set 2 as being a weakly Lipschitz
domain. This is done in order to distinguish the latter from the more
familiar category of “strongly” Lipschitz domains considered so far.

Note that if the bi-Lipschitzianity assumption for F' is strengthened by
demanding that F is a ¢'-diffeomorphism, then the resulting class becomes
precisely the category of bounded ¢! domains in R™. This is easily seen by
invoking the standard Implicit Function Theorem for ¢! functions. How-
ever, when dealing with the case when F' is only bi-Lipschitz, the nature of
the Implicit Function Theorem changes drastically and, as a result, the class
of weakly Lipschitz domains is much larger than that of strongly Lipschitz
domains. To shed light on this issue, we next discuss some concrete exam-
ples. In fact, since the bi-Lipschitz image of a strongly Lipschitz domain
is a weakly Lipschitz domain, it suffices to show that the class of strongly
Lipschitz domains is not stable under bi-Lipschitz homeomorphisms.
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We start with an interesting example from (pp. 7-9 in) [6], where this is
attributed to Zerner. Concretely, consider the bi-Lipschitz homeomorphism

F:R? — R?, F(x1,x2) := (x1, p(x1) + x2), (6.1)

where ¢ : R — R is the Lipschitz function

1 1 1
3[t) — 92k—1 for 92k T = S 92k
olt) = 1 1 (6:2)

As is also visible from the picture below, the graph of ¢ is a zigzagged of
lines of slopes +3:

_ o o t

If one now considers the bounded Lipschitz domain £ C R2,
Q= {($1,$2)2 O0<z <1, O<.’132<331}, (63)

then F'(Q2), depicted below

@
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fails to be a strongly Lipschitz domain, since the cone property is violated
at the origin.

In fact, the construction described above can be refined to show that
bi-Lipschitz functions may fail to map even bounded C*° planar domains
into strongly Lipschitz domains. Concretely, pick o € Q and let ¢ : S1 —
(0,00) be the Lipschitz function uniquely determined by the requirement
that G : R? — R2, defined by G(z) := ¢((x —x0)/|x — x0|)(x — x0) if  # 70
and G(x) := 0, maps dB(xg,r) onto IQ (for some fixed, sufficiently small
r > 0). Then FoG maps the bounded, C*° domain B(z, r) onto the domain
shown in the picture above. There are many other interesting examples of
strongly Lipschitz domains 2 C R™ and bi-Lipschitz maps F' : R® — R"
with the property that F(Q) fails to be strongly Lipschitz. A large category
of such examples can be found within the class of conical domains. In
order to be more specific, let S?~! stand for the unit sphere in R™ and
denote by Si_l its upper hemisphere. Pick a bi-Lipschitz homeomorphism
W : S?1 — 871 along with an arbitrary Lipschitz function ¢ : S"~1 —
(0,00), and set

F:R" —R" F(rw):=rpwy Hw), r>0, wes" (6.4)
Q= {rw: we ST O<r<<p(w)}. (6.5)

Using |riwy — rows|? = |r1 — ra|? + rirefws — wal|? for every wy,wy € S 1,
r1,72 > 0, and the fact that the inverse of (6.4) is F~1(rw) = rp(w) 1 (w),

it can be easily checked that F' above is bi-Lipschitz. However, while 2 C R™
is clearly a strongly Lipschitz domain in R™,

F(Q) = {pw: w e (ST, 0<p<<p(w)}, (6.6)

may fail to be a strongly Lipschitz domain. In fact, near 0 € 9F(Q),
the surface OF(2) may fail to be the graph of any real-valued function
of n — 1 variables, in any system of coordinates which is a rigid motion of
the standard one (i.e., OF () is a non-Lipschitz cone). A concrete example,
which can be produced using the above recipe, is Maz’ya’s so-called two-

brick domain:
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A moment’s reflection shows that, indeed, near the point P, the boundary
of the above domain is not the graph of any function (as it fails the vertical
line test) in any system of coordinates isometric to the original one.

Moreover, images of bounded strongly Lipschitz domains via bi-Lipschitz
maps can also develop spiral-like singularities, such as

F(Q) = {rei(eflm) 0<f<m/4,0<r< 1} cR?=C,
: , , (6.7)
Q= {re“g 0<r<1,0<0< 71'/4}, F(rew) = pet(0—Inr)

Another interesting example of the phenomenon described above is as
follows. Let

Q:=[(0,1) x (~1,0)] U [U(s L27R=2 5. 07k [0,2’@2)} (6.8)
k=1
be the planar domain in the picture below:

T N R

It is not difficult to see that the uniformity of the cone condition is violated
in any neighborhood of the origin, so Qis not a strongly Lipschitz domain.
Nonetheless, on p. 19 of [11], Maz’ya has constructed a bi-Lipschitz map
F :R? — R? with the property that Q= F((0,1) x (0,1)).

In the next section we shall actually take this analysis a step further and
indicate that well-posedness results in the spirit of those established so far
continue to hold in the setting of Lipschitz manifolds with boundary, which
is even more general (as all weakly Lipschitz domains in R™ fall into the
latter category).

7. THE SETTING OF LIPSCHITZ MANIFOLDS WITH BOUNDARY

For the convenience of the reader, here we collect some basic rudiments
of analysis on Lipschitz manifolds.

A compact topological manifold with boundary .# of dimension n is a
compact, Hausdorff topological space .# with the property that for every
x € M there exists an open set U in .4, x € U, and a mapping ¢ : U — R"
such that ¢(U) is a relatively open subset of R} and ¢ : U — ¢(U) is a
homeomorphism. We shall call (U, ¢) a coordinate chart (about x). An atlas
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on ./ is a finite family &/ = {U;, ¢; }icr such that # = |J U; and (U;, ¢;)
i€l
is a coordinate chart for each i € I.

Define the interior 2 of .Z as the collection of points = for which there
is a coordinate chart (U, ¢) about x with the property that ¢(U) is an open
subset of R’,. Then set 92 := . \ Q and call it the boundary of .4 .

A compact topological manifold with boundary .# is called a compact
Lipschitz manifold with boundary if there exists an atlas (called Lipschitz
atlas) o/ = {U;, ¢; }scr such that for any i, j € I the transition map ¢i°¢;1 :
¢;(U;NU;) — ¢;(U;NU;) is by-Lipschitz (with respect to the usual metric
in R™). Two atlases are called equivalent provided their union is an atlas. A
Lipschitz structure on .4 is the equivalence class of a certain Lipschitz atlas,
called structural atlas. In what follows, given a compact Lipschitz manifold
with boundary ., we shall always assume that a Lipschitz structure on .#
has been fixed. Any Lipschitz atlas compatible with this structure will be
referred to as a structural atlas.

Given a compact Lipschitz manifold with boundary .#, equipped with a
structural atlas & = {U;, ¢;}icr, call a set S C A4 of zero measure in A if
¢;(U; N'S) has measure zero in R™ with respect to the usual n-dimensional
Lebesgue measure for every (U;, ¢;) € o/. Accordingly, a property is said
to hold almost everywhere (a.e.) on .4 provided the set of points where it
fails has zero measure in ..

A real-valued function defined a.e. on . is called measurable if it is so in
any coordinate chart of a structural atlas. Furthermore, the class LP(.#),
1 < p < 0, of real valued functions LP-integrable on .# is introduced in a
similar fashion.

Next we introduce the singular set of .4 relative to a structural atlas
of ={U;, ¢; }ier as being

Sing( A ; o) := {x € A : there exist i,j € I withz € U; N U;
and such that ¢; o ¢; ' : ¢;(U; NU;) — ¢;(U; N Uj)
is not differentiable at ¢, (x)} (7.1)
A basic observation is that the singular set of a compact, boundaryless,
Lipschitz manifold, relative to any structural atlas, has measure zero. In
the sequel, points in Sing(.#; «7) will be called singular points (relative to

/), whereas points in Reg(.#;.«7) := .4 \ Sing(.#; </) will be referred to
as reqular points (relative to 7).

Definition 7.1. Let (.#;, </;) be two compact Lipschitz manifolds with
boundary, j = 1,2. A continuous mapping f : .#; — .#> will be called
differentiable at x € .41 provided the following properties are valid:

(i) = is a regular point of .#, relative to some structural atlas <7 ;

(ii) f(z) is a regular point of .#5 relative to some structural atlas of;
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(ili) there exist (Uj,¢;) € &, j = 1,2, with x € Uy, f(x) € Us, such
that the function ¢p o f o 7' : ¢1(Ur N f~HU)) — ¢o(Us) is
differentiable at ¢;(x).

We continue to assume that (.#},.<;), j = 1,2, are two compact Lips-
chitz manifolds with boundary. A continuous map f : .#; — .#> will be
called Lipschitz if for any two coordinate charts (U;,¢;) € <7, j = 1,2,
the composition ¢ o f o ¢1_1 c 01 (U N f~Y(U)) — ¢2(Us) is a Lipschitz
function. Also, call f bi-Lipschitz, if f is a homeomorphism and both f and
f~1 are Lipschitz. Is important to observe that a Lipschitz function maps
sets of zero measure into sets of zero measure.

As a consequence of definitions and the celebrated theorem of Radema-
cher, according to which Lipschitz functions between Euclidean spaces are
differentiable almost everywhere, we have the following result.

Proposition 7.2. Assume that #;, j = 1,2, are compact Lipschitz
manifolds with boundary and that f : M1 — M> is a Lipschitz function. In
addition, assume that

1 (Sing(y; o)) has zero measure in My,

7.2

for any structural atlas <t of Ms. (7.2)
(We note that this condition is automatically verified if [ is bi-Lipschitz, or
if Mo is a €1 manifold.) Then f is differentiable almost everywhere in .

Moving on, if x € .#, two mappings f, g from a neighborhood of z into
R are called equivalent at x (and we denote this by f ~ g) if there exists V
open small neighborhood of z such that f|y = g|y. Classes of equivalence
modulo ~ will be called germs at x. We shall pay special attention to
germs of differentiable functions at a regular point x, relative to a structural
atlas &/, which will be denoted by Diff,(#;</). A continuous mapping
v:(—€,€) = M, e >0, with v(0) = = and such that there exists (U, ¢) € o
for which x € U and ¢ o~ is differentiable at 0, will be called path (through
x). For such a path v we define a linear mapping % : Diff, (A ; /) — R
called derivation along v (at ) by

d d

— = — t
L= 5G],
for any [f] € Diff,(#; 7). Let {ex }1<r<n denote the standard orthonormal
basis in R™. If (U, ¢) € & is such that = € U then, for each k =1,2,...,n,
the derivation along ¢~ (¢(x) +tey,) at @ € Reg(.#; &) is denoted by ﬁ .
Note that

d food™)

7. () ==, — (@), k=12....n. (7.3)
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Once a structural atlas &7 has been fixed, we can define the tangent space
at « € .4 to the manifold .# by setting

T, M = {di : ~y path through x} if © € Reg(A; ), (7.4)
Y

and

T, = {0} if x € Sing( ;). (7.5)
It is not difficult to check that T,.# is a vector space and that in fact
dim (T,.#) = n (i.e., the same as the dimension of .#) at any regular point
x, relative to «7. In fact, for (U,¢) € & a basis in T,.# at any regular
point x € U is given by {ﬁ}’,}zl. Now, the tangent bundle is

TM = | | Tott. (7.6)
rEM

We wish to emphasize that the tangent bundle T.# depends on the choice
of a structural atlas only up to a set of zero measure in .Z.

Going further, let f : .#1 — .#5 be a continuous function between two
compact Lipschitz manifolds with boundary .#; and .#5 which is differen-
tiable almost everywhere. We then define the gradient of f as the mapping
Grad f : T 1 — T.#> defined almost everywhere in the following way. At
almost every differentiability point x € .#) of f, Grad_y f, is defined as the
mapping of T,.# into Ty, .#> given by

i) __d
dy/ "~ d(fon)’
for any path 7 through x (note that f o~ is a path through f(x) for al-

most every x). Let us also note that if (U,¢ = (¢1,...,0,)) € & then
Grad,.ps @(ﬁ) = 0jk % for every 1 < j, k < n, where we have denoted by

Grad s fz ( (7.7)

% the standard derivation on R and, as before, §;; stands for the Kronecker
symbol.

Assume next that the compact Lipschitz manifold with boundary . is
oriented and equipped with a (Lipschitz) Riemannian metric. Being ori-
ented is defined essentially as in the smooth case. That is, an orientation
has been specified in T, .# for a.e. © € .# such that there exists a struc-
tural atlas o/ which contains only positive coordinate charts. Recall that
a chart (U, ¢) € o is called positive if the ordered n-tuple (ﬁ, . d%ﬂ)
is a positively oriented basis of T,.# for a.e. x € U. Also, by a Lipschitz
Riemannian structure, we mean that at almost any point x € .# some in-
ner product (-, - ), has been specified on the tangent space T,.# with the
following properties:

(i) (-, - ), varies measurably with z, that is, if &/ is a structural atlas
consisting of positive charts and (U, ¢) € o, then the functions

d d
gh@)=(==.—=)  ael, 1<ij<n, (78)

do; " do;
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are measurable on U;

(ii) there exist a structural atlas 7 and two finite constants Cy,Cy > 0
such that for any (U,¢) € «, for a.e. x € U, and any path v
through z such that ¢ o is differentiable at 0, there holds

Cill@o Ol < (40 5), <Gl O (@)

(here and elsewhere, || - ||gn refers to the Euclidean norm in R™).

This latter condition implies that the matrix GY(z) := (gg(x))lgmgn is
symmetric, bounded and positive definite in an uniform manner, for a.e.
z € U. In fact,

Cillv)|z- < (GY(x)v, v)rn < Colfvl[fn, (7.10)
for any v € R” and a.e. = € U.

Proposition 7.3. Any compact Lipschitz manifold with boundary A
has a Lipschitz Riemannian metric.

Proof. A Lipschitz Riemannian metric on .# can be constructed by locally
transferring the Euclidean metric from R" in a standard fashion, and then
gluing everything together via a Lipschitz partition of unity. (]

The inner product on the tangent space T,.# induces a natural pointwise
inner product (-, -)pe7, 4z ON AT, 4 , the (-th exterior power of the tangent
bundle for each 0 < ¢ < n, at a.e. © € .#. In particular, there exists a
unique form, denoted by dV. 4, of maximal degree, normalized to one (in the
norm | - e, 4 associated with the above inner product) a.e. on .# and
which is positively oriented. We shall refer to this n-form as the volume
element on .#. In turn, this gives rise to a Borel regular measure .Z 4
on ., uniquely determined by the requirement that if f is a scalar-valued
continuous function on .# which is supported an open subset & of .Z then

[riza=% [ @eraa), (7.11)
o T ¢;(U;n0)

where {6;}; is a Lipschitz partition of unity on .# subordinated to (a finite)
open cover (U;); of .4, with the property that (U, ¢;) € o for each j.

Proposition 7.4. Consider a compact, oriented Lipschitz manifold with
boundary A equipped with a Lipschitz Riemannian metric. Also, fix a posi-
tive structural atlas </ and denote by dV_ 4 the volume element on 4. Then
for every (U, ¢) € o/ one has

(6" (dV.g) =

4 d 1/2
= [det (<d¢%’d¢ﬁ>¢l(.)>m] dVgn a.e. on ¢(U), (7.12)
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where dVgn = dxq1 A -+ A dx, is the volume element in R™, and if Cq,Cy
are as in (7.9) then

C’n/2 [det <<d7d> ) } < C’S/Q, forae zelU. (7.13)
x 'L,J

do; do;
Proof. Formula (7.4) is a consequence of definitions and straightforward
linear algebra, whereas (7.13) follows from (7.9). O

Recall that 2 denotes the interior of the compact Lipschitz manifold with
boundary .#, and that 99 := .# \ Q. Fix an atlas {(U;, ¢;) }ies for 4 and
pick a Lipschitz partition of unity {&;}ic; subordinate to the open cover
{Uitier of #. For 1 <p<ooandace€ (—1/p,1—1/p), we then define the
weighted Sobolev space W1P(Q) as the collection of all locally integrable
functions u :  — C such that

Hu”W‘}yp(Q) = Z H(glu) © (ZS;IHLP(R",z?Lp dm)+
iel
F Y2V 067 o, o any < 00 (T14)
iel
Assuming that 1 < p’ < co is such that 1/p+ 1/p’ = 1, we also define

*

W, bP(Q) = (WP ()" (7.15)

Moving on, recall that for the range of indices 1 < p < coand 0 < s < 1, the
membership to the Besov space BP'P(R™" 1) is defined via the requirement

1l B2r@n—1y = 1 £l Lo n—r)+

p 1/p
</ / |f |n H_)Jp dx’dy’) < 4o0. (7.16)

One natural and convenient way of defining Besov spaces BPP(052), for
1< p<ooands € (0,1), on the boundary 9Q of the Lipschitz manifold
M is to transport the corresponding scale from R”~! to 9Q via a partition
of unity and bi-Lipschitz pull-back in local coordinate charts.

Some of the most useful properties for these weighted Sobolev spaces
for us in this paper are collected in the theorem below. We agree to let
Lip denote Lipschitz functions and Lip, Lipschitz functions with compact
support.

Theorem 7.5. Let Q) denote the interior of the compact Lipschitz man-
ifold with boundary A , and set Q) := A \ Q. Also, assume that

I<p<oo, —1/p<a<l—1/p, s:=1-a—1/pc(0,1). (7.17)

Then the following assertions are true.
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(1)

(vi)

(A, w)

When equipped with the norm (7.14), the space W1P() becomes
complete (hence Banach). Also, WP (Q) is a module over Lip(Q)
and

Lip(Q) — W1P(Q) densely. (7.18)

The restriction to the boundary operator, Lip(.#) > u +— uloq €
Lip(09) extends to a well-defined, linear, bounded mapping

Tr: WhP(Q) — BPP(09) (7.19)

referred to in the sequel as the trace operator. Furthermore, this
trace operator has a continuous right inverse, that is, there exists
an extension operator

Ext : BPP(9Q) — W1P(Q) (7.20)

which is linear and bounded, and such that Tr o Ext = 1, the itdentity.
There holds

Lipy () — {u € W, P(Q): Tru =0} densely. (7.21)
If we define
WLP(Q) := the closure of Lip, (Q) in W12(Q) (7.22)
then
Whe(Q) = {u e WHP(Q): Tru=0}. (7.23)

The spaces WEP(Q), WEP(Q), and W;L1P(Q), are all reflezive.
Assume that 1 < p’ < oo is such that 1/p+ 1/p’ = 1. Then every
functional A € (Wif/(ﬁ))* can be described as follows. For each
u € Wif,(Q)

:Z( / f5(@)((&u) 0 6;7) (2)V/ g(@) do+
el ¢:(U;)
£ [ 5@, () oo YVl dr). (720
j:1¢i(Ui)

where {(U;, ¢i) }ier is a finite atlas for A, and {&}icr C Lip(A)
is a partition of unity subordinate to the open cover {U;}icr of M .

Furthermore, for eachi € I, the functions f;, 0<7<n, appearing
in (7.24) belong to LP(¢;(U;), P dz) and the norm ||AH(W1,5/(Q))*

s equivalent to the infimum of the sum of the norms of f]Z ’s over all
possible choices of the atlas, local charts, and partitions of unity.
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(vii) The scales W12 (Q), WhP(Q), W, 1P(Q), are stable under complex
interpolation. More specifically, if 1 < p; < o0, —1/p; < a; <
1—1/p;, i € {0,1}, and 0 € (0,1), 1/p = (1 —0)/po + 0/p1 and
a=(1-60)ayp+ 0ay, then

(WP (Q), Wa,P ()], = WP (), (7.25)
(WP (), WP (Q)], = WP (9), (7.26)
(W bro(Q), W, 171 (Q)], = W, 1P (), (7.27)
where [ -, -|g denotes the usual complex interpolation bracket.

Proof. All the claims can then be deduced from their Euclidean counterpart
(dealt with in earlier sections), via a standard localization argument and by
making bi-Lipschitz changes of coordinates in local coordinate charts. O

Recall that © denotes the interior of .# and that 99 := .# \ Q. Un-
raveling definitions to the point that well-known Euclidean results can be
invoked, it is not difficult to show that the gradient induces a well-defined
and bounded operator

Grad g : WHP(Q) — LP(Q,0P L 4) @ T M (7.28)

whenever p € (1,00) and a € (—1/p,1—1/p). We denote the (sign) opposite
of the adjoint of this operator by Div_4, and refer to it as the divergence
operator on the Lipschitz manifold .#. Hence,

Divy : LP(Q,6P L 4) @ Tl — W, 1P (Q) (7.29)

is a bounded operator if p € (1,00) and a € (—=1/p,1 — 1/p). Finally, we
define the Laplace—Beltrami operator A_; on the Lipschitz manifold .Z as
the composition

A_y = Div_ 4, o Grad 4. (7.30)
Hence, whenever p € (1,00) and a € (—1/p,1 — 1/p), this induces a linear
and bounded mapping

Ay WiP(Q) — W, HP(Q). (7.31)
Moreover, the adjoint of (7.31) is
Ay WP (Q) — Wb (), (7.32)

where 1/p’+1/p =1, and A_y4 in (7.31) is an isomorphism when p = 2 and
a=0.

One final comment pertains to the nature of the Laplace—Beltrami opera-
tor A 4 in local coordinates. Specifically, for each (U, ¢) € o, organize the
functions introduced in (7.8) as a matrix Gy := (g9})1<ij<n and denote by
(g{]k)lgj7k§n the inverse of the matrix Gy. Also, set gy := det Gy so that,
according to Proposition 7.4, the volume element in dV 4 has the property
that

(671 (V) = Vg day - - dzy, i G(U). (7.33)
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Then, in the local coordinates associated with the chart (U, ¢), the Laplace—
Beltrami operator A_;, can be described as

R :
Ay=—— 0: (%" /a0 Ok - ). 7.34
M TU‘k:l J(Uﬁk) ( )

s

where, as customary, we have identified d/d¢; with 9; for each i € {1,...,n}.
We are now ready to discuss the following sharp well-posedness result in
the setting of compact Lipschitz manifolds with boundary.

Theorem 7.6. Let Q) denote the interior of the compact Lipschitz man-
ifold with boundary A, and set O := A \ Q. Then there exists € > 0 such
that whenever

peE2—¢24¢), ac(-1/p,1—-1/p)N(—€,e), s:=1—a—1/p, (7.35)
the Poisson boundary value problem with Dirichlet boundary data for the
Laplace—Beltrami operator

u € Whr(Q),

Aqu=feWhn(Q), (7.36)

Tru = g € B2P(00)

is well-posed.

Proof. This follows by arguing as in the proof of Theorem 5.1, making use
of the functional analytic theory for weighted Sobolev spaces from Theo-
rem 7.5. (]

Theorem 7.6 is, once again, sharp (in that having p near 2 is a neces-
sary condition). This follows from an example given by N. Meyers in [13,
Section 5]. Specifically, take

Q:={z=(z1,22) ER?: 2} +23 <1} (7.37)
and consider the coefficient matrix given by
ary(z1,12) = 1 — (1 — p?)a3(af +23) 7",
arp(x1,22) = A1 (21, 12) = (1 — p?)wrzp (2] + 23) 7",
aga (w1, w3) = 1 — (1 — p?)af(af +23) 7",
V(z,y) € @\ {(0,0)},

where p € (0,1) is a fixed parameter. Define the scalar operator Lu :=
> 9i(ajk(w1,22)0u) in Q. Note that the ajj,’s belong to L>(, £?)

§,k=1,2

and a direct calculation shows that

37 agnlan,x2)E8 = €7 — (1 - 1?)

k=12

(7.38)

(1‘152 - l‘2€1)2

T 2 el (739)
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for each & = (&1,&2) € R? and = = (x1,22) € Q\ {0}. Hence, L is elliptic.
To proceed, introduce the function

v(z1,09) 1= o1 (22 4 22) /2 € [2(Q, L) N 6™ (Q\{0}). (7.40)

A straightforward calculation shows that Lv = 0 near the origin. Also, fix
¢ € €°() so that ¢ =1 near the origin, and set u := ¢v. It follows that

we Wh(Q), f:=Lue%>(),

7.41
|(Vu)(z)| ~ [« near 0 € €. (7.41)

Consequently,

2

In particular, the fact that 2/(1 — p) \, 2 as p N\, 0 shows that that for
each p > 2 there exists u € (0,1) with the property that the operator
L : W(Q) — W~12(Q) fails to be an isomorphism. By duality, (note
that L is formally self-adjoint), the same type of conclusion holds for p < 2.
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Abstract. We introduce a Weierstrass type transform associated with
the Whittaker integral transform, which we refer to as Weierstrass—Whitta-
ker integral transform. We examine some properties of the transform and
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1. INTRODUCTION

The Whittaker functions M, , and W, , of first and second order have
acquired an increasing significance due to their frequent use in applications
of mathematics to physical and technical problems (cf., e.g., [2]). Moreover,
they are closely related to the confluent hypergeometric functions which play
an important role in various branches of applied mathematics and theoreti-
cal physics. For instance, this is the case in fluid mechanics, electromagnetic
diffraction theory and atomic structure theory. This justifies a continuous
effort in studying properties of these functions and in gathering information
about them, as well as the integral equations and transforms generated by
them.

For a somehow much more detailed account of several significant re-
sults on the Whittaker and Weierstrass type transforms, over the last half-
century, we refer to [1,3-7,11-14].

Let us consider the integral transform

+oo

wilr = [ e

0

zT

FWoo(2r) f(a)e”CFDa%dz, 7>0, (11

where a > 0. The main purpose of this work is to define an integral trans-
form associated with the Whittaker integral transform (1.1) — which will be
called Weierstrass—Whittaker transform — and to study some of its proper-
ties and possible applications. We define such integral transform by

—+o0

[mmm:/mmwmmﬂﬁw@7 (1.2)
0

where KC;(z,y) is the heat kernel associated with the Whittaker transform
(to be also studied later) and which is defined as

+oo
Ki(z,y) = / 674V2Tte*%WH7U(yT)e*%W#’V(:ET)e*(TJF%)TO‘ dr
0

for t,x,y > 0.
The integral transform W, f is a variant of the usual Weierstrass trans-
form [9] and solves the heat type problem
Wi fl(x) = —La Wi fl(),
t,x >0,
lim (W f] () = f(2),

where

5 o d? d .
L, = 47322 e + 4742 e +7322(7% — 1) + dpr’e + 7.
x x
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2. THE WHITTAKER INTEGRAL TRANSFORM

In this section, we study some of the mapping properties of the integral
transform (1.1) which may, in fact, be viewed as an operator acting from
L2(RT, e~ @+ D)z dz) into L2(RT, e~ ()7 d7).

So, we consider the weighted Hilbert spaces L2(Rt,e~@+3)2 dz) en-
dowed with the inner product

<f7 g>L2(R+,e—(w+%)

R A

+oo
= [T )
0

which generates the associated norm

0 . 1/2
10 g o gy = ( / (@) Pe- @tz dz> L 22
0
In order to prove the convergence of the integral transform (1.1), we have
the following auxiliary result.
Theorem 2.1. Let f € L2(RT, e~ t2)z* dz) and
o > max {2|v] — 2,0}.

The integral transform (1.1) is absolutely convergent and the following uni-
form estimate

WA < Con DN g o

z)pe dr)’

(2.3)
holds.

Proof. Invoking the Cauchy—Schwarz inequality and relation (2.19.24.7) in
[8], we have

+oo
WA < [ e F Waslariflore=+Da] do <
0

1/2
< (/e_z’;Wu,l,(xr)e_?Wu,y(xr)e_(“';)ma d:v) X

0
o ) 1/2
<( [ 1repeerhanas) <
0

IN

1/2
( / T2 Wy (zr)e” T W, (27)2® dm) Hf||L2(R+’e,(m+%)za o =
0
C

+oo
e
“w

7D(T) Hf”Lz(RJr’ef(:H»%)za d.’t)’ (24)
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where

_ e (T(=20)T(a+ 20+ 2)T(2 + @)
Cu,u(T)—T (F(éuv)r(gu+a+l/)x

><3F2(1

5
2 7+a+1/—/¢;1)+

2
(o =20 +2)I'(2 + )

(2v
L(z —p+v)0(§ —p+a+v)

+pu+rv,2+a+2v,24+a;1+ 2y,

1 5 1/2
><3F2<2—u+u,2—|—a,2+o¢—2y;1—2y,2—|—oz—1/—,u;—1)> ,

with 7 > 0, and where 372 denotes the generalized hypergeometric function.
Hence, besides the estimation in question, the convergence of the integral
transform (1.1) is also obtained. O

We now concentrate on the image of the integral transform for the ele-
ments considered above. Namely, for that elements, in the next result we
obtain that W f € L2(R*, e~ ("+2) 7 dr).

Theorem 2.2. Let o > max{2|v| — 2,0}.
If f € LR, e~@t2)g>dx), then the Whittaker integral transform
[W f](1) belongs to the space L2(RT, e~ (Tt)7 dr).

Proof. From the definition of the norm in L2(R*, e~ ("+%) 7% d7), taking into
account that f € L2(R*, e~ (#+3) 2 dz) and using (2.4), we obtain

WS, s sty = ‘/]mq JPemthira gr <
+oo
1) _«
< [ CosPII, oty 7 =
0
+oo
—(x —\T 1 «
V||fH2 R+ 7(I+I)I"‘d ) /7— (+1)€ (+7)T dTS
0
< (PO +2) Ol g e (2.5)
where
C*__F(2)Ha+2y+%F@+a)x
YT =03 —ptaty)
1
X3F2<§+u+u 24+ a+2v,24+ a;1 + 2y, 5+o¢+1/ u;1>+

r2v)I'(a—2v +2)T'(2 + a)
TG -+ lG —ptaty)
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1 5
><3F2(§—,u—&—l/,2—|—oz,2—|—a—2u;1—21/,§—|—oz—u—/,t;—1>, (2.6)

and
+oo
/ (et e—(T+3) e g —
0
1 +o0
= /Tf(aJrl)e*(TJr%)To‘ dr + / r(@t)=(r+3) o gr <
0 1
1 +o0
< /7_16_%6_T dr + / r%e= (T3 e gy <
0 1
1 +o0
< /T‘le_% dr + / et dr <
0 1
1 +00
< /T_le_% dr + / e Tdr =T(0,1) + E , (2.7)
0 1 ‘
with I'(a, z) denoting the incomplete Gamma function. O

3. THE HEAT KERNEL RELATED TO THE WHITTAKER INTEGRAL
TRANSFORM

In order to introduce in a formal way the Weierstrass—Whittaker trans-
form (1.2), we need first to study the heat kernel associated with the Whit-
taker transform. Therefore, we will introduce in this section the heat kernel
associated with the Whittaker integral transform. Moreover, we will define
and examine some of its properties.

Let us introduce the Hilbert space Hx (RT), defined as the subspace of
L2(R*, e~ @+2) 2% dz) formed by all functions f such that

Wfe L*(RT, e~ TH7) 7% dr).
Hg (R™) is endowed with the inner product

—+oo

. g = / W f(r) gl (n)e T+ )7 dr (3.1)

0

and, consequently, the norm of Hx (RT) is given by

1/2
1l = /U P ( / W F)(r) P+ D)r dT> G2
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Proposition 3.1. Let o > max{2|v| —2,0}. Fort > 0, we introduce
Ki(z,y) defined on )0, +oo[ X ]0, +o0[ by

+oo
Ki(z,y) = /6_41/2#6_%WM’V(xT)e_%WN’V(yT)e_(T—F%)TO‘dT. (3.3)
0

For all y €]0,+o0[, the function
T +— Kt(xa y)
belongs to Hy (RT).

Proof. Invoking the Cauchy—Schwarz inequality and the relation (2.19.24.7)
in [8], we will be able to prove first the fact that the kernel belongs to

L2(RY, e~ @+ 2% dz). Indeed,

— 1
||’Ct||i2(]R+,e*(z+%)za dx) - / |]Ct(.’l,',y)|2€ ($+m)xa dr =
0

+oo oo 2
:/</e_4” Tte _*W# v(xT)e” y;WH’V(yT)e_(TJ'_i)TQdT) e~ Tt pody <

0 0

< / </(€m;Wu (.’ET))QQ(T+1)TQdT>X

Wy, v(yT))zef(T+%)Ta dT) e~ @) g 4y <
7% W, (7)) dr) e~ @) 2 dox

W, (y7)) 0 dT) =

+oo

= (C;, )2y / g =) ge gy <
0
< (PO + )€y, (3.4)

where C}; , is given by (2.6).
In order to prove that K; € Hx (R™), we still need to prove that WK, €
L2(RY, e~ T+3) 7 dr),
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For @ > max{2|v| — 2,0}, we obtain the following estimate by using the
Cauchy—Schwarz inequality:
+oo
/e_%Wu,u(xT)Kt(xay)e_(ﬁé)xadﬂ@
0
+oo

1/2
< ( /(e_%Wu,y(JcT))Qe—(I+%)x(" da:) X

0
o 1/2

g ( / |’Ct<w,y>|2e‘(”+i’wad””) =
0

"

WK = <

o0

-

1/2
_zT 2
< ( / (e™ T Wyp(2r)) 2” dgc> ||/Ct||L2(R+’e,(m+%>za i =
0

= (C: )3 K|

L? (R+,67(m+%)za dz)’

Taking into account the previous inequality, we have

“+oo
2 B 2 it
T / WK y) e =) dr <
0
+oo
* 2 —(a+1 _(T+% o
SCH’U”’Ct||L2(R+,ei(l+%>zadw) /T )6 )T dTS
0
N . )
< (PO +2)OLMKR, o ety gy (35)

Therefore, we have just proved that, for y > 0, the function = — K;(x,y)
belongs to Hx (RT). O

In order to obtain some important results related to the heat kernel
and the Weierstrass transform, we need to introduce a new Hilbert space
which we denote by Hj (R*). Towards this end, we need first to guarantee
the following result (which will ensure that the above-mentioned new space
definition will be coherent with our purposes).

Lemma 3.2. If f € Hix(RT), then
+o0
/ (W fl(r)e™ T W, (zr)e” T2 dr (3.6)
0
belongs to Hy (RT).

Proof. Having in mind the definition of Hy (R™), under the above hypoth-
esis, we realize that we have to prove that both the element in (3.6) and its
image under W must belong to L2(RT, e~ () o dx).
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For start, we will directly prove that for all elements f € Hgx(R') we
have
400
/ [Wﬂ(7)6_%Wu,u($7)6_(7+%)70‘ dr € L* (R+, e~ (@+3) g da:).
0
Indeed,
+00  +0o0 2

/‘/[W.ﬂ(T)eIJW#W(IT)e(TJFi)TadT
0 0

e~ @) 2o dy <

too 400
< (/ ([Wf](T))%(TJri)TadT)x
0

0
“+oo

X ( / (engu,u(xr))Qe(TH)T‘*dT)e(”i)m“da:S

+oo +oo

< / (/ ([Wf](7>)26—<f+1>7ad7>x
+o0

(6_%WM7,}($7‘))27'& dT) e~ @+ D) dg <

o

X(
—+oo

—a—1 _—(x+L
SC;;l/||Wf||L2(R+’e*(T+%)TadT) /x : ¢ (x T)xadxg
0
+oo

—a—1 —
< C:;,V||Wf||L2(R+,e*(T+%)Ta dr) / = e e du <
0

<o+ D)l (37)

L2 (IRJr,ef(TJr%)TCY dr)’
From the previous inequality, taking into account the definition of the
Whittaker integral transform (1.1), we have the following inequality related

with the Whittaker transform:
+o0 2

‘W{ / (W fl(r)e™F Wy (ar)e (TF7)re dT}

’ +oo ) +oo
= ‘ /ex;Wu,V(acT’)< /[Wf](T)e*%W#’V(xT)x
0 0

2

x e~ (T+3) o dT) et da| <
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2
< / (6_25 WW,(xT’)e_(Hi)ma) X

0

oo ) 2
X < (W fl(T)e™ 2 W, (x7)e” THo)r dT) dx <
+oo
. et 2 el

< O;,L,V||WfHL2(]R+,e*(T+%)TQd_r) / (6 2 WM,V(-'I?T/)) xQoz:E @ 1d.’17 <

0

+

o

< ChPE WA gy (3.8)
Therefore, for f € Hy, we have

400

W( / [Wf](7)6_%Wu,u(l’7')€_(7—+%)7'a dT) crL? (R+,e_(7/+%)(7')a dT/)
0

ie.,

400 400

/e_m;/Wu,V(l’T/)( / (W (r)e™ T Wy (ar)e (TH)re dT) e~ g dy

0 0

eL? (R+, e_(T/'*'%)(T’)O‘ dT’).

Indeed, from (3.8), we get

oo +00
/ HW( / W f](r)e™ F W, (ar)e T+ 7o dTﬂ(T')

x e (T'+77) (> dr' <

2
X

+oo
* —(r+3 a —a
< (Cu,u)2HWf“LQ(RJr,e*(**%)TadT) / e~ T (e () dr <
0

* 2
S (Cp,u) HWfHL?(]RJr,e*(T*%)TQ dT)' 0

Having in mind Lemma 3.2, we are now in a position to define Hj, (R™) as
the space of elements f € Hy (RT) which admit the integral representation

+oo

f(z) = / (W f](r)e™F W, (zr)e” T+ )7 dr, (3.9)
0

We will now exhibit a significative result based on the representation of
the elements of the space Hj,(R™) and the definition of the heat kernel.
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Lemma 3.3. Let K, € Hj(R"). Then, the Whittaker type transform
(1.1) of the heat kernel is given by

t,ﬂ

WE(r,z) =e —4’r > W, (xT). (3.10)

Proof. From Proposition 3.1, we find that K; € Hy(RT). Taking into
account the definition of heat kernel (3.3) and since K; € Hj(RT), we get

(WIK](r,x) = e~ Tt =5 W (2T). O

4. PROPERTIES OF THE WEIERSTRASS—WHITTAKER TRANSFORM

In this section, we shall define the above-mentioned Weierstrass—Whitta-
ker transform in a formal way, and derive some of its properties.

Definition 4.1. The Weierstrass transform associated with the Whit-
taker integral transform and called Weierstrass—Whittaker transform, is de-
fined in L2(R*, e~ ¥ v)y dy) by

) = / Ke(z,y)f(y)e” )y dy. (4.1)

For the classical Weierstrass transform, one can see [9].

Proposition 4.2. Let o > max{0,2v—2}. For allt > 0, the Weierstrass
type transform Wy f is a bounded operator from L*(R*, ef(er%)yo‘ dy) into
L2(R+,67(I+%)xa dz) and, for all f € LQ(RJF,G_(ZH'%)yO‘ dy), we have

et

<
L2(Rt, e~ @) ga dz) —

<@ PO+ UR, | er o (42)

L2(Rt,e vy dy)

Proof. The absolutely convergence of the integral (4.1) follows from the
Cauchy—Schwarz inequality and Proposition 3.1. Indeed,

VeI / Ke(w, )| 1 £ (y)le™ @y dy <

oo . 1/2 ) 1/2
< ( [ Kt ety a ) ( / 5 —<y+y>yady) <
0

—+oo

1/2
< ( [ @ty <y+v>yady) V£l
0

—(+d)

L2(RT,e viyedy) T

a+1

. 1 % _at1
<G, (o) + ) a1 f) i (4.3)

L2(R+,e” YTy dy)”
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Then, for all f € L?(R™*, ef(er%)ya dy) and using the relation (4.3), we
have

”Wtf||L2(R+ @+ P gady) / [Wef)(@)e (@+2) g dy <

400

£ )2 2 —(a+1) ,—(z+1) .
<@L PO+ IR, L gy, [ 5@ e @ D <
0
<(c: )Q(F(o 1)+1)2|\f||2 . . O
- HoV ’ e LQ(R"‘,e_(?H'E)ya dy)

Proposition 4.3. Let a>max{0,2v—2}. For allt > 0, the Weierstrass—
Whittaker transform W, f belongs to the space Hy (R™).

Proof. From the previous proposition we have
Wi f e L? (R+, e~ (@+a)ge dx).

Now, in order to prove that W, f belongs to the space H (R™), we need to
show that W[W,f] € L2(R*, e~ (T+3) 7o dr),
From the definition of the Whittaker type transform, we obtain

+oo
[[WVef]) (n)| < / e T\ W (27)| Wi f(2)|e” @) 2 da
0

and by using (4.3) and taking into account the Cauchy—Schwarz inequality,
we have

1\32
< — * 1
VIO < (DO + ) Crall g by
+oo
< [ e FWlerle e et do <

0
1

N
< (P(o, 1)+ f) CWIIfIILQ(]R+ ) ya gy <

2 1 1/2
< Ww(a7)) e~ (@Fa) g dm) X

dt

+ o~

(oo}

1/2
g (@t g=(@+3) po da:) <

o\

1IN, o .8
(PO )@ b

ST*
vye dy)

/\
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Having in mind the previous inequality, we obtain the following estimate:
+oo
2 —(T—&-l) «@
’W[Wtf](r)‘ e rrdr <
0

HW[Wtf]HiQ(R+,5’(T+%)7—a dr) =
+oo

< (rO.0+3) (€I / et =+ ra gy <
= ) e 8% LQ(R S

_ 1
+e (vt >y” dy)

113

< - * \3 2
< (O + ) CuPITIZ, o wede (4.4)
Hence, it follows that the composition of the Whittaker type transform
(1.1) with the Weierstrass—Whittaker transform (4.1) belongs to the space

L2(R*, e~ "+3)79 d7) and therefore W, f € Hg (R1). 0

The just used composition of integral transformations can be described
in an even more detailed way if we invoke the representation of the elements
of the space Hj;(R") and the definition of the Weierstrass—Whittaker trans-
form, as we shall see in the next result.

Lemma 4.4. Let W, f € Hj.(R"). For all t > 0, we have
(W) (r) = e 7 W £]()- (4.5)

Proof. From the definition of Weierstrass—Whittaker transform, the defi-
nition of inner product in Hg (R™), Proposition 3.1, Proposition 4.3 and
Lemma 3.3, we deduce

+oo

Wifl(z) = | Kz, y)fly)e” W9y dy =

oo

(WEK(T)W[f](r)e” T+ 7o dr =

oo

S+ O+ O

Wt W (z7)[W f] (7)67(T+%)7’a dr.

Since W, f € Hj,(R*), invoking (3.9), we find
— u27‘
(W] () = e T W £](7). (4.6)
O
5. THE WEIERSTRASS—WHITTAKER TRANSFORM AS A SOLUTION
OF A HEAT TYPE EQUATION

In this last section we will show that the Weierstrass—Whittaker trans-
form W, f solves a non-stationary heat type equation (cf. (5.2)). To this
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end, first of all, we need to prove that the kernel K;(z,y) is a solution of a
variant of the heat equation.

We start by recalling that the Whittaker function is an eigenfunction of
a second order differential operator. More precisely,

AW, .(2) = 4V2W“,V(Z),
where

d2
A, :422@ — 22+ dpz+ 1. (5.1)
From the differential properties of the Whittaker function, the absolute
and uniform convergence of the integral (1.3) and its derivatives with respect
to t and x, we directly arrive at the following result.

Corollary 5.1. The kernel K:(x,y) satisfies the non-stationary heat type
equation

atu(tax7y) = 7Lzu(t,1'7y)a t,l’,y > Oa (52)
where
L, = 4T3x2d—2 + 47’43U2i +7322(7% = 1) + dpric + 1 (5.3)
v dz? dx ' ’

is a second order differential operator which satisfies
Lo(e” T Wy, (a71)) = d’re” 2 W, (27). (5.4)

Furthermore, the kernel Ki(x,y) is also a solution of the non-stationary
heat type equation

Owu(t,z,y) = —Lyu(t,z,y), t,z,y >0, (5.5)

where

. d? d
L,= 4732 din + 474y? d—y + 73y2(72 -1+ Adury + 1 (5.6)

is a second order differential operator which satisfies
L, (e*%Wuyy(yT)) = 41/2767%1/(/,‘71,(347). (5.7)

Theorem 5.2. Let f € Hg(RT). For all t > 0 and for all Wi f €
Hi(RY), the function W, f solves the generalized heat equation (5.2), with
the initial condition thrr(l)[Wtf](x) = f(z) in Hg(RT).

Proof. Propositions 3.1 and 4.2 guarantee the necessary differential proper-
ties of W, f, and from the differential properties of the Whittaker function
we deduce that the function W, f is a solution of (5.2).
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We will now prove the initial condition. From the definition of the norm
of Hi(RT) (cf. (3.2)) and using Lemma 4.4, we have

W f = £112

1 =
L2(]R+,e_(m+5)w“ dx)
400

[ [ - i e pre i =

et 1w f)(r) Pe T e (5.8)

|
O\§ S

Since 4v%7t > 0, we realize that the right-hand side of (5.8) is estimated by
+oo

Ik |[Wf](7')\26_(7+%)7'0‘ dr. Then, we can pass to the limit — 0 through
0

equation (5.8) and the desired result is obtained. O
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Abstract. The paper deals with the three-dimensional Dirichlet bo-
undary-value problem (BVP) of piezo-elasticity theory for anisotropic in-
homogeneous solids and develops the generalized potential method based
on the localized parametrix method. Using Green’s integral representa-
tion formula and properties of the localized layer and volume potentials we
reduce the Dirichlet BVP to the localized boundary-domain integral equa-
tions (LBDIE) system. The equivalence between the Dirichlet BVP and the
corresponding LBDIE system is studied. We establish that the obtained lo-
calized boundary-domain integral operator belongs to the Boutet de Monvel
algebra and with the help of the Wiener—Hopf factorization method we in-
vestigate corresponding Fredholm properties and prove invertibility of the
localized operator in appropriate function spaces.
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1. INTRODUCTION

We consider the three-dimensional Dirichlet boundary-value problem
(BVP) of piezo-elasticity for anisotropic inhomogeneous solids and develop
the generalized potential method based on the localized parametriz method.

Due to great theoretical and practical importance, problems of piezo-
elasticity became very popular among mathematicians and engineers (for
details see, e.g., [26]-[34], [42], [50]).

The BVPs and various type interface problems of piezo-elasticity for ho-
mogeneous anisotropic solids, i.e., when the material parameters are con-
stants and the corresponding fundamental solution is available in explicit
form, by the usual classical potential methods are investigated in [4]-[9], [41].
Unfortunately this classical potential method is not applicable in the case
of inhomogeneous solids since for the corresponding system of differential
equations with variable coefficients a fundamental solution is not available
in explicit form in general.

Therefore, in our analysis we apply the so-called localized parametriz
method which leads to the localized boundary-domain integral equations
system.

Our main goal here is to show that solutions of the boundary value prob-
lem can be represented by localized potentials and that the corresponding
localized boundary-domain integral operator (LBDIO) is invertible, which
seems very important from the point of view of numerical analysis, since
they lead to very convenient numerical schemes in applications (for details
see [37], [43], [46]-[49]).

To this end, using Green’s representation formula and properties of the
localized layer and volume potentials, we reduce the Dirichlet BVP of piezo-
elasticity to the localized boundary-domain integral equations (LBDIE) sys-
tem. First we establish the equivalence between the original boundary value
problem and the corresponding LBDIE system which proved to be a quite
nontrivial problem and plays a crucial role in our analysis. Afterwards we
establish that the localized boundary domain matrix integral operator gen-
erated by the LBDIE belongs to the Boutet de Monvel algebra and with the
help of the Vishik—Eskin theory, based on the factorization method (Wiener—
Hopf factorization method), we investigate Fredholm properties and prove
invertibility of the localized operator in appropriate function spaces.

Note that the operator, generated by the system of piezo-elasticity for
inhomogeneous anisotropic solids, is second order nonself-adjoint strongly
elliptic partial differential operator with variable coefficients. In [21], the
LBDIE method has been developed for the Dirichlet problem in the case of
self-adjoint second order strongly elliptic systems with variable coefficients,
while the same method for the case of scalar elliptic second order partial
differential equations with variable coefficients is justified in [11]-[20], [38].
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2. REbucTION TO LBDIE SYSTEM AND THE EQUIVALENCE THEOREM

2.1. Formulation of the boundary value problem and localized
Green’s third formula. Consider the system of static equations of piezo-
electricity for an inhomogeneous anisotropic medium [42]:

Az, 0,) U+ X =0,

where U := (u1,us,u3,us) ", u = (u1,us,uz)’ is the displacement vector,
uy = ¢ is the electric potential, X = (X1, Xo, X35, X4) T, (X1, X2, X3)" is a
given mass force density, X4 is a given charge density, A(z, d,) is a formally
nonself-adjoint matrix differential operator

Az, 0,) = [Ajk(fzr,am)hX4 =
[0i(cijin(2)D0)] 55 [0ilerij (2)D0)] 5,4
[ — 8Z(elkl(x)8l)] 1x3 61(511(@31) s )

where 0, = (01,02,03), 9; = 0;; = 0/0x;. Here and in what follows by
repeated indices summation from 1 to 3 is meant if not otherwise stated.

The variable coeflicients involved in the above equations satisfy the sym-
metry conditions:

o0 o0 oo
Cijkl = Cjikl = Chiij € C°, eijr = ey € C°, €45 = €5 € C°,
i ik l=1,2,3.

In view of these symmetry relations, the formally adjoint differential oper-
ator A*(z, 0, ) reads as

A (2,05) = [Afi(@,00)] 4 =
[0i (cijin(2)D)] 5, 4 [ — Oi(ers; (x)D0)] 5, ,
[0i(eart(x)D)] |, 4 di(ei(x)0)
Moreover, from physical considerations it follows that (see, e.g., [42]):
Cight(2)&ij€m = co&ij&ij for all & = ;i € R, (2.1)
ij(x)mim; =cimim; for all = (n1,m9,7m3) € R?, (2.2)

where ¢y and ¢y are positive constants.
With the help of the inequalities (2.1) and (2.2) it can easily be shown
that the operator A(x,d,) is uniformly strongly elliptic, that is,

Re A(2,6)¢ - ¢ = c|¢?|¢)? for all € € R® and for all ¢ € C*, (2.3)

where A(z,§) is the principal homogeneous symbol matrix of the operator
A(x,0,) with opposite sign:

A,€) = [A@.6)],., =
lcijun(@)&&1]) 5ps  [enii(@)&i&] 5,
[ — e ()&i&] |, gi(2)&i&

4x4

(2.4)

4x4
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Here and in what follows a - b denotes the scalar product of two vectors
4 _
a,beCha-b= 3 ajb;.
j=1

In the theory of piezoelasticity the components of the three-dimensio-
nal mechanical stress vector acting on a surface element with a normal
n = (ny,n2,n3) have the form

0N = CijieniOjuy + e n;Ojp for j=1,2,3,

while the normal component of the electric displacement vector (with op-
posite sign) reads as

—Din; = —eipniOuy + €54n; 0.

Let us introduce the following matrix differential operator

T =T(z,0,) = |T; (x78m)]4x4 =
[Cijlk(ﬂf)nial] 3x3 [elij (x)nial} 31

[ — eima(x)nidy] |, i (z)n;0,

4x4

For a four-vector U = (u, )" we have
T
TU = (0’1‘1’]11', 02N, 03N, 7D17’L1) . (25)
Clearly, the components of the vector 7U given by (2.5) have the following
physical sense: the first three components correspond to the mechanical
stress vector in the theory of electro-elasticity, and the forth one is the
normal component of the electric displacement vector (with opposite sign).
In Green’s formulae there also appear the following boundary operator
associated with the adjoint differential operator A*(z,d;):
T =T(z,0:) = [Tjn(z,0:)]

4x4 T

- lcijie(@)nidi] 4 [ — ewij(x)nidi] .,
leirt()nidh] | eir(2)ni0y s

Further, let Q = Q1 be a bounded domain in R? with a simply connected
boundary 90 = S € O, Q = QUS. Throughout the paper n = (n1,na,n3)
denotes the unit normal vector to S directed outward with respect to the
domain Q. Set Q™ :=R3\ Q.

By H"(Q2) = H3(Q) and H"(S) = HJ(S), r € R, we denote the Bessel
potential spaces on a domain {2 and on a closed manifold S without bound-
ary, while D(R?) stands for C* functions in R? with compact support and
S(R3?) denotes the Schwartz space of rapidly decreasing functions in R3.
Recall that H°(Q) = Ly(Q) is a space of square integrable functions in Q.

For a vector U = (uy,us,us,us)' the inclusion U = (uy, us, us,us)' €
H" means that all components u;, j = 1,4, belong to H".

Let us denote by Ut = {U}* and U~ = {U}~ the traces of U on S from

the interior and exterior of §2, respectively.
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We also need the following subspace of H({2):
HYO(Q; A) = {U = (uy,us, uz,ug) | € HY(Q): A(z,9)U € HO(Q)}.

Assume that the domain € is filled with an anisotropic inhomogeneous
piezoelectric material.
The Dirichlet boundary-value problem reads as follows:

Find a vector-function U = (u, )" = (uy,ug,us,us)’ € HYO(Q, A) satis-
fying the differential equation

Az, 0,)U = f in Q (2.6)
and the Dirichlet boundary condition
Ut =&, on S, (2.7)

where &g = (o1, Pog, Pos, Pos) T € HY2(S) and f = (f1,f2, f3,f2)" €
Lo(Q) are given vector-functions.

The equation (2.6) is understood in the distributional sense, while the
Dirichlet-type boundary condition (2.7) is understood in the usual trace
sense.

For arbitrary complex-valued vector-functions U = (uy,us,us, uq) ' €
H%(Q) and V = (v1,v2,v3,v4)" € H%(Q), we have the following Green’s
formulae [8]:

/ (A(e,0)0 -V + B, V)] do = / (TUY* - {V}+dS, (2.8)
Q S
Az, 0,)U -V —U - A*(x,0,)V| dx =
i |
_ / [(Tuyt - vy -y (Tvy*] s, (2.9)
S

where
E‘(U7 V) = Cijlkaiuj'alvk + €lij (8,-uj8w4 — 81114(911}]' ) + EjlajU4alU4 (2.10)

with u = (uq,us, U3)T and v = (’Uh’UQ,’U?,)T, and the overbar denotes com-
plex conjugation.

Note that the above Green’s formulae can be generalized, by a stan-
dard limiting procedure, to Lipschitz domains and to vector—functions U €
HY(Q) and V € HY(Q) with A(z,0,)U € La(Q) and A*(x,0,)V € La(1Q).

With the help of Green’s formula (2.8) we can determine a general-
ized trace vector TYU = {TU}t € H1/2(09) for a vector-function U €
HYO0(Q; A) (cf. [39))

<T+U,V+>BQ ::/A(a,T)U-de—I—/E(U,V) dx, (2.11)
Q Q
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where V € H(Q) is an arbitrary vector-function.
Here the symbol (-, -)s denotes the duality between the function spaces
H~Y2(S) and H'/?(S) which extends the usual Ly-scalar product

N
(ha)s= [ Y f7d tor g € [La(S))".
g J=1

Remark 2.1. From the conditions (2.1) and (2.2) it follows that for com-
plex-valued vector-functions the sesquilinear form E(U, V') defined by (2.10)
satisfies the inequality

Re E(U,U) > c(si;55; + ;1) YU = (ur,uz,uz,us)’ € H(Q)

with s;; = 271 (9;u;(x) + djui(z)), nj = djus(x), where c is a positive
constant. Therefore Green’s first formula (2.8) and the Lax-Milgram lemma
imply that the above formulated Dirichlet BVP is uniquely solvable in the
space H10(Q; A) (see, e.g., [25], [35], [36]).

As it has already been mentioned, our goal here is to develop a gener-
alized potential method and justify the LBDIE approach for the Dirichlet
boundary value problem.

Define a localized matrix parametriz corresponding to the fundamental
solution function Fj(x) := —[4x|x|]~! of the Laplace operator, A = 9% +
03 + 03,

P(z) = Py(z) := Fy(z)] =

x(@) .
= Fi(x)] = - I with =1, (2.12
@R @) =~ 50 T with x(0) =1, (212)
where F, (z) := x(z)Fi(x), I is the unit 4 x 4 matrix, while x is a localizing
function (see Appendix A)

xeXE, k>3 (2.13)

Throughout the paper we assume that the condition (2.13) is satisfied and
x has a compact support if not otherwise stated.

Denote by B(y, €) a ball centered at the point y and radius € > 0 and let
Y(y,e) := 0B(y,¢).

In Green’s second formula (2.9), let us take in the role of V' (z) successively
the columns of the matrix P(x — y), where y is an arbitrarily fixed interior

point in €2, and write the identity (2.9) for the region Q. := Q\ B(y, ) with

e > 0 such that B(y,e) C Q. Keeping in mind that P (z —y) = P(z — y),
we arrive at the equality

/ [P~ ) A@.0,)U(2) ~ [A*(2.0,)Pa )] U (x)] do =

Q.

— [ [P~ (T @0U@) "~ {T(@.0.)P - 1)} (U@)"] ds-
S
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f/[P(xfy) (2,0:)U(2)~{T(2,0,) P(e—y)} Ul@)] dS(y.e). (214)
S(y,e)

The direction of the normal vector on ¥(y, €) is chosen as outward.
It is clear that the operator

AU(y) == lim | [A*(z,0,)P(z —y)] TU(x) dx =

£—

Qe

— v.p. / [A%(2,0,)P(x —y)] ' U(z)dz  (2.15)
Q

is a singular integral operator, “v.p.” means the Cauchy principal value
integral. If the domain of integration in (2.15) is the whole space R3, we
employ the notation AU = AU, i.e.,

AU(y) == v.p. / [4*(2,0,) Pz — )] "U(x) da.

]RS
Note that
0? 1 47y 0? 1
E—_— ) 2.1
Ox;0x; |x — y| 3 (@=y)+vp. Ox;0x lz —y|’ (2.16)

where 0;; is the Kronecker delta, while §( - ) is the Dirac distribution. The
left-hand side in (2.16) is understood in the distributional sense. In view of
(2.12) and (2.16), and taking into account that x(0) = 1 we can write the
following equality in the distributional sense

[A*(2,0,) P(x —y)f =

[aii (C””@(

8%[
[ B 8(21 (el” (%Ul
52F

P, Lo (e 225
)Lxs 31’ (gil(x) %Z_y)) 4x4
]

Y)

0?F\ (z —y}
1x3

{C”lk( 63: 83:5 3x3 [elkl( ) Ox;0x,

O*F\(z — O*°F\(z —y)
[ etij () 0x,0x; ]3x1 e () Ow;0x; Axd
[8Cijlk(x) OF, (z — y)} [aem(x) OF, (z — y)}
I &Tl 6Il 3x3 31‘7 8:1:1 1x3 .
[ _ Oeysj (x) OF(z — y)] Oey(x) OF(z —y)
ox; oz 3x1 ox; dx; Ax4

i@k (z,9)] 5,05 leim(@)kalz, )],
= +

[ elij(l')kil(ﬂ%y)}gxl ga(x)ka(z,y) s
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{acijlk(x) OF\(z — y)} [8eikl(m) OF, (z — y)}
3562' 8xl 3x3 8Iz 8:1:1 1x3

[ Beusle) Oy (e —y)) deulz) IF,(z — y)
ox; oz 3x1 dx; oz 4x4

where
(51' 82F xXr —
ki(z,y) = ?l 6(z —y) +Vv.p. 75;;(-31:1 v) =
041 1 0? 1
= — 5 _ —_ — . , —_—
3 (@=y) Ar P Ox;0x; |x — y
1 9 x-y -1

4w Oxdr; |z —y

+mil(m7y)a

mil(z7 y) =

Therefore,

[A*(z,0,) Pz —y)] | =

=b(z)d(z —y) + v.p. [A*(x, 9)P(x — y)] T_

1
=b(z)é(x —y) + R(z,y) — P
H? 1 0? 1

[Cijlk(x) Ox;0x; |x—y|}3x3 [eikl(m) 0x10; |x—y|}3x1
XV.p. —

(e o ] )
i tij Ox;0x; |x—y|lix3 * 0x;0x; |x—y| 4x4

1
= b(@)o(e —y) + RO (2.) - x
- 82 1 82 1
(cisur (9) 0r;0x, |93—2/|}3x3 [eikl(y) Oz 0z |93—2J|Lxl
Ox;0x; |x—yll1x3 Ox;0r |z —y| 4x4

XV.p. , (2.17)

— Clij (y) ei(y)

where

(2.18)

1 [Cljlk:(-%')]SxS lew(2)]3x1
b(z) := 3 L 1“4»

*ellj(l')]le eu(w)
Riz.y) - l [Cijlk(x)mil($> y)]?,xg [eikl(x)mil(xy y)] 1X3]
Y [_ elij(x)mil(xay)}gxl ea(x)ma(x,y) ixd
{8cijlk(x) OF, (x — y)} [aeikl(x) OF (x — y)}
N ox; Oz 3x3 ox; oxy 1x3
[ 3 Oeyij(x) OF (x — y)} Oey(z) OF (x —y) ’
ox; ox; 3x1 ox; ox; Axd
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R (z,y) = R(z,y)—
0? 1 02 1
e @9) g gt | =99 Fmm gt
4r o2 1 2 1
| U i e B
cijik(2,y) = cijin(x) — cijie(y),
elij(T,y) = ej(x) — e (y),
ei(x,y) = eulr) — eu(y).
Clearly, the entries of the matrix-functions R(z,y) and R (z,y) possess
weak singularities of type O(|z — y|=2) as © — y. Therefore we get

v.p. AT (z,0,)P(x —y) = R(x,y)+

[ 02 1 0? 1
N 1 [_cijlk(aj) Ox;0x; \x—y\Lx:’, [elij($) 0x;0x; |x—y|}3x1
v.p. — )
Pin e )2 1 } ey 1
i ikl Ox;0x; |lx—y|lix3 i O0zi0x; |x—y| |44
vp. AT (2,0,)P(z —y) = RV (z,y)+ (2.19)
I 0? 1 9? 1
N 1 [_Cijlk(y) Ox;0x; |x—y|}3x3 {e”j(y) 0x,0x; \J;—y\]sm
vV.p.—
" [—emly) 7o =] —euly) o ——
i Y Ox;0x; |[x—y|lix3s aly 0z;0x; |x—y| | 404
Further, by direct calculations one can easily verify that
liII(l) Pz —y)T (z,0,)U(z) dE(y,e) = 0, (2.20)
E—
(y,e)
. ~ T
iy [ {T@0,)Pe )} V@) e -
(y,e)

1 [[[Cijlk(y)ninl]Bxg [eikl(y)nlni]3x1] 4=, Uly) =

4”21 — erij(Y)nim) 4 ea(y)mim
1 [Ciﬂk ) 4%6”]3>Q {eikl(w 47;6ll}3><1 Uly)
= et 0] culy) T y
* 3 Jixs ' 3 Axd
=b(y)U(y), (2.21)

where % is a unit sphere, n = (91, 72,73) € X1, and b is defined by (2.18).
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Passing to the limit in (2.14) as ¢ — 0 and using the relations (2.15),
(2.20), and (2.21) we obtain

b(y)U(y) + AU(y) = V(T U)(y) + W(U)(y) =
=P(A(2,0.)U)(y), y€Q, (2:22)
where A is the localized singular integral operator given by (2.15), while V|

W, and P are the localized single layer, double layer, and Newtonian volume
vector-potentials:

V(o)) = / P(z — y)g(z) dS.. (2.23)
W(g)(y) = / [7(x,0.)P(z — )] g(x) S

S
P(h)(y) := /P(x —y)h(z)dz. (2.24)
Q

Here the densities g and h are four dimensional vector-functions.
Let us also introduce the scalar volume potential

P i= [ Fyle - pue)do (2.25)
Q

with p beeing a scalar density function.
If the domain of integration in the Newtonian volume potential (2.24) is
the whole space R?, we employ the notation Ph = Ph, i.e.,

P(h)(y) == /P(:c —y)h(z) dx.
R3
Mapping properties of the above potentials are investigated in [14].

We refer to the relation (2.22) as Green’s third formula. Tt is evident that
by a standard limiting procedure we can extend Green’s third formula to
functions from the space H>%(€, A). In particular, it holds true for solutions
of the above formulated Dirichlet BVP. In this case, the generalized trace
vector 71U is understood in the sense of the definition (2.11).

For U = (uy,...,us) € H(Q) one can easily derive the following relation

AU(y) = =b(y)U(y) = W(U)(y) + QU(y), Yy €, (226)
where
0 [[Pleijudiun) (y) + Pleadius) (1)) 5,
O | —Pler;iuy)(y) + Pleudius) ()
and P is defined in (2.25).
In what follows, in our analysis we need explicit expression of the prin-

cipal homogeneous symbol matrix &(A)(y, ) of the singular integral oper-
ator A. This matrix coincides with the Fourier transform of the singular

QU (y) : (2.27)

4x1
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matrix kernel defined by (2.19). Let F denote the Fourier transform oper-
ator,

Foelg] = / 9(2)ei" ¢ dz,

RB
and set
0% 1
h; =V.p.— —,
&) =V e T

hat(€) = Farg(hu(2)), i,1=1,2,3.

In view of (2.16) and taking into account the relations F,_¢6(z) = 1 and
Fooe(|2|71) = 4m|€] 72 (see, e.g., [23]), we easily derive

- Aéy; 0?2 1

hal€) = Famelha(2)) = Foose (T3 002) + o 1) =
Azl . 1 dmdy  An&&
=3 + (=i&)(—i&) ZHE<| |) 3 HE

Now, for arbitrary y € Q and ¢ € R3\ {0}, due to (2.19) we get

[cijie@hia(2)]y, 5 [ @)hi(2)] s,

—euj<y>hiz<z>]1xg bl ] -

1 [ ol (@R,

dm [*elm( 5)}”3 —ca(y)ha(€
1 [ len@é&] s, lem(y

- R l [—esW&&] s caly)&s

Ay, §) — b(y), (2.28)

Sy, ) = - Fee [[

|§|2

where A(y, &) is the matrix defined in (2.4), while b(y) is given by (2.18).

As we see the entries of the symbol matrix G(A)(y, &) of the operator A
are even rational homogeneous functions in £ of order 0. It can be easily
verified that both the characteristic function of the singular kernel in (2.17)
and the Fourier transform (2.28) satisfy the Tricomi condition, i.e., their
integral averages over the unit sphere vanish (cf. [40]).

Denote by £y the extension operator by zero from €2 onto Q7. It is evident
that for a function U € H*(2) we have

(AU)(y) = (ALU)(y) for ye Q.

Now we rewrite Green’s third formula (2.22) in a more convenient form for
our further purposes

[b+AJU(y) =V (T u)(y)+W (U )(y) =P (A(z,0,)U) (y), yeQ. (2.29)
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The relation (2.28) implies that the principal homogeneous symbols of the
singular integral operators A and b 4+ A read as

S(A)(y,6) = €] °A(y,€) = b(y) Yy e Q, VEe R\ {0}, (2.30)
S(b+A)(y,6) = €] *A(y,€) Yy e, VEe R\ {0} (2:31)
It is evident that the symbol matrix (2.31) is strongly elliptic due to (2.3),
ReS(b+A)(y,€)¢ ¢ = €] ?Re A(y, )¢ - ¢ = ¢[¢]?
VycQ, VEe R\ {0}, V(eC?

where ¢ is the same positive constant as in (2.3).
From the decomposition (2.17) and the equality (2.28) it follows that
(see, e.g., [2], [25, Theorem 8.6.1])

ro, Aly: HY(Q) — HY(Q),

since the symbol (2.30) is rational and the operators with the kernel func-
tions either R(z,y) or Ry(z,y) maps H*(Q) into H2(Q) for x € X? (cf. [14,
Theorem 5.6]). Here and throughout the paper r,, denotes the restriction
operator to €.

Using the properties of localized potentials described in the Appendix B
(see Theorems B.1 and B.4) and taking the trace of the equation (2.29) on
S we arrive at the relation:

AU - V(TTU)+(b—-d) Ut +W(UT) =Pt (A(z,0,)U) on S, (2.32)

where the localized boundary integral operators V and W are generated by
the localized single and double layer potentials and are defined in (B.1) and
(B.2), the matrix d is defined by (B.3), while

AU =T ALU := {ALU} on S,
P =P = {P()} on S
Now we prove the following technical lemma.
Lemma 2.2. Let x € X? and
f=(fofa, f)T € HYQ), F=(F,Fp, F3, Fy)' € HYO(Q,4),
U= (1,02, 05,00) T € H 2(S), @ = (p1,02.05.04) € H(S).
Moreover, let U = (uy,uz, us,us) € HY(Q) and the following equation hold
b(y)U(y)+AU (y) =V (¥)(y)+W(®)(y) =F(y)+P(f)(y), y €. (2.33)
Then U € HY°(Q, A).

Proof. Note that by Theorem B.1 P(f) € H?(Q) for arbitrary f € H°(Q),
while by Theorem B.2 the inclusions V(¥), W(®) € HY0(Q, A) hold for
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arbitrary W € H~2(S) and ® € Hz2(S). Using the relations (2.26)(2.27),
the equation (2.33) can be rewritten as
o [[Pleijindiur)(y) + Pleirdiua)(y)] 5., B
Oy | —Ple;diuy)(y) + Pleadiua)(y) |,
=F(y) +P(f)y) + V() (y) - W(@ - U")(y), ye.
Due to Theorems B.1 and B.2 it follows that the right-hand side function
in the above equality belongs to the space

HYO(Q,A) = {v e HY(Q): Ave HO(Q)},

since Ut € H2(S), and therefore the same holds true for the left-hand side
function,

9 l[P(Cijlkaiuk)(y) +P(€iklaiu4)(y)]3x1 € HY°(Q,A) (2.34)

o —P(erijOiug)(y) + P(eadua)(y) |,
Note that
A(0:)P(z —y) = [6(z —y) + Ralz - y)II, (2.35)
where
oy L Ax(E—y)  ,Ox(@—y) 9 1
Ralz —y) =~ { ] +2 om om el (2.36)

Clearly, Ra(z —y) = O(Jx — y|~2) as @ — y and with the help of (2.35)
and (2.36) one can prove that for arbitrary scalar function ¢ € D(Q) there
holds the relation (see, e.g., [40])

A(8y)P(9)(y) = d(y) + Ral(9)(y), y€Q, (2.37)

where

Ra(®)(y) = / Ra(x — y)é(x) dz. (2.38)
Q

Evidently (2.38) remains true for ¢ € H°(), since D(1) is dense in H°(2).
The operator R has the following mapping property (see [14]):

Ra: H'(Q) — HY(Q). (2.39)
Applying the Laplace operator A to the vector-function (2.34) and keeping
in mind the relation (2.37), we arrive at the following equation in €2,
@ o [[P(cijindiun)(y) + P(eikz@uzx)(y)]gxll B
oy | —Pleonuy)(y) + Pleadua) () |,
0 0
[@ (A(ay)P(Cz]lkﬁzukxy)) + @ (A(ay)P(elklalU4)(y))}

0 0
o (A(8y)P(eri;05u;) () + aTJl(A(ay)P(Eilaiuzx)(y))

3x1
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[3%1 (Cijlk(y) 8%’;(13/)) 5%1 (eikl(y) 6?24(?))}3“

g ((em(y) Ou; (y)>)+ 0 (siz(y) 3u4(y)>

[i Ra(cijinOiug)(y) + iRA(@kla‘lm)(y)}
oyl T oy S 3x1

0 0
— 5 Rale;0iu;)(y) + o Ra(g10;uq)(y)

oy
[78 Ra(cijinOiur)(y) + 9 RA(%M@M)(Z/)}
oy oy

— Ay, 8,)U + .

0 0
m RalenijOiug)(y) + @RA(€ilaiu4)(y)

Whence the embedding A(y,d,)U € H°() follows due to (2.34) and
(2.39). O

Actually, in the proof of Lemma 2.2 we have shown the following asser-
tion.

Corollary 2.3. Let x € X3. The operator
b+ A:HYY(Q,A) - HY(Q,A)
1s bounded.

Now, we are in the position to reduce the above formulated Dirichlet
boundary value problem to the LBDIEs system equivalently.

2.2. LBDIE formulation of the Dirichlet problem and the equiva-
lence theorem. Let U € HY?(Q, A) be a solution to the Dirichlet BVP

(2.6), (2.7) with ®, € H=(S) and f € H(€). As we have derived above,

there hold the relations (2.29) and (2.32), which now can be rewritten in
the form

[b+ AU —V(¥) =P(f) —W(P,) in Q, (2.40)

AU — V(T) = PH(f) — (b—d)D, — W(®,) on S, (2.41)

where U := 77U € H~2(S) and d is defined by (B.3).

One can consider these relations as the LBDIE system with respect to the
unknown vector-functions U and . Now we prove the following equivalence
theorem.

Theorem 2.4. Let x € X3, &, € H2(S) and f € H(Q).

(i) If a vector-function U € H%(Q, A) solves the Dirichlet BVP (2.6),
(2.7), then it is unique and the pair (U, ¥) € HY(Q, A) x H™3(S)
with

U =T"U, (2.42)
solves the LBDIE system (2.40), (2.41) and vice versa.
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ii) If a pair (U, V) € HYO(Q, A) x H~2(S) solves the LBDIE system

(i) p : : y
(2.40), (2.41), then it is unique and the vector-function u solves the
Dirichlet BVP (2.6),(2.7), and relation (2.42) holds.

Proof. (i) The first part of the theorem is trivial and directly follows form
the relations (2.29), (2.32), (2.42), and Remark 2.1.

(i) Now, let a pair (U, ¥) € HO(Q, A) x H=2(S) solve the LBDIE
system (2.40), (2.41). Taking the trace of (2.40) on S and comparing with
(2.41) we get

Ut=®, on S. (2.43)
Further, since U € HY%(Q, A), we can write Green’s third formula (2.29)
which in view of (2.43) can be rewritten as

b+ AU —V(TTU) = P(A(,0,)U) — W(®,) in Q. (2.44)
From (2.40) and (2.44) it follows that
V(THU — ) + P(A(2,0,)U — f) =0 in Q.
Whence by Lemma 6.3 in [14] we have
A(z,0.)U=f in Q and TTU =4 on S.
Thus U solves the Dirichlet BVP (2.6), (2.7) and equation (2.42) holds.
The uniqueness of solution to the LBDIE system (2.40), (2.41) in the class
HY0(Q, A) x H-2(S) directly follows from the above proved equivalence

result and the uniqueness theorem for the Dirichlet problem (2.6), (2.7) (see
Remark 2.1). O

3. INVERTIBILITY OF THE DIRICHLET LBDIO

From Theorem 2.4 it follows that the LBDIE system (2.40), (2.41) with
the special right-hand sides is uniquely solvable in the class H1(£2, A) x
H-Y 2(S). We investigate Fredholm properties of the localized boundary-
domain integral operator generated by the left-hand side expressions in
(2.40), (2.41) and show the invertibility of the operator in appropriate func-
tional spaces.

The LBDIE system (2.40), (2.41) with an arbitrary right-hand side vec-
tor-functions from the space H'(Q) x H'/?(S) can be written as

(b+ AU — V¥ =F| in Q,

A+€0U — VU = FQ on S, (32)
where F; € H'(Q) and F, € H'/?(S). Denote
B:=b+A. (3.3)

Evidently, the principal homogeneous symbol matrix of the operator B reads
as (see (2.31))

6(B)(y,€) = €] 2A(y,€) for y€Q, R\ {0} (3.4)
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It is an even rational homogeneous matrix-function of order 0 in £ and due
to (2.3) it is uniformly strongly elliptic,

Re&(B)(y.£)¢ ¢ 2 cl¢f* forall y € Q, €€R*\ {0}, ¢(eC™

Consequently, B is a strongly elliptic pseudodifferential operator of zero
order (i.e., singular integral operator) and the partial indices of factorization
of the symbol (3.4) equal to zero (cf. [10, Lemma 1.20]).

In our further analysis we need some auxiliary assertions. To formu-
late them, let y € 02 be some fixed point and consider the frozen symbol
S(B)(7,¢) = 6(B)(), where B denotes the operator B written in a cho-

sen local coordinate system. Further, let B denote the pseudodifferential
operator with the symbol

S(B)(¢, &) == SB)((1+ [¢')w, &),

= %’ f: (5/753)7 5/ = (51752)'

The principal homogeneous symbol matrix &(B)(€) of the operator B can
be factorized with respect to the variable &3,

G(B)(€) = 6 D (B)(£)6 M (B)(¢), (3.5)
where

_ 1 _
& FH(B)(¢) = 0 (¢ &) AEN(E &),

O (¢ €3) := &3 £ 4|¢'| are the “plus” and “minus” factors of the symbol
O(&) := |¢]?, and A ) (¢, &3) are the “plus” and “minus” polynomial matrix
factors of the first order in &5 of the polynomial symbol matrix A(£',&3) =
A(y,&',&3) (see [22, Theorem 1], [45, Theorem 1.33], [24, Theorem 1.4]), i.e

A€ &) = A€ &) AD(¢ &) (3.6)

with det A (D (¢, 7) # 0 for Im7 > 0 and det A () (€', 7) # 0 for Im7 < 0.
Moreover, the entries of the matrices A® (&', &3) are homogeneous functions
in & = (¢,£3) of order 1. Denote by a*)(¢') the coefficients at &3 in the
determinants det /T(i)(g’ ,&3). Evidently,

a(€)a P (¢') = det A(0,0,1) > 0 for & #0. (3.7)

It is easy to see that the factor-matrices A (£)(¢,&3) have the structure

I (e e e 1
[A (5763)] - detg(i)(fl € ) [pzj (5 f3)}4><47

where p (5’ &3) is the co-factor corresponding to the element A( (&,&)
of the matrix A (£)(¢’, &3), which can be written in the form

P €)= SN + 0N + a6 +eE). (38
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Here c +) b(i) di(ji), and ei(jj:)7 1,7 =1,2,3,4, are homogeneous functions

in ¢ of order 0, 1, 2, and 3, respectively. From the above mentioned it
follows that the entries of the factor-symbol matrices

B w,r,65) = [o (.1, 60)] 5 = 6 P (B)(E &)
with w = &' /|¢'| and r = |¢'| satisfy the following relations:
+ +
9oy (,0,-1) 1y ', (0,0, +1)
ort ort

These relations imply that the entries of the matrices &% (B )(&',&3) belong
to the class of symbols Dy introduced in [23, Ch. III, § 10],

& (B)(¢,&) € Do. (3.10)
Denote by IT* the Cauchy type integral operators

, 1=0,1,2,.... (3.9)

- . (&' s
I (R)(€) = 2mﬁ0+/§3ilt_ 3, (3.11)

which are well defined for a bounded smooth function h(¢’, -) satisfying the
relation h(&',n3) = O(1 + |ns|) ™" with some x > 0.
First we prove the following auxiliary lemma.

Lemma 3.1. Let x € Xi with integer k > s + 2 and let ¢y be the
extension operator by zero from Ri onto the half-space R3 . The operator

TR Béo H*(RY) — H*(R3)

is invertible for all s > 0, where TRS is the restriction operator to the half-
space Ri. Moreover, for f € H® (Ri) with s > 0, the unique solution of the
equation

res BloU = [ (3.12)

can be represented in the form
Uy = toU = 7 {[ED(B)] 7t (8 O(B) T Fep) |
where (f € H*(R3) is an arbitrary extension of f onto the whole space R3.

Proof. Since the right-hand side f of the equation (3.12) belongs to the
space H*(R3) with s > 0, it follows that f € HO(R3).

First we show that the equation (3.12) is uniquely solvable in the space
HO(R3).

Let U € H°(R?) be a solution of the equation (3.12) with f € H(R3)
and let

U_ =(f —BU,, (3.13)
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where Uy = (U € I?O(]Ri) and ¢f € H°(R?) is an arbitrary extension of
f € H°(RY) onto R%. We assume that

€5 N o sy < 201 F Nl pro s )-

Since £f € HO(R?) and BU, € H°(R3), we have U_ € H°(R3). In addition,
U_ € H°(R2). Here and in what follows we employ the notation

H*(Q) := {V € H°(Q) : suppV Cﬁ}.

The Fourier transform of (3.13) gives the relation

&(B)(&)F(Us) + F(U-)(€) = F(Lf)(E). (3.14)
Due to (3.5) we have the factorization
S(B)(¢.&) = 6 D (B)(€,6)6 M (B)(€ sg (3.15)

where & 1)(B)(¢/, &) = & ) (B)(1+[¢')w, &) withw = £
(3.15) into (3.14) and multiplying both sides by [G( (B)]L, we get

& F(B)(OF (WU + [T B)©] FU-)(E) =

= [6OB)(©)] ' FUf)E). (3.16)

&l . Substituting

Introduce the notation

vi(@) = FL, (8D B)OFU)©)), (3.17)
v_(2) = F, ([ O@B)©) T FUo)(©).
g@) = 72, (8 B)©)) T Fen©): (3.18)

Then we can conclude that (see [23, Theorem 4.4 and Lemmas 20.2, 20.5])
vy € HYRY), v_e H(R®), ge HR?), (3.19)

since the degree of homogeneity of & (V) (B)(¢) and & () (B)(£) equals to 0.
In view of the above notation, the equation (3.16) acquires the form

Fv)(&) + F(v-)(&) = F(9)(§)- (3.20)

In accordance with Lemma 5.4 in [23], we conclude that the representation
of the vector-function F(g)(¢) in the form (3.20) is unique in view of the
inclusions (3.19) which in turn leads to the relations

Flvy) =T"F(g), Fvo) =1 F(g). (3.21)

Now, from (3.17), (3.18), and the first equation in (3.21) it follows that
Us € H°(R3) is representable in the form

~

U, — ]_-71{ [@ (+) (fgﬂ ot ([6) (ﬁ)] *1f(gf)) } (3.22)
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Evidently, for the solution U € H(RY) of the equation (3.12) we get the
following representation

U= TRi}‘*l{ [EH®B)] 't ([6(B)] T Fer) } (3.23)

Note that the representation (3.23) does not depend on the choice of the
extension operator . Indeed, let ¢;f € HY(R?) be another extension of

f e HORY), ie., rps 1 f = f. Since f = Lf —(1f € HO(R3), it follows

that (see [23, Theorem 4.4, Lemmas 20.2 and 20.5])
FHED®B)] ' F(f) € HORY),

while

mH{[EOB)] " F(f) | = F{otF (8 B) T F(f)} =0

(see [23, Lemma 5.2]), where 81 denotes the multiplication operator by the
Heaviside step function 6(z3) which equals to 1 for z3 > 0 and vanishes for
x3 < 0. Therefore

I+ ([& /(B)] ' F(ef)) =0 ([ D (B)] T F(er)))

and the claim follows.

If, in particular, f = 0, then we can take {f = 0, and hence U = 0 by
virtue of (3.22). Thus the equation (3.12) possesses at most one solution in
the space H°(R3).

Further, we show that

U= rRi]:_l{ (6 (B)] 1H+([@ )(B)] ‘1f(€f))} (3.24)

is a solution of the equation (3.12) for any f € HO(R3).
To this and, let us first note that for the vector-function involved in (3.24)
the following embedding holds

FHEO®) I (S OB ) e BORD).  (3.25)
Indeed, we have
FHEO®) I ([SO®)] Fen) | =
= F[EO®)] FlorF (8 O®) " Fen)])

and (3.25) follows from Theorem 4.4, Lemmas 20.2 and 20.5 in [23]. From
(3.24) and (3.25) we then get

Uy = boU = f*l{ [E(®)] 't ([ ) (B)] T F(1h)) } (3.26)
With the help of the following relation (see Lemma 5.4 in [23])
([ O B)] ' F(eh) =
=[6B)] Fn) -~ ([ B)] L),
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from the equality (3.26) we derive
SB)F(U,) =& B ([ )(B)] F () =

~ o~ 11

F(ef) - 6B ([6(B)] F(ef)).

Since
F{EO® (8 (B)] ' Fey) | e AURY),
(see [23, Theorems 4.4, 5.1 and Lemmas 20.2, 20.5]), we easily obtain
rRifém = rgs (0f) — TRi}'_l{@ B ([6 (—>(1§)]‘1f(£f))} =
= TRy (0f) =1,

i.e., the vector-function (3.24) solves the equation (3.12) and belongs to the
space HO(R3) for f € HO(RY).
In what follows, we prove that for f € H*(R%) and ¢f € H*(R?) with

1€/ 1oy < 20 f s w2y, s 20, (3.27)
the vector-function defined by (3.24) satisfies the inequality
HU”HS(Ri) < CHf”HS(]Ri)v (3.28)

and hence belongs to H*(R3.). Indeed, since (see [23, Lemma 5.2 and The-
orem 5.1])
T (Fg) = F(0Tg) for all g€ H°(R?),

then the representation (3.26) of U, can be rewritten as
Uy = FH{[8B) T FotF (8 O®) T Fen) |}
Therefore, using (3.27) and in view of (3.10), from Theorem 10.1, Lem-
mas 4.4, 20.2, and 20.5 in [23] we finally derive

101l < ea |77 ([8 O B)] 7" Fieh) |

He(RY)

1R () -1
<ar| 78BN FEN)|,. gy < NNy < 2l e e
with some positive constants ¢ and ¢;, whence (3.28) follows. This completes
the proof. O

Lemma 3.2. Let the factor matriz A (¢',7) be as in (3.6), and a )

and ci(j+) be as in (3.7) and (3.8), respectively. Then the following equality

holds

1 ~ ' - 1 /
gt | AV dr = coys (e8]

¥
and

det [eS7(€)] ., #0 for € #0.
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Here v~ 1s a contour in the lower complex half-plane enclosing all the roots
of the polynomial det AH) (€', 1) with respect to 7.

Proof Note that det A+ )(¢',7) is a forth order polynomial in 7, while

p” (§’ 7) is a third order polynomial in 7 defined in (3.8).
Let v, be a circle with sufficiently large radius R and centered at the
origin. Then by Cauchy theorem we derive

1 ~ -1
1 (+) (¢! _
27 {[A (5’7—)] }ide
e
! !
_ 1 pzj (5 ) dT:i pz] (6 ) dr —
210 ) det A &, 27” detA (€, T)
RS
1 ( ) / . +/Q
~ omi a( ) T g
+)
_ <+> / Qi;(€,7)dr, (3.29)
where

Qi(€,m) =0(|717?) as |7| — oc.
It is clear that
1 .. ! —
Jim [ Qule'r)dr
TR

Therefore by passing to the limit in (3.29) as R — oo we obtain
)

Qim' /{[g(ﬂ(glﬁ)]il}ij dr = c”+)§’)) '

Y

Now we show that det[ci(f)]4x4 # 0. We introduce the notation

P &) =57 (€, €8)ana =
= NG + B + DM ()& + EM(E),
where
COE) = [ g BDE) =057 4
D) =[] e BT = [e57E)] 4

ij
In accordance with the relation det[g('*‘)(ﬁ’,ﬁg)]_l #0 for £ = (¢,&) #0,
we conclude that det P(H) (¢, £3) # 0 for € = (¢/,£3) # 0.

Let us introduce new coordinates r = |£’| and w = &’/|¢’|, and denote

P (w,r,&) =P (¢, &) =P (wr, &).
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Then we have
det P D (w, 7, &) = det P(H (¢, &5) =
= det (CM (W)} + BO @) + DD (w)egr® + ED(w)r?) £0
for all &3 #£ 0,

whence
1111(1J det P F)(w,r, &) = €32 det O P (w).
Consequently,
det O M (w) = detlel" (w))axa # 0
and Lemma 3.2 is proved. ]

Let us introduce the operator I’ defined as
T(g)(€) i= lim oy il 906 60)] =

“+oo
_ 1 : / —ir3é3 _
— o Jim [ € e de =
o
=5 g(&', &) dés for g(¢', ) € L1(R).

The operator II' can be extended to the class of functions g(¢’,&3) being
rational in &3 with the denominator not vanishing for real non-zero £ =
(¢/,&3) € R\ {0}, homogeneous of order m € Z := {0,4+1,42,...} in £
and infinitely differentiable with respect to £ for £’ # 0. Then one can show
that (see [20, Appendix CJ])

W (o)) = lim e, 7L o€ &) =5 [ al€'0)dc
e

z3—0 o 2

where 7, denotes the restriction operator onto Ry = (0, 4-00) with respect
to x3, v~ is a contour in the lower complex half-plane Im ¢ < 0, orientated
anticlockwise and enclosing all the poles of the rational function g(&’,-). It
is clear that if g(£’,¢) is holomorphic in ¢ in the lower complex half-plane
(Im¢ < 0), then IT'(g)(¢) = 0.

Denote by ®© the localized boundary-domain integral operator generated
by the left-hand side expressions in LBDIE system (3.1), (3.2),

TQ+B£0 —7‘Q+V
ATl -V |

Now we prove the following assertion.

D=

Theorem 3.3. Let a cut-off function x € X$° and r > f% . Then the
following operator

D : H™H(Q) x H'Y2(S) — H™(Q) x H™/2(S) (3.30)
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s invertible.

Proof. We prove the theorem into four steps where we show that

Step 1. The operator ro+Bly : H*(QY) — H*(Q) for s > 0 is Fredholm
operator with zero index;

Step 2. The operator © given as in (3.30) is Fredholm operator;
Step 3. Ind® = 0;
Step 4. The operator ® is invertible.

Step 1. Since (3.4) is a rational function in &, we can apply the theory of
pseudodifferential operators with symbol satisfying the transmission condi-
tions (see [2], [3], [23], [44], [45]). Now with the help of the local principle
(see, e.g., [1], [23, Lemma 23.9]) and the above Lemma 3.1 we deduce that
the operator
B:=r, Bly: H*(Q) — H*(Q)
is Fredholm operator for all s > 0.
To show that Ind B = 0, we use that the operators B and

Bt =Tro+ (b + tA)éo,

where ¢ € [0, 1], are homotopic. Note that B = B;. The principal homoge-
neous symbol of the operator B; has the form

S(B)(y, &) = b(y) +t&(A)(y,£) = (1 — t)b(y) + t&(B)(y,§).
It is easy to see that the operator B; is uniformly strongly elliptic,

ReS(By)(y,€)¢ - ¢ = (1 —t)Reb(y)¢ - ¢ + tRe S(B)(y,£)¢ - ¢ > c[¢]?

forally € Q, £ #0, ¢ € C* and t € [0, 1], where ¢ is some positive number.
Since &(B;)(y, &) is rational, even, and homogeneous of order zero in &,
as above we conclude that the operator

B:: H*(Q)) — H*(QY)
is Fredholm operator for all s > 0 and for all ¢ € [0, 1]. Therefore Ind B, is
the same for all ¢ € [0,1]. On the other hand, due to the equality By = rq+1,

we get
IndB=IndB; =IndB; = Ind By = 0.

Step 2. To investigate Fredholm properties of the operator © we apply the
local principle (cf. e.g., [1], [23, §§ 19, 22]). Due to this principle, we have
to check that the so-called generalized Sapiro—Lopatinskit condition for the
operator ® holds at an arbitrary “frozen” point 4 € S. To obtain the explicit
form of this condition we proceed as follows. Let U be a neighbourhood of
a fixed point § € Q and let {/;0, Po € D(Zj) such that

supp 1o Nsupp Yo # G, Y € supp o N supp Yo,

and consider the operator JODQO. We separate the two possible cases 1) y €
Qand 2)yes.



Localized Boundary-Domain Integral Equations Approach for Dirichlet Problem. . . 97

Case 1). If y € Q, then we can choose a neighbourhood U of the point n
such that 2 C Q. Then N N
YoDpo = 1By
where B is the operator defined by (3.3). As we have already shown above
(see Step 1) this operator is Fredholm operator with zero index.
Case 2). If y € S, then at this point we have to “froze” the operator

{50@@0, which means that we can choose a neighbourhood U of the point
y sufficiently small such that at the local coordinate system with the origin
at the point y and the third axis coinciding with the normal vector at the
point y € S, the following decomposition holds

0D = o (D + K + T) 5, (3.31)
where K is a bounded operator with small norm
K : H (RS x H'Y2(R?) — H™TH(R3) x H'T/2(R?),
while T is a bounded operator
T . Hr-‘rl(Ri) > Hr—1/2(R2) - HT+2(R§F) « HT+3/2(R2).

The operator D is defined in the upper half-space Ri as follows

o r]}ii:?)éo —TREEV
A {y 4

and possesses the following mapping property
D : H'Y(RY) x H™Y2(R?) — H™Y(RY) x H™Y/2(R?). (3.32)
The operators involved in the expression of D are defined as follows: for the

operator M, M denotes the operator in R™ (n = 2,3) constructed by the
symbol

o~ ~ —

S(M)(&) = S(M)((1+ |¢')w,&s) if n=3,
and
S(M)(€) = (M) ((1+|€')w) if n=2,

where w = %, E=(8,¢),8 =&y, &nmn)-

The generalized SapirofLopatinskﬁ condition is related to the invertibil-
ity of the operator (3.32). Indeed, let us write the system corresponding to

the operator ©:
rRiﬁfoﬁ —TR3 ‘:/{IV/ =F in R3, (3.33)
1§+E0[7 — 1:)\?/ = F, on R? (3.34)
where F € HY(R3), F, € H'Y/?(R?).
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Note that the operator TRY ﬁéo is a singular integral operator with even
rational elliptic principal homogeneous symbol. Then due to Lemma 3.1
the operator

rs By : H™ Y (RY) — H™H(RY)

is invertible. Therefore we can define U from equation (3.33)
50[7 = [TRiﬁEO]ilf:
—F {8V ®B)] ' ([&B) T FEh) ) (335)

where f: F 1+7R2 ‘7@, ¢ is an extension operator from Rﬁ_ to R3 preserving
the function space, while £, is an extension operator Ri to R2. by zero; here
S (#)(M) denote the so-called “plus” and “minus” factors in the factoriza-
tion of the symbol @(M) with respect to the variable £3. The operator 11T
involved in (3.35) is the Cauchy type integral (see (3.11)). Note that the
function £oU in (3.35) does not depend on the extension operator /.
Substituting (3.35) into (3.34) leads to the following pseudodifferential
equation with respect to the unknown function U
R F{[8O(B) 1 ([8 O(B)] " FTH)}-VE=F on B2, (3.30)

where .
ﬁ = ﬁg - ;& éo [T’Riﬁgo} 71ﬁ1.
It is easy to see that
Ao(@) = [F  [6A)©OF0E@]| =

Gs=0+
= 7oLy [ [(8A)©F@)(©)]).
and in view of the relation
V(¥)=-P(¥®0JH)
with ¢ = §(z3) being the Dirac distribution, we arrive at the equality

=+ ~ _ ~ ~ = N
A F {8 B T ([EOB) T FV )@} @) =
- —fg,iy,{n’ [@;(;;) (& (B)] 't ([8 ) (B)] ‘16‘5(?))} (g’)fi,%/\i}.
With the help of these relations equation (3.36) can be rewritten in the
following form

Fol oy [(EF@)EN] = F(F) on R?, (3.37)

where )
€)= e((1+€)w), w= §|
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with e being a homogeneous function of order —1 given by the equality
~ ~ .1 =~ ~
() = -I{s(A)[s ©(B)] I ([ V(B) 'S(P)) }(¢)-
—8)(¢) V¢ #0. (3.38)

If the function det e(¢’) is different from zero for all £ # 0, then det €(£') # 0
for all ¢ € R?, and the corresponding pseudodifferential operator

-1

E: H*(R?) — H*t'(R?) for all s €R

generated by the left-hand side expression in (3.37) is invertible. In particu-
lar, it follows that the system of equation (3.33), (3.34) is uniquely solvable
with respect to (U, ¥) in the space H'(R3 ) x H~1/2(R?) for arbitrary right-

hand sides (F}, Fy) € H'(R3) x H'/?(R?). Consequently, the operator D in
(3.32) is invertible, which implies that the operator (3.31) possesses a left
and right regularizer. In turn, this yields that the operator (3.30) possesses
a left and right regularizer as well. Thus the operator (3.30) is Fredholm
operator if

dete(¢) £0 V¢ #0. (3.39)

This condition is called the Sapiro-Lopatinskii condition (cf. [23, Theo-
rems 12.2 and 23.1 and also formulas (12.27), (12.25)]). Let us show that
in our case the SapirofLopatinskﬁ condition holds. To this end, let us note
that the principal homogeneous symbols G(A), &(B), 6(P), and &(V) of
the operators A, B, P, and V in the chosen local coordinate system involved
in the formula (3.39) read as:

G(A)(&) = [¢|2A(¢) -
&(B)(€) = [¢|72A(©),
&(P)(¢) = —|§\ I,
SV)(¢) = 2|§|

g = (£I7£3)7 5 - (51752)3

where b denotes the matrix b written in the chosen local co-ordinate system.
Further, & (F)(B) and & (-)(B) are the so-called “plus” and “minus” factors
in the factorization of the symbol &(B) with respect to the variable 3, i.e.

&(B)=6)(B)6 " (B),

where
1

oA ©

&M (B)(¢) =
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due to (3.4). Rewrite (3.38) in the form

() = —1'{(&(B) - b)[6 ) (B)] 1t ([6 O (B))'&(P)) }(¢)-
—BV)(¢) = er(¢) + ea(¢) = SV)(¢), (3.40)
where

er(§) = ~II{&(B)[6 V(B)] "' ([6 (B)] 'S(P)) (). (3.41)

e2(¢) = bIT{ [6 V(B)] T ([ ) (B)] "6 (P)) b(¢), (3.42)
S 1
Ss(V)(¢) = 2 I (3.43)
Direct calculations give
H+([6<-><1§>]‘16<f>>)<§’> =
_ (6B 6@ ) ,
7%t1—1>%1+/ &+ it —ns3 : ds =

— 00

400 ~
i (6 B)] (¢ ms)
oo tLH& / (& + it —n3)(|€']? +n3)

— 00

i SOBEn)

= %tEHOlJr/ (53 +it—7’)(|§/|2+7—2) dr =
ol

gy 2T OB il

2 0 (G0 + L+ IE DA TE

M3 =

i I(B)] (¢, —ile')
— . 3.44
2018'[0 (¢, €3) (344
Now from (3.41) with the help of (3.44) we derive
61(5/) =

~1'{&)(B)s V) (B)[& ) (B) 1 ([6 7 (B)] 'S (P) () =
- -m{e B ([6< '(B)]” 16(P>)}<5’>=

_ H/{G(‘>(1§)}(5,)([6(‘)(3)]‘1(5’,—ilé’l)) _

o) 21¢’|
_ 1 S (B)(E, T )d’T (i[G(‘)(ﬁ)]_l(f’,—ig"D) _
277 T+ 4| ¢'] 2(¢’]

S IB) M, —ile) 1 7 (3.45)

=—i& (B) (¢, —il¢'|) 1 20¢] 2]
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Quite similarly, from (3.42) with the help of (3.44) we get

ex(¢) = bI'{ [6 ) (B)] ' ([6 (B)] ' &(P)) (€)=

- b [ ®B)"! }(5/)(2'[6”(%)]1(5’, —i|€’|)> _

o) 2]
_ b (L TSI N e B (e i)
i (3 [ E T ar ) [ @) (¢ -l -
—ig A (e I dr(=2ile') [AC) (¢, —ileN] ! =
~ g [ AW ar(2ile D [AC) (€~
b 5 [ A€ ar A -] ™

-
Therefore, due to Lemma 3.2, we have

~ C'('Jr) Nax ~ -1
€)= ib BT TOE i) o

In view of (3.40), (3.43), (3.45), and (3.46) we finally obtain

[Ci(jH (€)]axa

ey AT

e(¢) = es(¢) = ib
where
det b #£0, det[cﬁf)]4x4 #0

ij

(see Lemma 3.2), and det A () (¢, —i|¢’|) # 0 for all & # 0.
Then it is clear that for all £’ # 0 we have

m det bdetle| 7 ]axa det [A (&', —i|€'])] T #0.

Thus, we have obtained that for the operator ® the Sapiro-Lopatinskii
condition holds. Therefore, the operator

D - Hr-‘rl(Q) % Hr—1/2(S) N HT'H(Q) % Hr+1/2(5)

dete(¢') =

is Fredholm operator for r > f%.

Step 3. Here we will show that Ind® = 0. To this end, for ¢t € [0, 1] let us
consider the operator

D, — TQJrBtEO —7"Q+V
E AT, 2

with By = b+tA and establish that it is homotopic to the operator ® = ©;.
We have to check that for the operator ®; the Sapiro—Lopatinskii condition
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is satisfied for all ¢ € [0,1]. Indeed, in this case the SapirofLopatinskﬁ
condition reads as (cf. (3.39))

dete (&) #0 VE #0,

where
e() = ~I{(&(B,)~b)[6 (B ' ([6 (B T S(P))}(€)-
—6W)(E) = et (&) + e () - SM)(©), (3.47)
eV (¢) =~ {8(By)[6 ) (B,)) T ([6 ) (By)] (@) }(€) =
1
_mf, (3.48)
el (¢) = B { [ 1) (B)] T ([6 ) (By)] 'S (P)) b€,
S\ en 1
SsW)(¢) = T I. (3.49)
By direct calculations we get
e (¢) = bI{ [6 V) (By)] T ([6 ) (By)] '&(P)) p(¢) =
e 8B L 8 B E e )y
__bn{ o) }(5)( 21¢/ )_
_ ib _i [6(+)(]~3t)]71(§/a7) - -\t T G1E) =
- 2|s'|( 27r/ e i) 8Bl € i) -
MM Tar (-2 DA (€ —alg)] T =

:z‘b{m / [Eﬁ)(f'm)]1dT}[ﬁé‘>(£’,—z'|£'|)]1, (3.50)

~

where A;(€) = (1-1)|¢[b+tA(€) and A;(¢',&) = AL (€, &) A (€,6),
A(i)(g’ ,&3) are the “plus” and “minus” polynomial matrix factors in {3 of
the polynomial symbol matrix gt(f’, &3).

Due to Lemma 3.2 and the equality (3.50) we have

() (g
(2) fery 3o [Ci,,, (€)]axa (=) et ey -1
) =B SR A (i) e
where c(+) i,7 = 1,4, are the main coefficients of the co-factors p (5' T)

of the polynomlal matrlx A +)(§’ 7) and a ) is the coefficient at 74 in the
determinant det A (f’ 7).
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In view of (3.47), (3.48), (3.49), and (3.51), we finally obtain
= [Ci(jt)(fl)]élw (= . —1
er§)) = e (¢) = b~ T[4 (¢ =il )]
a; (&)
where det b # 0, det[ci(jt)]zlm # 0 (see Lemma 3.2), and det Z,f‘)(g’, —il¢'))
#0for all & #£0 and t € [0,1].
Then it follows that

_ (+) (g7 () (et ey -1
[at(+)(f’)]4 det b det [Cw‘t (€ )]4x4det (A (€ —ilE])] T #0
for all ¢ #0 and for all ¢ € [0, 1],

det (&3 (5,) =

which implies that for the operator ®; the Sapiro-Lopatinskii condition is
satisfied.
Therefore the operator
D, H'HQ) x HY2(8) — H™1(Q) x H™T1/2(S)

is Fredholm operator for all r > —% and t € [0,1]. Consequently,

Ind® =Ind®; =Ind®; =Ind®y = 0.

Step 4. Since the operator © is Fredholm operator with zero index, its
injectivity implies the invertibility. Thus it remains to prove that the null
space of the operator D is trivial for r > —. Assume that & = (U, ¥)" €
H™1(Q) x H™1/2(8) is a solution to the homogeneous equation
DU = 0. (3.52)
The operator
D : H™HH(Q) x HY2(S) — H™(Q) x H™/2(S)

is Fredholm operator with index zero for all r > —% . It is well known that
then there exists a left regularizer £ of the operator D,

Q- HT+I(Q) > HT+1/2(S) _ HT+1(Q) % Hr_l/Q(S),
such that
LD =147,

where ¥ is the operator of order —1 (cf. [23, Proofs of Theorems 22.1 and
23.1)), i.e.,

T H™THQ) x HY2(S) — H™2(Q) x H™/2(9). (3.53)
Therefore, from (3.52) we have
LOU = U +TU = 0. (3.54)

In view of (3.53) we see that
TU € H™2(Q) x H™H2(9).



104 O. Chkadua and D. Natroshvili

Consequently, in view of (3.54),
U= U,0)" e H2(Q) x HT/2(3). (3.55)

If r > 0, this implies U € HY0(Q, A). If —% < r < 0, we iterate the above
reasoning for U satisfying (3.55) to obtain

U= U0)" e H*3(Q) x H3/2(89)

which again implies U € HY%(Q, A). Then we can apply the equivalence
Theorem 2.4 to conclude that a solution & = (U, ¥)T to the homogeneous
equation (3.52) is zero vector, i.e.,

U=0in Q, ¥=0 on S.

Thus, Ker® = {0} in the class H™*1(Q) x H"~'/2(S) and therefore the
operator

D L H™H(Q) x H™™V2(S) — H™HY(Q) x HTHY2(S)
is invertible for all r > —%. ]
For localizing function x of finite smoothness we have the following result.
Corollary 3.4. Let a cut-off function x € Xi. Then the operator
D : HY(Q) x HY2(S) — H*(Q) x HY2(S)
is invertible.

Proof. We have to use mapping properties of the localized potentials with
a localizing cut-off function of finite smoothness (see Appendix B) and re-
peat word for word the arguments of the above proof of Theorem 3.3 for
r=0. (]

From Corollaries 2.3, 3.4, and Lemma 2.2 the following result follows
directly.

Corollary 3.5. Let a cut-off function x € Xi. Then the operator
D:HM(Q,A) x H2(S) — HYO(Q,A) x HY/?(S)

1is invertible.

APPENDIX A: CLASSES OF CUT-OFF FUNCTIONS

Here we present the classes of localizing functions used in the main text
(for details see the reference [14]).

Definition A.1. We say x € X* for integer k > 0, if x(z) = x(|z|),
X € W§(0,00) and oX(0) € L1(0,00). We say x € X* for integer k > 1, if
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x € X*, x(0) =1 and o, (w) > 0 for all w € R, where

~

%w)>0 for w € R\ {0},

oo

/9%(9) do for w=0,
0

oy (w) :=

and Xs(w) denotes the sine-transform of the function x
Rew) = [ Wosin(ew) de.
0
Evidently, we have the following imbeddings: X** C X*2 and X _’il cX _’f_z
for k1 > ko. The class X _’ﬁ is defined in terms of the sine-transform. The

following lemma provides an easily verifiable sufficient condition for non-
negative non-increasing functions to belong to this class (for details see [14]).

Lemma A.2. Let k > 1. If x € X*, x(0) = 1, X(0) > 0 for all
0 € (0,00), and X is a non-increasing function on [0,+00), then x € X_’f_.

The following examples for x are presented in [14],

k
{1 — m} for |z| <e,
Xlk:('r) = €
0 for |x| > ¢,
{ |z | for Jol <
exp | —s——| for |z| <e
X, (#) = |z[? — & ’

0 for |x| > e.

One can observe that x,, € X%, while y, € X$° due to Lemma A.2.

APPENDIX B: PROPERTIES OF LOCALIZED POTENTIALS

Here we collect some theorems describing mapping properties of the lo-
calized layered and volume potentials defined by the relations (2.23)—(2.24).
The proofs can be found in [14] (see also [25], Chapter 8 and the references
therein).

Let us introduce the boundary operators generated by the localized layer
potentials associated with the localized parametrix P(x —y) = Py (x —y)

Vy(y) := —/P(x —y)g(z)dS,, y €S, (B.1)
s

Woly) = — / [T (2.0,)P(z — )] g(2)dS,, ye S,  (B2)
S
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Woly) = / [T(4,0,)P( — y)]g(z) dSa, y € 5,
S

LEg(y) == [T(y,0,)Wa(y)] ", yeS.

Theorem B.1. The following operators are continuous

~ 1 1
P:H(Q) — HT25(A), —-<s< -, x€X',

2 2
1 1
CH3(Q) — H* 25 (Q; A), —5<s<5. XE X1,
1
CHS(Q) — H3 937 5(Q; A), 5 <5< g Vee (0,1), x € X2,

where P is the volume localized potential defined in (2.24) and A is the
Laplace operator.

Theorem B.2. The following localized single and double layer operators
are continuous

3
Vi H*3(S) — H*(R%), s<g. if xeX',

;HS_%(S) —>HS’S_1(Qi§A)7 %< s < g, if X€X27
W H*3(S) — H*(QF), s< g if x €X?,

1
CHS"2(S) — H**~H(QF; A), 5 <s< % if x € X°.

Theorem B.3. If x € X* has a compact support and —
the following localized operators are continuous:

Vi H(S) — HV3(QF) for k=2,
W : HTY(S) — H*"3(QF) for k= 3.

Theorem B.4. Let 1y € H=2(S) and ¢ € Hz(S). Then the following
Jump relations hold on S':

Vip=V ¢ =Vy, xyeX',
Wi(p:q:d¢+wsaa XGXQ’
TV = £dy + W'y, x € X7,

1 [Cijlk(y)ninl]?)xzs [elij (y)nmz]sm
d(y) = 5 , Y € S» (B3)
[—ewi(y)ninl s cal@mim |, ,

and d(y) is strongly elliptic due to (2.3).
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Theorem B.5. Let —5 <5< % . The following operators

H*HY(S), x e X?,
Hs+1( )’ XGXS,
°(S), xe€X?
°(9), x € X7,

3
V. H(S
W - HSH(S
H(S
HS“(S

) —
) —
)— H
)— H

are continuous.

10.

11.

12.

13.

14.

15.
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LP-DISSIPATIVITY OF THE LAME OPERATOR
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Abstract. We study conditions for the LP-dissipativity of the classical
linear elasticity operator. In the two-dimensional case we show that LP-
dissipativity is equivalent to the inequality

1 1\ _2(-D(v-1)
(2 p) = (3 —4v)? '

Previously [2] this result has been obtained as a consequence of general
criteria for elliptic systems, but here we give a direct and simpler proof.
We show that this inequality is necessary for the LP-dissipativity of the
three-dimensional elasticity operator with variable Poisson ratio. We give
also a more strict sufficient condition for the LP-dissipativity of this oper-
ator. Finally we find a criterion for the n-dimensional Lamé operator to
be LP-negative with respect to the weight ||~ in the class of rotationally
invariant vector functions.
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1. INTRODUCTION

It is well known that Victor Kupradze has made seminal contributions
to the theory of elasticity, in particular, to the study of BVPs of statics and
steady state oscillations, as well as initial BVPs of general dynamics.

His monographs in the field of elasticity testify the great work he made
(see, for instance, [6-9]). In particular, his book Three-dimensional Prob-
lems of the Mathematical Theory of Elasticity and Thermoelasticity [10-12])
became a must for every mathematician working in this field.

The present paper concerning elasticity theory is dedicated to him.

Let us consider the classical operator of linear elasticity

Eu=Au+(1-2v)"'Vdivu, (1)

where v is the Poisson ratio. Throughout this paper, we assume that either
v>1orv<1/2 Ttis well known that E is strongly elliptic if and only if
this condition is satisfied (see, for instance, Gurtin [5, p. 86]).

Let % be the bilinear form associated with operator (1), i.e.

ZL(u,v) = — /((Vu, Vo) + (1 —2v) ' divu dive) de, (2)
Q

where (-, -) denotes the scalar product in R™. Here €2 is a domain of R"™.
Following [1], we say that the form & is LP-dissipative in €2 if

—/ (<Vu, V(|ulP7u)) + (1 —2v) " divu div(|u|p_2u)) dz <0 (3)
" if p>2,

—/ ((vu,vqu|p’—2u)> +(1—2v) " divu div(\uw’—?u)) dr <0 (4)
Q

if p<2,

for all u € (C3())? (p’ = p/(p—1)). We use here that |u|?7"?u € C§(Q) for
q>2and u e CHQ).

In [1,2] necessary and sufficient conditions for the LP-dissipativity of
the forms related to partial differential operators have been obtained. In
particular, for the planar elasticity it was proved in [2] that the form & is
LP-dissipative if and only if

<1 1>2 _2v—1@ev-1)
2 p/ = (B-4w)?2

Let us now suppose that (Q is a sufficiently smooth bounded domain and
consider the operator (1) defined on D(E) = (W2P(Q) N W12(Q))". As
usual WHP(Q) denotes the Sobolev space of functions which distributional
derivatives of order [ are in LP(€2). We also use the notation W1?(€) for
the completion of C§°(Q) in the Sobolev W1?(Q) norm. The operator E is

(5)
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said to be LP-dissipative (1 < p < 00) in the domain 2 C R™ if

/ (Au+ (1—2v) ' Vdivu)|ufP?ude <0 (6)
Q

for any real vector-valued function v € D(E). Here and in the sequel the
integrand is extended by zero on the set where u vanishes.

The equivalence between the LP-dissipativity of the form and the dissi-
pativity of the operator was discussed in [1, Section 5, p. 1086-1093]. It
turns out that, if n = 2 and a certain smoothness assumption on Q C R? is
fulfilled, the operator of planar elasticity is LP-dissipative (i.e. (6) holds for
any u € D(E)) if and only if condition (5) is satisfied.

In [2] these facts have been established as a consequence of results con-
cerning general systems of partial differential equations, but in the present
paper we give a direct and simpler proof just for the Lamé system. The
result is followed by two Corollaries (obtained for the first time in [2]) con-
cerning the comparison between the Lamé operator and the Laplacian from
the point of view of the LP-dissipativity.

In Section 3 we show that condition (5) is necessary for the LP-dissipati-
vity of operator (1), even when the Poisson ratio is not constant. For
the time being it is not known if condition (5) is also sufficient for the
LP-dissipativity of elasticity operator for n > 2, in particular, for n = 3.
Nevertheless in the same section we give a more strict explicit condition
which is sufficient for the LP-dissipativity of (1).

In Section 4 we give necessary and sufficient conditions for a weighted
LP-negativity of the Dirichlet-Lamé operator, i.e. for the validity of the
inequality

/ (Au+ (1 —2v) ' Vdivu)|uf?u Tl <0 (7)
Q
under the condition that the vector u is rotationally invariant, i.e. u depends

only on ¢ = |z| and u, is the only nonzero spherical component of u. Namely
we show that (7) holds if and only if

—(p—-1D(n+p —-2)<a<<n+p-—2.

2. LP-DISSIPATIVITY OF PLANAR ELASTICITY

In this section we give a necessary and sufficient condition for the LP-
dissipativity of operator (1) in the case n = 2.
First we consider the LP-dissipativity of form (2).

Lemma 1. Let Q be a domain of R%2. Form (2) is LP-dissipative if and
only if
2
/ {cp\wf — V2 + 4 Cp o] 2 |onnlol|* — [ divel?| de <0 (8)
Q i=1
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for any v € (C3(Q))?, where

Cp=01-2/p) ~y=QQ-2v)7" (9)

Proof. Sufficiency. First suppose p > 2. Let u € (C3(Q2))? and set v =
|u[P~2u. We have v € (C}(Q))? and u = |v|?~?)/Py. One checks directly
that

(Vu, V([uP~?u)) + (1 — 2v) " divu div(|ulPu) =

— Z \ij|2 - Cp|V\v||2 — ’yC'p|vh8h|v||2 + 7| div ol
J

The left-hand side of (3) being equal to the left-hand side of (8), inequality
(3) is satisfied for any u € C}(Q).
If1 <p<2we find

(Vu, V([u” "2u)) + (1 — 20) "L divu div(|u[P ~2u) =
2 2 .
= Z V| — Cpr | VI0l|™ = v Cpr [0nn|v]|” + 7] divv|?
J
and since 1 —2/p’ = —1 4 2/p (which implies C), = C}/), we get the result

also in this case.
Necessity. Let p > 2 and set

ge = (|U|2 + 52)1/27 Ue = gg/p_lvv
where v € C§(£2). We have

(Vue, V(|ue[P~?u.)) =
= |u€|p72<8hu€, Onue) + (p — 2)|u5|p73<3hu5, ) Oplue|.

A direct computation shows that
(Vuue, V(ucl ™)) = [ (1 = 2/p)?gz o] -
= 2(1 = 2/p)g "ol 2] 3 sk P+ g2 ol (0h0, 0),
k
|ue|p_3<8hu€,u5> Onlue| =

—{ =2/ [ - 2z Dl = gzl
+ [927 PP = (1= 2/p)g P |vfP ] } > vokv;)?
k

on the set £ = {z € Q| |v(x)| > 0}. The inequality g% < |v|* for a < 0,
shows that the right-hand sides are dominated by L' functions. Since g. —
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|v| pointwise as e — 07, we find

sl_i>%1+ <vu€’ V(|u5|p72u5)> =
= (Ohv, Opv) + |(1 —2/p)* —2(1 —2/p) + 4(p — 2)/1?2} 0] 72 Jv; ok |* =
k

2
=—(1=2/p)*|VIol|” + > [V,
J
and dominated convergence gives

lim /<VUE,V(|U5|p72UE)> dx = / [f C’p|V|v||2 + Z |ij|2} dz. (10)
e—0t -
E E J
Similar arguments show that
lim [ divue div(|ue|?2u.) de =

e—ot
E

:/[_cp|u|*2|vhah|u||2+|dm|2] dr. (11)
E
Formulas (10) and (11) lead to

lim+ (Vue, V(ueP~%ue)) + v div(|ue [P~ ?u.) do =
E—O0 P
— [(= oIV + 2 19— Cylol 2 endnol [+ | divol?) o (12)
a J

The function u. being in (C(€2))?, the left-hand side is greater than or
equal to zero and (8) follows.
If 1 < p <2, we can write, in view of (12),

lim [ (Vue, V(Juel? ~2ue)) +~ div([ue [P "2ue ) dx =

ot ]
:/(7(119,

V|v\|2 + Z |V11j|2 — ’yC’p/\v|72|vh3h|v||2 + 7] divv|2) dx.
Q J

Since Cp = Cp, (4) implies (8). O

Remark 1. The previous Lemma holds in any dimension with the same
proof.

The next Lemma provides a necessary algebraic condition for the LP-dis-
sipativity of form (2).

Lemma 2. Let Q be a domain of R?. If form (2) is LP-dissipative, we
have

Cpl 1617 +7 (& w)?[ (A, w)? = [P — 7 (£, 1) <0 (13)
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for any £, \,w € R?, |w| =1 (the constants C,, and ~y being given by (9)).
Proof. Assume first that Q = R2. Let us fix w € R? with |w| = 1 and take
v(z) = w(z) n(log|z|/log R), where

w(z) = pw + (),

p, ReRY ¢ e (CE(R?))2, ne C®(R?), n(t) =1if t <1/2 and n(t) =0
ift>1.
On the set where v # 0 one has

(V]v], Vv]) = (V|wl], V|w|) n*(log |z|/ log R)+
+2 (log R)_1|w| <V|w|,x> |x\_2n(10g |z|/log R) 0’ (log ||/ log R)+
+(log R)~?w|*|2[~(n/ (log |2/ log R))".

Choose d such that spti) C Bs(0) and R > §2. If |x| > § one has
w(z) = pw and then V]w| = 0, while if || < §, then n(log |z|/log R) = 1,
7 (log ||/ log R) = 0. Therefore

[ (910l 9ol dr =

RQ
= / (V|wl], V|w]) da + % / wl* (n'(log ||/ log R))? da.
log” R ||
Bs(0) Br(0)\B 57(0)
Since
1 d
Rt Tog? R E
Br(O)\B.7(0)
we find

REIEOO/<V\U|,V|U|>dx: / (Vw], V}wl) dz.
R? B;(0)

By similar arguments we obtain
2 o 2
lim [CP|V|U|| —Z [V;1?+7 Cp o] 72| vn0n|v]|” — 7| divvﬂ dx =

R—+oc0o 2
R2 Jj=1

2
2 _ 2 .
= / [CP|V|w|| =3 Vw45 Cp [w] 2 wpdn|w]] ’y|d1vw2} dz.
B;(0) =1

In view of Lemma 1, (8) holds. Putting v in this formula and letting
R — +o00, we find

2
[ |10l P32 19 4 € a2 annlcl [ | iv ol aa<o. (12
B (0) J=1
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From the identities

8hw = 8hw, divw = div ¢7

2
VIl |* = lpw+ 9|72 (uw + 9, 0n1)2,

2
w2 feondnwl? = law + 1| (uwn +vn) (aw + v, )|
we infer, letting p— 400 in (14),

/[ pzw o) —Z V45 7y C|wn (w, )| "= | div )| ]dx<o (15)

R2 h=1
Putting in (15)
P(x) = Ap(x) cos(p(€, z)) and ¥(x) = Xp(z) sin(u(€, ),

where A\ € R?, ¢ € C5°(R?) and p is a real parameter, by standard argu-
ments (see, e.g, Fichera [4, p. 107-108]) we find (13).
If Q #R? fix 29 € Q and 0 < e < dist(zg, Q). Given ¢ € (CF(Q)?, put
the function
v(z) = ¥((z - z0)/¢)
in (8). By a change of variables we find

2
2 _ 2 .
G901 = 31903+ Gyt unauntol]” vl vl| s < 0
R2 j=1
The arbitrariness of ¢ € (C3(£2)? and what we have proved for R? gives
the result. ]

We are now in a position to give a necessary and sufficient condition for
the LP-dissipativity of form (2).
Theorem 1. Form (2) is LP-dissipative if and only if
(1 1)2<2(V—1)(2V—1)
2 p/ T (B-4w)?2
Proof. Necessity. In view of Lemma 2, the LP-dissipativity of % implies
the algebraic inequality (13) for any &, \,w € R?, |w| = 1.

Without loss of generality we may suppose £ = (1,0) and (13) can be
written as

(16)

Gyl + 742 gi0y)? — A2 =722 <0 (17)
for any \,w € R?, |w| = 1.
Condition (17) holds if and only if

Cp(1 +qwiw? —1-v<0,
[Cp(1+ ’7&]%)&)1&)2]2 <[-Co(l+wiwi +1+7] [ - Cp(1 +ywi)ws + 1]
for any w € R?, |w| = 1.
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In particular, the second condition has to be satisfied. This can be written
in the form
L4y = Cp(1+7wi)(1+7w3) >0 (18)
for any w € R?, |w| = 1. The minimum of the left-hand side of (18) on the
unit sphere is given by
L4+ —Cp(1+7/2)%

Hence (18) is satisfied if and only if 1+~ — C,(1 +v/2)* > 0. The last
2(1-v) (p - 2)
p
/

inequality means
2 _ 2
( 3 —4v ) >0,
1-2v 2(1—2v)

i.e. (16). From the identity 4/(pp’) = 1— (1—2/p)? it follows that (16) can
be written also as
4t
pp T (3—4v)?’
Sufficiency. In view of Lemma 1, & is LP-dissipative if and only if (8)
holds for any v € (C3(€2))2. Choose v € (C4())? and define

X1 = o] w101 |v] + v202|v]), X = |v| (w20 |v] — v1a|v]),
Vi = [o[[D1(Jo] " or) + Ba(jo| " w2)], Yo = [wl[B(Jo] T wz) = Da([v] T on)]
on the set E = {z € Q| v # 0}. From the identities
VIvl|* = X7 + X3,
Yi = (O1v1 + O0p02) — X1, Y2 = (O1vg — Opv1) — X2

(19)

it follows
Y2+ Y2 = |V]o||* + (0101 + D209)? + (Drv2 — Dy01)°—
— 2(01v1 + D2v9) X1 — 2(D1vg — Dav1) Xa.
Keeping in mind that 9y|v| = [v|~'v;0,v;, one can check that
(O1v1 + Bav2) (v101 V] + v202|v]) + (Drv2 — Davr) (V201 |v] — v182|v]) =
= [o] [V]ol[* + [o](@r0102v2 — Dyv10102),

which implies
> VP = X7+ X3+ Y2+ Y5 (20)

J
Thus (8) can be written as

4
/[ﬁ (XP+ XD+ Y2+ YE —yCpXP + (X1 + Y1) de 2 0. (21)

Let us prove that

/X1Y1 dr = — /X2Y2 dz. (22)
E E
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Since X1 +Y; = dive and Xo 4+ Y5 = 01v9 — 0av1, keeping in mind (20),
we may write

2/(X1Y1 —|—X2}/2) dx =
E
— [+ (o ¥ = (XF + X5 4 VP + YD) do =
E

= / [(divv)2 + (D12 — Byv1)? — Z |ij2} dr,
) J

i.e.
/(X1Y1 + XQ}/Q) dr = /(811)1821;2 — 61’[)2821)1) dz.

E B
The set {x € Q\ E|Vv(z) # 0} has zero measure and then

/(X1Y1 + X2}/2) dr = /(81’[)1821)2 — 811}282’01) dz.
E Q

There exists a sequence {v(™} € C§°(Q) such that v — v, Vo — Vo
uniformly in  and hence

n—oo

/811115‘2112 dr = lim 5‘11)§n)821)§") dr =
Q Q

n—oo

= lim 81v§")82v§n) dxr = /617)2821)1 dx
Q Q

and (22) is proved. In view of this, (21) can be written as
4
/ (p—p/ (1+7)X2 + 207 XY, + (1 + 7)Y12) do+
4
+/ (—,Xg — (1 — )y Xa Yo +Y22) dz >0
bp

for any fixed ¢ € R.
If we choose

_2(1-v)

V= 3—4v
we find .
_ ! 2.2 _ (1+7)°
=Dr=3—g V" =Gg-aue

Inequality (19) leads to

4
Py < — (1+9)% 1-9<—.
pp pp
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Observing that (16) implies 1+~ = 2(1 — v)(1 — 2v)~! > 0, we get

4
o (L+7)z? + 20y 1y + (1 + )yt >0,

4
?963—2(1—?9)73323;2—1-3/% >0

for any x1,x2,y1,y2 € R. This shows that (21) holds. Then (8) is true for
any v € (C}(2))? and the proof is complete. O

The results we have obtained so far hold for any domain . For the
rest of the present section we suppose that 2 is a bounded domain whose
boundary is in the class C2. We could consider more general domains, in
the spirit of Maz’ya and Shaposhnikova [14, Ch. 14], but here we prefer to
avoid the related technicalities.

Theorem 2. Let E be the two-dimensional elasticity operator (1) with
domain (W2P(Q)NWLP(Q))2. The operator E is LP-dissipative if and only
if condition (16) holds.

Proof. By means of the same arguments as in [1, Section 5, p. 1086-1093],
we have the equivalence between the LP-dissipativity of form (2) and the
LP-dissipativity of the elasticity operator (1). The result follows from The-
orem 1. O

We shall now give two corollaries of this result. They concerns the com-
parison between E and A from the point of view of the LP-dissipativity.

Corollary 1. There exists k > 0 such that E — kA is LP-dissipative if
and only if

1 1N2 2(v—1)(2v—1)
- — = _ 2
(2 p) < (3 —4v)? (23)
Proof. Necessity. We remark that if £ — kA is LP-dissipative, then
k<1 if p=2,
L (24)
k<1l if p#2.

In fact, in view of Theorem 1, we have the necessary condition

— (1 =2/p)*[(L = k)€ + (1 = 20) 71 (&wy)?] (Njw; )2+
+ (L= R)EPIAP + (1 —20) 71 (&A)? =0 (25)
(

for any &, \,w € R?, |w| = 1. If we take £ = (1,0), A = w = (0,1) in (25) we
find

4 (1-k)=0

Py g
and then k£ < 1 for any p. If p # 2 and k = 1, taking £ = (1,0), A = (0, 1),
w=(1/v2,1/v/2) in (25), we find —(1—2/p)?(1 —2v)~! > 0. On the other
hand, taking £ = A = (1,0), w = (0,1) we find (1 —2v)~! > 0. This is a
contradiction and (24) is proved.
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It is clear that if & — kA is LP-dissipative, then F — k' A is LP-dissipative
for any k' < k. Therefore it is not restrictive to suppose that £ — kA is
LP-dissipative for some 0 < k < 1. Moreover, E is also LP-dissipative.

The LP-dissipativity of F — kA (0 < k < 1) is equivalent to the LP-
dissipativity of the operator

E'u=Au+(1—-k) " 1-2v)"'Vdivu. (26)
Setting
vV =v(l—-k)+k/2, (27)
we have (1 — k)(1 — 2v) =1 — 2v/. Theorem 1 shows that
4 1

— > 2
pp ~ (3—4)? 2

Since 3 —4v' = 3 —4v — 2k(1 — 2v), condition (28) means |3 —4v —2k(1 —
V)| = Vpp'/2, ie.

3—4v ‘> Vpp
2(1 —2v)1 7 41 —2v|"

Note that the LP-dissipativity of E implies that (16) holds. In particular,
we have (3 —4v)/(1 —2v) > 0. Hence (29) is satisfied if either

’k - (29)

1 rr
be (- 1] Y2F)
o \B =5 (30)
or
1 vpp'
1@7(3—4 —) 31
i B+ (31)
Since
|3—4V| 1= 3 —4v 1= 1 S \/pp/
21 — 2 C2(1—2v) 21 —-2v) T 41 -2
we have
1 vy
—— (13-4 7)21
2|1—2y|<| v+

and (31) is impossible. Then (30) holds. Since k& > 0, we have the strict
inequality in (19) and (23) is proved.
Sufficiency. Suppose (23). Since
4.
pp T (3—4v)?’
we can take k£ such that

1 vpp
0<k 7(3—4 — 7) 32
<k<gimgB-#-=5 (32)
Note that
|3 — 4v| 34w B 1 < Vo

21 —2v] 21 —-20)  2(1—2v) “41—2]"



LP-Dissipativity of the Lamé Operator 123

This means i
o (|3—4u|—@><1
2[1 — 20 2
and then k < 1. Let v/ be given by (27). The LP-dissipativity of E — kA is
equivalent to the LP-dissipativity of the operator E’ defined by (26).
Condition (29) (i.e. (28)) follows from (32) and Theorem 1 gives the
result. O

Corollary 2. There exists k < 2 such that kA — E is LP-dissipative if

and only if
(1 B 1)2 2v(2v — 1)
2 p (1—4v)2 "~
Proof. We may write kA — E = E — kA, where k = 2 — k, E:A—i—(l—

20)"1Vdiv, 7 = 1 — v. Theorem 1 shows that E — kA is LP-dissipative if
and only if

(33)

1 1\2 2w-1)(2v—-1)
e e 34
(2 p) ST Bo4)p (34)
Condition (34) coincides with (33) and the corollary is proved. O

3. LP-DISSIPATIVITY OF THREE-DIMENSIONAL ELASTICITY

As far as the three-dimensional Lamé system is concerned, necessary
and sufficient conditions for the LP-dissipativity are not known. The next
Theorem shows that condition (16) is necessary, even in the case of a non-
constant Poisson ratio. Here 2 is a bounded domain in R? whose boundary
is in the class C2.

Theorem 3. Suppose v = v(x) is a continuos function defined in Q such
that
inf |2v(z) — 1] > 0.
zeQ

If (1) is LP-dissipative in 2, then

1 1N2 L 2(w(z) — 1) 2u(x) — 1)
(- 5) R S I S IR (35)

Proof. We have

/ (Au+(1— 21/(1:))_1V div u|ulP"2udr <0 (36)
Q
for any uw € (W2P(Q) N WLr(Q))3, in particular, for any u € (C§°(Q))3.
Take v € (C§°(R?))?, ¢ € C°(R), ¢ > 0 and 20 € ; define v. (71, 22) =
v((z1 — 29)/e, (22 — 23) /e),
u(xy, X9, x3) = (’Us’l(l’l,xz),vg’g(fﬁl,1’2),0) o(x3).
We suppose that the support of v is contained in the unit ball, 0 < & <

dist(2%,09Q) and the support of ¢ is contained in (—¢,¢). In this way the
function u belongs to (C§°(Q2))3.
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Setting (21, 72, 23) = (1 — 2v(x1, 22, 73)) !, we have
Au+yVdivu = (Av, + vy Vdive.) ¢ +v.¢”
and then
(Au 4y Vdivu)|ulP?u = (Ave + v Vdive.) [ve [P 2v0P + 02" P L.

We can write, in view of (36),

/SDp drs //(Ave + v Vdivo.) |ve [P0, doy dao+
R R2
+ /cpp_lap” dzs // |ve|? dxy dzo < 0.
R R2

Ave +yVdive, =

0 0 0

1 1 —20 1 —x . T4 —x] T1—X
) |:A’U( - 17 - 1>+’Y("E1,x2,$3)Vd1VU( - 17 ! 1):|7
€ € € 5 €

Noting that

a change of variables in the double integral gives
/(pp(.’L'3> d$3// (Av(tl, t2)+”y(x(f+5 tl, $g+€ tg, {L‘3)V div ’U(thtg)) X
R R2

X ”U(tl,tg)‘p_Q’U(tl,tg) dtl dt2+

+€2/<pp‘1<p” dx3 //Iv(tl,tz)l” dty dt2 < 0.
R R2
Letting g — OJF’ we get
/w”(xs)dxs // (Av(tlﬂh)+’y(x(f,xg,xg)Vdivv(tl,tg))><
R R2

X !U(tl,t2)|p72’l}(t1,t2) dtl dtg < 0.

For the arbitrariness of ¢, this implies
// (Av(tl, t2) + (29, 29, 23)V divu(ty, tg)) X
]RQ

x [v(ts, t) [P 20(tr, t2) dity dts < 0

for any v € (C§°(B))?, B being the unit ball in R2.
Suppose p > 2. Integrating by parts, we get

(v, [o]P ) <0 (37)
for any v € (C§°(B))2.
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Given v € (C§°(B))?, define u. = gg/p_lv. Since u. € (C§°(B))?, in

view of (37) we write
L (ue, [ue|P2u.) 0.

By means of the computations we made in the Necessity of Lemma 1,
letting ¢ — 07, we find inequality (8) for any v € (C§°(B))?. This implies
that (8) holds for any v € (C3(B))?.

In fact, let v, € (C§°(B))? such that v, — v in Cl-norm. Let us show
that

XE, [Vm| 0 VU, — xelv| Ve in L2(B), (38)

where E, = {z € B | v,,(z) #0}, E={x € Q| v(z) # 0}. We see that
XE, [Vm| 0 Vo, — xelv] vV (39)

on the set EU{x € B | Vu(z) = 0}. The set {x € B\ E | Vu(x) # 0}
having zero measure, (39) holds almost everywhere. Moreover, since

/XEn|vm|_2|vvam\2dm< /|va\2dx
G G

for any measurable set G C Q and {Vv,,} is convergent in L?(2), the se-
quence {|x g, [Vm| " vm Vom — xe|v| " 1vVo|?} has uniformly absolutely con-
tinuous integrals. Now we may appeal to Vitali’s Theorem to obtain (38).

Inequality (8) holding for any v € (C3(B))?, the result follows from
Theorem 1.

Let now 1 < p < 2. From the L? dissipativity of E it follows that the
operator E — AI (A > 0) is invertible on LP(€2). This means that for any
f € LP(Q) there exists one and only one u € W2P(Q) N W1(Q) such that
(E — A)u = f. Because of well known regularity results for solutions of
elliptic systems [3], we have also that, if f belongs to L (2), the solution
u belongs to W2P () N W' (Q) and there exists the bounded resolvent
(E* —XI)™1: L' (Q) — W22 (Q) n W' (Q).

Since E is LP-dissipative and |(E* — AI)7!|| = ||(E — M)7!||, we may
write

* —1 l
(B - a0 < &

for any A > 0, i.e. we have the Lp/-dissipativity of E*, p’ > 2. We have
reduced the proof to the previous case. Therefore (35) holds with p replaced

by p’. Since
1 1\2 /1 132
G-2-G-3y
the proof is complete. O

We do not know if condition (16) is sufficient for the LP-dissipativity of
the three-dimensional elasticity. The next theorem provides a more strict
sufficient condition.
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Theorem 4. Let Q be a domain in R3. If

1-2v
—— = ifu<1/2,
2(1 —v)
-2/ <350 0 (40)
ISR

operator (1) is LP-dissipative.

Proof. In view of Remark 1, the operator E is LP-dissipative if and only if
inequality (8) holds for any v € (C}(£2))3. This can be written as

C’p/ {|V|v||2+7|v|72|vh8h|v||2} dr <
Q

3
g/[2|wj|2+7|divv|2} do. (41)

Q J=1
Note that the integral on the left-hand side of (41) is nonnegative. In
fact, setting &,; = Opvj, w; = |v|~tv;, we have
2 _ 2
[VIol]™ + 5 [o] 72 [ondn|vl|” = wiw; (Onk + Ywnwr)Enikr;-
Then we can write
2 _ 2
[VI0l]™ 4+ [o] 2 ondhlv]]” = AP +9(A - w)?, (42)

where A is the vector whose h-th component is w;&p;. Since w is a unit
vector and v > —1 we have

|V|U||2 +7 |U|72|Uh5h|v||2 >0.

Also the right-hand side of (41) is nonengative. In fact, denoting by v;
the Fourier transform of v;

0;(y) = /Uj(yc)e_“"'”C dz,
RB

we have

3
/ [Z |ij‘2 + | diVU|2} dr = /(6hvj8hvj + wahvhajvj) dr =

o =1 Q
= (QF)_S/(ahvjahvj+ YORvR0;v;) dy:(zw)—g/(|y‘2m2+ Y|y - mz) dy >
R3 R?
. _3 2152 g
> winf1, 14} [ ly?o dy =
RS

3
:min{171+’y}/Z|ij|2 dz. (43)
o J=1
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This implies that (41) holds for any v such that the left-hand side vanishes
and that F is LP-dissipative if and only if

3
[ > [Vo;[2 4 | divol?] do
Cp <in =1

d T ) 44
T IV + 7 1o Zlondn o] do *9
Q

where the infimum is taken over all v € (C§(£2))? such that the denominator
is positive.
From (42) we get

V1ol |* + 7 [0] 2 ondnlo]|” <

3
<max{1,14+~}|A? < max{1,1+~} Z |Vv,)2.
j=1
Keeping in mind also (43) we find that
3 2 c ]2
1|V |2 + | dive]?| dz
S{[Z]—l' J| 7‘ ‘ ] mln{l,l—k’y}
S 1IV[][? + 7 [v]~2|vpdp|v]?] d ~ max{1,1+~}"
Q
Therefore condition (44) is satisfied if
min{1,1+ ~}
P max{1,1 +4} "
This inequality being equivalent to (40), the proof is complete. O

Remark 2. The Theorems of this section hold in any dimension n > 3
with the same proof.

4. WEIGHTED LP-NEGATIVITY OF ELASTICITY SYSTEM DEFINED ON
ROTATIONALLY SYMMETRIC VECTOR FUNCTIONS

Let ® be a point on the (n — 2)-dimensional unit sphere S™~2 with spher-
ical coordinates {¥;};=1,... n—3 and ¢, where ¥; € (0,7) and ¢ € [0,2m).
A point z € R"™ is represented as a triple (o,d, ®), where o > 0 and
¥ € [0,7]. Correspondingly, a vector u can be written as u = (up, Uy, Us)
with ue = (uy, 5,..., Uy, uy). We call uy, ug, us the spherical components
of the vector wu.

Theorem 5. Let the spherical components uy and ug of the vector u
vanish, i.e. u = (u,,0,0), and let u, depend only on the variable p. Then,
if a >n—2, we have

dz.

|

/ (Au + (1 —2v)"'Vdiv u) |u|P~2u <0 (45)

Rn
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for any u € (C5°(R™\ {0}))™ satisfying the aforesaid symmetric conditions,
if and only if

—(p-D(n+p —-2)<a<<n+p-—2. (46)
If « < n—2 the same result holds replacing (C°(R™\{0}))™ by (C§°(R™))™.
Proof. Setting
ge(s) _ (82 +82)1/2,

and denoting by w,_1 the (n — 1)-dimensional measure of the unit sphere

in R™, we have
/AugE |ul)P~ |$|a =

R”L
—+o0
1 _ n—1 _ 1
= Wn-1 / (F 0p(0" la@ue)_7“9)96<|ug|)p 2“99n '~ dp.
0

An integration by parts gives

—+oo

[ 000" )2l g0 e =

0

+oo
= — / Qn_lagugag(g€(|ug|)p_2u09_a) do =

- / D0 (ge (|ug])"~?u,) 0" ™1~ do+
0

400
o [ ol udpune e (D)
0
Since
59(95 (‘U‘QDP) = pg€(|u9\)p72u95‘gug, (48)
we have, by means of another integration by parts in the last integral of (47),
+00
o [ gellul) 0, do = / 00 92 (o)) 0"~ do =
0

__on-2-0) /ga )P 0™ do + O(£P),
K

where K is the support of u,.
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This proves the identity

/Aug&‘ |u| | |a = —Wnp-1 |:(7’l— 1)/96(|u9|)17*2u§gn737a dQ+
R’Vl K
an—2—« 3
+¥/96(|ugl)pa 5= do+

K
+/89“989(96(|u9|)p_2u9)Qn_l_a dQ:| +O(€p)- (49)

‘We have also

[ taiv g (a2 fﬁl — [ v div (g ful~2ulel =) ds =

R”L R”L
“+o0 1

::wwg/ﬁj@@“wwa*a (g 2up) do. (50)

0

Moreover,

1 n— n— —Q
o1 9,(0 1“9) a@(@ - e (|uo])"™ UQ) =

=(n—-1)(n—1-0a)0" > “ge(luo)’2uj+
+(n— 1)Qn_2_augag (g€(|u9|)p_2ug) +(n_1_a)9n_2 g€(|ug|)p_2ugagug+
+ Qniliaaauaa (98(|“9D ug) (51)

In view of (48) we may write

+o0 —+o0
—2—a — 1 n—2—o
/Qn 2 ge(|ugl)? 2“939%‘19:5/9 2 ag(gs(|u9|)p) do =
0 0
n—2—a« o
= I [t () do+ O, (52)
K
Since

2P (96(‘“9|)p_2uz) = updy (ga(|u9|)p_2ug) + 95<‘U9|)p_2u989“9
and using again (48), we find

—+oo

/ o2y 00 (ga [uel)P™ ug) do =

0
+oo +oo

B / Qn_2_aae(9€(‘ug|)p_2u2g) do — / Qn_Q_agf“UgDp_Zugagug do=

0 0
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— (n-2-a) / 0" g ([P 2u2 do—
K

+oo
1
- / 0"2720, (g (|u))?) do + O(e?) =

0

- (n-2-a) / 0" g (ug P22 dot
K

n—2—a«a 3
# B2 20 [rg (ulr de +OE). (5)
K

By (50), (51), (52) and (53) we obtain

[ wtvaguy ﬁ -
€T «
Rﬂ,
e [m ) / 0" g (g2 do+
K
aln—2—a)

# S [y do
K

K

From (49) and (54) it follows that

dr_

EE

1
. p—2
/(Aqu 1_2VVd1vu)gE(\u|) u
]Rn
2(1 —v) n—3—a _
T TWn-1m o [(”1)/9 ? 9 (lugl)” 2U5d9+
K

an—2—a«a 35—
I Ea
K
+ [ a0 (a: (s )" do| + OFeP)
K

Seeing that, given a € R, there exists a constant C, such that (g.(s))* <
Co(s"+¢) (s = 0), we may apply the dominated convergence theorem and
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find

1 dz
i p=2,, 7 _
/ (Au +1 5 V div u) [ulP~%u PR

R™
2(1 - -2
R e e

K
+ /89u989(|u9|p_2“9)9n_1_a dQ}
K

Keeping in mind that either v > 1 or v < 1/2, the last equality shows
that (45) holds if and only if

—9_
n_1+oz(n p Oé)}/gn—3—a|ug|pdg+

K

+ [ o0l e dg > 0. (59)
K

Setting v, = |u,|P~2)/2u,, we see that (55) is equivalent to

+oo
an—2—«
n71+ %] / |,UQ|29n737a dQ+
0

oo

(0p0,)%0" '™ *do > 0. (56)

+

4

+ /
pp

o

If &« = n — 2 the inequality (56) is obviously satisfied. For o #£ n — 2, we
recall the Hardy inequality (see, for instance, Maz’ya [13, p. 40])

T ) 4 T (@p(0)?
v*(e ov(o
do < do,
0/@“‘“3 ¢ (a—n+2)20/ ot 57

which holds for any v € C§°(R) provided o # n — 2, under the condition
v(0) = 0 when a > n — 2.
Inequality (56) can be written as

/

+oo
an—2—«
A A b )] )} / |vo[?0" %" do <
4 p
0

—+o0

< /(5@")9)2@%170‘6@- (58)
0



132 A. Cialdea and V. Maz’ya

Now we see that (58) holds if and only if

_pp’ a(n—2—a)}<(a—n+2)2

4 h 4 '

In fact, if (59) holds, then (58) is true, because of (57). Viceversa, if (58)

holds, thanks to the arbitrariness of v, and to the sharpness of the constant
in (57), we get (59).

A simple manipulation shows that the latter inequality is equivalent to

(a—(n+p-2))G5 +(n+p -2)

pp'

which in turn is equivalent to (46). The theorem is proved. O

-1+ (59)

WV

We remark that the inequalities
—(p-1(n+p -2)<0<n+p—2

are always satisfied and therefore condition (46) is never empty.
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Abstract. The paper is devoted to Mellin convolution operators with
meromorphic kernels in Bessel potential spaces. We encounter such oper-
ators while investigating boundary value problems for elliptic equations in
planar 2D domains with angular points on the boundary.

Our study is based upon two results. The first concerns commutants
of Mellin convolution and Bessel potential operators: Bessel potentials al-
ter essentially after commutation with Mellin convolutions depending on
the poles of the kernel (in contrast to commutants with Fourier convolu-
tion operatiors.) The second basic ingredient is the results on the Banach
algebra 2, generated by Mellin convolution and Fourier convolution oper-
ators in weighted IL,-spaces obtained by the author in 1970’s and 1980’s.
These results are modified by adding Hankel operators. Examples of Mellin
convolution operators are considered.

2010 Mathematics Subject Classification. 47G30, 45B35, 45E10.

Key words and phrases. Fourier convolution, Mellin convolution,
Bessel potentials, meromorphic kernel, Banach algebra, symbol, fixed sin-
gularity, Fredholm property, index.

631&0-33:]. bodEmdo 3089350@00 HJQOEOB &m53mgQ~'3(3001) mSJﬁo(ﬂ)mﬁaboon—
do Hatv/)mﬁmtv/)(Bt]Qo boﬁm&jbom, ﬁmaQaboG 3ijJQJbJE 631)3@01) SM(‘*)JEGOOQmo
1)036(3336‘30. obgmo m&aﬁo(ﬂ)mﬁabo &31‘)3@360 Loho%ggﬁm oameogaboh aoam&ggqa-
336‘30 3;:30(31)-360 Qm&]ﬁageoogﬂﬁo 8)05(3)0')Q;]63601)om301) 66(3)33113 2-605%m30g33—
(1_)0.)5 oﬁaab‘ao &Umbm:;.)go 1)\)%528600).

33350 603m&3Q330 Jﬁﬁggmbo o6 ‘33;2361). 30633@0 Jbabo 3:]520601’ &mgsmgn—
003601) Qo E)JI)JQOI) 3‘“@3680‘)@3601) &maﬂ(ﬂ)oglﬂ)hz E)Jl):]Qol) 3(')(3)3580.>Q01) m3:]—
ﬁo(ﬂ)mﬁo 6050(3@01) 061)36003 G3Q°QJE’°1’ 33@0501) &mEngUGmﬂ) mSJﬁo(ﬂ)mﬁmoB
a)ongLaol) ‘33@32’0((\) L] 31) G3Q°Q36° Qoam&ogab-ﬂgoo 336003005(3-3;:30 doGo-
301) JmQULJE)%J (13-36031) &MESMQUGOOL msaﬁo(ﬁmﬁoho&og Boﬁlﬂ):;oaabom, 60')3;]-
Qmogoe E)QQQLHOI) ‘HJQJE)QQ b:]l)gmol) Jm(ﬂ)JEGooQo o6 oegmabo). 3:]006:] 350‘3353—
;:)0)3.)50 'HJQJ&O, 60033;21)08 3336;25006007, \i’oéamonﬁb m&aﬁo(ﬂ)mﬁabcﬂ) 2)\)30)&3—
Q3301> '33;236361) dobobol OQBJE’“OQ‘)B le, tv/)mHJ;:)oG VoﬁaijBogoo 33@0501) 3o-
53':')(;3-38001) Qo (B-Ut'/m:]l) &m53mgq-'30001) (')3360(3)0063601) 3036 V(V)EO\)E Lp—l)o:;ﬁ(};]—
36‘30, ﬁmagaboe HOQJE‘JUQOO 1980-005b VQJE)‘HO 'l)(ﬂ)o(ﬂ)ool) -.)3(‘5(")601) 3036. >d ‘33—

QJ&:]E)%J QOS\)C‘)JE}‘UQO\) «)’b\)QO ‘HJQ:]Z)O, 6(")3:]@08 "Jbab«) 3«)6&3{:201) msaﬁo(ﬂ)mﬁabh.
6\)6})0{2'3(200 3JQOBOI) &(‘)EgUQUGOOL m&aﬁo(ﬂ)m({)abcﬂ) SO&OQOO)JE)O.



Mellin Convolution Operators in Bessel Potential Spaces. . . 137

INTRODUCTION

It is well-known that various boundary value problems for PDE in pla-
nar domains with angular points on the boundary, e.g. Lamé systems in
elasticity (cracks in elastic media, reinforced plates), Maxwell’s system and
Helmholtz equation in electromagnetic scattering, Cauchy—Riemann sys-
tems, Carleman—Vekua systems in generalized analytic function theory etc.
can be studied with the help of the Mellin convolution equations of the form

Ap(t) = co <>+—/

Yy

/ #( —f®,

T—1

with the kernel J# satisfying the condition

/tﬁ’l\%(tﬂ dt < oo, 0< <1, (2)
0

which makes it a bounded operator in the weighted Lebesgue space
L,(R*,¢7), provided 1 < p< oo, -1 <y<p—1, f:=(1+~)/p (cf. [17]).
In particular, integral equations with fixed singularities in the kernel

o(t)p(t) + 2 [EDLE
0

T+ t)k+1

+z”: ck+2§2tk"" / (T”P(T) T _pw), o<i<1, (3)
k=0 0

where 0 < r < k are of type (1) after localization, i.e. after “freezing” the
coefficients.

The Fredholm theory and the unique solvability of equations (1) in the
weighted Lebesgue spaces were accomplished in [17]. This investigation
was based on the following observation: if 1 < p < oo, -1 < v < p—1,
B := (147)/p, the following mutually invertible exponential transformations

Zg : Lp([0,1],87) — Ly, (R™),
Zgp(€) = e P p(e™t), £€R:=(—00,00),
75" Ly(RY) — Ly([0,1],17),
Zﬁ_lw(t) =tPyY(=Int), t e R :=(0,00),

(4)

transform the equation (1), treated in the weighted Lebesgue space f, ¢ €
L,(R*,¢7) into the Fourier convolution equation ngslﬂ =g,¢%=238p,9=
Zgf € Lp(R) of the form

WY, () = cop(a /Jm— () dy.
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H) = e[ ().

Note that the symbol of the operator ng[,? viz. the Fourier transform of
the kernel

Ap(€) = co + / ¢t (x) da
= ¢ — ¢y cot (B —i&) + / WA (e dx, E€R  (5)

is a piecewise continuous function. Let us recall that the theory of Fourier
convolution operators with discontinuous symbols is well developed, cf.
[13, 14, 15, 16, 42]. This allows one to investigate various properties of
the operators (1), (3). In particular, Fredholm criteria, index formula and
conditions of unique solvability of the equations (1) and (3) have been es-
tablished in [17].

Similar integral operators with fixed singularities in kernel arise in the
theory of singular integral equations with the complex conjugation

ottty + 2 [ AL, O [EDL_ gy er

T T—1 T T—1
r r

and in more general R-linear equations

o w1 L[240 [,
r r
e(t) [o(r)dt g(t) [ o(r)dt
?/ 3 T | ooy =f®), tel,

r

if the contour I' possesses corner points. Note that a complete theory of
such equations is presented in [24, 25], whereas approximation methods have
been studied in [10, 11].
Let t1,...,t, € I' be the corner points of a piecewise-smooth contour I,
and let L,(T', p) denote the weighted L,-space with a power weight p(t) :=
n

_]:[1 |t —t;|". Assume that the parameters p and §; := (1 + v;)/p satisfy
the conditions
l<p<oo, 0<B;<1, j=1,...,n

If the coefficients of the above equations are piecewise-continuous matrix
functions, one can construct a function dg(t,f), tel, £ eR, g =
(B1,.-.,0n), called the symbol of the equation (of the related operator).
It is possible to express various properties of the equation in terms of ﬂg:
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e The equation is Fredholm in L, (T, p) if and only if its symbol is
elliptic., i.e. iff inf( g)erxr | #5(t, §)[ > 0;

e To an elliptic symbol dg(t, &) there corresponds an integer valued in-
dex
ind dg(t,f), the winding number, which coincides with the Fred-
holm index of the corresponding operator modulo a constant mul-
tiplier.

For more detailed survey of the theory and various applications to the
problems of elasticity we refer the reader to [13, 14, 15, 17, 18, 19, 20, 21, 40].

Similar approach to boundary integral equations on curves with corner
points based on Mellin transformation has been exploited by M. Costabel
and E. Stephan [5, 6].

However, one of the main problems in boundary integral equations for
elliptic partial differential equations is the absence of appropriate results
for Mellin convolution operators in Bessel potential spaces, cf. [18, 20,
21] and recent publications on nano-photonics [1, 2, 32]. Such results are
needed to obtain an equivalent reformulation of boundary value problems
into boundary integral equations in Bessel potential spaces. Nevertheless,
numerous works on Mellin convolution equations seem to pay almost no
attention to the mentioned problem.

The first arising problem is the boundedness results for Mellin convolu-
tion operators in Bessel potential spaces. The conditions on kernels known
so far are very restrictive. The following boundedness result for the Mellin
convolution operator is proved in the yet unpublished paper by V. Didenko
and R. Duduchava.

Proposition 0.1. Let 1 < p < oo and let m = 1,2,... be an integer. If
a function JE satisfies the condition

1 [e'e]
/t%—m—1|;gf(t)|dt+/t%—lw(t)\dt < 00, (6)
0 1

then the Mellin convolution operator (see (1))
A=, H(RY)— H(RT) (7)
with the symbol (see (5))

o0
; 1 dt
() 1= co + 1 coth#(}% +§) + /trlg,)if(t) T, EeR (®)
0
is bounded for any 0 < s < m.
Note that the condition
Kg:= /t6’1|<%/(t)|dt <00 (9)

0
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and the constraints (16) ensure that the operator
M : L, (R, ¢7) — L,(R*, 1)

is bounded and the norm of the Mellin convolution
T t dr
0 o i &r
i, o(t) = [ (£)eln) T (10)
0
admits the estimate |97, || < K.

The above-formulated result has very restricted application. For exam-
ple, the operators

sin « 70 to(r)dr

N, = ,
() s 12 + 72 — 2tT cos o
0
. sina [ T, (T)dT
et i= 20 [ T , (1)
s t* 4+ 7% — 2tT cos
0
1 s —t d
MaSO(t) = [T cona ]SO(T) T , —T<a<m,

or | 2472 —2tTcosa
R+

which we encounter in boundary integral equations for elliptic boundary

value problems (see [4, 27]), as well as the operators

th T

N ip(t) == /

T

T kp(r)dr
TF k=0,...,m, (12)
represented in (3), do not satisfy the conditions (6). In particular, N,
satisfies condition (6) only for m = 1 and N, ; only for m = k. Although,
as we will see below in Theorem 2.5, all operators N, N7, and N, ; are
bounded in Bessel potential spaces in the setting (17) for all s € R.
In the present paper we introduce admissible kernels, which are mero-
morphic functions on the complex plane C, vanishing at the infinity
o0

d; d; ,
f(t);:;t_fo+ Z ﬁ ¢;#0, j=0,1,..., 13

Cj

Coy-- st ER, 0< ap = |argey| <m, k=0+1,042,...

having poles at cg,c1,... € C\ {0} and complex coefficients d; € C. The
Mellin convolution operator

7o) = [ A0 (14)
0

(t—cT)™
corresponding to the kernel

1
670

H(t) = W
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(see Definition 2.1) turns out to be bounded in the Bessel potential spaces
(see Theorem 2.5).

In order to study Mellin convolution operators in Bessel potential spaces,
we use the “lifting” procedure, performed with the help of the Bessel poten-
tial operators A% and A*™", which transform the initial operator 9MY into the
lifted operator A*~"IMYAT® acting already on a Lebesgue L, spaces. How-
ever, the lifted operator is neither Mellin nor Fourier convolution and to
describe its properties, one has to study the commutants of Bessel potential
operators and Mellin convolutions with meromorphic kernels. It turns out
that Bessel potentials alter after commutation with Mellin convolutions and
the result depends essentially on poles of the meromorphic kernels. These
results allows us to show that the lifted operator A2 "9, AL ® belongs to
the Banach algebra of operators generated by Mellin and Fourier convolu-
tion operators with discontinuous symbols. Since such algebras have been
studied before [22], one can derive various information (Fredholm prop-
erties, index, the unique solvability) about the initial Mellin convolution
equation M%p = g in Bessel potential spaces in the settings ¢ € ﬁ;(Rﬂ,
g € Hy"(R*) and in the settings ¢ € H3(R*), g € H"(RT).

The results of the present work will be applied to the investigation of
some boundary value problems studied before by Lax—Milgram Lemma in
[1, 2]. Note that the present approach is more flexible and provides better
tools for analyzing the solvability of the boundary value problems and the
asymptotic behavior of their solutions.

It is worth noting that the obtained results can also be used to study
Schrédinger operator on combinatorial and quantum graphs. Such a prob-
lem has attracted a lot of attention recently, since the operator mentioned
above possesses interesting properties and has various applications, in par-
ticular, in nano-structures (see [36, 37] and the references there). Another
area for application of the present results are Mellin pseudodifferential oper-
ators on graphs. This problem has been studied in [39], but in the periodic
case only. Moreover, some of the results can be applied in the study of sta-
bility of approximation methods for Mellin convolution equations in Bessel
potential spaces.

The present paper is organized as follows. In the first section we ob-
serve Mellin and Fourier convolution operators with discontinuous symbols
acting on Lebesgue spaces. Most of these results are well known and we
recall them for convenience. In the second section we define Mellin convo-
lutions with admissible meromorphic kernels and prove their boundedness
in Bessel potential spaces. In Section 2 is proved the key result on com-
mutants of the Mellin convolution operator (with admissible meromorphic
kernel) and a Bessel potential. In Section 3 we enhance results on Banach
algebra generated by Mellin and Fourier convolution operators by adding
explicit definition of the symbol of a Hankel operator, which belong to this
algebra. In Sections 4 the obtained results are applied to describe Fredholm
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properties and the index of Mellin convolution operators with admissible
meromorphic kernels in Bessel potential spaces.

1. MELLIN CONVOLUTION AND BESSEL POTENTIAL OPERATORS

Let N be a positive integer. If there arises no confusion, we write 2 for
both scalar and matrix N x N algebras with entries from 2(. Similarly, the
same notation B is used for the set of N-dimensional vectors with entries
from B. It will be usually clear from the context what kind of space or
algebra is considered.

The integral operator (1) is called Mellin convolution. More generally, if
a € Loo(R) is an essentially bounded measurable N x N matrix function,
the Mellin convolution operator MY is defined by

Mplt) =y atlap(t) = 5 [ ale) [(2)" o) T e, e s
—0o0 0

where S(R™) is the Schwartz space of fast decaying functions on R*, whereas
M3 and A, 5 ! are the Mellin transform and its inverse, i.e.

o0

; d
M0(©) = [P0 T, e,

0
) 1T e
A5 )= 5 [ 0P de, te R,

The function a(€) is usually referred to as a symbol of the Mellin opera-
tor MY, Further, if the corresponding Mellin convolution operator MY is
bounded on the weighted Lebesgue space L, (R, t7) of N-vector functions
endowed with the norm

x 1/p
o | Ly(®*,07)]| = [ / m«a(t)wdt} ,
0

then the symbol a(€) is called an L,(R™,¢”) Mellin multiplier. The trans-
formations

Zﬁ : LP(R+7{Y) - ]L;D(R)v Zg(p(f) = eiﬁtw(eig)v 5 € Ra
Z;' :Ly(R) — Ly(RT,¢7), Z5'¢(t) =t p(~Int), teRY,
generate an isometrical isomorphism between the corresponding L-spaces.
Moreover, the relations
Mz = F1Lg, ///6—1:2513—17

15
Mo =My adly =25 F aFLs =75 W2, (19)
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where .# and .# ! are the Fourier transform and its inverse,

oo

/ CSpla)dn, F0(a) = 5o [ U aeR,

—0o0
show a close connection between Mellin MY and Fourier
Wl = F T, peS(R),

convolution operators, as well as between the corresponding transforms.
Here S(R) denotes the Schwartz class of infinitely smooth functions, decay-
ing fast at the infinity.

An N x N matrix function a(§), £ € R is called a Fourier L,-multiplier if
the operator W2 : L, (R) — L,(R) is bounded. The set of all L,-multipliers
is denoted by 9, (R).

From (15) immediately follows the following

Proposition 1.1. The class M, (R) of Fourier L,-multipliers coincides
with the class of Mellin L, (R*,t7) multiplier.

It is known, see, e.g. [17], that 91, (R) is a Banach algebra which contains
the algebra V1 (R) of all functions with finite variation provided that

1
Bi= =t 1cp<oo, ~l<y<p-L. (16)
p

As it was already mentioned, the primary aim of the present paper is to
study Mellin convolution operators M acting in Bessel potential spaces,

mY - {3 (RY) — H3(RT). (17)

The symbols of these operators are N x N matrix functions a € C’E)ﬁg(@),
continuous on the real axis R with the only one possible jump at infin-
ity. We commence with the definition of the Besseel potential spaces and
Bessel potentials, arranging isometrical isomorphisms between these spaces
and enabling the lifting procedure, writing a Fredholm equivalent operator
(equation) in the Lebesgue space L,(R™) for the operator MY in (17).

For s € R and 1 < p < oo, the Bessel potential space, known also as
a fractional Sobolev space, is the subspace of the Schwartz space S'(R) of
distributions having the finite norm

i /o 1/p
o | HE(R)]| == {/ |71 (1 + 1¢)?)” (ﬁ@)(t)\pdt] < 0.

For an integer parameter s = m = 1,2,... , the space H7(R) coincides
with the usual Sobolev space endowed with an equivalent norm

e w3 [ 1500
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If s < 0, one gets the space of distributions. Moreover, H_*(R) is the
dual to the space H? (R™), provided p’ := 55,1 < p < co. Note that H3(R)
is a Hilbert space with the inner product

(0, ) = / (F)OTDO + ) de, p,1) € B (R).
R

By ry we denote the operator restricting functions or distributions de-
fined on R to the subset ¥ C R. Thus H?(R") = r, (H5(R)), and the norm
in H(R*) is defined by

I 1By @) = inf e | Bty (R

b

where /f stands for any extension of f to a distribution in Hj(R).

Further, we denote by I[T]I;(RJr) the (closed) subspace of H)(R) which
consists of all distributions supported in the closure of R™.

Notice that ]ﬁ[g(Rﬂ is always continuously embedded in H?(R"), and if
s € (1/p —1,1/p), these two spaces coincide. Moreover, ]HI;(]R*) may be
viewed as the quotient-space Hj(R*) := ]I-]I;(]R)/]ﬁlfg(R*)7 R~ = (—00,0).

Let a € Lo 0c(R) be a locally bounded m x m matrix function. The
Fourier convolution operator (FCO) with the symbol a is defined by

wWo =7 1aZ. (19)

If the operator

W HS(R) — H " (R) (20)
is bounded, we say that a is an L,-multiplier (of order 0). The set of all
L,-multipliers is denoted by 91, (R).

The Fourier convolution operator (FCO) on the semi-axis RT with the
symbol a is defined by W, = r W2 where ry := rg+ : H(R) — H3(R™)
is the restriction operator.

Consider FCO

W, =r W2: ﬁ;(R+) — Hzir(R+)7 (21)
and Hankel operators
H,=r VW0 H)(RY) — H"(RY), Vo(t) ==o(-t), (22)

where r is the restriction operator to the semi-axes R*. Note that the
generalized Hoermander’s kernel of a FCO W, depends on the difference of
arguments %, (t — ), while the Hoermander’s kernel & of a Hankel operator
r+ VW2 depends of the sum of the arguments 7, (¢ + 7).

If W, in (22) is bounded, we say that W, has order r and a is an L,
multiplier of order r. The set of all L, multipliers of order r is denoted by
97 (R). We did not use in the definition of the class of multipliers 907 (R)
the parameter s € R. This is due to the fact that 9} (R) is independent
of s: if the operator W, in (22) is bounded for some s € R, it is bounded
for all other values of s. Another definition of the multiplier class 907 (R)
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is written as follows: a € MM} (R) if and only if A™"a € Mm,(R) = zmg(@),
where A"(€) := (1 + |¢|?)"/2. This assertion is one of the consequences of
the following theorem.
Theorem 1.2. Let 1 <p < oco. Then
(1) Foranyr,s € R,y € C, Im~ > 0 the convolution operators (¥ DOs)
AL =W, - Hy(RT) — H; ™" (RT),
AT = r+Wf\)1W£ (HE(RT) — HY " (RT), (23)

1,8 = (§£7)", §€R, Imy >0,

which arrange isomorphisms of the corresponding spaces (see [17,
28]). Here £ : H5(RY) — H?(R) is some extension operator, define
an isomorphism between the corresponding spaces. The final result
is independent of the choice of an extension £. r is the restriction
from the azes R to the semi-azes RT.

(2) For any operator A : ]ﬁ;(R*) — HZ~"(RY) of the order r, the
following diagram is commutative

A s—r
H3 (RT) —=> Hy~"(RY)

Aﬁ‘T lA” : (24)
Lp(RT) ———— L, (R¥)

ASTTAALS

The diagram (23) provides an equivalent lifting of the operator A of
order r to the operator A°""AAT® : L,(RT) — L,(RT) of order 0.
(3) If A =W, : Hi(RY) — HZ~"(RY) is a bounded convolution op-
erator of order v, then the lifted operator A°""AAT® : L,(RT) —
L,(R™) is also a convolution operator W, with the symbol

w© =37 ©u 0 = (52) 7 A

Proof. For the proof we refer the reader to [17, Lemma 5.1] and [26, 28]. O

Remark 1.3. The class of Fourier convolution operators is a subclass
of pseudodifferential operators (¥DOs). Moreover, for integer parameters
m =1,2,... the Bessel potentials A" = W/\%’ which are the Fourier convo-
lutions of order m, are ordinary differential operators of the same order m:

. d mo N m\ . g dF
i'y:WAg:y: (’L%:l:’}/) —Z<k>lk(i’}/) kﬁ (25)
k=0
These potentials map both spaces (cf. (23))
T, HyEY) — R,

(HY(RY) — HY™™(RY), (26)
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but the mappings are not isomorphisms because the inverses AL do not
map both spaces, only those indicated in (23).
2. MELLIN CONVOLUTIONS WITH ADMISSIBLE MEROMORPHIC KERNELS

Now we consider kernels .7 (t), exposed in (13), (14), which are mero-
morphic functions on the complex plane C, vanishing at infinity, having
poles at cg,c1,... € C\ {0} and complex coefficients d; € C.

Definition 2.1. We call a kernel ¢ (¢) in (13) admissible iff:
(i) 2 (t) has only a finite number of poles cg, ..., c, which belong to

the positive semi-axes, i.e., argcy = --- = argcy = 0;

(ii) The corresponding multiplicities are one mg = --- = my = 1;

(iii) The points ¢g4+1, Co42,- .. do not condense to the positive semi-axes
except a finite number of points ¢y > 0,...,¢, > 0 from conditions
(i)—(ii) and their real parts are uniformly bounded

lim ¢; & [0, 00), sup Rec; < K < 0. (27)
Jj—00 G=+1,042,...

(iv) If 2 (t) emerges as a kernel of the operator, a superposition of finite
number of operators with admissible kernels.

Example 2.2. The function
1
H(t) = exp (t—>, Rec< 0 or Imec#0
—c

is an example of the admissible kernel which also satisfies the condition of
the next Theorem 2.5. More trivial examples of operators with admissible
kernels (which also satisfies the condition of the next Theorem 2.5) are
operators which we encounter in (3), in (11) and in (21) and, in general,
any finite sum in (13).

Example 2.3. The function

_In7T—cicant

H(t) = , Imey #£0, Imey # 0,

t —cicaT

is another example of the admissible kernel, which is the composition of
operators ¢y K} K 22 (see (14)) with admissible kernels which also satisfies
the condition of the next Theorem 2.5. More trivial examples of operators
with admissible kernels (which also satisfies the condition of the next The-
orem 2.5) are operators which we encounter in (3), in (11) and in (21) and,
in general, any finite sum in (13).

Theorem 2.4. Let conditions (16) hold, ¢ (t) in (13) be an admissible
kernel and

T oo
Kpi=——=> 2"d;||c;|"™™ < o0. 28
B |sin7rﬂ| = ‘ J| ‘CJ‘ o0 ( )
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Then the Mellin convolution 93?25 in (10) with the admissible meromorphic
kernel . (t) in (13) is bounded in the Lebesgue space L,(R*,¢7) and its
norm is estimated by the constant |9 | L(L,(R*,¢7))| < MKp with
some M > 0. o

We can drop the constant M and replace 2™ by 272 in the estimate (28)
provided Rec; <0 for all j =0,1,....

Proof. The first £ + 1 summands in the definition of the admissible kernel
(13) correspond to the Cauchy operators

[ oo
d; d
Aogp(t):zi,/@mf, ¢;>0, j=01,....0
0

and their boundedness property in the weighted Lebesgue space
Ap : Ly(RT,#7) — L,(RT,¢7) (29)

under constraints (16) is well known (see [35] and also [30]). Therefore we
can ignore the first £ summands in the expansion of the kernel J#'(¢) in (13).
To the boundedness of the operator ‘.Utgz with the remainder kernel

8

'%/e(t) = Z ( *Cj)mJ ) Cj 750’ J 20717"'7
j=0+1 J

0<ap:=largeg| <7, k=L+1,0+2,...

(see (13)), we apply the estimate (9)

om0, | 200, <
[ B=1| ot c- [t
< [T d < Z || o m (30)
0 j=t+1 !

Note now that

[t —cj|7™ = (£ + |¢j)* — 2Recjt)7% < (%)_TJ <
<2™i(t+|c;|)™™ for all ¢ > 2K = 2sup|Rec;| > 0.
due to the constraints (27). On the other hand,
[t —c;| ™™ < M(t+|¢;])™™ forall 0 <t<2K

and a certain constant M > 0. Therefore

[t —c;| ™™ < M2™Mi(t+ |c;])™™ for all 0 <t < oo. (31)
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Next we recall the formula from [31, Formula 3.194.4]

OOtﬁ_ldt B—1\ weh—m
= (=1)"! B — R 1 32
/(H—C)m (=1) (m—l) sinm3’ m<arge<m, Ref<1, (32)
0

(ﬁ—1>:: (B (B-—m+1) (ﬁ—1> -

m—1 (m—1)! 0

to calculate the integrals. By inserting the estimate (31) into (30) and
applying (32), we get

975, | £ (Lp(RT, 1)) <

tP=1dt tP—1d¢
<M 2mj <
zw/lt < > w/mc

j=0+1 Jj=(+1
(o]
2m
S sm7rﬁ Z

T
1
={+1

j X

ST 2mildy|e] ™ = MKg, (33)
j=t+1

()
mj — 1
where K is from (28). The boundedness (29) and the estimate (33) imply

the claimed estimate

[905,, | 2 (L (RT,7))]| < M K.

M
= sinwf

since (see (32))

If Rec; <0 forall j =0,1,..., we have

1 9 5 _mj
——— = (t* 4+ |c|* —2Rec;t) * <
[t —cj|™ (4 1o TS
_my m; s
S(E+]ef) 7 <27 (t+]gl) ™
valid for all £ > 0 and a constant M does not emerge in the estimate. [

Let us find the symbol (the Mellin transform of the kernel) of the operator
(14) for 0 < |arge| < 7, m = 1,2,... (see (42), (14)). For this we apply
formula (32):

o0

e T pie1
//fﬁ%m(f):/tﬁ Tl (t)dt:/mdt
0 0

ﬂ _ ’Lf -1 ,n.(_]_)mfleqiﬂ'(ﬁfiﬁfm)i Bitem
( m—1 > sinw (8 — i) ¢
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(5 .- 1) meTr(B—ig)i

ATETm 0 < targe< T (34)

m-1 ) snrG=i0
and
" B ootﬁ—ii—ldt _ 8 — i€ —1 (_1)m—1ﬂ.dﬁ—i§—m
Ao A=a8) = / t+d)m < m—1 > sinm(8 — i§) (35)
0
for 0 < |argd| <m, &€R.
In particular,
Ly meFTBi)igh-ie
Mp K (§) = snn(f—i6) 0< +arge <, (36)
My H md 7 d
8 —d(ﬁ)—m, 0 < |argd| <m, (37)
™
MpH () = sin(3—i€)’ £eR. (38)

Now let us find the symbol of the Cauchy singular integral operator
K} = —miSg+ (see (43), (44)). For this we apply Plemeli formula and
formula (32):

(o] oo .
MK (t) = /tf’*iﬁflﬁql(t) dt = —/tﬁ;:dt =
0 0
L1 T ogBiet B—it—1
=t 5/ [t e it eﬂ(w—s)} di =
0

s e BiE) | itnr—)(B—it 1)

e——0 2sin7(8 — &)
= meot (B — if). (39)

For an admissible kernel with simple (non-multiple) poles my = my =
---=1and argcg =argcy =0and 0 < farge; <7, j=£+1,... we get

[
MpH (§) = meot(B —i&) Z djcé_?—ii—l_
j=0
- =D 3 d; (B N 1) meFT(B-i)iB—it—m  (40)
sinw (8 — i) ) m—1

Theorem 2.5. Let 1 < p < oo and s € R. The Mellin convolution
operator Smgﬁ in (10) with an admissible kernel & (see (13)) is bounded in
Bessel potential spaces

MY« HE(RT) — HE(RT), (41)

provided the condition (28) holds and m® := sup m; < co.
§=0,1,...
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The condition on the parameter p can be relaxed to 1 < p < 00, provided
the admissible kernel # in (13) has no poles on positive semi-azes o; =
argc; #0 forall 7 =0,1,....

Proof. Due to the representation (13), we have to prove the theorem only
for a model kernel
1
‘%/Cm(t):ﬁ’ C#O, O<|argc‘<ﬂ', m:1,2,.... (42)
—C m
The corresponding Mellin convolution operator K' (see (14)) is bounded
in L,(RT) for all 1 < p < oo for arbitrary 0 < |argc| < 7 (cf. (2)).
For arge = 0 (i.e., ¢ € (0,00),) by the definition of an admissible kernel
m = 1 and the corresponding operator coincides with the Cauchy singular
integral operator Sg+

Sgrplt) = = / plr)dr (43)

i T—1
0

modulo compact multiplier

Kol = [E00 T (s )(¢) (44
0

and is bounded in L, (R™) for all 1 < p < oo (cf., e.g., [17, 30]).
Now let 0 < argce < 2 and m = 1. Then, if ¢ € C°(R™) is a smooth
function with compact support and k£ = 1,2, ..., integrating by parts we get

L rd 1 LA 1
— K — - = (—c) _ =
i e (t) /dtk o Plndr=(=c) e L
0 0
T o1 dFolr) d
_ .k _ kg1 &
¢ / t—ect drk dr=c (Kc dtk SD) (*). (45)
0
For m =2,3,..., we similarly get
d fd o1
SEroty= [ ST o(r)dr =
GEo) = [ 4 nT e
0
m—1 L ® d Tm—l—j
= —i=J _— =
,Z( °) /dT (t—cr)m—i (r)dr
j=0 0
m—1 o0 m—1 J d
S A T dr —
Z( 2 / (t—cT)m=J dr wlr)dr
Jj=0 0
m—1
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and, recurrently,

d km 1 —k—j_k ; d
T KIe(t)=(=1)F Y (—0) ) (KC Jﬁ@(t), k=1,2,..., (46)
7=0

J
V=41l =1 A=) i=01,.m, k=12,
r=0

Recall now that for an integer s = n the spaces Hj (RT), ﬁg(R*) coin-
cide with the Sobolev spaces W} (R*), Wg(R*), respectively (these spaces
are isomorphic and the norms are equivalent) and C§°(R™) is a dense sub-
set in W;‘(Rﬂ = ]ﬁl;‘(]Rﬂ. Then, using the equalities (45), (46) and the
boundedness results of the operators K" 7 (see (14) and (43)), we proceed
as follows:

Kz | (R = Koo | LRY)| =

> |
k=0

m m—1

. i dF
=303 lel | K S e | L) <

k=0 j=0
<MY Hdtk ? | Lp(RT) H = M|e | HF®RY)|, (47)
k=0

where M > 0 is a constant, and there follows the boundedness result (41) for
s=0,1,2,.... The case of an arbitrary s > 0 follows by the interpolation
between the spaces H'(RT) and HY (R*) = LL,,(RT), also between the spaces
H7(R) and HY(R*) = L, (R*).

The boundedness result (41) for s < 0 follows by duality: the adjoint
operator to K" is

tm— 1
m,x — J
K (1) = / — ZwJK Ll (19)
0
for some constant coefficients wy,...,wm,. The operator K."* has the ad-
missible kernel and, due to _the proved part of the theorem is bounded in
the space setting K" : H_ *(R") — H_*(RT), p’ := p/(p — 1), since
—s > 0. The initial operator K" : IFH;(]R"’) — HP(RT) is dual to K"
and, therefore, is bounded as well (I

Corollary 2.6. Let 1 < p < oo and s € R. A Mellin convolution
operator MY with an admissible kernel described in Definition 2.1 (also see

Ezample 2.3) and Theorem 2.5 is bounded in Bessel potential spaces, see
(41).
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With the help of formulae (25) and (45) for an integer m = 1,2... and
arbitrary complex parameters -, ¢ € C it follows that

d m ™ Im d*
A" K! :('—i ) Klo= k(pym—k O et
LK =i £ P kE:O p ) EN)TT o Ko

= (W)t t (o) 0 =
k=0

="K, i )ik eyt e ¢ )t) =
\ 2 \k di*
= c*mKiA’_”wga, e ]?]I;(R*), 0 < |arg~y| < . (49)

Next, we will generalize formula (49).

Theorem 2.7. Let 0 < |arge| <m, 0 < |argy| <, 0 < |arg(cy)| <,
rseR, m=1,2,...,1<p<oo. Then

ALK o=

B e"(cﬁ)”ic_sKZ”Aiwcp if —7 <argcy <0, (50)
N e”(c’v)”ic_st:”As_wgo if 0<argey<m, @€ H;(]R‘*‘),
where
0 if 0 <arge<m,
ole,y) =4 . ) _ (51)
signarg(cy) —signargy if — 7w <arge <0,

K790 =K () + ()" K" (1), ELy(R), vx €Ly (RT), (52)
i (t) :=rytp(Et) and vy is the restriction from R to RT.

Proof. First we consider the case m = 1 (a simple pole). Let A*_ ,4(t,7)
denote the action of the Bessel potential operator A® | (see (23)) on a func-
tion ¢ (t, 7) with respect to the variable ¢ (see (14)):

T 1
s 1 _— s —
A K cop(t) = 7’+/ |:A—'y,t m}ﬁ(ﬂ dr =
0
- ir 7 (1) 76_i5t(§ —v)° 7 il dydéd (53)
=5 T+ (T Y y—cr Y T,
0 —o0 —0o0

where r is the restriction to R™. The integrand in the last integral in
(53) is a meromorphic function with a single pole at ¢7 and the function
vanishes as |y| — oo, provided £ < 0 for 0 < arge < 7 and for £ > 0
for —m < argc < 0, respectively. Therefore, by the Cauchy theorem, the
integral vanishes for £ < 0 in the first and for £ > 0 in the second case,
respectively. Since 7 > 0, the integral is found with the help of the residue



Mellin Convolution Operators in Bessel Potential Spaces. . . 153

theorem:
ity 0 for £arge < 0,
el ,
/ e dy = { 2mie’¢™  for € >0 and 0 < arge < 7, (54)
R —2mie’t™ for £ <0 and — 7 < arge < 0.
Then
A% K1<p( t) = zr+/ / —iE(t=en) (e _n)* dedr, O<arge<m, (55a)
0 0
0o 0
A Klp(t) = —iny [ o(r) [ e ey dgdr =
O —

_ ie—a('y)ﬂszr

+

0\8 2

(T / o) (¢ +4) dedr (55b)
0

for o(y) :=signargy, —m <arge<0

because arg(—¢ — ) = arg(E +v) £ 7 € (—m,7) for 0 < Fargy < w. To
(55a) and (55b) we apply the formula (see [31, Formula 3.382.4])

/67”5(5 +v)*dE = pm e T (s + 1 vp), (56)
0
seR, —m<argv <m, Rep>0.
To comply with the constraint —n < argv < 7 for v = —~, we choose

arg(—y) = argy £ 7 for 0 < Fargy < 7. From 0 < argc < 7 follows the
constraint Rep > 0 for p = i(t — ¢r) and from (55a) with the help of (56)
we get

A% I('1 = iry [(it—icr) " te ™V I (s + 1,—iny(t—c7))o(T) dT =

0

(o)
/ e~ =N (s 4 1, —iy(t — 7))
7y

G o) p(r)dr, (57a)

0
since arg(it — ict) = arg(t — cr) + 7/2 € (—m,7) and, therefore, i(it —
icT) Tt =e 3 S (t —cr) 7L
Similarly, from —7m < argc < 0 follows the constraint Repy > 0 for
= —i(t — c7) and from (55b) with the help of (56) we get

A Klp(t) =

_ *U(W)’T“r+/( it+icr) 57! e~ (t= CT)F(S+1 —iy(t—cr))p(r)dr =
0
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o
—1y(t—ec1 ;
_ (omt s r+/e NI + L =iy =) oy g

(t —er)stl (57b)

0
for o(y) :=signargy, —w <argc <0,
since arg(—it + ict) = arg(t — ¢r) — /2 € (—m,7) and, therefore, i(—it +
ict) ™5l = —e2 % (t —er) 77
Next, we check what are the results if the Bessel potential A7, . is applied
to the kernel ﬁ of the operator Ki with respect to the variable 7:

R 1

VY _ cy} ()0(7—) dr =

A p(t) == r+/ [A
0

o0 oo oo

1 ) iy g
=g [ o) [ er ey [ oY dar

t—c

0 —0o0 —0o0
%)

7 ) 7 ety d
=ty 0/ o) [ eren [ W acan 59)

—c 1t
The last integral in (58) is found with the help of the residue theorem, by
taking into account that 7 > 0 (cf. (54)):
i 0 for £argce > 0,
e Y .1
/ PP dy = ¢ —2mie’ &t for £ <0 and 0 < arge <, (59)
—c o
Y omie® '€t for € >0 and — 1 < arge < 0.

Applying formula (59), we proceed as follows:

00 0
i —i&(r—c™?t s
Agp(t) = e [ () [ ST gt o) dear =
0 —o00
iea(c’y)wsi w .
= [t [ ey dgar, (o0n)
0 0

o(y) :=signarg~y for 0 < arge <,
because arg(—¢ + cv) = arg(§ — ¢y) £ 7 € (—m, w). Similarly,

i r r —i&(r—c ! S
Ayl ==L ry [otr) [0 g4 ) dgdr -
0 0

= —é r+/<,0(7')/ei°715(t_”)(£ +cv)?dédr, —m <arge<0. (60b)
0 0

To (60a) and (60b) we apply the formula (56) with u = +ic™!(t — ¢7) and

v = Fecy, which yields vy = —iy(t — 7). The constraint 0 < |arg(cy)| < 7,
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imposed in the theorem, allows us to comply with the condition —7 < v < 7
by choosing arg(—c+y) = arg(cy) Fm for £arg(cvy) > 0. Another constraint
0 < |arge|l < 7 allows to comply with the condition Repy > 0 in (56):
Re(tic 't Fir) = Flmc 1t = 4 Iﬁ‘; >0 for 0 < +arge < . We get the
following:

ie—a(c‘y)ﬂ'si

Ayp(t) = X

[ee]
X / Yt —er) e e (s + 1, —iy(t — ¢7))p(7) dr =
0

s (o(cy)m—5)si T e_iv(t_CT)F(S + ]., —Z’V(t — CT))
— Selolen) ) +/ (= cr) o(r)ydr  (61a)
0

for o(cy) :=signarg(cy), 0 <arge <,
since i757! =i"'e”2 % and

7
A»YQO(t) = 72 ry X

X /(—ic_l)_s_l(t — CT)_S_le_”(t_”)F(s +1,—iv(t —c7))e(r)dr =
0

s T st r eiiV(ticT)r(s + 17 717@ — CT))
=c’e2 7’_,_/ G cr)yti o(T)dr (61Db)

- g
for —m < argc < 0, since (—i L= jes st

) s—
From (57a)—(57b), (58) and (61)—(61) we derive the following equality:

AS I('1 / 77t <p(7') dr =
0
T 1
— Cfsefo'o(cﬂ)ﬂ' e / |:Ai»y,7— t — CT:| @0(7-) dT, (62)

where

(c,7) = {a(cv) if 0<arge<m, (63)

o(y) if —wm<arge<0

and @o € H3(R) is the extension of ¢y € HL(R™) by 0 to the semi-axes
R~ := R\ R+. Now note, that the operator A% _ is the dual (adjoint) to

YT
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the operator e?(VTSIAS e,
[ @z cw@rar = e [umas,, o) dr

Vu,v € Cg°(R),

the equality can easily be verified by changing the orders of integration and
change the Fourier transform variable £ to —£. We continue the equality
(62) as follows:

oo

s —s —oo(c,y)m st s 1
A Klplt) = te e [z ot T dr =
— eolemmsio—s / ALe,p(r)dr
t—cT

— 00

where o(c,v) is defined in (51). By the properties of the Bessel poten-
tial A™, _, it maintains the support of a function supp ¢ C R for —7 <
argcvy < 0 but not for 0 < argc~y < m. Therefore,

Ainigp(t) = eolenm Sic_sKiAimgo(t) for —m<argey <0,

L (64)
s 1 _ o(ey)msi —s 1As
A K p(t)=e (em)msi, K A% p(t) for 0 <argey <.
Formula (64) accomplishes the proof of formula (50) for an operator K}
(case m = 1) and under the additional constraint arg ¢ # 0. For an operator
K! (case m = 1) but argc = 0 and a case of an operator K™, m = 2,3, ...
we can deal with a perturbation:

1 .
gm0
m 65)
| a0
% e t) = - ! )
LR =T Sl Carevws R S e
cje=c(l+ee™?), wje(—m, ), argcje, argej-v;#0, j=1,...,m.

the points and w1, ...,wy, € (—m,n| are distinct w; # wy for j # k. The
case argc = 0 is covered for m = 1. By equating the numerators in the
formula (65)

m

Zdj(e)tm —(m-1) idj({—:)cj,gth +oe=

J=1 J=1

= idj(s)(tm —ct™ ) — (m — l)sie“’jdj(s)tmfl +0() =1,

j=1
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we derive the last two equalities
dj(e) = O(c™"), Y di(e) =0, D ed;(e) =0, (66)
j=1

while the first one is well known. The claimed equality (64) holds for each
operator K i_j,e and

m m
AKT o= di(e)N KL o= ¢ di(e)KL A*, o, (67)
j=1 j=1

where

m 7 t dr 7 = Lo(r)dr
Kot ®= [Horn (F) ot = [ v
0 0

T T t—c1em) o (t—cCmeT)

Further, we assume that —7m < argcy < 0. The case 0 < argcy < 7 is
considered similarly and we drop its proof.
Using the Bessel potentials (see (23)), we get

AZ7, [Aicw,s - Aim] =Wa,. —1=W,, .1, o0:=0(c,y)=0(c,7),
§— CYe\? geti \s
1= (S 1 (1o Sy
a],a(ﬁ) 5_07 i—l
. . C’Y
se'i sc f}/e“’-’j
= e ot = o et (O af = 0(),  (69)
cy - -
Cje= (1 +ee™i) ™ =c % —c Sse™ic + bj g% bj.=0(1) (69)

as ¢ — 0. For ¢ sufficiently small, the value o(c; ¢, 7) becomes independent
of j =1,...,m and ¢, and we use the notation o(c,v) := o(¢j.,y). Then,
by virtue of the equality (66) and asymptotic (68), (69), we get the following
equalities:

Ai'YKZI,E ----- Cm,ssp = Z dj (E)AiﬂyKij,sgp =
j=1

S (K A -

Jj=1

Cje

= Z eo (e si [C_S — ¢ SgeWig bj,egﬂ d (E)Kl Aicw,;ﬂ _
j=1

= Z o (e si [c™* +b;€”] dj(e)K} Az, o=

Cj,e
j=1

— eU(C,’Y)ﬂ' sic—s Z dj (E)K(lzj.EAicfy@—i_
j=1
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m

oo S ()KL A AT (A0 A0 et
j=1

te 60'(c 'y)ﬂ'sz —s Zd b Kl AS o=

Cje” —CYj,e

_ o(e,y)msi cTSK™ s
- e Kcl EER ndL,aA*C'YSD—i_

+ eo(emmsi *SZKC]E i(e [fscvez“’JW - €+ Wao (5)5 AZ ot

ac’y)frsz —s 2Zd b Kl As =

_PY(“]E

_ o(c ,’y)rrsz —s grm s
- e Kcl £+ 7an,5A_C'Yg0+

+ 52 U(C,’Y)ﬂ’sz —s Zdj ]8 + Wa?y ] As e, . (70)
j=1

By using the boundedness result proved in Theorem 2.5, we get

lim [|[K - KD . o|Hy(RT| <
e—0 DTE

Cl,e,-

e—0

< lim S KD e oo IHSET=0. (1)
Further, invoking the well known formula for the norm of a convolution
operator in the Hilbert-Bessel spaces L,(R™)
[Wa | 2@ RD))|| = [Wa | L(L2(RT))|| = ?elgla(f)l (72)
(cf., e.g., [17]) and using the property g@oezdj(e) = 0 (see (66)), from
(70)—(72) we derive

A K= hm A%

Cl JE9e ;Cm.,sgp -

= gli—r>n0 |: G(C ’Y)ﬂ— K 7SKZIZ ,e30+9Cmy, sAS C’Yw_k
m
_ 1
+ g2eo(em)msi, szdj b]6+W ]KCJEAiCV]EQD -
— O o(c ,’y)ﬂ'S’L —s Ehm KZE, o EAs c’ysﬁ

— eole ’””“c‘SK;”As_mnp

which accomplishes the proof. (I
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3. ALGEBRA GENERATED BY MELLIN AND FOURIER CONVOLUTION
OPERATORS

Unlike the operators W2 and 90 (see Section 1), possessing the property
WOWP =wo, Mmooy =MmY, for all a,b € M,(R), (73)

the composition of the convolution operators on the semi-axes W, and W,
(see (73)) cannot be computed by the rules similar to (73). Nevertheless,
the following propositions hold.

Proposition 3.1 ([17, Section 2]). Assume that 1 < p < oo, and let
[Wo, Wy] := W Wy, — W W, be the commutant of the operators W, and Wy.

If a,b € M,(RT) N PC(R) are piecewise-continuous scalar L,-multipliers,
then the commutant Wy, W] : L,(RT) — L,(R™) 4s compact.

Moreover, if, in addition, the symbols a(§) and b(§) of the operators Wy,
and Wy, have no common discontinuity points, i.e., if

[a(€ +0) — a(€ + 0)] [B(€ +0) — b(E+0)] =0 for all € € R,
then T = W, W), — Wayp, is a compact operator in L,(RT).

Note that the algebra of N x N matrix multipliers 9 (R) coincides with
the algebra of N x N matrix functions essentially bounded on R. For p # 2,
the algebra 9, (R) is rather complicated. There are multipliers g € 9,(R)
which are elliptic, i.e. ess inf |g(x)| > 0, but 1/g ¢ 9,(R). In connection
with this, let us consider the subalgebra PC9t,(R) which is the closure of
the algebra of piecewise-constant functions on R in the norm of multipliers
M, (R)

la | M) = 2 | Ly(R)].

Note that any function g € PCM,(R) C PC(R) has limits g(z £ 0) for all
x € R, including the infinity. Let

CoM,,(R) := C(R) N PCMO(R),  CM(R) := C(R) N PCIM, (R),

where functions g € COM,(R) (functions h € C (Ié)) might have jump only
at the infinity g(—o0) # g(4+00) (are continuous at the infinity h(—oo0) =
h(400)).

PCIM,(R) is a Banach algebra and contains all functions of bounded vari-
ation as a subset for all 1 < p < oo (Stechkin’s theorem, see [17, Section 2]).
Therefore, coth (i3 + &) € CIM,(R) for all p € (1,00).

Proposition 3.2 ([17, Section 2]). If g € PCM,(R) is an N x N matriz
multiplier, then its inverse g=1 € PCIN,(R) if and only if it is elliptic,
i.e. detg(z 4 0) # 0 for all x € R. If this is the case, the corresponding
Mellin convolution operator M) : Ly(RT) +— L,(RT) is invertible and
(M)~ = 93?2_1.
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Moreover, any N x N matrix multiplier b € CSDIZO,(R) can be approximated
by polynomials

@)=Y C’”(gli)m rm € CONY(R),

j=—m

with constant N X N matriz coefficients, whereas any N x N matriz mul-

tiplier g € C’img(R) having a jump discontinuity at infinity can be approxi-
mated by N x N matriz functions dcothmw(if 4+ &) +rn(€), 0 < < 1.

Due to the connection between the Fourier and Mellin convolution oper-

ators (see Introduction, (4)), the following is a direct consequence of Propo-
sition 3.2.

Corollary 3.3. The Mellin convolution operator
A=), :L,y(R,t7),
in (1) with the symbol /(&) in (5) is invertible if and only if the symbol is
elliptic,
inf | det o7 >0 74
nf | det /5(8)| (74)

0

1.
ﬂl/p

and the inverse is then written as A~ = 9N

The Hilbert transform on the semi-axis

1T y)dy
Se+p(z) = — / ely)dy (75)
i y—
0
is the Fourier convolution Sg+ = W_gen on the semi-axis Rt with the

discontinuous symbol —sign¢ (see [17, Lemma 1.35]), and it is also the

Mellin convolution

Spr = MY, = ZgW Z5", (76)
. eﬂ-(iﬁ+£) +677T(iﬁ+§) . .

sg(§) == cothm(if + &)= g 7 e o R cotm(B—if), £€R

(cf. (5) and (8)). Indeed, to verify (76) rewrite Sgp+ in the following form
17 e(y) dy [z dy
Sg+p(z) 1= /1£7)£ — = K(*)w(y) =,
Y 0

Ly’ Yy Yy Y
0

where K(t) := (1/mi)(1 — t)~'. Further, using the formula

z—1

/ f tdt =mcotmz, Rez <1,
0

cf. [31, formula 3.241.3], one shows that the Mellin transform Z3K(§)

coincides with the function sg(&) from (76).
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For our aim we will need certain results concerning the compactness of
Mellin and Fourier convolutions in LL,-spaces. These results are scattered
in literature. For the convenience of the reader, we reformulate them here
as Propositions 3.4-3.8. For more details, the reader can consult [8, 17, 22].

Proposition 3.4 ([22, Proposition 1.6]). Let 1 < p < oo, a € C(RY),

b e Cimg(]l.%) and a(0) = b(oo) = 0. Then the operators a9, MY al :
L,(RT) — L,(R") are compact.

Proposition 3.5 ([17, Lemma 7.1] and [22, Proposition 1.2]). Let 1 <

p < 00, a € C(f&*), b € 09372(1?&) and a(o0) = b(co) = 0. Then the
operators aWy,, Wy al : L,(RT) — L,(R™) are compact.

Proposition 3.6 ([22, Lemma 2.5, Lemma 2.6] and [8]). Assume that
1 <p<oo. Then

(1) Ifg € CMY(R) and g(oo) = 0, the Hankel operator Hy : L, (RT) —
L,(R") is compact;

(2) If the functions a € C’(]l.{), b e CMY(R), ¢ € C(RT) and satisfy at
least one of the conditions

(i) ¢(0) =b(+00) =0 and a(§) =0 for all £ > 0,

(i) ¢(0) =b(—00) =0 and a(§) =0 for all £ <0,
then the operators cW, MY, MIW,,, W, MY eI, MW, el : L,(RT)
— L,(R") are compact.

Proof. Let us comment only on item 2 in Proposition 3.6, which is not
proved in [22], although is well known. The kernel k(x + y) of the operator
H, is approximated by the Laguerre polynomials k,,(z+y) = e * ¥Yp,,(x+
y),m=1,2 ... where p,,(z+y) are polynomials of order m so that the cor-
responding Hankel operators converge in norm |H,—H,,, | |-Z(L,(R™))|| —
0, where a,, = Fk,, are the Fourier transforms of the Laguerre polynomials
(see, e.g. [29]). Since

lkm (2 +y)| = |6 " Vpm(z +y)| < Crpe "e Ya™y™, m=1,2,...,

for some constant C,,, the condition on the kernel

o0 oo ) p/pl p
/ [/|km(:v+y)|p dy] dr < oo, p' = P
0 0

holds and ensures the compactness of the operator H,,, : L,(RT) —
L,(R"). Then the limit operator H, = lim H,, is compact as well. [

Proposition 3.7 ([17, Lemma 7.4] and [22, Lemma 1.2]). Let1 < p < 0o
and let a and b satisfy at least one of the conditions

(i) a € C(R*), b e MY(R) N PC(R),
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(i) @ € PC(RT), b € CMY(R).
Then the commutants [al, W] and [al, M| are compact operators in the
space L,(RT).

Proposition 3.8 ([22]). The Banach algebra, generated by the Cauchy
singular integral operator Sg+ and by the identity operator I on the semi-axis
R*, contains all Mellin and Fourier convolution operators on the semi-axis
with symbols from C’S)ﬁg(@), having discontinuity of the jump type only at
the infinity.

Moreover, the Banach algebra §,(R") generated by the Cauchy singular
integral operators with “shifts”

e~ (y) dy
y—

oo

1

Sgople)i= = |

™
0

=W_gigne—e)p(x) forall ce R

and by the identity operator I on the semi-axis RY over the field of N x N
complex valued matrices coincides with the Banach algebra generated by
Fourier convolution operators with piecewise-constant N x N matriz symbols
contains all Fourier convolution W, and hankel H, operators with N x N
matriz symbols (multipliers) a,b € PCOM,(R).

Let us consider the Banach algebra 2,(R™) generated by Mellin convo-
lution and Fourier convolution operators in the Lebesgue space L, (R™)

m
A=) Wy, (77)
j=1
where E)ﬁgj are Mellin convolution operators with continuous N x N matrix
symbols a; € CIM,(R), W, are Fourier convolution operators with N x N
matrix symbols b; € CM,(R \ {0}) = CM,(R U K+) in the weighted
Lebesgue space L,(R™,z%). The algebra of N x N matrix L,-multipliers
COM, (R \ {0}) consists of those piecewise-continuous N x N matrix multi-
pliers b € M, (R) N PC(R) which are continuous on the semi-axis R~ and
R* but might have finite jump discontinuities at 0 and at the infinity.

This and more general algebras (see Remark 3.14) were studied in [22]
and also in earlier works [12, 21, 42].

In order to keep the exposition self-contained, to improve formulations
from [22] and to add Hankel operators as generators of the algebra, the
results concerning the Banach algebra generated by the operators (77) are
presented here with some modification and the proofs.

Note that the algebra 2,(R™) is actually a subalgebra of the Banach
algebra §,(R™") generated by the Fourier convolution operators W, act-
ing on the space L,(R") and having piecewise-constant symbols a(€), cf.
Proposition 3.8. Let S(IL,(R")) denote the ideal of all compact operators
in L,(R™). Since the quotient algebra §,(R")/S(L,(R")) is commutative
in the scalar case N = 1, the following is true.
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Corollary 3.9. The quotient algebra 2,(R")/S(L,(R")) is commuta-
tive in the scalar case N = 1.

To describe the symbol of the operator (77), consider the infinite clock-
wise oriented “rectangle” R :=T; UT, UT'y UT3, where (cf. Figure 1)

Iy =R x {400}, TE:={+oo} xR, T5:=R x {0}.

(—OO,OO) F1 . (—l—O0,00]
60
Iy T3
H—oorn) (100,7)
(.0) |

A

(—O0,0) Pg (+0070)
FIGURE 1. The domain R of definition of the symbol <7,(§,n).

The symbol 7,(w) of the operator A in (77) is a function on the set R, viz.

D ai(€)(B)p(00,6), w= (€ 00) €T,

> aj(+o0)bi(—n),  w = (+o0,1) €T],
T (78)
Zaj(—OO)bj(U% w=(—o0,n) €T;,

Zaj(g)(bj>l7(0’§)> w = (5,0) S Fi‘;

In (78) for a piecewise continuous function g € PC(R) we use the notation

90(00,€) = 3 [9(+00) + g(~o0)] -
1 1

~ 5 lotroo) — g(—o0)] cotmn (S i),

2 (p ) (79)

[g(t +0) + g(t —0)]—

1
gp(tv 5) = 5

1 1
— 5 [9t+0) = gt = 0)] cot]mr(5 — i),
where ¢,¢ € R.
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To make the symbol «7,(w) continuous, we endow the rectangle R with
a special topology. Thus let us define the distance on the curves I'y, FQi, I's
and on R by
T —1 Yy—1 . —

— f bit ,y € R.

o argy+i or arbitrary z,y
In this topology, the length |R| of R is 67, and the symbol o7, (w) is con-
tinuous everywhere on 9. The image of the function det <, (w), w € R
(det Bp(w)) is a closed curve in the complex plane. It follows from the con-

tinuity of the symbol at the angular points of the rectangle ‘R where the
one-sided limits coincide. Thus

p(z,y) := | arg

Gy (£00,00) = Z[aj(iOO)bj(ﬂFOO),
p(£00,0) =Y "[a;(£00)b; (0 F 0).

Jj=1
Hence, if the symbol of the corresponding operator is elliptic, i.e. if

u}relif)i | det @7, (w)| > 0, (80)

the increment of the argument (1/27) arg o7,(w) when w ranges through R
in the positive direction is an integer, is called the winding number or the
index and it is denoted by ind det <7,.

Theorem 3.10. Let 1 < p < oo and let A be defined by (77). The
operator A : L,(RT) — L,(R") is Fredholm if and only if its symbol
o, (w) is elliptic. If A is Fredholm, the index of the operator has the value

Ind A = —ind det .7,. (81)

Proof. Note that our study is based on a localization technique. For more
details concerning this approach we refer the reader to [17, 19, 9, 30, 41].
Let us apply the Gohberg—Krupnik local principle to the operator A in
(79), “freezing” the symbol of A at a point z € R := R U {—co} U {+oc}.
For z € Rand £ € N, £ > 1, let C4(R) denote the set of all (-times differ-
entiable non-negative functions which are supported in a neighborhood of
z € R and are identically one everywhere in a smaller neighborhood of z.
For x € {—oo} U{+0o0}U{oo}, the functions from the corresponding classes
C4 o(R) and C* (R) vanish on semi-infinite intervals [—oo, ¢) and (—c, oc],
respectively, for certain ¢ > 0 and are identically one in smaller neighbor-
hoods. It is easily seen that the system of localizing classes {CL(R)}, g is
covering in the algebras C(R), 90,(R), respectively (cf. [17, 19, 9, 30]).
Let us now consider a system of localizing classes {Ew,x}(w,z) cmx®s 1N
the quotient algebra 2A,(R™)/S(L,(RT)). These localizing classes depend
on two variables, viz. on w € R and # € RT. In particular, the class Lox
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contains the operator A, ,

[hofm?]EWgw} = [hoﬂﬁgf}
if w=(§o0)ely, =0
[hzmgj:ocwgoc] = [hfmgioongoo]
Ay i _— ifWu/J 7 (if;,ogjzoe PEEVO F]l, r € RT; (82)
vioiof wg]: (o0, n) ;ili}, QZ": 00;
[hmmggwgo] = [WSgWgO]

if w=(£0)€T;, x=o0,

where h, € CLRT), v € C{RT), g, € Cy(R"), and [A] €
2,(R")/S(L,(RT)) denotes the coset containing the operator A € 2, (RT).
To verify the equalities in (82), one has to show that the difference be-
tween the operators in the square brackets is compact.
Consider the first equality in (82): The operator

hoWy —hol = hoW, 1) = hoWy,

is compact, since both functions hg and 1— g, = go have compact supports,
so Proposition 3.4 applies.

To check the second equality in (82), let us note that h,(0) = 0, vt o0 (Fo0)
=0 and g+ (&) =0 for all F& > 0. From the fourth part of Proposition 3.6
we derive that for any 2 € RT the operator h, M), W, _ is compact. This
leads to the claimed equality since

[hwmgimwgm] = [himgim {Wg—oc + W9+oo }] = [hmmgimwgq:oo]'

The third identity in (82) can be verified analogously. As far as the fourth
identity in (82) is concerned, one can replace ho by 1 because the difference
hooWgy — Wy = (1 — hoo )Wy, = hoWy, is compact due to Proposition 3.4.

Consider now other properties of the system {ﬂw,z}(w7w)emxﬁ+. Propo-
sitions 3.4-3.6 imply that

[he9M) W, ] =0 forall (§,n,2) € RxRxR"\ R xR

Therefore, the system of localizing classes {Swﬂ?}(w,a;) et 18 covering: for
a given system {Auz}(, emxms Of localizing operators one can select a
finite number of points (w1, 1) = (&1, 71, 21), - - -, (Ws, Zs) = (&5, Ms, T5) € R
and add appropriately chosen terms [h W, = 0 with

sy PHOREE 7ws+jmggs+j gs+j]
(EstjsMstjs Tstj)) € RX R x RT\ (R xRY), j =1,2,...,r so, that the
equality

S5 [0, Wi ] = [em00i] )

j=1k=1
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holds and the functions ¢ € C(RT), a € CIMM,(R), b € CIM,(R) are all
elliptic. This implies the invertibility of the coset [¢OM2W;] in the quo-
tient algebra 2A,(RT)/S(L,(R")) and the inverse coset is [¢MOW,]~! =
[C_lmg,l Wb—l].

Note that the choice of a finite number of terms in (83) is possible due
to Borel-Lebesgue lemma and the compactness of the sets R and Rt (two
point and one point compactification of R and of R, respectively).

Moreover, localization in the quotient algebra 2,(R™)/S(L,(R")) leads
to the following local representatives of the cosets containing Mellin and
Fourier convolution operators with symbols a,b € C9,(R):

0

0] 0] = la(éo)]] i & € B, (34a)
0] " O] if & € R, a0 #0, (84b)
)] ¥ [m] i & =0, (84c)
W] 2 [Wigg] = [b(m0)1] if mo € R\ {0}, (84d)
Wa) '™ [Wi] = [0, o )] if 7=0, (84c)
(Wo] " (Wi (,] = [0, (oo )] i 10 = %00, (84f)
W) 22" (Wi ] = () )] i 2o € RY, (84g)
(W] =" (W] if 2o = oo, (84h)
where
§°(€) = 5 lo(+00) + g(~o0)] + 5 [g(+00) — g(~o0)] sign€ =
= g(—00)x— (&) + g(+00)x+(§),
1 1 (85)
9"(€) = 5 [9(0+0) + g0 = 0)] + 5 [9(0+0) +g(0 — 0)] sign¢ =

=g(0 = 0)x-(§) +9(0+0)x+(§),

and x1(§) := (1/2)(1 + sign&). Note that in the equivalency relations
(84e)—(84g) we used the identities, cf. (75) and (79),

Wi = & o(—00) — g(+00)] — & [a(—o) — g(+0)]Sir = D, .
Wyo = % [9(0+0) 4+ g(0—0)] — % [9(0+0) = g(0 = 0)] Se+ = My, (0.,

which means that the Fourier convolution operators with homogeneous of
order 0 symbols g>° (&) and ¢°(€) are, simultaneously, Mellin convolutions
with the symbols g,(00, &), g,(0,&).

Using the equivalence relations (84a)—(84h) and the compactness of the
corresponding operators, cf. Propositions 3.4-3.6, one finds easily the fol-
lowing local representatives of the operator (coset) A € A, (RT)/SL,(R™)
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(see (79) for the operator A):

[A] e [Z My, <50>W<b_7->°°} -

=1
m Aer oo
[Z} (oo,)} e {Z}fmma}xb (00 ,EOJ
J
= [, (&, 00)I] if w= (£,00) €Ty, =0, (86a)
/\ 00,00),@

[A] {meu (oo Wio<| = [Zmaxioo)(b Jo(oor)] =

= [0 (hoery] T [y (00, 00)] (86D)

if w=(4o00,00) EFTHIT, 0 < xp < 00;

[A] A(iw}fm)m [ngj(ioo)wbj(ﬂmo)] - [Zaﬂ (Fo0)b :FWO)I] -
j=1

= [m/p(:lzoo,q:no)f] if mo >0, w:(:l:oo,:Fno)éI‘z, xo=00; (86¢)

m

A [S o |
=
= [iay(fe)m(w)p(o,‘)} N [i 0(0.60)] =
= [;7;(5070) I] if w=(&,0) €T, ;0 = 00; (86d)
(] M [im%(im)wb ] = {zm:aj(:too)bj(())[} —
= [%Z;o,())f} if w= (:I:oo,(j))ﬂe T3, xp = oo. (86e)

It is remarkable that the local representatives (86a)-(86e) are just the
quotient classes of multiplication operators by constant N x N matrices
[, (€0,m0)I]. If det <7, (&p,mo) = 0, these representatives are not invertible,
both locally and globally. On the other hand, they are globally invertible
if det.@,(£0,7m0) # 0. Thus, the conditions of the local invertibility for
all points wg = (&, 1m0) € R and the global invertibility of the operators
under consideration coincide with the ellipticity condition for the symbol
inf %det (&0, M0) # 0.

(&0,m0
The index Ind A is a continuous integer-valued multiplicative function

Ind AB = Ind A + Ind B defined on the group of Fredholm operators of
2,(R*). On the other hand, the index function inddet.<7, defined on
L,-symbols 7, possesses the same property ind det «7,%, = inddet o7, +
ind det %), see explanations after (80). Moreover, the set of operators (79)
is dense in the algebra 2(,(R™) and the corresponding set of their symbols is
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dense in the algebra C'(R) of all continuous functions on R. For p = 2 these
algebras even coincide. Therefore, there is an algebraic homeomorphism
between the quotient algebra 2,(RT)/S(IL,(RT)) and the algebra of their
symbols which is a dense subalgebra of C'(JR). Hence, two various index
functions can be only connected by the relation Ind A = M ind det .27,
with an integer constant My independent of A € A,(RT)/S(L,(R™)).
Since for any Fourier convolution operator A = W, the index formula is
Ind A = —inddet o, [12, 13, 17|, the constant My = —1, and the index
formula (81) is proved. O

Remark 3.11. Let us emphasize that the formula (81) does not contradict
the invertibility of “pure Mellin convolution” operators MY : L, (R*) —
L,(RT) with an elliptic matrix symbol a € C9N)(R), §n£ la(§)] > 0, stated

€

in Proposition 0.1, even if ind a # 0.
In fact, computing the symbol of MY by formula (78), one obtains

a(f)’ w:(gvoo) el
a(+oo)7 W= (+00,77) € F;a
a(—o00), w=(—o0,n) €ly,
a(€)7 w:(f,O) € I's.
Noting that on the sets I'y and I's the variable w runs in opposite direction,
the increment of the argument [argdet(9MY),(w)]x = 0 is zero, implying
Ind MY = 0.

In contrast to the above, the pure Fourier convolution operators
Wy : Ly(RT) — L,(RT) with elliptic matrix symbol b € CIMI(R),
gnellf& |b,(&,1)] > 0 can possess non-zero indices. Since

(M9)p(w) =

bp(OO7§), w = (fa OO) eIy,
: . b(n), w=(—o0,n) €Ly,
b(0), w=(£0) €Ty,

one arrives at the well-known formula
Ind Wy = —ind b,,.

Moreover, in the case where the symbol b(—oc0) = b(+00) is continuous, one
has b,(£,m) = b(€). Thus the ellipticity of the corresponding operator leads
to the formula

ind b, = ind det b.

If o,(w) is the symbol of an operator A of (77), the set Z(<7,) =
{#p(w) € C: w € R} coincides with the essential spectrum of A. Recall
that the essential spectrum o.s5(A) of a bounded operator A is the set of
all A\ € C such that the operator A — AI is not Fredholm in L,(R™) or,
equivalently, the coset [A — AI] is not invertible in the quotient algebra
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2A,(R")/S(L,(RY)). Then, due to Banach theorem, the essential norm
[IA|| of the operator A can be estimated as follows

< = i M.
sup ()| < 1Al = _int | (A+T) | LD (87

The inequality (87) enables one to extend continuously the symbol map (78)
[A] — p(w), [A] € A (RT)/S(Ly(RT)) (88)

on the whole Banach algebra 2,(R"). Now, using Theorem 3.10 and con-
ventional methods, cf. [22, Theorem 3.2], one can derive the following result.

Corollary 3.12. Let 1 < p < oo and A € A,(R"). The operator
A L,(R"Y) — Ly(R") 4s Fredholm if and only if it’s symbol <,(w) is
elliptic. If A is Fredholm, then

Ind A = —ind &,
Theorem 3.10 and Corollary 3.12 lead to the assertion.

Corollary 3.13. The set of mazximal ideals of the commutative Banach
quotient algebra 2A,(R1)/S(L,(R™1)) generated by scalar N = 1 operators in
(77), is homeomorphic to R, and the symbol map in (78), (88) is a Gelfand
homeomorphism of the corresponding Banach algebras.

The proof of this result is similar to [22, Theorem 3.1] and is left to the
reader.

Remark 3.14. All the above results are valid in a more general setting viz.,
for the Banach algebra ‘IJQ[ZIX IN(RT) generated in the weighted Lebesgue
space of N-vector-functions ]Lév (RT, 2%) by the operators

A=Y [d;sm& Wi + d2000 H oy + d3WS ch} (89)
= : j ' J

when coefficients djl-,df,d?- € PCN*N(R) are piecewise-continuous N x

N matrix functions, symbols of Mellin convolution operators 9)?21, Dﬁgz,
Winer—Hopf (Fourier convolution) operators Wb;, Wb§ and Hankel of)erato;s
HC;, HC? are N x N piecewise-continuous matrix IL,-multipliers af, b?, c;? €
PCNXNon (R).

The spectral set E(‘BQ[;XSN(R"‘)) of such Banach algebra (viz., the set
where the symbols are defined, e.g. R for the Banach algebra Qlév *N(RT)
investigated above) is more sophisticated and described in the papers [15,
16, 22, 42]. Let €A, o(RT)S(L,(R)) be the sub-algebra of PA, ,(RT) =
‘BQL;?S (RT) generated by scalar operators (89) with continuous coefficients
¢j, hj € C(R) and scalar piecewise-continuous L,-multipliers) a;, b;,d;, g; €
PCM,(R). The quotient-algebra €A, o (RT)S(L,(R)) with respect to the
ideal of all compact operators is a commutative algebra and the spectral set
B(PA, o (RT)) is homeomorphic to the set of maximal ideals.
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We drop further details about the Banach algebra ‘]39[9’ IN(RT), be-
cause the result formulated above are sufficient for the purpose of this and
subsequent papers dealing with the BVPs in domains with corners at the
boundary.

4. MELLIN CONVOLUTION OPERATORS IN BESSEL POTENTIAL SPACES

As it was already mentioned, the primary aim of the present paper is to

study Mellin convolution operators 90 acting in Bessel potential spaces,
M HY(RT) — HE(RY). (90)

The symbols of these operators are N x N matrix functions a € C9)(R),
continuous on the real axis R with the only possible jump at infinity.

Theorem 4.1. Let 0 < |argy| <7, 0 < |arge| <, 0 < |arg(cy)| < =,
r,s € R,m=1,2,...,1 <p< oo. Then the operator K" : Hg(R“‘) —
H? (RT) is lifted equivalently to the operator

A=A KA L,(RT) — L,(R"), (91a)
where
eolenmsi s K,
if —m<argcey <0,
A = oo e 4 K ] (o1
if 0 <argey <,
I+T
P if o(c,v) #0, - (91¢)
e Hys +T = e (V)msi [cos wsl —o(7) WWSKl_l} +T
if o(c,7) =0,
s ey (E7 7Y
9.0 = 1) o)

1 - 1
95(8) =5 [Pt 1] + o

Jr
T is a compact operator in L,(RT), o(v) := signargy and o(c,7) is defined
in (51)

[60(7)27rsi 7 1] signf,

(c,7) 0 if 0 <arge<m,
g C, = . . .
7 signarg(cy) —signargy if —m <arge <0.

Proof. Let ax € Loo(R) be L,-multipliers, which have analytic extensions
a—_(€) in the lower Im& < 0 and a4 (£) in the upper Im €& > 0 complex half
planes. Then

Wa WoWa, =Wa_gar, Vg€ La(R) (92)
(cf., e.g., [17]).
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Let —m < argcy < 0. Theorem 2.7 and the property 92 yield the equal-
ities
AivK?A;S — ea(C,'Y)ﬂ'schsK;nAs_C’yA;s —
— eo‘(c,'y)ﬂsic—sK;nWAs_c’YWA;S _ ea(c,'y)Trsic—sKZ)’LW N

95,c”

For 0 < argey < 7 we have similarly to (92)
As_,},KTA,;S _ ea’(c,'y)wschsKZzAs_cfyA;s —
— eo(c,’y)‘n‘sic—sI{;r:rv,I/I/v>(\J8 WS,S — eU(Cy’Y)Trsic—usntOS ] (93)
¥ Ve

—cn

On the other hand,

1)K Hye (1), (94)

The proved equalities justify formula (91b) for A."°.

To justify the remainder formulae (91c) and (91d) note that if o(c,v) # 0,
the meromorphic function g, .(€) in (91d) has one pole and one zero in the
same half-plane Im¢& < 0 or Im¢ > 0 and, therefore, has equal limits at
the infinity: g&gic(g) = 1. Then g5 .(§) = 1+ g5(§) where g5(§) is

continuous (is C*°(R)-smooth) and vanishes at the infinity: ¢§(+o0) = 0.
By virtue of Proposition 3.6 the operator T := H_s is compact in L,(RT).
In contrast to the foregoing case, where o(c,v) = 0, the meromorphic
function g, () in (91c) has the pole and the zero in different half-planes
and, therefore, the function has different limits at the infinity:
9y.c(=00) = lim g7 (&) =1,

£——

. .
Gc(00) = lim gyo(€) = 2,

where o(y) = o(cvy) = signargy = signIm~. Consider the representation

95,.(8) = g3 (&) + 95(&), (95)

where g5 (§) is defined in (91c) and the function A is, as above, continuous
and g§(400) = 0. The operator T":= Hgs is compact in Ly, (RT).
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On the other hand,
1 ) 1 ;
Hay =5 [e7Pm 4 )= [0 A H i =
% [60(7)27T5i + 1}] - % [ea(wzﬂ” — 1] r+VSp+ =

sin s

= eo(msi [cos wsl —o(y) Kl_l} . (96)

From (94)—(96) follows the representation (91b), (91d) in the case 0 <
arg cy < 7, and the proof is complete. (|

Let us consider a combined convolution operator

A=dol +Wo+ Y d;K, c1,...,c0 €C, a € CMER\{0}) (97)
j=1

with constant coefficients dy, d1, . . . , d, € C in Bessel potential space ]H[‘;,(R"‘).

For a complex number v € C, with the positive imaginary part 0 <

arg~y < 7w, we assume the following:

—m <argc;y <0 for j=1,...,m,
: (98)
0<argcjy<m for j=m+1,...,n.

Then, due to the imposed constraint (97), the lifting property (91b) of the
Mellin convolution operator and the lifting property (24) of the Fourier
convolution operator, the lifted operator

A= AS_,YAA,;S : LP(RJF) — ]LP(R+) (99)

has the form

m
A% = Wayge + Wags + Y djc; "KWy +

Jj=1

s
V¢

=+ Z djea(cjﬁ)WSiC;S{ijWS

) ‘. Cj 95,5
j=m

where (see (51))

—(~1)" K" Hye ]+ T, (100)

J

0 if 0<arge; <,
o(c;,v) =10 if —7m<arge; <0, 0<argejy<m, (101)
-2 if —w<arge; <0, —m <arge;y <0,

the functions g5 . € C (]I.%) are defined in (91d) and, due to the conditions
(98), have the following limits at the infinity:

g’f/,Cj(_w) =1, g'ﬁ/,cj- (0) = 6_0(0j)ﬂ8ic§’ g’\;,C]' (+o0) =1, j=1,...,m,

5, (—00) =1, g5(0)=e 7l

S

s G, (+o0)=e*™ j=m+1,...,n,

o(c;) == signargc;.
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The function g5 € C(R) is continuous on R, but has different limits at the
infinity

g5(—00) =1, g5(+o0) = >,
And, finally, the symbols
HIE) = My (€)ALY (€)= My K (€)

of the operators K" and K' | = miSg+ are defined in (34)—(38) and have
the following limits at the infinity

HM (£00) =0, j=1,...,n, A (Fo0) = 1.

Using the equality (100), we announce the symbol @7 (w), w € R, of the

lifted operator A° in L,(R™) as the symbol of A in Bessel potential space
H? (RT) (cf. the definition (78))

+Zd c; 6%m7 )+ z”: djea(c]','y)rrsicj—sx

cj,p
j=m+1

[Jt@f};,@%;,c,goo,f)—( AT () (00,6)],

= (§,00) €T,
+
{do+ a(— }(77 7), w = (+o0,n) € TY,
_ (102)
{do + a(n) (77 ) (—o0,m) €Ty,
‘n'sz{d + ap( }+
+Zd 670'((:J)71'sz<%/c1]ﬂé )+ Z djeO'(Cj,’y)Tl'Six
j j=m+1
x [e T (€)= (=)™ AL (W (00,)],
w=(&0) €T,
where, since o(y) = signargy = 1,
) 1
%;Cjﬁp(oo, )= e [COSﬂ'S —sinms cotw(]; - i§>], (103)
sin s

Hys p(oo, )= e”i[coswsf }, j=m+1,...,n, (104)

sin7(1/p — i€)
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[e%”a(—&—oo) + a(—oo)] -

_1 [*™ a(+00) — a(—00)] CO'“T(% - if))

DN | =

2
ap(t,§) = % [a(t +0) +a(t —0)]—

— % [a(t+0) — a(t — 0)] cotw(% —if).

Theorem 4.2. Let 1 < p < 00, s € R and let A be defined by (97).
The operator A : ﬁ;(R"’) — H5(RT) is Fredholm if and only if its symbol
2y (w), defined in (102), is elliptic. If A is Fredholm, the index of the
operator has the value

Ind A = —ind det &7 (105

)
Proof. The proof follows if we apply to the lifted operator A° (see (99))
having the form (100), Theorem 3.10. O

For the definition of the Sobolev—Slobodeckij (Besov) spaces W3 (Q) =
B, ,(Q), W2(Q) = B;, ,(©2) we for arbitrary domain Q C R", including the
half axes R refer, e.g., to the monograph [43].

Corollary 4.3. Let 1 < p < 00, s € R and let A be defined by (87).
If the operator A : ]ﬁl;(R*‘) — H5(RT) is Fredholm (is invertible) for all
a € (s0,81) and p € (po,p1), where —o00 < 9 < 81 < 00, 1 < P, < Py < 00,
then -

AW (RY) — Wi (RY), s € (s0,51), pE (po,p1) (106)
is Fredholm and has the equal index
Ind A = —ind det 7. (107)

(is invertible, respectively) in the Sobolev-Slobodeckij (Besov) spaces W, =
p.p*

Proof. First of all recall that the Sobolev—Slobodeckij (Besov) spaces Wy =
B, , emerge as the result of interpolation with the real interpolation method
between Bessel potential spaces

(Hze (Q), H3H (), =W5(€), s:=s0(1 —0) + 510,

=~ 1 1
=W:;(Q), p=—(1-0)+—0, 0<0<1.

§@), pi= = (1=0)+ -

If A : ]ﬁl;(R"’) — HP(RT) is Fredholm (or is invertible) for all s €
(s0,51) and p € (po,p1), it has a regularizer R (has the inverse A~! = R,
respectively), which is bounded in the setting

R : W(RT) — W3(RY)

0,p
- - 108
(e (), 32 () 1o

0.,p
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due to the interpolation (108) and
RA=I1+T, AR=I+T,,

where T and Ty are compact in ]ﬁ;(R*’) and in — ]HI;(R*‘), respectively
(Ty =Ty =0if A is invertible).

Due to the Krasnoselskij interpolation theorem (see [43]), T; and Ts are
compact in W; (R*) and in W2 (R"), respectively for all s € (so,s1) and p €
(po, p1) and, therefore, A in (106) is Fredholm (is invertible, respectively).

The index formulae (107) follows from the embedding properties of the
Sobolev—Slobodeckij and Bessel potential spaces by standard well-known
arguments. (I
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IV International Conference of the Georgian Mathematical
Union dedicated to the 110-th birthday anniversary of
academician Victor Kupradze and the 90-th year
anniversary of Georgian Mathematical Union

September 9-15, 2013, Thilisi and Batumi, Georgia

The opening ceremony of the conference and V. Kupradze memorial
evening took place in Thilisi, at Georgian National Academy of Sciences on
September 9. David Natroshvili (Georgia) gave a talk about V. Kupradze’s
life and scientific heritage.

At the memorial evening their speeches were delivered by Roland Duduchava,
Vakhtang Kokilashvili, George Kvesitadze, Jumber Lominadze, Roin Me-
treveli and Guram Kekelia.

The scientific part of the conference took place in Batumi at Shota Rus-
taveli State University from September 11 to September 15.

The conference was organized by:

e Georgian Mathematical Union;
e Georgian National Academy of Sciences;
e Shota Rustaveli State University, Batumi
The conference covered the following topics:
o Real Analysis;
o Complex Analysis;
o Topology;
o Algebra and Number Theory;
o Differential Equations and Applications;
o Probability & Statistics, Financial Mathematics;
o Mathematical Logic, Applied Logic and Programming;
o Mathematical Modelling;
o Mathematical Physics;
o Numerical Analysis;
o Mathematical Education and History;

o Continuum Mechanics.
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In the conference participated over 150 scientists from 18 countries, among
them 40 from abroad and about 110 from Georgia. The participants con-
tributed 114 reports (30 min. each) on sections, 5 plenary and 13 semi-
plenary talks (50 minute). The plenary talks were delivered by Chkareuli
Juansher (Georgia), Kokilashvili Vakhtang (Georgia), Sloan Ian (Australia),
Béttcher Albrecht (Germany), Kaashoek Marinus (Netherlands).

The semi-plenary talks were delivered by Bojarsky Bogdan (Poland),
Duduchava Roland (Georgia), Kadeishvili Tornike (Georgia), Kapanadze
David (Georgia), Karkashadze David & Zaridze Revaz (Georgia), Lanza de
Cristoforis Massimo (Italy), Lashkhi Alexander (Georgia), Meskhi Alexan-
der (Georgia), Mikhailov Sergey (UK), Ovchinnikov Vladimir (Russia),
Pkhakadze Konstantine (Georgia) and Vasilevski Nikolai (Mexico).

More detailed information about the conference, posters, program, ab-
stracts, the list of plenary speakers and participants are available on the
WEB: http://www.gnu.ge/

Prof. Roland Duduchava

Chairman of the Organizing Committee,
President of the Georgian Mathematical Union
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