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Vladimir Aleksandrovich Kondrat’ev

(Obituary)

On March 11, 2010, Vladimir Aleksandrovich Kondrat’ev, a prominent
mathematician, Professor of Moscow M. V. Lomonosov State University,
Doctor of Physical and Mathematical Sciences, suddenly passed away at
the age of 75.

V. A. Kondrat’ev was born on July 2, 1935, in the city of Samara (Kuy-
byshev). His father, Aleksandr Sergeyevich Kondrat’ev was a professor
of mechanics at the Kuybyshev Industrial Institute, while his mother Ev-
geniya Vasil’evna was a teacher of mathematics at a secondary school. In
1952 V. A. Kondrat’ev graduated from the school No. 6 of Kuybyshev with
Golden Medal and entered the Faculty of Mechanics and Mathematics of
Moscow M. V. Lomonosov State University which he graduated in 1957.
In 1959, under supervision of S. A. Gal’'pern, V. A. Kondrat’ev defended
his Candidate of Science Thesis “On Zeros of Solutions of Linear Differen-
tial Equations of Order Higher than Two”, while in 1965 he defended his
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Doctor of Science Thesis “Boundary Value Problems for Elliptic and Para-
bolic Equations with Singularities at the Boundary”. V. A. Kondrat’ev was
deeply influenced by I. G. Petrovskii in choosing the area of his scientific
interests. Since 1961, V. A. Kondrat’ev had been working at the Chair of
Differential Equations of the Faculty of Mechanics and Mathematics of the
Moscow State University.

V. A. Kondrat’ev obtained first scientific results in his undergraduate
years, and they dealt with investigation of oscillation of solutions of linear
ordinary differential equations. He obtained a nonoscillation criterion for
second order linear differential equations which easily implied all nonoscilla-
tion criteria known by that time. The papers of V. A. Kondrat’ev which laid
the basis of his Candidate thesis include elegant proofs of Sturm-type theo-
rems on separation of zeros, as well as oscillation and nonoscillation criteria
for solutions of third and fourth order linear differential equations. Later
on, he generalized these results for the case of linear differential equations
of arbitrary order and obtained a depending on equations’ order estimate
of number of zeros of a solution as the right end of the interval tends to
infinity.

V. A. Kondrat’ev initiated a systematic investigation of elliptic and
parabolic problems in domains with nonsmooth boundaries. The first re-
sult he obtained in this direction concerned parabolic equations in a non-
cylindrical domain with characteristic points at the boundary. V. A. Kon-
drat’ev obtained a solvability criterion for boundary value problems in
weighted Sobolev spaces and found the asymptotics of solutions in the vicin-
ity of a characteristic point. A theory of elliptic equations in domains with
conic points at the boundary is another important achievement of V. A.
Kondrat’ev in this direction. In his papers devoted to this theory a univer-
sal method is developed which is applicable to a wide range of equations in
domains with isolated singularities at the boundary. These results provided
a basis for his doctoral thesis. In a series of papers that have already become
classical, V. A. Kondrat’ev introduced and studied the notion of capacity
for higher order elliptic equations. His results have served as a starting
point for many investigations. Due to those works the notion of capacity
was widely applied to Sobolev’s imbedding theorems as well as to the theory
of higher order elliptic equations - the issues of the unique solvability of the
first boundary value problem, smoothness of solutions near the boundary,
removable singularities of solutions.

V. A. Kondrat’ev (jointly with O. A. Oleinik and I. Kopacek) investigated
the regularity of solutions of elliptic equations in the vicinity of a boundary
point, and established best values of the Holder exponents for second order
elliptic equations.

In sixties, while dealing with asymptotic behavior of solutions of elliptic
equations at angular points, V. A. Kondrat’ev decided to use a product of
polynomials by logarithms of polynomials for transformation of variables
for linearization of a system of ordinary differential equation in the vicinity
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of a singular point. This approach gave rise to a series of investigations
which resulted in elaboration of the theory of finitely smooth equivalence
and linearization of systems of ordinary differential equations in vicinity of
a non-degenerate singular point.

V.A. Kondrat’ev (jointly with Yu. V. Egorov) obtained fundamental re-
sults dedicated to the boundary value problem with oblique derivative for
elliptic equations.

V. A. Kondrat’ev (jointly with E. M. Landis) obtained a series of impor-
tant results for divergent and non-divergent second order elliptic equations
with nonsmooth coefficients. In their famous work a theorem on removable
character of isolated singularity of solutions was obtained. Besides, the au-
thors found sufficient conditions for each entire nonnegative solution to be
trivial. Earlier similar results were known only in the case where the left
hand side of the equation is the Laplace operator.

Jointly with L. Veron, V. A. Kondrat’ev obtained results on asymptotic
properties of solutions of nonlinear elliptic and parabolic equations in un-
bounded domains.

V. A. Kondrat’ev investigated the problem on completeness of the system
of eigen- and adjoint functions of elliptic operators. He found conditions
to be imposed on the principal part of the operator for guaranteeing the
completeness of eigen- and adjoint functions of the Dirichlet problem for

second order elliptic operator of divergent type in the spaces I/?/ 11), p>1,
and weighted Sobolev spaces.

V. A. Kondrat’ev (jointly with Yu. V. Egorov and B. Schultze) estab-
lished completeness of systems of eigen- and adjoint functions of boundary
value problems for 2mth order elliptic operators in the space W2™ () with
Lopatinskii type boundary conditions in a bounded domain whose bound-
ary is everywhere smooth except for neighborhoods of a finite number of
points where it is a conic surface.

V. A. Kondrat’ev, jointly with V. G. Maz’ya and M.A. Shubin, extended
A.M Molchanov’s discrete spectrum criterion to the case of an operator of
more general type than the Schrodinger operator.

In the last years of his life, V. A. Kondrat’ev fruitfully worked in the
sphere of the theory of nonlinear problems for equations of mathematical
physics. He developed (jointly with L. Veron) methods enabling one to
obtain asymptotic expansions of solutions of such problems. These methods
initiated many scientific investigations both in Russia and abroad.

V. A. Kondrat’ev was actively engaged in the blow-up problem, that is,
the problem of absence of nontrivial global solutions of nonlinear equations
(jointly with V. A. Galaktionov, Yu. V. Egorov and S. I. Pokhozhaev).

The last remarkable work of V. A. Kondrat’ev “On positive solutions of
the heat conduction equation satisfying a nonlinear boundary condition”
will appear in the journal “Differentsial’nye Uravneniya”, v. 46, 2010.
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V. A. Kondrat’ev devoted much attention to the work with his pupils.
He created a scientific school on qualitative theory of differential equations.
The investigations in the sphere of qualitative theory of ordinary differential
equations and partial differential equations whose basis was laid by V. A.
Kondrat’ev were continued in the works of his pupils. Among his pupils
there are 6 Doctors and 35 Candidates of Science.

The name of Vladimir Aleksandrovich Kondrat’ev will always remain in
the history of mathematics, while his memory will live in our hearts.

I. V. AstasHOVA, I. KIGURADZE, T. KIGURADZE,
G. KVINIKADZE, A. LoMTATIDZE, N. KH. Rozov
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EULER CASE FOR A CLASS
OF THIRD-ORDER DIFFERENTIAL EQUATION



Abstract. We deal with an Euler-Case for a class of third-order differ-
ential equation. A theorem on asymptotic behaviour at the infinity of three
linearly independent solutions is proved. This theorem coveres different
class of coefficients.
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1. INTRODUCTION

In this paper we investigate the form of three linearly independent solu-
tions for a class of the third-order differential equation

(a(ay")) = (py) —ry =0 (1)
as r — 00, where x is the independent variable and the prime denotes
d/dz. The functions ¢, p and r are defined on the interval [a,00), are not
necessarily real-valued and continuously differentiable, and all are non-zero
everywhere in this interval. In this situation where p is sufficiently small
compared to ¢ and r as * — 00, (1) can be considered as a perturbation
of the equation investigated by Eastham. In this paper,we consider the
opposite situation where p is large compared to ¢ and r. In this situation,
we identify the Euler case:

I
@ ~ const. X %,
pr q
(pg") p @
— const. X -

pq

as * — oo. The various conditions imposed on the coefficients will be
introduced when they are required in the development of the method. Al-
Hammadi [1] considers (1) in the case where the solutions all have a similar
exponential factor. A third-order equation similar to (1) has been considered
previously by Unsworth [11] and Pfeiffer[10]. Eastham [6] considered the
Euler case for a fourth-order differential equation and showed that this
case represents a border line between situations where all solutions have a
certain exponential character as z — oo and where only two solutions have
this character. The case (2) will appear in the method in Sections 4-6,
where we use the recent asymptotic theorem of Eastham [4, Section 2| to
obtain the solutions of (1). Two examples are considered in Section 6.

2. THE GENERAL METHOD

We write (1) in the standard way [8] as a first order system

Y' = AY, (3)
where the first component of Y is y and
0 ¢! 0
A=1{0 pg ¢ '|. (4)
r 0 0

As in [2], we express A in its diagonal form
T 'AT = A (5)
and we therefore require the eigenvalues \; and eigenvectors v; (1 < j <

3) of A, with the eigenvalues \; are chosen as continuously differentiable
function.
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Writing
¢ =s, (6)
we obtain the characteristic equation of A as
sA3 —pA2 —r =0. (7)
An eigenvector v; of A corresponding to A; is
vj = (1,5%)\j7r)\;1)t, (8)

where the superscript denotes the transpose. We assume at this stage that
the \; are distinct, and we define the matrix T in (5) by

T=(mi'vy my'vs mz'vs), (9)

where the m; (1 < j < 3) are scalar factors to be specified according to the
following procedure. Now from (4), we note that EA is symmetric, where

0 0 1
E=]0 1 0 (10)
1 00
Hence, by [7, Section 2(i)], the v; have the orthogonality property
(Evp)'v; =0 (k # j). (11)
We then define the scalars
m; = (Ev;)'v; (12)
and the row vectors
’I“j = (Evj)t. (13)
Hence by [7, Section 2]
1
T t=|r], (14)
T3
mj = 33)\? —2pAj = sA? + 27“)\]71. (15)
By (5), the transformation
Y =TZ (16)
takes (3) into
Z'=(AN-T7'T")Z, (17)
where
A= dg()\l,)\g,)\g). (18)
From (8)—(12), we obtain T7'T" = (t;;,), where
1 m}
tjj=—=—> 19
73 2 m] ( )
and, for j # k,
1 m! Ai — Mk 1 mj, 1 1
tjk = 5 miz + ka (S ;c+ §>\k5') — mii (T)\j +5)\j>\k —|—7’)\k ) (20)



Euler Case for a Class of Third-Order Differential Equation 9

Now we need to work out (19) and (20) in some detail in terms of s, p and
r in order to determine the form of (17).

3. THE MATRICES A AND T 17"

In our analysis, we impose a basic condition on the coefficients as follows:
(I) p, r and s are all nowhere zero in some interval [a, 00), and

()} =of?) 0 o
If we write )
5=""2 (22)
p2
then by (21)
d=0(1) (x — o0). (23)

Now as in [1,2], we can solve the characteristic equation (7) asymptotically
as ¢ — o0o. Using (21) and (23), we obtain the distinct eigenvalues A; as

[T\
A= z(;) (14 01), (24)
[T\
Ag = — (];) (1+d2), (25)
s = (g)u +35), (26)
where
51 =0(8), 62 =0(5), b5=0(5?). (27)
By(21), the ordering of A; is such that
Aj = o(A3) (z — o0, j=1,2). (28)
Now substituting (24)—(26) into (7) and differentiating, we obtain
p_ Loy
Y QZ(p) {~ . +0(e) }, (29)
AT CALIC
Ny = 2z(p) {= ; +0(e)}, (30)
AV
X\, = (5>{p - +0(55)}. (31)

Now we work out m; (1 < j < 3) asymptotically as x — oo; hence by
(24)-(27), (15) gives,

my = —2i(pr) {14+ 0(8)}, (32)
my = 2i(pr) 2 {1+ 0(8)}, (33)

mg = (%2){1 +0(8)}. (34)
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Also by substituting A; (j = 1,2,3) into (15) and using (24), (25) and (26)
respectively, and differentiating, we obtain

’ . i(r p
=— —+=40 35
mi = ~i(rp)H{ -+ 7+ 0() }, (35)
! /
’ . 1 p
= ~+2 40 36
mh =i(rp)H{ -+ 7+ 0 (36)
2 / /
(P[P %
mg_(s){zp - +0(5g)}, (37)
where
/ S/ p/
e= f5\+f5+f5 (38)
r s
At this stage we also require the following condition:
(1)
rr/ S/ p/
§—,8—,6= areall L(a,oc0). (39)
r s P
Now by (22)

=0(74) +o(%9) vo(%s) o

Also by substituting (24) (25) into (7) and d1ﬁ'erent1at1ng, we obtain

5;:0( ) ( ( ) j=1,2) (41)

and
i (T 52 s P oo
53_0(T5)+0 85)+0(p5). (42)
Hence by (38), (40), (41), (42) and (39)
g, 0, 8; € L(a,00). (43)

We can now substitute the estimates (24)—(27), (32)—(37) and (29)—(31)
into (19) and (20) as in [1], we obtain the following expressions for ¢,
ti1=—-p+ 0(5)7 lag=—p+ 0(5)7
tss = —n+0(de), tiz=p+0(e),
tor =p+ O(E), tiz3 = O(E), tog = O(E) (44)

1 1
t31 = §7I+O(5)a l3g = 577+O(5)

with
1 (rp)’ _ (ps™1/2Y

Py rp T psT1/2

(45)

It follows from (43) the O-terms in (44) are L(a, c0), and we can therefore
write (17)
—(A+R+ 97 (46)
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where
p —-p 0
—| —» p 0
R i 1 (47)
51 —5n M

and S € L(a,c0) by (43).

4. THE EULER CASE

Now we deal with (2) more generally. So we write (2) as

2 421+ 0), (18)
s—1/2y
EZ ) 2 (1), (49)
ps S

where o and w are non zero constants, and ¢(z) — 0, ¥(z) — 0 (z — ).
At this stage we let
¢', ¥ € L(a,0). (50)

We note that by (48) and (49), the matrix A no longer dominates the matrix
R and so Eastham’s theorem [4, Section 2] is not satisfied which means that
we have to carry out a second diagnolization of the system(46). First we
write

A+ R =X3{S1 + 52} (51)
and we need to work out the two matrices S; = const. with the matrix
Sa(x) = o(1) as  — oo using (24), (25), (26) and Euler case (48) and (49).
Hence after some calculations, we obtain

o —0 0
si= 7 7 Y (52)
oW v 1+w
Uy U 0

Sg(.’lﬁ): U2 U3 0 5 (53)
Uqg Ug Us

where

(5% :)\1>\§1—UQ, U = —U(1+63)_1(¢—53),
. 1 . (54)
us = )\2)\3 — U2, Ug = 75 w(l + 53) (’l/} — 53), us = 72U4.

It is clear that by (28) and (27), Sz(x) — 0 as x — co. Hence we diagonalize
the constant matrix S7. Now the eigenvalues aj(l < j < 3) of the matrix
S1 are given by
a1 =0, ag=20, az=1+w. (55)
Let
w# -1 and 20 —w # 1. (56)
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Hence by (56), the eigenvalues «; are distinct. Thus we use the transfor-
mation
Z =T1W (57)
in (46), where T} diagonalizes the constant matrix S;. Then (46) trans-
forms to
W' = (A + M+ T STHW, (58)
where
Al = )\3T1_131T1 = dg(?)l,’UQ,’Ug) = )\3dg(041, ag,ag),

M = \T; 1 S,Ty, Ty 'STy € Lia,00).
Now we can apply the asymptotic theorem of Eastham [4, Section 2] to (58)
provided only that A; and M satisfy the conditions in [4, Section 2]. We

first require that the v; (1 < j < 3) are distinct, and this holds because ¢
(1 < j < 3) are distinct. Second, we need to show that

(59)

vij‘fvj L0 (2 — o) (60)
fori=# jand 1 <i,j <3. Now
- ]\_4%_ — (01— ay) TS = o(1) (2 — o). (61)
Thus (60) holds. Third, we need to show that
Sh € L(a, 00). (62)
Thus it suffices to show that
uj(x) € L(a,00) (1 <1i<5). (63)
Now by (24), (25), (26) and (54)
up = O(0") + 0(616) + O(d3) + O(¢'),
uy = 0(d3) + O(¢),
ufy = O(8") + 0(850) + O(65) + O(¢'), (64)
uy = O(d3) + O(¢),
ug = O(d3) + O(¢")

Thus, by (64), (43) and (50), we see that (63) holds and consequently (62)
holds. Now we state our main theorem for (1).
5. THE MAIN RESULT

Theorem 5.1. Let the coefficients p, v and s are C®[a,00). Let (21),
(38), (48), (49) and (55) hold. Let

ReI(x), (65)

1
Re[Xs+n—5 20+ A+ Ao £1)] (66)
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be of one sign in [a,c0), where

I() = [40* + (A — 2)?] . (67)
Then (1) has the solutions
(@) = of (@) T exp (3 [ D0+ 2a(0) - 10)] ) .
y2(w) = [~i + o(1)](r(2)p()) T x
(68)

X exp (; ] [AL(t) + A2 (t) + I(¢)] dt),

a

ys(z) = 0{(7"(56)5(%))212?1/2@) exp <])\3(t) dt) }

a

Proof. Before applying the theorem in [4, Section 2|, we show that the
eigenvalues pyp (1 < k < 3) of Ay + M satisty the dichotomy condition [9].
As in [2], the dichotomy condition holds if

Re(vj —w)=f+g (j#k 1<k<3), (69)

where f has one sign in [a,00) and g belongs to L(a,o0) [4, (1.5)]. Now
since the eigenvalues of A; + M are the same as the eigenvalues of A + R,
by (18) and (47) we have

1
pe= 5 2o Mt he + (<D (B =1,2),

H3 = Az + 1.

Thus by (70) and (66), we see that (69) holds. Since (58) satisfies all the
conditions for the asymptotic result [4, Section 2], it follows that, as x — oo,
(58) has three linearly independent solutions

(70)

x
Wi(2) = {er + o(1)} exp ( / () dt), (71)
where py are given by (70) and ey are the coordinate vectors with kth
component unity and other components zero. Now we transform back to Y
by means of (16) and (57), where T} in (57) is given by

1 -1 0
n=| L 1 0] (72)
— 0 1
14+w

We obtain
Yi(z) =T (@) A Wi(z) (1<Ek<3). (73)
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Now using (9), (32), (33), (34), (71), (72) and (45) in (73) and carrying out
;1 ! ’
the integration of #*2)" and (1) %, for 1 <k <3, we obtain (68). O

ps 2
6. DiscussioN

(1) In a familiar case, the coefficients covered by Theorem 5.1 are
s(r) = Az®, p(z) = Bz®, r(z)=Cx", (74)
where «, 3, v, A(# 0), B(# 0) and C(# 0) are real constants. Then
the Euler case (48)—(49) is given by
a—pF=1 (75)
The values of o and w are given by

1 (B+7v)A w_(ﬁ— a)A.

(76)

4 B ’
Also in this example ¢(x) =9 (z) = 0 in (48) and (49).
(2) Theorem 5.1 coveres also the following class of coefficients
5= Axo‘ewb, p= Bxﬁe"”b, r= Cx”’e%zb, (77)

where «, 8, v, A(# 0), B(#£ 0), C(# 0) and b(> 0) are real con-
stants. Then the Euler case (48)—(49) is given by

bJ N

b—1=0-a. (78)
The values of o and w are given by
3 bA 1b
Also
2 _ _
Bla) = 307G+, (30)
_ 1 _
W(x) =2b 1(5 ~5 a)x b, (81)
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non-linear controlled differential equation with variable delays and mixed
initial condition.
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INTRODUCTION

In the present paper the differential equation

B(t) = f(ty(n (@), y(ra(t), 2(01(1)), -, 2(om (1)), u(t)) (1)

with the mixed initial condition

2(t) = (y(0).2(1)" = (p().9(1)", t€lnt), w(to) = (v0.9(t0))" (2
is considered.

The condition (2) is called the mixed initial condition. It consists of
two parts: the first one is the discontinuous part, y(t) = ¢(t), t € [, to),
y(to) = yo, because in general ¢(tg) # yo; the second part is the continuous
part z(t) = g(t), t € [7, o] because, always z(to) = g(to)-

The local formula of variation of solution, that is, a linear representation
of variation of the solution of the problem (1)—(2) in a neighborhood of the
right end of the main interval with respect to initial data and perturbation
of control u(t) is proved by the scheme given in [1].

An analogous formula for the equation

i(t) = f(Ly(r®) -y @) 201 (O) o 2lom®) ()

with the initial condition (2) when variation of initial data and right-hand
side of equation occurs is proved in [1].

It is important to note that the formula of variation which is proved in
the present work doesn’t follow from the formula proved in [1].

Formulas of variation for differential equations with delays for concrete
cases of continuous and discontinuous initial conditions are obtained in [2]-
[6].

Formulas of variation for controlled differential equations with delays,
with continuous and discontinuous initial conditions are proved in [7], [8].

Formulas of variation of solution play an important role in the proof of
necessary conditions of optimality [6], [9]—-[12].

1. FORMULATION OF MAIN RESULTS

Let R be the n-dimensional vector space of points = = (z!,...,2™)T, T
means transpose; O; C Rg’j, O2 C RS, G C R’ be open sets, z = (y,2)7,
n==k+e nt),i=1s, 0j(t), j =1,m,t € R} be absolutely continuous

scalar-valued functions and satisfy the following conditions:
Ti(t)gt, Tz(t)>0, O'j(t)gt7 Jj(t)>0
Let f(t,y1,---,Ys,21,---,2m,u) be an n-dimensional function satisfying
the following conditions: for almost all ¢ € I = [a,b] the function f(¢,-) :
Of x 03 x G — R is continuously differentiable; for any
(Y15 Ysy 215+ Zm,yu) € O7 X OF x G

the functions f, fy,, i = 1,s, f.,;, j = 1,m, fy, are measurable on I; for
any compacts K C Of x O3* and M C G there exists a function m, ,(-) €
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L(I,R+), Ry = [0,00), such that for any (y1,...,¥s, 21, .-+, 2m,u) € K xM
and for almost all ¢ € I we have

‘f(t>y17~-~7y3721,...,Zm7u)|+
+Z‘fy1( )’ +2:‘f%( )| + ’fU( )| < mK,M(t).
i=1 j=1

Let Ei,’“) = ES(,(Il,R’;) be the space of piecewise continuous functions

¢ : I} = [r,b] — RE with a finite number of discontinuity points of
the first kind, equipped with the norm ||| = sup{le()| : t € L},
7 =min{7(a),...,7s(a),o1(a),...,om(a)}.

Next, Ay ={p € Eék) s clo(l) O}, Aa={g € Eée) = Eée)(II;Ri) :
clg(I1) C Oz} are sets of initial functions, where p(I1) = {¢(¢), t € I, }; let
L, be the space of measurable functions u : I — R;,, satisfying the following
condition: the set clu(l) is compact in R}, ||u|| = sup{|u(t)| : ¢ € I},
Q={ue E,: clu(l) C G} is the set of controls.

To any element p = (to,yo, @, g,u) € A =1 x 01 x A1 x Ay x  we put
in correspondence the differential equation

i(t) = f(ty(m (), ..., y(ms(1), (01 (1)), . . ., 2(om (1)), u(t)) (1.1)

with the mixed initial condition

()= (y(t), 2(0)" = (p(1), 9(1)) ", telrto), w(to)=(y0,9(ts))". (1.2)
Definition 1.1. Let u = (to, Y0, ¢, 9,u) € A, tg < b. A function z(t; u) =

(y(t;,u),z(t;u))T, t € [r,t1], t1 € (to,b], where y(t,u) € O1, z(t, 1) € Oo,
is called a solution, corresponding to the element g, and defined on the
interval [7,t1], if it satisfies the condition (1.2) on the interval [r,¢g] , it
is absolutely continuous on the interval [to, 1] and almost everywhere on
[to, 1] satisfies the equation (1.1).

In the space E, = R x R} x EY x B x E, we introduce the set of
variations

V= {(M = (dto, dyo, 0, g, 6u) € E,, : |5to| < ¢, |0yo] < ¢, ||d¢| <,

l

dg = Z)\iégi7 il <e, i=1,1 ||ou]| < c},
i=1

where ¢ > 0 is a fixed number and dg; € Eg(,‘e)7 1 = 1,1 are fixed points.

Lemma 1.1. Let zo(t) be the solution corresponding to the element pg =
(too, Y00, Yo, go, uo) € A, and defined on the interval [T, t10], too, t10 € (a,b).
There exist numbers 1 > 0 and 01 > 0, such that for any (¢,6u) € [0,e1]xV
we have po +edp € A. In addition, to this element corresponds a solution
x(t; po + €0p), defined on the interval [1,t10 + 61] C I4.
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This lemma follows from Theorem 1.3.2 (see [6, p. 17]).

Due to uniqueness, the solution x(¢; po), which is defined on [r, %10 + 1]
is a continuation of the solution zg(t). Therefore we can assume that the
solution z((t) is defined on the whole interval [7,t109 + d1].

Lemma 1.1 allows us to introduce the increment of the solution zq(t) =
z(t; p1o):

Axz(t) = Ax(t;edp) = (t; po + €6p) — wo(t),
(t,&,éﬂ) S [7‘, ti0 + 51] X [0,51] x V.
In order to formulate main results, consider the following notation:

wg; = (00, Yoo, - - - » Y00, Po(too—), - - -, Lo (too—), wo(Tp+1(too—)), - - - »

@o(7s(too—)), go(o1(too—)); - - - > go(om(too—))), i
woi = (Vi yo(m1 (1)), -+ Yo (Tim1 (%)), Y005 o (Tig1 (Vi—))s - - -5 o (s (i =),
20(01(%'—)%~-720(Um(%'—)))7
wi; = (v yo(m1 (1)), -+, Yo (Tim1 (7)), o (too =), o (Ti1 (i =), - - - »
@o(ts(vi))s 20(01(%i=)), - - s 20(0m (i), i =p+ 1,5,

I
o
=

Bi(t) =71 (t), v =ltoo), pi(t) =05t (1), A = Filteo—);
W=t Y1y s Uss 21y -+ Zm),s

folt] = F(tyo(r1(1)), - - yo(7s(1)), 20(a1(2)), - -, 20 (O (1) )uo (t)):

fo(w) = f(w,uo(t)).

lim fo(w) = f;, we€ (too—9,to0] x Of x 03", i=0,p, §>0,

w—w.zai
lim [fo(w1) = folw2)] = [,
(“‘)1’“)2)‘)(‘*’()_1"*’1_1)
wi, wa € (7 — 0,7%] x 01 x 03", i=p+1s.

Similarly we can define w[‘};, wf‘i, "y;', f{”‘. In this case we have tgo+, v;+,

and the right semi-intervals of points tgg, ;.

Theorem 1.1. Let the following conditions hold:

(1) v =too, i = 1,p, Ypt+1 < -+ <75 < t1o;

(2) there exists a number 6 > 0 such that v1(t) < -+ < (t), t €
(too — 6, too0];

(3) the quantities 7, , f; i =1,s are finite;

(4) the function go(t) is absolutely continuous on the interval (topo —
d,to0] and there exists a finite limit g .

Then there exist numbers €5 € (0,e1), 62 € (0,91) such that for any
(tﬂ;‘,éﬂ) S [ﬁlo — d9,t10 + (52] X [0,52] x V™,
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where V- = {dp € Vi 5ty < 0}, we have
Ax(t) = edx(t; op) + o(t; edp), (1.3)
where

Sx(t;0p) =Y (too; t) [Yodyo + Y10g(too—)] +

+ {Y(too;t) [Ylfio T+ Z (Vi1 — 7;)ff} -
i=0

- §23«%wn;wi}&o+ﬁ@ﬁm, (1.4)
i=p+1
Bitom = 3 / Y (i(€): ) fos i (€) 34 (€)50(€) e +
i:p+1Ti(too)

*Zl / Y (93 (€); 1) foz, 0 (€)1 (€)59(€) dé+

I=%0; (tao)

+

t

Y(&;1) foul€]6u(E) dé, (1.5)

o
© o+

Yo =1, 77 =4%;,1i=1p, /7\;—5—1 = 0; next, g%@ = 0 uniformly
with respect to (t,0p) € [t10 — O2,t10 + d2) X V75
Jou (1= Fu. (901 (1)), - 507 (1)), 20(01(6) -, 20 (1)), w0 (1))

Y (&;t) is an n X n matriz-valued function satisfying the equation

Ye(&t) = — ZY(%(ﬁ);t)Fyi i ()17 (6) -

m

=D Y0 (), ps(€)]5(6), € € [toot], (1.6
j=1
and the condition
_ Inxna g = t7
Y (& t) = {@m, Est (1.7)

where Inxn and Oy, are the identity and zero n X n matrices, Fy,, =

(nyw@nxe); FZ]' = (®n><k:7f02j)7 Yb = (Ikxkaeexk)T; Yl = (@]fX€7I€X€)T'
The function dx(t;0p) is called the variation of the solution xo(t), t €
[t10 — d2,t10 + 02 and the formula (1.4) is called the variation formula.

Theorem 1.2. Let the condition (1) and the following conditions hold:

(5) there exists a number 6 > 0 such that y1(t) < -+ < p(t), t €
[too, too +6);



Local Variation Formulas 23

(6) the quantities % ; ,i=1,5 are finite
(7) the function go(t ) is absolutely continuous on the interval [too, too +
8) and there exists a finite limit go™ .

Then there exist numbers e2 € (0,e1) and 02 € (0,01) such that for any
(t,e,0p) € [t10 — 02, t10 +02) X [0,2] X VT, where V¥ = {dpu € V : 6ty > 0},
the formula (1.3) holds, where

(SLL'(t; 5/14) = Y(too; t) [Yoéyo + Ylég(t00+)] =+

P
+ {Y(too;t) [Y190+ + Z@Zﬁrl —AD -
i=0

- Z (v ) i }5t0+5(t;5ﬂ)7 (1.8)

i=p+1

:Y\E")_:17 /V\j_:ry;’_a i:17pa W;J,-l:o'
Theorems 1.1 and 1.2 immediately imply the following assertion.

Theorem 1.3. Let the conditions (1)—(7) and the following conditions
hold:

p P
8) Y (i — A0 +Yido ™ =D Ak~ + Yido = fo,
1=0 i=0
AT =T =f, i=p+1is;
(9) the functions 6g;(t), i = 1,1 are continuous at the point tog.

Then there exist numbers ea > 0, do > 0 such that for any (t,e,0u) €
[t10 — 02, t10 + 2] % [0,e2] X V' the formula (1.3) holds, where

z(t;6p1) =Y (too; t) [Yooyo + Y10g(too) |+

+{Y(tooit)fo— Y Y(t)f. foto + B(t: op).

1=p+1

Some comments: Theorems 1.1 and 1.2 correspond to the case where at
the point tgg right-hand and left-hand variations, respectively, take place.
Theorem 1.3 corresponds to the case where at the point tg9 double-sided
variation takes place.

In the formula of variation proved in [1], for the equation (3) instead of

the expression
t

/ Y (€:8) foul€]0u(€) dé

(see (1.5)), we have

/ Y (€:0)5f1€] de.

t
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The formula (1.4) follows from the formula of variation obtained in [1]
if the function f additionally satisfies the condition: f,(t,y1,...,¥s,21,---,
Zm, u) is continuously differentiable with respect to the variables y; € Oy,
i=1,sand z; € Oy, j = 1,m.

In the present work formulas of variation are proved without of these
conditions.

2. AUXILIARY LEMMAS

To any element p = (tg,yo, ¥, g,u) € A, let us correspond the functional-
differential equation

(“)(t) = f(t7 h(th @, q)(Tl(t»’ ety h<t07 ®, q)<T5<t)),
hlto, 9, 0)(@1 (1)), holto, 9, v)(@m (D), () (21)
with the initial condition

w(to) = (q(to),’l)(t()))T = Xy = (yo,g(to))T, (22)

where the operator h(-) is defined by the formula

<P(t)7 le [T7 tO)v

at), 1€ lto.bl. (23)

h(to, ¢, q)(t) = {

Definition 2.1. Let u = (to,y0, %, 9,u) € A. An absolutely continuous
function w(t) = w(t;p) = (¢t p),v(t; p))" € (01,02)7, t € [r1,72] C I,
where (01,02)7 = {z = (y,2)T € R? : y € Oy, z € Oy}, is called
a solution corresponding to the element p € A, defined on the interval
[r1, 2], if to € [r1,72], the function w(t) satisfies the condition (2.2) and the
equation (2.1) almost everywhere on [ry, rs].

Remark 2.1. Let w(t; u), t € [r1,72] be the solution corresponding to the
element p € A. Then the function

w(t; ) = (y(ts ), 2(65 )" =
= (h(th ®, Q( 7”))(15)7 h(th g, U(' ; M))(t))Tv te [7_3 TQ] (24)
is a solution of the equation (1.1) with the initial condition (1.2) (see (2.3)).

Lemma 2.1. Let wy(t), t € [r1,72] C (a,b) be the solution corresponding
to the element g € A; let K C (01,02)T be a compact set containing
some neighborhood of the set ((po(I1) U qo([r1,72])), (go(I1) Uvo([ri,m2])))T
and let M C G be a compact set containing some neighborhood of the set
clug(I). Then there exist numbers e1 > 0, 61 > 0 such that for an arbitrary
(e,0p) € [0,e1] XV to the element po+edp € A there corresponds a solution
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w(t; po + edp) defined on [ry — 01,72 + 81] C I. Moreover,
(0(1),9(t)) = (po(t) +edp(t), g0(t) +eg(t)) € K, t € I,
u(t) = uop(t) +edu(t) e M, tel,
w(t; po +eop) € K, t € [ry — 61,72 + 1], (2.5)
lim w(t; pu + edp) = w(t, o)
E—
uniformly for (t,0u) € [r1 — 01,72 +01] X V.
This lemma follows from Lemma 1.3.2 (see [6, p. 18]).
Due to uniqueness, the solution w(t; po) on the interval [rqy — 61,79 + d1]
is a continuation of the solution w(t; o), therefore the solution wq(t) is

assumed to be defined on the whole interval [ry — 01,72 + d1].
Let us define the increment of the solution wy(t) = w(t; po),

Awlt) = (Aq(t), Av(t)” = Aw(t; o) = wits o + 26p) — wo(t),  (2.6)
(t,e,0p) € [r1 — 01,72+ 61] X [0,e1] X V.
It is obvious that
;i_r% Aw(t;edp) =0 (2.7)
uniformly with respect to (¢,0u) € [r1 — 01,79 + 01] X V.

Lemma 2.2. Let v; = too, i = 1,p, Yp41 < -+ < vs < 1o and let the
conditions 2)—4) of Theorem 1.1 hold. Then there exist numbers eo > 0 and
d2 > 0 such that for any (e,dp) € [0,e2] x V'~ we have

max  |Aw(t)| = O(edp). (2.8)

tE[too,r2+02]

Moreover,

Aw(too) = e[Yodyo + Y169(t00—)] +
P
+e[Yigo ™+ D (G — AT |8to +o(e0m). (29)
i=0
Lemma 2.3. Lety; = too, i = 1,p; Yp41 < -+ < s < T2, and let

conditions (5)—(7) of Theorem 1.2 hold. Then there exist numbers e5 > 0
and d2 > 0 such that for any (g,0u) € [0,£2] x VT we have

max _|Aw(t)] = O(eop). (2.10)
t€[to,r2+02]

In addition,
Au}(to) = €[Y05y0 + Yl(sg(t00+) + (Ylgg - f;r)(sto] + o(séu) (211)

Lemmas 2.2 and 2.3 are proved in analogue way as Lemmas 2.2 and 3.1,
respectively (see [1]).
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3. PROOF OF THEOREM 1.1

Let 71 = too, 72 = t19. Then for an arbitrary element (¢,0u) € [0,e1]xV ™
the corresponding solution w(t; g + €dp) is defined on the interval [tog —
d1,t10+91] and the solution x(t; o +eop) is defined on the interval 7, t19 +
91]. Moreover,

w(t; po +eop) = x(t, po + €dp), t € [too, t1o + 1]
(see Lemma 1.1 , 2.1 and Remark 2.1).

Therefore
edp(t), t € [r,to),
Ay(t) = { qt; po +€dp) — po(t), t € [to, too), (3.1)
Aq(t), t € [too, too + d1],
edg(t), t € [r,to),
Az(t) = qvo(t; po + o) — go(t), t € [to,too), (3.2)
Av(t), te [t007t00 + (51}

(see(2.6)).
By Lemma 2.2, there exist numbers

g9 € (0,e1), 62 € (0, min(dy,t10 — 7s)) (3.3)

such that the following inequalities hold
|Ay(t)] < O(edp), V(t,e,0u) € [too,tio + 2] X [0,82] X V7, (3.4)
|Az(t)] < O(edp), V(t,e,0p) € [T,t10 + 2] X [0,e2] x VT (3.5)

(see (2.8), (3.1), (3.2)),

Az(too) = Aw(too) = 5<Yo5y0 + Y169(too—)+

+ {Y1 go + i (i1 — %)fi}&o) +o(edpu)  (3.6)
i=0

(see (2.9)).
The function Az(t) on the interval [too, t10 + J2] satisfies the equation

% Ax(t) = ; Fou: [ Ay (rs(£)+

D for, [11A2(05(1)) + & fou[t]Su(t) + R(t;e0p),  (3.7)

j=1

where
R(t;edp) = f(t, Yo(T1(t)) + Ay(ri(t)), - yo(7s(t)) + Ay(7s(t)),

20(01(t)) + Az(o1(t)), ..., 20(0m(t)) + Az(om(t)), uo(t)> —
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Z Fou [t Ay(7i(t Zf% [t]Az(0;(1)) — e foult)Su(t). (3.8)

We can represent the solution of (37) by the Cauchy formula in the following
form:
t

Ax(t) = ¥ (toos ) Ar(tao) + / (&51) foult)ou(€) dé+

2
+ Z hi(t; to, 55/1,), te [too, t10 + (52], (3.9)
1=0
where
s too
ho=Y" / Y (1(6): 1) fow, [ (€))54 (6) Ay €) d,
i=p+l i (too)
m too
=% / Y (03 (): ) fox, [0 (€)]5; () A= () d, (3.10)
=1 too
Jt 7i (too)
he = [ Y(EOR( 00 de.

Y (&,t) is a matrix-valued function satisfying (1.6) and the condition (1.7).
The function Y (¢, ) is continuous on the set IT = {(£,¢) : a <& <t < b}.
Therefore

Y(too,t)AiU(too) = EY(too;t){Y0§y0 + Ylég(t()o—)—f—

[Y1go +Z i —A7) }ato}m(t;sau) (3.11)

(see (3.6)).
For ho(t;to,edu) we have

s to

moftito ) = 35 | [ YOO b OBH©50(0) de+

i=ptl 7:(too)

too

4 [ YO0 o bl 2(6) e =
.S / )5 ) o [16(€) 34(€)3ip(€) dé+

1= p+1 (too)
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+ Y (&:1) foy, [§]Ay(Ti(€)) d€+o(t;edp),  (3.12)
i:p+1"fi(to)

where

too

oftie) = —< 3 [ YO0 o b ©050(6) .

i—pt+1 b

Further, for hy (¢;to,e0p) we have

too

mttecin = 3 [ V(o€ fou, (O (OAx() dt =

jel; Ul
Jjelhu 27’j(t00)

to

- 5 [ ] Yoo @l ©mne e

jeI, Ul
A ()

+ / Y (0:(€): ) fo, [0 (€)1 (€) A= (€) de | =

= > [ea;(t)+5;1)],
jel1UI>
where
o (t) = / Y (3 (€): 1) fo, [ (€165 (£)4(€) de

a;(too)

too

B(t) = / Y (93 (€):) fos, 103 (€)]55 (€ A(€) d.

to
It is easy to see that

o (t) = / Y (p3(€):£)fo, [y (€165 (€)6(€) dé—
a;(too)
- / Y (9 (€); ) fox, [ (€)1 (€)09(€) de,

B;(t) = o(t;edp)
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(see (3.5)). Therefore

ha(t; o, 000) = €3 / Y (9 (€): ) fos, 03 (£)]35 (€)59(€) dé+
1=1

0 (too)
+o(t;edp). (3.13)
For t € [t190 — 02, t10 + d2] we have
4
ha(tito,edp) = > an(t;edp), (3.14)
k=1
where
Yp+1(to) R Vi
atetn = [ erands e = Y [ sleteonde
too i:p+1‘ri (to)

s—1 ~Yit+1(to)

t
as(t;edp) = Y / (&t edp) de, a4(t;55u)=/w(£;t,€5u)d§
Vs

=Pt (o)
(see (3.10)),
W(&t,e0p) = Y(§ ) R(E;e0p).

Let us estimate « (t;e0u)

Yp+1(to)
aatties <1 [ [ (tsnln©) + Apn(o).....
Yo(1p(1)) + Ay(7p (1)), p(Tp11(1), - -, 9(7s(1)),
20(01(8) + A1 (1)), - Z0(om(8)) + A(om (), uolt) + =u(t) ) -
- f(t, Yo (11 ()5 90 (7p (1), po(Tp11(2)), - -, Po(7s(1),
20(@1(1), - 20(0m (), wo () ) -
=D o [1Ay(Ti(1) —e D oy [10(mi(t)~
=1 i=p+1
= foe, 10205 (1) = o] ] dt <
t10+02 1 dj_
< / / | ¢ (B3O HEAY(R (D), -, ol (1) +E8y (7 (1)
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20(01(8)) + EA2(01(1)), -, 20(0 (1) + EAZ(0(), uo(t) + Eedu(t) ) |-
- Zny JAy(7i(t)) — € Z Joy, [t)o(Ti(t)—
=1 1=p+1

=3 for A1) ~ <o [twu(t)\ ] ds} it <
tio+62 1

<1 [ TS etm @) eauno ) ~fo ] |3+

too o =1

+e Z ‘fyi (t,y0 (11 () + EAY(T1(t)), ... ) — foy, [t]‘ |5<P(Ti(t))’+

1=p+1

fz (tyo (1) + €AY (T (t)), .. ) — foz, [t]’ |62(0; () |+

+e€ fu(tvyO(Tl(t)) + EAy(T1(t)), - ) — foul

1] |5u(t)|} dg} dt <

p s
< ||Y|| |:O(€(5/,L)Z’l9i(t00;€5,u) + ec Z ’l%(too;&éu)"‘r
i=1 i=p+1
E(SIU, Z too 55,“ —|—80(5(t00 6(5,[1,):| (315)
where
Y] = sup [Y(£ )],
(&.t)ell
tio+d2 1
tttazm = [ | [ [ ntni ) + €8 0)....) = fo 1] de] .
too 0
i=1,s,
ti0+62_ 1
i (too; €0p1) = [ foy (6 y0(m1(8)+E0y (T (1)), - .. ) — foz, [t] dﬁ] dt,
i
j=1...,m
tio+d2 1
sttoies = [ | [ |ulesntro)+ eautnio,...) - fofa]ae]
i

We have

P(t) = po(t) +edp(t) — wolt); Ay(ri(t)) — 0, i=1,p,
Az(oj(t)) — 0, j=1,m
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Uo(t) + §€5u(t) — UO(t)
as € — 0 uniformly with respect to

(57 t) 6:“’) € [07 1] X [tOOa t10 + 62] X
By the Lebesque theorem we obtain that

111%191(1500755/0 =0, i=1s, 111110771(7500»5511) =0, j=1m,
£— e—

lim §(tgo;edu) =0

e—0

uniformly with respect to du € V.
Therefore

o (tyedp) = o(t; edp).
Consider asg(t;edp). It is easy to see that for i € p+1,...,s and ¢ €
[i(to), vi] we have

|Ay(7; ()| < O(edp), j=T1,i—1;

- (3.16)
Ay(r;(t) = edp(r;(t), j=1i+1,s
(see (3.1), (3.4)). Therefore
/ Greomde= [ YiGop©de-
vi(to) vi(to)
[ Y&t 0 1800 (€)) de + ofti ),
7i(to)

where

B:() = 1 (& w0(m () + Ay(ra(©)); - 30(m(€) + Ay(ri(€)),
i1 (©) -+ (16, 20(01(€) + Az(01()), -
20(0m(€)) + Az (om(©), u0(€) + 6u(€)) — folé]

i—1 Vi

oft; cp) = / Y (€:1) foy, (€] Ay (r;(€)) dé—

J ’Y (to)
s Vi

e 2 / Y (&) foy, [§]00(7;(€)) dE—

J=itl ~i(to)

Yi

m

=3 [ Y00 08500 de —= [ foaleloute)ag

I=1(t) ~i(to)
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(see (3.5), (3.16)). Clearly,

i
/ Y (€:1)5:(€) dé = s (t:20p1) + a1 £61),
~i(to)

where

Yi Vi
as(tiedp) = | Y(E)[Bi(E) — f]dE, as(tiedn) = [ Y(&)f; dE.
vi(to) vi(to)

Further, if i € {p+1,...,s} and § € [v;i(to), V], then 7;(&§) > too, j = 1,0 — 1.
Hence

lim (yo(7(¢)) + Ay(7;(€))) = cim_ yo(75(8)) = wo(7i(%)), j=11-1.
We have 7;(€) € [to, too] for € € [vi(to),v:]. Therefore
Yo(7i(§)) + Ay(7i(€)) = y(7i(£), o + e0p) = qo(7:(€)) + Aq(7:(§))
(see (2.4), (2.5)).

Therefore, taking into account the continuity of the function go(t), t €
[too — 02, t10 + d2], (2.6), and the condition go(too) = Yoo, we have

hm (yo(7:(€)) + Ay(r:(€))) = gleigli q0(7:(£)) = yoo-

Hence, we see that fore — 0,7 € {p+1,...,s} and & € [;(to),V:], we have
lim (&yo(ﬁ(ﬁ)) + Ay(r1(8)), - -+, yo(7: () + Ay(7i(§)), p(1i41(§)), - - -,

P(7:(6)), 20(01(€)) + A2(01(€), - 20(0m () + A2(0m(€))) = wiy-
On the other hand,

lim (g,yom(g»,...,yomfl(s))v

Go(Til€)): - 20(To(£)), 20(1 (), 20(0m(£))) = wiy

Therefore,

lim — sup |6i(§) = f;7| =0
=0 ¢y, (to) i)

uniformly with respect to du € V.
The function Y (&;¢) is continuous on the set
[Vi(t0),vil X [ti0 — d2,t10 + 2] C 11
and, moreover
Vi — 7ilto) = —€¥; 6to + o(edp).
Therefore as(t;€dp) = o(t; dp) and

6(t;edp) = —¢ Z (vis ©) f A7 0to + o(t;edp).
_p-l,-l
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Finally,

as(tyedp) = —¢ Z (v t) 7 47 Sto—
i=p+1
i

.S | Y000 180 de + ot b0,
=Py (o)
Similarly, we can prove the relations
a;(t;edp) = o(t;edp), i=3,4

(see (3.15)).
For ha(t;t00,£01) we have the final formula

hg(t;too,f(s,u =—c Z 'sz f ’Yz(sto_
i=p+1
Vi
=Y [ YENlanvn@)de +ofticn) (317
1= p+1’n(t0)
(see (3.14)).
Taking into account (3.9)-(3.13) and (3.17), we obtain (1.3), where
dz(t;edp) has the form (1.4).

4. PROOF OF THEOREM 1.2

Assume that in Lemma 2.3 r; = tgg and 79 = t19. Then for any element
(g,6u) € [0,e1] x VT, the corresponding solution w(t; g + edp) is defined
on [t19 — 01,t10 + 91]. The solution x(t; ug + edu) is defined on [r,t19 + 1]
and

w(t; po +eop) = x(t; po + edp), t € [to,tio + 1]
(see Lemma 1.1 and 2.1). It is easy to see that

edp(t), t € [, too),

Ay(t) = € @(t) —yolt), t € [too,to), (4.1)
Aq(t), t € [to, tio + 01],
edg(t), t € [1,t00],

Az(t) = { g(t) —vo(t), t € [too,to), (4.2)
Av(t), t € [to,ti0 + 01].

Let numbers d € (0,d1) and €5 € (0,e1) be sufficiently small so that for
an arbitrary (g,du) € [0,e2] x VT the inequality vs(to) < t19 — d2 holds. By
Lemma 3.1 we have

|Ay(t)| < O(E(S/J), V(t,{-ﬁ,(ﬂb) € [to,tlo + (51] X [0,62] X V+, (43)
|Az(t)| < O(e6p), ¥ (t,e,6u) € [1,t10 + 1] x [0,62] x VT (4.4)
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(see (4.1), (4.2), (2.10)). Moreover,
AI(tQ) = Aw(to) = 5[Y05y0+Y15g(t00+)+(Y1g0 +7f;)5t0] +O(65,UJ) (45)

(see (2.11)).
The function Az(t) on the interval [tg, t19 + d2] satisfies (3.7) and hence
it can be represented by the Cauchy formula

Ax(t) =Y (too, t) Az (o) —I—E/Y (& 1) foult]ou(€ d§+Zh (t;to,e61), (4.6)

=0
where
s to
ot t0,260 = Y [ Y Ou(€050) o €)1 3:(©) B0()
i:17i(t0)

and the functions h;(t;tg,edu), i = 1,2 are defined by the formulas (3.10).
The function Y (§;¢) is continuous on the set [too, 7s(t10 — d2)] X [t10 —
52, th + 52] Since to S [too, Ts (tlo - 52)}7 we have

Y (too; t) Az (to) = €Y (too: t) [Yooyo + Y1dg(too+) + (Yig g — f,F)dto] +
+o(t;edu). (4.7)

(see(4.5)).
Consider hg(t;to,€dp). We have

P tg

holtsto.5) = > / Y (3€)51)fou, (€ 30 (€) Dy €) e
+ Z [ / (: 1) fou, (€)1 (€)3(6) de
/ Y (€)5 ) fow, a(E)]54(€) A €) e | =
- / Y (€ 1) fou [6 M ©) dec+

te Y0 [ YOO 0o O (©00(6) st

+ Y / (&) fou [€1 Ay (7:()) d€ + ot 202), (4.8)
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where
Ti(to)
oft: <o) = —ez / )51) fou, b (€)3:(6)50(€) .
7i(too)
This implies
» ~i(to)
> [ vi&osmlanume) i -
0 i—1 Yi+1(to)
Y% [ Y@ l0aun©)d -
=1 j=0 ’Yj(to)
p—1 p vi—1(to)
=> > Y (&1) foy, [€]1Ay(7;(£)) d€, 0(to) =to.  (4.9)
=0 j=itl vi(to)
Further,
mttocom = Y |e [ Yipi(€it) o s (€)31(€)0(6) de+
JERUL b T
+ [ ¥loi€: 0o l0s(©15,(©25(6) ds} n
£y / )i t) o, [0 (€5 ) A2 (€) dE =
J€ls, j(to)
= Z (eay(t) + B;(t) +Z7b
JELLUI> jEI3
where
0 (t) = / Y (p3(€):£) fox, [y (€)1 (€)09(€) de,
a;j(to)
B(t) = / Y (95 (€); 1) fos, [y (€)1 () A=(E) d,

nj(t) = / Y (9 (€): ) fos, o3 (€)]35(€) A(€) d.

a;(to)
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Obviously §;(t) = o(t;edu), n;(t) = o(t;edp), so we have

0

a;(t) = Y (pj(€);t) foz; [pi (E)1ps(§)dg(E) dE—

aj(too)
aj(to)
[ Y5010, 3O O00(6) e
a;(too)
Therefore
s too
ha(t;to, e0p) =€) Y (05 (€)5t) foz, [(6)155(£)89(€) dé+
j:10j(t00)
+ o(t;edp). (4.10)

ha(t;tg,e0p) for t € [t19 — d2,t10 + 2] can be represented by the form

5
ha(tito,e0m) = > Bi(t;eop), (4.11)

=1
where
1 Yerlto)
Bi(tiedp) = / W(&;t, e0p) de,

i—1
T (o)
Yp+1

Byt 26p) = / D&t o) de,
p (to)
vi(to)

Ba(t;eop) = Y /w(ﬁ;t,a?u)d&

suttein = Y [ it e de,
i:erl’Yi(to)
t

B (t; 260) = / (&, 20) de.

Vs (to)

For (1 (t;edu) we have

Bi(t;edp) = Pua(t;edp) — Bra(t; edp), (4.12)
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where
sutean =Y [ v(E@0[f(6umn@)+ sn(@).....

)
Y0(7i(§)) + Ay(7i(€)), p(Tix1(£)), - -, (75(8));
20(01(8)) + Az(01(8)), -+, 20(0m (£)) + Az(om(£)),

() + du(€) ) -

Let € € [1i(to), vi+1(to)]. Then
Tj(g)zt()a J:Ha T](&)Sth J:7’+1ﬂp7 Tj(§)<t007 J:p+1757

and hence

< O(edp), j=1,i
=edp(7;(8)), 7= +17s,

’Ay 7, (€

£))|
Ay(r;(6)) (*.13)

(see (4.1), (4.3)).
For any ¢ € {0, ..., p — 1}, the function ;41 (t0) — 7 (to) tends to zero as
¢ — 0. Therefore, taking into account (4.13) and (4.4) we have

Yi+1(to)
Pra(t;ebp) = Z Z / Y (&) fou, (€] Ay(7;(€)) € + ot £p1). (4.14)
=0 j=i+1 Yi(to)
Further
lim sup f(£ Yo(71(8)) +Ay(71(8)); - -, yo(7:(€)) +Ay(7i(€))

€20 i (to) it (to)]

20(01(5))+AZ(01(§))a--~aZO(UWL(§))JFAZ(Um(g))vUO(O+55U(§)>
—f;r-i-f;r—f(&yo(ﬁ(f)) ----- Yo(7p(8))s po(Tp+1(§))s - - ©o(7s(£)),
20(01(6)), - .-, zo(am(g)mo(g))‘:o, i=0p—1, (4.15)

uniformly with respect of to du € V+.
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The properties of the functions Y (¢;¢) and ~;(¢), i = 1, p imply that
lim sup |V (&t) — Y(too;t)| =0, i=0,p—1 (4.16)
£70 g€ yi(t0) i (to)]

uniformly with respect to t € [t19 — d2, t10 + 2] and
’71‘+1(t0) —’W(to) ZE(’Y ;‘:1 —’.}/ 2‘)5t0—|—0(€5,u), i:O,p — 1, ’.}/0 =1. (417)

From (4.13)—(4.15) we have
P

Bui(t:edu) =Y (too, 1) D (i = £ (70 =4 7)8t0 + ot e6p).  (4.18)
=0

From (4.12), (4.14) and (4.18) we have

P

Bu(ts0) = €Y (too, )| 3G =3 DT+ 1 bto-
i=0

» Yit+1(to)

S > [ VG080 d +oltic). (119)
=0 j=itl vi(to)
It is easy to see that
Bt 8= [V (€50)[£ (€ 90(n (€)+ A () 1o () + A7),
"/p(to)

@(Terl(g))ﬂ AR 90(7—5(6))’ 20(0—1(5)) +AZ(01(€))ﬂ AR Zo(Um(f)) +AZ(JM(§))7
o (§) + ebu(€) ) -

= 7 (&m0 (©)s - w0 (7)), 20(7p41(€)); - 90 (€));
20(01(6): - 20(0m(€)), u0(€) ) -

S

= fou, [EAY(T(€) = > foy, [E00(r;(£)—

j=1 j=p+1
=" for, [61A2(05(€)) — efoulélou()] de.
j=1
It is easy to prove that
Ba(t;edp) = o(t;e0p) (4.20)
(see (4.3) and (4.4)).
Consider the other terms of (4.11). We have
s ilto)
maitieow = 3 [ Y@ [r(6wmn(©) + dyn©).....

i=p+l Vi
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Yo(7i-1(€)) + Ay(7i-1(£)), ¢ (7i(£)), - - -, (7:(£)),
20(01(8)) + Az(01(€)), - - 20(om(§)) + Az(om(§)), uo(§) + 85U(§))—

—f(g,yom(g)),...,yom(s» P(Ti11(8)), - (7a(E)),
20(01(€)), - ()] as-

1 Yi(to)

3 [Z RGNS

i=p+1 - j=1 5
7vi(to) s ilto)

Y(&1) foy. [ Ay(ri(€)) ds +& > / Y (&:1) foy, [€160(7; (€)) de | -
j=i+1 Yi
s lto) m
-3 [ V@0 o A€ de
i=p+1 i j=1

By the condition (6) we have

i sup |7(€un(n(€)+ Ay(r(©)....1o(ra(€)) + Ay(ris(€).
eV eelyii(to))

@(7i(€)), - -5 0(75(8)), 20(01(€)) + Az(01(8)), - .-,
20(om(€)) + Az(0m(€), uo(€) + £6u(€) ) -
= £(&50(r1(€)s -, o(ri(€): p(Tis1()) -, P(7(E)),

20(01(8)):- s 20(om () uo(§)) + £ =0, i=pFLs

uniformly with respect to du € V+.
Further,

|Ay(7;(€))| < O(edp), j=T,i—1, &€ [vi,vi(to)],

lim  sup ‘Y(ﬁ;t)—Y(%;t) =0, i=p+1,s
€70 ee vy, yi(to)]

uniformly with respect to t € [t19 — d2, t10 + d2].
Now, we obtain for the function [(5(¢;edu) the representation

Ba(t; €0p) =—aZ (vis ) f;dto—
i=p+1
s ilto)

= > [ Y@ ©) s+ oftiesn). (420

i=p+l Vi
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Similarly we can prove (see (3.16)) that
Bi(t;edp) = o(edp), i =4,5. (4.22)
Taking into account (4.19)—(4.22), we obtain

p s
ltito, =) = e Y an,) Y55 =370 = D Y0 foto-

=0 i=p+1
p—1 p Yi+1(to)
SX Y [ Y@ty ©) -
=0 j=1+1 ~i(to)

s i(to)

-y / Y€1) foy, [E)Ay(ri(€)) dE + o(t:cu)  (4.23)
=ptl Vi

(see (4.11)).
From (4.6), taking into account (4.7)—(4.10) and (4.23), we obtain (1.3),
where dx(t; op) has the form (1.8).
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Abstract. The purpose of this paper is to consider two-dimensional
version of quasistatic Aifantis’ equation of the theory of consolidation with
double porosity and to study the uniqueness and existence of solutions of
basic boundary value problems (BVPs). The fundamental and some other
matrices of singular solutions are constructed in terms of elementary func-
tions for the steady-state quasistatic equations of the theory of consolidation
with double porosity. Using the fundamental matrix we construct the simple
and double layer potentials and study their properties near the boundary.
Using these potentials, for the solution of the first basic BVP we construct
Fredholm type integral equation of the second kind and prove the existence
theorem of solution for the finite and infinite domains.
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INTRODUCTION

A theory of consolidation with double porosity has been proposed by
Aifantis. This theory unifies a model proposed by Biot for the consolida-
tion of deformable single porosity media with a model proposed by Baren-
blatt for seepage in undeformable media with two degrees of porosity. In
a material with two degrees of porosity, there are two pore systems, the
primary and the secondary. For example, in a fissured rock (i.e. a mass
of porous blocks separated from each other by an interconnected and con-
tinuously distributed system of fissures) most of the porosity is provided
by the pores of the blocks or primary porosity, while most of permeability
is provided by the fissures or the secondary porosity. When fluid flow and
deformations processes occur simultaneously, three coupled partial differen-
tial equations can be derived [1], [2] to describe the relationships governing
pressure in the primary and secondary pores (and therefore the mass ex-
change between them) and the displacement of the solid. Inertia effects are
neglected as they are in Biot’s theory.

The physical and mathematical foundations of the theory of double poros-
ity were considered in the papers [1]-[3]. In part I of a series of papers on
the subject, R. K. Wilson and E. C. Aifantis [1] gave detailed physical in-
terpretations of the phenomenological coefficients appearing in the double
porosity theory. They also solved several representative boundary value
problems. In part II of this series, uniqueness and variational principles
were established by D. E. Beskos and E. C. Aifantis [2] for the equations of
double porosity, while in part IIT Khaled, Beskos and Aifantis [3] provided
a related finite element to consider the numerical solution of Aifantis’ equa-
tions of double porosoty (see [1]-[3] and the references cited therein). The
basic results and the historical information on the theory of porous media
were summarized by Boer [4].

The purpose of this paper is to consider a two-dimensional version of
quasistatic Aifantis’ equation of the theory of consolidation with double
porosity and to study the uniqueness and existence of solutions of basic
boundary value problems (BVPs). The fundamental and some other ma-
trices of singular solutions are constructed in terms of elementary functions
for the steady-state quasistatic equations of the theory of consolidation with
double porosity. Using the fundamental matrix, we construct the simple and
double layer potentials and study their properties near the boundary. Using
these potentials, for solving the first basic BVP we construct a Fredholm
type integral equation of the second kind and prove the existence theorem
of solution for the finite and infinite domains.

1. BAsic EQUATIONS, BOUNDARY VALUE PROBLEMS AND UNIQUENESS
THEOREMS

The basic steady-state quasistatic Aifantis’ equations of the theory of
consolidation with double porosity in the case of plane deformation are
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given by partial differential equations of the form [1], [2]
pAu+ (A + p) grad div u — grad (Bip1 + Bape) = 0,

) k

whh div v + A‘F% p1+—p2 =0,

m m my (1.1)
) k
“ﬁ2mvu+py+(A+““)p2=Q

mo mao mo

where u = (u1,usg) is the displacement vector, p; is the fluid pressure within
the primary pores and p- is the fluid pressure within the secondary pores.
oz = way — k, ag = iwag — k, m; = %, j = 1,2. The constant A is
the Lame modulus, p is the shear modulus and the constants (3; and [
measure the change of porosities due to an applied volumetric strain. The
constants oy and as measure the compressibilities of primary and secondary
pores filled with pore fluid. The constants k; and ky are the permeabilities
of the primary and secondary systems of pores, the constant p* denotes the
viscosity of the pore fluid and the constant k measures the transfer of fluid
from the secondary pores to the primary pores. The quantities A, u, a;,
B, kj ( = 1,2) and p* are all positive constants. A = aanf + 8672% is the
two-dimensional Laplace operator, w is the oscilation frequency (w > 0).
We also rewrite the equation (1.1) in the matrix form

B(0w)U = 0, (1.2)
where
B(al’) :H BPQ(8$> ||4:1:4a p,q= 1a2a3747
0%
J
2

Bi5(0z) = B21(9z) = (A + p)

0x10xs’
0 0 )
Bj3(0x) = —f1 5, Bjs(0z)= P25 —, =12
j j
iw 0 w 0 )
Bs;(0x) = mﬂll e By;(0z) = m€2 7z J=Lb2
j j

k k
Bys(9x) = A+ 22| Bu(dz) = —, Bus(dz) = —— |
mi mi mo

«
Bu(0x) = A+ —, Uluy, uz,p1,p).
ma
The conjugate system of the equation (2) is
B(0xz)U = BT (—02)U = 0.

Throughout this paper “T” denotes transposition.
Now we write the expressions for the components of the stress vector,
which acts on elements of the arc with the normal n = (n1,n2). Denoting
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the stress vector by P(dx,n)u, we have
P(dx,n)u = T(0z,n)u — n(Bip1 + Bap2), (1.3)
where [9]
T(0x,n) =[| Tp; (O, n) ||222,
Ty (0z,n) = udy; % + Ang 5; + pn; aimk, k,j=1,2. (14)
Let DT (D™) be a finite (an infinite) two-dimensional region bounded by
the contour S. Suppose that S € C*#, 0 < 3 < 1, i.e., S is a Lyapunov

curve.
Introduce the definition of a regular vector-function.

Definition 1. A vector-function U(x) = (u1,us,p1,p2) defined in the
domain DT (D7) is called regular if it has integrable continuous second
derivatives in DT (D7), and U itself and its first order derivatives are
continuously extendable at every point of the boundary of D* (D7), i.e.,
U € C2(DY)nCY(DT), (U € C*(D*T)NC'(DT)). Note that for the infinite
domain D~ the vector U(x) additionally satisfies the following conditions
at infinity:

oUy,

Ul) =0(1), 5 E=0(al?), ol =ai+ad, j=12  (15)
J

where O(1) denotes a bounded function.

For the equation (1.1) we pose the following boundary value problems:
Find a regular vector U satisfying in DT (D~) the equation (1.1), and
on the boundary S one of the following conditions:

Problem 1. The displacement vector and the fluid pressures are given
in the form

ut(2) = f(2)F, () =f5, pr(e)=fi(2), z€8;

Problem 2. The stress vector and the normal derivatives of the preasure

. op, .
functions 5% are given in the form

(P = fa, (O _ e (PN g e,

on on
Problem 3.
19) + o +
e =10t (B 2 e, () 2 ), e
Problem 4.

(Pu(2))* = f(2)*, pi(2) = fi(2), p3(2) = fi(2), 2 €8,

where (- )* denotes the limiting values on S from D* and f = (f1, fa), f3,
f4 are given functions.
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Generalized Green’s Formulas. Let u and w be two regular solutions
of the equation (1.1) in D¥. Multiply the first equation of (1.1) by w, the
second one by p; and the third one by ps, where w, p; and ps are the
complex conjugate functions of u, p; and ps respectively, integrate over
D% and sum to obtain

/ [E(wu) + a1 |p1|* + agolpa 2+

D+
k m m
+,|p1p22+,1|gradp1|2+,2|gradp2|2} dx =
iw w
_ my  Opr  mo 0P
= P(0 — P —=— +—py—1|d 1.6
/{u (x,n)u—i—iwpl 8n+iwp2 8n} s, (1.6)
where

. 8u1 aUQ 2 6’11,2 8’&1 2
Bl = 0t (- 52 (2 + 2
(w,u) = A+ p)(divu)”+u( 5 — 57 ) +o(g-+ 57
For positive definiteness of the potential energy the inequalities A+p > 0,
1 > 0 are necessary and sufficient.
One can generalize the formula (1.6) to the infinite domain D, provided
the condition

. _ my  Opy 3172 _
Rh_r)noo [uP(ax,n) + —p1 = n —|— 25 ds =10 (1.7)
S(0,R)

is fulfilled, where S(0, R) is a circumference of radius R with center at the
point O lying inside D*. The radius R is taken so large that the region DT
lies entirely inside the circumference S(0, R).

Obviously, the condition (1.7) is fulfilled if the vector u and w satisfy the
conditions (1.5).

If (1.7) is fulfilled, then Green’s formula for the domain D~ takes the
form

/ [E(u,u) + aq |p1|2 + a2|p2|2+
-
k m m
+—[; *pz\z + — ! | grad p1|2 + Y 2 | grad p2|2} dr =
iw w

op1 10)
= —/ {uP(ax n)u + @p Dy @pg pﬂ ds. (1.8)
s
The Uniqueness Theorems. In this subsection we investigate the

question of uniqueness of solutions of the above-mentioned problems.
Now let us prove the following theorems.
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Theorem 1. The first boundary value problem has at most one reqular
solution in the finite domain D™ .

Proof. Let the first BVP have in the domain D two regular solutions U
and U®). Denote u = UM — UR). Evidently, the vector u satisfies (1.1)
and the boundary condition ut = 0 on S. Note that if u is a regular
solution of the equation (1.1), we have Green’s formula (1.6). Using (1.6)
and taking into account the fact that the potential energy is positive definite,
we conclude that U = C,z € D, where C = const. Since U' = 0, we have
C=0and U(z) =0,z € DT. O

Theorem 2. The first boundary value problem has at most one regular
solution in the infinite domain D~ .

Proof. The vectors U™ and U® in the domain D~ must satisfy the con-
dition (1.5). In this case the formula (1.8) is valid and U(x) = C, x € D™,
where C' is again a constant vector. But U on the boundary satisfies the
condition U~ = 0, which implies that C =0 and U(z) =0, x € D~. O

Theorem 3. A regular solution of the second boundary value problem
is not unique in the domain Dt. Two regular solutions may differ by the
vector (u, p1,p2), where u is a rigid displacement vector andp; =0, j =1,2.

Proof. Let

dp1\* Op2\+

+

(P(Oz,n)u)™ =0, (371) 0, (371) 0, z€b.
The positive definiteness of the potential energy implies

U] =C] —ETg, Uz =cCo+exy, p1 =0, po =0, x € DT, O

Theorem 4. Two regular solutions of the second boundary value problem
in the domain D~ may differ by the vector (u, p1,p2), where u is a constant
vector and p; =0, j =1,2.

Proof. For the exterior second homogeneous boundary value problem the
vector u must satisfy the condition at infinity (1.5). In this case, the formula
(1.8) is valid for a regular w. Using this formula, we obtain

U] =€ —ETy, Uy =cCyg+exy, p1 =0, pp=0, z€ D™
Bearing in mind (1.5), we have ¢ = 0 and
Uy =cy, up=c, p1 =0, po =0, € D" ]
Analogously, the following theorems are valid:

Theorem 5. The boundary value problems (I11)* have in the domains
D at most one regular solution.
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Theorem 6. Two regular solutions of the boundary value problem (IV)™
may differ by the vector U(u,p1,p2), where u is a rigid displacement and
p; =0, j =1,2. Two regular solutions of the boundary value problem (IV)~
may differ by the vector (u,p1, p2), where u is a constant vector and p; = 0,
ji=1,2.

2. MATRIX OF FUNDAMENTAL SOLUTIONS

Here we construct the matrix of fundamental solutions for the system
(1.1).

Let
By = By —Bia& 1Bis61 1B14&
B 1 —Bi6i& Bl — B& pBi3&2 pB1ag2 ,
| —wpBg & —wpBy& pBiAA L —pB3AA
—wpBh&  —wpBfe  —pBisAA pBRLAA
where

Bi, = aA(A + X3 (A + \2),

—_ k2
Biy = a(A+A)(A+22) — plAaa+ (24 L B )p BT
2= a(A+A))(A+X3) H{ +(m2+m1) + g
BT3:ﬁ1AA+Aa4ﬂlik52, BT4:ﬂ2AA+Aa3/627kﬁl,
me mq
By = DLAA 4 AL g P NN p 8P B
mq mims ma mims
* Qg4 Z(Uﬁ% * ka + iwﬁQﬁl
Bi.=alA+ — By, =—>"
33 a( + m2) + ma 5 34 ™y 5
« _ ka+iwBafB . Qs iwB?
B43—T, B44—G(A+m71)+m71
Supposing
U(x) = B*(0x)9, (2.1)

where U = (Uy, Uy, U3, Uy) is a four-dimensional vector function, we can
write the equation (1.1) as

paAA(A + 2 (A + 2T = 0; (2.2)

here )\?, j = 1,2 are the roots of the characteristic equation

« o iw 2 2 asay — k?
xQ—[ Ly 3+(ﬁ2+ﬁ1)}x+34+
mo mi a

ma mi mims

w
(0ufB? + a3 — 2kB1B2) =0, a=A+2u. (2.3)

amimeso
We assume that A\? # \3. Without loss of generality we assume that I mA\; >
0, j=1,2.
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From (2.2) it follows that

. . 1 1
b= 2 NAA L 2 (nr—1) HMOgr)  HP (Ar)

TS A AMAT-A) T AOT-N)
Hél)(/\r) is the first kind Hankel function of zero order [5]
23 2q
Hél)()\r) e P [Jo(Ar) — 1] Inr+
™ ™

29 A s

& k=1
2 (—1)F ey 2k
JOW):Z((M))2 (7) '

k=0

51

) (2'4)

(2.5)

Substituting ¥(z) in (2.1), after some calculations we obtain the fun-
damental matrix of solutions for the equation (1.1) which is denoted by

Iz —y)
21 82\1’11 82\1’11 (9\1113 8\1114
— Inr+ 5
T Ox? 011022 0x1 0x1
82\1111 21 62\1111 6\1113 8\1114
— Inr+ 5
011022 T 0x} 0xo 0o
M(z—y)= , ,
iw OUqs iw OWi3
- - W33 Wy
mi 0x1 my Oz
iw O jw O
Jiw Oy 9 g
mo 011 mo OTa mo
where
2(lnr —1
\Ijll = (11 1117‘ + 12 % + Ozle(gl)()\l’l") =+ O{QQH(SI)()\QT),

Vi = Biilnr + 512H(51)()\17’) + 513H(()1)()\27“)7
Uiy =7yn1lnr+ 712H(gl)()\17”) + 713H(gl)()\27")7

1

U3 = p— Uiz, W33 = 511H(§1)()\17‘) + 512H(()1)(>\27’),
1

Wy = p—. Uiy, W3q =034 [H(()l)(/\zr) - Hél)(MT)],

m
Uy3 = mil U3y, Uyy = 541H(51)(>\17“) + 542H(§1)()\27"),

2i az | oq (A2 + \3)(azay — Kk?)

11 = ——35\3
ﬂ'a/\%/\% mi Mo mlmg)\%/\g ’

, (26)

(2.7)
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o 21 30y — ]{12 _ l _ ka + iwﬂlﬂg
amima A2 | T mpa(Z2 = A2)

—1)k . — k2
azkzw{l_l(au%)ﬂmk} k=12,

a(\? — \3) /\i my Mo mlmgx\%
gy, = 2icabr — kfa) _ Zilasfh — k)
1 TFTTLQG)\%)\% o ﬂmlaA%)\g ’
(—1)k s — kB2
S VA i —— k=23
- L e, ) o
(—1)k asfs — kb
= 7 | _ — - k=23
Y1k a()\% — )\%) ﬁQ + ml)\i_l ) )9y
1 aga + iwf3s
Sip= o | =N 2 k=12
1k A2 — A3 [ O maa ’ B
1 aza + iwf?
Oup = —— | = N2 = FL k=12
Ak A2 — A3 [ O maa ’ B

2 2i
aqr + ?Z [ao1 +az] =0, Bu+ ?Z [Br2 + Brs] =0,

21
ot [Y12 +m3] =0,
S11+633 =1, oo+ 0ua=1, 1r°=(x1—y1)*+ (22 —p2)°.

Moreover, on the basis of the identity

Hél)()\'r) = % Inr — j—; r?Inr + const + O(r?)
we easily conclude that T'(z — y) has a logarithmic singularity. It can be
shown that the columns of the matrix I'(x — y) are solutions to the equation
(1.1) with respect to x for any x # y.

Denote I'(z) = I'T(—z). Hence we have proved the following

Theorem. The matriz T'(x) is a solution of the system (1.1) and the
matriz T'(z) is a solution of the adjoint system B(dx)U = 0.

3. MATRIX OF SINGULAR SOLUTIONS

In solving boundary value problems of the theory of consolidation with
double porosity by the method of potential theory, the fundamental ma-
trix and some other matrices of singular solutions to the equation (1.1)
are of great importance. These matrices will be constructed explicitly in
the present section with the help of elementary functions. Using the ba-
sic fundamental matrix, we will construct the so-called singular matrices
of solutions. For simplicity, we will introduce the special generalized stress
vector.

Write now the expressions for the components of the generalized stress
vector, which acts on elements of the arc with the normal n = (ny,ns).
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K
Denoting the generalized stress vector by P(0x, n)u, where & is an arbitrary
constant, we have

Ig(ém n)u = %(3% n)u — n(Bip1 + B2p2), (3.1)

where

(A—i—u)nziﬁ-/ﬁg ui
Oz Os on
0 0 0
% = N1 871'2 — No 87,7}1
If k = p, then we have the stress vector P(dx,n)u. The operator which

will be obtained from ﬁ(ax,n) for Kk = Kk, = % will be called the
operator N (9x,n), and the vector N (9z, n)u will be called the pseudo-stress
vector. The pseudo-stress operator succeeded in obtaining the Fredholm

integral equation of the second kind for the first boundary value problem.
We introduce the following notation f{(az, n), R"(dz,n)

rf(ax,n)n %(8:3,71)12 —Gin1 —fim

. T(dw,n)a1 T(Oz,n)22 —fina —Bams
R(0z,n) = o y
0 0 I g
0 0 0 o
’f‘(ax, n)11 %(am, n)ia  —iwng 2L omy )
my ma
ok ’%(ax, n)a1 %((%7 n)2a  —iwng b —iwns P
R (0z,n) = 5 my ma
0 0 n g
0 0 0 n

By Applying the operator ﬁ(ax,n) to the matrix I'(z), we will con-
struct the so-called singular matrix of solutions. Let us consider the matrix
[ﬁ(@y,n)l"(y — 2)]* which is obtained from ﬁ(@xm)l"(m —y) = (ﬁpq)4w4
by transposition of the columns and rows and the variables z and y. We
can easily prove that every column of the matrix [f{(@y,n)F(y —x)]* is a
solution of the system B(dz)U = 0 with respect to the point z, if x # y.

The elements ﬁpq are as follows:

K 2t 0 0 82\1}11
[ — —_ p —_— =
RPP T an 1117" + ( 1) (K/ + IU/) 88 8$16$2 y P 1a 27
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fia =g [ 3 s e )
e S [ e
f{w:—(fﬁ-u)% 6;;123’ Bis = — (k4 1) gs 88\1:;1247 52)
Rm—(m-ﬁ-u)aas %Lmlf” ﬁm:(ﬁ—’—“)%aa\l:f’

Ry = fw 0 OV w0 0%
37 T, on oz’ my On Oz;

K 8‘1’33 K 6\1134 K mi 8\1134 K 8\1144
Ra3 = = —

45 —

» J=12

34 = —(— 43 = 44 =
on ’ on ’ me On ' on ’

Analogously, we obtain the matrix

R0y, n)T(y — 2) = ([R"Tpq) 40

where
[ﬁmf]pq = ﬁppa b= 17 27 [ﬁ”i—"] 12 = ﬁlQa [ﬁ”i—"} 21 = f{Zl;

~ K W K ~ K W K ~ K W kK
[R'T],, = oo LIEY R'T], = g R4 [RT],, = o, R

~K= W K ~K= 0 8\1’13
[R F]24 = m72R247 [R F]3j = _6771 (3'Jij )
~K=< 6 6\1114 .
[R'T]y =5, 55, 1= 12
~ R a ~KZ m1 3
[RTg = 5, o [RT]yy = =5 Ta,

e ) o 0
R F]43 =5 U3, [R F]44 =3 Wyy,

The matrix [ﬁn (8y, )T (y — z)]" is a solution of the system (1.1). It shows,
that the matrices [ﬁﬁ (Oz, n)f]* and [ﬁ(&v, n)I‘] " contain a singular part,
which is integrable in the sense of the principal Cauchy value.

4. POTENTIALS AND THEIR PROPERTIES

Introduce the following definitions:

Definition 2. The vector-functions defined by the equalities
1
VO@) = 1 [Ty~ o)l d
7}

1

VO (z) = 1

T(z — y)h(y) ds,

N
ne_©
—
N
=
S~—
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where I'(z,y) is the fundamental matrix, I'(z) = IT'T(—x), h is a continuous
(or Holder continuous) vector and S is a closed Lyapunov curve, will be
called simple layer potentials.

Definition 3. The vector-function defined by the equalities

U0w) = 5 [ (¥ @y - )] hiy) d
S

U@w) = 5o [ V@ - ) hiy) d
S

will be called double layer potentials.

The potentials V1), UM are solutions of the system (1.1) and the poten-
tials V), U?) are solutions of the system E((‘?x)U = 0 both in the domains
DT and D~. When the point z tends to a point z € S, the potential (4.2)
has the discontinuity as the harmonic double layer potential

M= — +h(z) + % /[ﬁ(@y,n)f(y — 2)|["h(y) dy,
s

UPE = 1h(z) + 412, /[N(ay,n)r(y —2)["h(y) dy.

S

(4.3)

K
Now let us investigate properties of the operation R(dz,n) acting on a
simple layer potential. We obtain

ﬁ(ax,n)V(x) =— /f{(ax, n)T(y — x)h(y) dy. (4.4)

When s = k,, we obtain

[N(9y,n)V ()] T = Fh(z) +
[N(9y,n)VP ()] " = Fh(z) +

It is well-known ([8]) that in the case of a Lyapunov curve S € C1® the

function aézr for z,y € S has a week singularity and ag‘:f is integrable in

the sense of the principal Cauchy value. Consequently, aér;tr is a singular

kernel on S.

It is obvious that [ﬁ(@y,n)F(y - a:)]* is a singular kernel (in the sense

of Cauchy). Note that if Kk = Kk, = “)(\igg) , then [ﬁ((’“)x,n)f‘(x —y)] isa
weakly singular kernel.
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5. SOLUTION OF THE FIRST BOUNDARY VALUE PROBLEM

Problem (I)*. Let us first prove the existence of solution of the first
boundary value problem in the domain D¥. A solution is sought in the
form of the double layer potential

1 ~ ~ *
U() = 3 [ [N@w )Pty — )] nly) d CBY
S
Then for determining the unknown real vector function h we obtain the

following Fredholm integral equation of the second kind

1

b+ 3 [ ROunF -2 b dy =15 (52)
S

Let us prove that the equation (5.2) is solvable for any continuous right-
hand side. Consider the associated to (5.2) homogeneous equation

Ch(2) + i / N(@y, n)T(y — 2)h(y) dy = 0 (5.3)
S

and prove that it has only the trivial solution.Assume the contrary and de-
note by ¢(z) a nonzero solution of (5.3). Compose the simple layer potential

V(x) = %/F(y —z)p(y) dy. (5.4)

5
It is obvious from (5.3), that

Nz V) =0, [ em)ds=o
S

Using the formula (1.8) for k = k,, in D™, we obtain V(z) =0,z € D™.

Now taking into account the continuity of the simple layer potential and
using the uniqueness theorem for the solution of the first boundary value
problem, we have V(z) =0, x € D*.

Note that [NV]T —[NV]~ = 2¢(z) = 0 and hence the equation (5.3) has
only the trivial solution. This implies that the associated to (5.3) homoge-
neous equation also has only the trivial solution, and the equation( 5.2) is
solvable for any continuous right-hand side (according to the first Fredholm
theorem).

For the regularity of the double layer potential in the domain D7 it is
sufficient to assume that S € C*#, (0 < 8 < 1) and % is Holder continuous
fect(s) (0<a<p).

Problem (I)~. Consider now the first boundary value problem in the
domain D~. Its solution is sought in the form

V@) = 55 [ (N @un)Fy - 0] - [Ny wEe)] oy (63

S
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Then for determining the unknown real valued vector function 1 we obtain
the following Fredholm integral equation of the second kind

v2)+ 5 [ ([N (-] - [Ny nEw)]")iw) dy = £ (50

S

Prove that the equation (5.6) is solvable for any continuous right-hand
side. We consider the associated to (5.6) homogeneous equation

1

h(z) + v / [N(@y, n)'(z —y) + N(9y, n)F(y)]h(y) dy = 0. (5.7)
s

Let us prove that (5.7) has only the trivial solution. Suppose that it has
a nonzero solution h(z). From (5.7) by integration we obtain

/hds:O.
s

In this case the equation (5.7) corresponds to the boundary condition
[N(0x,n)V]t = 0, where

V() =5 [ Tl o)hly)dy. 55)

We find that V = C, x € DT, where C is a constant vector.
Taking into account the equation [ hds =0 and the fact that the single
s

layer potential is continuous while passing through the boundary, and using
Green’s formula for kK = k,, we obtain V = 0, z € D™. Since [NV]T —
[NV]™ =2h(x) =0, and [NV]T =0, [NV]~ =0, we get h(z) = 0.

Thus we conclude that the associated to (5.7) homogeneous equation has
only the trivial solution, and the equation (5.6) is solvable for any continuous
right-hand side.

To prove the regularity of the potential (5.5) in the domain D~ it is
sufficient to assume that S€ 0?8 (0<B<1) and feCH(S) (0<a<pf).
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Abstract. We prove the existence of a nonnegative and bounded so-
lution of a type of homogeneous integral equations with monotonic non-
linearity. Under certain assumptions on the kernel, the properties of the
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in applications are demonstrated.
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1. INTRODUCTION

We consider the following nonlinear integral equation:
P = [ K@oevd >0 1)
0

in regard to unknown function ¢(x) > 0. Here p > 1 is a real number,
0 < K(z,t) is a measurable function defined on (0, +00) x (0, +00) satisfying
the condition

Sup/K(:L’,t) dt = 1. (2)
z>0 0

We will also consider the general integral equation of Hammerstein type:
f@) = [ KmnQuo)a (1)
0

where the function Q(z) is defined on (—o0, +00) and satisfies some addi-
tional conditions (see Theorem 6).

The problems (1), (2) and (1*), (2) are of considerable interest not only
in mathematics, but also in the theory of nonlocal interactions, string filed
theory, cosmology, kinetic theory of gases (see [1]-[6]).

In the present paper, under certain assumptions on the kernel K(z,t)
we prove the existence of a nontrivial, nonnegative and bounded solution
of nonlinear homogenous equations (1) and (1*). The properties of the ob-
tained solutions are investigated (see Theorems 1-3, 6). We also undertake
mathematical investigation of a special case which arises in applications,
particularly in the dynamics of P-adic closed string field theory (see Theo-
rems 4-5). Some particular examples of the function Q(z) are listed.

2. CONVOLUTION TYPE NONLINEAR INTEGRAL EQUATION

2.1. Symmetric kernel. First, we consider the equation (1), in particular,
the case where

K(xz,t) =ko(x —t); 0<kye Li(—00,+00).
We have

WP (z) = /ko(m g dt, 20, p>1. ()
0

The condition (2) takes the form of
+oo

/ ko(z)dx = 1. (4)

— 00
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We also assume that
ko(*l‘) = k’o(l‘), Vx> 0. (5)
Denoting f(x) = ¢P(x), we have

f@) = [ ko -0 U/FDdt, x>0, p>1 (6)
0
We will consider the following iteration process

@) = ke -0 {fo@ @ @ =1 =012 @
0

The following statements are valid.

Statement 1. The sequence of functions {f(x)} is monotonously
decreasing as n increases.

Proof. Indeed, for n = 0 we have
—+oo
I (@) < / ko(t)dt =1 = fO(a).

Assuming that the analogous inequality holds for n and using the mono-
tonicity of the function y = ¥/z on (0, +00), from (7) we obtain

FUD (@) < fO (). 0
Statement 2. The following inequality is valid
1\ 7
() > (2) , n=0,1,2,.... (8)

Proof. For n = 0 this estimate is obvious. Let f("(z) > (%)P%l be true.
Taking into account (4) and (5), from (7) we get

f<n+1>(x)><;>"ll /xko(t)dt><;);1/ok(t)dt= (;) (9)

—00 —00

The statement is proved. ]

Statements 1 and 2 imply that almost everywhere the limit of the se-
quence of functions {f™ (z)}5° exists:

lim ) (x) = f(x). (10)

n—oo

Furthermore,

(;) < f@) <1 (1)
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Using Levi’s limit theorems, we conclude that f(z) is a solution of the
equation (6).

Statement 3. The solution f(x) of the equation (6) is monotonously
mncreasing as T increases.
Proof. First, we prove that the sequence of functions {f(™ (z)}2, is in-
creasing in x. Indeed, for n = 0 this is obvious. Suppose that f~1(z) 1
as x increases. Let x1,29 € (0,+00), 1 > x2, are two arbitrary numbers.
We have

F (@) = [0 (o) =
= / ko(®)[{/ f=V (21 — t) dt — / ko)) f(r=D) (g — t)] dt >

T2

> [ ko) [§fro D0 - /50w o) @

— 00

Therefore £ (1) > f(™ (), which implies that f(x1) > f(x2). O

Statement 4. The limit of the function f(x) exists:
lim f(z)=1. (12)

xT—-+00

Proof. Denote lirf f(z) =56.

It is easy to check that
lim {/f(z) = lim w(z) = 0. (13)

r—+00 Tr—+00

We show that

r——+00

lim / ko(z — 1) /F0) dt = 3. (14)
0

Indeed,

[e'e) +oo
/ko(x—t){/f(t)dtf %/ko(t)dt =
0 —00

x

= /ko(t){/f(:c—t)dtf VS/ ko(t)dtf/%ko(t)dt <

o0

< / ko (t) ‘{/f(a: 1) - %\ dt + %7%@) dt = J; + Jo.
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It is obvious that lim Jy = 0. We have

r——+00

Ji = jko(t)‘m—%‘ dt <

< jko(t)‘{“/m—%‘ dt—f—/wko(t)‘{/f(x—t)—%‘ dt =

= J3 + Ju,

sy [ote =) /70 - 98] at <

+oo
@)~ V6| at / ko) dt — 0

as r — +00.

J4:(1—|—{’/5)/k:0(t)dt—>0

as z tends to co. Thus the formula (13) holds. Passing in (6) to limit, we
obtain § = {/§ = § = 1. From (14) it follows that

lim ¢(z) =1. (15)

r— 400

The statement is proved. (Il

Statement 5. Let fi1(z) and fa(x) be the constructed solutions of the
equation (6) for the integers py and ps, respectively. If py > po, then fi(x) >
fg(l’)

Proof. We consider the iterations for p = p; and p = py separately.

ff"“)(m:/ko(x—t) Vi@, f0=1, =12, n=0,1,2..... (16)
0

We will prove that
A7 @) 2 £ @), (17)
Indeed, for n = 0 the inequality (17) is obvious. Assuming that (17) holds

for n, we check it for n41. Taking into account the estimates 0 < () (z) <1,
from (16) we get

£ () > / koo — ) Y £ (1) dt >
0

z/%@prﬁWwﬁ:ﬁ“Wm, (18)

0
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which implies that
fiz) > fa(z). (19)

Thus we have proved the statement. O

Theorem 1. Under the conditions (4), (5) the equation (3) has a positive
and bounded solution (x) which possesses the following properties:

a) P(x) 1 in x;
b) the estimates (3 )p T <(z) <1 are valid;
c) there exists the limit wll)mood)( x)=1.

Remark 1. The linear equation (3)—(5) (p = 1) represents the well-known
homogeneous conservative Wiener—Hopf equation. Many works are devoted
to the investigation of the corresponding linear equation (3) (see [7]-[9] and
the literature therein). It is known (see [7]) that the corresponding linear
equation in the symmetric case ko(—xz) = ko(x) has a positive solution,
possessing the asymptotic O(z) at £ — 400. Thus we confirm that there is
a quantitative difference between solutions of nonlinear (p > 1) and linear
(p = 1) equations.

2.2. Nonsymmetric kernel. We will assume that

+oo

v(ko) = / xko(x)dz < 0. (20)
— o0
The convergence of the integral (20) is understood in the Cauchy v.p. sense.

Together with the equation (3) we consider the corresponding linear equa-
tion

_ / ko(z — )S(8) dt, @ > 0. (21)

It is well-known that if the function kq(z) satisfies the conditions (4), (20),
then the equation (21) has a positive monotonously increasing and bounded

solution S(z) (see [8,9]). We denote C' = sup S(x). Due to the linearity of
>0

1
(21), the function S* = 55(3:) will also satisfy the equation (21). Further-
more, S*(x) 1 1 as x — +00. We consider the equation (7) with the kernel

(4), (20).

Analogously, it is easy to verify that f()(z) | as n increases. We prove
f)(x) > S*(x). For n = 0 this is obvious. Taking into account (21) and
0 < S*(z) <1, from (7) we obtain

FrH (g /ko (x — )%/ S*(t)dt > /ko (x —t)S*(t) dt = S*(x).

0
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Thus, there exists f(z) = lim f(z). Moreover,

T——+00
§*(z) < fla) < 1. (22)

From Levi’s theorem it follows that the limit function f(x) satisfies the
equation (3).
Acting analogously as in Theorem 1, we obtain that f(z) 1 as x increases.
Since S*(x) — 1 as © — 400, it follows from (22) that
lim f(z)=1.

Thus the following theorem holds.

Theorem 2. Under the conditions (4), (20) the equation (3) has a pos-
itive monotonically increasing and bounded solution ¢ (x). Moreover,

lim (@) =1, S*(2) < P(2) < 1.

Acting analogously we will be able to prove the following general theorem.

+oo
Theorem 3. Let there exist ko(z), ko(z) > 0, [ ko(z)dz =1, such

that K (z,t) > ko(x —t) Va,t € RT x RT.
1) if ko(—x) = ko(x), then the equation (1) has a positive and bounded
solution @(x):

(1) - <Y(r) <plz) <1 lim p() =14

2 z— 400
2) if v(ko) <0, then the equation (1) has a positive and bounded solu-
tion p(x):
§'(@) < U@ <p) <1l pla)=1.

2.3. Examples. We bring two particular examples of the equation (1) sat-
isfying the conditions of Theorem 3:

1) ©P(x) = /ko(m—t)go(t) dt—l—/kl(x—i—t)gp(t) dt, where
0 N 0 N (23)
0 < k1 € L1(0, +00), /k;l(t) dt < /k:o(t) dt, Va0
2) (o) = nle) [ hnla ~ t)elt) dt, (24)
0

where p(x) is a measurable function on (0,400) satisfying the condition
1< ) € .
| ko(t)dt

—oo
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3. ON A SPECIAL CASE ARISING IN APPLICATIONS

We consider the equation (1) in the case where
K(z,t) =ko(x —t) — k1(z +t) > 0. (25)

It should be noted that the condition K (x,t) > ko(x — t) doesn’t work for
the kernel (25) and it is necessary to develop a new approach for studying
the problem of solvability of the equation (1), (25). We should also note
that the nonlinear equation (1) with the kernel

1 —(x—1)2 —(z 2
K@) = —=(e (@87 _ g=(=+0)) (26)

describes the dynamics (rolling) of P—adic closed strings for a scalar tachyon
field (see [2], [3])-
First we consider the corresponding linear equation (p = 1)

wo) = [hoo— ey de~ [ oo o>0, @)
0 0
where 7(z) is the unknown function.
We rewrite the equation (27) in the operator form
(I - Ko+ Ki)n=0, (28)

where I is the unit operator, I?O is a Wiener—Hopf integral operator, and
[A(l is a Henkel operator. Let E be one of the following Banach spaces:
L,(0,+00),1<p<oo, M(0,+00), Cy(0,400), Cy(0, +00), where C,, (0, +00)
is the space of continuous functions having a finite limit at infinity.

It is known (see [10]) that if v(kg) < 0 and ma(ky) = [ 22k1(z) dz < +o0,
0

then the operator I — I?O +K 1 admits the following three factor decompo-
sition

I—Ko+ K, =I-V)I+W)I-V,), (29)
where f/i are Volterra operators:
(V-D@) = [v-t-a)f@yd, feE. (30)
(Vef)@) = [vsle- 050 dt, feE. (31)
0

0<wvy € L1(0,40), v+ = [vi(x)dr <1, and W is a Henkel type integral
0

operator

(W) (z) = / W(z+t)f(t)dt, feb, (32)
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0 <W € Ly(0,+00). It should be noted that (see [8])
i) if v(kg) <O, then y_ =1, v4 < 1;
ii) if v(kg) = 0, then v4 = 1.
At the same time, if the functions ky and k; are bounded, then W €
M (0, +00), v+ € M (0, +00).
Tt is well known that W is a compact operator in the spaces Lj(0, 400)
and Cy(0,+00) (and in other natural functional spaces).
Taking into account the factorization (29), we rewrite the equation (28)
in the form . . .
-V HYT+W)I—-Vi)n=0. (33)
Solving the equation (33) is equivalent to solving the following three coupled
equations

(I — ‘//:)7]1 = 0, (34)
(I +W)nz = m, (35)
(I = Vi) =mn. (36)

Statement 6. Let v(ko) < 0. Then the equation (27) has a nontrivial
solution n(x) € Cy (0, +00).
Proof. Let us consider the following possibilities:
a) € = —1 is an eigenvalue for the operator W;
b) e = —1 is not an eigenvalue for the operator W.

a) We choose the trivial solution of the equation (34). Inserting it in
(35), we obtain

na(z) = —/W(x + t)n2(t) dt. (37)
0
Since € = —1 is an eigenvalue for the operator W, the equation (37) has a

nontrivial solution 7y € C\,(0, 400). Furthermore, from the estimate
o0
)| < swp (0] [ Wr)dr
>
x

it follows that 1, € Cy(0, +00).
Now we consider the equation (36)

x

) =) + [ oo = On(e)dr (39)
0
Since 74 < 1, the equation (38) in the space Cp(0, +00) has a unique solution
(see [9]).
b) It is easy to check that 7;(x) = const # 0 satisfies the equation (34)
because y_ = 1.
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We choose n1(z) = 1 as n;. Substituting it in (35), using the fact that
e = —1 is not an eigenvalue for W and taking into account that W is
completely continuous (in C,,(0,400)), we conclude that the equation (35)
has a bounded solution 72 € C,(0,+00). Since 74+ < 1, the equation (38)
has a solution belonging to C,,(0, +00). ]

Statement 7. Let v(ky) =0, kg € Li(—00,+00) N M(—00,400), k1 €
L1(0,4+00)NM (0, +00). If e = —1 is an eigenvalue for the operator W, then
the equation (27) has a nontrivial bounded solution.

Proof. First we note that under the above-mentioned conditions and from
the results of [9], [10] it follows that W € M (0,+o0) N L1(0,+00), vy €
M (0, +00) N L1(0,400). Choosing the trivial solution of the equation (34)
and taking into account that ¢ = —1 is an eigenvalue for the completely
compact operator W (in L1(0,400)), we conclude that the equation (35)
in L1 (0, +00) has a nontrivial solution. Since W € M (0, +00) N L1 (0, +00),
from the inequality

()| < sup W () / m()]

it follows that 1, € M (0, +00). Thus we have proved that ns € L1(0,4+00)N
M(0,+00). Now we consider the equation (36) in the conservative case
(when 74 = 1). Using the results of the work [11], we conclude that the
equation (36) has a bounded solution n(z). Below we assume that one of the

conditions of Statements 6 or 7 is fulfilled. Denote C' = sup |n(x)|. Due to
>0

the linearity of the equation (27), the function 7 = %n will be a nontrivial
solution of the equation (27). Furthermore,

sup [n(z)| = 1. (39)

Let us consider the following iteration

f("“)(m):/K(m,t)f/f(")(t)dt, fM@) =1, n=0,1,2,..., (40)
0

where K(z,t) is given by the formula (25).
It is easy to check that for arbitrary n = 0,1,2, ... the inequality
F (@) > (i) (41)
holds. Indeed, for n = 0 it is obvious (see (39)). Assuming that the in-
equality (41) holds for some n, we will prove that it is true for n + 1. Since
[7(z)| <1, we have

f<n+1>(x)2/K(x,t) |ﬁ(t)|dt2/K(m,t)\ﬁ(t)\dtz n(z)].

0
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Hence the sequence of functions {f(™ (z)}§° has a limit as n — +oo,

lim f™(x) = f(2). (42)
At the same time,
()| < f(z) < 1. (43)

Using Levi’s theorem, we conclude that f(x) is a solution of the equation
:/K(x,t) /f(t)dt. |
0

Statement 8. f(z) 1 as x increases.

Proof. Let x1, zo € (0,+00), 1 < x9, be arbitrary numbers and consider
the following iteration process

£ () = / ko(t)mdtf/lﬁ(t) FO(t — ) dt.

We have
f(nﬂ)(xl) - f(nﬂ)(ff )=

T
= /ko(t) f(zy —t) dt—/k1 F(t — ) dt—

_fkmmm/ O

x2

> [ w0 {0 =0 - ¢/ 0] as

+7k1(t) [;/fm)(t@) - Vf(”)(txl)} dt > 0.

Therefore f(r) 1 as x increases. From (39) and (43) it follows that
lim f(z) =1. O

r— 00

Thus the following theorems are valid.
Theorem 4. Let
1)0§k0€L1( OO+OO fko :1, K(l’,t):k‘o(x*t)f

kl(x + t) >0,0<k € L1(0, +OO) m2 ]ﬂl f {E2]€1 dl’ < +00;
2) V(k()) < 0.
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Then the equation (1) has a nontrivial nonnegative solution o(x) and
lim ¢(z)= 1.
Theorem 5. Let

1) the condition 1) of Theorem 4 be fulfilled;

2) if v(kg) = 0 and ¢ = —1 is an eigenvalue for the operator /V(7,
and ko € M(—o0,+00) N Li(—00,400), then the equation (1) has a
nontrivial, nonnegative solution o(x) and ali)n;o o(x) =1.

Remark 2. We note that Theorems 4, 5 are true for the kernels K (x,t)
satisfying the condition K (z,t) > ko(x — t) — ki (x + t).
4. GENERAL EQUATION

We consider the general nonlinear equation (1*). Acting analogously as
in Theorem 1 and leaving out the details, we will formulate the following
theorem.

Theorem 6. Let the following conditions be fulfilled:

—+oo
1) there exists ko(x) = ko(—xz) = ko(z), [ ko(z)dz =1, such that

K(z,t) > ko(zx —t) Va,teR"xRT; (44)

2) there exist m, ¢, n > 2(, such that Q(n) =n, Q(¢) =2¢, Q(z) 1 on
[€,m], Q € CI¢,n],

where n is the first positive root of the equation Q(x) = . (45)

Then the equation (1*) has a nonnegative and bounded solution f(z) :
lim f(z)=n.

Moreover, if K(x,t) = ko(x — t), then the solution possesses the following
properties:

) ¢ < flax) <ny

ii) f(z) 7T as x increases.

Examples. We bring some particular examples of the function Q(z)
(see below) which arise in applications:

(1) Q@) =ar, x>0,¢= (37T, n=1

(2) Qz)=sinz+xz+1,2>0,¢ e (0, %7‘(‘)7 n= %71';

(3) Q(z) = ae=@=2” 2z >0, ¢ € (0, 7), where 7 is the first positive

root, of the equation ae=(@=0)* = x;

(4) Q(z)=e*"t >0, (e (0, i), n=1.
Summarizing, let us demonstrate one sample example. So, let K(z,t) =
kg(ai —t;, ko(z) = Se71°l, Q(z) = e*~1, p = 1, ¢ be the solution of equation
e = 2zx.
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From (1*) we obtain

f’/(x) — f(z) + ef@-1 _ (. (46)

In spite of the fact that it is impossible to solve the obtained nonlinear dif-
ferential equation analytically, the equation (46) has a positive and bounded
solution f(z) # 1 which has the following properties:

10.

11.

) ¢< flx) <1
i) lim f(a) = 1
ili) f(x) 7 as x increases.
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Zaremba’s Boundary Value Problem 75

Boundary value problems for harmonic functions of two variables are
well-studied under various assumptions regarding the unknown functions
and the domains in which they are considered. In particular, problems are
studied for harmonic functions of the class e?(D) being real parts of analytic
in a simlpy connected domain D functions of the Smirnov class E?(D) (for
their definition see, e.g., [1, Ch. IX-X], or [2]). In these classes the Dirich-
let, Neumann and Riemann-Hilbert problems are investigeted in domains
with piecewise-smooth boundaries (see, e.g., [3]-[7]). The boundary value
problems are considered in some analogous classes, as well ([7]-[9]).

Of special interest is the investigation of a mixed boundary value problem
of Smirnov type, when values of unknown functions are prescribed on a
part Ly of the boundary L of the domain D, while the values of its normal
derivative are given on the supplementary part Ly = L\ L;.

S. Zaremba was the first who studied this problem ([10]) and hence in
literature it frequently is called Zaremba’s problem (see, e.g., [11]).

In [12] we have introduced the weighted Smirnov classes of harmonic func-
tions e(L1p(p1), L, (p2)) and investigated Zaremba’s problem in the above-
mentioned classes when D is a bounded domain with Lyapunov boundary L,
and p; and po are power functions. The same problem has been considered
in [13] for some domains with piecewise-Lyapunov boundaries. However,
we did not succeed in covering the case of domains with smooth boundaries
because when reducing, by means of a conformal mapping, the problem to
the case of a circle, we obtain a problem in the class e(Lip(w1), Ly, (w2)),
where w; and wy are not power functions, and hence the emerged Smirnov
classes need further investigation.

In the present work we show that the method of investigation of Zarem-
ba’s problem suggested by us in [12] and [13] allows us to obtain a picture
of solvability of the problem in domains with arbitrary smooth boundaries
and also in some domains with piecewise-smooth boundaries. Towards this
end, we use properties of the conformal mapping of a unit circle onto the
domain with a piecewise-smooth boundary and of its derivative (see, e.g.,
[14] and [5, Ch. III]). On the basis of these properties we manage to show
that the functions of the class e(I'yp(w1), 'y, (w2)) for p > 1, ¢ > 1, are rep-
resentable by the Poisson integral. We also succeed in extending to the case
of the emerged nonpower weights w; and ws some needed for investigation
properties of the Smirnov class stated in [12] for power weights. Next, using
Stein’s interpolation theorem on weight functions ([15]) for singular inte-
grals with Cauchy kernel, we reveal such properties of the functions w; and
wy which allow us to solve the characteristic Cauchy singular integral equa-
tion in the weighted Lebesgue classes with the weight ws, rather important
for investigation of Zaremba’s problem.

1°. DEFINITIONS, NOTATION AND SOME AUXILIARY STATEMENTS

Let D be a simply connected domain with Jordan smooth oriented bound-
ary L. Let L, = [Ag, B, k = 1,n, be arcs lying separately on L (the points
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Aq,Bq,As, By, ..., AynBy, lie separately on L following each other in the
positive direction), and let [A;, By ] be the arcs lying on L. Assume

U Ly, L= U ([Ag, AL)U (B}, Bi]), Lo=L\L;. (1)

k=1

Let z = z(w) be a conformal mapping of the circle U = {w : |w| < 1}
onto the domain D, and w = w(z) be the inverse mapping. Assume

Iy =w(l), T=wl), Ta=w(ly), y={w: [w=1}, (2)
OFE)={9: 0<v<2m ¢’ €E, ECn},
L(r)= {w cw=re?, 9e @(Fj)}, j=1,2, L;(r)=z(T;(r)).

Let C1,Cy,...,Cay be the points Ay, As, ..., Ay, B, B, ..., By, taken
arbitrarily, and Dy, Dy, ..., D, be points on L\ L, different from C}%. Note
that the points Dy, Da, ..., Dy, lie on L; and the points Dy, 41,..., D, lie
on Lo.

Let p and ¢ be numbers from the interval (1, 00), and we assume that

ni

1 1 D
p(z)=||(z—=Dp), —=<au<-5, p=—, (3)
kl;[l p P’ p—1
m1 2m n
pa(z) = I_I(z—C'k)”’c H (z — Cp)* H (z — Dy)”? (4)
k=1 k=mq+1 k=n,+1
1 1 1 1
—— <y <0, 05 A <, < Bk < 77Q'—L
q 7 q qg—1

Definition 1 ([12]). Let ri(2), r2(2) be analytic functions given in D.
We say that the function u(z), z = x + iy, harmonic in the domain D,
belongs to the class e(L1,(r1), Ly, (r2)), if

aup{/| 2)r1(2)|" |dz| + / (’%q

Ll(r) Lz(’r‘)
Assume e(L1p7L’2q(r2)) = e(Llp(l),L’zq(rg)). If L =Ly =~ =, then
the class e(y1p(1)) coincides with the class of harmonic functions h,. For

p > 1, the functions of that class are representable by the Poisson integral
(see, e.g., [1, Ch. IX]).

dy

)irs(a) | < oo (9

Definition 2. Let E be a finite union of closed intervals lying on the
real straight line. By A(F) we denote the set of functions f(¢) absolutely
continuous on F, that is, the functions f for which for an arbitrary ¢ > 0
there is a number 7 > 0 such that if U(ag, 8x) is an arbitrary finite union
of nonintersecting intervals from E such that > (6, — ax) < 0, then the
inequality Y |f(Bk) — f(auw)| < e is fulfilled.

If f(2) is a function defined on the subset E of the curve L and z = z(s)
is the equation of the curve L with respect to the arc coordinate, then we
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say that f(z) is absolutely continuous on E and write f € A(FE), if the
function f(z(s)) is absolutely continuous on the set {s: z(s) € E}.

Statement 1 ([12, Lemma 9]). If f(t) € A(Ly U L), then the function
f(z(1)), where z(T) is the restriction on -y of the conformal mapping of
U onto D, belongs to A(T2 UT), and vice versa, if p € A(T2 UT), then
o(w(t)) € A(La UL).

Statement 2 ([12, Lemma 8]). If U(z) = U(z,y) belongs to the class
e(L1p(p1), Lg(p2)), then the function u(w) = U(z(w)) = U(x(§,n), y(§;n))
belongs to the class e(T'1,(p1(z(w)) /2 (w)), Ty (p2(2(w)) { 2 (w))).

Thus by means of substitution z = z(w), where z = z(w) is the conformal

mapping of U onto D, the function U(z) of the class e(L1,(p1), Ls,(p2))
transforms into the function u(w) of the class e(T'1p(w1), 'y, (w2)), where

wi(w) = pr(z(w)) /2 (w), (6)
wa(w) = p2(z(w)) /2 (w). (7)

20, FORMULATION OF A MIXED PROBLEM AND ITS REDUCTION TO
A PROBLEM IN THE CIRCLE

Consider the following mixed problem (Zaremba’s problem in Smirnov
class of harmonic functions): Find a function U(z) satisfying the conditions

AU:O, U e e(Llp(pl)aLIquEPQ)), D> ]_’ q> ]_7 N
Ut g =F FeL(Li\L,p), U'€ALUL),

+
a—U) — G, Ge LY Lo, po).

Ut|l: =W, ¥ e LYL, p,),
|L (871 Lo

Relying on Statements 1 and 2, the following theorem is valid.

Theorem 1. Let py, pa, wi, wo be the functions given by the equalities
(3)-(4) and (6)(7).
If U =U(z) is a solution of the problem (8) and

f(r) = F(z(7)), ¢(r) =¥(z(7)), g(r) = G(2(r)), 9)
then the function u(w) = U(z(w)) is a solution of the problem
Au=0, u € e(l'y(w), Ty, (we2)),
utlp g =f fe LT \T,w1), ut € Ay UT),
U+|1N“ =1, P € Lq(z,pQ), (%)+

(10)
=g, g€ Li(T2;wy).

Iy

Conversely, if u = u(w) is a solution of the problem (10), then U(z) =
u(w(z)) is a solution of the problem (8).
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3. THE WEIGHT PROPERTIES OF THE FUNCTIONS w; AND ws

By WP(T") we denote the set of all functions 7(¢) given on the set I' which
is a finite union of simple rectifiable curves for which the operator

T f-1h @ ="0 [ rer,
T

is bounded in LP(T"). Assume that W? = WP(). Obviously, if I' is a finite
union of nonintersecting closed arcs on I' and r € WP, then the restriction
on I of the functions r (i.e., x.(t)r(t)) belongs to W?(T").

We will need the following results.

Statement 3 (see, e.g., [5, p. 104]). If G(t) is a continuous on vy function
such that [ind G], = 3= [arg G(t)], = 0, then the function

r(r) :exp{1 I G() dg‘}, T e, (11)

271 C—r
v

belongs to the set (| W°.
6>1

Corollary 1. For any real number a we have
ri(r) € ﬂ wo. (12)
6>1
Corollary 2. If u is a real continuous on v function, then

exp{;ﬂ/él(_cz_dg‘} =r(r) € ﬂ we. (13)

6>1

Statement 4. If the domain D is bounded by a simple closed smooth
curve L and z(w) is a conformal mapping of U onto D, then:

(a) 2/(7) € 6ﬂ1 W2, and [/ (w)]*! € 5ﬂ1 H®, where H® is the class of
> >

Hardy;
(b) if c €7, then z(w) — z(c) = (w — ¢)z.(w), [z.(w)]F! € (Ql H? and
z2(1) — z(c) = (1 — ¢)zc(T), where z.(T) € ﬂ we. (14)

6>1

Statements (a) and (b) are particular cases of theorems stated in [14]
(see also [5, Ch. III]). In particular, Statement (a) can be found in [5,
Ch. III, Theorem 1.1, Corollary 1], and Statement (b) is also therein, Ch. III,
Theorem 3.1. In this connection, as it follows from the proofs, both 2’(7)
and z.(7) are representable by equalities of the type (11) (see, respectively,
[5, p. 139, the equality (1.14) and p. 154, the equalities (3.16) and (3.18)]).
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By virtue of Corollaries 1 and 2 of Statement 3, for any a € R we have

n

[2/()]%, [ze(n)]%, 20(7) = [ [ [ze (M]* € () W, (15)

k=1 §>1
k€7, ¢ F e, JFEk
Consequently, we also have
Q/ ]a q m Wé (16)
0>1

Theorem 2. If the functions p1 and pa are given by the equalities (3)
and (4), then the functions w1 and wo defined by the equalities (6) and (7)
belong, respectively, to WP and W4.

Proof. We have

where dj, = w(Dy,), —% <oy < ﬁ . From the equalities (14) it follows that

pi(z(r)) = [T (r = dw)® szk = r1(7)ra(7)-
k=1

By means of the above assumptions regardlng ag, we can find numbers
a, b € (0,1) such that

. n Taan
r OO = H(z — dg)** e WP,

k=1

Moreover, by virtue of (15) we have r““ Ve N W
6>1
Here we use the following Stein’s theorem ([15]).

Let M be a linear operator acting from one space of measurable functions
to the other,

1<1y,la, 81,80 < oo, I™'=(1—a)l{'+aly’
sTt=(1—a)s;' +asy!, 0<a<l,
[V £k, < Cill Fuile,-

Then
(M f)klls < Cllfulle,
where
k=ki %y, u=u "u§, C=Ci "Cy.
Assuming in this theorem

=) = [l | 7 b =ua)= [Jea o
k=1 k=1

S1=8 =s=p>1,
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we find that the function

belongs to WP.
Further, taking in the above theorem

k(1) =ui (1) = pll%b(z(T)), kao(7) = ua(1) = (W)%, 51 =8y=5=7p,

we find that

1 1

([ ™) " (9711 = o) Y70 = wn(r) € WP,

Taking into account that —% < OBk < %, —% < <0,0< A\ < %, we

analogously see that ws(7) € W4, d

4°. ONE PROPERTY OF FUNCTIONS OF THE CLASS e(T'1,(w1), I, (w2))
FORp>1,g>1

Theorem 3. Ifu € e(I'yy, Iy, (w2)), where p > 1, ¢ > 1, then:

(1) if p<gq, thenu € hy;
(i) if p> ¢, then u € hy, for any ¢1 € [0,q];
(iii) if p = q, then u € hy, for any p1 € (0,p).

Proof. (i) Let

I(r):/|u(rem)|pd19.

We have
I(r) = / |u(rew)|p dd + / |u(rem)|p dy <
o(T') O(l'2)
< sup / fu(re®) [P d9 + / ’/gudru(()) pdﬁ <
' o(T) oz) 0 '
§M1+2p( / ‘/audrpdﬁ+|u(0)|p27r)
o) 0 or
= My +2°F / (/’ ’dr) =
oI2) O
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Since|6 |<|g“|+| | we have

‘/]a’dr 49 < / {/T’(gZM gZDdrrdﬂ:

o, 0 o, 0
P
:@(/) {0/(’21;‘4— gZDMlele'dr} dv <
1)

FACE zzmww)% ) o
0

O(I'2) 0

ot | (O3 e} ([ )
_op / </T(]g;‘q g:q)wQ’ldr>§(J(19))5dq9, (18)
o) 0

where we have put

B /T dr
) wa(rei?)|e
0

Estimate the value sup J(¢). We have
()

1 M3

|wa(ret?)|e" —

2m
I et — euesr T fres? — diloud o (re)
k=mi+1 Br>0

(for definition of zp, see (15)).
Assume that o = sup(Aiq’, Bxq’). By virtue of the inequalities (7), we
k

have 0 < a < 1. Since |[re®? —cp| > 1 -7, [re?? —di| > 1 -1, O(T3) =
Ui, (B, ak41) with a,q1 = a1, and on every interval (B, c41) there are
no more than three points from the set U{z } = U{c, JUU{d} }, then dividing
the corresponding intervals into three or two parts, we will represent ©(T'z)
as the union of no more than 6m intervals, and on every interval

1 < My
W\ |g = (1 =)o AV 2 M, = max _
|wa(re™)] (1 =7)*|20(re™)| K21 |k — 2

Thus

r

dr
sup J(¥) < (6m)My sup / - S =
o(Ts) o(rs)./ (1 —r)>[zo(ret?)|a
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r dr
= M, sup/ ——. 19
ot T= e leotrem 19)

. . . . e 3 : : 1+
Ag)plymg in the last integral Holder’s inequality with exponent 5%, we
obtain

P 2« T P l—«
7

([) "
[zo(rei?) | 55 )

0

r J 2
r 7 Tt+a
§M6</ 1 1+a)
— 3
/)
1—a

T e

d 1+
< M7</T,1+a> . (20)
/oo

Show that the integral

[ dr a’ Tt
Ji(9) = (/W)
) |zo(re)|T e

is a function integrable in any degree on v and hence on O(T'2).
Towards this end, we note that if 5 };—Z <1, then

-Q\‘-G

(J(9))

Q\‘@

T

d
Jl(ﬁ)gl"i_/ 4r,1+a'
J lzo(re)| 55
If, however, 5 % > 1, then using Holder’s inequality with the above

exponent, we have

[ dr
< _
0

From the above estimates we can see that J;(9) € () L°([0,27]) if we
6>1
T
prove that for arbitrary § > 1 the function [ m(ﬁﬁ is integrable in the
0

0-th degree for any pu.

We have
2m s d 5 2r r d
r r
—— | d¥ < ———d¥ <
/(/|zo(7‘e“9)|“> ’//IZo(TeW)I’“S -
0 0 0 0

1 2w
dv
< [ = <
0 0

This inequality is valid since % € ) H? (see Statement 4). Thus we have
6>1
proved that J(9) € N L°[0, 27].
6>1
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Applying now to the right-hand side of (18) Hoélder’s inequality with
exponent % > 1, we obtain

a—Pp

wosz | [/T(\ZZQ+ e Vwalrar | ao( [ o) "

o) O O(T2)
But u € e(I'1y, 'y, (w2)), whence it follows that s&p I(r) < oo, and from
(17) we can conclude that sup I(r) < co and hence u € h,,.

(ii) It can be easily verified that if p1 < p2, then u € e(T'yy,, I, (w2)) C
u € e(T'yp,, Iy, (w2)). Therefore if p > ¢ > ¢ and u € e(I'1p, I, (w2)), then
u € e(T'1q,, T, (w2)) and u € hy, .

(iii) If v € e(I'1p,[gy(w2)), then for any 1 < p; < p, we have u €
e(T'1p, 5, (w2)), and hence u € hy, . O

Let now u € e(T'1p(w1), I, (w2)), p > 1, ¢ > 1. Since w% € HP'+e,
e > 0, there exists 7 > 0 such that u € e(L14y, Ly,(w2)), and therefore
sup [ |u(re'?)|**d¥ < oo. Assuming 1+ n < g, by Theorem 3 we
" O()
can conclude that u € hi4,. As far as the functions of the class hi4, are
representable by the Poisson integral, we state the following

Theorem 4. Ifu € e(I'1,(w1), T, (w2)), p>1, ¢ > 1, then u is likewise
representable by the Poisson integral.

5°. REDUCTION OF THE PROBLEM (10) TO A SINGULAR INTEGRAL
EQUATION

If w(Ag) = ag, w(Bg) = bg, w(A},) = a},, w(By,) = b}, we have
Iy =w(L U ar,by), T =|Jlar, a] U b, be], Ta=~\T.

Following the way of investigation of the problem (10) carried out in

Section 3% of [12], we can state that if u is a solution of the problem (10)

and u*t(e") is its boundary function, then the function % is a solution of

the integral equation

1 ou™ 9 —¢ :

_ - — i

o / 59 ctg 5 d¥ = p(p), €% €Ty, (21)

O(I'2)
where
1 dv 1 dd
W) =90 - 3= [ 10— -5 [ 0

e(ri\I) o(I'2)
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M) = = / @) 2 g =2 ap. (23)

Here X is the characteristic function of the set T, we write f(19), ¥ (0),

g(p) instead of f(e™), 1(e™), g(ei¥) and put af = ei** b, = ex.

Let us show that under the adopted assumptions the functions 8;19 and
i belong to the class LY(Ty;ws).

We start with the function ag‘—; . Tracing the proof of Lemma 1 in [12],
we establish that the condition u € e(I'1,(w1), 'y, (w2)) is equivalent to the

condition

sup{ / }u(rew)wl (re’ |d19+

ou , . \2 ou . \2 o]
119 - i 9
‘\/ +<3y (re'?)) ws(r)
Fg)

for the functions wy, ws, as well (and not only for the power functions). It
is now not difficult to see that the statement below is valid.

O(T'y)

dq?] <oo (24)

Statement 5. If u € e(T'1p(w1), T, (w2)), p> 1, ¢ > 1, and ut € A(T'y)

u du’t

(in particular, if u is a solution of the problem (10)), then (—) and 55
belong to L1(T9;wa).

The proof of the above statement is analogous to that of Lemma 5 in [12]
if in the appropriate place we take advantage of the fact that the condition
(5) is equivalent to the condition (24).

For the function p to belong to L1(I'g;ws), as is seen from the equality

(22), it suffices to show that TZ € L1(Ty; wo). Thib follows from Theorem 2
since A\(V) = x. (V) %’ € Li(y,w;) (because 2 % € L1(T3;ws)), while the
operator
- 9
A=A M) = ,/)\(19) ctg %SD dd
T
0

is bounded in L9(v,ws) if the singular Cauchy operator is bounded in it,
and latter is bounded in L7(~y,ws) since wy € W7 by Theorem 2.

6°. THE SOLUTION OF THE EQUATION (21) IN THE SPACE L9(T;ws)
Assuming 7 = ', t = ¢’ and taking into account that

= (et g) @
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the equation (21) can be written in the form

out dr ) out
— | S5 e = in(p)+a, a=— | —dv. (25)
Fg FQ

Since u™ is a boundary value of a solution of the problem (10), we see

m m

1
271'

1
u(ag41) — ulby)) = o Y(ars1) — (be)], ams1 = ay.
k:l k:l

Thus the function dgﬂ is a solution of the singular integral equation

out dr . 1

QY T —eir ) + o
1“2 k=1

Y(aps1) — ¥ (by)] (26)

belonging to L4(T'y; ws).
Let T be a finite union of arcs [ak, bg] C v, p be a weight function from
W4 and

g T—1
r

1
Sr ¢ — Sre, (t%@)(@i*./mdf, tel.

Let A € LY(T; p). Consider the singular integral equation
Srp=A (27)

in the class L(T; p).

This equation has been investigated in different classes of functions by
many authors. In our formulation, when p is a power function of definite
type, it is solved in [16] (see also [17, Ch. III, § 7, pp. 103-109]; a history
of the question can be found therein). In connection with investigation
of Zaremba’s problem, in [12] we showed that this result from [17] was
generalized to a general case of power weight functions. We will now show
that the property of solvability of the equation (27) in the classes LI(T'; p)
for power weights preserves for wider classes of weights, as well.

The points ajas, ..., am;b1,bs,...,b, taken arbitrarily are denoted be-
low by ¢1,c¢2, ..., com. Let
2m
I (2
[ G- RE=g
o I5(z)
=mi+1

where the branch of the first function is taken arbitrarily and that of the sec-
ond one is selected in such a way that the function R(z) in the neighborhood
of z = 0o expands in the series 2™~ ™1 4+ 4;zm ML 4.

Assume

R(1) = Tel. (28)
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Let
m1 2m 1 1
p(r)=[[ =) J] G- —=<w<0, 0< A<, (29)
k=1 k=mi+1 q q
Moreover, we assume that —% < % + e < %, —% < Mg — % < % , l.e.,

1< < ‘(01 1) (01 )<>\<1 (30)
—— < min (0; — — = max | 0; = — — —.
q k 7q/ 27 12 q — k? q,

Finally, let

w(T) = p(z(7))po(7), (31)
where pg € (| W°.
6>1
Suppose
1
Ur(p = RSF E . (32)

If o(7) = ¢q(7) is an arbitrary polynomial, then ¢ € LP(T; Hflﬂg_l), and
by Lemma 1 of [17, p. 105] we obtain

(UrSrq)(7) = q(1), when m; > m. (33)
However, if m > m;, then

(UrSrq)(1) = q(7) + R(1)Qr—1(7), (34)

where @Q,_1(7) is a polynomial of degree not higher than r — 1, r = m —
my — 1.

Since w(7) = p(z(7))po(7), according to Theorem 2 w € W4. Moreover,
since the conditions (30) are fulfilled, the function @(7) = R(7)w(7) belongs
to W4, Since the set of polynomials {g,} is dense in LY(T;w) for any
w € W1, passing in the equalities (33) and (34) to the limit as ¢ = ¢, —
¢ € L1(T;w), we find that

(UrSrp)=¢ for m<my, and (UrS¢)=p+RQ,_1 for m>my. (35)

On the basis of the above equalities, just as in [17, pp. 107—-108] (see also
[12, p. 46]) we prove

Theorem 5. Let for the weight p given by the equality (29) the conditions
(30) be fulfilled, and w(T) = p(z(7)) Y2/ (1), where z = z(w) is a conformal
mapping of the circle U onto a simply connected domain bounded by a simple
closed smooth curve L, and let T be a finite union of arcs from . Then the
equation

SFQD =A
(i) is solvable for mqy < m and all its solutions are given by the equality
QD(T) = (UF)‘) (T) + RQrfl(T)a (36)

where Q,—1(7) is an arbitrary polynomial of order r—1, r = m—my

(Q-1(7) =0).
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(ii) for my > m, the equality is solvable if and only if

/TkR(T))\(T) dr=0, k=0,l—1, l=my —m, (37)
r

and if these conditions are fulfilled it is uniquely solvable and the
solution is given by the equality (36), where Q,_1(7) = 0.

7°. THE SOLUTION OF THE PROBLEM (8)

Having at hand Theorem 5, we are able to investigate the equation (21):
find the conditions of its solvability and write out all solutions. By virtue
of the same theorem, solving the equation (26) and hence (21), we can find
the function 86“\‘—1; on I'y; integrating it, we find w*(7) on I'y. There appear
arbitrary constants which (or a part of which) are defined by the conditions
of absolute continuity of u™ on Ty UT (see (10)). Having found the values
u™ on I'y, we will have T on the entire neighborhood, because it was given
on I'y beforehand. By virtue of Theorem 4, all the above-said allows us
to find u(w) by using the Poisson formula with density u*(e?”’). Having
known u(w), by Theorem 1 we find a solution U(z) = u(w(z)), z € D, of
the problem (8).

Detailed calculations are analogous to those carried out in [12] (Secti-
ons 5°-79). Omitting them, we can formulate the final result.

Theorem 6. Let:

(a) the domain D, the curve L, and its parts Ly, L, Ly be defined ac-
cording to Section 1° and the equalities (1), while the weight func-
tions p1(z), p2(z) be defined by the conditions (3)—(4);
(b) z = z(w) be a conformal mapping of the unit circle U onto D;
w = w(z) be the inverse mapping; the sets I'y, f, T’y be defined by
(2) and the functions wy, wa by the equalities (6)—(7);
(© ax = w(dy) = e, b, = w(By) = e, af = w(d}) = e,
b, = w(By}) = e, 0 <my < 2m, ¢, = w(Cy), di, = w(Dy);
(d) the function R(T) be defined by the equality (28).
If the problem (8) is considered in the class e(Lip(p1), Lo,(p2)), p > 1,
q > 1, the functions f, v, g are defined by the equalities (9) and we assume
that for the exponents of the weights the conditions (30) are fulfilled, then:
L. If my < m, then for the solvability of the problem (8) it is necessary
and sufficient that the conditions

Q41 . R(eia) Z/,L(T)+a o
t [ i / R (7 — iy 47| 2 =
B O(T2)

= w(em’““) — w(eiﬁ"‘), k=1m, (38)
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be fulfilled, where
p(r) = u(ei“”) = ulp) =

27r 2 2
k=1
- / =t %/w Pt
o(r\P) o)
1 -
zak+1 _ ( lﬁk)]7 Q41 = Q7. (40)
ﬂ
k:l

II. If my > m, then for the solvabilty of the problem (8) it is necessary
and sufficient that the conditions (38) and

(1) +a

Ty
be fulfilled.
III. If the above conditions are fulfilled, then a solution of the problem
(8) is given by the equality

U(z) = u™(w(2)) + uo(w(2)), (42)
where
u(w) = =5 / () P(r, 9 — ) dd+
o)
/ FOPrD—)do+ 5o [ We, )P0 - )0 (1)
eI\l e(I'2)
in which
2
P(r,z) = !

1—|—r2 —2rcosz’

Wr,(¥) = /Xo<r2)( {Re /R e dr] do + By,
B1

O(E) = {9 : eV € E}, and x,, denotes characteristic function of
the set E,

Qf+1

Bk = w(eiak+l> - / X(—)(Fz)< |: / R 7_ _ ezoz :| daa (44)




Zaremba’s Boundary Value Problem 89

and
0, when my > m,
— / WE, (9)P(r, 9 — @) dv,
ug(re'?) = (45)
Wr, (9) = X@(Fz)(a) Re [R(e')Q—1(e")] da+ A,
B1
v € (bkaak-‘rl)a
A1
A= / Re [R(€)Qy 1 ()] da, (46)
Bk
Qr—1(7) =0, and for m; < m,
r—1
Qra(e) = (x; +iy;)e?, (47)
§=0
where the coefficients x;, y;, j = 0,7 — 1, are defined from the sys-
tem
1 ®k+1
Z / {x]Rl (") cos jI) — y; Ra(e™) smgﬁ} d¥ =0,
§=0
. (48)
Z / [x Ra(e™) cos jI + y; Ry (e Zﬁ)smgﬁ} dd =0
=0
Bk

and we put Ri(e”’) = Re R(e"), Ry(e™) = Im R(9).

If the rank of the matriz composed by the coefficients of the system (48)
is equal to v, then among the numbers o, 1, ..., Tr_1,Y0,Y1,---,Yr_1 there
are 2(m —my) — v arbitrary constants, and hence the general solution of the
problem (8) contains 2(m — mq) — v arbitrary real parameters.

89, ON A MIXED PROBLEM IN DOMAINS WITH PIECEWISE-SMOOTH
BOUNDARIES

In [13], the problem (8) is investigated in domains with piecewise-Lyapu-
nov boundaries. For curves with arbitrary nonzero angles there is Theorem
1 in [13] which shows relations between the values p, q, ag, Bk, Vi, Ak, and
if they are fulfilled, the statements of type I-I1I in Theorem 6 of the present
work remain valid. A detailed analysis of cases where the above relations are
realized is given. When investigating the problem we have used the results
obtained by S. Warschawskii ([18]) on conformal mappings of a circle on a
domain with piecewise-Lyapunov boundary.
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Consider the case where L is a piecewise-smooth curve. Assume that on
L there are angular points t1,ts,...,ts with the values upm, 0 < pp < 2,
k = 1,s of the interior angles at these points. In this case, for conformal
mapping we use some results from [14] (see also [5, Ch. III]) according to
which

S

Z(w) = [[(w—m)* "z (w), 7 =wlt),
k=1

2(w) = [ [ (w =)+ 22 (w),

k=1

where [z1 (w)]*!, [22(w)]*! belong to (| H?, while the functions 21 (7), zo(7)
>0
have the form (11) and hence belong to () W?.
5>1

On the basis of the above-said, taking into account the results of Sections
3% and 4° of the present work and following the reasoning from [13], we can
see that the basic result obtained in [13, Theorem 1] for the problem (8),
when L is a piecewise-smooth curve, remains valid.

This work was supported by the Grant GNSF/ST09-23.3-100.
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INVARIANT REGIONS AND

THE GLOBAL EXISTENCE

FOR REACTION-DIFFUSION SYSTEMS
WITH A TRIDIAGONAL MATRIX

OF DIFFUSION COEFFICIENTS



Abstract. The aim of this study is to prove the global existence of
solutions for reaction-diffusion systems with a tridiagonal matrix of diffu-
sion coefficients and nonhomogeneous boundary conditions. In so doing, we
make use of the appropriate techniques which are based on invariant do-
mains and Lyapunov functional methods. The nonlinear reaction term has
been supposed to be of polynomial growth. This result is a continuation of
that by Kouachi [12].
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1. INTRODUCTION

We consider the reaction-diffusion system

ou

i a11Au — a12Av — agsAw = f(u,v,w) in RT x Q, (1.1)
% — 91 AU — a9 AV — agzAw = g(u,v,w) in RT x Q, (1.2)
%—Z) — a9 Au — azaAv — a1 Aw = h(u,v,w) in RT x Q (1.3)
with the boundary conditions
ou
ov 4
)\v—i—(l—)\)a—:ﬁg on R™ x 09, (1.4)
n
ow
Aw+ (1 - )\)6—77 = s,
and the initial data
w(0,2) = up(x), v(0,2) =vo(z), w(0,z)=wo(z) in Q, (1.5)

where:

(i) 0 < A < 1land B; € R, ¢ = 1,2,3, for nonhomogeneous Robin
boundary conditions.
(i) A=p; =0, i=1,2,3, for homogeneous Neumann boundary condi-

tions.
(iii) 1 =X = p; =0, i = 1,2,3, for homogeneous Dirichlet boundary
conditions.

) is an open bounded domain of the class C! in RY with boundary 952, and
6% denotes the outward normal derivative on d€). The diffusion terms a;;
(i, =1,2,3 and (i,7) # (1,3), (3,1)) are supposed to be positive constants
with a11 = azz and (a2 + ag1)? + (a23 + aze)? < 4ajiage, which reflects the
parabolicity of the system and implies at the same time that the matrix of
diffusion

air a2 0

A= lax azx ax

0 asx an

is positive definite. The eigenvalues A1, Ay and A3 (A1 < Ag, A3 = aq1) of A
are positive. If we put

a =min{a11,a2} and @ = max{aii, a0},
then the positivity of a;;’s implies that

M <a<)d<a< .
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The initial data are assumed to be in the domain

{(U’OvaawO) € R?: povg < aziug + aszwo < pive, azaug < alz’wo}
if pofa < a1 + azf3 < 12, azefr < aiafs,
(ug, vo, wo) € R3 : povg < asiug + aszwy < pyvo, ajpwy < aszuo}

if pofBo < a1 B1 + asfs < puifBa, ai2fs < azefi,
(UO, Uo,wo) S R3 :

Y /7 (@21 +a23wo) <vo < IT (a21uo+ag3wp) , aszuo < ajawo
2 1

L1 1
if i (@211 +a2303) <PBa < ™ (a2181+a2303) , as2fr <ai20s,
2 1
(UQ, Uo,wo) S R3 :

1
/7 (@210 +a23wo) <vo < /7 (a21u0+az3wp) , aszuo>a12wo
2 1

o1 1
if i (a2181+a2303) <2 < " (a2181+a2303) , aszafi>ai2fs,

where
pr=a—XA >0>pus=a— .
Since we use the same methods to treat all the cases, we will tackle only

with the first one. We suppose that the reaction terms f, g and h are
continuously differentiable, polynomially bounded on X,

(f (7"1,7’2,T3),9(7’1,T2,T3)7’1(7"177"2,7’3))

is in X for all (rq1,r2,73) in 0¥ (we say that (f, g, h) points into ¥ on 9%),
ie.,
ag1f (r1,7r2,73) + agzh (r1,72,73) < p1g (r1,72,73) (1.6)
for all 71, o and r3 such that usre < agyri+assrs = pire and agar < aiars,
and
p2g (r1,7r2,73) < a1 f (ri,r2,r3) + azsh (ri,r2,r3) (1.6a)
for all r1, T2 and T3 such that H2To = 2171 “+ao373 S H1T2 and asa2”T1 S a127T3,
and
a32f(7"1,7“2,7“3) S algh(Tl,Tgﬂ‘g,) (16b)
for all 71, ro and rg such that pore < agiri+assrs < pire and ager; = aiars,
and for positive constants F and D, we have

(Ef+Dg+h)(u,v,w) <Ci(u+v+w+1), (1.7)

for all (u,v,w) in X, where C is a positive constant.

In the two-component case, where a1 = 0, Kouachi and Youkana [13]
generalized the method of Haraux and Youkana [4] with the reaction terms
f(u,v) = =AF (u,v) and g (u,v) = pF (u,v) with F (u,v) > 0, requiring
the condition

lim

s—+o00

{111(1 + F(r,s))

}<a* for any r > 0,
s
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with

. 2a11022 [ A ann —a2
min{ —, ——= 5,

o = 2 )
n (a1 — ag)” [Juol| jz a1

where the positive diffusion coefficients a1, ago satisfy a1 > ags, and asq,
A, p are positive constants. This condition reflects the weak exponential
growth of the reaction term F. Kanel and Kirane [6] proved the global
existence in the case where g (u,v) = —f (u,v) = w™ and n is an odd
integer, under the embarrassing condition

la1s — a21] < Cp,

where C), contains a constant from Solonnikov’s estimate [18]. Later they
improved their results in [7] to obtain the global existence under the restric-
tions

Hi. az < a1 + ao,

ai1azz (a1 + ag1 — ag)

Hs. a0 <eg =
ai11a22 + a2 (a11 + a1 — ag2)

if a1 < age < @11 + aon,

.1 .
H3. a2 < I?(lll’l{2 (all +a21) ,EQ} if a9 < a11,

and

|F (v)| < CF (1 + |v|176) , vF(v)>0 forall veR,
where ¢ and Cp are positive constants with € < 1 and

g(u,v) =—f(u,v) =uF (v).

Kouachi [12] has proved global existence for solutions of two-component
reaction-diffusion systems with a general full matrix of diffusion coefficients
and nonhomgeneous boundary conditions.

Many chemical and biological operations are described by reaction-dif-
fusion systems with a tridiagonal matrix of diffusion coefficients. The com-
ponents u (¢,x), v (t,z) and w (¢,x) can represent either chemical concen-
trations or biological population densities (see, e.g., Cussler [1] and [2]).

We note that the case of strongly coupled systems which are not triangu-
lar in the diffusion part is more difficult. As a consequence of the blow-up
of the solutions found in [16], we can indeed prove that there is a blow-up of
the solutions in finite time for such nontriangular systems even though the
initial data are regular, the solutions are positive and the nonlinear terms
are negative, a structure that ensured the global existence in the diagonal
case. For this purpose, we construct invariant domains in which we can
demonstrate that for any initial data in these domains, the problem (1.1)-
(1.5) is equivalent to the problem for which the global existence follows
from the usual techniques based on Lyapunov functionals (see Kirane and
Kouachi [8], Kouachi and Youkana [13] and Kouachi [12]).
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2. LocAL EXISTENCE AND INVARIANT REGIONS

This section is devoted to proving that if (f,g,h) points into 3 on 9%,
then ¥ is an invariant domain for the problem (1.1)—(1.5), i.e., the solution
remains in ¥ for any initial data in 3. Once the invariant domains are
constructed, both problems of the local and global existence become easier
to be established. For the first problem we demonstrate that the system
(1.1)—(1.3) with the boundary conditions (1.4) and the initial data in ¥ is
equivalent to a problem for which the local existence throughout the time
interval [0, 7] can be obtained by the known procedure, and for the second
one we need invariant domains as explained in the preceeding section.

The main result of this section is

Proposition 1. Suppose that (f, g, h) points into ¥ on 0X. Then for any
(ug,vo,wo) in X the solution (u,v,w) of the problem (1.1)—~(1.5) remains in
Y for all t’s in [0,T*[.

Proof. Let ($i1,$i27.’£i3)t, i = 1,2, 3, be the eigenvectors of the matrix A?
associated with its eigenvalues \;, i = 1,2,3 (A1 < A3 < A2). Multiplying
the equations (1.1), (1.2) and (1.3) of the given reaction-diffusion system by
T;1, T2 and x;3, respectively, and summing the resulting equations, we get

%zl—/\lAzl :Fl (2,’1722,2’3) in }O,T*[XQ, (21)
%22 — /\QAZQ = F2 (2,’17 22, 2’3) in }O,T*[ X Q, (22)
0
azg — /\3A23 = F3 (2,’17 22, 2’3) in }O,T*[ X Q, (23)
with the boundary conditions
8Zi . *
Azi + (1= A) n =p;, 1=1,2,3, on ]0,T"[ x 99, (2.4)
and the initial data
2(0,2) = 22(x), i=1,2,3, in Q, (2.5)
where
Zi = Tyl + oV + 3w, 1 =1,2,3, in ]O,T*[ x €, (26)
pi = i1 + wi2fa + wizfB3, 1=1,2,3,
and

Fi(z1,22,23) = xanf + Tiog + ai3h, 1 =1,2,3, (2.7)

for all (u,v,w) in X.
First, as has been mentioned above, note that the condition of the para-
bolicity of the system (1.1)—(1.3) implies the parabolicity of the system
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(2.1)—(2.3) since

(a12 + 021)2 + (@23 + CL32)2 < 4aiia0 =
— (detA >0 and aji1a22 — aszazs > 0)
Since A1, A2 and A3 (A1 < A3 < A2) are the eigenvalues of the matrix A?, the
problem (1.1)—(1.5) is equivalent to the problem (2.1)—(2.5) and to prove

that ¥ is an invariant domain for the system (1.1)—(1.3) it suffices to prove
that the domain

{(0,29,29) €R?: 20 >0, i=1,2,3} = (R")’ (2.8)
is invariant for the system (2.1)-(2.3) and that
Y= { (UQ, V0, U)o) GRS : Z? =x;1Ug+Ti0v0+x;3we >0, 1=1,2, 3} (29)
Since (l‘il,%ig,xig)t is an eigenvector of the matrix A! associated to the
eigenvalue \;, i = 1,2, 3, we have
(@11 — Ai) zin + ag1242 = 0,
a1221 + (@22 — A\g) T2+ agazizs =0, i=1,2,3,
a3 + (a11 — Ai) w43 = 0.

If we assume, without loss of generality, that a;; < ags and choose x15 = p1,
ZTog = —pg and T3z = ajz, then we have

—ag1ug+ 109 — az3wo >0,
T ugteigueteiswo >0, 1=1,2,3 <= {az1ug— p2vg+azzwg >0, —
—aszaug + arawg > 0.
< H2vo < a1 + azzwo < pHive,  azalo < a12Wo.

Thus (2.9) is proved and (2.6) can be written as

21 = —Q21U + 1V — G23W,
29 = Q21U — U2V + G23W, (2.6a)
23 = —Qa32U + a12w.

Now, to prove that the domain (}R*‘)3 is invariant for the system (2.1)—(2.3),
it suffices to show that F; (21, 22,235) > 0 for all (z1, 22, 23) such that z; =0
and z; > 0,7 =1,2,3 (j #14), ¢ = 1,2,3, thanks to the invariant domain
method (see Smoller [17]). Using the expressions (2.7), we get

Fy = —as f + p1g — azsh,

Fy = a1 f — pag + assh, (2.7a)

F3 = —aza f + ar2h
for all (u, v, w) in . Since from (1.6), (1.6a) and (1.6b) we have F; (z1, 22, 23)
> 0 for all (21,22, %23) such that z; = 0 and z; > 0, j = 1,2,3 (j #1),
i = 1,2,3, we obtain z; (t,z) > 0, ¢ = 1,2,3, for all (¢,2) € [0,T*] x Q.
Then ¥ is an invariant domain for the system (1.1)—(1.3). O
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In addition, the system (1.1)—(1.3) with the boundary conditions (1.4)
and initial data in ¥ is equivalent to the system (2.1)—(2.3) with the bound-
ary conditions (2.4) and positive initial data (2.5). As has been mentioned
at the beginning of this section and since p;, i = 1, 2, 3, given by

p1 = —ag1 B + p1B2 — az3fs,
p2 = az131 — p2fB2 + az3fs,
p3 = —az2fB1 + a1283,

are positive, we have for any initial data in C (ﬁ) or L (Q), p € |1, +o0],
the local existence and uniqueness of solutions to the initial value problem
(2.1)—(2.5) and consequently those of the problem (1.1)—(1.5) follow from
the basic existence theory for abstract semilinear differential equations (see
Friedman [3], Henry [5] and Pazy [15]). These solutions are classical on
[0, T%[ x £, where T™ denotes the eventual blow up time in L>° (€2). A local
solution is continued globally by a priori estimates.

Once invariant domains are constructed, one can apply the Lyapunov
technique and establish the global existence of unique solutions for (1.1)—
(1.5).

3. GLOBAL EXISTENCE

As the determinant of the linear algebraic system (2.6), with respect to
the variables u, v and w, is different from zero, to prove the global existence
of solutions of the problem (1.1)—(1.5) one needs to prove it for the problem
(2.1)—(2.5). To this end, it suffices (see Henry [5]) to derive a uniform
estimate of || £ (21, 22, 23)|,,, i = 1,2,30n [0,T], T < T, for some p > N/2,
where | - [, denotes the usual norms in spaces L (Q2) defined by

1
fully = 0 [ [u(@)]”dz, 1 <p<oo, and |lull,, = esssup |u(z)|.
|€2] e
xr
Q

Let 6 and o be two positive constants such that

0> Alz, (31)
(02 — A2,) (02 — AZ) > (A1s — A1aAss)?, (3.2)
where
AN+ A
Ai': ¢ ja ‘7.:172’3 -<‘7
AW B (<)
and let

quﬁ(pfq“)z and crp:apz, for ¢=0,1,...,p and p=0,1,...,n, (3.3)

where n is a positive integer. The main result of this section is
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Theorem 1. Let (z1(t,-),22(t,-),23(t,+)) be any positive solution of
(2.1)~(2.5). Introduce the functional

t— L(t /H 21 (t,x), 220 (t, @), 23 (¢, 2) ) da, (3.4)
where
H, (21,22, 23) ZZ PCA0,0p2 2 12377, (3.5)
p=0 g=0

with n being a positive integer and CE = #p‘),p.

Then the functional L is uniformly bounded on the interval [0,T], T < T*.
For the proof of Theorem 1 we need some preparatory Lemmas.

Lemma 1. Let H, be the homogeneous polynomial defined by (3.5).
Then

OH, "o (nm1)—

n n—

921 = ”chg—lc Og+10p412{25 123 Y, (3.6)
p=0 ¢g=0

OH, v (n-1)-

n n—

822 = TLZZ 1C 0 (Tp+12:(1122 q p’ (37)
p=0 ¢q=0

OH, & (n1)—

9o nzz 1CH0g0p2 2y 2y P, (3.8)
p=0 q=0

Proof. Differentiating H,, with respect to z; and using the fact that
qCl = qu I and pCP =nCP~} (3.9)
forq=1,2,...,p,p=1,2,...,n, we get

plql 1. p—q, n—p
nEEC 10q0p21 25792
82:1

p=1g¢=1

Replacing in the sums the indexes ¢ — 1 by ¢ and p — 1 by p, we deduce
(3.6). For the formula (3.7), differentiating H,, with respect to 2o, taking
into account

Ci=Cy1 ¢=0,1,...,p—1 and p=1,2,...,n, (3.10)

using (3.9) and replacing the index p — 1 by p, we get (3.7).
Finally, we have

n—1 p

q,p—q, n—p—1
E E n—p) ChCI0,0,2 25 23 .

p=0 ¢=0

Since (n —p)CE = (n —p) C"P =nC) """ =nCP_,, we get (3.8). O

623
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Lemma 2. The second partial derivatives of H, are given by

0%H, [ g (n=2)—
5 =n(n—1)Y > 0042022125 D7 (3.11)
21 p=0 ¢=0
oM, w22 i
321322 =n(n-1) pz;)qzocn 20y Og+10p22125 1 ( - Y (3.12)
0%H, 28 g (n-2)-
:n(n—1)226’7]272059%10[,“2;’25 "D (3.13)
62182’3 =0 =0
O%H, 2 -
—— =n(n—-1) ZZ oClgop 02l ! AP, (3.14)
023 ==
0’Hy, v —q (n 2)-p
D007 (n—1) pz;)qzo b Cl0,0p 1272 , (3.15)
0%H, =L g (n-2)-
5.2 :n(n—l)ZZCfoQCgé)qopzfzg 12, (3.16)
3 p=0 ¢=0

Proof. Differentiating aa— given by (3.6) with respect to z; yields
z

n—1 p

q-1_p—q _(n—1)—p
_nzzqcn 10p0g410q4121 25 23

p=1qg=1

Using (3.9), we get (3.11).

n—1p—1

nY > (p—q) Ch Cfyropiaziah T

p=1 qg=0
Applying (3.10) and then (3.9), we get (3.12).

n—2 p

— n—2)—
321823 ZZ n—1)—p)Cy 09q+10p+12(112§ qzé )P,

=0 ¢g=0

321822

Applying successively (3.10), (3.9) and (3.10) for the second time, we deduce
(3.13).

82 n—1p—1 . ( 1)
67—”2210 q) CF_1Cp0qopi12{2f " 25" 0
2 p=1g=0
The application of (3.10) and then of (3.9) yields (3.14).
n—2
62282’3 Z Z (n—1) Ch_1Cl0,0p2125" 12,

p=0 g=0



Reaction-Diffusion Systems 103

Applying (3.10) and then (3.9) yields (3.15). Finally we get (3.16) by dif-
H7l . . .
ferentiating B with respect to z3 and applying successively (3.10), (3.9)
3
and (3.10) for the second time. O

Proof of Theorem 1. Differentiating L with respect to t yields

’ o 5‘Hn 821 3Hn 822 aHn 82’3
L(t)/<azl ot 0z Ot 0z at>d
Q

H, H, H,
:/()\180 nAzl—i-)\gaa TLA22+)\388 nAZg) dz+

Z1 ) z3
0H,, 0H, oH,
F; F: F3 ) dx =
+/ ( 821 1+ 82’2 2+ 623 3) v
=TI+ J

Using Green’s formula in I, we get I = I1 + I, where

11/<A OH, 0z, OH, 0z _ OH, 323) s

182'18777 282’2 87n+3823 on

9Q
where ds denotes the (n — 1)-dimensional surface element, and
0’H,,
82’1 82’2

VZ1 VZQ

0%*H,
IQ = — / |:A1 W |v21|2 + ()\1 + )\2)
Q “

o*H, O°H, 2

AL+ A Ay ———

+ A+ As) 021023 Vava + A 023 V2|

0%H, 0%H,

A

322823 VZQVZ?, + 3 8z§

We prove that there exists a positive constant Cs independent of ¢ € [0, T*|
such that

+ (A2 + A3) V23| da.

I; <Oy forall te [O,T*[, (317)

and that
I, <0. (3.18)

To see this, we follow the same reasoning as in [11].
(7) If 0 < A < 1, using the boundary conditions (2.4) we get

OH, oH, OH,
I1=/()\1 971 (M1 —z1)+A2 B2 (2 —az2)+As 02 (73_6“23)) ds,
89

_ A ] - 3
where a = 12 and v; = %5, i =1,2,3. Since

OHu oy 4 ag O
821 m-ea 2 622

= Pp_1 (21,22, 23) — Qn (21, 22, 23) ,

0H,,
(Y2—aza)+A3 —— (13— z3)

H(Zl722,23) = >\1 823
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where P,,_1 and @, are polynomials with positive coefficients and respective
degrees n — 1 and n, and since the solution is positive, we obtain

lim sup H (21, 29, 23) = —00, (3.19)
(lz1|+]22]+|23]) —+o0

which proves that H is uniformly bounded on (R+)3, and consequently
(3.17).

(i) If A=0, then I; =0 on [0,T*[.

(#4i) The case of the homogeneous Dirichlet conditions is trivial since the
positivity of the solution on [0, 7*[ x € implies %—znl <0, %—Z; < 0and %irf <0
on [0, T*[ x 9§2. Consequently, one again gets (3.17) with Cy = 0.

Now, we prove (3.18). Applying Lemma 1 and Lemma 2, we get

n—2 p

ILh=-n(n-1) / Z ch_gcg [ (Bpgz) - 2] du,
Q p=0 q=0
where
A1+ A AL+ A
AMbgy20pt2 % Oq+10p+2 % Og+10p+1
AL+ A A2+ A
qu = ! B 2 9q+10'p+2 >\29q0p+2 % 9q0p+1 )
A1+ A3 A2 + A3
9 Og+10p+1 9 040011 A3bq0p

forq=0,1,...,p,p=0,1,...,n—2 and z = (Vz1, Vz, Vz3)".

The quadratic forms (with respect to Vz1, Vzo and Vz3) associated with
the matrices Bpq, ¢ = 0,1,...,p, p = 0,1,...,n — 2, are positive since
their main determinants A, Ay and Ag are positive too, according to the
Sylvester criterion. To see this, we have

1. Ay = MbOgq20py2 >0for¢g=0,1,...,pand p=0,1,...,n— 2.

AL+ A2

Mg 20p42 —5 Per10p+2

TN A
g 0q+10p+2 /\20q0p+2

= /\1/\293+10'127+2 (92 — A%z),
forg=0,1,...,pand p=0,1,...,n — 2.
Using (3.1), we get Ay > 0.

AL+ A AL+ A
A0g420p 42 % Og+10p+2 173 04+10p+1
A+ A A + A
3. Az = |= : Og+10p+2 A2040p 12 % 0q0p+1
A1+ A3 Ao+ A3
g Og+10p41 9 040p11 A30q0p

:)‘1>‘2)‘39§+10110—;04-20—%—}—1[(927A%Q)(OQ*A%B) — (Algf A12A23)2} ,
forg=0,1,...,pand p=0,1,...,n — 2.
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Using (3.2), we get Az > 0. Consequently we have (3.18).
Substitution of the expressions of the partial derivatives given by Lemma
1 in the second integral yields

nlp

J = /[ Ch_1Claizs~ P

p=0 ¢q=0
X (9q+10'p+1F1 + 0q0p+1F2 + HqO'ng) dz.

Using the expressions (2.7a), we get

Og10p+1F1 + 040 p 1 Fo + 040, F3 =

= ( — 04+10p41021 +a219q0p+1—0329q0p)f+(9q+10p+1/i1 — 12040p11) g+
+ ( —Og410pt1023 + a23bq0p11 + algeqap)h =

a1 (040p+1—044+10p11) —az20,0,

_I_
a23(0q0p+1 —0q+10p+1)+a120q0p f

= (a23(9q0p+1—9q+10p+1)+a129q0p) (

9q+10p+lul - M29q0p+1 _
+h)=
a3 (0q0p+1 — Og410p41) + ar2640p

Op+1 0 0
=0, 10, | azgs—L2* ( 4 —1>—|—a 4 > X
e < P, op  \bgt1 " Oq+1

Op+1 Gq 9 p+1 q Op41
a9 2= —1)—a 2= —
% 270, (9q+1 ) 32 9(1+1 m H2 20411 op +h
a p+1 ( Gq _ )+a 9 a Op41 ( 9 _ 1) + a 9 g
23 Og11 12 9q+1 23 op \Ogi1 1273 1

Since Beil and 0"“ are sufficiently large if we choose 6 and o sufficiently
q
large, using the condltlon (1.7) and the relation (2.6a) successively we get,

for an appropriate constant Cj,

n—1 p
J < C’3/ Z Z (21 + 22+ 23+ 1) C’ﬁ_ngz‘fzg_qzén_l)_p] dr.
Q p=0 q¢=0
To prove that the functional L is uniformly bounded on the interval [0, T,
we first write

n—1 p
ZZ(zl + 20 +23+1)Ch_ Clziz) 1P =
p=0 ¢g=0
= R, (21,22, 23) + Sn—1 (21, 22,23)

where R, (21, 22, 23) and S, 1 (21, 22, 23) are two homogeneous polynomials
of degrees n and n — 1, respectively. First, since the polynomials H,, and
R,, are of degree n, there exists a positive constant C4 such that

/Rn (21,22, 23) dx < C4/Hn (21, 22, 23) dx.
)
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Applying Hélder’s inequality to the integral fQ Sn—1 (21, 22, 2z3) dz, one gets

n—1
n

3=

/Sn_l (21, 22, 23) de < (meas Q) /(Sn_l (zl,zg,z?,))ﬁ dz
Q Q

Since for all zy > 0 and 23,23 >0

(Sn_1(21,22,23)) "7 (Su_1 (€1,60,1))77

H, (21, 22, 23) H, (&,62,1) ’

z z
where & = i, & = i and

. (Snfl <£Ia£27 1))ﬁ
N NGRS

§a2—+o00

< 400,

one asserts that there exists a positive constant C5 such that

(Sn—1 (21,22723))ﬁ
H, (21, 22, 23)

< (5 for all z, 29,23 > 0.

Hence the functional L satisfies the differential inequality
L' (t) < CsL () + C-L™% (1),
which for Z = L= can be written as
nZ' < Ce¢Z + Cs.
A simple integration gives a uniform bound of the functional L on the

interval [0,T]. This completes the proof of Theorem 1. O

Corollary 1. Suppose that the functions f (r1,7r2,73), g (r1,72,73) and
h(ri,7r2,73) are continuously differentiable on ¥, point into ¥ on 0¥ and
satisfy the condition (1.7). Then all uniformly bounded on Q solutions of
(1.1)—(1.5) with the initial data in X are in L (0,T; LP (Q)) for all p > 1.

Proof. The proof of this Corollary is an immediate consequence of Theo-
rem 1, the trivial inequality

/(21+ZQ+23)pdx§L(t) on [0,7%[,
O

and (2.6a). O

Proposition 2. Under the hypothesis of Corollary 1, if f(ri,72,73),
g (ri,m2,13) and h(r1,r2,73) are polynomially bounded, then all uniformly
bounded on Q solutions of (1.1)~(1.4) with the initial data in ¥ are global
m time.
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Proof. As has been mentioned above, it suffices to derive a uniform estimate
of | F1(z1, 22, 23) s [[F2(21, 22, 23) |, and [[F3(21, 22, 23) [, on [0, 7], T" < T~
for some p > % Since the reactions f (u,v,w), g (u,v,w) and h (u, v, w) are
polynomially bounded on X, by using relations (2.6a) and (2.7a) we get that
so are Fi(z1, 22, 23), Fa(z1, 22, 23) and F3(z1, 22, 23), and the proof becomes
an immediate consequence of Corollary 1. O
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Abstract. In this paper, sufficient conditions have been obtained for
the existence of at least two positive periodic solutions of the Nicholson’s
Blowflies model

2/ (t) = —a(t)z(t) + p(t)z™ (t — 7(t))e T W= E=m(1),

The Leggett—Williams multiple fixed point theorem has been used to prove
our results.
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1. INTRODUCTION

In this paper, we study the existence of two positive periodic solutions
of a nonlinear functional differential equation of the form

(1) = ~a(®)a(t) + p(t)a™ (¢ — 7(B))e O 0=, (1)

where a, p, v and 7 € C(R, RT) are T-periodic functions, m > 1 and n > 0
are reals and T is a positive constant.
If m =1 and n =1, then (1) yields the Nicholson’s Blowflies model

#(1) = —a(t)a(t) + p(H)(t — 7(8))e OO, 2)

When all the parameters are positive constants, (2) reduces to an original
model developed by Gurney et al. [6] to describe the population of Aus-
tralian sheep-blowfly that agrees well with the experimental data of Nichol-
son [11]. One may note that the equation explains Nicholson’s data of
blowfly quite accurately and hence we refer (2) as the Nicholson’s Blowflies
model.

The variation of the environment plays an important role in many biolog-
ical and ecological dynamical systems. In particular, the effects of a period-
ically varying environment are important for evolutionary theories, as the
selective forces on systems in a fluctuating environment differ from those in
a stable environment. Thus, the assumption of periodicity of parameters
of the system (in a way) incorporates the periodicity of the environment
(e.g., seasonal effects of weather, food supplies, mating habits, etc.). In
fact, it has been suggested by Nicholson [12] that any periodic change of
climate tends to improve it’s periodicity upon oscillations of internal origin
or to cause such oscillations to have a harmonic relation to periodic climate
changes. In view of the above fact, it is realistic to assume the periodicity
on the parameters or on the coefficient functions of (1) and (2). Thus, the
existence of periodic solutions of (1) or (2) are naturally expected.

Many authors have studied the existence of at least one positive periodic
solution of (2). For this, one may refer the papers in [5], [7], [16], [23], [24],
[27]-[29]. Krasnoselskii fixed point theorem [3] have been used to prove the
results. Although the existence of at least one periodic solution of (2) is
largely studied in the literature, studies on the existence of at least two
periodic solutions of (1) and (2) are relatively scarce.

In this paper, we have made an attempt to study the existence of at
least two positive periodic solutions of (1). We have used Leggett—Williams
multiple fixed point theorem [10] to prove our theorem. This theorem have
been used by the authors in [19]-[22] to study the existence of three periodic
solution of the following differential equations:

a'(t) = —a(t)x(t) + Mf(t, z(h(t))),
and

2'(t) = a(t)x(t) — Af(t, 2(h(1))),
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where A is a positive parameter. The results obtained for the above equa-
tions were applied to (1) with constant coefficients of the form

2 (t) = —ax(t) + pa" (t — m)e 77T, (3)
We state the results obtained in [20], [21] in the form of theorems.

Theorem 1.1 ([20]). Letm > 1 and 2e(§—1)6m 1y < 1 Then the
equation (3) has at least three positive T-periodic solutwns for 5 57 <p< T .

Theorem 1.2 ([21]). Assume that m > 1 and that
T

/p tydt > §(5 )( 787 )mfl. (4)

m—1
0

Then the equation
2 (t) = —a(t)z(t) + p(t)x™(t — T(t))e—'m(t—r(t)) (5)

has at least three nonnegative T'-periodic solutions, where y > 0 is a constant
T

and § = exp ( [ a(s)ds).
0

For the last two decades, there has been a rich literature on the use of
fixed point theorems on the existence of positive solutions of boundary value
problems. The existence of periodic solutions of this type equation is closely
related to the existence of solutions of general boundary value problems.
The ideas in this paper have come from those for general boundary value
problem.

In the next section, we will state the well known Leggett—Williams mul-
tiple fixed point theorem [10] and then we will apply the theorem to the
model (1). The obtained result improves our previous result.

2. MAIN RESULTS

From the periodicity of the solution and the assumption that z is known
on the nonlinear parts of (1), one can construct a Green’s Kernel. In fact,
(1) is equivalent to

t4+T
z(t) = [ G(t,s)p(s)a™(s — 7(s))e V& =76 g,
t
fa(o) a0
where G(t,s) = -——— is Green’s Kernel, which is bounded by
efj] a(0) d9_1
1 0 fT (0)de
o 571—G(t’8)—571 , 0=¢d

The following concept from the Leggett—Williams multiple fixed point
theorem [10] is needed. Let X be a Banach space and K be a cone in X.
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For a > 0, define K, = {z € K;|jz|| < a}. A mapping ¢ is said to be
a concave nonnegative continuous functional on K if ¢ : K — [0,00) is
continuous and

Y(pr + (1= py) 2 p(x) + (1= w)v(y), x.y €K, pel0,1].
Let b,¢ > 0 be constants with K and X as defined above. Define
K(,b,¢) = {x € K;9(x) > b, || < c}.

Theorem 2.1 (Leggett—Williams multiple fixed point theorem [10, The-
orem 3.3]). Let X = (X, || - ||) be a Banach space and K C X a cone, and
cq > 0 a constant. Suppose there exists a concave nonnegative continuous
functional ¥ on K with ¢(u) < ||lu|| foru € K., and let A: K., — K., be
a continuous compact map. Assume that there are numbers c1, co and c3
with 0 < 1 < o < c3 < ¢q such that

(i) {u € K(¥,c2,c3); ¥(u) > c2} # ¢ and ¥(Au) > c3 for all u €
K(7/’a02703); .
(ii) ||Au|l < 1 for allu € K, ;
(iil) Y (Au) > co for all u € K(v,co,cq) with ||Aull > c3.
Then A has at least three fized points ui, uz and uz in K.,. Further-

more, we have u; € K¢, us € {u € K(,ca,c4);0(u) > co}, ug €
KC4\{K(wacQac4) UKcl}-

In this article, X will denote the set of continuous T-periodic functions,
which forms a Banach space under the norm ||z|| = sup |z(¢)|. Define an
0<t<T

operator A on X by
t+T
(Az)(t) = / G(t, s)p(s)x(s — 7(s))e Y O=(=T(D) gg
t

and a cone K on X by
1
K ={oeX;o() 2 5l }.

It is easy to verify that A(K) C K and A is a completely continuous op-
erator on K. Further, the existence of a positive periodic solution of (1) is
equivalent to the existence of a fixed point of A in K.

According to the localization of the fixed points in Theorem 2.1, one of
them is possibly a zero (namely u; € K, ). Thus, the operator A has at least
two positive fixed points and a zero fixed point as can be easily observed.
Accordingly, (1) has two positive T-periodic solutions and a possible trivial
solution (if the conditions of Theorem 1 are satisfied).

On the cone K, we define a nonnegative concave functional 1 as

U(@) = it ot
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and let
¥ = Joax (1),
Now, we are ready to prove our main results in this paper.
Theorem 2.2. Let m > 1, a(t) > 0 and y(t) > 0 fort € R, and
T
/p(t) dt > e(§ — 1)5m 1" (6)
0

hold. Then (1) has at least two positive T-periodic solutions.

Proof. From
t xm—le—'y(t):c"
limsup max =0
oo O0<t<T a(t)

it follows that there exist constants 0 < p; < 1 and 7 > 0 such that
p(t)ame ="

a(t)

<z for 0<t<T, x>n.

Let
p(t)ame— "
Lo = max —_
0<t<T,0<z<n a(t)

Then
p(t)zme (="

a(t)

Choose ¢4 > 0 such that

< 1z 4 po, for x>0 and 0 <t <T.

2
L—p’

cy > max{

2
:\H‘ =
——

Then for x € K,,, we have
t+T
|Az|| < sup / G(t, s)p(s)z™ (s — 7(s))e /=" (=7 g <
0<t<T J

t+T
< swp [ Gt,s)a(s) (s — 7(5)) + ) ds <
0<t<T /
t+T
< swp [ Glts)als)ula] + ) ds <
0<t<T

<pieq + pe < cy.
Hence A : K., — K., Set co = éli and c3 = —-. Clearly ¢y <
’y’n ’Y’V‘L
dea = c3 < ¢q. Setting ¢o(t) = ¢o = %, we have that ¢¢ € {z;z €
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K, ca,c3),0(x) > ca} # ¢. Now, for x € K (v, ca,c3) we obtain

t+T
= _ =v()a" (s=7(s)) >
P(Ax) omin / G(t,s)p(s)z™(s — 7(s))e >
T

25 7552/1} )ds > co.
0

Hence the condition (7) of Theorem 2.1 is satisfied. Since m > 1, we have
that

p(t)rme 0"
limsup max ————

=0
2—0 O0<t<T a(t)z
implies that there exists a constant ¢; € (0, cg) small enough such that

p(t)zme V="

<1 for 0<z<¢.
a(t)x or <zr<c

Thus for z € K,,, we have

t+T
|Az|| < sup / G(t, s)p(s)z™(s — 7(s))e V" (77D g <
0<t<T
t+T
< sup / G(t,s)a(s)|x]| ds < cq,
0<t<T J

that is, A : K., — K.,. Thus the property (ii) of Theorem 2.1 is satisfied.
Finally, for x € K (v, c2, c4) with ||Az|| > c3,

T
s < ||Az|| < 6;;1 /p (s — 7(s))e V2" (s=7()) gg
0
implies that
T
(A 51 /p (5 — 7(s))e V" (=) g >
0

>703—02.

)

This shows that the condition (iii) of Theorem 2.1 is satisfied. By The-
orem 2.1, the equation (1) has at least two positive T-periodic solutions.
This completes the proof of the theorem. O

The following corollary can be obtained as an immediate consequence of
Theorem 2.2.
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Corollary 2.3. If m>1,a>0,~v>0 and
pT > e(6 —1)6m 1y

m—1
" (7)
hold, then (3) has at least two positive T-periodic solutions, where § = e*T.
Remark 2.4. The conditions of Theorem 1.1 imply the conditions of
Corollary 2.3. However, Corollary 2.3 gives two positive T-periodic solutions
where as Theorem 1.1 yields three positive T-periodic solutions. Although
the range on p defined in Theorem 1.1 forces us to assume that pT' < 1 and
2e(d — 1)(5”‘_17% < 1 must hold. On the other hand, the condition (7) is
sufficient in corollary 2.3 for the existence of two positive periodic solutions

of (1).

In what follows, we prove another theorem on the existence of two positive
periodic solutions of (1).

Theorem 2.5. Let m > 1, a(t) > 0 and v(t) > 0 fort € R, and

B2 {28} > ™yt (8)

hold. Then (1) has at least two positive T-periodic solutions.

Proof. Set ¢y = 5 L and ¢5 = . Choose ¢4 > 0 as in Theorem 2.2. One
’Yﬂ, ’Y’IL . o
may proceed as in Theorem 2.2 to prove that A : K., — K.,. Clearly, ¢pg =
go(t) = 2% € {x, x € K(¥,ca,c3),9(x) > c2} # 0. For x € K(¢,¢2,¢3),
we have
t+T
Y(Az) > min {M}cé"e“’é%; G(t, s)a(s) ds > ca.
o<t<T La(t ’
t

1

-
max{ Z(t) }m-1

®
t
|Az|| < max {&}cﬁ” =c.
0<t<T Laf(t)

The third condition of Theorem 2.1 is easy to verify and hence we omit it.
The theorem is proved. O

Choose ¢; = . Using (8) we have ¢; < ¢3. Now, for z € K,

we obtain

The following corollary follows from Theorem 2.5 as a direct application
to equation (3).
Corollary 2.6. Letm>1,a>0,v>0 and
D> a61+(m—1)aT7% (9)
hold. Then (3) has at least two positive T-periodic solutions.

Remark 2.7. Since aT < T — 1, Corollary 2.6 gives a better sufficient
condition than the one in Corollary 2.3.
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3. CONCLUSION

In this paper, we have been able to find sufficient conditions for the
existence of multiple periodic solutions of (1) when m > 1. We have not
obtained any result concerning the existence of multiple periodic solutions of
(1) when 0 < m < 1. As mentioned earlier, many authors [5], [7], [16], [23],
[24], [27]-]29] have used Krasnoselskii and other fixed point theorems for the
existence of one periodic solution of (1) when m = 1, that is, of equation (2).
From the literature, it seems that no results have been obtained regarding
the existence of multiple periodic solutions of (1) with 0 < m < 1. Thus,
it would be interesting to obtain sufficient conditions for the existence of
multiple periodic solutions of (1) when 0 < m < 1. This is left as an open
problem.
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Abstract. The system of differential equations of steady state oscilla-
tions of anisotropic elasticity are considered. By the generalized Fourier
transform technique and with the help of the limiting absorbtion principle,
we construct maximally decaying at infinity matrices of fundamental solu-
tions explicitly. Their expressions contain surface integral over a certain
semi-sphere and a line integral along the edge boundary of the semi-sphere.
We investigate near field and far field properties of the fundamental matri-
ces and show that they satisfy the generalized Sommerfeld—Kupradze type
radiation conditions at infinity.
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1. INTRODUCTION

Fundamental solutions play an important role in investigation of bound-
ary value problems for partial differential equations.

For isotropic bodies the matrix of fundamental solutions of steady state
oscillation equations satisfying the so-called Sommerfeld-Kupradze radia-
tion conditions at infinity is constructed in [5], where it is written explicitly
in terms of standard functions.

In the paper, using the generalized Fourier transform method and the
limiting absorbtion principle (see [1]), we represent the fundamental solu-
tion of steady state oscillation equations of anisotropic elasticity under the
assumption that the characteristic surfaces satisfy some specific restrictions.

The fundamental solution is constructed by means of surface and curvi-
linear integrals. In the surface integral the integration manifold is a hemi-
sphere, while in the curvilinear integral the integration line is a unit cir-
cumference. On the basis of these representations we define the generalized
Sommerfeld-Kupradze radiation conditions in anisotropic elasticity. Similar
results can be found in the references [2], [3], [6]-[9].

2. REPRESENTATION OF THE FUNDAMENTAL SOLUTION

2.1. Equations. The homogeneous system of differential equations of
steady state oscillations of anisotropic elasticity reads as follows (see, e.g.,

[6], [7])
C(0,w)u = C(O)u + w?u = Cpjpg0Oqup + wu = 0, (2.1)

where u = (uy,us,u3)’ is the displacement vector (amplitude), w > 0 is
the oscillation (frequency) parameter,

(C(@, w) = 0(8) =+ w213 = [ckquﬁjaq + (SkaUZ]
C(9) = [ckjpq0;0q]

3x37
3x3 "

Here 0; = B%j, I5 stands for the unit 3 x 3 matrix, dy, is the Kroneker delta,

the superscript ()T denotes transposition, cg;pq are elastic constants
ijP(I = Cjkp(] :Cquja kaj7paq: 17273'

Let F,—.¢ and fgjw denote the direct and inverse generalized Fourier
transform in the space of tempered distributions (Schwartz space S’(R3))
which for regular summable functions f and g read as follows

Faell) = [ fa)etn 7210 = s [at0eas
R3

R3

where © = (21, 22,23), £ = (§1,&2,§3) and x - £ = €. Note that for an
arbitrary multi-index a = (a1, ag,a3) and f € S'(R?)

Flo*fl = (=i)*F[f], Fg%g] = (i0)*F~'[g].
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Denote by ¥(z.w) the matrix of fundamental solutions of the operator
C(0,w)
C(0,w)¥(z,w) = I30(x).
Here §(-) is the Dirac’s delta distribution. By standard arguments we can
show that

U(r,w) = FHCT (i w)] = F ! [w} -

H(g,w)
1
= N(0p,w .7:1{ }zN@x,wa,w, 2.2
0r 7 | ey | = NOr @), (22)
where C~1(—i&,w) is the inverse to the symbol matrix C(—if,w), C*(—if, w)
is the corresponding matrix of cofactors, H({,w) := detC(—i&,w),

N(0y,w) = [Ni;j(0z,w)]3x3 is the formally adjoint matrix to the matrix

C(o,w), i.e
N (8, w)C(0,w) = C(0,w)N(0y,w) = H(x,w)Is.

It is clear that Nj; is a nonhomogeneous differential operator of order 4
containing Oth, 2nd and 4th order differential operators.
Assume that for any n € ¥, where

Si={neR’| |yl =1},
the equation H(&,w) = 0 written in spherical coordinates
&1 = pcospsind,
& = psinpsinb,

§3=pcosl, 0<O<m, 0<p<2m, p=/&+&&+E =1

has three different roots tq, to, t3 with respect to t = Z—z, SO

Eu

j:l
where t; = u?(n), j=1,2,3, and

a(n) = [impdmeam]™ n €Sy wi(-n) =), al—n) = a(n).

It is clear that
C(—i€,w) = —C(&) + I3,

where C'(§) = [chjpeéréjlaxs and C(&) is a positive definite matrix, which
means that there exists § > 0 such that

C(&)a-a > 6lal*[¢]*  for all a € C.
Note that a(n) = det C(n) > 01 >0, n € £, and H(—{,w) = H({,w).
Lemma 2.1. Let 7 = w +ic with e # 0 and w > 0. Then
H(&,7) = det(—i&,7) # 0 for all £ € R\ {0}.
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Proof. Assume that H(¢,7) = 0 for some & € R3\ {0} and a complex .
There exists ag € C3, ag # 0, such that

C(—i&, T)ag = —C(&)ag + m%ag = 0.
Multiplying the last equation by @y (in scalar sense) we have
7*lag|? = C(&)ao - @,

or )
2 _
T4 =—=C(&ag-a9 >0
|ao?
due to the positive definiteness of C'(£). But 7 is a complex number. This
contradiction completes the proof. O

2.2. Fundamental solution of pseudooscillation. First we consider the
situation of complex 7 = w + ie, € # 0 instead of w > 0 and construct the
fundamental solution of the corresponding system of pseudooscillation.

Theorem 2.2. The fundamental solution of (2.1) for a complex T =
w + ie have the following form:

: gil(e g
U(z,7) —N(am,f)[ . 73/{; — _Nﬂz)}jal)], (2.3)

or
3

i —i|(z-n)|THq

W(va):N(aI,T)[WZQTB/{Z < Hq }Z(El) :

(€<0) ST | (7 T R
J=1,j#q

Proof. Taking a complex T = w + ie, € # 0, we have H(¢,7) # 0 due to
Lemma 2.1 and

D7) = FH(E7)] =

(2.4)

1 e—iz{

[ de (et (2.2)).
(rp | HE)

It is easy to check that

1 7im~§ 1 eimf
e = Gy ) e >d52(2w)3/ A6 * =

R3
u,ﬁ
27r /H

Taking into account that x - £ = |z|- pcosy = (z - n)p, cosy = (‘ i n) =

(i |£|) we have

||

Mo.r) = 20)° [ 7{ el ey p2dp dxy }

40 U >ﬁ[ g )l + oy ()]
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_ (g8 7 eilelocosy 2, gs,) }:
o /o/{—am) i )

8 _l;[1 [p = T (]lp + 715 (n

(27r)32/ 3571){/ . etilzlpcosy

0* dp}. (2.5)
. 0 jlle [p— T (]lp + 715 (n)]

From (2.5) we can write that

L) = = 55, ! /d21 {7 eil@mp
0

3 p*dp+
A

w3 ()]

oo

—i(zn)p )

+ 3 pdp ;. (2.6)
o IIlp?* =723 (n)]

Taking into account

oo

e—Hxn)p

_[p=—r]_
3 2 5 2 pdp_|:d,0_d7":|_
) l_[l[p =723 (n)]
=

— 0o

0
i(xn)r i(x-n)r
_ / € T’Q (*d?") _ / . e
72

0 lill[r2 —72u3(n)]

(2.6) can be rewritten as

et@m)p ,2
o - [ 15 [
2(2m)3

—o0 H =70

(2.7)
m]lp + 75(0)]

Assume that p is a complex variable p = p' + ip
i5ﬂj(77)» € 7é 0,7=1,23

» Thi(n) = wp(n) +
In (2.7) the integrand is an analytic function with respect to p and (see
Fig. 2.1)

oo

etl@m)p 2 et(zmp )2
It el e
l;I[p g ()] lp+7w5(n)] (n)]

I:I1 [p—7p;(M)lp+TH;
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i T= O+ igly

AP ’
4(‘\/ ! 1
—OH, IO I
e>0: —_ i R ! S - '
() | | O, p
1 1
¢ l R
—T,= —O [~ IEL, :
|

=TI, = —0O W, — igly, AP
1
1
1
1

T,= O+ gl

FIGURE 2.1.

or

1 s, el@mep2 dp
I'(z,7)=— | >
2(27)32[ a(n) / lill[p — 75 (m)][p + 745 ()]

Let us denote by C’E and Cj the upper and the lower half-part of the
circumference with radius R > 1 on the plane 0p'p”. If (x - ) > 0, then
i(x-n)p=1ilx-n)p — (x-n)p"” and in this case Re{i(z - n)p} <O0.

Clearly, for (z-n) >0

ei(w~n)pp2

3 dp—0 as R — Ho0,
ot H1 [p? =723 (n)]
=

because the integrand is O(p~4).
Similarly, if (x - 1) < 0, then Re {z(a: . n)p}pec, <0 and
R

ei(x~n)pp2
/ 3 dp— 0 as R — +oo.

G L= (m)

We have the following situations:
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[+ [+ [ =0

23.3) C;rzj Cj,(;)

a) (z-n) >0,e>0;

¢ —’C},Lj
FIGURE 2.2.

Choosing ¢ > 0 sufficiently small and taking limit as R — 400, we get

i(zn)p 52 3 i(zn)p 52
e p e p
/3—dp= > / —————dp.  (2.9)

3
i Hl(p2 —242) =0 s(rug) Hl(p2 —72p3)
j= j=

FIGURE 2.3.
z(mn) z(:r n)p 2
e ey
/ - Z / - : dp. (2.10)
e 11 (P2 - 7—2:“3) Cs(—T1q)) H p*— 7'2/1]‘)

i(zm)p 2 et(@m)p )2
/ # — Z / _e 7 dp. (2.11)
q

(p - 72u3)

o
e
)
o
|
\]
™
=
<o
~—
H
:]oa

8(— T/Lq)
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( Gaoi) X
N\ 0 B
N o

FIGURE 2.4.

d) (z-n)<0,e<0;

FIGURE 2.5.
i(z 77) 2(:70 n)p 2
e
/ - Z / —  _dp. (2.12)
1:[( Cuslrna)) p —7243)

In what follows, we use the following notation (see Fig. 2.6)
Sr=mes ¢ (z-n) =0},
Y, ={ne : (x-n) <0}.

From the relations (2.9)-(2.12) and (2.8) we conclude that for € > 0

D(z,7) = — L/{Z / rge[”"”pzdz)}zal)

q=1
Cq, 5(7'/"11

3 etEme 2 dp d¥y
J(E S ) e

3
— 2
5o V4 lcq,a(—ruq)j jl;[l(pQ _ 7-2Hj
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128
FIGURE 2.6.
and for e <0
3 .
1 etEmep2dp | dy,
U(2,7) = —5-—3 / > / - (2.14)
2(2m) -1 N IC)
T s (i) Hl(p - 715)
j=
Using the Cauchy integral formula, we can write
ei($‘n)pp2 dp . 2 . ei(l"n)TMqTQ M3 )
- — . = 2mi— 3 :
Cqs(Tq)) H (p* — Tzﬂj) H [T1q + Th;] ) H [Trq — Th;]
Jj=1 J=1 Jj=1,7#4q
ei(ﬂﬁ'n)PpQ dp ) e_i(m'n)TﬂqTQ /1’3
3 = 271 3 3 )
CosCrng) 11 (PP = 7203) =i =] 11 [=7pg + 715]
’ 7=1 i=1 i=1,j#q
Due to these relations, we can rewrite (2.13) and (2.14) as follows
. 3 i(zn)TR 2,2
e (7w dx
Do, 7) = — / 3 (7" 1g) L
e>0 87T2 =1 3 3 5 a(n)
PR | N 7R I | G IR 7]
j=1 =1, 5#4q
3 —i(xzn)TR 2,2
e (T ay>
- /{Z 3 3( ta) }a(nl) (2.15)
S | N TP I B U G b o
J=1,j#q

j=1

and
__ b : e @mTha (72 1;2) s
Ee L/ {Z “pa—pi) 11 [—quw}a(”)

J=1,77#q
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T
5 3 af) |
S U I VO
=1 i=1.i#q
Clearly, (2.15) and (2.16) decay at infinity faster than any negative power
of |x|.
Taking into account (2.15) and (2.16), we get

. 3 il(@n)|Tig (72,2 s
M(a,r)=——5 [ ‘ S L (217)
g > 0 87T2 — 3 3 5 a(77)
i~ 9= [ Tlpg a5l TT (g — wyl7
j=1 i=1,j#q
and

; 3 *il(w-n)\wq( 2,2
€ T p’q) dEl
L(z,7) 8W2/{Z - 5} . (218)
il T

3 a(n)
e<0 o= I lug +py] 1 g =
Jj=1 J=1,j#q
Finally, from (2.17) and (2.18) we obtain (2.3) and (2.4). O

2.3. Fundamental solution of steady state oscillation. Using Theo-
rem 2.2 and limiting procedure, we can prove

Theorem 2.3. The fundamental solution of (2.1) has the following form

U(z,w,1) = N(0p,w) /ZF )el@mea(m gy, (2.19)
s 971
or
U(x,w,2) = —N(0,,w) /ZF Ye~ @ meam) gy, (2.20)
st =1

where ) )

i Pq(n
Fy(n) = T2 3 1 . (2.21)

{ I 153 = A fatn)

Proof. Taking limit in (2. 17) and (2.18) as |e| — 0, we get

il (@) |whiq (m)
pe(n) dXi
Jim D(z, 7) 1671' 167203 /Z -

a(n)
(12 (n) — 115 (n)]
J= 1J7fq
=:I'(z,w,1); (222
. 3 —i|(z-n)|wpg(n)
lim T'(z,7) = #/Z - tan) 2 N
L 1672w3 — 3 5 2 a(n)
£, 0=t T [u2(n) — 15 (n)]
j=1,5#q

=:I'(z,w,2). (2.23)
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Clearly, I'(z,w,2) = T'(z,w, 1).

(2.22) and (2.23) are the formulae similar to those in [4], but they are not
identical. Another difference is that (2.22) and (2.23) satisfy the radiation
conditions.

We can rewrite (2.22) as

; 3 i(z-n)wpg(n)
_ i e “Wpg(n)  d¥y
INz,w,1) = _167r2w3{ /Z 3 , a(n)+
st =t I [wg(n) — w5 (n)]

3

/ Z e—i(z w#q(ﬂ)u (n) d¥, } (2.24)

J= fL 2() — 2y

Using the substitution = —7 in the second integral of (2.24), we obtain
(q(=n) = pq(n), X1y = d¥5, Xy — T, a(=n) = a(n))

et(@mwpg(n)
1 Wpg(n)  dy
Mo 1) =~ | 3 .

S Tl ) — ) Y
Jj=1j#q

I'(z,w,2) can be written in a similar form

—i(zmwpq(n)y, J(n)  dS
INz,w,2) 87r2w3 /Z o ()

st =t IT [wg(n) —pi(n
j=1j#q

Taking into account the notation (2.21) and the fact that p, () = wpq(n),
q=1,2,3, we get

(z,w,1) /ZF Yel@mea gy, (2.25)
s =1
and
[(z,w,2) /Z et @ Mea gy, (2.26)
st 91
Evidently, (2.25) and (2.26) imply (2.19) and (2.20). O

Denote by S, the characteristic surface given by the equation p = p4(n),
n € X (g =1,2,3). We assume that S, is a star-shaped surface with respect
to the origin and it is convex; it means that £-n(§) > 0 for all £ € S,, where
n(§) is the outward unit normal vector at £ € S,,.

Note that np4(n) =& € S, and

iy = (i n(©) a5, = - (¢ n(©)as,
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Sy (p=p M)

qg=123

FIGURE 2.7.

Therefore we can rewrite (2.19) and (2.20) in the equivalent form

U(z,w,1) = N(0p,w) Y / Fy(n) p3(77()£ €) as,:
st @) I
> i@ (¢ .
U(z,w,2) = —N(0z,w) Z Fq(n) p3(n)(€ €)) ds,

3. ASYMPTOTICS

3.1. Singularity in Vicinity of the Origin. Let S be a regular surface

in R3. Then
asf@ = Ok(n,Ve) = [nx Ve, k=123,
ie.,
as?(g) = 01(n, Ve) = 2 a% ns a% :
asf(g) = 02(n, Ve) = n3 8(2 | ai :
65?(6) 05l Ve) = ¢ 25%’

where V¢ = ( 9 0 9 ), n(&) is the outward unit normal vector at £ € S

O&17 0€5 7 O3
and X denotes the vector product.
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If S is a closed regular surface and f, g are smooth functions, then by
the Stokes theorem

/ O (., V) F(€)] F(€)dS = — / £(6) [0, Ve)g(€)] dS
S

S

Let us consider a special type of the function 1. (§) = ¢ (é) where r = ||
and % =n € ¥;. We have

Vet (€)]; = [vgw (5)L — (Vb = 5 0-(6) = £ v(0) =
; 377: ZZ Z anp ai H B
; ol [ fﬂ 1 |28 - vt

ie.,

Ve (©) = Veotn) = Ve (&) = L9300~ nln- Vo). (3.)

It follows from (3.1) that for the case of 31 (n =n)
ou(n, Ve)(n) = au(n. Vo) ( £) =000, V() =

= % [7] X V,ﬂ/}(n)]k = %8k(navn)7/}(n)a

[0 % Vy(m)]k = Ok(n, Viy)v(n).

Hence

0 73 =12
o1, Vy)n=|-n3|, Oa(n,Vy)n=| 0 |, &(n,Vyn=|m |. (3.2)
72 - 0

Let us consider 1)(n) = @ MPM) with ﬁ =T € X, nEX, A= const
and p(n) = pr(n), k =1,2,3. We easily derive
O (n, V,,)ei’\@'”)p(") —
= AN ED [(F - 9y (n, V)m)p(n) + (& - 0)Ok(n, V) p(n)] . (3.3)
It is evident from (3.2) that

1 0
T- 81(777 Vn)ﬂ = -%2 N3 | = /"E\3772 — EL'\2773 = [77 X :/fh,
T3 2
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71 [ 13 1

-0, Vyn=|Z2| | 0 | =Fins —Tgm = [n % T]a,
3 L=
71 ——772-

z- 83(777 vn)” =\|Za | | m | =Tom — T = [7’] X /.7;\]3,
T3 | 0 ]

i.e.,
(fak(%vn)n) = [nxﬂlm k:1>273
Denoting

@i (7, n) = [n x Zlkp(n) + (T - 0Ok (0, Vi) p(n) =
=nx(@pn) + @ -n)Vyp(n), k=123,
we can rewrite (3.3) as

o (n, Vn)eM(@n)p(n) - i)\ei/\(i-n)p(n)@k@’ n), k=1,2,3.

Lemma 3.1. The following conditions are equivalent:
i) ®(z,n) =nx [zp(n) + (& -n)Vyp(n)] # 0;

ii) Zp(n) + (@ - 0)Vyp(n) K n;

iii) n x ®(Z,n) = —xp(n) (@ - n)Vyp(n) # 0.

3
Proof. Since ) n0k(n, V) =0, from (3.5) and (3.6) we obtain
k=1

D om®i(@n) =0, ie, n-®@Fn) =0, ne,
k=1

where ®(Z,n) = (®1(Z,7), ®2(Z,7), 1(Z,7n)) and n = (91, 792,713)-

If ®(Z,n) # 0, then this condition is equivalent to [ x ®(Z,n)] # 0.

On the other hand,
®(z,n) # 0= 2(,n) =nx (Tp(n) + (@ n)Vyp(n)) #0,
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i.e., the vector p(n)Z + (Z - n)Vap(n) is not parallel to . Thus, i)<ii).

In the particular case under consideration it is clear that

1
E Pq (77)7 t>0.
The functions pg(n), ¢ = 1,2, 3, are homogeneous functions of order

for n € 3. Ttherefore

pqe(tn) = wpg(tn) = %wuq (n) =

(n-Vap(n) = —p).

(=1

(3.7)

Taking into account (3.7) and the fact that for arbitrary vectors a,b and ¢,

ax[bxc=bla-c)—c(a-b), we have

nx®(z,n) =n x{nx (ZTp(n) + (T -n)Vyp(n))} =

=n{(n-2)pn) + @ -n)n-Vypn ))} (@p(n) + (T -n)Vyp(n)) =

= m-2){p(n) — p(m)}n —A{zp(n) + (@ -1)Vyp(n)} =
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= —zp(n) = (Z-n)Vyp(n),
hence
n®(z,n) = —=2p(n) — (Z,1)Vyp(n).
Using (3.4), we conclude that i)<iii). O
Note that if (z-n) =0, then L 7, | x n| =1 and

(@, m)| = |n x z|p(n) = p(n) >0,
ie., if (-n) =0, then ®(z,n) # 0.
From Lemma 3.1 we conclude that
O, n) =0 x [Zp(n) + (T -n)Vyp(n)] = 0 <
= Tp(n) + (T -n)Vyp(n) = 0. (3.8)
Since
n- (Zp(n) + (@ -n)Vepm)) = (n-2)p(n) + (@ - n)(n - Vyp(n)) =
= (n-%)p(n) — (- npn) =0,
this means that {Zp(n) + (z - n)V,p(n)} L n and
|2, n)| = [Zp(n) + (Z - n)Vyp(n)]-

The points n € X satisfying the equation (3.8) will be called critical
points on 3 corresponding to the direction T.
Denote by S the surface defined by the equation p = p(n). Clearly,

pln) : 1 — 5.

pmm =£eS

3
nez

AS‘

FIGURE 3.1.

Lemma 3.2. 19 € Xy is a critical point corresponding to the direction
T € X1 if and only if n(&o) = £, where & = p(no)no € S.
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Proof. Let us consider the function

£
POl -0 (). €cR L
where p(n) is a positive function defined on ¥y as a function of 7, is differ-
entiable with respect to  and homogeneous of order —1.
It is evident that F'(§) = 0 is an equation for S, i.e., S is a level surface
for the function F'. Therefore V¢F(&) defines the field of outward normal

directions on S: n(€) = zziggl s is the outward unit normal vector to
S at the point £ € S.
Elementary calculations show
g% (i)
VeF(§) == -V = | =
1 1
= é T [Vep(n) —n(n-Vyp(n)) =n— G [Vnp(n) + 1p(n)]-
Therefore
1
VeF ==1n——=1V =-——V .
RGNS 0 [Vun(n) +np(n)] ) ()

Note that the surface S = Sq¢, ¢ = 1,2,3, are star shape with respect to
the origin point 0, i.e., if n(£) is the outward unit normal vector to S at
¢ € 5, then (5 n(€)) = 0.

Since (n-n(§)) = —
that

p(n)
n-Vpp(n)) = ——+— > 0, we conclude
0 ¥aPt) = 17, ot

Vap(n)

n(f) — _ Vnﬂ(ﬁ)
[Vnp(n)|
defines the outward unit normal vector.
If ny € ¥; is a critical point corresponding to & € ¥, then using (3.8)
and (3.9) we conclude that (&) = £2, where & = p(10)10 € S.
On the other hand, let n(&) ||z, ie., n(&§) = £Z, or due to (3.9) T =
V(o)

Vo (no)|
Let us write (3.8) for ng

for £€8 (3.9)

Zp(no) + (- 10)Vayp(no) =

= ivnpl(no” {(Vap(no))e(no) + (Vp(no) - 10)Vnp(no)} =
— iw}(%) {p(10)Vnp(no) = p(110)Vyp(no) } = 0.

Therefore we get that ®(Z,n9) = 0, i.e., 19 is a critical point. |
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Remark 3.3. If the surface S does not contain a plane two-dimensional
part (i.e., curvature of the surface S does not vanish on a subset of S of
positive 2-dimensional measure), then the set of critical points consists of
isolated points or lines on S.

Using Lemmas 3.1 and 3.2, one can easily prove the following

Theorem 3.4. i) If ng € X1 is not a critical point corresponding to the
direction T € X1, then

®(@,m) =nx[pn)z + (T -n)Vyp(n)] #0
and
@@, n)| = |p(n)z + (Z,1)Vyp(n)| > 0.

ii) If (z - n) = 0, then |®(Z,n)| = p(n) > 0.
iii) ®(z,n) = 0 only at critical points.

From ii) of Theorem 3.4 it follows

Corollary 3.5. There exists a neighborhood U (8, 0%F) of the circumfer-
ence OXE with |®(z,n)| > § > 0 forn € U(5,0%F).

Using the Stokes theorem for f € C1(X;), we can write

/ B0, V) f(n) dSs = / Fn)tn(n) . (3.10)
3 ol

where ¥* C 3, 0X* = v, n = npon Xy and £ = ({1,03,03) is the unit
tangent vector to ~.

n=m=M; Ny M)
¥ EE,

T=(l05,05)

FIGURE 3.2.

As a result, from (3.10) we have

/ 01, V) f (g () A =

o

. / )0k, V)g(m)] dS: + / F)g(mtu(n) dy.  (3.11)
3 ol
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If either f|, =0 or g|, =0, then

/ 01, V) F(n)lg () S = — / £ )01, V) g()] dSs.

3 X

Lemma 3.6. Ifn € ¥ is not a critical point corresponding to the direc-
tion T € X1, then

G 1 & 0,3, n) G
iIX@E)p(n) _ kAT, 1 [a v 1/\(9641)9(?7)} 3.12
e = - E = ,V,)e . .

iX & (@ (3,m)] K V) (312)

Proof. Multiplying both sides of the formula (3.6) by ®(Z, ) and summing,
we obtain the equation

3
" (@) [Oh(n, V) EWO] — NDEDIDIBE g2 (3.13)
k=1

(for p(n) = py(n) we will use the notation <I>,(€q) (z,n) and @ (z,7)).
If 7 is not a critical point, then ®(Z,n) # 0, and (3.13) can be rewritten
in the form (3.12). O

In what follows, we essentially use the following

Lemma 3.7. If ®(z) = [ ¢(z,n)d,X1 and ¢(-,n) € C1(R3), =F =
=7
{nexi:(x-n) >0}, then
0®(x) _ / Op(z,m)

8xk 8:ck

1
1+ m/w(%n)nkdn%, (3.14)
=+ .
where v, = 0L} .
Proof. First let us calculate the derivative of ®(x) in the direction ey =
(eo1, €02, €03), |eo| =1,
00 (x) ~ im O(x + teg) — () .
860 t—0 t

It is clear that

O(x +teg) — P(z) = / o(x +teg,n)dyX, — /(p(a:,n)dnzl =

E;rteg bony
= /[(p(m +teg,n) — ¢(x,n)]dyX1 + / o(x + teg,n)dy X —
pony poRy
z+teq

- / ol + teo.n)dy S, = / (e + teo, n) — ()] dy St

poha pony
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FIiGURE 3.3.

+ / o(x +teg,n)dyS, — / o(z +teg,n)dyS1.  (3.15)

a(t) 1(t)
q
X x+te,
eO
X+ fe,
V() [x + re|
~
~ \) V(r) e
= ~
~
e \
' 2(1)
FI1GURE 3.4.
T X € epg X T . A, ~
€3 = = €y =; €] = —e3 X T =ey Xes3.

C|Zxeo | xeq|
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From (3.15) we get

1 t _
R e
bony
1 1
+o / pla + teo, 1) dBy — 5 / oz +teg,n) d¥y =
a(t) 21(t)
= (x,t) + Pa(x,t) + P3(z,t), (3.16)
where
x +teg,n) — o(x,1
(I)l(x’t):/w( 0 ;7) o( )dnEh
=F
1 1
Sawt) =7 [ olo+tennasi w0~ [ oot tenn)ds,
3a(t) 31(t)
Evidently,
. _ [ 9¢(z,m)

=5

Let us make an orthogonal transform of the initial system such that 0&;
coincides with ey, 0&s with e and 05 with ez (see Fig. 3.4). Denote by
B := B(z,e) the orthogonal matrix of this transform (B¢ = 7)

€11 €21 €31 €kl
B=lei2 e e3n|, e=|e|, k=123
€13 €23 €33 €k3

Using the spherical coordinates, we have

(&)
& = |€] cospsind,
\4 & = [¢]sineysin b,
(K &5 = [¢] cos b,
| Tl (&)
e ///. (il?éj)o) OSQSTT and
4 0 <y < 2m.

e3(S5) £=01%8)

FIGURE 3.5



140 1. Sigua and Z. Tediashvili

As it is seen from Fig. 3.4, 2w — v(t) < ¢ < 27 for ¥5(¢t) and m — v(t) <
¥ < 7 for 34(t), i.e., for both surfaces 0 < § < 7. Let us estimate the angle
v(t) (v(t) > 0 is sufficiently small)

r+teg  x-(x+teg)

cosv(t) =2 -

|z +teo| x|z +teo]
P teora) _ | [aP + Heo 3) — Jol 2 + eot] _
|| |2 + teol |z[ | + eot|

Lyl 2t - 2)? + (e )2 = e[l +2t(e0 - 2) + £
o+ catl[l2l? + t{eo - 2) + ] [& + eol]
_ £]laf’ — (o))

= Telle+ eotllaf? + teo ) + [al 2 + eofl]

ie.,
b2 V) 2 a2 = (o 0)? B
sin® —= = =
2 [z[ |z + eot|[|2]? + t(eo - @) + [ [+ + eot]
|zf* — (e - @)° 3
=2 O(t?).
(i roe
Hence
t
lim vt) (3.18)
t—0 t
If B (t) = So(t), then
1 1
Dy (z,t) = n o(x +teg,n)dX, = n / o(x + teg, BE) d¥y =
a(t) o (t)
1 27 ™
=7 / dw/ap(x + teg, BE)sin 0 db. (3.19)
2w —v(t) 0
Using the mean value theorem in (3.19), we obtain
1 T
Oy (z,t) = n v(t) / o(z +teg, BE' ) sinf db, (3.20)
0
where
€ =(£,€.8) + & = cos¢'sind),
&) = sine)’ sin 0,
2 (3.21)
& =cosf and

2 —v(t) < ¢’ < 2m.
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Similarly, if BE;(t) = $1(t), then

1 1
Dy (z,t) = 5 / o(x +teg,n)dX, = 3 / o(x + teg, BE) d¥y =
i (t) 21 (t)
1 ™ T '
=-7 / dz/J/go(as—l—teo,Bf)smﬁd@ =
m—uv(t) 0
t T
_ _# / oz + teo, BE") sin 6.do, (3.22)
0
where
1 — ( 1/7 é/, é/) . 1/ — Cosw// Sine’
y =sine” sind,
p (3.23)
&3 =cos 0,
2m —v(t) <" < 2r.
Due to (3.18)—-(3.23) we find
7 _ 5
lim @, 1) = i ‘ I(; 20 / oz, BE,) sin.do, (3.24)
- x

sin 6
where §{=| 0 |, and
cos 6

}1_1’% @3(.’[,15) -

—sinf
where £ = 0o .

cos 6
The substitution § = 7 — 6 in (3.25) leads to

VA el ARV /go(ac, B&()sin6 do, (3.25)

|z

™ 0 ™
/gp(x,Bf(’)’) sin 0 df = —/g@(m,B(—f{)))sinedQ = /go(x,Béé)sinGd@.
0 ™ 0
If§ = 6—m, then sinf = sin(g—ﬂ') = —sinf, cosf = cos(f—7) = — cos b,
0<0<m m<0O<2m,
sin 6 sin 6 B
—Bg,=-B| 0 |=B| 0 | =8Bg,
cos cos 0
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and
™ 2m 2m
/go(x, —B¢&) SinGdﬁz/w(w,—ng)singdgz /ap(x,Bf(’)) sin 0 d.
0 ™ T

Hence from (3.24) and (3.25)

/—|x|2 (@ eo) sin ¢ -
hm Dy (z,t) = plxz,B| O sinfdf,  (3.26)

2
| cos 6
\/2_—.2 sin ¢
lim ®5(z,t) = — [ = (@ - e0) /ap z,—B | 0 sinfdf =
o EE
r cosf
2w :
7o sin 0
_ Vil (f o) /gp 2,B| 0 | |sin6as. (3.27)
] . cos 0
Note that
sin 6 €11 €31
B| 0 =eysinf +ezcos = | ern | sinf+ | esz | cosf =,
cos €13 €33

i.e., ( =eysinf + egcosb.
Clearly, ¢ € v, = 0XF, and when 6 varies from 0 to 27, then ¢ moves on
v, in positive direction. Moreover,

sinf = (e - {). (3.28)
i Y
€
0
g
83 \ 'Yx
FIGURE 3.6.

Taking into account (3.26)—(3.28), we get

}E,I(l) (I)2<.’L‘7t) =
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/T2
hm D3z, t) = [z’ = (& eo) / ¢)db.

j?

df = dry, on v, = OXF (see Fig. 3.6), and hence

/ (@, C)(e1 - €) df = / (@, ) er - €) deye

0 v
2
/ o, )(er - C) df = / (@) (e Q) dera.

Using (3.16), (3.17) and (3.29)—(3.32), we get

oo 1 _ [ 9¢(z;n)
aeo—gg%t[@(z#—teo)—@(a:)}—/ ol 4,81+
bony
2|2 — (z - eg)?
+ ||x(2 o) [ o0 der

Note that the vector eg = (1, d2k, I3x) corresponds to W'
) If €y = (17070) Tm’ then
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(3.30)

(3.31)

(3.32)

(3.33)

i j k
_ ~ ~\\T _ ~2 ~9
eoxZ]=[1 0 0|=(0,—23,Z2) , 71 =4/T5+73,
Ty T2 I3
(1) ~ (1) _ €0 X7T 1 1 ~
ey’ = (x1,x2,x3 ey’ = — =ey ' = —(0,—3, 29
2 ( ’ ’ )’ 3 |€0 % J)| 3 Tl( ’ ’ )v
ik PE  #E
1 1 ~ S =~ 122 123
V=) xelM =31 @ B = (r,— - =
1 2 3 2 3 ) )
0 z3 x2 1 T1
T ™1

1

1) If e = (0,1,0) ~ 52, then

i § ok
[60)(58\]: 0 1 0 :(56\37O,7§2)T, T2:\/§E%+5§7

o

1 o 2 A A 1 P
= — (T34 22+ 2 2% 31y, —2133) | = 7“—{(1,0,0)T — 1T}
1

~ 1 A
, 622 =7 and 6(12) = —{(0,1,0)" — 2,7};
T2



144 1. Sigua and Z. Tediashvili

III) If g = (0,0,1) ~ then

0
Ox3’

ik
[eo X 7] 0 1 1|=(-29,71,0)", r3=1/23+473,
Ty T2 I3
1, . N 1 ~
eég) = —(=2,71,0)7, 6(23) =7 and egg) = —{(0,0,1)7 — 237}
T3 T3

The parametric equation of v, = X% is

(= e( sm9+e(k) cos, k=1,2,3.

FIGURE 3.7.

Here the coordinates of ¢ = ({1, (2, (3) correspond to the initial system.
Applying (3.33), we have

90 [ dolw,n) \/7—90/
9= _ dp¥y @
Oy, / Ay, ! |2 R
pors
Clearly,
2 _ .2 1 — 722
\/\wlzxk:\/ oz =0, and (el Q) = ¢4,
|z| || ||
SO a
a / p(a,n) d21+—/ (@, () Codevan (3.34)
T,

We can write n and 7, instead of ¢ and ¢, in (3.34) to get (3.14). |
Now we can prove the following

Theorem 3.8. The fundamental solution V(x,w, 1) of the equation (2.1)
is represented as

U(z,w,1) =W (z) + 0O (z), (3.35)
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where
3 .
o (z) = / > Fy(n)N(inpg, w)e’ @ MPadyy (3.36)
s 1=
1
O (z) = - -1 : .
(z) 72l C™(n)dvy (3.37)

Here C~1(n)is the inverse matriz of C(n) (see (2.1)), dy = dyyz, Fy(n) is
defined by (2.21).

Moreover, if |x| — 0, then

i[\p(l)(m)] = 0(1); 872[\1/(1)] -0 1 (3.38)
oxy, " Oxy0zx; || ’
and
3
lig v ) = | > RN inps) (3.39)
RS

Proof. Note that a(n) > 0 and p4(n) > 0, n € X,, are even functions.
Therefore

It is easy to check that
> Fy(m)pft(n) =0. (3.40)

Due to Lemma 3.7, we have

3

) 4 .

o e 1) = / > Fy(m)e@meaMinpy () dSi+
st =1

3
1 (e
+|x/g E,(n)e@meatp, dy. (3.41)
Yo 971

We know that Fy,(n) is an even function and (x - 17) = 0 on ;. Therefore

3 3
/ZFq(n)ei(I'")pq(")nk dy = /ZFq(n)nk dy =
ve I=1 v. 0=1

3 3
= /ZFq(*n)(*nk)dv = */ZFq(n)nk dy = 0.
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Now we can rewrite (3.41) as

3
8 21X
TMI‘(;U w, 1) ZF‘J n)ingpg(n)e’@MPa ds;. (3.42)
st =1
With the help of (3.14) and (3.40) we have
0? ;
i(z-n)pq(n)
S T .) = [ S R imtiniae e sy
s 971
1 3
o / > Fy(m)inkpq(n)n; dy =
g=1
/ ZF )i ey pg(n)e’ =P dsy . (3.43)
st =1
Similarly,
3
aif(x w,1) /ZF Pnen; N (7]) i@ mpa(n) gy, +
02,0202, J

s =1
o / ()00 P20 . (3.44)

The curvilinear integral in (3.44) vamshes since the integrand is an odd
function, i.e.

83

1) Ey( m izmpa(n) gy, (3.45
e o) = [ SR o) . 315

s+ 971
Another use of (3.14) gives

34

A A A 1) Fy( i(zm)pe(n) g
D0, 00m 0, (@0, / Z )it Py (M)e 1+

+‘11

1 .
i /ZFQ(U>ZS77k77j77mP2(7])77p dy =
q=1

/ ZF )R N e’ i(@mpqa(n) gy, 4
s =1

i3S ,
+ M/ZFQ(U)UijWmPS(n) dvy,  (3.46)
Y 7=1
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where the curvilinear integral does not vanish, it is a homogeneous function
of order —1. Clearly, the first integral in (3.46) is bounded in a vicinity of
the origin.

Using (3.42)—(3.46), we can write

U(z,w,1) = N(dy,w) /ZF et@mea(n gy, =

+‘11

/ZF ()N (inpy, w)e i mpa() gy, 4

s 971
0
i |/ (N (n) dv, (3.47)

where N(n) is the principle part of the matrix N (n,w).
Let us calculate

4

3 |
3 _ 7 P1
2 Firn) = ~goum { =)

n P2 + P3 }

(P53 — D)5 —p3) (3 — P} (P3 — P3)
i {p‘%(ﬂ% —p3) = p3(p? — p3) — p3(pT — p3) } i
8m2a(n) (r? = m3) (T — P3)(p5 — P3) 8m2a(n)

Now we can rewrite (3.47) as

. (2 1 _
\I](.'I:,w71) = /FQ(T])N(ZUPQ7M)€’L($ n)pq(n)dzl — m/c 1(77) d’y,

=F Yo

1
where C~1(n) = o NO(n) is the matrix inverse to C().
Using the notation (3.36) and (3.37), we arrive to (3.35). Note that U°(x)

is the fundamental solution of the static equation (w = 0)
C@)W O (z) = §(z) I3
We know that
N(0y,w) = [Nk;j(0z,w)]3x3 and
Niej (inpg,w) = Ni; (0)i*pg — Ny (m)pgw® + wo;,

where N,Sj (n) is a 4th order polynomial with respect to n, N, (n) is a second
order polynomial,

v (g /ZNO A gs,

st 971
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3
_ ZN1(n)Fq(n)pi(n)e“m'”)%(”)dzﬁ

q=1

3
I1
=1
3 3
_ / w2 Z Pq (n) Nl (n)ei(w-n)pq(n)d21+

3
+/w4z - Pg(1) Tzl @mpa(m) g5,

i.e., for any = € R3\ {0}
lim U (z,w,1) = 0O (z)

w—0
uniformly for all |z| > ¢ > 0.
Clearly, ¥°(z) = O(1) as |z| — 0,
Using (3.14) and the fact that F,(—n) = F,(n), we obtain

RS

Tk() = / > Fy(n)N(inpg, w)[inkpg(n)]e' " MNP ds; +

-1
s+ 9

3
1 .
T /ZFq(n)N(mpq,w)nk dy =
ve 971

3
- / S Fy ()N (519, ) limpg (m)]e =P ds, = 0(1)
s+ 971
and
*v (g > . ) iz
T [ S Fy )N o) e o+
0x0z;
s+ 971
1 3 , _ 1
e > " Fy(n)N(inpg, w)inkpq(n)n; dy = O w)

q=1

Vo
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Taking into account that Fy(n)N (inpy,w) is an even function, we derive
(3.39). O

3.2. Asymptotics at infinity and the radiation conditions. Using
Lemma 3.7, we can prove

Theorem 3.9. For |z| — +00
85
021,02 ;0x,,0x,0T,

I(z,w,1) =

3
:iS/ Y Ey(ymnnmtpnapl(me’ P dS, + O0(|2| ™), (3.48)

st 07
34
9  _r 1) =
021,02 0%, 01 (2w, 1)

q=1

- /%(n) > Eymymsngmmnpe’ @ Mdsy + O(|z %), (3.49)
>t

where 1 € C*(X1), ¥1(n) =0 for n € v,.
Proof. Due to (3.14) and (3.46), we get

P
I
021,02 0%, 02,02,

(r,w,1) =

3
= / > Fam)ingnsnmnpn g (n)e' M ds, +

=
st ¢

3
+i* / > Fy (0o (n)mwnnmnpnndy+
vp 971

0 [# [
+8x[aj| / > Fy)meninmmnpes(n)dy| . (3.50)
" Ya g=1

The second integral in(3.50) vanishes since the integrand is an odd func-
tion. The third integral in(3.50) is O(|z|~2) as |z| — oo (or |z| — 0), more
precisely, it is a homogeneous function of order —2. Hence we can rewrite
(3.50) as (3.48).

Let us consider the function

d(x) = /@(n)ei(m-n)ﬂ(n)dzh v e Cl(xy). (3.51)
=T

Due to Theorem 3.4 and Corollary 3.3, there exists ¢ > 0 such that there
is no critical point in X (¢) (see Fig. 3.8).
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)

FIGURE 3.8.

Let us rewrite (3.51) as

Bx) = [ Woln) + br(m)pn)e =N, = 0 (z) + 27 (o),
DR

where

*(z) = / Yo(n)p(n)e' =P s,

¢ (@) = / U1 (n)p(n)e’ =P s, ;

here ¢0(77) + ¢1(77) = 0) n S Z17 ’(/)071/)1 S COO<21)7 1/)0 Z 07 wo(n) =0in
vicinity of 7,, supp o C 3} (), ¥1(n) = 1 — 1o(n) vanishes on 7, and in
¥ (e).

Applying (3.11) and (3.12), we have

" (z) = /%(n)@(n)ei\zm-n)p(n)dgl _
=3

L B@n) ile@me(n)
/wo(n)s&(n)hx kE | 3J,\J?)'Q@k(n,vn)e }d&
=1

3

- .1{ - / (;ak(n,w[wo(n)so(n) mbeilml(m)p(”)dﬁﬁ

T

3 ~
+/¢0(77)80(7I)Z Mgk(n)eizl(an)p(n)d,y}_ (3.52)
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Applying the same procedure in the first integral of (3.52), we see that
it is O(|z|~2).
On the other hand, (Z-n) =0, n € vy,

o(z,n) = [n x xlp(n) = =Ln)p(n), k(@ n) = —p(n)lx(n)
(here £(n) is the tangent vector to 7. ), so

3
. 1 p()lr(n) 2
(b = —_—— d =
@ m:/ 2 "y v Ol
k=1

_ Zm/ L)d7+0(|x| 2).

Forz >1

B(z) = / () EDI) g5,

] / d7+‘1>**( ) +O(|z[~2). (3.53)

Using (3.53) in (3.46), we can write

o 1
011,02 02, 0) (@,w, z|x| /Z Pq VKT T pa(m) v+

O(||7?) +*/ZF )5 ()11 dry+

3
it / Y1) > Fy(m)menmmnppg(n)e @ meatn dy,
q=1

From this relation we obtain (3.49). O

Theorem 3.10. For |z| > 1

(2) ()
U(z,w1) =Y V(zwl), ¥(rwl)=O0(z"), (3.54)

q=1
(q)
0¥ (z,w,1)
8l‘k

where €9 € S, and n(£l?) = =

==l

(9)
— €D (2,0,1) = O(|2]2), (3.55)

These conditions are called the generalized Sommerfeld-Kupradze type
radiation conditions.
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Proof. Taking into account the form of Ny;, we can write

U(z,w,1) = /( n) + 1 (n ZF n)i*pg(n)—

Z+

— Nl(n)Pg(ﬁ)w2 + w?Ie i@ mpq() gy, + - / ZF Pq NN dy =

3
= / 1(0) Y Fy()N(inpg, w)e' ™ Mrads, —
nt q=1

_L itpd o1 -
z-|z|/ ;[qu) KT
- . 2002 1 w? 1
FymN* n)pg(n)® —os & Fy(n)e? —s | o
’L3 >
1 [ S RN+ O(lel ). (8.56)

Here ¢y and v, are the same as in the previous theorem.
Due to (3.40)

3
U(z,w,1) = / Pi1(n) Y Fy(n)N(inpg,w)e @ rads, +
q=1

+O0(|z|7?), |z| > 1. (3.57)
ov 1
Let us calculate % with the help of (3.46) and (3.35)—(3.37)
k

3

ov(z,w,1 ) (-
(axk ) - / > " Fy(n)N(inpg, ) [epg(n)]e’ @ Pads, +
+ a=1

PR
1 [ P
— : 9 g
T /;Fq(n)N(mpq,w)nk dy+ 5, V(). (3.58)

The last term in (3.58) is O(|z|~2). If we apply (3.53) in (3.58), we have

%wl) b / > F ()N (inpg, ) ey (n)]

——dvy+
ilx] — Pq(n)
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3
- / Vi)Y Fy(n)N (inpg, )imepg ()]0 + O(a|2).  (3.59)
q=1

Note that

pidsy = cosy S, = (0 () dS, = (v T 22 )i, = LA s,

so we can rewrite (3.57) as follows

3

- i(x- 1
Vew )= [ E N g ) as, +
=1 Pq(M)|Vnpq(n)]
s @)
(Jz|72) =
1 1€, (z-€)
:Z{_Sﬂ_z / 1(n) 3 (i) ool )ldSq}
=1 st (@) a(n) TI [p3(n) = p3(n)]
J=1,37#q
+O0(z|7?);
—_ & _ _¢
here n = 11 = 2t
Now we can apply the results obtained in [8] and [9] to get
3 . . x
N(i£ D, w)e T - 21
g=1 a(n@) [T [p2(n@) = p3(n@)]
J=1,j#q
1(3" £(@)y
S | Ok,
|vnpq (n(@)] (€W@)
ie.
3 .
1 N (i€ D, w
\Il(x,w,l):Z{—M 3 ) X
= U T o) 1 [p2n@) - p20n@)]
Jj=1,7#4q
z(:c 5({1))

X SANCCIINCRGD) }+O lz|~2), (3.60)
nFq \/

g(q) E(Q)

where %) =t meps(n) =

With the help of (3.60), (3.56) and (3.59) we obtain the radiation condi-
tions (3.54), (3.55). O

and k, is the Gaussian curvature of .S,.
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Short Communications

NINO PARTSVANIA

ON TWO-POINT BOUNDARY VALUE PROBLEMS FOR
TWO-DIMENSIONAL LINEAR DIFFERENTIAL SYSTEMS
WITH SINGULAR COEFFICIENTS

Abstract. Two-point boundary value problems for two-dimensional sys-
tems of linear differential equations with singular coefficients are conside-
red. The cases are optimally described when the above-mentioned prob-
lems have the Fredholm property, and unimprovable in a certain sense con-
ditions are established guaranteeing the unique solvability of those prob-
lems.
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Key words and phrases. Two-dimensional linear differential system,
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Boundary value problems for second and higher order linear differential
equations, whose coefficients have nonintegrable singularities at the points
bearing the boundary data, are investigated in full detail (see, e.g., [1], [2],
[5]-[7], [9]-[16] and the references therein).

From the theorems proven by R. P. Agarwal and I. Kiguradze [10] for
the second order differential equation

u = p(t)u+q(t),
it follow unimprovable in a certain sense results on the unique solvability of

the boundary value problems
b

w(@) =0, u(b) =0, /u’z(t) dt < +oc

a

Reported on the Thilisi Seminar on Qualitative Theory of Differential Equations on
June 28, 2010.
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and
b

u(a) =0, u'(b)=0, /u’z(t) dt < +00.

These results cover the cases where the concerned differential equation is
strongly singular, more precisely, when the order of singularity of the func-
tion t — (|p(t)| — p(t))/2 at the points a and b is equal to 2. In the present
paper, the above-mentioned results are generalized for two-dimensional lin-
ear differential systems.

By Lioc(]a,b]) we denote the space of functions p :]a,b[— R Lebesgue
integrable in the interval [a+e¢, b—¢] for arbitrarily small € > 0. Analogously,
by Lioc(]a,b]) we denote the space of functions p :]a,b] — R Lebesgue
integrable in the interval [a + ¢, b] for arbitrarily small € > 0.

It is clear that the functions from the space Ljoc(]a,b]) may have non-
integrable singularities at the points a and b. As for the functions from
the space Ljo.(]a, b)), they may have nonintegrable singularities only at the
point a.

For an arbitrary number = we set

I

7] = 1

We consider the two-dimensional linear differential system
u; = pi1(t)ur + pio(t)us + pio(t) (i =1,2) (1)

with locally integrable coefficients p;r, € Lioc(]a,b]) (i =1,2; k=0,1,2).

We do not exclude from consideration the cases where some (or all) of the
coefficients of that system are not integrable on [a, b], having singularities
at the points a and b. In that sense the system (1) is singular.

It is naturally admitted the possibility that the functions pi2 and p2; be
equal to zero on the sets of positive measure. This is the most interesting
case since in that case the system (1) cannot be reduced to a second order
linear differential equation.

Denote

_a+b . ! Y ) — Ip12(t)]
T ()= p(!p”()d>( 1.2), r(t) ri(t)ra(t)
pl(t):m?(:)z(t)’ pz(t)zpzlg)(:)l(t); qi(t)zgff(%) (i=1,2).

For the system (1) we consider the boundary value problems

b
up(t) () 2 N
t—ary (t) T ol (t) =0, a/ (t) z(t) dt < + (2)
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and
b

=0, /r(t)u%(t) dt < +oo0. (3)

a

(OB 10)
t—a 71 (t) t—b 79 (t)

Note that if the functions p;; and pos are integrable on [a,b], then the
conditions (2) and (3), respectively, are equivalent to the conditions

ui(a) =0, wui(b) =0, /|p12(t)|u§(t) dt < +00
and
wr(a) =0, ua(b) =0, /\plg(t)|u§(t) dt < +o0,

where by wu;(a) and wu;(b) it is understood, respectively, the right and the
left limits of the function u; at the points a and b.

Both the problems (1), (2) and (1), (3) we investigate in the case where
the condition

0<opi(t) <&y for a <t <D, /|p1(t)|dt>0 (4)

is satisfied. Here 0 € {—1,1} and ¢y is a positive number.
Along with (1) we consider the corresponding homogeneous differential
system

ui = pir (Hur + pia(t)uz (i =1,2), (To)
and we introduce

Definition 1. We say that the problem (1), (2) has the Fredholm pro-
perty if the unique solvability of the corresponding homogeneous problem
(1p), (2) guarantees the unique solvability of the problem (1), (2) for any
pio € Lioe(Ja, b)) (i = 1,2) satisfying the conditions

b
2
q1 € L([a,b]) /t a)(b— t(pg /\ql |ds/|q1 |ds> dt <+400; (5)
/|p1 ‘/6]2 ds

The following theorem is valid.

dt < 4o00. (6)
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Theorem 1. If along with (4) the inequalities

ao

s (¢~ a) [loma(o)l-ds) < 3

t

lintﬂj;lp ((b —t) j[opz(S)]— d8> < i

ao

are fulfilled, then the problem (1), (2) has the Fredholm property.
From this theorem it follows

Corollary 1. If along with (4) the inequalities

1 1

. N2 N ENNR _ )2 _

hgnl;lf (J(t a) pg(t)) > 10 hrtnlglf (O’(b t) pg(t)) > 10g (8)

are fulfilled, then the problem (1), (2) has the Fredholm property.
On the basis of Theorem 1 the following theorem can be proved.

Theorem 2. Let along with (4) the inequality

\/km@Lw

be fulfilled, where £ is a non-negative constant such that

1
< —. 9
10 (9)
If, moreover, the conditions (5) and (6) are satisfied, then the problem
(1), (2) has a unique solution.

< b —a)

_m for a<t<b

Theorem 2 yields

Corollary 2. Let along with (4) the inequality

() = —¢( L, 1 )
N N (R
be fulfilled, where £ is a non-negative constant, satisfying the inequality
(9). If, moreover, the conditions (5) and (6) are satisfied, then the problem
(1), (2) has a unique solution.

for a<t<d

Note that the conditions of Theorems 1 and 2 as well as the conditions
of Corollary 1 and 2 are unimprovable. More precisely, none of the strict
inequalities (7) and (8) can be replaced by the non-strict ones, and the
inequality (9) cannot be replaced by the equality

1
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As an example, we consider the differential system

’U,ll =01 (t)UQ + (t — a)a(b — t)agu)(t),
’ ( 92(t) 14
(

_ gao(t) (10)
Uy = —

t—a)f(b—1)8  (t—a)? (b—t)Q)ul T —1

where g¢; : [a,b] — [0,400[ and g0 : [a,b] — R (i = 1,2) are continuous
functions, and «, 3, 7, and £ are positive constants. Moreover, g1(t) Z 0

and
0<agi(t) < (2:2)/\(5:2)/\ for a <t <b,

where A > 0.

The system (10), generally speaking, cannot be reduced to a second order
linear differential equation since the restrictions, imposed on the functions
g1 and go, do not exclude, for example, the cases where

g1(t) =g2(t) =0 for tel=

=U o gypor UL - "5t )

and g¢1(t) >0, g2(t) >0 for ¢ € [a,b]\I.
From Corollary 2 it follows
Corollary 3. If

3+ A
, a>0, <2+, and’y<i, (11)

l< 5

] =

then the system (10

~

has a unique solution satisfying the conditions

b
wr(a) =0, un(b) =0, / GO dt < +oc.

a

According to Corollary 3, the second equation in the system (10) may
have the singularity of an arbitrary order. More precisely, 5 and v may be
arbitrarily large numbers if o and A are also large.

Note that Corollary 3 does not follow from the previous well-known re-
sults on the unique solvability of two-point boundary value problems for
linear differential systems (see [3], [4], [8], [17]).

Now we consider the problem (1), (3). First of all we introduce
Definition 2. We say that the problem (1), (3) has the Fredholm pro-

perty if the unique solvability of the corresponding homogeneous problem
(1p), (3) guarantees the unique solvability of the problem (1), (3) for any
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pio € Lioe(Ja, b)) (i = 1,2) satisfying the conditions

@1 € L([a,0]), /b(t —a) (pz(t) j Q1(5)|d5)2dt < +o0, (12)

a

2

b b
G2 € Lioe(]a, b)), /\p1(t)| ‘ /qz(s) ds| dt < 4o0. (13)

The following theorem is valid.

Theorem 3. Let pa € Lioc(]a, b)), and let along with (4) the inequality
b

lim sup (U(t —a) /[apg(s)], ds) < ﬁ (14)

t—a
t

be fulfilled. Then the problem (1), (3) has the Fredholm property.

Corollary 4. Let ps € Lioe(Ja,b]), and let along with (4) the inequality
liminf (o(t — a)?pa(t)) > _ L (15)
t—a 4@0
be fulfilled. Then the problem (1), (3) has the Fredholm property.

Theorem 4. Let p2 € Lioc(Ja, b)), and let along with (4) the inequality
b

/[Upg(s)]_ ds < % for a <t <b, where < i, (16)
i

be fulfilled. If, moreover, the conditions (12) and (13) are satisfied, then the
problem (1), (3) has a unique solution.

Corollary 5. Let ps € Lioc(]a,b]), and let along with (4) the inequality

4 1
opa(t) z—m for a <t <b, where < 1 (17)
be fulfilled. If, moreover, the conditions (12) and (13) are satisfied, then the
problem (1), (3) has a unique solution.

Note that the conditions (14)—(17) in Theorems 3, 4 and Corollaries 4, 5
are unimprovable.
As an example, we consider the differential system

uy = g1(t)us + (t — a)*g10(t),
/ ( 92(t) g20(t) (18)
(

/
Y2 = t—a)ﬁ_(t—a)2> (t—a)’
where g¢; : [a,b] — [0,400[ and g0 : [a,b] — R (i = 1,2) are continuous
functions, a, (3, v, and £ are positive constants. Moreover, g;(t) # 0 and

0< (1) < (

u +

t— ar\A
a) for a <t <b,
b—a




where A > 0.

From Corollary 5 it follows

Corollary 6. If the condition (11) is fulfilled, then the system (18) has

a unique solution satisfying the conditions

b
ui(a) =0, ug(b) =0, /91 (t)us(t) dt < +o0.
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ZAZA SOKHADZE

ON PERTURBED MULTI-POINT PROBLEMS FOR
NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. For nonlinear functional differential systems unimprovable con-
ditions of solvability of perturbed multi-point boundary value problems are
established.

63%0":}88- oéo‘?ﬁtgogo (B'UGjGONBOm‘Ué QO({}J&JEGOOQ‘:}@O 1)01)(8)33:]601)0—
8063601) \)8(")51)60&(")601) 06060‘33%(")631)360{20 306(")6360-

2010 Mathematics Subject Classification. 34K10.
Key words and phrases. Functional differential system, multi-point
problem, periodic type problem, existence theorem.

Consider the boundary value problem

d”zgt) = fia1, ..., x)t) (i=1,...,n), (1)
xi(t;) = pi(z1, ..., x) () (i=1,...,n), (2)

where t1, ..., t, are points from the segment I = [a, b], while f; : C(I;R") —
L(I;R)(i=1,...,n)and ¢; : C(I;R") - R (i = 1,...,n) are, respectively,
continuous operators and functionals.

A vector function (x;)?; : I — R™ with absolutely continuous compo-
nents z; : I - R (i = 1,...,n) is said to be a solution of the system (1) if
it satisfies this system almost everywhere on I.

A solution of the system (1), satisfying the boundary conditions (2), is
said to be a solution of the problem (1),(2).

Particular cases of (1) are systems of ordinary differential equations

dﬁt(t) = foi(t.x1 (), 2a(t)) (i=1,....n) (3)

and systems of differential equations with deviated arguments
7 :gl(taxl(Tl(t))aaxﬂ(Tn(t))axl(t)) (Z: 13"'7”)7 (4)

where fo; : I x R - Rand g; : I x R"™' — R (i = 1,...,n) are functions
from the Carathéodory class, and 7; : [ — I (i = 1,...,n) are measurable
functions.

Reported on the Thilisi Seminar on Qualitative Theory of Differential Equations on
June 14, 2010.
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Particular cases of (2) are the boundary conditions of periodic type
zi(a) = oy (b) (i=1,...,n) (21)

and the multi-point boundary conditions

xi(ti) = Z Zgijkxk(tijk) +c; (Z =1,... ,n). (22)

k=1 j=1

Boundary value problems for systems of the type (1) have been investi-
gating intensively and are the subject of numerous works (see, e.g., [1]-[5],
[12] and the references therein).

In the case where ; = ¢; = const (i = 1,...,n), the problem (3), (2),
i.e. the system (3) with the boundary conditions

l‘i(tz’) = C; (iZ 1,...,’/1)

is called the Cauchy—Nicoletti problem. Optimal, in a certain sense, suffi-
cient conditions for the solvability and unique solvability of that problem
are contained in the papers [6], [7], [14].

In the paper [8] I. Kiguradze proposed a new method of investigation
of boundary value problems of the type (3),(2) which is based on a priori
estimates of solutions of systems of one-sided differential inequalities. This
method allows us to study from the unified viewpoint a sufficiently large
class of perturbed multi-point boundary value problems and the periodic
problem (see [8] and [10]).

In our paper, new sufficient conditions for the solvability of boundary
value problems of the type (1), (2) are given, which, in contrast to previous
results, cover the cases where the system (1) is superlinear or sublinear or
some equations of this system are superlinear, while others are sublinear.

Throughout the paper, the use will be made of the following notation:

R :] - OO,—I—OO[, Ry = [07"_00[;

R"™ is the n-dimensional real Euclidian space;

y=(y), and Y = (yik)gszl are an n-dimensional column vector and
an n X n-matrix with elements y; and y; € R (i = 1,...,n);

Y ! is the inverse matrix to Y; 7(Y) is the spectral radius of Y;

F is the unit matrix;

C(I;R™) is the space of n-dimensional continuous vector functions x =
(), : I — R™ with the norm

lzllc = max{z lz; ()] : t e I};
i=1
L(I;R) is the space of Lebesgue integrable functions x : I — R with the
b
norm ||z = [|x(s)| ds;

L(I;Ry) is the set all nonnegative functions from L(I;R).
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We will say that the operator p : C(I;R™) — L(I;R) belongs to the
Carathéodory class if it is continuous and

sup {p(2)()| : @ € C(LRY), [lallc < p} € LUI5Ry) for p€ Ry

Everywhere below, when we discuss the boundary value problem (1), (2),
it is supposed that the operators f; : C(I;R™) — L(I;R) (i = 1,...,n)
belong to the Carathéodory class, and the functionals ¢; : C(I;R") — R
(¢ =1,...,n) are continuous.

We will consider the case where for arbitrary (z;)?_; € C(I;R™) and for
almost all ¢ € I the inequalities

filxy, ..., xn)(t) sgn ((t - tz)mz(t)) <

< pilan,-oswa) (O (= e+ Y hallalle +hs)+

k=1
+5i(x1a""xn)<ZQik(t)||xk||C+Qi(t)) (i=1,...,n), (5)
k=1
lgi(21,. .. z0)| <
< poillail) + 8i(@r, o wa) (X bullzwlle +4) G=1,...m)  (6)
k=1

are satisfied, where p; : C(I;R") — L(I;Ry) (i =1,...,n),d; : C(I;R") —
R, are any nonlinear operators and functionals; ¢g; : C(I;R) — R (i =
1,...,n) are linear non-negative functionals; h;i, h;, £;x and ¢; are non-
negative constants;

gk € L(I;Ry), ¢ € L(LGRy) (i,k=1,...,n).

Suppose

ﬁi(ajl,...,xn)(t):exp<—’/tpi(xl,...,mn)(s)ds> (t=1,...,n), (7)

(8)

n
H = (ha 4+ (U eoi(D) gl + o)

Theorem 1. Let along with (5) and (6) the conditions
eoi(1) <1, 1= o (pi(@1,...,20)) = 6i(z1,...,20) (i=1,...,n), (9)
r(H) <1 (10)
be fulfilled, where p; (i=1,...,n) and H are operators and a matriz, given by

the equalities (7) and (8). Then the problem (1), (2) has at least one solution.

Consider now the boundary value problem of periodic type (1), (21),
where aq, ..., q, are arbitrary real constants. In particular, if a3 = --- =
oy, =1, then (1), (2;) is a periodic problem.

The following theorem is valid.
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Theorem 2. Let there exist operators p; : C(I;R™) — L(I;Ry) (i =
1,...,n) and numbers o; € {—1,1}, hy > 0, h; > 0 such that for any
(2P, € C(I;R™) and for almost all t € I the inequalities

filx1, ... xn)sgn(ox(t)) <

< pilwr, o m)O( = @+ Y hakllarlle +hi) G =1,...,n),
k=1

b

/pi(xl,...,xn)(s)ds>0 (i=1,....n)

a

hold. If, moreover, the numbers «;, o; satisfy the inequalities
(1 - |ai|)0i >0 (Z = 1,...,n),

and the matriz H = (hix)}).—, satisfies the condition (10), then the problem
(1), (21) has at least one solution.

Note that in both Theorems 1 and 2 the condition (10) is unimprovable
in the sense that it cannot be replaced by the non-strict inequality

r(H) <1. (10")
Indeed, it is clear that the periodic problem
dx;(t )
c;t( ) = —ox;(t) + ||zillc + 1, zi(a) =z;(b) (i=1,...,n)

has no solution, though for this problem all the conditions of Theorem 2
are satisfied except the condition (10), instead of which the inequality (10")
holds, since in that case H = E, r(H) = 1.

Let us now consider the boundary value problem (4), (21).

For this problem from Theorem 2 we get

Corollary 1. Let on the set I x R*T! the inequalities
9i(t, Y1, - -+ Yns Ynt1) SEN(0iYn41) <

n
S pi(t7y1>‘ .. 7yn7yn+1)( - |yn+1| + thk‘ykl + hz) (’L = 17. .. ,n)
k=1
hold, where p; : I x R"™ —] —o0,[ (i = 1,...,n) are functions from
the Carathéodory class, h;i and h; are non-negative constants, and o; €
{—1,1}. If, moreover, the inequalities
(1—-|ai)o; >0 (i=1,...,n), r(H)<1

are satisfied, where H = (hix)})—,, then the problem (4),(21) has at least
one solution.

As it is noted above, the theorems proven by us cover the cases where the
system (1) is superlinear or sublinear or some of equations of these systems
are superlinear, and others are sublinear.
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Indeed, suppose the equalities

Gt Y1, Yns Ynt1) =
n+1
= pl(t) €xXp (ﬁl Z |yk|) ( — O0iYn+1 +gOi(t,y17 cee 7yn7yn+1)) (’L = 1) e 7n)
k=1

hold, where 3; € R, o; € {-1,1}, p; € L(I;R:+) (: = 1,...,n), and
goi : I x R — R (i = 1,...,n) are continuous bounded functions. If,
moreover, 0;(1 — |a;]>0 (4 = 1,...,n), then according to Corollary 1 the
problem (4),(21) has at least one solution. On the other hand, the i-th
equation of the system (1) is superlinear if 8; > 0, and sublinear if 5; < 0.
Note that in these cases the problem (4), (21), generally speaking, is a prob-

lem at resonance since if a; = 1 for some ¢ € {1,...,n}, then the linear
homogeneous problem d%f” =0, x;(a) =a;z;(b) (i =1,...,n) has an

infinite set of solutions.
Finally, consider the problem (1),(22), where t;;5 €1, ¢;; € R, c; € R. Put

it = Y Wijil-
j=1
For this problem Theorem 1 takes the form

Theorem 3. Let there exist operators p; : C(I;R™) — L(I;Ry) (i =
1,...,n), non-negative numbers hiy,, h; (i = 1,...,n), and functions g
and q; € L(I;Ry) (4,k = 1,...,n) such that for any (zx)}_, € C(;R™)
almost everywhere on I, the inequalities

fila, o wa) sen(@i(t) < pilan, o wa) (8) (= ()4

+ 3 hallaklo + ki) + Y aw@®llelle +at) (=1,...,n)
k=1 k=1

hold. If, moreover, the matrix H = (hi, + ||qir|lz + Zik?)?;kzl satisfies the
condition (10), then the problem (1), (23) has at least one solution.
For the boundary value problem (4), (22) this theorem yields

Corollary 2. Let on the set I x R™ the inequalities
9i(t, Y1,y Yns Ynt1) s (E—ti)Yns1) Spi(t,yh---,ymyn+1)(—\yn+1|+

+ 3 hikllyell + i) + 3 a O lyill + ailt) G=1,....n)
k=1 k=1
be fulfilled, where p; : I x R™ —] —00,0[ (i = 1,...,n) are functions from
the Carathéodory class, h;,, and h; are non-negative constants, q;r and q; €
L(I;Ry). If, moreover, the matriv H = (hi, + ||qix|lr + Cix)i =, satisfies
the condition (10), then the problem (1), (22) has at least one solution.
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The above-formulated theorems are a generalization of I. Kiguradze’s

results [10] for the system (1). They are proved using the results of the
papers [9], [11], [13].
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