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S. Kovač. Schur-geometric and Schur-harmonic convexity of weighted integral mean . . . . . . . . . . . 225

Sh. Kumar, N. Mathur, V. Narayan Mishra and P. Mathur. Rational pál type
(0, 1; 0)-interpolation and quadrature formula with Chebyshev–Markov fractions . . . . . . . . . . . . . 235

R. Megrelishvili and S. Shengelia. Fractal structures from the band matrices for
matrix algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

D. Sh. Mohamed and D. M. Abdessami. A comparison between Bernoulli-collocation
method and Hermite–Galerkin method for solving two-dimensional mixed
Volterra–Fredholm singular integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

D. Sen and S. Basu. On an abstract formulation of a theorem of Sierpiński . . . . . . . . . . . . . . . . . . 269
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A NOTE ON THE SUMMATION THEOREM FOR 4F3[−m,α, λ+ 1, µ+ 2;β, λ, µ; 1]

MAHVISH ALI∗ AND MOHAMMAD IDRIS QURESHI

Abstract. This article aims to obtain a summation theorem for 4F3[−m,α, λ+ 1, µ+ 2;β, λ, µ; 1].
Further, a general series identity is derived. Applications of the results in terms of interesting

Kummer’s type transformation formulas are given. Some numerical examples are also discussed.

1. Introduction and Preliminaries

A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z], is accomplished by
introducing any arbitrary number of numerator and denominator parameters. Thus, the resulting
series

pFq

(αp);
z

(βq);

 := pFq

α1, α2, . . . , αp;
z

β1, β2, . . . , βq;

 =

∞∑
n=0

(α1)n(α2)n . . . (αp)n
(β1)n(β2)n . . . (βq)n

zn

n!
(1.1)

is known as the generalized hypergeometric series, or simply, the generalized hypergeometric function.
Here, p and q are positive integers or zero and we assume that the variable z, the numerator parameters
α1, α2, . . . , αp and the denominator parameters β1, β2, . . . , βq take on complex values, provided that

βj 6= 0,−1,−2, . . . ; j = 1, 2, . . . , q.

In contracted notation, the sequence of p numerator parameters α1, α2, . . . , αp is denoted by (αp)
with a similar interpretation for others throughout this paper.

Supposing that none of the numerator and denominator parameters is zero or a negative integer,
we note that the pFq series defined by equation (1.1):

(i) converges for |z| <∞, if p ≤ q,
(ii) converges for |z| < 1, if p = q + 1,
(iii) diverges for all z, z 6= 0, if p > q + 1.

Chu–Vandermonde theorem [7, p. 69, Q.No. 4]:

2F1

−M, A ;
1

B ;

 =
(B −A)M

(B)M
; M = 0, 1, 2, . . . , (1.2)

such that the ratio of Pochhammer symbols in r.h.s. is well defined and A, B ∈ C \ Z−0 .
Just as the Gaussian 2F1 function was generalized to pFq by increasing the number of the numerator

and denominator parameters, the four Appell functions were unified and generalized by Kampé de
Fériet [1, 4] who defined a general hypergeometric function of two variables.

We recall here the definition of a more general double hypergeometric function (than the one defined
by Kampé de Fériet) in a slightly modified notation [11, p. 423, Eq. (26)]:

F p: q; k
`: m; n

 (ap) : (bq) ; (ck) ;
x, y

(α`) : (βm) ; (γn) ;

 =

∞∑
r,s=0

p∏
j=1

(aj)r+s

q∏
j=1

(bj)r
k∏

j=1

(cj)s

∏̀
j=1

(αj)r+s

m∏
j=1

(βj)r
n∏

j=1

(γj)s

xr

r!

ys

s!
,
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Key words and phrases. Hypergeometric functions; Kampé de Fériet function; Summation theorem; Transformation

formulas.
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156 M. ALI AND M. I. QURESHI

where for the convergence,

(i) p+ q < `+m+ 1, p+ k < `+ n+ 1, |x| <∞, |y| <∞, or

(ii) p+ q = `+m+ 1, p+ k = `+ n+ 1 and{
|x|1/(p−`) + |y|1/(p−`) < 1, if p > `

max {|x|, |y|} < 1, if p ≤ `.

Lemma 1.1 ([10, p.100]).

∞∑
m=0

∞∑
n=0

Ω(m,n) =

∞∑
m=0

m∑
n=0

Ω(m− n, n),

provided that the multiple series involved are absolutely convergent.

It is well known that whenever a generalized hypergeometric function reduces to quotients of the
products of the gamma functions, the results are very important from the point of view of applications
in numerous areas of physical, mathematical and statistical sciences including (for example) in series
systems of symbolic computer algebra manipulation [9].

An important development has been made by various authors in generalizations of the summation
and transformation theorems (see [5,6,8,12]). Very recently, several remarkable transformation theo-
rems for the q-series have been proved by W. Chu in [2]. Further, by making use of divided differences,
new proofs have been presented in [3] for Dougall’s summation theorem for well-poised 7F6-series and
Whipple’s transformation between well-poised 7F6-series and balanced 4F3-series.

In this work, our main motive is to find the summation theorem for 4F3[−m,α, λ+1, µ+2;β, λ, µ; 1]
and to obtain some applications.

2. Summation Theorem

Theorem 2.1. If ρ, δ, σ are the non-vanishing zeros of the cubic polynomial Cm3 +Dm2 +Em+G
and α, β, λ, µ, −ρ, −δ, −σ ∈ C \ Z−0 ; m ∈ N0, then the following summation theorem holds true:

4F3

−m, α, λ+ 1, µ+ 2 ;
1

β, λ, µ ;

 =
(−ρ+ 1)m (−δ + 1)m (−σ + 1)m (β − α− 3)m

(−ρ)m (−δ)m (−σ)m (β)m
, (2.1)

where the coefficients C, D, E and G are the polynomials in α, β, λ, µ given as follows:

C =α2 − α3 − αλ+ α2λ− αµ+ 2α2µ+ λµ− 2αλµ− αµ2 + λµ2, (2.2)

D =− 7α2 − α3 + 4α2β + 6αλ− α2λ− α3λ− 3αβλ+ α2βλ+ 7αµ− 4α2µ− 2α3µ− 4αβµ

+ 2α2βµ− 6λµ+ 7αλµ+ 4α2λµ+ 3βλµ− 4αβλµ+ 5αµ2 + 2α2µ2 − 2αβµ2 − 6λµ2

− 3αλµ2 + 3βλµ2, (2.3)

E =− 4α+ 6αβ − 2αβ2 − 9αλ− 6α2λ− α3λ+ 9αβλ+ 3α2βλ− 2αβ2λ− 12αµ

− 7α2µ− α3µ+ 13αβµ+ 4α2βµ− 3αβ2µ+ 11λµ− 7α2λµ− 2α3λµ− 12βλµ

+ 4αβλµ+ 4α2βλµ+ 3β2λµ− 2αβ2λµ− 6αµ2 − 5α2µ2 − α3µ2 + 5αβµ2

+ 2α2βµ2 − αβ2µ2 + 11λµ2 + 12αλµ2 + 3α2λµ2 − 12βλµ2 − 6αβλµ2 + 3β2λµ2, (2.4)

G =− 6λµ− 11αλµ− 6α2λµ− α3λµ+ 11βλµ+ 12αβλµ+ 3α2βλµ− 6β2λµ− 3αβ2λµ

+ β3λµ− 6λµ2 − 11αλµ2 − 6α2λµ2 − α3λµ2 + 11βλµ2 + 12αβλµ2 + 3α2βλµ2

− 6β2λµ2 − 3αβ2λµ2 + β3λµ2

=− Cρδσ
=λ µ (µ+ 1) (β − α− 1) (β − α− 2) (β − α− 3). (2.5)
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Proof. Suppose the l.h.s. of equation (2.1) is denoted by ∆, then we have

∆ =

m∑
r=0

(−m)r (α)r (λ+ 1)r (µ+ 2)r
(β)r (λ)r (µ)r r!

=

m∑
r=0

(−m)r (α)r
(β)r r!

[
1 +

r(2λ+ µ+ 2)

λµ
+
r(r − 1)(λ+ 2µ+ 4)

λµ(µ+ 1)
+
r(r − 1)(r − 2)

λµ(µ+ 1)

]

=2F1

−m, α ;
1

β ;

+
(2λ+ µ+ 2)

λµ

m−1∑
r=0

(−m)r+1 (α)r+1

(β)r+1 r!

+
(λ+ 2µ+ 4)

λµ(µ+ 1)

m−2∑
r=0

(−m)r+2 (α)r+2

(β)r+2 r!
+

1

λµ(µ+ 1)

m−3∑
r=0

(−m)r+3 (α)r+3

(β)r+3 r!

=2F1

−m, α ;
1

β ;

+
(2λ+ µ+ 2)

λµ

(−m)1 (α)1
(β)1

2F1

−(m− 1), α+ 1 ;
1

β + 1 ;


+

(λ+ 2µ+ 4)

λµ(µ+ 1)

(−m)2 (α)2
(β)2

2F1

−(m− 2), α+ 2 ;
1

β + 2 ;


+

1

λµ(µ+ 1)

(−m)3 (α)3
(β)3

2F1

−(m− 3), α+ 3 ;
1

β + 3 ;

 . (2.6)

Using the Chu–Vandermonde theorem 1.2 in r.h.s. of equation (2.6), we obtain

∆ =
(β − α)m

(β)m
+

(2λ+ µ+ 2)

λµ

(−m)1 (α)1
(β)1

(β − α)m−1
(β + 1)m−1

+
(λ+ 2µ+ 4)

λµ(µ+ 1)

(−m)2 (α)2
(β)2

(β − α)m−2
(β + 2)m−2

+
1

λµ(µ+ 1)

(−m)3 (α)3
(β)3

(β − α)m−3
(β + 3)m−3

=
(β − α)m

(β)m
+

(2λ+ µ+ 2)(−m)1 (α)1
λµ

(β − α)m−1
(β)m

+
(λ+ 2µ+ 4)(−m)2 (α)2

λµ(µ+ 1)

(β − α)m−2
(β)m

+
(−m)3 (α)3
λ µ (µ+ 1)

(β − α)m−3
(β)m

=
(β − α)m

(β)m

[
1− (2λ+ µ+ 2) m α

λ µ (β − α+m− 1)
+

(λ+ 2µ+ 4)(−m)2 (α)2
λ µ (µ+ 1) (β − α+m− 2)2

+
(−m)3 (α)3

λ µ (µ+ 1) (β − α+m− 3)3

]
=

(β − α)m
(β)m

[
Ψ(α, β, λ, µ,m)

λ µ (µ+ 1) (β − α+m− 1) (β − α+m− 2) (β − α+m− 3)

]
, (2.7)

where

Ψ(α, β, λ, µ,m) =λ µ (µ+ 1)(β − α+m− 1)(β − α+m− 2)(β − α+m− 3)

−mα(2λ+ µ+ 2)(µ+ 1)(β − α+m− 2)(β − α+m− 3)

+ (−m)(−m+ 1)(λ+ 2µ+ 4)(α)(α+ 1)(β − α+m− 3)

+ (−m)(−m+ 1)(−m+ 2)(α)(α+ 1)(α+ 2).

Equation (2.7) can be written as

∆ =
(β − α)m

(β)m

[
Cm3 +Dm2 + Em+G

λ µ (µ+ 1) (β − α+m− 1) (β − α+m− 2) (β − α+m− 3)

]
, (2.8)
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Since ρ, δ, σ are the roots of the cubic equation Cm3 + Dm2 + Em + G = 0, therefore equation
(2.8) can be written as follows:

∆ =
(β − α)m

(β)m

[
C(m− ρ)(m− δ)(m− σ)

λ µ (µ+ 1) (β − α+m− 1) (β − α+m− 2) (β − α+m− 3)

]
.

On simplification, we get the assertion (2.1). �

3. General Double Series Identity

The application of the summation Theorem 2.1 is given by proving the following general double
series identity:

Theorem 3.1. Let {Φ(`)}∞`=1 be a bounded sequence of arbitrary complex numbers such that Φ(0) 6= 0
and α, β, λ, µ, −ρ, −δ, −σ ∈ C \ Z−0 . Then

∞∑
m,n=0

Φ(m+ n) (α)n (λ+ 1)n (µ+ 2)n (−1)n

(β)n (λ)n (µ)n

zm+n

m! n!

=
∞∑

m=0

Φ(m) (−ρ+ 1)m (−δ + 1)m (−σ + 1)m (β − α− 3)m
(−ρ)m (−δ)m (−σ)m (β)m

zm

m!
, (3.1)

where ρ, δ, σ are the roots of the cubic equation Cm3 +Dm2 +Em+G = 0 and C,D,E,G are given
by equations (2.2)–(2.5) with each absolutely convergent multiple series involved.

Proof. Suppose l.h.s. of equation (3.1) is denoted by Ξ. Then in view of Lemma 1.1, we have

Ξ =

∞∑
m=0

m∑
n=0

Φ(m) (α)n (λ+ 1)n (µ+ 2)n (−1)n

(β)n (λ)n (µ)n

zm

(m− n)! n!

=

∞∑
m=0

Φ(m)
zm

m!

m∑
n=0

(−m)n (α)n (λ+ 1)n (µ+ 2)n
(β)n (λ)n (µ)n n!

=

∞∑
m=0

Φ(m)
zm

m!
4F3

−m, α, λ+ 1, µ+ 2 ;
1

β, λ, µ ;

 .
Using Theorem 2.1 in r.h.s. of the above equation, relation (3.1) follows. �

4. Applications

If ρ, δ, σ are the roots of the cubic equation Cm3 +Dm2 + Em+G = 0 and α, β, λ, µ, −ρ, −δ,
−σ ∈ C \ Z−0 ; m ∈ N0, then we have the following applications:

I. Taking Φ(p) =

A∏
i=1

(ai)p

B∏
i=1

(bi)p

in equation (3.1), we get the following reduction formula:

FA:0;3
B:0;3

(aA) : ; α, λ+ 1, µ+ 2 ;
z, −z

(bB) : ; β, λ, µ ;


=A+4FB+4

a1, . . . , aA, −ρ+ 1, −δ + 1, −σ + 1, β − α− 3 ;
z

b1, . . . , bB , −ρ, −δ, −σ, β ;

 ,
subject to the convergence conditions:{

|z| < 1
2 , if A = B + 1

|z| <∞, if A ≤ B.
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II. Taking A = 1, a1 = d, B = 0 in equation (3.1) and putting z = −y
1−y , we get the following

Pfaff-Kummer-type transformation formula:

4F3

d, α, λ+ 1, µ+ 2 ;
y

β, λ, µ ;


=(1− y)−d 5F4

d, −ρ+ 1, −δ + 1, −σ + 1, β − α− 3 ;
−y
1−y

−ρ, −δ, −σ, β ;

 , (4.1)

where |y| < 1, Re(y) < 1
2 and α, β, λ, µ, −ρ, −δ, −σ ∈ C \ Z−0 .

III. Taking A = B = 0 in equation (3.1) and putting z = −y, we get the following Kummer’s
type first transformation formula:

3F3

α, λ+ 1, µ+ 2 ;
y

β, λ, µ ;


= exp(y) 4F4

−ρ+ 1, −δ + 1, −σ + 1, β − α− 3 ;
−y

−ρ, −δ, −σ, β ;

 , (4.2)

where |y| <∞ and α, β, λ, µ, −ρ, −δ, −σ ∈ C \ Z−0 .

In this section, we consider some numerical examples.

5. Numerical Examples

Taking α = 2, β = 3
2 , λ = 5

4 , µ = 7
3 in equations (2.2)–(2.5), the numerical values of C, D, E and

G are obtained as follows:

C = −1

3
, D =

14

3
, E = −1579

24
, G = −6125

48
.

The cubic polynomial equation Cm3 +Dm2 + Em+G = 0 becomes

16m3 − 224m2 + 3158m+ 6125 = 0. (5.1)

The roots ρ, δ and σ of equation (5.1) are obtained approximately as:

ρ = −1.70749, δ = 7.85375 + i12.7481, σ = 7.85375− i12.7481.

Now, substituting the values of α, β, λ, µ, ρ, δ and σ in equations (4.1) and (4.2), we get the
following Kummer-type transformation formulas:

4F3

d, 2, 9
4 ,

13
3 ;

y
3
2 ,

5
4 ,

7
3 ;


=(1− y)−d 5F4

d, 2.70749, −6.85375− i12.7481, −6.85375 + i12.7481, − 7
2 ;

−y
1−y

1.70749, −7.85375− i12.7481, −7.85375 + i12.7481, 3
2 ;

 ,
where |y| < 1, Re(y) < 1

2 and

3F3

2, 9
4 ,

13
3 ;

y
3
2 ,

5
4 ,

7
3 ;


= exp(y) 4F4

2.70749, −6.85375− i12.7481, −6.85375 + i12.7481, − 7
2 ;

−y
1.70749, −7.85375− i12.7481, −7.85375 + i12.7481, 3

2 ;

 ,
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where |y| <∞.
Several other examples can be obtained in a similar manner by considering different values of α, β,

λ and µ. The extensions of the summation theorems to hypergeometric functions containing arbitrary
number of pairs of numerator and denominator parameters will be taken as future aspect.

Appendix

The roots ρ, δ, σ of the cubic equation Cm3 +Dm2 +Em+G = 0 are calculated by using Wolfram
Mathematica 9.0 Software. The values of ρ, δ and σ are given as follows:

ρ =− D

3C

−
21/3

(
−D2 + 3CE

)
3C

(
−2D3 + 9CDE − 27C2G+

√
4 (−D2 + 3CE)

3
+ (−2D3 + 9CDE − 27C2G)

2

)1/3

+

(
−2D3 + 9CDE − 27C2G+

√
4 (−D2 + 3CE)

3
+ (−2D3 + 9CDE − 27C2G)

2

)1/3

3× 21/3C

δ =− D

3C

+

(
1 + i

√
3
) (
−D2 + 3CE

)
3× 22/3C

(
−2D3 + 9CDE − 27C2G+

√
4 (−D2 + 3CE)

3
+ (−2D3 + 9CDE − 27C2G)

2

)1/3

−

(
1− i

√
3
)(
−2D3 + 9CDE − 27C2G+

√
4 (−D2 + 3CE)

3
+ (−2D3 + 9CDE − 27C2G)

2

)1/3

6× 21/3C

σ =− D

3C

+

(
1− i

√
3
) (
−D2 + 3CE

)
3× 22/3C

(
−2D3 + 9CDE − 27C2G+

√
4 (−D2 + 3CE)

3
+ (−2D3 + 9CDE − 27C2G)

2

)1/3

−

(
1 + i

√
3
)(
−2D3 + 9CDE − 27C2G+

√
4 (−D2 + 3CE)

3
+ (−2D3 + 9CDE − 27C2G)

2

)1/3

6× 21/3C
.
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MIXED BOUNDARY-TRANSMISSION PROBLEMS OF THE GENERALIZED

THERMO-ELECTRO-MAGNETO-ELASTICITY THEORY FOR PIECEWISE

HOMOGENEOUS COMPOSED STRUCTURES

TENGIZ BUCHUKURI1, OTAR CHKADUA1,2 AND DAVID NATROSHVILI3,4

Abstract. The paper is devoted to the investigation of mixed boundary-transmission problems for

composed elastic structures consisting of two contacting anisotropic bodies occupying two three-

dimensional adjacent regions with a common contacting interface, being a proper part of their
boundaries. It is assumed that the contacting elastic bodies are subject to different mathematical

models. In particular, we consider Green-Lindsay’s model of generalized thermo-electro-magneto-

elasticity in one elastic component, while in the other one, we considered Gree Lindsay’s model of
generalized thermo-elasticity. The interaction of the thermo-mechanical and electro-magnetic fields

in the composed piecewise elastic structure is described by the fully coupled systems of partial dif-

ferential equations of pseudo-oscillations, obtained from the corresponding dynamical models by the
Laplace transform. These systems are equipped with the appropriate mixed boundary-transmission

conditions which cover the conditions arising in the case of interfacial cracks. Using the potential
method and the theory of pseudodifferential equations on manifolds with a boundary, the uniqueness

and existence theorems in suitable function spaces are proved, the regularity of solutions is analyzed

and singularities of the corresponding thermo-mechanical and electro-magnetic fields near the inter-
facial crack edges are characterized. The explicit expressions for the stress singularity exponents are

derived and it is shown that they depend essentially on the material parameters. A special class of

composed elastic structures is considered, where the so-called oscillating stress singularities do not
occur.

1. Introduction

In the present paper, we consider a boundary-transmission problem for a composed elastic structure

consisting of two contacting bodies occupying two three-dimensional adjacent regions Ω(1) and Ω(2)

with a common contacting interface, being a proper part of the boundaries ∂Ω(1) and ∂Ω(2) (see Figure
1). We analyze the case in which contacting elastic bodies are subject to different mathematical
models. In particular, we consider Green-Lindsay’s model of generalized thermo-electro-magneto-
elasticity in Ω(1) and Green-Lindsay’s model of generalized thermo-elasticity in Ω(2). Theoretical study
of such problems attracts great attention due to the widespread application of modern sensing and
actuating devices based on the ability to transform mechanical, electric, magnetic and thermal energies
from one form to another. Therefore, the mathematical models having regard to the coupling effects
between thermo-mechanical and electro-magnetic fields in elastic composites became very popular
over the last decades (see, e.g., [1, 28,29,34], and references therein).

A remarkable feature of the generalized Green-Lindsay’s model is a finite speed of heat propagation
in contrast to an infinite speed of heat transfer occurring in the classical heat equation theory (see,
e.g., [32]).

We investigate a general mixed boundary-transmission problem for the above described two-compo-
nent elastic structure with the appropriate boundary and transmission conditions which cover the
conditions arising in the case of interfacial cracks. In each region we consider the corresponding

2020 Mathematics Subject Classification. 35B65, 35C15, 35D30, 35J47, 35J57, 35S05, 45M05, 47A50, 47G30, 47G40,
74A15, 74E30, 74F05, 74F15, 74G70, 74H35.

Key words and phrases. Generalized thermo-electro-magneto-elasticity; Piezoelectricity; Green–Lindsay’s model;

Mixed problems; Interfacial crack problems; Boundary-transmission problems; Potential method; Pseudodifferential
equations; Asymptotic properties of solutions; Stress singularity exponents.
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system of partial differential equations of pseudo-oscillations containing a complex parameter τ . These
systems are obtained from the corresponding dynamical models by the Laplace transform.

Using the potential method and the theory of pseudodifferential equations on manifolds with a
boundary, we study the mixed boundary-transmission problems and prove the uniqueness and ex-
istence of solutions in appropriate function spaces. Further, we analyze regularity of solutions and
characterize singularities of the corresponding thermo-mechanical and electro-magnetic fields near the
exceptional curves (crack edges, lines where the different type boundary conditions collide, and inter-
face edges). In the upcoming papers, we plan to use the obtained results in the study of asymptotic
properties of solutions of the corresponding dynamical problems.

Remark that in [8], we have investigated the mixed type boundary value problems of the theory
of generalized thermo-electro-magneto-elasticity for homogeneous anisotropic materials with interior
cracks. The interfacial crack problems for multilayered piecewise homogeneous anisotropic nested
elastic structures, when all interacting components are subject to generalized thermo-electro-magneto-
elasticity model with distinct material parameters in distinct elastic components, are considered in
the reference [26]. The present investigation can be considered as a continuation of papers [5,8–10,24]
and [26], but it turned out to be more difficult as far as it refers to the interaction between different
dimensional physical fields (for the six-dimensional field in Ω(1) and four-dimensional field in Ω(2) see
the problem setting in Subsection 2.4).

The paper is organized as follows. In Section 2, we describe the geometrical structure of the elastic
composite body consisting of two interacting components, write down the governing pseudo-oscillation
equations of Green-Lindsay’s model of generalized thermo-electro-magneto-elasticity (GTEME model)
and generalized thermo-elasticity (GTE model), formulate the mixed boundary-transmission problem
and prove the uniqueness theorem in appropriate function spaces. In Section 3, we reduce equiv-
alently the boundary-transmission problem to the system of boundary pseudodifferential equations,
investigate the mapping properties of the corresponding pseudodifferential operator and prove the
invertibility of the pseudodifferential operator in appropriate Bessel potential and Besov spaces. Fur-
ther, we prove the theorem on the existence of solutions to the original mixed boundary-transmission
problem, study asymptotic properties of solutions and their derivatives near the exceptional curves
and evaluate explicitly the corresponding stress singularity exponents. It should be mentioned that in
our analysis, we essentially use some approaches and results presented in [7] and [8]. In Section 4, we
consider a particular case when an elastic solid medium occupying the region Ω(1) belongs to the 422
(Tetragonal) or 622 (Hexagonal) classes of crystals or to the class of transversally isotropic materials,
while the solid medium occupying the domain Ω(2) is an isotropic material. These types of media
includeF some key polymers and bio-materials (see [31]). For this particular problem, we analyze the
asymptotic properties of solutions near the interfacial crack edges and derive explicit expressions for
stress singularity exponents, playing an essential role in fracture mechanics. The stress singularity
exponents essentially depend on the elastic, piezoelectric, piezomagnetic, dielectric and permeability
constants. We prove that unlike the classical elasticity theory, in the case under consideration we have
no oscillating stress singularities for physical fields near the interfacial crack edges. However, it should
be mentioned that in comparison with the classical elasticity case, the stress singularity exponents
increase and are greater than 1

2 , in general.
In Appendix, for the reader’s convenience, we collected some auxiliary results used in the main text

of the paper.

2. Formulation of the Mixed Boundary-Transmission Problem

2.1. Geometrical configuration of the composite. Let Ω (1) and Ω (2) be the bounded disjoint
domains of the three-dimensional Euclidean space R3 with boundaries ∂Ω (1) and ∂Ω (2), respectively.
Moreover, let ∂Ω (1) and ∂Ω (2) have a nonempty, simply connected intersection Γ := ∂Ω (1) ∩ ∂Ω (2) of
positive measure. From now on, Γ will be referred to as an interface. Throughout the paper, n = n (1)

and ν = n (2) stand for the outward unit normal vectors to ∂Ω (1) and to ∂Ω (2), respectively. Clearly,
n(x) = −ν(x) for x ∈ Γ.
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Figure 1. Composed body.

Further, let Γ = ΓT ∪ ΓC , where ΓC is an open, simply connected proper part of Γ. Moreover,
ΓT ∩ ΓC = ∅ and ∂Γ ∩ ΓC = ∅.

We set S
(2)
N := ∂Ω (2) \Γ and S(1) := ∂Ω (1) \Γ. Further, we denote by S

(1)
D some open, nonempty,

proper sub-manifold of S(1) and put S
(1)
N := S(1) \ S (1)

D . Thus, we have the following dissections of
the boundary surfaces (see Figure 1):

∂Ω (1) = ΓT ∪ ΓC ∪ S (1)
N ∪ S (1)

D , ∂Ω (2) = ΓT ∪ ΓC ∪ S (2)
N .

Throughout the paper, for simplicity, we assume that ∂Ω (2), ∂Ω (1), ∂S
(2)
N , ∂ΓT , ∂ΓC , ∂S

(1)
D , ∂S

(1)
N

are C∞-smooth and ∂Ω (2) ∩ S (1)
D = ∅.

Let Ω (1) be occupied by an anisotropic homogeneous elastic medium revealing thermo-electro-
magnetic properties described by Green-Lindsay’s model of generalized thermo-electro-magneto-elas-
ticity and Ω (2) be filled by an anisotropic homogeneous elastic medium (e.g. metallic solid) with
properties described by Green-Lindsay’s generalized thermo-elasticity model. These two bodies inter-
act along the interface Γ with the interfacial crack ΓC . Moreover, it is assumed that the composed

body is fixed along the sub-surface S
(1)
D (the Dirichlet part of the boundary ∂Ω (1)), while on the

sub-manifolds S
(2)
N and S

(1)
N we have the Neumann type boundary conditions.

In the domain Ω (1) we have a six-dimensional physical field described by the displacement vector

u (1) = (u
(1)
1 , u

(1)
2 , u

(1)
3 )>, the electric potential u

(1)
4 = ϕ(1), the magnetic potential u

(1)
5 = ψ (1),

and the temperature distribution function u
(1)
6 = ϑ (1), while in the domain Ω (2) we have a four-

dimensional thermoelastic field represented by the displacement vector u (2) = (u
(2)
1 , u

(2)
2 , u

(2)
3 )> and

temperature distribution function u
(2)
4 = ϑ (2). The superscript (·)> denotes transposition operation.

Throughout the paper, the summation over the repeated indices is meant from 1 to 3, unless
otherwise stated.

2.2. GTE Model. In the domain Ω (2) of the composed body, the system of pseudo-oscillation equa-
tions obtained from the dynamical equations of the generalized Green-Lindsay’s linear model of ther-
moelasticity in matrix form reads as (see [7, 11])

A (2)(∂x, τ)U (2)(x, τ) = Φ (2)(x, τ) ,
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where U (2) = (u
(2)
1 , u

(2)
2 , u

(2)
3 , u

(2)
4 )> := (u (2), ϑ (2))> is a sought for complex-valued vector function,

Φ (2) = (Φ
(2)
1 , . . . ,Φ

(2)
4 )> is a given vector function, and

A (2)(∂x, τ) =
[
A (2)
pq (∂x, τ)

]
4×4

:=

 [c
(2)
rjkl∂j∂l − % (2)τ2δrk]3×3 [−(1 + ν

(2)
0 τ)λ

(2)
rj ∂j ]3×1

[−τλ (2)
kl ∂l]1×3 η

(2)
jl ∂j∂l − τd

(2)
0 − τ2h

(2)
0


4×4

. (2.1)

Here, τ = σ + iω is a complex parameter, u (2) = (u
(2)
1 , u

(2)
2 , u

(2)
3 )> is the displacement vector,

u
(2)
4 := ϑ (2) = T (2) − T0 is the relative temperature (temperature increment), %(2) is the mass

density, c
(2)
ijkl are the elastic constants, κ (2)

kj are the thermal conductivity constants, λ
(2)
rj are the

coefficients, coupling thermal, electric and magnetic fields, ν
(2)
0 and h

(2)
0 are two relaxation times,

d
(2)
0 is the constitutive coefficient; T0 > 0 is the initial temperature, i.e., the temperature in the

natural state in the absence of deformation and electromagnetic fields. We employ the notation
∂ = ∂x = (∂1, ∂2, ∂3), ∂j = ∂/∂xj .

For an isotropic medium we have (see [22]):

c
(2)
ijlk = λ (2) δij δlk + µ (2) (δil δjk + δik δjl), λ

(2)
ij = λ (2) δij , η

(2)
ij = η (2) δij , (2.2)

where λ (2) and µ (2) are the Lamé constants and δij is Kronecker’s delta.
The stress operator in the generalised thermo-elasticity theory has the form

T (2)(∂x, ν, τ) =
[
T (2)
pq (∂x, ν, τ)

]
4×4

:=

 [c
(2)
rjkl νj∂l]3×3 [−(1 + ν

(2)
0 τ)λ

(2)
rj νj ]3×1

[0]1×3 η
(2)
jl νj∂l


4×4

.

Note that for a four-dimensional vector U (2) = (u
(2)
1 , u

(2)
2 , u

(2)
3 , u

(2)
4 )> we have

T (2)(∂x, ν, τ)U (2) = (σ
(2)
1j νj , σ

(2)
2j νj , σ

(2)
3j νj ,−T

−1
0 q

(2)
j νj)

>,

where σ
(2)
kj , k, j = 1, 2, 3, are components of the stress tensor, σ(2) = (σ

(2)
1j νj , σ

(2)
2j νj , σ

(2)
3j νj)

> is the

mechanical stress vector and q = q
(2)
j νj is the heat flow across the surface element with normal ν (for

details see [7]).
The constants involved in the above equations satisfy the following symmetry conditions:

c
(2)
ijkl=c

(2)
jikl=c

(2)
klij , λ

(2)
ij =λ

(2)
ji , η

(2)
ij =η

(2)
ji , i, j, k, l=1, 2, 3. (2.3)

Moreover, from physical considerations related to the positive definiteness of the potential energy, it
follows that there exist positive constants c0 and c1 such that

c
(2)
ijkl ξij ξkl > c0 ξij ξij , η

(2)
ij ξiξj > c1 ξi ξi for all ξij = ξji ∈ R, ξj ∈ R, i, j = 1, 2, 3. (2.4)

In particular, the first inequality above implies that the density of potential energy

E (2)
(
u (2), u (2)

)
= c

(2)
ijlk s

(2)
ij s

(2)
lk ,

corresponding to the real-valued displacement vector u (2), is positive definite with respect to the

symmetric components of the strain tensor s
(2)
lk = s

(2)
kl = 2−1(∂k u

(2)
j + ∂j u

(2)
k ).

By A(2,0)(−iξ) with ξ ∈ R3 we denote the principal homogeneous symbol matrix of the operator
A (2)(∂x, τ),

A(2,0)(−iξ) = A(2,0)(iξ) = −A(2,0)(ξ) = −

 [c
(2)
rjklξjξl]3×3 [0]3×1

[0]1×3 η
(2)
jl ξjξl


4×4

.
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The symmetry conditions (2.3) and inequalities (2.4) imply that the matrix A(2,0)(ξ) is positive defi-
nite, i.e., there is a positive constant C depending only on the material parameters such that(

A(2,0)(ξ)ζ · ζ
)

=
(
−A(2,0)(−iξ)ζ · ζ

)
=
( 4∑
k,j=1

A
(2,0)
kj (ξ)ζjζk

)
≥ C|ξ|2|ζ|2

for all ξ ∈ R3 and for all ζ ∈ C4.

Here and in what follows, the central dot denotes the scalar product in the space of complex-valued
vectors Cm and the over bar denotes complex conjugation.

2.3. GTEME Model. In Ω (1), the thermo-mechanical and electro-magnetic fields are governed
by the following pseudo-oscillation system of equations of Green-Lindsay’s thermo-electro-magneto-
elasticity theory (see [7]):

A(1)(∂x, τ)U (1)(x, τ) = Φ(1)(x, τ),

where

A(1)(∂x, τ) =
[
A(1)
pq (∂x, τ)

]
6×6

:=


[c

(1)
rjkl∂j∂l − %(1)τ2δrk]3×3 [e

(1)
lrj∂j∂l]3×1 [q

(1)
lrj∂j∂l]3×1 [−(1 + ν

(1)
0 τ)λ

(1)
rj ∂j ]3×1

[−e(1)
jkl∂j∂l]1×3 κ(1)

jl ∂j∂l a
(1)
jl ∂j∂l −(1 + ν

(1)
0 τ)p

(1)
j ∂j

[−q(1)
jkl∂j∂l]1×3 a

(1)
jl ∂j∂l µ

(1)
jl ∂j∂l −(1 + ν

(1)
0 τ)m

(1)
j ∂j

[−τλ(1)
kl ∂l]1×3 τp

(1)
l ∂l τm

(1)
l ∂l η

(1)
jl ∂j∂l − τ2h

(1)
0 − τd

(1)
0


6×6

(2.5)

is the differential operator associated with the pseudo-oscillation equations of the thermo-electro-
magneto-elasticity theory, obtained by the Laplace transform from the corresponding dynamical

equations, U (1) = (u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4 , u

(1)
5 , u

(1)
6 )> := (u(1), ϕ(1), ψ(1), ϑ(1))> is the sought for complex-

valued vector function, u(1) = (u
(1)
1 , u

(1)
2 , u

(1)
3 )> denotes the displacement vector, ϕ(1) and ψ(1) stand

for the electric and magnetic potentials and ϑ (1) = T (1)−T0 is the relative temperature (temperature

increment), and Φ(1) =
(
Φ

(1)
1 , . . . ,Φ

(1)
6

)>
is a given vector function. Here we also employ the following

notation: %(1) is the mass density, c
(1)
rjkl are the elastic constants, e

(1)
jkl are the piezoelectric constants,

q
(1)
jkl are the piezomagnetic constants, κ(1)

jk are the dielectric (permittivity) constants, µ
(1)
jk are the

magnetic permeability constants, a
(1)
jk are the electromagnetic coupling coefficients, p

(1)
j , m

(1)
j , and

λ
(1)
rj are the coefficients, coupling thermal field with displacement, electric and magnetic fields, η

(1)
jk

are the heat conductivity coefficients, T0 is the initial reference temperature, that is, the temperature

in the natural state in the absence of deformation and electromagnetic fields, ν
(1)
0 and h

(1)
0 are two

relaxation times, a
(1)
0 and d

(1)
0 are some constitutive coefficients.

Throughout the paper, we assume that the time relaxation parameters ν
(1)
0 and ν

(2)
0 involved in

operators (2.5) and (2.1) are the same and we set

ν
(1)
0 = ν

(2)
0 = ν0.

The constants involved in the above equations satisfy the following symmetry conditions:

c
(1)
rjkl = c

(1)
jrkl = c

(1)
klrj , e

(1)
klj = e

(1)
kjl, q

(1)
klj = q

(1)
kjl,

κ(1)
kj = κ(1)

jk , λ
(1)
kj = λ

(1)
jk , µ

(1)
kj = µ

(1)
jk , a

(1)
kj = a

(1)
jk , η

(1)
kj = η

(1)
jk , r, j, k, l = 1, 2, 3.

(2.6)

From physical considerations it follows that (see, e.g., [3, 27,32]):

c
(1)
rjklξrjξkl ≥ δ0ξkl ξkl, κ(1)

kj ξkξj ≥ δ
(1)
1 |ξ|2, µ

(1)
kj ξkξj ≥ δ2|ξ|

2, η
(1)
kj ξkξj ≥ δ3|ξ|

2,

for all ξkj = ξjk ∈ R and for all ξ = (ξ1, ξ2, ξ3) ∈ R3,
(2.7)

ν0 > 0, h
(1)
0 > 0, d

(1)
0 ν0 − h(1)

0 > 0, (2.8)
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where δ0, δ1, δ2, and δ3 are the positive constants depending on material parameters.
Due to the symmetry conditions (2.6), with the help of (2.7), we easily derive

c
(1)
rjklζrjζkl ≥ δ0ζklζkl, κ(1)

kj ζkζj ≥ δ1|ζ|
2, µ

(1)
kj ζkζj ≥ δ2|ζ|

2, η
(1)
kj ζkζj ≥ δ3| ζ|

2,

for all ζkj = ζjk ∈ C and for all ζ = (ζ1, ζ2, ζ3) ∈ C3.
(2.9)

More careful analysis related to the positive definiteness of the potential energy and the thermody-
namical laws insure that the following 8× 8 matrix

M = [Mkj ]8×8 :=


[κ(1)
jl ]3×3 [a

(1)
jl ]3×3 [p

(1)
j ]3×1 [ν0p

(1)
j ]3×1

[a
(1)
jl ]3×3 [µ

(1)
jl ]3×3 [m

(1)
j ]3×1 [ν0mj ]3×1

[p
(1)
j ]1×3 [m

(1)
j ]1×3 d

(1)
0 h

(1)
0

[ν0p
(1)
j ]1×3 [ν0m

(1)
j ]1×3 h

(1)
0 ν0h

(1)
0


8×8

(2.10)

is positive definite (see [7]). Note that the positive definiteness of M remains valid if the parameters

p
(1)
j and m

(1)
j in (2.10) are replaced by the opposite ones, −p(1)

j and −m(1)
j . Moreover, it follows that

the matrices

Λ(1) :=

[κ(1)
kj ]3×3 [a

(1)
kj ]3×3

[a
(1)
kj ]3×3 [µ

(1)
kj ]3×3


6×6

, Λ(2) :=

d(1)
0 h

(1)
0

h
(1)
0 ν0h0


2×2

(2.11)

are positive definite as well, i.e.,

κ(1)
kj ζ

′
kζ
′
j + a

(1)
kj (ζ ′kζ

′′
j + ζ ′kζ

′′
j ) + µ

(1)
kj ζ
′′
k ζ
′′
j ≥ κ

(1)
1

(
|ζ ′|2 + |ζ ′′|2

)
∀ ζ ′, ζ ′′ ∈ C3, (2.12)

d
(1)
0 |z1|2 + h0

(
z1z2 + z1z2

)
+ ν0h

(1)
0 |z2|2 ≥ κ(1)

2

(
|z1|2 + |z2|2

)
∀ z1, z2 ∈ C, (2.13)

with some positive constants κ
(1)
1 and κ

(1)
2 depending on the material parameters involved in (2.11)

(for details see [7]).
The stress operator T (1)(∂x, n, τ) in the generalized thermo-electro-magneto-elasticity theory reads

as

T (1)(∂x, n, τ) =
[
T (1)
pq (∂x, n, τ)

]
6×6

:=


[c

(1)
rjklnj∂l]3×3 [e

(1)
lrjnj∂l]3×1 [q

(1)
lrjnj∂l]3×1 [−(1 + ν0τ)λ

(1)
rj nj ]3×1

[−e(1)
jklnj∂l]1×3 κ(1)

jl nj∂l a
(1)
jl nj∂l −(1 + ν0τ)p

(1)
j nj

[−q(1)
jklnj∂l]1×3 a

(1)
jl nj∂l µ

(1)
jl nj∂l −(1 + ν0τ)m

(1)
j nj

[0]1×3 0 0 η
(1)
jl nj∂l


6×6

.

Note that for a vector U (1) := (u(1), ϕ(1), ψ(1), ϑ(1))>, the components of the corresponding general-
ized stress vector T (1) U (1) have the following physical sense: the first three components correspond to
the mechanical stress vector in the theory of generalized thermo-electro-magneto-elasticity, the forth
and the fifth components correspond to the normal components of the electric displacement vector
and the magnetic induction vector, respectively, with opposite sign, and finally, the sixth component
is (−T−1

0 ) times the normal component of the heat flux vector (for details see [7, Ch.2]).

Denote by A(1,0)(−iξ) with ξ ∈ R3 the principal homogeneous symbol matrix of the differential
operator A(1)(∂x, τ). We have

A(1,0)(−iξ) = −A(1,0)(ξ) =


[−c(1)

rjklξjξl]3×3 [−e(1)
lrjξjξl]3×1 [−q(1)

lrjξjξl]3×1 [0]3×1

[e
(1)
jklξjξl]1×3 −κ(1)

jl ξjξl −a(1)
jl ξjξl 0

[q
(1)
jklξjξl]1×3 −a(1)

jl ξjξl −µ(1)
jl ξjξl 0

[0]1×3 0 0 −η(1)
jl ξjξl


6×6

.
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From the symmetry conditions (2.6), inequalities (2.7) and the positive definiteness of the matrix
Λ(1) defined in (2.11) it follows that there is a positive constant C depending only on the material
parameters such that

Re
(
−A(1,0)(−iξ)ζ · ζ

)
= Re

( 6∑
k,j=1

A
(1,0)
kj (ξ)ζjζk

)
≥ C|ξ|2|ζ|2

for all ξ ∈ R3 and for all ζ ∈ C6.

Therefore, −A(1)(∂x, τ) is a non-selfadjoint strongly elliptic differential operator.

2.4. Formulation of the Mixed Boundary-Transmission problem. By W r
p , Hs

p and Bsp,q with
r > 0, s ∈ R, 1 < p < ∞, 1 6 q 6 ∞, we denote the Sobolev–Slobodetskii, Bessel potential, and
Besov function spaces, respectively, (see, e.g., [33]). Recall that Hr

2 = W r
2 = Br2,2 , Hs

2 = Bs2,2 ,

W t
p = Btp,p , and Hk

p = W k
p , for any r > 0, for any s ∈ R, for any positive and non-integer t, and for

any non-negative integer k.
Let M0 be a smooth surface without boundary. For a proper sub-manifold M ⊂M0, we denote

by H̃s
p(M) and B̃sp,q(M) the subspaces of Hs

p(M0) and Bsp,q(M0), respectively,

H̃s
p(M) =

{
g : g ∈ Hs

p(M0), supp g ⊂M
}
,

B̃sp,q(M) =
{
g : g ∈ Bsp,q(M0), supp g ⊂M

}
,

while Hs
p(M) and Bsp,q(M) stand for the spaces of restrictions on M of functions from Hs

p(M0) and
Bsp,q(M0), respectively,

Hs
p(M) =

{
rMf : f ∈ Hs

p(M0)
}
, Bsp,q(M) =

{
rMf : f ∈ Bsp,q(M0)

}
,

where rM is the restriction operator onto M.
Now we formulate the mixed boundary-transmission problem: Find vector functions

U (1) = (u(1), ϕ(1), ψ(1), ϑ(1))> = (u
(1)
1 , . . . , u

(1)
6 )> : Ω (1) → C6,

U (2) = (u(2), ϑ(2))> = (u
(2)
1 , . . . , u

(2)
4 )> : Ω (2) → C4,

belonging, respectively, to the spaces [W 1
p (Ω (2))]4 and [W 1

p (Ω (1))]6 with 1 < p <∞ and satisfying
(i) the systems of partial differential equations :

A(1)(∂x, τ)U (1) = 0 in Ω (1), (2.14)

A (2)(∂x, τ)U (2) = 0 in Ω (2), (2.15)

(ii) the boundary conditions : {
T (1)(∂x, n, τ)U (1)

}+
= Q(1) on S

(1)
N , (2.16){

T (2)(∂x, ν, τ)U (2)
}+

= Q(2) on S
(2)
N , (2.17){

U (1)
}+

= f (1) on S
(1)
D , (2.18)

{u(1)
4 }+ = f4 on ΓT , (2.19)

{u(1)
5 }+ = f5 on ΓT , (2.20)

(iii) the transmission conditions on ΓT :{
u

(1)
j

}+

−
{
u

(2)
j

}+
= fj on ΓT , j = 1, 2, 3, (2.21){

u
(1)
6

}+

−
{
u

(2)
4

}+
= f6 on ΓT , (2.22){[

T (1)(∂x, n, τ)U (1)
]
j

}+
+
{

[T (2)(∂x, ν, τ)U (2)]j
}+

= Fj , on ΓT , j = 1, 2, 3, (2.23){[
T (1)(∂x, n, τ)U (1)

]
6

}+
+
{

[T (2)(∂x, ν, τ)U (2)]4
}+

= F4, on ΓT , (2.24)
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(iv) the interfacial crack conditions on ΓC :{
T (1)(∂x, n, τ)U (1)

}+
= Q̃(1) on ΓC , (2.25){

T (2)(∂x, ν, τ)U (2)
}+

= Q̃ (2) on ΓC , (2.26)

where n = −ν on Γ,

Q(1) = (Q
(1)
1 , Q

(1)
2 , Q

(1)
3 , Q

(1)
4 , Q

(1)
5 , Q

(1)
6 )> ∈

[
B
− 1
p

p,p (S
(1)
N )

]6
,

Q̃(1) = (Q̃
(1)
1 , Q̃

(1)
2 , Q̃

(1)
3 , Q̃

(1)
4 , Q̃

(1)
5 , Q̃

(1)
6 )> ∈

[
B
− 1
p

p,p (ΓC)
]6
,

Q (2) =
(
Q

(2)
1 , Q

(2)
2 , Q

(2)
3 , Q

(2)
4

)> ∈ [B− 1
p

p,p (S
(2)
N )

]4
,

Q̃ (2) =
(
Q̃

(2)
1 , Q̃

(2)
2 , Q̃

(2)
3 , Q̃

(2)
4

)> ∈ [B− 1
p

p,p (ΓC)
]4
,

f (1) = (f
(1)
1 , f

(1)
2 , f

(1)
3 , f

(1)
4 , f

(1)
5 , f

(1)
6 )> ∈

[
B

1− 1
p

p,p (S
(1)
D )

]6
,

f =
(
f1, f2, f3, f4, f5, f6

)> ∈ [B1− 1
p

p,p (ΓT )
]6
,

F =
(
F1, F2, F3, F4

)> ∈ [B− 1
p

p,p (ΓT )
]4
.

(2.27)

Note that, in addition, the functions Fj , Q
(1)
j , Q̃

(1)
j , Q̃

(2)
j and Q

(2)
j have to satisfy some evident

compatibility conditions (see Subsection 3.1, inclusion (3.22), (3.23)).
We have the following uniqueness theorem for p = 2.

Theorem 2.1. Let Ω (1) and Ω (2) be the Lipschitz domains and either τ = σ + iω with σ > 0 or
τ = 0. Then the mixed boundary transmission problem (2.14)–(2.26) has at most one solution pair

(U (1), U (2)) in the space [W 1
2 (Ω (1))]6 × [W 1

2 (Ω (2))]4, provided mesS
(1)
D > 0.

Proof. Proof of the theorem is quite similar to that of Theorem 1.1 in reference [6]. �

Later we will prove the uniqueness theorem for p 6= 2.
To prove the existence of solutions to the above formulated mixed boundary-transmission problem,

we use the potential method and the theory of pseudodifferential equations. To this end, we introduce
the following single layer potentials:

V (1)
τ (h (1))(x) =

∫
∂Ω(1)

Γ(1)(x− y, τ)h (1)(y) dyS,

V (2)
τ (h (2))(x) =

∫
∂Ω(2)

Γ (2)(x− y, τ)h (2)(y) dyS,

where Γ (1)(x, τ) and Γ(2)(x, τ) are the fundamental matrices of the differential operators A (1)(∂x, τ)

and A (2)(∂x, τ), respectively, h (1) = (h
(1)
1 , . . . , h

(1)
6 )> and h (2) = (h

(2)
1 , . . . , h

(2)
4 )> are the density

vector functions. The explicit expressions of the fundamental matrices Γ (1)(x, τ) and Γ(2)(x, τ) and
their properties can be found in references [7] and [8].

We introduce also the following boundary integral operators generated by the single layer potentials

H(1)
τ (h(1))(z) =

∫
∂Ω(1)

Γ(1)(z − y, τ)h(1)(y) dyS, z ∈ ∂Ω(1), (2.28)

K(1)
τ (h(1))(z) =

∫
∂Ω(1)

T (1)(∂z, n(z), τ)Γ(1)(z − y, τ)h(1)(y) dyS, z ∈ ∂Ω(1), (2.29)

H(2)
τ (h(2))(z) =

∫
∂Ω(2)

Γ(2)(z − y, τ)h(2)(y) dyS, z ∈ ∂Ω(2), (2.30)
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K(2)
τ (h(2))(z) =

∫
∂Ω(2)

T (2)(∂z, n(z), τ)Γ(2)(z − y, τ)h(2)(y) dyS, z ∈ ∂Ω(2). (2.31)

Note that H(1)
τ and H(2)

τ are pseudodifferential operators of order −1, while K(1)
τ and K(2)

τ are pseu-
dodifferential operators of order 0, i.e., singular integral operators (for details see Appendix).

Now, we formulate several auxiliary lemmas proved in reference [8].

Lemma 2.2. Let Re τ = σ > 0 and 1 < p <∞. An arbitrary solution vector U (2) ∈ [W 1
p (Ω (2)) ]4 to

the homogeneous equation A (2)(∂, τ)U (2) = 0 in Ω (2), can be uniquely represented by the single layer
potential

U (2) = V (2)
τ

([
P (2)
τ

]−1
χ (2)

)
in Ω (2),

where

P (2)
τ := −2−1 I 4 +K (2)

τ , χ (2) =
{
T (2)U (2) }+ ∈

[
B
− 1
p

p,p (∂Ω (2))
]4
, (2.32)

and K (2)
τ is defined by (2.31).

For the mapping properties and invertibility of the operator P
(2)
τ in appropriate function spaces see

Theorem 5.4.

Lemma 2.3. Let Re τ = σ > 0 and

P (1)
τ := −2−1 I6 +K(1)

τ + βH(1)
τ , (2.33)

where K(1)
τ and H(1)

τ are defined by (2.29) and (2.28), respectively, and β is a smooth real-valued scalar
function on S(1), not vanishing identically and satisfying the conditions

β > 0, supp β ⊂ S(1)
D . (2.34)

Then the operators

P (1)
τ :

[
Hs
p(∂Ω (1))

]6 → [
Hs
p(∂Ω (1))

]6
,

P (1)
τ :

[
Bsp,q(∂Ω (1))

]6 → [
Bsp,q(∂Ω (1))

]6
are invertible for all 1 < p <∞, 1 6 q 6∞, and s ∈ R.

As a consequence, we have the following

Lemma 2.4. Let Re τ = σ > 0 and 1 < p < ∞. An arbitrary solution U (1) ∈ [W 1
p (Ω (1)) ]6 to the

homogeneous equation A (1)(∂x, τ)U (1) = 0 in Ω (1) can be uniquely represented by the single layer
potential

U (1) = V (1)
τ

( [
P (1)
τ

]−1
χ
)

in Ω (1),

where

χ = {T (1)U (1)}+ + β {U (1)}+ ∈ [B
− 1
p

p,p (∂Ω (1)) ]6.

3. The Existence and Regularity Results

3.1. Reduction to boundary equations. Let us return to problem (2.14)–(2.26) and derive the
equivalent boundary integral formulation. Keeping in mind (2.27), let

G (1) :=

{
Q(1) on S

(1)
N ,

Q̃(1) on ΓC ,
G (2) :=

{
Q (2) on S

(2)
N ,

Q̃ (2) on ΓC ,

G (1) ∈
[
B−1/p
p,p (S

(1)
N ∪ ΓC)

]6
, G (2) ∈

[
B−1/p
p,p (S

(2)
N ∪ ΓC)

]4
,

(3.1)

and

G
(1)
0 = (G

(1)
01 , . . . , G

(1)
06 )> ∈

[
B
− 1
p

p,p (∂Ω (1))
]6
, G

(2)
0 = (G

(2)
01 , . . . , G

(2)
04 )> ∈

[
B
− 1
p

p,p (∂Ω (2))
]4

(3.2)
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be some fixed extensions of the vector functions G (1) and G (2), respectively, onto ∂Ω (1) and ∂Ω (2)

preserving the space. It is evident that arbitrary extensions of the same vector functions can then be
represented as

G(1) ∗ = G
(1)
0 + ψ + h (1), G(2) ∗ = G

(2)
0 + h (2),

where

ψ := (ψ1, . . . , ψ6)> ∈
[
B̃
− 1
p

p,p (S
(1)
D )

]6
,

h (1) := (h
(1)
1 , . . . , h

(1)
6 )> ∈

[
B̃
− 1
p

p,p (ΓT )
]6
,

h (2) := (h
(2)
1 , . . . , h

(2)
4 )> ∈

[
B̃
− 1
p

p,p (ΓT )
]4 (3.3)

are arbitrary vector functions.
We look for a solution pair (U (1), U (2)) of the mixed boundary-transmission problem (2.14)–(2.26)

in the form of single layer potentials

U (1) = (u
(1)
1 , . . . , u

(1)
6 )> = V (1)

τ

(
[P (1)

τ ]−1
[
G

(1)
0 + ψ + h (1)

] )
in Ω (1), (3.4)

U (2) = (u
(2)
1 , . . . , u

(2)
4 )> = V (2)

τ ( [P (2)
τ ]−1

[
G

(2)
0 + h (2)

] )
in Ω (2), (3.5)

where P
(1)
τ and P

(2)
τ are given by (2.33) and (2.32), and h (1), h(2) and ψ are the unknown vector

functions satisfying inclusions (3.3).
Keeping in mind (2.34), we see that the homogeneous differential equations (2.14), (2.15), the

boundary conditions (2.16), (2.17) and the crack conditions (2.25), (2.26) are satisfied automatically.
The remaining boundary and transmission conditions (2.21)–(2.24) lead to the system of pseudo-

differential equations for the unknown vector functions ψ, h(1) and h (2),

r
S

(1)
D

[
H(1)
τ [P (1)

τ ]−1
(
G

(1)
0 + ψ + h(1)

) ]
= f (1) on S

(1)
D , (3.6)

r
ΓT

[
H(1)
τ [P (1)

τ ]−1 (G
(1)
0 + ψ + h(1))

]
j

= fj on ΓT , j = 4, 5, (3.7)

rΓT

[
H(1)
τ [P (1)

τ ]−1 (G
(1)
0 + ψ + h(1))

]
j
− rΓT

[
H (2)
τ [P (2)

τ ]−1(G
(2)
0 + h (2))

]
j

= fj on ΓT ,

j = 1, 2, 3, (3.8)

r
ΓT

[
H(1)
τ [P (1)

τ ]−1 (G
(1)
0 + ψ + h(1))

]
6
− r

ΓT

[
H (2)
τ [P (2)

τ ]−1(G
(2)
0 + h (2))

]
4

= f6 on ΓT , (3.9)

r
ΓT

[G
(1)
0 + ψ + h(1)]j +r

ΓT
[G

(2)
0 + h (2)]j=Fj on ΓT , j=1, 2, 3, (3.10)

r
ΓT

[G
(1)
0 + ψ + h(1)]6+r

ΓT
[G

(2)
0 + h (2)]4 = F4 on ΓT . (3.11)

After some rearrangement we get the system of pseudodifferential equations

r
S

(1)
D

[
H(1)
τ [P (1)

τ ]−1
(
ψ + h(1)

) ]
= f̃ (1) on S

(1)
D , (3.12)

rΓT

[
H(1)
τ [P (1)

τ ]−1 (ψ + h(1))
]
j

= f̃j on ΓT , j = 4, 5, (3.13)

r
ΓT

[
H(1)
τ [P (1)

τ ]−1 (ψ + h(1))
]
j
− r

ΓT

[
H (2)
τ [P (2)

τ ]−1(h (2))
]
j

= f̃j on ΓT , j = 1, 2, 3, (3.14)

rΓT

[
H(1)
τ [P (1)

τ ]−1 (ψ + h(1))
]
6
− rΓT

[
H (2)
τ [P (2)

τ ]−1(h (2))
]
4

= f̃6 on ΓT , (3.15)

r
ΓT
h

(1)
j +r

ΓT
h

(2)
j = F̃j on ΓT , j=1, 2, 3, (3.16)

r
ΓT
h

(1)
6 +r

ΓT
h

(2)
4 = F̃4 on ΓT , (3.17)

where

f̃
(1)
k := f

(1)
k − r

S
(1)
D

[
H(1)
τ [P (1)

τ ]−1G
(1)
0

]
k
∈ B1− 1

p
p,p (S

(1)
D ), k = 1, 6, (3.18)

f̃j := fj − rΓT

[
H(1)
τ [P (1)

τ ]−1G
(1)
0

]
j
∈ B1− 1

p
p,p (ΓT ), j = 4, 5, (3.19)

f̃j := fj + r
ΓT

[
H (2)
τ [P (2)

τ ]−1G
(2)
0

]
j
− r

ΓT

[
H(1)
τ [P (1)

τ ]−1G
(1)
0

]
j
∈ B1− 1

p
p,p (ΓT ), j = 1, 2, 3, (3.20)



MIXED BOUNDARY-TRANSMISSION PROBLEMS 173

f̃6 := f6 + r
ΓT

[
H (2)
τ [P (2)

τ ]−1G
(2)
0

]
4
− r

ΓT

[
H(1)
τ [P (1)

τ ]−1G
(1)
0

]
6
∈ B1− 1

p
p,p (ΓT ), (3.21)

F̃j := Fj − rΓT
G

(1)
0j −rΓT

G
(2)
0j ∈rΓT

B̃
− 1
p

p,p (ΓT ), j=1, 2, 3, (3.22)

F̃4 := F4 − rΓT
G

(1)
06 −rΓT

G
(2)
04 ∈rΓT

B̃
− 1
p

p,p (ΓT ). (3.23)

Inclusions (3.22), (3.23) are the compatibility conditions for the mixed boundary-transmission problem

under consideration. Therefore, in what follows, we assume that F̃j are extended from ΓT onto the

manifold ∂Ω (2) ∪ ∂Ω (1) \ ΓT by zero, i.e., F̃j ∈ B̃
− 1
p

p,p (ΓT ), j = 1, 4.
Introduce the Steklov–Poincaré type 6× 6 matrix pseudodifferential operators

A(1)
τ := H(1)

τ [P (1)
τ ]−1, A (2)

τ := H (2)
τ

(
P (2)
τ

)−1
.

Let

B (2)
τ :=



(A
(2)
τ )11 (A

(2)
τ )12 (A

(2)
τ )13 0 0 (A

(2)
τ )14

(A
(2)
τ )21 (A

(2)
τ )22 (A

(2)
τ )23 0 0 (A

(2)
τ )24

(A
(2)
τ )31 (A

(2)
τ )32 (A

(2)
τ )33 0 0 (A

(2)
τ )34

0 0 0 0 0 0
0 0 0 0 0 0

(A
(2)
τ )41 (A

(2)
τ )42 (A

(2)
τ )43 0 0 (A

(2)
τ )44


6×6

.

Taking into account equations (3.16) and (3.17), we can rewrite equations (3.13), (3.14), (3.15) in a
matrix form and, finally, the whole system (3.12)-(3.17) can be rewritten as follows:

r
S

(1)
D

A(1)
τ (ψ + h(1)) = f̃ (1) on S

(1)
D , (3.24)

r
ΓT
A(1)
τ (ψ + h(1)) + r

ΓT
B (2)
τ h(1) = g̃ on ΓT , (3.25)

r
ΓT
h

(1)
j + r

ΓT
h

(2)
j = F̃j on ΓT , j = 1, 3, (3.26)

rΓT
h

(1)
6 + rΓT

h
(2)
4 = F̃4 on ΓT , (3.27)

where

f̃ (1) := (f̃
(1)
1 , . . . , f̃

(1)
6 )> ∈

[
B

1− 1
p

p,p (S
(1)
D )

]6
, (3.28)

g̃ := (g̃1, . . . , g̃6)> ∈
[
B

1− 1
p

p,p (ΓT )
]6
, (3.29)

g̃j := f̃j + r
ΓT

[
H(2)
τ [P (2)

τ ]−1 F̃
]
j
, j = 1, 3, (3.30)

g̃4 = f̃4, g̃5 = f̃5, g̃6 = f̃6 + r
ΓT

[
H(2)
τ [P (2)

τ ]−1 F̃
]
4
,

F̃ := (F̃1, . . . , F̃4)> ∈
[
B̃
− 1
p

p,p (ΓT )
]4
. (3.31)

It is easy to see that the simultaneous equations (3.12)–(3.17) and (3.24)–(3.27), where the right-hand
sides are related by equalities (3.18)–(3.23) and (3.28)–(3.31), are equivalent in the following sense: if

the triplet (ψ, h(1), h (2)) ∈ [B̃
− 1
p

p,p (S
(1)
D )]6 × [B̃

− 1
p

p,p (ΓT )]6 × [B̃
− 1
p

p,p (ΓT )]4 solves the system (3.24)–(3.27),

then (ψ, h(1), h (2)) solves the system (3.12)–(3.17), and vice versa.

3.2. The Existence theorems and regularity of solutions. Here we show that the system of
pseudodifferential equations (3.24)–(3.27) is uniquely solvable in appropriate function spaces. To this
end, let us introduce the notation

Nτ :=


r
S

(1)
D

A(1)
τ r

S
(1)
D

A(1)
τ r

S
(1)
D

[ 0 ]6×4

rΓT
A(1)
τ rΓT

[A(1)
τ + B (2)

τ ] rΓT
[ 0 ]6×4

r
ΓT

[ 0 ]4×6 r
ΓT
I4×6 r

ΓT
I4


16×16

,
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I4×6 :=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


4×6

.

Further, let

Φ : = (ψ, h(1), h (2))>, Y := (f̃ , g̃, F̃ )>,

Xs
p :=

[
B̃sp,p(S

(1)
D )

]6 × [ B̃sp,p(ΓT )
]6 × [ B̃sp,p(ΓT )

]4
,

Ys
p :=

[
Bs+1
p,p (S

(1)
D )

]6 × [Bs+1
p,p (ΓT )

]6 × [ B̃sp,p(ΓT )
]4
,

Xs
p,q :=

[
B̃sp,q(S

(1)
D )

]6 × [ B̃sp,q(ΓT )
]6 × [ B̃sp,q(ΓT )

]4
,

Ys
p,q :=

[
Bs+1
p,q (S

(1)
D )

]6 × [Bs+1
p,q (ΓT )

]6 × [ B̃sp,q(ΓT )
]4
.

Note that

Xs
2 = Xs

2,2, Ys
2 = Ys

2,2, ∀s ∈ R.
System (3.24)–(3.27) can be rewritten as follows:

Nτ Φ = Y, (3.32)

where Φ ∈ Xs
p is the sought for vector function and Y ∈ Ys

p is a given vector function.
Due to Theorems 5.3 and 5.4, the operator Nτ has the following mapping properties:

Nτ : Xs
p → Ys

p,

Nτ : Xs
p,q → Ys

p,q,
(3.33)

for all s ∈ R, 1 < p <∞ and 1 6 q 6∞.
As it will become clear later, the operator (3.33) is not invertible for all s ∈ R. The interval

a < s < b of invertibility depends on p and on some parameters γ ′ and γ ′′ (see (3.40)–(3.43)),
which are determined by the eigenvalues of special matrices constructed by means of the principal

homogeneous symbol matrices of the operators A(1)
τ and A(1)

τ + B (2)
τ . Note that the numbers γ ′

and γ ′′ define also Hölder’s smoothness exponents for the solutions to the original mixed boundary-

transmission problem in the neighbourhood of the exceptional curves ∂S
(1)
D , ∂ΓC and ∂Γ. We start

with the following

Theorem 3.1. Let the conditions

1 < p <∞, 1 6 q 6∞, 1

p
− 1 + γ ′′ < s+

1

2
<

1

p
+ γ ′ (3.34)

be satisfied with γ ′ and γ ′′ given by (3.43). Then the operators in (3.33) are invertible.

Proof. We prove the theorem in several steps. First, we show that the operators (3.33) are Fredholm
ones with a zero index and afterwards we establish that the corresponding null-spaces are trivial.

Step 1. Let us note that the operators

r
S

(1)
D

A(1)
τ :

[
B̃sp,q(ΓT )

]6 → [
Bs+1
p,q (S

(1)
D )

]6
,

r
ΓT
A(1)
τ :

[
B̃sp,q(S

(1)
D )

]6 → [
Bs+1
p,q (ΓT )

]6 (3.35)

are compact since S
(1)
D and ΓT are disjoint, S

(1)
D ∩ ΓT = ∅. Further, we establish that the operators

r
S

(1)
D

A(1)
τ :

[
H̃
− 1

2
2 (S

(1)
D )

]6 → [
[H

1
2
2 (S

(1)
D )

]6
,

rΓT

[
A(1)
τ + B (2)

τ

]
:
[
H̃
− 1

2
2 (ΓT )

]6 → [
H

1
2
2 (ΓT )

]6
(3.36)

are strongly elliptic Fredholm pseudodifferential operators of order −1 with a index zero. We note
that the principal homogeneous symbol matrices of these operators are strongly elliptic.
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Using Green’s formula and Korn’s inequality, for an arbitrary solution vector U (1)∈ [H1
2 (Ω (1))]6 =

[W 1
2 (Ω (1))]6 to the homogeneous equation

A(1)(∂x, τ)U (1) = 0 in Ω (1),

by the standard arguments we derive (see, e.g., [7, 8])

Re
〈
[U (1)]+, [T (1)U (1)]+

〉
∂Ω(1)

> c1 ‖U (1) ‖2[H1
2 (Ω(1))]6 − c2 ‖U

(1) ‖2[H0
2 (Ω(1))]6 , (3.37)

where 〈·, ·〉
∂Ω (1)

denotes the duality pairing between the spaces
[
H

1
2 (∂Ω (1))

]6
and

[
H−

1
2 (∂Ω (1))

]6
.

Substitute here U (1) = V
(1)
τ ([P

(1)
τ ]−1ζ) with ζ ∈ [H

− 1
2

2 (∂Ω (1))]6. Due to the equality

ζ = P (1)
τ [H(1)

τ ]−1{U (1)}+

and boundedness of the operators involved, we have

‖ζ‖2
[H
− 1

2
2 (∂Ω (1))]6

6c∗‖{U (1)}+‖2
[H

1
2
2 (∂Ω (1))]6

with some positive constant c∗. By the properties of single layer potentials, we have{
U (1)

}+
= H(1)

τ

[
P (1)
τ

]−1
ζ,

{
T (1)U (1)

}+
=
(
− 1

2
I6 +K(1)

τ

)[
P (1)
τ

]−1
ζ.

By the trace theorem, from (3.37), we deduce

Re 〈H(1)
τ [P (1)

τ ]−1ζ,
(
− 2−1 I6 +K(1)

τ + βH(1)
τ

)[
P (1)
τ

]−1
ζ〉
∂Ω (1)

> c′1 ‖ ζ ‖2
[H
− 1

2
2 (∂Ω (1))]6

+
∥∥βH(1)[P (1)

τ ]−1ζ
∥∥2

[H
1
2
2 (∂Ω (1))]6

− c2
∥∥V (1)

τ ([P (1)
τ ]−1ζ)

∥∥2

[H0
2 (Ω (1))]6

.

Thus we have

Re 〈H(1)
τ [P (1)

τ ]−1ζ, ζ〉
∂Ω (1)

> c′1 ‖ ζ ‖2
[H
− 1

2
2 (∂Ω (1))]6

+
∥∥βH(1)[P (1)

τ ]−1ζ
∥∥2

[H
1
2
2 (∂Ω (1))]6

− c2
∥∥V (1)

τ ([P (1)
τ ]−1ζ)

∥∥2

[H0
2 (Ω (1))]6

.

In particular, in view of Theorem 5.1, for arbitrary ζ ∈ [H̃
− 1

2
2 (S

(1)
D )]6, we have

‖U (1) ‖2[H0
2 (Ω (1))]6 6 c

∗∗ ‖ ζ ‖2
[H̃
− 3

2
2 (S

(1)
D )]6

,

and, consequently,

Re
〈
r
S

(1)
D

H(1)
τ [P (1)

τ ]−1ζ, ζ
〉
∂Ω (1)

> c′1 ‖ ζ ‖2
[H̃
− 1

2
2 (S

(1)
D )]6

− c′′2 ‖ ζ ‖2
[H̃
− 3

2
2 (S

(1)
D )]6

. (3.38)

From (3.38), it follows that

r
S

(1)
D

A(1)
τ = r

S
(1)
D

H(1)
τ [P (1)

τ )]−1 :
[
H̃
− 1

2
2 (S

(1)
D )

]6 → [
H

1
2
2 (S

(1)
D )

]6
is a strongly elliptic pseudodifferential Fredholm operator with index zero (see [21,23]).

Then the same is true for the operator (3.36), since the principal homogeneous symbol matrix of

the operator B (2)
τ is nonnegative (see [25]). Therefore, the operator (3.33) is Fredholm with index

zero for s = −1/2, p = 2 and q = 2 due to the compactness of operators (3.35).
Step 2. With the help of the uniqueness Theorem 2.1, via representation formulas (3.4) and (3.5)

with G
(1)
0 = 0 and G

(2)
0 = 0, we can easily show that the operator (3.33) is injective for s = −1/2,

p = 2 and q = 2. Since its index is zero, we conclude that it is surjective. Thus the operator (3.33) is
invertible for s = −1/2, p = 2 and q = 2.
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Step 3. To complete the proof for the general case we proceed as follows. The following block-wise
lower triangular operator

N (0)
τ :=


r
S

(1)
D

A(1)
τ r

S
(1)
D

[ 0 ]6×6 r
S

(1)
D

[ 0 ]6×4

r
ΓT

[ 0 ]6×6 r
ΓT

[A(1)
τ + B (2)

τ ] r
ΓT

[ 0 ]6×4

r
ΓT

[ 0 ]4×6 r
ΓT
I4×6 r

ΓT
I4


16×16

is a compact perturbation of the operator Nτ . Let us analyze the properties of the diagonal entries

r
S

(1)
D

A(1)
τ : [ B̃sp,q(S

(1)
D ) ]6 →

[
Bs+1
p,q (S

(1)
D )

]6
,

rΓT

[
A(1)
τ + B (2)

τ

]
:
[
B̃sp,q(ΓT )]6 →

[
Bs+1
p,q (ΓT )

]6
.

Let

S1(x, ξ1, ξ2) := S(A(1)
τ ;x, ξ1, ξ2)

be the principal homogeneous symbol matrix of the operator A(1)
τ and let λ

(1)
j (x) (j = 1, 6) be the

eigenvalues of the matrix

D1(x) :=
[
S1(x, 0,+1)

]−1
S1(x, 0,−1), x ∈ ∂S(1)

D .

Similarly, let

S2(x, ξ1, ξ2) = S(A(1)
τ + B (2)

τ ;x, ξ1, ξ2)

be the principal homogeneous symbol matrix of the operator A(1)
τ +B (2)

τ and let λ
(2)
j (x) (j = 1, 6) be

the eigenvalues of the corresponding matrix

D2(x) :=
[
S2(x, 0,+1)

]−1
S2(x, 0,−1), x ∈ ∂ΓT . (3.39)

Note that the curve ∂ΓT is the union of the curves, where the interface intersects the exterior boundary
∂Γ, and the crack edge ∂ΓC , ∂ΓT = ∂Γ ∪ ∂ΓC .

Further, we set

γ′1 := inf
x∈∂S(1)

D , 16j66

1

2π
arg λ

(1)
j (x), γ′′1 := sup

x∈∂S(1)
D , 16j66

1

2π
arg λ

(1)
j (x), (3.40)

γ′2 := inf
x∈∂ΓT , 16j66

1

2π
arg λ

(2)
j (x), γ′′2 := sup

x∈∂ΓT , 16j66

1

2π
arg λ

(2)
j (x). (3.41)

It can be shown that one of the eigenvalues is equal to 1, say λ
(1)
6 = 1 (for details see [6, Subsection

4.4], [7, Subsection 5.7]) and [8, Theorem 4.7]. Therefore we have

γ′1 6 0, γ′′1 > 0. (3.42)

Note that γ′j and γ′′j (j = 1, 2) depend on the material parameters, in general, and belong to the

interval (− 1
2 ,

1
2 ). We put

γ′ := min {γ′1, γ′2}, γ′′ := max {γ′′1 , γ′′2 }. (3.43)

In view of (3.42), we have

−1

2
< γ′ 6 0 6 γ′′ <

1

2
. (3.44)

From Theorem 5.5, we conclude that if the parameters r1, r2 ∈ R, 1 < p <∞, 1 6 q 6∞, satisfy the
conditions

1

p
− 1 + γ′′1 < r1 +

1

2
<

1

p
+ γ′1,

1

p
− 1 + γ′′2 < r2 +

1

2
<

1

p
+ γ′2,

then the operators

r
S

(1)
D

A(1)
τ :

[
H̃r1
p (S

(1)
D )

]6 → [
Hr1+1
p (S

(1)
D )

]6
,

r
S

(1)
D

A(1)
τ :

[
B̃r1p,q(S

(1)
D )]6 →

[
[Br1+1
p,q (S

(1)
D )

]6
,
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r
ΓT

[
A(1)
τ + B (2)

τ

]
:
[
H̃r2
p (ΓT )

]6 → [
Hr2+1
p (ΓT )

]6
,

rΓT

[
A(1)
τ + B (2)

τ

]
:
[
B̃r2p,q(ΓT )

]6 → [
Br2+1
p,q (ΓT )

]6
are the Fredholm operators with index zero.

Therefore, if conditions (3.34) are satisfied, then the above operators are Fredholm ones with a
zero index. Consequently, operators (3.33) are Fredholm with zero index and are invertible due to the
results obtained in Step 2 (see [2]) . �

Now we formulate the basic existence and uniqueness results for the mixed boundary-transmission
problem under consideration.

Theorem 3.2. Let inclusions (2.27) and compatibility conditions (3.22), (3.23) hold and let

4

3− 2γ′′
< p <

4

1− 2γ′
(3.45)

with γ′ and γ′′ be defined in (3.43). Then the mixed boundary-transmission problem (2.14)–(2.26) has
a unique solution

(U (1), U (2)) ∈
[
W 1
p (Ω (1))

]6 × [W 1
p (Ω (2)) ]4,

which can be represented by the formulas

U (1) = V (1)
τ

(
[P (1)
τ ]−1

[
G

(1)
0 + ψ + h(1)

] )
in Ω (1), (3.46)

U (2) = V (2)
τ

( [
P (2)
τ

]−1 [
G

(2)
0 + h (2)

] )
in Ω (2), (3.47)

where the densities ψ, h(1) and h (2) are to be determined from system (3.6)–(3.11) (or from system

(3.24)–(3.27)), while G
(1)
0 and G

(2)
0 are some fixed extensions of the vector functions G (1) and G (2),

respectively, onto ∂Ω(1) and ∂Ω(2), preserving the space (see (3.1) and (3.2)).

Moreover, the vector functions G
(1)
0 + ψ + h(1) and G

(2)
0 + h (2) are defined uniquely by the above

systems and are independent of the extension operators.

Proof. From Theorems 5.1, 5.2 and 3.1 with p satisfying (3.45) and s = −1/p it follows immediately
that the pair (U (1), U (2)) ∈ [W 1

p (Ω (1))]6× [W 1
p (Ω (2))]4 given by (3.46), (3.47) represents a solution to

the mixed boundary-transmission problem (2.14)–(2.26). Next, we show the uniqueness of solutions.
Due to inequalities (3.44), we have

p = 2 ∈
( 4

3− 2γ′′
,

4

1− 2γ′

)
.

Therefore the unique solvability for p = 2 is a consequence of Theorem 2.1.
To show the uniqueness result for all other values of p from the interval (3.45), we proceed as

follows. Let a pair

(U (1), U (2)) ∈
[
W 1
p (Ω (1))

]6 × [W 1
p (Ω (2)) ]4

with p satisfying (3.45), be a solution to the homogeneous mixed boundary-transmission problem.
Then it is evident that{

U (1)
}+ ∈

[
B

1− 1
p

p,p (∂Ω (1))
]6
,
{
U (2)

}+ ∈
[
B

1− 1
p

p,p (∂Ω (2))
]4
,{

T (1)U (1)
}+ ∈

[
B
− 1
p

p,p (∂Ω (1))
]6
,
{
T (2)U (2)

}+ ∈
[
B
− 1
p

p,p (∂Ω (2))
]4
.

By Lemmas 2.2 and 2.3, the vectors U (2) and U (1) in Ω (2) and Ω (1), respectively, are representable
in the form

U (2) = V (2)
τ

( [
P (2)
τ

]−1
h(2)

)
in Ω(2), h(2) =

{
T (2)U (2)

}+
,

U (1) = V (1)
τ

(
[P (1)
τ ]−1 χ

)
in Ω (1), χ =

{
T (1)U (1)

}+
+ β

{
U (1)

}+
.

Moreover, due to the homogeneous boundary and transmission conditions, we have

h(2) ∈
[
B̃
− 1
p

p,p (ΓT )
]4
, χ = h(1) + ψ ∈ [B

− 1
p

p,p (S(1))
]6
, h(1) ∈

[
B̃
− 1
p

p,p (ΓT )
]6
, ψ ∈

[
B̃
− 1
p

p,p (S
(1)
D )

]6
.
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By the same arguments as above we arrive at the homogeneous system

Nτ Φ = 0 with Φ := (ψ, h(1), h (2))> ∈ X
− 1
p

p .

Due to Theorem 3.1, Φ = 0 and we conclude that U (2) = 0 in Ω (2) and U (1) = 0 in Ω (1).
The last assertion of the theorem is trivial and is an easy consequence of the fact that if the single

layer potentials (3.46)and (3.47) vanish identically in Ω (2) and Ω (1), then the corresponding densities
vanish, as well. �

The following regularity result is true.

Theorem 3.3. Let the inclusions (2.27) and compatibility conditions (3.22), (3.23) hold and let
1 < r <∞, 1 6 q 6∞,

4

3− 2γ′′
< p <

4

1− 2γ′
,

1

r
− 1

2
+ γ′′ < s <

1

r
+

1

2
+ γ′, (3.48)

with γ′ and γ′′ defined in (3.43).
Further, let U (1) ∈ [W 1

p (Ω (1))]6 and U (2) ∈ [W 1
p (Ω (2))]4 be a unique solution pair to the mixed

boundary-transmission problem (2.14)–(2.26). Then the following items hold:
(i) if

Q
(1)
k ∈ Bs−1

r,r (S
(1)
N ), Q

(2)
j ∈ Bs−1

r,r (S
(2)
N ), f

(1)
k ∈ Bsr,r(S

(1)
D ), fk ∈ Bsr,r(ΓT ), Fj ∈ Bs−1

r,r (ΓT ),

Q̃
(2)
j ∈ Bs−1

r,r (ΓC), Q̃
(1)
k ∈ Bs−1

r,r (ΓC), k = 1, 6, j = 1, 4,

and the compatibility conditions

F̃j := Fj − rΓT
G

(1)
0j − rΓT

G
(2)
0j ∈ rΓT

B̃s−1
r,r (ΓT ), j = 1, 3,

F̃4 := F4 − rΓT
G

(1)
06 − rΓT

G
(2)
04 ∈ rΓT

B̃s−1
r,r (ΓT ),

are satisfied, then

U (1) ∈ [H
s+ 1

r
r (Ω (1)) ]6, U (2) ∈ [H

s+ 1
r

r (Ω (2)) ]4;

(ii) if

Q
(1)
k ∈ Bs−1

r,q (S
(1)
N ), Q

(2)
j ∈ Bs−1

r,q (S
(2)
N ), f

(1)
k ∈ Bsr,q(S

(1)
D ), fk ∈ Bsr,q(ΓT ), Fj ∈ Bs−1

r,q (ΓT ),

Q̃
(2)
j ∈ Bs−1

r,q (ΓC), Q̃
(1)
k ∈ Bs−1

r,q (ΓC), k = 1, 6, j = 1, 4,

and the compatibility conditions

F̃j := Fj − rΓT
G

(1)
0j − rΓT

G
(2)
0j ∈ rΓT

B̃s−1
r,q (ΓT ), j = 1, 3,

F̃4 := F4 − rΓT
G

(1)
06 − rΓT

G
(2)
04 ∈ rΓT

B̃s−1
r,q (ΓT ),

are satisfied, then

U (1) ∈
[
B
s+ 1

r
r,q (Ω (1))

]6
, U (2) ∈

[
B
s+ 1

r
r,q (Ω (2))

]4
;

(iii) if α > 0 is not integer and

Q
(1)
k ∈ Bα−1

∞,∞(S
(1)
N ), Q

(2)
j ∈ Bα−1

∞,∞(S
(2)
N ), f

(1)
k ∈ Cα(S

(1)
D ), fk ∈ Cα(ΓT ),

Fj ∈ Bα−1
∞,∞(ΓT ), Q̃

(2)
j ∈ Bα−1

∞,∞(ΓC), Q̃
(1)
k ∈ Bα−1

∞,∞(ΓC), k = 1, 6, j = 1, 4,

and the compatibility conditions

F̃j := Fj − rΓT
G

(1)
0j − rΓT

G
(2)
0j ∈ rΓT

B̃α−1
∞,∞(ΓT ), j = 1, 3,

F̃4 := F4 − rΓT
G

(1)
06 − rΓT

G
(2)
04 ∈ rΓT

B̃α−1
∞,∞(ΓT ),

are satisfied, then

U (1) ∈
⋂
α ′<κ

[
Cα

′
( Ω (1) )

]6
, U (2) ∈

⋂
α ′<κ

[
Cα

′
( Ω (2) )

]4
,
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where κ = min{α, γ ′ + 1
2} > 0.

Proof. It is word for word repeats the proof of Theorem 5.22 in [7]. �

Regularity results for u
(1)
6 = ϑ (1) and u

(2)
4 = ϑ (2) are refined in Proposition 3.4 (see also Theorem

4.1).

Proposition 3.4. Let the conditions of Theorem 3.3 (i) and (3.48) hold, then

u
(1)
6 ∈ C 1

2−ε(Ω (1)), u
(2)
4 ∈ C 1

2−ε(Ω (2)), (3.49)

where ε is an arbitrarily small positive number.

Proof. Due to Theorem 3.3.(i), we deduce

U (1) ∈
[
H
s+ 1

r
r (Ω(1))

]6
, U (2) ∈

[
H
s+ 1

r
r (Ω (2))

]4
,

where s and r satisfy (3.48). Note that u
(1)
6 = ϑ(1) and u

(2)
4 = ϑ (2) solve the following mixed

boundary-transmission problem:

η
(1)
il ∂i∂lu

(1)
6 − τ2h

(1)
0 u

(1)
6 = Q(1)∗ in Ω (1),

η
(2)
il ∂i∂lu

(2)
4 − τ2h

(2)
0 u

(1)
4 = Q(2)∗ in Ω (2),

rΓT
{u (1)

6 }+ − rΓT
{u (2)

4 }+ = f6 on ΓT ,

r
ΓT

{
[T (1)(∂x, n, τ)U (1)]6

}+
+ r

ΓT

{
[T (2)(∂x, ν, τ)U (2)]4

}+
= F4 on ΓT ,

r
S

(1)
N ∪ΓC

{
[T (1)(∂x, n, τ)U (1)]6

}+
= G

(1)
6 on S

(1)
N ∪ ΓC ,

r
S

(2)
N ∪ΓC

{
[T (2)(∂x, ν, τ)U (2)]4

}+
= G

(2)
4 on S

(2)
N ∪ ΓC ,

r
S

(1)
D

{u (1)
6 }+ = f

(1)
6 on S

(1)
D ,

(3.50)

where [
T (1)(∂x, n, τ)U (1)

]
6

= η
(1)
il ni ∂lϑ

(1),
[
T (2)(∂x, ν, τ)U (2)

]
4

= η
(2)
il νi ∂lϑ

(2),

Q(1)∗ = τλ
(1)
kl ∂lu

(1)
k − τp (1)

l ∂lϕ
(1) − τm (1)

l ∂lψ
(1) + τd

(1)
0 ϑ (1) ∈ Hs+ 1

r−1
r (Ω (1)),

Q(2)∗ = τλ
(1)
kl ∂lu

(2)
k + τd

(2)
0 ϑ (2) ∈ Hs+ 1

r−1
r (Ω (2)),

f6 ∈ Bs
′

r,r(ΓT ), F4 ∈ Bs
′−1
r,r (ΓT ), f

(1)
6 ∈ Bs

′

r,r(S
(1)
D ), G

(1)
6 ∈ Bs

′−1
r,r (S

(1)
N ∪ ΓC),

G
(2)
4 ∈ Bs

′−1
r,r (S

(2)
N ∪ ΓC), s < s′ <

1

r
+

1

2
, 1 < r <∞.

Since the symbols of the differential operators −η(1)
il ∂i∂j and −η (2)

il ∂i∂j are positive, the above prob-
lem can be reduced to the strongly elliptic system of pseudodifferential equations. Moreover, the
corresponding pseudodifferential operator is positive definite. Therefore (see [25])

u
(1)
6 ∈ Hs′+ 1

r
r (Ω (1)), u

(2)
4 ∈ Hs′+ 1

r
r (Ω (2)), s < s′ <

1

r
+

1

2
, 1 < r <∞.

Due to the embedding theorem (see [33]), for sufficiently small δ > 0, sufficiently large r and
s′ > 1/2 + 1/r − δ we have

H
s′+ 1

r
r (Ω (1)) ⊂ C 1

2−
1
r−δ(Ω (1)), H

s′+ 1
r

r (Ω (2)) ⊂ C 1
2−

1
r−δ(Ω (2)).

Therefore (3.49) holds with ε = 1/r + δ. �
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3.3. Asymptotic behaviour of solutions near the exceptional curves. Here, we study the
asymptotic properties of solutions to the mixed boundary-transmission problem near the interfacial
crack edge ∂ΓC and at the curve ∂Γ, where the interface intersects the exterior boundary. Let us set
` := ∂ΓC ∪ ∂Γ = ∂ΓT .

Note that the regularity and the asymptotic behaviour of solutions near the collision curve ∂S
(1)
D

were studied in details in [8].
For the sake of simplicity of description of the method, we assume that the boundary data and the

geometrical characteristics of the problem are infinitely smooth. In particular,

Q
(1)
k ∈ C∞(S

(1)

N ), Q
(2)
j ∈ C∞(S

(2)
N ), f

(1)
k ∈ C∞(S

(1)

D ),

fk ∈ C∞(ΓT ), Fj ∈ C∞(ΓT ), Q̃
(1)
j ∈ C∞(ΓC),

F̃i := Fi − rΓT
G

(1)
0i − rΓT

G
(2)
0i ∈ C

∞
0 (ΓT ), F̃4 := F4 − rΓT

G
(1)
06 − rΓT

G
(2)
04 ∈ C∞0 (ΓT ),

Q̃
(2)
j ∈ C∞(ΓC), i = 1, 3, j = 1, 4, k = 1, 6,

where C∞0 (ΓT ) denotes a space of infinitely differentiable functions vanishing on ∂ΓT along with all
tangential derivatives.

We have already shown that the mixed boundary-transmission problem is uniquely solvable and
the pair of solution vectors (U (1), U (2)) are represented by (3.46), (3.47) with the densities defined by
the system of pseudodifferential equations (3.6)–(3.11) i.e., (3.24)–(3.27).

Let Φ := (ψ, h (1), h (2))> ∈ Xs
p be a solution of the system (3.24)–(3.27) which is written in matrix

form (3.32)

NτΦ = Y,

where

Y ∈
[
C∞(SD)

]6 × [C∞(ΓT )
]6 × [C∞0 (ΓT )

]4
.

To establish asymptotic properties of the solution vectors U (1) and U (2) near the exceptional curve
` = ∂ΓT , we rewrite the representations (3.46), (3.47) in the form

U (1) = V (1)
τ ([P (1)

τ ]−1ψ) + V (1)
τ ([P (1)

τ ]−1h(1)) +R(1) in Ω (1),

U (2) = V (2)
τ ([P (2)

τ ]−1h̃(2)) +R (2) in Ω (2),

where

ψ ∈
[
B̃
− 1
p

p,p (S
(1)
D )

]6
, h(1) = (h

(1)
1 , . . . , h

(1)
6 )> ∈

[
B̃
− 1
p

p,p (ΓT )
]6
,

h̃(2) = −(h
(1)
1 , h

(1)
2 , h

(1)
3 , h

(1)
6 )> ∈

[
B̃
− 1
p

p,p (ΓT )
]4
, R (1) := V (1)

τ ([P (1)
τ ]−1G

(1)
0 ) ∈

[
C∞(Ω (1))

]6
,

R (2) := V (2)
τ ([P (2)

τ ]−1G
(2)
0 ) + V (2)

τ ([P (2)
τ ]−1F̃ ) ∈

[
C∞(Ω (2))

]4
, F̃ =

(
F̃1, . . . , F̃4

)>
.

The vectors h (1) = (h
(1)
1 , . . . , h

(1)
6 )> and ψ = (ψ1, . . . , ψ6)> solve the following strongly elliptic system

of pseudodifferential equations (see (3.24)-(3.27)):

r
S

(1)
D

A(1)
τ ψ = Φ(1) on S

(1)
D ,

r
ΓT

(A(1)
τ + B (2)

τ )h (1) = Φ(2) on ΓT ,

where

Φ
(1)
k = f

(1)
k − r

S
(1)
D

[A(1)
τ G

(1)
0 ]k − r

S
(1)
D

[A(1)
τ h (1)]k, k = 1, 6,

Φ(1) = (Φ
(1)
1 , . . . ,Φ

(1)
6 )> ∈

[
C∞(S

(1)

D )]6,

Φ
(2)
j = fj + r

ΓT

[
H (2)
τ (P (2)

τ )−1G
(2)
0

]
j
− r

ΓT
[A(1)

τ G
(1)
0 ]j

+ r
ΓT

[
H (2)
τ (P (2)

τ )−1F̃
]
j
− r

ΓT
[A(1)

τ ψ]j , j = 1, 2, 3,

Φ
(2)
j = fj − rΓT

[A(1)
τ G

(1)
0 ]j − rΓT

[A(1)
τ ψ]j , j = 4, 5,
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Φ
(2)
6 = f6 + rΓT

[
H (2)
τ (P (2)

τ )−1F̃
]
4
− r

ΓT
[A(1)

τ ψ]6,

Φ(2) = (Φ
(2)
1 , . . . ,Φ

(2)
6 )> ∈

[
C∞(ΓT )

]6
.

Applying a partition of unity, natural local coordinate systems and standard rectifying technique
based on canonical diffeomorphisms, we can assume that ` = ∂ΓT is rectified. Then we identify a
one-sided neighbourhood on ΓT of an arbitrary point x̃ ∈ ` = ∂ΓT as a part of the half-plane x2 > 0.
Thus we assume that (x1, 0) = x̃ ∈ ` = ∂ΓT and (x1, x2,+) ∈ ΓT for 0 < x2,+ < ε with some positive ε.

Denote by mj the algebraic multiplicities of λ
(2)
j (x1), where λ

(2)
j , j = 1, 6, are the eigenvalues of the

matrix D2(x1) (see (3.39)). Let µ1(x1), . . . , µl(x1), 1 6 l 6 6, be the distinct eigenvalues. Evidently,
mj and l depend on x1, in general, and m1 + · · ·+ml = 6.

It is well known that the matrix D2(x1) in (3.39) admits the following decomposition (see, e.g., [19]):

D2(x1) = D(x1)JD2(x1)
[
D(x1)

]−1

, (x1, 0) ∈ ` = ∂ΓT , (3.51)

where D is the 6 × 6 nondegenerate matrix with infinitely differentiable entries and JD2
is block

diagonal

JD2
(x1) := diag

{
µ1(x1)B(m1)(1) , . . . , µl(x1)B(ml)(1)

}
.

Here, B(r)(t), r ∈ {m1, . . . ,ml} are upper triangular matrices,

B(r)(t) =
∥∥b(r)jk (t)

∥∥
r×r, b

(r)
jk (t) =


tk−j

(k − j)!
, j < k,

1, j = k,

0, j > k.

Denote

B0(t) := diag
{
B(m1)(t), . . . , B(ml)(t)

}
. (3.52)

Applying the results from reference [15], we derive the following asymptotic expansion:

h(1)(x1, x2,+) = D(x1)x
− 1

2 +∆(x1)
2,+ B0

(
− 1

2πi
log x2,+

)(
D(x1)

)−1

b0(x1)

+

M∑
k=1

D(x1)x
− 1

2 +∆(x1)+k
2,+ Bk

(
x1, log x2,+

)
+ h

(1)
M+1(x1, x2,+), (3.53)

where b0 ∈
[
C∞(`)

]6
, h

(1)
M+1 ∈ [C∞(`+ε ) ]6, `+ε = `× [0, ε],

Bk(x1, t) = B0

(
− t

2πi

) k(2m0−1)∑
j=1

tj dkj(x1);

m0 = max {m1, . . . ,ml}, the coefficients dkj ∈ [C∞(`)]6, ∆ := (∆
(2)
1 , . . . ,∆

(2)
6 )>,

∆
(2)
j (x1) =

1

2πi
log λ

(2)
j (x1) =

1

2π
arg λ

(2)
j (x1) +

1

2πi
log |λ(2)

j (x1)|,

−π < arg λ
(2)
j (x1) < π, (x1, 0) ∈ `, j = 1, 6,

and

x
− 1

2 +∆(x1)+k
2,+ := diag

{
x
− 1

2 +∆
(2)
1 (x1)+k

2,+ , . . . , x
− 1

2 +∆
(2)
6 (x1)+k

2,+

}
.

Now, having in hand the above asymptotic expansion for the density vector function h(1), we can
apply the results of [14] and write the spatial asymptotic expansions of the solution vectors U (1) and
U (2):

U (1)(x) =
∑
µ=±1

l
(1)
0∑
s=1

{ n(1)
s −1∑
j=0

xj3

[
d

(1)
sj (x1, µ)(z(1)

s,µ)
1
2 +∆(x1)−j B0(ζ(1))

]
cj(x1)
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+

M+2∑
k,l=0

M+2−l∑
j+p=0

k+l+j+p≥1

xl2 x
j
3d

(1)
sljp(x1, µ) (z(1)

s,µ)
1
2 +∆(x1)+p+k B

(1)
skjp(x1, log z(1)

s,µ)

}
+ U

(1)
M+1(x) , (3.54)

x3 > 0, ζ(1) := − 1

2πi
log z(1)

s,µ,

U (2)(x) =
∑
µ=±1

l
(2)
0∑
s=1

{ n (2)
s −1∑
j=0

xj3

[
d

(2)
sj (x1, µ)(z (2)

s,µ )
1
2 +∆(x1)−j B0(ζ (2))

]
cj(x1)

+

M+2∑
k,l=0

M+2−l∑
j+p=0

k+l+j+p≥1

xl2 x
j
3d

(2)
sljp(x1, µ) (z (2)

s,µ )
1
2 +∆(x1)+p+k B

(2)
skjp(x1, log z (2)

s,µ )

}
+ U

(2)
M+1(x) , (3.55)

x3 > 0, ζ (2) := − 1

2πi
log z (2)

s,µ .

The coefficients d
(1)
sj (· , µ), d

(2)
sj (· , µ), d

(1)
sljp(· , µ) and d

(2)
sljp(· , µ) are the matrices with entries from the

space C∞(`), B
(1)
skjp(x1, t) and B

(2)
skjp(x1, t) are polynomials in t with vector coefficients which depend

on the variable x1 and have the order νkjp = k(2m0−1)+m0−1+p+j with m0 = max{m1, . . . ,ml},

cj ∈ [C∞(`)]6, U
(1)
M+1 ∈

[
CM+1(Ω (1))

]6
, U

(2)
M+1 ∈

[
CM+1(Ω (2))

]4
,

(z (1)
s,µ )κ+∆(x1) := diag

{
(z (1)
s,µ )κ+∆

(2)
1 (x1), . . . , (z (1)

s,µ )κ+∆
(2)
6 (x1)

}
,

(z (2)
s,µ )κ+∆(x1) := diag

{
(z (2)
s,µ )κ+∆

(2)
1 (x1), . . . , (z (2)

s,µ )κ+∆
(2)
6 (x1)

}
,

κ ∈ R, µ = ±1, (x1, 0) ∈ `,

z
(1)
s,+1 = −x2 − x3τ

(1)
s,+1, z

(1)
s,−1 = x2 − x3τ

(1)
s,−1,

z
(2)
s,+1 = −x2 − x3τ

(2)
s,+1, z

(2)
s,−1 = x2 − x3τ

(2)
s,−1,

−π < arg zs,±1 < π, −π < arg z
(2)
s,±1 < π,

{τ (1)
s,±1}

l
(1)
0
s=1 ∈ C∞(`), {τ (2)

s,±1}
l
(1)
0
s=1 ∈ C∞(`).

(3.56)

Here, {τ (1)
s,±1}

l
(1)
0
s=1 (respectively, {τ (2)

s,±1}
l
(2)
0
s=1) are the different roots of multiplicity n

(1)
s , s=1, . . . , l

(1)
0 ,

(respectively, n
(2)
s , s=1, . . . , l

(2)
0 ) of the polynomial in ζ, detA(1,0)([J>κ (1)(x1, 0, 0)]−1η±) (respectively,

detA(2,0)([J>κ2
(x1, 0, 0)]−1η±)) with η± = (0,±1, ζ)>, satisfying the condition Re τ

(1)
s,±1 < 0 (respec-

tively, Re τ
(2)
s,±1 < 0). The matrix Jκ1

(respectively, Jκ2
) stands for the Jacobian matrix corresponding

to the canonical diffeomorphism κ1 (respectively, κ2) related to the local coordinate system. Under
this diffeomorphism, the curve ` is locally rectified and we assume that (x1, 0, 0) ∈ `, x2 = dist(x

T
, `),

x3 = dist(x,ΓT ), where x
T

is the projection of the reference point x ∈ Ω (1) (respectively, x ∈ Ω (2))
on the plane corresponding to the image of ΓT under the diffeomorphism κ1 (respectively, κ2).

Note that the coefficients d
(1)
sj ( · , µ) and d

(2)
sj ( · , µ) can be calculated explicitly, whereas the coeffi-

cients cj can be expressed by means of the first coefficient b0 in the asymptotic expansion of (3.53)
(see [14]),

d
(1)
sj (x1,+1) =

1

2π
Gκ1

(x1, 0)P
+(1)
sj (x1)D(x1),

d
(1)
sj (x1,−1) =

1

2π
Gκ1

(x1, 0)P
−(1)
sj (x1)D(x1) eiπ( 1

2−∆(x1)), s = 1, l
(1)
0 , j = 0, n

(1)
s − 1,

d
(2)
sj (x1, +1) =

1

2π
Gκ2

(x1, 0)P
+(2)
sj (x1) D̃(x1),

d
(2)
sj (x1, −1) =

1

2π
Gκ2

(x1, 0)P
−(2)
sj (x1) D̃(x1) eiπ( 1

2−∆(x1)), s = 1, l
(2)
0 , j = 0, n

(2)
s − 1,
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where D̃ = ‖Dkj‖4×6, k = 1, 2, 3, 6, j = 1, 6, is composed of the entries of matrix D (see (3.51)),

P
±(1)
sj (x1) := V

(1),s
−1, j (x1, 0, 0,±1)

[
S
(
− 1

2
I6 +K(1)

τ ;x1, 0, 0,±1
)]−1

,

P
±(2)
sj (x1) := V

(2),s
−1, j (x1, 0, 0,±1)

[
S
(
− 1

2
I4 +K(2)

τ ;x1, 0, 0,±1
)]−1

,

V
(1),s
−1, j (x1, 0, 0,±1) := − ij+1

j!(n
(1)
s − 1− j)!

dn
(1)
s −1−j

dζn
(1)
s −1−j

(ζ − τ (1)
s,±1)n

(1)
s

×
(
A(1,0)

(
(J>κ1

(x1, 0))−1
)
· (0,±1, ζ)>

)−1
∣∣∣∣
ζ=τ

(1)
s,±1

,

V
(2),s
−1, j (x1, 0, 0,±1) := − ij+1

j!(n
(2)
s − 1− j)!

dn
(2)
s −1−j

dζn
(2)
s −1−j

(ζ − τ (2)
s,±1)n

(2)
s

×
(
A(2, 0)

(
(J>κ2

(x1, 0))−1
)
· (0,±1, ζ)>

)−1
∣∣∣∣
ζ=τ

(2)
s,±1

,

Gκ1(x1, 0) and Gκ2(x1, 0) are smooth scalar functions explicitly written in terms of diffeomorphisms
κ1 and κ2, respectively, and

cj(x1) = aj(x1)B−0

(
− 1

2
+ ∆(x1)

)
D−1(x1)b0(x1),

j = 0, . . . , n(1)
s − 1, (j = 0, . . . , n (2)

s − 1),

where

B−0

(
− 1

2
+ ∆(x1)

)
= diag

{
Bm1
−

(
− 1

2
+ ∆

(2)
1 (x1)

)
, . . . , Bml−

(
− 1

2
+ ∆

(2)
l (x1)

)}
,

B
mq
− (t) =

∥∥b̃mqkp (t)
∥∥
mq×mq

, q = 1, . . . , l,

b̃
mq
kp (t) =


( 1

2πi

)p−k (−1)p−k

(p− k)!

dp−k

dtp−k
Γ(t+ 1) e

iπ(t+1)
2 , for k 6 p,

0, for k > p,

and Γ(t+ 1) is the Euler integral,

aj(x1) = diag
{
am1(α

(j)
1 ), . . . , aml(α

(j)
l )
}
,

α(j)
q (x1) = −3

2
−∆(2)

q (x1) + j, q = 1, l, j = 0, n
(1)
s − 1 (j = 0, n

(2)
s − 1),

amq (α(j)
q ) =

∥∥amqkp (α(j)
q )
∥∥
mq×mq

,

a
mq
kp (α(j)

q ) =


−i

p∑
l=k

(−1)p−k(2πi)l−pb̃
mq
kl (µq)

(α
(0)
q + 1)p−l+1

, j = 0, k 6 p,

(−1)p−k b̃
mq
kp (α(j)

q ), j = 1, n
(1)
s − 1 (j = 1, n

(2)
s − 1), k 6 p,

0, k > p,

µq = −1

2
−∆(2)

q (x1), −1 < Reµq < 0.

Analogous investigation for the basic mixed and interior crack problems for homogeneous piezoelectric
bodies has been carried out in reference [8], where the asymptotic properties of solutions have been
established near the interior crack’s edges and the curves, where the different boundary conditions
collide. In [8], it is shown that the stress singularity exponents at the interior crack edges do not
depend on the material parameters and are equal to −0.5, while they depend essentially on the
material parameters at the collision curves, where different boundary conditions collide.

As it is evident from the above exposed results, the stress singularity exponents at the interfacial
crack edges and at the curves, where the interface intersects the exterior boundary, depend essentially
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on the material parameters, in general. More precise results for particular classes of solids are presented
in the next section, where the stress singularity exponents are calculated explicitly.

4. Analysis of Singularities of Solutions

Here, we assume that ΓT and ` are rectified with the help of the diffeomorphisms mentioned in the
previous section and for x′ ∈ ` = ∂ΓT by Π x′ we denote the plane passing trough the point x′ and
orthogonal to `. We introduce the polar coordinates (r, α), r > 0, −π 6 α 6 π, in the plane Π x′ with
the pole at the point x′. Denote by Γ±T the two different faces of the surface ΓT . It is evident that

(r,±π) ∈ Γ±T .

The intersection of the plane Π x′ and Ω (1) is identified with the half-plane r > 0 and −π 6 α 6 0,
while the intersection of the plane Π x′ and Ω (2) is identified with the half-plane r > 0 and 0 6 α 6 π.

The roots given by (3.56) are represented as follows:

z
(1)
s,+1 = −r

[
cosα+ τ

(1)
s,+1(x′) sinα

]
, z

(1)
s,−1 = r

[
cosα− τ (1)

s,−1(x′) sinα
]
,

s = 1, . . . , l
(1)
0 , x′ ∈ `,

z
(2)
s,+1 = −r

[
cosα+ τ

(2)
s,+1(x′) sinα

]
, z

(2)
s,−1 = r

[
cosα− τ (2)

s,−1(x′) sinα
]
,

s = 1, . . . , l
(2)
0 , x′ ∈ `.

From the asymptotic expansions (3.54) and (3.55) we get

U (1)(x) =
∑
µ=±1

l
(1)
0∑
s=1

n(1)
s −1∑
j=0

c
(1)
sjµ(x′, α) rγ+iδB0(ζ) c̃

(1)
sjµ(x′, α) + · · · , (4.1)

U (2)(x) =
∑
µ=±1

l
(2)
0∑
s=1

n (2)
s −1∑
j=0

c
(2)
sjµ(x′, α) rγ+iδB0(ζ) c̃

(2)
sjµ(x′, α) + · · · , (4.2)

where

rγ+iδ = diag
{
rγ1+iδ1 , . . . , rγ6+iδ6

}
, ζ = − 1

2πi
log r,

γj=
1

2
+

1

2π
arg λj(x

′), δj= − 1

2π
log |λj(x′)|, x′∈`, j=1, 6, (4.3)

and λj = λ
(2)
j , j = 1, 6, are eigenvalues of the matrix

D2(x′) =
[
S2(x′, 0,+1)

]−1
S2(x′, 0,−1), x′ ∈ `. (4.4)

Note that the subsequent terms in expansion (4.1) and (4.2) have higher regularity, i.e., the real parts
of the corresponding exponents are greater than γj .

The coefficients c
(1)
sjµ , c̃

(1)
sjµ , c

(2)
sjµ and c̃

(2)
sjµ in asymptotic expansions (4.1) and (4.2) read as

c
(1)
sjµ(x′, α) = sinjα d

(1)
sj (x′, µ)

[
ψ (1)
s,µ (x′, α)

]γ+iδ−j
, c̃

(1)
sjµ(x′, α) = B0

(
− 1

2πi
logψ (1)

s,µ (x′, α)
)
cj(x

′),

j = 0, n
(1)
s − 1, µ = ±1, s = 1, l

(1)
0 ,

c
(2)
sjµ(x′, α) = sinjα d

(2)
sj (x′, µ)

[
ψ (2)
s,µ (x′, α)

]γ+iδ−j
, c̃

(2)
sjµ(x′, α) = B0

(
− 1

2πi
logψ (2)

s,µ (x′, α)
)
cj(x

′),

j = 0, n
(2)
s − 1, µ = ±1, s = 1, l

(2)
0 ,

where

ψ (1)
s,µ (x′, α) = −µ cosα− τ (1)

s,µ (x′) sinα, s = 1, l
(1)
0 ,

ψ (2)
s,µ (x′, α) = −µ cosα− τ (2)

s,µ (x′) sinα, s = 1, l
(2)
0 ,
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c
(1)
sjµ(x′, α) =

∥∥c(1,kp)sjµ (x′, α)
∥∥

6×6
, c

(2)
sjµ(x′, α) =

∥∥c(2,kp)sjµ (x′, α)
∥∥

4×6
.

In what follows, for special classes of elastic materials we will analyze the exponents γj + iδj , which

determine the behaviour of U (1) and U (2) near the line `.
As it was mention above, λ6 = 1 (for details see [7, Section 5.7] ). Therefore, γ6 = 1/2 and δ6 = 0

in accordance with (4.3). This implies that one could not expect better smoothness for solutions than
C1/2, in general.

More detailed analysis leads to the following refined asymptotic behaviour for the temperature
functions (cf. [8]).

Theorem 4.1. Near the exceptional curve ` the functions ϑ(1) and ϑ(2) possess the following asymp-
totic behaviour:

ϑ(1) = b
(1)
0 r

1
2 +R(1), (4.5)

ϑ(2) = b
(2)
0 r

1
2 +R(2), (4.6)

where b
(i)
0 ∈ C1+γ′−ε, R(i) ∈ C 3

2 +γ′−ε, i = 1, 2, in the corresponding one-sided neighbourhoods of `
and 1 + γ′ − ε > 1

2 for sufficiently small ε > 0.

Proof. Indeed, u
(1)
6 = ϑ(1) and u

(2)
4 = ϑ(2) are the solutions of the transmission problem (3.50) with

C∞ data. Since the matrices [η
(1)
ij ]3×3 and [η

(2)
ij ]3×3 are positive definite, this transmission problem

can be reduced to a system of pseudodifferential equations, where the principal part is described by
the scalar positive-definite invertible pseudodifferential operators

H(1)
scalar

(
− 2−1I +K(1)

scalar

)−1
+H(2)

scalar

(
− 2−1I +K(2)

scalar

)−1
: H̃s−1

p (ΓT )→ Hs
p(ΓT )

H(1)
scalar

(
− 2−1I +K(1)

scalar

)−1
+H(2)

scalar

(
− 2−1I +K(2)

scalar

)−1
: B̃s−1

p,p (ΓT )→ Bsp,p(ΓT ),

1

p
− 1

2
< s <

1

p
+

1

2
, 1 < p <∞,

where K(i)
scalar, i = 1, 2, are compact. These pseudodifferential operators have principal homogeneous

symbol −2S
(
H(1)
scalar + H(2)

scalar;x, ξ), which is positive and even in ξ. Hence we can establish re-

fined explicit asymptotic relations of type (4.5), (4.6) for the temperature functions u
(1)
6 = ϑ(1) and

u
(2)
4 = ϑ(2) in the corresponding one-sided neighbourhoods of ` (see [14,15,17,18]). �

From (4.5) and (4.6), it follows that

(i) The leading exponents for u
(1)
6 = ϑ(1) and u

(2)
4 = ϑ(2) in the neighborhood of line ` are equal

to 1
2 ;

(ii) Logarithmic factors are absent in the first terms of the asymptotic expansions of ϑ(1) and ϑ(2);
(iii) The temperature functions ϑ(1) and ϑ(2) do not oscillate in the neighbourhood of the collision

curve ` and for the heat flux vector we have no oscillating singularities;

(iv) The temperature functions ϑ(1) and ϑ(2) belong to C
1
2 (Ω(1)) and C

1
2 (Ω(2)), respectively, (cf. [8],

Theorem 6.4).

Non-zero parameters δj in (4.3) lead to the so-called oscillating singularities for the first order

derivatives of U (1) and U (2), in general. In turn, this yields oscillating stress singularities, which
sometimes lead to mechanical contradictions, for example, to an overlapping of materials. So, from
the practical point of view, it is important to single out the classes of solids for which the oscillating
singularities do not occur.

Let us consider the above investigated mixed boundary-transmission problem for particular elastic
components. We assume that the medium occupying the domain Ω(1) belongs to the 422 (Tetragonal)
or 622 (Hexagonal) class of crystals. The corresponding system of differential equations reads as
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(see, e.g., [16])

(c11 ∂
2
1 + c66 ∂

2
2 + c44 ∂

2
3)u

(1)
1 + ( c12 + c66 ) ∂1∂2u

(1)
2 + ( c13 + c44 ) ∂1∂3u

(1)
3

− e14 ∂2∂3ϕ
(1) − q15 ∂2∂3ψ

(1) − γ̃1 ∂1ϑ
(1) − %(1) τ2 u

(1)
1 = F1,

( c12 + c66 ) ∂2∂1u
(1)
1 + ( c66 ∂

2
1 + c11 ∂

2
2 + c44 ∂

2
3 )u

(1)
2 + ( c13 + c44 ) ∂2∂3u

(1)
3

+ e14∂1∂3ϕ
(1) + q15∂1∂3ψ

(1) − γ̃1∂2ϑ
(1) − %(1) τ2 u

(1)
2 = F2,

( c13 + c44 ) ∂3∂1u
(1)
1 + ( c13 + c44 ) ∂3∂2u

(1)
2 + ( c44 ∂

2
1 + c44 ∂

2
2 + c33 ∂

2
3 )u

(1)
3

− γ̃3 ∂3ϑ
(1) − %(1) τ2 u

(1)
3 = F3,

e14∂2∂3u
(1)
1 − e14∂1∂3u

(1)
2 + (κ11 ∂

2
1 + κ11 ∂

2
2 + κ33 ∂

2
3 )ϕ(1) − (1 + ν0τ)p3 ∂3ϑ

(1) = F4,

q15∂2∂3u
(1)
1 − q15∂1∂3u

(1)
2 + (µ11 ∂

2
1 + µ11 ∂

2
2 + µ33 ∂

2
3 )ψ(1) − (1 + ν0τ)m3 ∂3ϑ

(1) = F5,

− τ T0 ( γ̃1 ∂1u
(1)
1 + γ̃1 ∂2u

(1)
2 + γ̃3 ∂3u

(1)
3 ) + τ T0 p3 ∂3ϕ

(1) + τ T0m3 ∂3ψ
(1)

+ ( η11 ∂
2
1 + η11 ∂

2
2 + η33 ∂

2
3 )ϑ(1) − (τ d0 + τ2h(1))ϑ(1) = F6,

where c11, c12, c13, c33, c44, c66 are the elastic constants, e14 is the piezoelectric constant, q15 is
the piezomagnetic constant, κ11 and κ33 are the dielectric constants, µ11 and µ33 are the magnetic
permeability constants, γ̃1 = (1+ν0τ)λ11 = (1+ν0τ)λ21 and γ̃3 = (1+ν0τ)λ31 are the thermal strain
constants, η11 and η33 are the thermal conductivity constants, p3 is the pyroelectric constant and m3 is
the pyromagnetic constant. In the case of Hexagonal crystals (622 class), we have c66 = (c11− c12)/2.

Note that some important polymers and bio-materials are modelled by the above partial differential
equations, for example, the collagen-hydroxyapatite is one example of such a material. This material
is widely used in biology and medicine (see [31]). Another important example is TeO2 [16].

In this model, the generalized stress operator is defined as

T (∂x, n, τ) =
∥∥ Tjk(∂x, n, τ)

∥∥
6×6

with

T11(∂x, n, τ) = c11n1∂1 + c66n2∂2 + c44n3∂3, T12(∂x, n, τ) = c12n1∂2 + c66n2∂1,

T13(∂x, n, τ) = c13n1∂3 + c44n3∂1, T14(∂x, n, τ) = −e14n3∂2,

T15(∂x, n, τ) = −q15n3∂2, T16(∂x, n, τ) = −γ̃1 n1,

T21(∂x, n, τ) = c66n1∂2 + c12n2∂1, T22(∂x, n, τ) = c66n1∂1 + c11n2∂2 + c44n3∂3,

T23(∂x, n, τ) = c13n2∂3 + c44n3∂2, T24(∂x, n, τ) = e14n3∂1,

T25(∂x, n, τ) = q15n3∂1, T26(∂x, n, τ) = −γ̃1 n2,

T31(∂x, n, τ) = c44n1∂3 + c13n3∂1, T32(∂x, n, τ) = c44n2 ∂3 + c13n3∂2,

T33(∂x, n) = c44n1∂1 + c44n2∂2 + c33n3∂3, T34(∂x, n, τ) = 0,

T35(∂x, n, τ) = 0, T36(∂x, n, τ) = −γ̃3 n3,

T41(∂x, n, τ) = e14n2∂3, T42(∂x, n, τ) = −e14n1∂3,

T43(∂x, n, τ) = 0, T44(∂x, n, τ) = κ11(n1∂1 + n2∂2) + κ33n3∂3,

T45(∂x, n, τ) = 0, T46(∂x, n, τ) = −p3n3,

T51(∂x, n, τ) = q15n2∂3, T52(∂x, n, τ) = −q15n1∂3,

T53(∂x, n, τ) = 0, T54(∂x, n, τ) = 0,

T55(∂x, n, τ) = µ11(n1∂1+n2∂2)+µ33n3∂3, T56(∂x, n, τ) = −m3n3,

T6j(∂x, n, τ) = 0, for j = 1, 5, T66(∂x, n, τ) = η11(n1∂1 + n2∂2) + η33n3∂3.
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The material constants satisfy the following system of inequalities

c11 > |c12|, c44 > 0, c66 > 0, c33(c11 + c12) > 2c213,

κ11 > 0, κ33 > 0, η11 > 0, η33 > 0, µ11 > 0, µ33 > 0,
(4.7)

which are equivalent to the positive definiteness of the internal energy form (see (2.7), (2.8)).
From (2.9), (2.12), (2.13), and (4.7) it follows also that

κ33 > p2
3 T0d

−1
0 , µ33 > m2

3 T0d
−1
0 , c11c33 > c213. (4.8)

Under these conditions the mixed boundary-transmission problem in question is uniquely solvable.

Furthermore, we assume that e14 6= 0, e15 6= 0,
µ11

κ11
=
µ33

κ33
= α, the surface ΓC is parallel to the

plane of isotropy (i.e., to the plane x3 = 0) in some neighbourhood of ∂ΓC , and the domain Ω(2) is
occupied by an isotropic material modeled by the generalized thermoelasticity equations (see (2.1),
(2.2))

µ∆u(2) + (λ+ µ) grad divu(2) − (1 + ν0τ)λ(2) gradϑ(2) − %(2)τ2u(2) = 0,

η(2)∆ϑ(2) − (τd
(2)
0 + τ2h

(2)
0 )ϑ(2) − τλ(2)u(2) = 0,

µ > 0, 3λ+ 2µ > 0, η(2) > 0, h
(2)
0 > 0, d

(2)
0 − ν0h

(2)
0 > 0.

In the case of this particular mixed boundary-transmission problem we find the exponents involved
in the asymptotic expansions of solutions explicitly in terms of the material constants. To this end,
we find the eigenvalues of the matrix (4.4) explicitly and calculate the exponents γ + iδ involved in
the asymptotic expansions (4.1) and (4.2).

Taking into account the relations

S
(
−2−1I6 ±K(1)

τ ;x′, 0, 1
)

= S
(
− 2−1I6 +K(1)

τ ;x′, 0,±1
)
, S(H(1)

τ ;x′, 0,−1) = S(H(1)
τ ;x′, 0, 1),

for these symbol matrices we introduce the short notation

σ
(
− 2−1I6 ±K(1)

τ

)
:= S

(
−2−1I6 ±K(1)

τ ;x′, 0, 1
)

= S
(
− 2−1I6 +K(1)

τ ;x′, 0,±1
)

and
σ(H(1)

τ ) := S(H(1)
τ ;x′, 0,±1).

These symbols can be calculated explicitly (see [8], Appendix B):

σ
(
−1

2
I6±K(1)

τ

)
=



− 1
2 0 0 ±A14 ±A15 0

0 − 1
2 ±A23 0 0 0

0 ±A32 − 1
2 0 0 0

±A41 0 0 − 1
2 0 0

±A51 0 0 0 − 1
2 0

0 0 0 0 0 − 1
2


,

where

A14 = −i e14 c66 (b2 − b1)

2 b1 b2
√
B

− i e14q
2
15

ακ11ẽ2
14

[√
κ11

κ33
− c44(b2 − b1)(κ33 b1b2 + κ11)√

B

]
,

A15 = −i q15 c66 (b2 − b1)

2α b1 b2
√
B

− i q15e
2
14

ακ11ẽ2
14

[√
κ11

κ33
− c44(b2 − b1)(κ33 b1b2 + κ11)√

B

]
,

A41 = −i e14 κ33 (b2 − b1)

2
√
B

, A51 = −i q15 κ33 (b2 − b1)

2
√
B

,

b1 =

√
A−
√
B

2 c44 κ33
, b2 =

√
A+
√
B

2 c44 κ33
, ẽ14 =

(
e2

14 + α−1q2
15

)1/2

, α =
µ11

κ11
=
µ33

κ33
> 0,
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A = ẽ2
14 + c44 κ11 + c66 κ33 > 0, B = A2 − 4 c44 c66 κ11 κ33 > 0, A >

√
B.

Note that b1b2 =

√
c66κ11

c44κ33
.

It can be proved that A14A41 < 0, A15A51 < 0 (see [8], Appendix B).
Let us calculate the entries A23 and A32. Introduce the notation

C := c11 c33 − c213 − 2 c13 c44, D := C2 − 4 c244 c33c11. (4.9)

Consider two cases.
Case 1. Let D > 0. Then

A23 = i
c44 (d2 − d1) (c11 − c13 d1d2)

2 d1 d2

√
D

, A32 = −i c44 (d2 − d1) (c33 d1 d2 − c13)

2 d1 d2

√
D

, (4.10)

where

d1 =

√
C −

√
D

2 c44 c33
, d2 =

√
C +

√
D

2 c44 c33
.

Inequalities (4.7) imply C >
√
D and

d1d2 =

√
c11√
c33

, (d2 − d1)2 =
C − 2c44

√
c33
√
c11

c44c33
> 0. (4.11)

Then, from (4.10), we obtain A23A32 > 0.
Case 2. Let D < 0. In this case,

A23 = i
a c44(

√
c11 c33 − c13)√
−D

, A32 = −i
a c44(

√
c11 c33 − c13)√
−D

√
c33√
c11

, (4.12)

where

a =
1

2

√
−C + 2c44

√
c11c33

c44c33
> 0 (4.13)

and we get again

A23A32 =
c244 a

2(
√
c11 c33 − c13)2

−D

√
c33√
c11

> 0.

The symbol matrix σ(H(1)
τ ) has the following block-wise structure:

σ(H(1)
τ ) =


C11 0 0 0 0 0

0 C22 0 0 0 0
0 0 C33 0 0 0
0 0 0 C44 C45 0
0 0 0 C45 C55 0
0 0 0 0 0 C66


6×6

,

where

C11 = −b2 − b1
2
√
B

(
κ33 +

κ11

b1b2

)
,

C22 =


−d2 − d1

2
√
D

(
c33 + c44

√
c33

c11

)
if D > 0,

− a√
D

(
c33 + c44

√
c33

c11

)
, if D < 0,

C33 =


−d2 − d1

2
√
D

(c44 +
√
c11c33 ) , if D > 0,

− a√
D

(c44 +
√
c11c33 ) , if D < 0,

.
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C44 = −
{
b2 − b1
2
√
B

(
c44 +

c66

b1b2

)
+

q2
15

2ακ11ẽ2
14

[√
κ11

κ33
− c44(b2 − b1)(κ33b1b2 + κ11)√

B

]}
,

C55 = −
{
b2 − b1
2
√
B

(
c44 +

c66

b1b2

)
+

e2
14

2ακ11ẽ2
14

[√
κ11

κ33
− c44(b2 − b1)(κ33b1b2 + κ11)√

B

]}
,

C45 = C54 =
e14q15

2ακ11ẽ2
14

[√
κ11

κ33
− c44(b2 − b1)(κ33b1b2 + κ11)√

B

]
, C66 = − 1

2
√
η11η33

.

Remark that Cjj < 0, j = 1, 6 (see [8], Appendix B).

The symbol matrix σ±(B(2)
τ ) := S(B(2)

τ ;x′, 0,±1) reads as

σ±(B (2)
τ ) =



1
µ 0 0 0 0 0

0 a ±ib 0 0 0
0 ∓ib a 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


6×6

, a :=
2(λ+ 2µ)µ

λ+ µ
, b :=

µ2

λ+ 3µ
.

Then the symbol matrix of the Poincaré–Steklov type operator has the form

σ±(A(1)
τ ) := σ(H(1)

τ )σ
(
−1

2
I6 ±K(1)

τ

)−1

=
[
A±jk

]
6×6

,

where

A±11 = A11 =
2C11

Q1
, A±12 = A±13 = A±16 = 0, A±14 = ∓4A14C11

Q1
, A±15 = ±4A15C11

Q1
,

A±21 = 0, A±22 = A22 =
2C22

Q2
, A±23 = ∓4A23C22

Q2
, A±24 = A±25 = A±26 = 0,

A±31 = 0, A±32 = ∓4A32C33

Q2
, A±33 = A33 =

2C33

Q2
, A±34 = A±35 = A±36 = 0,

A±41 = ∓
(

4A41C44

Q1
+

4A51C45

Q1

)
, A±42 = A±43 = A±46 = 0,

A±44 = A44 =
(2− 8A15A51)C44

Q1
+

8A14A51C45

Q1
,

A±45 = A45 = −8A15A41C44

Q1
− (2− 8A14A41)C45

Q1
,

A±51 = ±
(

4A41C45

Q1
+

4A51C55

Q1

)
, A±52 = A±53 = A±56 = 0,

A±54 = A54 = − (2− 8A15A51)C45

Q1
− 8A14A51C55

Q1
,

A±55 = A55 =
8A15A41C45

Q1
+

(2− 8A14A41)C55

Q1
,

A±61 = A±62 = A±63 = A±64 = A±65 = 0, A±66 = A66 = −2C66.

Introduce the notation

Q1 := −1 + 4A14A41 + 4A15A51 < 0, Q2 := −1 + 4A23A32.

Lemma 4.2. The following inequality Q2 = −1 + 4A23A32 < 0 holds.

Proof. Consider two cases.
Case 1: D > 0. Then inequality 4A23A32 < 1 can be equivalently reduced to the inequality

c244(d2 − d1)2(c11 − c13d1d2)(c33d1d2 − c13) < d2
1d

2
2D.
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By replacing here d1d2 by its expression from (4.11), we get

c244(d2 − d1)2
(√
c11c33 − c13

)2
<

√
c11√
c33

D.

Now, replace (d2 − d1)2 and D by their expressions from (4.11) and (4.9), respectively, to obtain

c244

(C − 2c44
√
c11c33)

c44c33
(
√
c11c33 − c13)2 <

√
c11√
c33

(C2 − 4c244c33c11).

From the above inequality we deduce

c44(C − 2c44
√
c11c33)(

√
c11c33 − c13)2 <

√
c11c33(C + 2c44

√
c11c33)(C − 2c44

√
c11c33).

Substituting here the expression of C from (4.9) to obtain

c44(
√
c11c33 − c13)2 <

√
c11c33(c11c33 − c213 − 2c13c44 + 2c44

√
c11c33),

i.e.,

c44(
√
c11c33 − c13)2 <

√
c11c33

[
(
√
c11c33 + c13)(

√
c11c33 − c13) + 2c44(

√
c11c33 − c13)

]
,

we arrive at the inequality

c44(
√
c11c33 − c13) <

√
c11c33(

√
c11c33 + c13 + 2c44). (4.14)

But (4.14) holds, since

c44(
√
c11c33 − c13) < 2c44

√
c11c33 <

√
c11c33(

√
c11c33 + c13 + 2c44),

due to the inequality
√
c11c33 > |c13| (see (4.8) ).

So, we finally obtain

Q2 = −1 + 4A23A32 < 0.

Case 2: D < 0. In this case, due to (4.12), we have

4A23A32 =
4a2c244(

√
c11c33 − c13)2

−D

√
c33√
c11

< 1.

Therefore

4a2c244(
√
c11c33 − c13)2√c33 < −D

√
c11.

Inserting here a and D from (4.13) and (4.9), respectively, we rewrite the above inequality as(
−C + 2c44

√
c11c33√

c33

)
c44(
√
c11c33 − c13)2 <

(
− C2 + 4c244c33c11

)√
c11.

Replacing here C with it’s expression from (4.9), we get

c44(
√
c11c33 − c13)2 <

(
2c44
√
c11c33 + c11c33 − c213 − 2c13c44

)√
c11c33,

implying

c44(
√
c11c33 − c13)2 <

[
2c44(

√
c11c33 − c13) + (

√
c11c33 + c13)(

√
c11c33 − c13)

]√
c11c33.

Dividing the inequality by
√
c11c33 − c13, we obtain

c44(
√
c11c33 − c13) <

√
c11c33 (2c44 +

√
c11c33 + c13). (4.15)

Thus, the inequality Q2 < 0 is equivalently reduced to the relation (4.15), which coincides with (4.14)
and which is true as is shown above. This completes the proof. �

Introduce the notation

σ±2 = σ±2 (A(1)
τ + B(2)

τ ) := S
(
A(1)
τ + B(2)

τ ;x′, 0,±1
)
, x′ ∈ `.

The characteristic polynomial of the matrix (σ+
2 )−1σ−2 can be represented as follows:

det
(
σ−2 − λσ

+
2

)
= det

[
σ−2
(
A(1)
τ + B(2)

τ

)
− λσ+

2

(
A(1)
τ + B(2)

τ

)]
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= det

{[
σ(H(1)

τ )σ
(
−1

2
I6 −K(2)

τ

)−1
+ σ−(B(2)

τ )
]
− λ
[
σ(H(1)

τ )σ
(
−1

2
I6 +K(1)

τ

)−1
+ σ+(B(2)

τ )
]}

=det



(1− λ)Ã11 0 0 −(1 + λ)Ã+
14 −(1 + λ)Ã+

15 0

0 (1− λ)Ã22 −(1 + λ)Ã+
23 0 0 0

0 −(1 + λ)Ã+
32 (1− λ)Ã33 0 0 0

−(1 + λ)Ã+
41 0 0 (1− λ)Ã44 (1− λ)Ã+

45 0

−(1 + λ)Ã+
51 0 0 (1− λ)Ã+

54 (1− λ)Ã55 0

0 0 0 0 0 (1− λ)Ã66


6×6

, (4.16)

where

Ã11 = A11 + 1
µ , Ã

+
14 = A+

14, Ã+
15 = A+

15 Ã22 = A22 + a,

Ã+
23 = A+

23 + ib, Ã+
32 = A+

32 − ib, Ã33 = A33 + a, Ã+
41 = A+

41,

Ã44 = A44, Ã+
45 = A45, Ã+

51 = A+
51, Ã+

54 = A54,

Ã55 = A55, Ã66 = A66 + 1.

From (4.16), one can easily deduce

det
(
σ−2 − λσ

+
2

)
= det

 (1− λ)Ã22 −(1 + λ)Ã+
23,

−(1 + λ)Ã+
32 (1− λ)Ã33



× det


(1− λ)Ã11 −(1 + λ)A+

14 −(1 + λ)A+
15

−(1 + λ)A+
41 (1− λ)Ã44 (1− λ)A45

−(1 + λ)A+
51 (1− λ)A54 (1− λ)Ã55

 (1− λ)Ã66 = 0.

Therefore, one of the eigenvalues, say λ6, is equal to 1 and other eigenvalues are defined by the
following equations:

det

[
(1− λ)Ã22 −(1 + λ)Ã+

23

−(1 + λ)Ã+
32 (1− λ)Ã33

]
= (1− λ)2Ã22Ã33 − (1 + λ)2Ã+

23Ã
+
32 = 0, (4.17)

det


(1− λ)Ã11 −(1 + λ)A+

14 −(1 + λ)A+
15

−(1 + λ)A+
41 (1− λ)Ã44 (1− λ)A45

−(1 + λ)A+
51 (1− λ)A54 (1− λ)Ã55

 = 0. (4.18)

Equation (4.17) can be rewritten as (
1− λ
1 + λ

)2

=
Ã+

23Ã
+
32

Ã22Ã33

. (4.19)

Lemma 4.3. The expression q :=
Ã+

23Ã
+
32

Ã22Ã33

is positive.

Proof. We have

Ã+
23 = A+

23 + ib, Ã+
32 = A+

32 − ib, Ã22 = A22 + a, Ã33 = A33 + a,

where

A+
23 = −4A23C22

Q2
, A+

32 = −4A32C33

Q2
, A22 =

2C22

Q2
, A33 =

2C33

Q2
.
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Since

Q2 = −1 + 4A23A32 < 0, C22 < 0, C33 < 0, a > 0,

we have

Ã22 > 0, Ã33 > 0.

Further, we show that Ã+
23Ã

+
32 > 0. Using the relations

C22 = C33

√
c33√
c11

, A23 = −A32

√
c11√
c33

,

we deduce A23C22 = −C33A32 and, consequently, A+
32 = −A+

23. Since A+
23 is pure imaginary, we get

Ã+
23Ã

+
32 = −

(
A+

23 + ib
)2
> 0,

which implies q > 0. �

Now, consider equation (4.18),

det


(1− λ)Ã11 −(1 + λ)A+

14 −(1 + λ)A+
15

−(1 + λ)A+
41 (1− λ)Ã44 (1− λ)A45

−(1 + λ)A+
51 (1− λ)A54 (1− λ)Ã55

 = (1− λ)3Ã11Ã44Ã55

− (1− λ)3Ã11Ã54Ã45 − (1 + λ)2(1− λ)Ã+
14Ã

+
41Ã55 + (1 + λ)2(1− λ)Ã+

14Ã
+
51Ã45

+ (1 + λ)2(1− λ)Ã+
15Ã

+
41Ã54 − (1 + λ)2(1− λ)Ã+

15Ã
+
51Ã44 = 0,

which can be rewritten as

(1− λ)
[
(1− λ)2A+ (1 + λ)2B

]
= 0.

Consequently, we get λ5 = 1 and two other eigenvalues are defined by the equation(1− λ
1 + λ

)2

= −B
A

=: −p, (4.20)

where

A = Ã11Ã44Ã55 − Ã11Ã54Ã45,

B = −Ã+
14Ã

+
41Ã55 + Ã+

14Ã
+
51Ã45 + Ã+

15Ã
+
41Ã54 − Ã+

15Ã
+
51Ã44.

Lemma 4.4. The inequality p = B
A > 0 holds.

Proof. We have

Ã44Ã55 − Ã54Ã45 =

[
(2− 8A15A51)C44

Q1
+

8A14A51C45

Q1

] [
8A15A41C45

Q1
+

(2− 8A14A41)C55

Q1

]
−
[

(2− 8A15A51)C45

Q1
+

8A14A51C55

Q1

] [
8A15A41C44

Q1
+

(2− 8A14A41)C45

Q1

]
=

(2− 8A15A51)C44

Q1
· (2− 8A14A41)C55

Q1
+

64A14A51A15A41C
2
45

Q2
1

− (2− 8A15A51)C45

Q1
· (2− 8A14A41)C45

Q1
− 64A14A51A15A41C44C55

Q2
1

= M(C44C55 −C2
45) +N(C2

45 −C44C55) = (C44C55 −C2
45)(M −N),

where

M :=
(2− 8A15A51)(2− 8A14A41)

Q2
1

, N :=
64A14A51A15A41

Q2
1

.

Note that M −N > 0, since A14A41 < 0 and A15A51 < 0. Indeed, we have

M −N =
(2− 8A15A51)(2− 8A14A41)

Q2
1

− 64A14A51A15A41

Q2
1

=
4

Q2
1

[
1− 4A14A41 − 4A15A51] > 0.
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Now we show that C44C55 −C2
45 > 0. Rewrite C44, C55 and C45 in the form

C44 = −(m+ q2
15n), C55 = −(m+ e2

14n), C45 = e14q15n,

where

m =
(b2 − b1)

2
√
B

(
c44 +

c66

b1b2

)
> 0, n =

1

2ακ11ẽ2
14

[√
κ11

κ33
− c44(b2 − b1)(κ33 b1b2 + κ11)√

B

]
> 0

(see [8], Appendix B) and

C44C55 −C2
45 = m2 + (e2

14 + q2
15)mn > 0.

Consequently,

Ã44Ã55 − Ã54Ã45 > 0

and, since Ã11 > 0, we have

A = Ã11Ã44Ã55 − Ã11Ã54Ã45 > 0.

Now, we show that

B = −Ã+
14Ã

+
41Ã55 + Ã+

14Ã
+
51Ã45 + Ã+

15Ã
+
41Ã54 − Ã+

15Ã
+
51Ã44 > 0.

First, we prove the inequality −Ã+
14Ã

+
41Ã55 + Ã+

14Ã
+
51Ã45 > 0. Indeed,

− Ã+
14Ã

+
41Ã55 + Ã+

14Ã
+
51Ã45 = Ã+

14(−Ã+
41Ã55 + Ã+

51Ã45)

= −4A14C11

Q1

[(4A41C44

Q1
+

4A51C45

Q1

)(8A15A41C45

Q1
+

(2− 8A14A41)C55

Q1

)
−
(4A41C45

Q1
+

4A51C55

Q1

)(8A15A41C44

Q1
+

(2− 8A14A41)C45

Q1

)]
= −4A14C11

Q1

[4A41(2− 8A14A41)C44C55

Q2
1

+
32A51A15A41C

2
45

Q2
1

− 4A41(2− 8A14A41)C2
45

Q2
1

− 32A51A15A41C44C55

Q2
1

]
= −32A14A41C11

Q1

[ (1− 4A14A41)

Q2
1

(C44C55 −C2
45) +

4A51A15

Q2
1

(C2
45 −C44C55)

]
= −32A14A41C11

Q1

[1− 4A14A41 − 4A51A15

Q2
1

]
(C44C55 −C2

45) =
32A14A41C11

Q2
1

(C44C55 − C2
45).

Therefore, taking into account the inequalities A14A41 < 0, C11 < 0, C44C55 − C2
45 > 0, we

conclude that
−Ã+

14Ã
+
41Ã55 + Ã+

14Ã
+
51Ã45 > 0.

Further, we prove that

Ã+
15Ã

+
41Ã54 − Ã+

15Ã
+
51Ã44 > 0.

Conducting algebraic transformations as in the previous case, we get

Ã+
15Ã

+
41Ã54 − Ã+

15Ã
+
51Ã44 = Ã+

15(−Ã+
51Ã44 + Ã+

41Ã54)

=
4A15C11

Q1

[
−
(4A41C45

Q1
+

4A51C55

Q1

)( (2− 8A15A51)C44

Q1
+

8A14A51C45

Q1

)
+
(4A41C44

Q1
+

4A51C45

Q1

)( (2− 8A15A51)C45

Q1
+

8A14A51C55

Q1

)]
=

4A15C11

Q1

[
− 32A41A14A51C

2
45

Q2
1

− 4A51(2− 8A15A51)C44C55

Q2
1

+
32A41A14A51C44C55

Q2
1

+
4A51(2− 8A15A51)C2

45

Q2
1

]
=

4A15A51C11

Q1

[
− 32A14A41C

2
45

Q2
1

− 4(2− 8A15A51)C44C55

Q2
1
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+
32A41A14C44C55

Q2
1

+
4(2− 8A15A51)C2

45

Q2
1

]
=

4A15A51C11

Q1

[32A14A41

Q2
1

(−C2
45 + C44C55)− 4(2− 8A15A51)

Q2
1

(−C2
45 + C44C55)

]
=

32A15A51C11

Q1

[4A14A41

Q2
1

− (1− 4A15A51)

Q2
1

]
(−C2

45 + C44C55) =
32A15A51C11

Q2
1

(−C2
45 + C44C55).

Taking into account the inequalities A51A15 < 0, C11 < 0 and C44C55 −C2
45 > 0, we obtain

Ã+
15Ã

+
41Ã54 − Ã+

15Ã
+
51Ã44 > 0.

Thus, B > 0 and, consequently, p =
A

B
> 0. �

Due to (4.19) and (4.20), we have the following expressions for the eigenvalues of the matrix
(σ+

2 )−1σ−2 (i.e., the roots of polynomial (4.16) with respect to λ),

λ1 =
1− i√p
1 + i

√
p
, λ2 = λ−1

1 = λ1, λ3 =
1−√q
1 +
√
q
, λ4 = λ−1

3 , λ5 = λ6 = 1.

Note that |λ1| = |λ2| = 1. Moreover, since λ3 and λ4 are real, they are positive (see Appendix,
Subsection 5.2).

Applying the above results, we can explicitly write the exponents of the first terms of the asymptotic
expansions of the solutions (see (4.3)):

γ1 =
1

2
+

1

2π
arg λ1 =

1

2
+

1

2π
arg

1− i√p
1 + i

√
p

=
1

2
+

1

2π

(
arg(1− i√p)− arg(1 + i

√
p)
)

=
1

2
− 1

π
arctan

√
p,

γ1 =
1

2
− 1

π
arctan

√
p, δ1 = 0,

γ2 =
1

2
+

1

π
arctan

√
p, δ2 = 0,

γ3 = γ4 =
1

2
, δ3 = −δ4 = δ̃ = − 1

2π
log

1−√q
1 +
√
q
,

γ5 = γ6 =
1

2
, δ5 = δ6 = 0.

It is evident that 0 < γ1 <
1
2 and 1

2 < γ2 < 1.
Note that in this case B0(t) has the following form (see (3.52)):

B0(t) =

 I4 [0]4×2

[0]2×4 B(2)(t)

 , where B(2)(t) =

1 t

0 1

 .
Now, we can draw the following conclusions:

(1) In view of Theorem 4.1, the solutions of the problem possess the following asymptotic be-
haviour near the edge curve ` = ∂ΓT :

(u(1), ϕ(1), ψ(1))> = c
(1)
0 rγ1 + c

(1)
1 r

1
2 ln r + c

(1)
2 r

1
2 +i δ̃ + c

(1)
3 r

1
2−i δ̃ + c

(1)
4 r

1
2 + c

(1)
5 rγ2 + · · · ,

ϑ(1) = b
(1)
0 r

1
2 + b

(1)
1 rγ2 + · · · ,

u(2) = c
(2)
0 rγ1 + c

(2)
1 r

1
2 ln r + c

(2)
2 r

1
2 +i δ̃ + c

(2)
3 r

1
2−i δ̃ + c

(2)
4 r

1
2 + c

(2)
5 rγ2 + · · · ,

ϑ(2) = b
(2)
0 r

1
2 + b

(2)
1 rγ2 + · · · ,
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where coefficients c
(1)
j , j = 0, ...5, are the 5-dimensional vectors, c

(2)
j , j = 0, ...5, are the

3-dimensional vectors and b
(k)
j , j = 0, 1, k = 1, 2, are scalars.

As we can see, the exponent γ1 characterizing the behaviour of u(1), ϕ(1), ψ(1) and u(2)

near the line ` depends on the elastic, piezoelectric, piezomagnetic, dielectric and permeability
constants, and does not depend on the thermal constants. Moreover, γ1 takes values from the
interval (0, 1

2 ).
For the general anisotropic case, these exponents also depend on the geometry of the line

`, in general.
(2) In general, we have the following smoothness of mechanical and electromagnetic fields:

(u(1), ϕ(1), ψ(1)) ∈
[
Cγ1(Ω1)

]5
, u(2) ∈

[
Cγ1(Ω2)

]3
, 0 < γ1 <

1

2
.

(3) Since γ1 <
1
2 , we have no oscillating stress singularities for physical fields in the neighbourhood

of the curve `.

Note that in the classical elasticity theory (for both isotropic and anisotropic solids) for mixed bound-

ary value and mixed transmission problems the dominant exponents are 1
2 , 1

2 ± i δ̃ with δ̃ 6= 0 and,
consequently, there occur oscillating stress singularities at the line ` (for details see [12,13]).

5. Appendix

5.1. Properties of Potentials and Boundary Operators. Here we collect some theorems describ-
ing the mapping properties of potentials and the corresponding boundary integral (pseudodifferential)
operators. The proof of these theorems can be found in references [7, 8, 20].

Theorem 5.1. Let 1 < p < ∞, 1 ≤ q ≤ ∞, s ∈ R. Then the single layer potentials can be extended
to the following continuous operators:

V (2)
τ :

[
Bsp,q(S)

]4→[Bs+1+ 1
p

p,q (Ω (2))
]4
, V (1)

τ :
[
Bsp,p(S)

]6→[Hs+1+ 1
p

p (Ω (1))
]6
,

V (2)
τ :

[
Hs
p(S)

]4→[Hs+1+ 1
p

p (Ω (2))
]4
, V (1)

τ :
[
Hs
p(S)

]6→[Hs+1+ 1
p

p (Ω (1))
]6
.

Theorem 5.2. Let 1 < p < ∞, 1 6 q 6 ∞, h (2) ∈
[
B
− 1
p

p,q (∂Ω (2))
]4
, h (1) ∈

[
B
− 1
p

p,q (∂Ω (1))
]6
.

Then {
V (2)
τ (h (2))

}+
=
{
V (2)
τ (h (2))

}−
= H (2)

τ (h (2)) on ∂Ω (2),{
T (2)(∂, ν, τ)V (2)

τ (h (2))
}±

=
[
∓ 2−1I4 +K (2)

τ

]
(h (2)) on ∂Ω (2),{

V (1)
τ (h (1))

}+
=
{
V (1)
τ (h (1))

}−
= H(1)

τ (h (1)) on ∂Ω (1),{
T (1)(∂, n, τ)V (1)

τ (h (1))
}±

=
[
∓ 2−1I6 +K (1)

τ

]
(h (1)) on ∂Ω (1),

where Ik stands for the k × k unit matrix.

The operators H(1)
τ , H(2)

τ , K(1)
τ and K(2)

τ possess the mapping and the Fredholm properties [7].

Theorem 5.3. Let 1 < p <∞, 1 6 q 6∞, s ∈ R. The operators

H (2)
τ :

[
Hs
p(∂Ω (2))

]4 → [
Hs+1
p (∂Ω (2))

]4
, H (1)

τ :
[
Hs
p(∂Ω (1))

]6 → [
Hs+1
p (∂Ω (1))

]6
,

H (2)
τ :

[
Bsp,q(∂Ω (2))

]4 → [
Bs+1
p,q (∂Ω (2))

]4
, H (1)

τ :
[
Bsp,q(∂Ω (1))

]6 → [
Bs+1
p,q (∂Ω (1))

]6
,

K (2)
τ :

[
Hs
p(∂Ω (2))

]4 → [
Hs
p(∂Ω (2))

]4
, K (1)

τ :
[
Hs
p(∂Ω (1))

]6 → [
Hs
p(∂Ω (1))

]6
,

K (2)
τ :

[
Bsp,q(∂Ω (2))

]4 → [
Bsp,q(∂Ω (2))

]4
, K (1)

τ :
[
Bsp,q(∂Ω (1))

]6 → [
Bsp,q(∂Ω (1))

]6
,

are continuous.

Theorem 5.4. Let 1 < p <∞, 1 6 q 6∞, s ∈ R and τ = σ + i ω. The operators

H (2)
τ :

[
Hs
p(∂Ω (2))

]4→[Hs+1
p (∂Ω (2))

]4
, H (1)

τ :
[
Hs
p(∂Ω (1))

]6→[Hs+1
p (∂Ω (1))

]6
,
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H (2)
τ :

[
Bsp,q(∂Ω (2))

]4→[Bs+1
p,q (∂Ω (2))

]4
, H (1)

τ :
[
Bsp,q(∂Ω (1))

]6→[Bs+1
p,q (∂Ω (1))

]6
,

are invertible if σ > 0 or τ = 0.
The operators

±2−1 I 4 +K (2)
τ :

[
Hs
p(∂Ω (2))

]4 → [
Hs
p(∂Ω (2))

]4
,

±2−1 I 4 +K (2)
τ :

[
Bsp,q(∂Ω (2))

]4 → [
Bsp,q(∂Ω (2))

]4
,

2−1 I 6 +K (1)
τ :

[
Hs
p(∂Ω (1))

]6 → [
Hs
p(∂Ω (1))

]6
,

2−1 I 6 +K (1)
τ :

[
Bsp,q(∂Ω (1))

]6 → [
Bsp,q(∂Ω (1))

]6
,

are invertible if σ > 0.
The operators

−2−1 I 6 +K (1)
τ :

[
Hs
p(∂Ω (1))

]6 → [
Hs
p(∂Ω (1))

]6
,

−2−1 I 6 +K (1)
τ :

[
Bsp,q(∂Ω (1))

]6 → [
Bsp,q(∂Ω (1))

]6
are Fredholm ones with the index, equal to zero for any τ ∈ C.

5.2. Fredholm properties of pseudodifferential operators on manifolds with boundary.
LetM be a compact, n-dimensional, smooth, nonselfintersecting manifold with the smooth boundary
∂M 6= ∅ and let A(x,D) be a strongly elliptic N × N matrix pseudodifferential operator of order
ν ∈ R onM. Denote by S(A;x, ξ) the principal homogeneous symbol matrix of the operator A(x,D)
in some local coordinate system (x ∈M, ξ ∈ Rn \ {0}).

Let λ1(x), . . . , λN (x) be the eigenvalues of the matrix[
S(A;x, 0, . . . , 0,+1)

]−1 [
S(A;x, 0, . . . , 0,−1)

]
, x ∈ ∂M,

and introduce the notation

δj(x) = Re
[

(2π i)−1 lnλj(x)
]
, j = 1, . . . , N.

Here ln ζ denotes the branch of the logarithmic function, analytic in the complex plane cut along
(−∞, 0]. Note that the numbers δj(x) do not depend on the choice of the local coordinate system

and the strong inequality −1/2 < δj(x) < 1/2 holds for all x ∈ M, j = 1, N, due to the strong

ellipticity of A. In a particular case, when S(A;x, ξ) is a positive definite matrix for every x ∈ M
and ξ ∈ Rn \{0}, we have δ1(x) = · · · = δN (x) = 0, since the eigenvalues λ1(x), . . . , λN (x) are positive
for all x ∈M.

The Fredholm properties of strongly elliptic pseudo-differential operators on manifolds with bound-
ary are characterized by the following theorem (see [2, 4, 18,30]).

Theorem 5.5. Let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, and let A(x,D) be a pseudodifferential operator
of order ν ∈ R with the strongly elliptic symbol S(A;x, ξ), that is, there is a positive constant c 0 such
that

ReS(A;x, ξ) η · η > c 0 |η|2

for x ∈M, ξ ∈ Rn with |ξ| = 1, and η ∈ CN .
Then the operators

A :
[
H̃s
p(M)

]N → [
Hs−ν
p (M)

]N
A :

[
B̃sp,q(M)

]N → [
Bs−νp,q (M)

]N (5.1)

are Fredholm and have the trivial index Ind A = 0 if

1

p
− 1 + sup

x∈∂M,
16j6N

δj(x) < s− ν

2
<

1

p
+ inf
x∈∂M,
16j6N

δj(x). (5.2)

Moreover, the null-spaces and indices of the operators (5.1) coincide for all values of the parameter
q ∈ [1,+∞] provided p and s satisfy inequality (5.2).
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NEW RESULTS ON SEMI-I-CONVERGENCE

CARLOS GRANADOS

Abstract. In this article, we use the notions of semi-open, semi-I-open sets and S-I-convergence

to show and study other properties on semi-I-convergence. Besides, some basic properties of semi-
I-Fréchet–Urysohn space are shown. Moreover, the notions related to semi-I-sequential and semi-

I-sequentially open spaces are proved. Furthermore, we show some relations of semi-I-irresolute

functions between preserving semi-I-convergence functions and semi-I-covering functions.

1. Introduction

The notion of ideal was introduced by Kuratowski in 1933 [5], an ideal I on a space X is a collection
of elements of X which satisfies: (1) ∅ ∈ I, (2) if A,B ∈ I, then A ∪ B ∈ I, and (3) if B ⊂ I and
A ⊂ B, then A ∈ I. This notion has been grown in several concepts of general topology. In 2019, Zhou
and Lin [8] used the notion of ideal on the set N to extend the notion of I-convergence, the results
were useful for the developing of this paper. Recently, in 2020, Guevara et.al. [3] have shown some
basic properties of S-I-convergent sequences and studied the notions related to the compactness and
cluster points by using semi-open sets, furthermore, they have proved that S-I-convergence implies
I-convergence for any ideal I on N. On the other hand, in 1963, Levine [6] introduced the concept
of semi-open sets in topological spaces, and then in 2005, Hatir and Noiri [4] presented the idea
of semi-I-open sets and semi-I-continuous functions in the ideal topological spaces. In this article,
we took in the whole the notions mentioned above, define other properties on semi-I-convergence
and study the relation between semi-I-sequentially open and semi-I-sequential spaces. Moreover, we
define and study some basic properties of preserving semi-I-convergence functions and semi-I-covering
functions, furthermore, we prove some relations with semi-I-irresolute functions. Besides, the idea of
semi-I-Fréchet–Urysohn spaces is defined.

Throughout this paper, the terms (X, τ) and (Y, σ) mean topological spaces on which no separation
axioms are assumed unless otherwise mentioned. Additionally, we sometimes write X or Y instead of
(X, τ) or (Y, σ), respectively.

2. Semi-I-convergence

We first introduce some definitions.

Definition 2.1. Let (X, τ) be a topological space, A ⊂ X and x ∈ X. Then A is said to be
semi-neighbourhood if and only if there exits a semi-open set B such that x ∈ B ⊂ A.

Definition 2.2. A sequence (xn : n ∈ N) in a topological space X is called semi-I-convergent to a
point x ∈ X, provided for any semi-neighbourhood U of x, it has AV = {n ∈ N : xn /∈ V } ∈ I, which
is denoted by s-I- lim

n→∞
xn = x or xn →sI x, and the point x is called the s-I-limit of the sequence

(xn : n ∈ N).

Definition 2.3. Let (X, τ) be a topological space and A ⊂ X. Then A is called semi-I-sequentially
open if and only if no sequence in X − A has a semi-I-limit in A. That is, the sequence cannot be
semi-I-convergent outside of a semi-I-sequentially closed set.

Definition 2.4. Let I be an ideal on N and X be a topological space, then:
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(1) A subset J of X is said to be semi-I-closed if for each sequence (xn : n ∈ N) ⊆ J with
xn →sI x ∈ X, then x ∈ J .

(2) A subset V of X is said to be semi-I-open if X − V is semi-I-closed.
(3) X is said to be a semi-I-sequential space if each semi-I-closed set in X is closed.

Definition 2.5. Let (X, τ) be a topological space. Then X is semi-I-sequential, when any set A is
semi-open, if and only if it is semi-I-sequentially open.

Now, we show some results.

Lemma 2.1 ([8]). Let I be an ideal on N and X be a topological space. If a sequence (Xn : x ∈ N)
I-converges to a point x ∈ X and (yn : n ∈ N) is a sequence in X with {n ∈ N : xn 6= yn} ∈ I, then
the sequence (yn : n ∈ N) I-converges to x ∈ X

Lemma 2.2 ([8]). Let I ⊆ J be two ideals of N. If (xn : n ∈ N) is a sequence in a topological space
X such that xn →I x, then xn →J x.

Lemma 2.3. Let (X, τ) be a topological space. Then B ⊂ X is semi-I-sequentially open if and only
if every sequence with semi-I-limit in B has all, but finitely many, terms in B, where the index set of
the part in B of the sequence does not belong to I.

Proof. Suppose that B is not a semi-I-sequentially open, then there is a sequence with terms in X−B,
but semi-I-limit in B. Conversely, suppose that (xn : n ∈ N) is a sequence with infinitely many terms
in X −B such that semi-I-converges to y ∈ A and the index set of the part in B of the sequence does
not belong to I. Then (xn : n ∈ N) has a subsequence in X − B that has still to converge to y ∈ B
and so, B is not semi-I-sequentially open. �

Lemma 2.4. Let I and J be two ideals of N, where I ⊆ J and X is a topological space. If V ⊆ X is
semi-J-open, then it is semi-I-open.

Proof. Let V ⊆ X be semi-J-open. Then X−V is semi-J-open, if (xn : n ∈ N) is a sequence in X−V
with xn →sI x, thus by Lemma 2.2, it has x ∈ X − V . Therefore, V is semi-I-open. �

Corollary 2.1. Let I and J be two ideals of N. If a topological space X is semi-I-sequential, then it
is semi-J-sequential.

Lemma 2.5. Let I be an ideal on N and X be a topological space. If a sequence (Xn : x ∈ N) is
semi-I-convergent to a point x ∈ X and (yn : n ∈ N) is a sequence in X with {n ∈ N : xn 6= yn} ∈ I,
then the sequence (yn : n ∈ N) is semi-I-convergent to x ∈ X.

Proof. The proof is followed by Lemma 2.1 and Definition 2.2. �

Lemma 2.6. Let X be a topological space X, A ⊂ X and I be an ideal on N. Then the following
statements are equivalent.

(1) A is semi-I-open.
(2) {n ∈ N : xn ∈ A} /∈ I for each sequence (xn : n ∈ N) in X with xn →sI x ∈ A.
(3) |{n ∈ N : xn ∈ A}| = θ for each sequence (xn : n ∈ N) in X with xn →sI x ∈ A.

Proof. (1) ⇒ (2) : Suppose that A is a semi-I-open set of X and let (xn : n ∈ N) be a sequence in
X satisfying xn →sI x ∈ A. Now, take N0 = {n ∈ N : xn ∈ A}. If N0 ∈ I, then N0 6= N and so,
A 6= X. Now, take a point a ∈ X − A and define the sequence (yn : n ∈ N) in X by yn = a, n ∈ N0,
thus yn = xn, n /∈ N0. By Lemma 2.5, the sequence (yn : n ∈ N) semi-I-converges to x. We can
see that X − A is semi-I-closed and (yn)n∈N ⊆ X − A, as a consequence, x ∈ X − A, but this is a
contradiction. Therefore, N0 /∈ I.

The implication (2)⇒ (3) follows from the notion that the ideal I is admissible.
Now, let us show the following implication. (3) ⇒ (1) : Let A be nonsemi-I-open in X. Then

X −A is not semi-I-closed and there is a sequence (xn : n ∈ N) ⊆ X −A with xn →sI x ∈ A and this
is a contradiction. �
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Theorem 2.1. Every semi-I-sequential space is hereditary with respect to semi-I-open (semi-I-closed)
subspaces.

Proof. Let X be a semi-I-sequential space. Suppose now that A is a semi-I-open set of X. Then
A is semi-open in X. Now, we can see that A is semi-I-sequential. Let V be a semi-I-open set in
A, thus V is semi-open in X. Indeed, by Definition 2.5, if we show that V is semi-I-open in X,
this will be sufficient. Now, suppose that there is a point y ∈ Y − V and take an arbitrary x ∈ V
and a sequence (xn : n ∈ N) ⊆ X with xn →sI x in X. Since A is semi-open in X and x ∈ A,
the set {n ∈ N : xn /∈ A} ∈ I. We define the sequence yn : n ∈ N) in X by yn = xn, xn ∈ A,
yn = y, xn /∈ A. By Lemma 2.5, the sequence (yn : n ∈ N) is semi-I-convergent to x. Since
|{n ∈ N : xn /∈ V }| = |{n ∈ N : yn /∈ V }| and by Lemma 2.6, V is semi-I-open in X.

Now, let A be a semi-I-closed set of X. Then A is semi-closed in X. For any semi-I-closed set J of
A we have to show that J is semi-closed in X, but since X is a semi-I-sequential space, it suffices for
J to be semi-I-closed in X. Hence, let (xn : n ∈ N) be an arbitrary sequence in J with xn →sI x ∈ X.
Thus we obtain that x ∈ J . Indeed, since A is semi-closed, therefore x ∈ A and so, x ∈ J, since J is
a semi-I-closed set of A. �

Theorem 2.2. Semi-I-sequential spaces are preserved by the topological sums.

Proof. Let {Xδ}δ∈∆ be a family of semi-I-sequential spaces. Take X =
⊕
δ∈∆

Xδ, being the topological

sum of {Xδ}δ∈∆. We now show that the topological sum is a semi-I-sequential space. Let J be a
semi-I-closed set in X. For each δ ∈ ∆, since Xδ is semi-closed in X, J ∩Xδ is semi-I-closed in X.
We can see that J ∩Xδ ⊆ Xδ and J ∩Xδ is semi-I-closed in Xδ. By the assumption, we have that
J ∩Xδ is semi-closed in Xδ. By the definition of topological sums, we get that J is semi-closed in X.
Therefore, the topological sum X is a semi-I-sequential space. �

Remark 2.1. The union of a family of semi-I-open sets is a topological space which is semi-I-open.
Therefore, the intersection of finitely many sequentially semi-I-open sets is sequentially semi-I-open

Definition 2.6. Let I be an ideal on N and A be a subset of a topological space X. A sequence
(xn : n ∈ N) in X is I-eventually in A [8] if there is B ∈ I such that for all n ∈ N−B, xn ∈ A.

Proposition 2.1. Let I be a maximal ideal on N and X be a topological space. Then A is a subset of
X, where A is semi-I-open if and only if each semi-I-convergent sequence in X, converging to a point
of A is I-eventually in A.

Proof. Let A be a semi-I-open and xn →sI x ∈ A. Since I is maximal, by Lemma 2.6, B = {n ∈ N :
xn /∈ A} ∈ I. Therefore, for each n ∈ N−B, xn ∈ A, i.e., the sequence (xn : n ∈ N) is I-eventually in
A. �

Theorem 2.3. Let I be a maximal ideal of N and X be a topological space. If V , W are two semi-I-
open sets of X, then V ∩W is semi-I-open.

Proof. It will be shown that every semi-I-convergent sequence converging to a point in V ∩ W is
I-eventually in it. Let (xn : n ∈ N) be a sequence in X such that xn →sI x ∈ V ∩W . There are
A,S ∈ I such that for each n ∈ N−A, xn ∈ V and for each n ∈ N− S, xn ∈W . Since A∪ S ∈ I and
for each n ∈ N− (A ∪ S), xn ∈ V ∩W , we have V ∩W is a semi-I-open set. �

3. Further Properties

3.1. Semi-I-irresolute functions. In this part, we introduce semi-I-irresolute functions and show
some relations between continuous and semi-I-continuous functions.

Definition 3.1 ([1]). Let f : (X, τ) → (Y, σ) be the functions. f is called sequentially continuous,
provided V is sequentially open in Y , then f−1(V ) is sequentially open in X.

Definition 3.2. Let I be an ideal on N, (X, τ), (Y, σ) be topological spaces and f : (X, τ) → (Y, σ)
be a function, then:
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(1) f is said to be preserving semi-I-convergence, provided for each sequences (xn : n ∈ N) in X
with xn →sI x, the sequence (f(xn) : n ∈ N) is semi-I-convergent to f(x).

(2) [4] f is said to be semi-I-irresolute if for each semi-I-open V in Y , then f−1(V ) is semi-I-open
in X.

Lemma 3.1 ([4]). Every semi-I-irresolute function is semi-I-continuous.

Theorem 3.1. Let f : (X, τ) → (Y, σ) be a function. If f is continuous, then f preserves semi-I-
convergence.

Proof. Suppose that f is continuous and let (xn : n ∈ N) be a sequence in X such that xn →sI x ∈ X.
Now, let V be an arbitrary semi-neighbourhood of f(x) in Y . Since f is continuous, f−1(V ) is
a semi-neighbourhood of x. Therefore, we have {n ∈ N : xn /∈ f−1(V )} ∈ I. We can see that
{n ∈ N : f(xn) /∈ V } = {n ∈ N : xn /∈ f−1(V )}. This implies that {n ∈ N : f(xn) /∈ V } ∈ I. Hence,
f(xn)→sI f(x). �

Theorem 3.2. Let f : (X, τ) → (Y, σ) be a function. If f preserves the semi-I-convergence, then f
is semi-I-irresolute.

Proof. Suppose that f preserves semi-I-convergence and J is an arbitrary semi-I-closed set in Y .
Let (xn : n ∈ N) be a sequence in f−1(J) such that xn →sI x ∈ X. By the assumption, we have
f(xn) →sI f(x). Since (f(xn) : n ∈ N) ⊆ J and J is semi-I-closed in Y , hence f(x) ∈ J , i.e.,
x ∈ f−1(J). Therefore, f−1(J) is semi-I-closed in X and then f is semi-I-irresolute. �

Proposition 3.1. Let f : (X, τ)→ (Y, σ) be a function. If f preserves the semi-I-convergence, then
f is semi-I-continuous.

Proof. The proof is followed by Lemma 3.1 and Theorem 3.2. �

Theorem 3.3. Let I be a maximal ideal on N. Then a function f : (X, τ)→ (Y, σ) is semi-I-irresolute
if and only if it preserves semi-I-convergent sequences.

Proof. Assume that f is semi-I-irresolute and a sequence xn →sI x in X. We have to show that
f(xn)→sI f(x) in Y . Now, let V be a semi-neighbourhood of f(x). Then x ∈ f−1(V ) is semi-I-open
in X, because V is semi-I-open in Y . Hence, there is B ∈ I such that for all n ∈ N−B, xn ∈ f−1(V ).
This means that for all n ∈ N − B, f(xn) ∈ V . Therefore, {n ∈ N : f(xn) /∈ V } ∈ I and hence,
f(xn)→sI f(x). �

Theorem 3.4. Let X be a semi-I-sequential space and f(X, τ) → (Y, σ) be a function. Then the
following statements are equivalent.

(1) f is continuous.
(2) f preserves semi-I-convergence.
(3) f is semi-I-irresolute.

Proof. (1)⇔ (2) was proved in Theorems 3.1 and 3.2.
(3) ⇒ (1) : Let f be semi-I-irresolute and J be an arbitrary semi-closed set in Y . Then J is

semi-I-closed in Y . Since f is semi-I-irresolute, f−1(J) is semi-U -closed in X. By the assumption,
we find that f−1(J) is semi-closed in X. Therefore, f is continuous. �

Proposition 3.2. Let f : (X, τ) → (Y, σ) be a function and X be a semi-I-sequential space. Then
the following statements are equivalent.

(1) f is continuous.
(2) f is semi-I-continuous.

Proof. The proof is followed by Proposition 3.1 and Theorem 3.4. �

Lemma 3.2. Let X be a semi-I-sequential space, then the function f : (X, τ)→ (Y, σ) is continuous
if and only if it is sequentially continuous.

Proof. Let X be a semi-I-sequential space, then every semi-I-closed set is closed, by [1] who proved
that f is continuous if and only if f is sequentially continuous, indeed we have completed the proof. �
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Corollary 3.1. Let X be a semi-I-sequential space and for a function f : (X, τ)→ (Y, σ) the following
statements are equivalent.

(1) f is continuous.
(2) f preserves semi-I-convergence.
(3) f is semi-I-continuous.
(4) f is sequentially continuous.

Proof. (1)⇔ (2)⇔ (3) was proved in Theorem 3.4, by Lemma 3.2, we have (1)⇔ (4). �

Lemma 3.3. Let f : (X, τ) → (Y, σ) be a function and X be a semi-I-sequential space. Then the
following statements are equivalent.

(1) f is sequentially continuous.
(2) f is semi-I-continuous.

Proof. The proof is followed by Proposition 3.2 and Corollary 3.1. �

3.2. Semi-I-irresolute and semi-I-covering functions. Continuity and sequentially continuity
are the ones of the most important tools for studying sequential spaces [7]. In this part, we define the
concept of semi-I-covering functions and show some of their properties.

Definition 3.3 ([1]). Let f : (X, τ)→ (Y, σ) be a topological space. Then f is said to be sequentially
continuous, provided f−1(V ) is sequentially open in X, then V is sequentially open in Y .

Definition 3.4 ([1]). Let f : (X, τ) → (Y, σ) be a topological space. Then f is said to be sequence-
covering if, whenever (yn : n ∈ N) is a sequence in Y covering to y in Y , there exits a sequence
(xn : n ∈ N) of points xn ∈ f−1(yn) for all n ∈ N and x ∈ f−1(y) such that xn → x.

Definition 3.5. Let f : (X, τ) → (Y, σ) be a function. Then f is said to be semi-I-covering if,
whenever (yn : n ∈ N) is a sequence in Y , semi-I-converging to y in Y , there exits a sequence
(xn : n ∈ N) of points xn ∈ f−1(yn) for all n ∈ N and x ∈ f−1(y) such that xn →sI x.

Theorem 3.5. Every semi-I-covering function is semi-I-irresolute.

Proof. Let f : (X, τ) → (Y, σ) be a function and f be a semi-I-covering function. Assume now that
V is a non-semi-I-closed in Y . Then there exits a sequence (yn : n ∈ N) ⊆ V such that yn →sI y /∈ V .
Since f is semi-I-covering, there exits a sequence (xn : n ∈ N) of points xn ∈ f−1(yn) for all n ∈ N
and x ∈ f−1(y) such that xn →sI x. We can see now that (xn : n ∈ N) ⊆ f−1(V ) and so, x /∈ f−1(V ),
therefore f−1(V ) is non-semi-I-closed. As a conclusion, f is semi-I-irresolute. �

Theorem 3.6. Let f : (X, τ)→ (Y, σ) be a function. Then the following statements hold.

(1) If X is a semi-I-sequential space and f is continuous, then Y is a semi-I-sequential space and
semi-I-irresolute.

(2) If Y is a semi-Y -sequential space and f is semi-I-irresolute, then f is continuous.

Proof. (1) Let X be a semi-I-sequential space and f be continuous. Suppose that V is semi-I -
open in Y . Since f is a continuous function and X is a semi-I-sequential space, take an arbitrary
sequence (xn : n ∈ N) ⊆ X such that xn →sI x ∈ f−1(V ) in X. Since f is a continuous function, by
Theorem 3.1, f(xn) →sI f(x) ∈ V . Now, since V is semi-I-open in Y and by Lemma 2.6, we have
|{n ∈ N : f(xn) ∈ V }| = θ, i.e., |{n ∈ N : xn ∈ f−1(V )}| = θ, therefore, f−1(V ) is semi-I-open in X.

Assume now that V ⊆ Y such that f−1(V ) is semi-I-open in X. Then f−1(V ) is an open set of
X, since X is semi-I-sequential space. As is well know, f is continuous, then V is open in Y . Hence,
f is continuous.

(2) Let Y be a semi-I-sequential space and f be semi-I-irresolute. If f−1(V ) is an open set of
X, then f−1(V ) is a semi-I-open set of X. Since f is semi-I-irresolute, V is a semi-I-open set of Y .
Now, we know that Y is a semi-I-sequential space and so, V is an open set of Y . Therefore, f is
continuous. �

By Theorems 3.4 and 3.6, we have the following result.
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Corollary 3.2. Let f : (X, τ) → (Y, σ) be a function, then f is continuous if and only if f is
semi-I-irresolute and Y is a semi-I-sequential space.

3.3. Semi-I-Fréchet–Urysohn spaces. A topological space X is said to be Fréchet–Urysohn [2] if
for each A ⊆ X and each x ∈ Cl(A), there is a sequence in A converging to the point x in X. Now,
in this part, we introduce the notion of semi-I-Fréchet–Urysohn and show a short result.

Definition 3.6. Let (X, τ) be a topological space. Then X is said to be semi-I-Fréchet–Urysohn or,
simply, S-I-FU , if for each A ⊆ X and each x ∈ sCl(A), there exits a sequence in A, semi-I-converging
to the point x ∈ X.

Lemma 3.4. For two ideals I and J on N, where I ⊆ J , if X is a S-I-FU -space, then it is a
semi-J-FU -space.

Proof. Let A be a subset of X and x ∈ sCl(A). Since X is a S-I-FU -space, then there exits a
sequence (xn : n ∈ N) in A such that xn →sI x. As a consequence, xn →sI x in X, and so, X is a
semi-J-FU -space. �

Theorem 3.7. Let (X, τ) be a topological space. If X is a S-I-FU -space, then X is a semi-I-sequential
space.

Proof. Let {Aδ : δ ∈ ∆} be a family of semi-I-closed subsets of X, where δ ∈ ∆ ∈ X, since X is
a S-I-FU -space, by Definition 3.6, Aδ ⊆ X and each x ∈ sCl(Aδ). Now, since Aδ is semi-I-closed,
sCl(Aδ) = Aδ ∈ Cl(A), but by Definition 3.6, there exits a sequence semi-I-converging to the point
x ∈ sCl(A) ∈ Cl(A) ∈ X, therefore {Aδ : δ ∈ ∆} is a closed set of X. As a consequence, X is a
semi-I-sequential space. �
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HAUSDORFF MEASURE OF NONCOMPACTNESS OF CERTAIN MATRIX

OPERATORS ON ABSOLUTE NÖRLUND SPACES

CANAN HAZAR GÜLEÇ AND MEHMET ALI SARIGÖL

Abstract. The absolute Nörlund spaces
∣∣Nu

p

∣∣
k
, k ≥ 1, have more recently been introduced and

studied by Hazar and Sarıgöl [On absolute Nörlund spaces and matrix operators, Acta Math. Sin.

(Engl. Ser.), 34 (5) (2018), 812-826]. In the present paper, we characterize the classes of infinite ma-

trix and compact operators transforming from
∣∣Nu

p

∣∣
k

into X and obtain some identities or estimates

for the Hausdorff measures of noncompactness, where X is one of the spaces `∞, c and c0.

1. Background, Notation and Preliminaries

A linear subspace of the space w, the space of all (real-- or) complex-valued sequences, is called a
sequence space. We write `∞, c, c0 and φ for the spaces of all bounded, convergent, null sequences and
the set of all finite sequences, respectively. By e(n) and `k (`1 = `) , we denote the sequence whose
only non-zero term is 1 in n-th place for each n ∈ N and the space of all k-absolutely convergent
series, respectively.

Let X, Y be two sequence spaces, A = (anv) be an infinite matrix of complex numbers and An
be the sequence in the n-th row of A, that is, An = (anν)

∞
ν=0 for each n ∈ N. Then, we write

A (x) = (An (x)) , the A-transform of x, if

An(x) =

∞∑
v=0

anvxv

converges for n ≥ 0. If A (x) = (An (x)) ∈ Y for all x = (xv) ∈ X, then A is called a matrix
transformation from X into Y , denoted by A : X → Y, and we also denote the class of such maps by
(X,Y ).

For a sequence space X, the matrix domain XA and the β-dual of X are introduced by

XA = {x ∈ w : A (x) ∈ X} , (1.1)

Xβ = {ε = (εv) ∈ w : Σεvxv converges for all x ∈ X} ,

respectively.
If A = (anv) is an infinite triangle matrix, i.e., ann 6= 0, and anv = 0 for v > n, there exists its

unique inverse [30]. Throughout the paper, k∗ denotes the conjugate of k > 1, i.e., 1/k + 1/k∗ = 1,
and 1/k∗ = 0 for k = 1.

A sequence space X is called a BK- space if it is a Banach space with continuous coordinates
Pn : X → C defined by Pn (x) = xn for n ≥ 0, where C denotes the complex field. Also, a BK- space
X ⊃ φ is said to have AK if every x = (xν) ∈ X has a unique representation x =

∑∞
v=0 xve

(ν) [2].
For example, `∞, c and c0 are BK-spaces according to the norm ‖x‖`∞ = supν∈N |xv| and `k is a

BK-space according to the norm ‖x‖`k =

( ∞∑
v=0
|xv|k

)1/k

, 1 ≤ k < ∞. Moreover, the spaces c0 and

`k have the property AK under their natural norms [13].
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If X ⊃ φ is a BK- space and a = (aν) ∈ w, then we write

‖a‖∗X = sup
x∈SX

∣∣∣∣ ∞∑
v=0

avxv

∣∣∣∣, (1.2)

provided the statement on the right is defined and finite, which is satisfied whenever a ∈ Xβ , where
SX denotes the unit sphere in X, i.e., SX = {x ∈ X : ‖x‖ = 1} [14].

If S and H are subsets of a metric space (X, d) and ε > 0, then S is called an ε-net of H, if, for
every h ∈ H, there exists s ∈ S such that d (h, s) < ε; if S is finite, then the ε-net S of H is called a
finite ε-net of H. ByMX we denote the collection of all bounded subsets of X. If Q ∈MX , then the
Hausdorff measure of noncompactness of Q is defined by

χ(Q) = inf {ε > 0 : Q has a finite ε-net in X} .
The function χ :MX → [0,∞) is called the Hausdorff measure of noncompactness [21].
If X and Y are normed spaces, the set B (X,Y ) states the set of all bounded linear operators

L : X → Y and it is also a normed space to the norm ‖L‖ = supx∈SX ‖L(x)‖Y , where SX is a unit
sphere in X, and we write B (X) = B (X,X) . Further, let X and Y be Banach spaces. Then a linear
operator L : X → Y is said to be compact if its domain is all of X and the sequence (L (xn)) has a
convergent subsequence in Y for every bounded sequence x = (xn) ∈ X. We write C (X,Y ) for the
class of such operators. Studies on the Hausdorff measure noncompactness and compact operators
can be found in [11,13,17–21].

The following results are important tool to compute the Hausdorff measure of noncompactness.

Lemma 1.1 ([13]). Let X and Y be Banach spaces, L ∈ B (X,Y ) . Then the Hausdorff measure of
noncompactness of L, denoted by ‖L‖χ , is defined by

‖L‖χ = χ (L (SX)) ,

and L is compact, if and only if ‖L‖χ = 0.

Lemma 1.2 ([21]). Let Q be a bounded subset of the normed space X, where X = `k for 1 ≤ k <∞.
If Pn : X → X is the operator defined by Pr (x) = (x0, x1, . . . , xr, 0, . . .) for all x ∈ X, then

χ(Q) = lim
r→∞

sup
x∈Q
‖(I − Pr) (x)‖ ,

where I is the identity operator on X.

Also, we need the following known results for our investigations.

Lemma 1.3 ( [13]). Let 1 < k < ∞ and k∗ = k/ (k − 1) . Then we have `β∞ = cβ = cβ0 = `1,

`β1 = `∞ and `βk = `k∗ . Furthermore, let X denote any of the spaces `∞, c, c0, `1 and `k. Then, we

have ‖a‖∗X = ‖a‖Xβ for all a ∈ Xβ , where ‖.‖Xβ is the natural norm on the dual space Xβ .

Lemma 1.4 ([13]). Let X and Y be BK-spaces. Then we have (X,Y ) ⊂ B (X,Y ) , i.e., every matrix
A ∈ (X,Y ) defines a linear operator LA ∈ B (X,Y ) by LA (x) = A(x) for all x ∈ X.

Lemma 1.5 ([7]). s Let X ⊃ φ be a BK-space and Y be any of the spaces `∞, c, c0. If A ∈ (X,Y ) ,
then ‖LA‖ = ‖A‖(X,`∞) = supn ‖An‖

∗
X <∞.

Lemma 1.6 ([25]). Let 1 < k <∞. Then A ∈ (`k, `) if and only if

‖A‖′(`k,`) =

{ ∞∑
v=0

( ∞∑
n=0

|anv|
)k∗}1/k∗

<∞,

and there exists 1 ≤ ξ ≤ 4 such that ‖A‖′(`k,`) = ξ ‖A‖(`k,`) .

Lemma 1.7 ([12]). Let 1 ≤ k <∞. Then A ∈ (`, `k) if and only if

‖A‖(`,`k) = sup
v

{ ∞∑
n=0

|anv|k
}1/k

<∞.
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2. Absolute Nörlund Spaces

Let Σav be an infinite series with the n-th partial sum sn and (un) be a sequence of nonnegative
terms. The series Σav is said to be summable |A, un|k , k ≥ 1, if

∞∑
n=0

uk−1
n |∆An(s)|k <∞, A−1(s) = 0,

where ∆An(s) = An(s) − An−1(s), for n ≥ 0, A−1(s) = 0, [22]. If we take A as a matrix of
weighted mean

(
N, pn

)
(resp., un = Pn/pn) , then the summability |A, un|k reduces to the summabil-

ity
∣∣N, pn, un∣∣k (resp.,

∣∣N, pn∣∣k, [5]), [29]. Further, if un = n for n ≥ 1 and A is the matrix of Nörlund

mean (N, pn), then it is the same as the summability |N, pn|k , k ≥ 1, given by Borwein and Cass [6],
which also includes the summability |C,α|k of Flett [9]. By a Nörlund matrix A = (anv), we mean

anv =

{
pn−v/Pn, 0 ≤ v ≤ n,
0, v > n,

where (pn) is a sequence of complex numbers with Pn = p0 + p1 + · · ·+ pn 6= 0, p0 6= 0, P−n = 0 for
n ≥ 1.

More recently, the space
∣∣Nu

p

∣∣
k

has been introduced as the set of all series, summable by the absolute

Nörlund method |N, pn, un|k for k ≥ 1, i.e.,∣∣Nu
p

∣∣
k

=

{
a = (av) ∈ w :

∞∑
n=1

uk−1
n

∣∣∣∣ n∑
v=1

(
Pn−ν
Pn

− Pn−1−ν

Pn−1

)
aν

∣∣∣∣k <∞}, (∣∣Nu
p

∣∣
1

= |Np|
)
.

Certain matrix operators on this space have been studied by Hazar and Sarıgöl [10] together with
their norms, which is also generalized some known results in [6, 15, 24, 26]. Also, one can see some
related works on sequences and series spaces in [1, 3, 4, 8, 11,16,23,27].

Note that if the matrices T (p) = (t
(p)
nv ) and E(k) = (e

(k)
nv ), 1 ≤ k <∞, are defined by

t(p)nv =


Pn−v
Pn

, 0 ≤ v ≤ n,

0, v > n,
(2.1)

e(k)
nv =


−u1/k∗

n , v = n− 1,

u
1/k∗

n , v = n,

0, v 6= n, n− 1,

(2.2)

respectively, then we may restate
∣∣Nu

p

∣∣
k

= (`k)E(k)oT (p) in view of the identity (1.1), where 1/k∗ = 0

for k = 1 [10]. Further, there exists the inverse matrix S(p) of T (p), since T (p) is triangle matrix. To
obtain the matrix S(p), take p0 as a non-zero. Then there exists a sequence (Cn) such that

n∑
v=0

Pn−vCv =

{
1, n = 0,

0, n ≥ 1,
(2.3)

which gives that

yn =
1

Pn

n∑
v=0

Pn−vxv if and only if xn =

n∑
v=0

Cn−vPvyv,

where Pn = p0 + p1 + · · ·+ pn 6= 0 for n ≥ 1, and so, S(p) = (s
(p)
nv ) is defined by

s(p)
nv =

{
Cn−vPv, 0 ≤ v ≤ n,
0, v > n.

(2.4)

Throughout the paper, for any sequence x = (xv) ∈
∣∣Nu

p

∣∣
k
, we associate the sequence z = (zv) by

z = E(k)oT (p)(x). If we say that T (p) (x) = y, then
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zn = u1/k∗

n ∆yn = u1/k∗

n

n∑
v=1

(
Pn−ν
Pn

− Pn−1−ν

Pn−1

)
xν (2.5)

for n ≥ 1, y−1 = 0. So, it is trivial that x ∈
∣∣Nu

p

∣∣
k
, if and only if z = E(k)oT (p)(x) ∈ `k, and x ∈ S|Nup |k

if and only if z ∈ S`k . In other words, E(k)oT (p) :
∣∣Nu

p

∣∣
k
→ `k is a bijective linear map preserving

norm [10].
Further, we recall that

∣∣Nu
p

∣∣
k

is a BK-space (see [10]) with respect to the norm

‖x‖|Nup |k
=
∥∥∥E(k)oT (p)(x)

∥∥∥
`k
. (2.6)

We require the following notations and lemmas.

Gnv =

n∑
r=v

PrCn−r ; v, n ≥ 0,

D1 =

{
ε = (εv) ∈ w : lim

m

m∑
v=r

εvGvr exists

}
,

D2 =

{
ε = (εv) ∈ w : sup

m,r

∣∣∣∣ m∑
v=r

εvGvr

∣∣∣∣ <∞},
D3 =

{
ε = (εv) ∈ w : sup

m

m∑
r=0

∣∣∣∣∣u−1/k∗

r

m∑
v=r

εvGvr

∣∣∣∣∣
k∗

<∞
}
.

Lemma 2.1.
a) A ∈ (`, c)⇔ (i) limn anv exists, v ≥ 0, (ii) supn,v |anv| <∞.
b) A ∈ (`, `∞)⇔ (ii) holds.

c) If 1 < k <∞, then A ∈ (`k, c)⇔ (i) holds, (iii) supn
∞∑
v=0
|anv|k

∗
<∞.

d) If 1 < k <∞, then A ∈ (`k, `∞)⇔ (iii) holds.
e) If 1 < k <∞, then A ∈ (`k, c0)⇔ (iii) holds, (iv) limn anv = 0, v ≥ 0.
f) A ∈ (`, c0)⇔ (ii) and (iv) holds [28].

Lemma 2.2. Let 1 ≤ k < ∞. If a = (aν) ∈
∣∣Nu

p

∣∣β
k
, then ã = (ãν) ∈ `k∗ for k > 1, and ã ∈ `∞ for

k = 1. Moreover,
∞∑
v=1

avxv =

∞∑
v=1

ãνzv (2.7)

holds for every x = (xk) ∈
∣∣Nu

p

∣∣
k
, where z = E(k)oT (p)(x) is the associated sequence defined by (2.5)

and

ãν = u−1/k∗

v

∞∑
r=v

arGrv. (2.8)

Also, the following result is immediate by Lemma 2.2.

Lemma 2.3. Let (un) be a sequence of nonnegative numbers. Then
∣∣Nu

p

∣∣β
k

= D1∩D3 for 1 < k <∞
and |Np|β1 = D1 ∩D2 for k = 1 [10].

Lemma 2.4. Let ã = (ãν) be defined as in (2.8). Then ‖a‖∗|Nup |k
= ‖ã‖`k∗ for 1 < k < ∞ and

‖a‖∗|Np| = ‖ã‖`∞ for k = 1, where a ∈
∣∣Nu

p

∣∣β
k
.
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Proof. Let 1 < k <∞ and a ∈
∣∣Nu

p

∣∣β
k
. Then by Lemma 2.2, we get ã = (ãν) ∈ `k∗ , and equality (2.7)

holds, and also, by (2.6), x ∈ S|Nup |k
, if and only if z ∈ S`k . So, it follows from (1.2) and (2.7) that

‖a‖∗|Nup |k
= sup
x∈S|Nup |k

∣∣∣∣ ∞∑
v=1

avxv

∣∣∣∣ = sup
z∈S`k

∣∣∣∣ ∞∑
v=1

ãνzv

∣∣∣∣ = ‖ã‖∗`k

and, since ã = (ãν) ∈ `k∗ , by Lemma 1.3,

‖a‖∗|Nup |k
= ‖ã‖∗`k = ‖ã‖`k∗ .

This concludes the proof. �

The proof for k = 1 is similar to the above, so it is omitted.

Lemma 2.5. Let V be a sequence space and (un) be a sequence of nonnegative numbers. If A ∈(∣∣Nu
p

∣∣
k
, V
)
, then F (k) ∈ (`k, V ) , where the matrix F (k) =

(
f

(k)
nv

)
is defined by

f (k)
nv = u−1/k∗

v

∞∑
r=v

anrGrv. (2.9)

Proof. The proof is seen at once by Lemma 2.2. �

Now, we give some lemmas on the operator norms.

Lemma 2.6. Let (un) be a sequence of nonnegative numbers and define the matrix F (k) =
(
f

(k)
nv

)
by

(2.9). If A is in any of the classes
(∣∣Nu

p

∣∣
k
, c0

)
,
(∣∣Nu

p

∣∣
k
, c
)

and
(∣∣Nu

p

∣∣
k
, `∞

)
, then for 1 < k <∞,

‖LA‖ = ‖A‖(|Nup |k,`∞) = sup
n

∥∥∥F (k)
n

∥∥∥
`k∗

,

and for k = 1,

‖LA‖ = ‖A‖(|Np|,`∞) = sup
n

∥∥∥F (1)
n

∥∥∥
`∞
.

Proof. It follows immediately by combining Lemmas 1.4, 1.5 and 2.4. �

Lemma 2.7. Let (un) be a sequence of nonnegative numbers and the matrix F (k) =
(
f

(k)
nv

)
be given

by (2.9).
a) If A ∈ (|Np| , `k) , then for k ≥ 1,

‖LA‖ = ‖A‖(|Np|,`k) =
∥∥∥F (1)

∥∥∥
(`,`k)

.

b) If A ∈
(∣∣Nu

p

∣∣
k
, `
)
, then for 1 < k <∞, there exists 1 ≤ ξ ≤ 4 such that

‖LA‖ = ‖A‖(|Nup |k,`)
=
∥∥∥F (k)

∥∥∥
(`k,`)

=
1

ξ

∥∥∥F (k)
∥∥∥′

(`k,`)
.

Proof. It follows by combining Lemmas 1.4, 1.6, 1.7 and 2.5. �

3. Compact Operators on Absolute Nörlund Spaces

In this section, we characterize the classes
(∣∣Nu

p

∣∣
k
, X
)

and C
(∣∣Nu

p

∣∣
k
, X
)

, and also obtain some

identities or estimates for the Hausdorff measures of noncompactness in these classes, where X is one
of the spaces `∞, c and c0.
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Theorem 3.1. Let (un) be a sequence of nonnegative numbers and let F (1) =
(
f

(1)
nv

)
be given by

f (1)
nv = lim

m

m∑
j=ν

anjGjν , n, v ≥ 0.

a) A ∈ (|Np| , `∞) , if and only if

lim
m

m∑
j=ν

anjGjν exists for each n, v ≥ 0, (3.1)

sup
m,v

∣∣∣∣∣
m∑
r=v

ajrGrv

∣∣∣∣∣ <∞ for each j, (3.2)

sup
n,j

∣∣∣f (1)
nj

∣∣∣ <∞. (3.3)

b) A ∈ (|Np| , c) , if and only if (3.1), (3.2), (3.3) hold and

lim
n
f

(1)
nj exists for each j.

c) A ∈ (|Np| , c0) , if and only if (3.1), (3.2), (3.3) hold and

lim
n
f

(1)
nj = 0 for each j.

Proof. a) A ∈ (|Np| , `∞) , if and only if (anv)
∞
v=0 ∈ |Np|

β
for each n, and A(x) ∈ `∞ for every

x ∈ |Np| . Also, by Lemma 2.3, it is seen that (anj)
∞
j=0 ∈ D1 ∩D2, i.e., (3.1) and (3.2) hold for each

n. To prove the necessity and sufficiency of (3.3), let x ∈ |Np|. Consider the composite operator

E(1)oT (p) : |Np| → ` defined by (2.1) and (2.2). Then it is easy to see that E(1)oT (p) is a bijective

linear operator, since T (p) and E(1) are bijective linear operators (see, [10]). Now, we write z ∈ `,
where T (p) (x) = y and z =

(
E(1)oT (p)

)
(x) , i.e., zn = ∆yn for n ≥ 0, y−1 = 0, and also yn =

n∑
j=0

zj .

Then, it follows from (2.3) and (2.4) that
m∑
v=0

anvxv =

m∑
j=0

(
Pj

m∑
v=j

anvCv−j

)
yj =

m∑
j=0

f̃
(1)
mj zj ,

where

f̃
(1)
mj =


m∑
v=j

anvGvj , 0 ≤ j ≤ m,

0, j > m.

Moreover, if any matrix R = (rnv) ∈ (`, c) , then the series Rn(x) = Σvrnvxv converges uniformly in
n, since, by Lemma 2.1, the remaining term tends to zero uniformly in n, that is,∣∣∣∣ ∞∑

v=m

rnvxv

∣∣∣∣ ≤ sup
n,v
|rnv|

∞∑
v=m

|xν | → 0 as m→∞,

and so we get

lim
n
Rn(x) =

∞∑
v=0

lim
n
rnvxv. (3.4)

Hence, it is easily seen from (3.1) and (3.2) that F̃ (1) =
(
f̃

(1)
mj

)
∈ (`, c), and so, by (3.4), we have

An(x) =

∞∑
j=0

(
lim
m
f̃

(1)
mj

)
zj =

∞∑
j=0

f
(1)
nj zj = F (1)

n (z),

where f
(1)
nj = limm f̃

(1)
mj . This results in A(x) ∈ `∞ for every x ∈ |Np| , if and only if F (1)(z) ∈ `∞ for

every z ∈ ` , which implies that A ∈ (|Np| , `∞) if and only if (3.1) and (3.2) hold, and F (1) ∈ (`, `∞) .
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Also, it follows from Lemma 2.1 that F (1) ∈ (`, `∞) , if and only if (3.3) is satisfied. This concludes
the proof of the part of a).

The parts b) and c) can be proved similarly, so we omit the detail. �

Theorem 3.2. Let k > 1, (un) be a sequence of nonnegative numbers. Define the matrix F (k) =(
f

(k)
nv

)
by

f (k)
nv = u−1/k∗

v

∞∑
j=ν

anjGjν , n, v ≥ 0.

Then

a) A ∈
(∣∣Nu

p

∣∣
k
, `∞

)
if and only if (3.1) holds, and

sup
m

m∑
v=0

∣∣∣∣∣u−1/k∗

v

m∑
r=v

anrGrv

∣∣∣∣∣
k∗

<∞, (3.5)

sup
n

∞∑
ν=0

∣∣∣f (k)
nv

∣∣∣k∗ <∞. (3.6)

b) A ∈
(∣∣Nu

p

∣∣
k
, c
)
, if and only if (3.1), (3.5), (3.6) hold, and

lim
n
f (k)
nv exists for each ν.

c) A ∈
(∣∣Nu

p

∣∣
k
, c0

)
if and only if (3.1), (3.5), (3.6) hold, and

lim
n
f (k)
nv = 0, for each ν.

Proof. a) Let A ∈
(∣∣Nu

p

∣∣
k
, `∞

)
. Then, equivalently, (anj)

∞
j=0 ∈

(∣∣Nu
p

∣∣
k

)β
and A (x) ∈ `∞ for every

x ∈
∣∣Nu

p

∣∣
k
. Also, by Lemma 2.3, it is seen that (anj)

∞
j=0 ∈

(∣∣Nu
p

∣∣
k

)β
, if and only if (anj)

∞
j=0 ∈ D1∩D3

for each n, which is the same as (3.1) and (3.5). To prove the necessity and sufficiency of (3.6), by
considering (2.1) and (2.2), we define the operator E(k)oT (p) :

∣∣Nu
p

∣∣
k
→ `k by(

E(k)oT (p)
)
n

(x) = u1/k∗

n ∆T (p)
n (x).

It is easy to see that a composite function E(k)oT (p) is a bijective linear operator, since T (p) and
E(k) are bijective linear operators (see, [10]). Given x ∈

∣∣Nu
p

∣∣
k
. If we say that T (p) (x) = y and

z =
(
E(k)oT (p)

)
(x) , i.e.,zn = u

1/k∗

n ∆yn for n ≥ 0, y−1 = 0, then we have z ∈ `k, and since the space∣∣Nu
p

∣∣
k

is isomorphic to `k, it follows that x ∈
∣∣Nu

p

∣∣
k
, if and only if z ∈ `k. Further, yn =

n∑
j=0

u
−1/k∗

j zj .

So, considering (2.3), as in the proof of Theorem 3.1, we obtain

m∑
j=0

anjxj =

m∑
j=0

f̃
(k)
mj zj ,

where

f̃
(k)
mj =

u
−1/k∗

j

m∑
r=j

anrGrj , 0 ≤ j ≤ m,

0, j > m.

Furthermore, if any matrix R = (rnv) ∈ (`k, c) , then the series Rn(x) = Σvrnvxv converges uniformly
in n, by Lemma 2.1. In fact, applying Hölder’s inequality to the remaining term, we get∣∣∣∣ ∞∑

v=m

rnvxv

∣∣∣∣ ≤ ( ∞∑
v=m

|rnv|k
∗
)1/k∗( ∞∑

v=m

|xν |k
)1/k
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and the right-hand side of this inequality tends to zero as m → ∞, since x ∈ `k. This means that
the remaining term tends to zero uniformly in n, and so, Rn(x) = Σvrnvxv converges uniformly in n,
which implies

lim
n
Rn(x) =

∞∑
v=0

lim
n
rnvxv. (3.7)

Thus, it is easily seen from (3.1) and (3.5) that F̃ (k) =
(
f̃

(k)
mj

)
∈ (`k, c), and so, by (3.7),

An(x) =

∞∑
v=0

(
lim
m
f̃ (k)
mv

)
zv =

∞∑
v=0

f (k)
nv zv = F (k)

n (z),

where limm f̃
(k)
mv = f

(k)
nv . This gives that A(x) ∈ `∞ for every x ∈

∣∣Nu
p

∣∣
k
, if and only if F (k)(z) ∈ `∞

for every z ∈ `k, which implies that F (k) ∈ (`k, `∞), and so, it follows by applying Lemma 2.1 to the
matrix F (k) for k > 1 that F (k) ∈ (`k, `∞) , if and only if (3.6) holds. This concludes the proof of the
part of a).

Since b) and c) can be proved similarly, so we omit the details.

The following lemma is required to characterize a subclass of compact operators K
(∣∣Nu

p

∣∣
k
, X
)

,

where X is one of the spaces `∞, c0 and c. �

Lemma 3.3 ([19]). Let X ⊃ φ be a BK-space. Then we have:
a) If A ∈ (X, `∞) , then

0 ≤ ‖LA‖χ ≤ lim
n→∞

sup ‖An‖∗X .

b) If A ∈ (X, c0) , then
‖LA‖χ = lim

n→∞
sup ‖An‖∗X .

c) If X has AK or X = `∞ and A ∈ (X, c) , then

1

2
lim
n→∞

sup ‖An − α‖∗X ≤ ‖LA‖χ ≤ lim
n→∞

sup ‖An − α‖∗X ,

where α = (αv) is given by αv = limn→∞ anν , for all ν ∈ N.

By using Lemma 3.3, we establish the following result.

Theorem 3.4. Let k ≥ 1 and (un) be a sequence of nonnegative numbers. Also, define the matrix

F (k) =
(
f

(k)
nv

)
by (2.9).

Then we have:

a) If A ∈
(∣∣Nu

p

∣∣
k
, `∞

)
, then

0 ≤ ‖LA‖χ ≤ lim
n→∞

sup
∥∥∥F (k)

n

∥∥∥∗
`k

(3.8)

and

LA is compact if lim
n→∞

∥∥∥F (k)
n

∥∥∥∗
`k

= 0. (3.9)

b) If A ∈
(∣∣Nu

p

∣∣
k
, c0

)
, then

‖LA‖χ = lim
n→∞

sup
∥∥∥F (k)

n

∥∥∥∗
`k
, (3.10)

LA is compact, if and only if lim
n→∞

∥∥∥F (k)
n

∥∥∥∗
`k

= 0. (3.11)

c) If A ∈
(∣∣Nu

p

∣∣
k
, c
)
, then

1

2
lim
n→∞

sup
∥∥∥F (k)

n − α̃
∥∥∥∗
`k
≤ ‖LA‖χ ≤ lim

n→∞
sup

∥∥∥F (k)
n − α̃

∥∥∥∗
`k
, (3.12)

LA is compact, if and only if lim
n→∞

∥∥∥F (k)
n − α̃

∥∥∥∗
`k

= 0, (3.13)
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where α̃ = (α̃v) is given by α̃v = limn→∞ f
(k)
nv , for all ν ∈ N.

Proof. First, by Lemma 1.1, we point out that (3.9), (3.11) and (3.13) are obtained from (3.8), (3.10)
and (3.12), respectively. Also, since

∣∣Nu
p

∣∣
k
, k ≥ 1 is a BK-space, using parts a) and b) of Lemma 3.3

with Lemma 2.4, we get (3.8) and (3.10), respectively.

Finally, we see that (3.12) holds. In fact, if A ∈
(∣∣Nu

p

∣∣
k
, c
)
, we write F (k) ∈ (`k, c) by using

Lemma 2.5, where A (x) = F (k) (z) for all x ∈
∣∣Nu

p

∣∣
k

and z ∈ `k. So, since `k has AK, from part c) of
Lemma 3.3, we get

1

2
lim
n→∞

sup
∥∥∥F (k)

n − α̃
∥∥∥∗
`k
≤ ‖LF (k)‖χ ≤ lim

n→∞
sup

∥∥∥F (k)
n − α̃

∥∥∥∗
`k
, (3.14)

where α̃ = (α̃v) is given by α̃v = limn→∞ f
(k)
nv for all ν ∈ N.

On the other hand, x ∈ S|Nup |k
, if and only if z ∈ S`k by (2.6). So, it follows from Lemmas 1.1, 1.4

and 2.5 that

‖LA‖χ = χ
(
AS|Nup |k

)
= χ

(
F (k)S`k

)
= ‖LF (k)‖χ . (3.15)

Hence (3.12) is obtained by (3.14) and (3.15), which completes the proof. �

Theorem 3.5. Let F (k) =
(
f

(k)
nv

)
be defined as in (2.9) and (un) be a sequence of nonnegative

numbers. Then we have:
a) If A ∈ (|Np| , `k) , then for 1 ≤ k <∞,

‖LA‖χ = lim
r→∞

sup
v

( ∞∑
n=r+1

∣∣∣f (1)
nv

∣∣∣k )1/k

(3.16)

and

LA is compact, if and only if lim
r→∞

sup
v

∞∑
n=r+1

∣∣∣f (1)
nv

∣∣∣k = 0. (3.17)

b) If A ∈
(∣∣Nu

p

∣∣
k
, `
)
, then for k > 1, there exists 1 ≤ ξ ≤ 4 such that

‖LA‖χ =
1

ξ
lim
r→∞

( ∞∑
v=1

( ∞∑
n=r+1

∣∣∣f (k)
nv

∣∣∣ )k∗)1/k∗

and

LA is compact iff lim
r→∞

∞∑
v=1

( ∞∑
n=r+1

∣∣∣f (k)
nv

∣∣∣ )k∗ = 0.

Proof. a) Let SX = {x ∈ X : ‖x‖ = 1} . Now, from (2.6), we can write that x ∈ S|Np|, if and only if

z ∈ S` for all x ∈ |Np| and z ∈ `. For brevity, we write S|Np| = S and S` = S̄. By Lemmas 1.1, 1.2,
1.4 and 1.7, we have

‖LA‖χ =χ (AS) = χ
(
F (1)S̄

)
= lim
r→∞

sup
z∈S̄

∥∥∥(I − Pr)F (1) (z)
∥∥∥
`k

= lim
r→∞

sup
v

( ∞∑
n=r+1

∣∣∣f (1)
nv

∣∣∣k )1/k

where Pr : `k → `k is defined by Pr (z) = (z0, z1, . . . , zr, 0, . . .) , which completes our assertions.
Also, (3.17) is derived from (3.16) by using Lemma 1.1.
Since part b) is proved easily as in part a) using Lemma 1.6 instead of 1.7, so, we omit the

details. �
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SOLITONS ON A SHALLOW FLUID OF VARIABLE DEPTH

OLEG KHARSHILADZE1, VASILY BELASHOV2 AND ELENA BELASHOVA3

Abstract. The results of numerical study of evolution of the solitons of gravity and gravity-capillary

waves on the surface of a shallow fluid, when the characteristic wavelength is essentially greater than
the depth, λ � H, are presented for the cases when dispersive parameter is a function of time,

and the spatial coordinates β = β (t, x, y). This corresponds to the problems when the relief of the

bottom is changed in time and space. We use both the one-dimensional approach (the equations
of the KdV-class) and also two-dimensional description (the equations of the KP-class), in case of

need.

1. Basic Equations and General Properties of Solutions

Let us consider the models of the Korteweg – de Vries (KdV) and Kadomtsev – Petviashvili (KP)
equations in their application to hydrodynamics, namely, to describe the gravity waves on the surface
of an ideal incompressible fluid of small (compared to wavelength) depth. In this case, the generalized
density and “sound” velocity in the general set of the hydrodynamic equations [3] acquire the sense of
fluid depth H, and velocity c =

√
gH, the term gH2/2 plays the role of the pressure, this corresponds

to the effective adiabatic index γ = 2 [5]. Then the Boussinesq equations take the form

∂v

∂t
+ (v∇)v +∇gH +

gh2

3
∇∆H = 0 , (1)

∂H

∂t
+∇ (Hv) = 0 , (2)

(h = const is the depth of the fluid). It is easy to add into these equations the terms associated with
the capillary effects. Assuming that the curvature of the surface is not too large and the additional
pressure to the fluid caused by the surface tension is defined by the Laplace formula

δp = σ
(
R−11 +R−12

)
,

where σ is the surface tension coefficient, R1 and R2 are the main curvature radii, we can write
δp = −σ∆η, where η (x, y, t) is the surface function (the value of is sufficiently small). Replacing ρgh
in (1) by ρgH + δρ (ρ is the fluid density), we obtain

∂v

∂t
+ (v∇)v + g∇H +

(
gh2

3
− σ

ρ

)
∇∆H = 0 . (3)

Equations (2), (3) are the Boussinesq equations having regard to the capillary effects [5]. The factor
change at the dispersive term in the dispersion relation in its standard form [5] leads to the change of
the dispersion equation and, instead of ω = c0k

(
1− 1

6H
2k2 + · · ·

)
, we have

ω = c0k

[
1− 1

6

(
H2 − 3σ

ρg

)
k2 + · · ·

]
, (4)

where c0 =
√
gH. In this case, the dispersive factor is defined by

β =
c0
6

(
H2 − 3σ

ρg

)
. (5)
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Using furthermore the results of [3], we transform (1) and (2) to the form

∂tu+ αu∂xu− β∂3xu = − (c0/2)

x∫
−∞

∂2yudx ,

that is, we obtain the KP equation for the gravity-capillary waves on the shallow fluid. Note that for
sufficiently large σ > 1

3ρH
2, the dispersive parameter changes its sign that involves the qualitative

change of the evolution character and the form of the solutions [1]. Consider now in more detail
the following interesting case. Often there are the cases when the factor β is unusually small. As it

follows from (5), β = 0 for H = (3σ/ρg)
1/2 ≈ 0.48cm (for pure water). However, β = 0 does not

mean that there is no dispersion in medium. It simply means that in this case the next terms in the
Taylor expansion in k of the full dispersion relation must be taking into account. In addition, the
corresponding additional terms appear in the equation. This generalization leads to the KP equation
which can be written as

∂tu+ αu∂xu− β∂3xu+ γ∂5xu = − (c0/2)

x∫
−∞

∂2yudx, (6)

where the coefficients are

α =
3

2

c0
H
, γ =

c0
6

[
H2
(2

5
H2 − σ

ρg

)
− 1

12

(3σ

ρg
−H2

)2]
.

Using the methods based on the implicit and explicit difference schemes [1, 3], numerical integration
of (6) enables us to investigate the structure of the one-dimensional (1D) and two-dimensional (2D)
solitons on a shallow fluid in the case of anomalously weak dispersion. We have found that the quali-

tative form of the solutions depends significantly on the value of parameter ε = (β/V ) (−V/γ)
1/2 � 2,

where V is the soliton’s velocity in the reference frame moving along the x-axis with the phase veloc-
ity c0. In the 1D case, for ε = 0, the structure of propagating solitons does not differ qualitatively
from that of solitons of the usual KdV equation (see [5]), and in the 2D case – from the structure
of the algebraic KP-solitons [1, 3]. Such solitons on the surface of a fluid have negative polarity (the
hollow solitons). When ε > 0, for example, in the case of the increasing fluid depth, starting from

the depth H = (3σ/ρg)
1/2

, the structure of solitons radically changes: by remaining to decay from
their maximum to zero in the transverse direction as before, now their sign varies along the direction
of their propagation (in addition, the amplitude of the 2D solitons falls from the maximum to zero in
the transverse direction, as before). As ε → 2, the number of oscillations in the tails increases and
now the solitons become similar to the 1D and 2D high-frequency trains, respectively, i.e., envelope
solitons1. Note that a similar structure is typical also for solitons of internal gravity waves, consid-
ered in detail in [2–4]. Separately for the cases 1D and 2D, let us consider now some our results of
numerical simulation of the soliton dynamics on the surface of a shallow fluid which is describes by
the standard KdV and KP equations (equation (6) with γ = 0) when the factor β is a function of the
space coordinates and time.

2. Structure and Evolution of 1D Solitons of Gravity and Gravity-Capillary Waves
with a Varying Relief of the Bottom

First, let us consider the evolution of the 1D solitons in the framework of model (6) with γ = 0
and right-hand side being equal to zero (the KdV equation):

∂tu+ αu∂xu+ β∂3xu = 0 (7)

on the surface of a fluid with varying in time and space dispersive parameter β = β (t, x). Such
situation can take place, for example, in the problems on propagation of the gravity and gravity-
capillary waves on the surface of a shallow fluid [1], when β = c0H

2/6 and β = (c0/6)
[
H2 − 3σ/ρg

]
,

respectively (see above). In these cases, if H = H (t, x) , the dispersive parameter becomes also the

1For the structure of the 1D solitons of the generalized KdV equation, see also [1–3].
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function of the x coordinate and time. In [2, 3], it has been shown that the solutions of the KDV
equation for β = const, depending on the value of β, are divided into two classes: for |β| < u0 (0, x) l/12
(where l is the characteristic wavelength of the initial disturbance), they have soliton character, in the
opposite case, the solutions are the wave packets with asymptotes being proportional to the derivative
of the Airy function (see also [5]). In these cases, the KdV equation can be integrated analytically by
the inverse scattering transform (IST) method. But even in the 1D case, if β = β (t, x), this approach
is impossible principally, it is necessary to resort to a numerical simulation in the conforming problems.

Let us formulate the problem of numerical simulation of the KdV equation with β = β (t, x) and
consider some results of our numerical experiments in studying the structure and evolution of the soli-
tary waves on the surface of a shallow fluid. To solve the initial problem for the KdV equation (7) with
a variable dispersion, we have used an implicit difference scheme [3] with O

(
τ2, h4

)
approximation.

Initial conditions were chosen in the form of the solitary disturbance

u (0, x) = u0 exp
(
−x2/l2

)
, (8)

and in the form of a ”smoothed step”

u (0, x) =
c

1 + exp (x/l)
, (9)

with different values of parameters u0, l and c, defined by the convenience of numerical calculation
for specific sizes of the numerical integration area. The zero conditions on the boundaries of the
computation region were imposed, and simulation has been conducted for a few types of model types
of function β (see Figures 1 and 2) when for t < tcr, β = β0 = const, and for t ≥ tcr,

1) β (x) =

{
β0, x ≤ a;

β0 + c, x > a;
(10)

2) β (x, t) =

{
β0, x ≤ a;

β0 + nc, n = (t− tcr) /τ = 1, 2, . . . ; x > a;
(11)

3) β (t) = β0
(
1 + k0β̄ sinωt

)
, β̄ = (βmax − βmin) /2,

0 < k0 < 1, π/2τ < ω < 2π/τ ;
(12)

where a and c are the constants. In terms of the problem of the wave propagation on the surface of
a shallow water that accordingly means that on reaching tcr we have: 1) sudden ”breaking up of the
bottom”, 2) gradual ”changing of height” of the bottom area, and 3) ”bottom oscillation” with time.

Figure 1. Dependence β = β (t, x) of type of ”step”, models (10) and (11).

Consider briefly some results of numerical simulation for two types of initial conditions and different
kinds of model function β = β (t, x). In the first series of numerical experiments we investigate the
evolution of the initial disturbance in the form of the solitary soliton-like pulse (8) for the models
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Figure 2. Dependence β = β (t, x) of type of ”bottom oscillations”, models (12).

with spasmodic change of dispersion [models of “step” type bottom (10) and (11) with values of the
parameter a corresponding (for t = 0) to the position of the “break” behind and ahead of soliton,
and values c < 0 (“negative” step) and c > 0 (“positive” step). The obtained results show that in all
cases the deformation of initial pulse occurs with time. If the step is located behind the soliton, in
both cases c < 0 and c > 0 , the waving tail which is not associated with the main maximum of the
outgoing forward main pulse is formed, and its evolution is entirely determined by the value β in its
location. In case t = 0, the “step” is located ahead front of the initial pulse, for c > 0, in the model
(11) a steep front is formed quite rapidly, that leads to the overturning of the wave with time. For
c > 0, we can observe the destruction of the soliton (Figure 3), which occurs due to the fact that in
the region of localization of its front, the relative role of nonlinear effects falls due to the increase of
the dispersive parameter here, and dispersive effects prevail.

Figure 3. Evolution of the KdV soliton in model (11) with c < 0.

The second series of numerical experiments is devoted to the study of evolution of the initial
disturbance of type (9) for the models of ”bottom” (10), (11) for different values of parameters a
and c.

Figure 4 shows the result of numerical simulation of evolution of the initial disturbance (9) for the
model of “bottom” in the form of a positive step in the case if “break” is located directly under the
region of the disturbance front of the fluid surface. It is seen that due to the fact that the development
of perturbations occurs mainly in the region where the value of the dispersion parameter corresponds
to the multi-soliton solution of the KdV equation [3, 5], the solitary disturbance propagates with the
development of high-frequency oscillatory structure behind the shock front, and in the region of the
soliton ”tail”, where dispersive effects dominate over the nonlinear ones, the high-frequency train of
oscillations decays rather quickly to zero and it is limited in the region x < 0. Figure 5 shows the
example of the results of simulation of the evolution of initial disturbance in the form of the “smoothed
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b

a

Figure 4. Evolution of ”step” (9) in model (10) with c > 0: a – t ≈ 0.25; b – t ≈ 0.5.

step” (9) in case when the break of the “bottom” is negative and located in front of the localization
region of the fluid surface disturbance. It can be seen that in this case, the front of the disturbance
becomes more gentle with time, the oscillatory soliton structure in the front region is not formed, but
the development of low-frequency oscillations behind the main maximum occurs. This result is easily
explained within the framework of the similarity principle for the KdV equation [5]: the evolution of
the ”tail” of the initial disturbance occurs in the region of small values of the dispersive parameter,
whereas in the front region, where the dispersion is relatively large, the formation of a shock wave
does not occur.

As for the third law of change of β (harmonic oscillations of the parameter β with time on the
whole x-axis), a series of numerical experiments for various k0 = const and a variable frequency ω [see
law of change (12)] show that the stationary (locally) standing waves can be formed for some values of
ω, in other cases, the formation of stationary periodic wave structures is possible, and in intermediate
cases, a chaotic regime is usually realized.

3. Structure and Evolution of 2D Solitons of Gravity and Gravity-Capillary Waves
with a Varying Relief of the Bottom

Let us now consider the problem of evolution of the 2D solitons in the framework of the standard
KP equation

∂tu+ αu∂xu+ β∂3xu = κ

x∫
−∞

∂yu dx (13)
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ba

Figure 5. Evolution of “step” (9) in model (10) with c < 0: a – t ≈ 0.25; b – t ≈ 0.75.

with a varying in time and space dispersive parameter β = β (t, x, y). This situation can take place in
the problems dealing with the propagation of gravity and gravity-capillary waves on the surface of a
shallow fluid [3] when the fluid depth is the function of the spatial coordinates and time H = H (t, x, y).

Here, we have the same situation as for the 1D model of the KdV equation described above: if
analytical solutions of the KP equation are known, in case β = β (t, r) , the dispersion term of equation
becomes quasi-linear and the model is not exactly integrable (the IST method is not applicable) [3].
The problem of numerical simulation of the KP equation with β = β (t, x, y) is formulated analogously
to the problem for the KdV equation (see previous section). To solve the initial problem for the KP
equation (13) with a variable dispersion (varying relief of the bottom), we use an implicit difference
scheme [1] with O

(
τ2, h4

)
approximation. The initial conditions are chosen in the form of the exact

2D one-soliton solution of the KP equation [3], the complete absorption conditions on the boundaries
of computation region [1, 3] are imposed, and simulation is conducted for the same types of model
function as for the KdV equation [see formulae (10)–(12)]. Consider the basic results of the numerical
experiments on the investigation of the structure and the evolution of 2D solitary waves on the fluid
surface with a variable dispersion.

The first series of numerical experiments have been aimed at the study of soliton dynamics under
spasmodic character of the dispersion change (the function β = β (t, x, y) has the form of the ”step”).
First, we investigated evolution of the initial pulse when the spasmodic change of β for tcr takes place
behind the soliton [”negative” step when c < 0 in formulae (10), (11)]. In addition, we have studied
the dependence of the spatial structure of a solution on the value of parameter a in models (10) and
(11). The obtained results (see Example in Figure 6) show that in all the cases the evolution leads to
the formation of waving tail which is not connected with the soliton going away and caused only by a
local influence of sudden change of the “relief” β = β (t, x). Consequently, the formation of oscillatory
structure is connected not so much with decreasing of a role of the dispersion effects behind the soliton
as with the spasmodic changing of β in space.

In the next series of numerical simulation, we considered the evolution of a 2D soliton when the
sudden change of the dispersion parameter is located directly under or in front of an initial pulse
(”negative” step). An example of the results of this series is given in Figure 7. Analysing the obtained
results of the whole series, we can see that for such character of the relief of the function β the
disturbance caused by sudden change of the dispersive parameter has also a local character, i.e.,
it doesn’t propagate together with the going away soliton. But, unlike the cases considered in the
first series of simulation, the asymptotes of a leaving soliton become oscillating (in any case, in the
time limits of numerical experiment), besides, against a background of the long-wave oscillations of
the waving tail we can also see the appearance of the wave fluctuations. The effects noted may be
interpreted as a result of those that for the areas of the wave surface with different values of local
wave number kx the value of the dispersive effects is different. As a result, the intensity of the phase
mixing of the Fourier-harmonics within the (x, y)-region varies with the coordinates and, therefore,
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Figure 6. Solution of eq. (13) for the dispersion law (10) with a = 5.0, c = −0.0038
for t = 0.6.

it reacts differently to the nonlinear generation of the harmonics with various (in particular, large)
wave-numbers kx.

Figure 7. Solution of eq. (13) for the dispersion law (11) with a = 4.0, c = −0.0038
for t = 0.6.

In the third series of the experiments with dispersive parameter changing with the laws (10) and
(11) we consider the cases of ”positive” step [c > 0 in formulae (10) and (11)] being both in front
of and behind the initial pulse for the wide diapason of values of parameter a. The examples of the
most interesting results are shown in Figure 8. One can see that when ”positive” step is far in front
of maximum of the function u (0, x, y) , the soliton evolution at the initial stage does not practically
differ qualitatively from that for β = const (Figure 8a), but in the future, the evolution character is
defined by the presence of the step, namely, the processes, caused by the same causes noted for the
results of the second series of numerical simulation, begin to be developed (Figure 8b). As we can
see in the figure, the appreciable change of the soliton structure which can lead to the wave falling
is observed owing to an intensive generation of the harmonics with big kx in the soliton front region,
even for rather small height of the step (i.e., even if the value of parameter a in formulae (10), (11) is
still rather small). Thus, as it follows from the results of this series, the disturbance of the propagating
2D soliton caused by sudden change in time and space of the dispersive parameter with c > 0 is also
of local character.



222 O. KHARSHILADZE, V. BELASHOV AND E. BELASHOVA

As to the second law of the β change (model (12) – harmonic oscillation of the parameter β with
time on the whole (x, y)-plane), the series of numerical simulations for different k0 = const and variable
frequency ω [see law (12)] show that for some values of ω, the stationary (locally) standing waves can
be formed, in other cases, the formation of the stationary periodical wave structures is possible, and
in the intermediate cases, a chaotic regime is usually realized.

Figure 8. Evolution of soliton of eq. (13) for the dispersion law (11) with a = 5.0,
c = 0.0038: (a) t = 0.6, (b) t = 0.8.

In the experiments, carried out for different values of the parameter k0 and ω = const, we have
found that the stable (in any case, in the limits of the numerical computation time) solutions can
be derived only for k0 ≤ β0 in formula (12), and the solutions are unstable in the other cases. An
example of evolution of the 2D soliton, when its structure along the x − − and y−axes acquires the
wave character and the amplitude of its maximum decreases with time, is given in Figure 9.

Summing up the above, one can note that the numerical simulation of evolution of the 2D solitons
describing by the model of the KP equation with β = β (t, x, y) enable us to find different types of
stable and unstable solutions including those of the mixed ”soliton – non-soliton” type for various
character of dispersion changes in time and space.

The obtained results open the new perspectives in the investigation of a number of applied problems
of dynamics of the non-one-dimensional nonlinear waves in the specific physical media, including upper
atmosphere (ionosphere), magneto-sphere and in a plasma [1–3,5].
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Figure 9. Evolution of 2D soliton of eq. (13) for t = 0.4, 1.2, 2.0.

4. Conclusion

In the paper, the results of numerical study of evolution of the solitons of gravity and gravity-
capillary waves on the surface of a shallow fluid when the characteristic wavelength is essentially
greater then depth, λ � H, were presented for the cases, when dispersive parameter is a function of
time and spatial coordinates, β = β (t, x, y). This corresponds to the problems when the relief of the
bottom is changed in time and space. We have considered three cases of variable dispersion when the
sudden ”breaking up of the bottom”, the gradual ”changing of height” of the bottom area, and the
”bottom oscillation” with time take place. To solve the problem, we have used both the 1D approach
(the equations of the KdV-class) and also the 2D description (the equations of the KP-class). For all
cases, numerical solutions of the problem in 1D and 2D geometry were presented. It was noted that
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the realized approach can be useful also in other applications of the nonlinear wave theory such as
dynamics of 1D and multidimensional solitary waves in other specific physical media, including upper
atmosphere (ionosphere), magnetosphere and in a plasma.
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SCHUR-GEOMETRIC AND SCHUR-HARMONIC CONVEXITY OF WEIGHTED

INTEGRAL MEAN

SANJA KOVAČ

Abstract. Recently, there have been many new results on Schur convexity of integral means. In this
paper we investigate the necessary and sufficient conditions for the existence of Schur-geometric and

Schur-harmonic properties in weighted integral means, weighted midpoint and weighted trapezoid

quadrature formulas.

1. Introduction

Let us recall the definitions of convex, n−convex and Schur-convex functions.

Definition 1. A function f is convex on an interval I if for any two points x, y ∈ I and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1.1)

If inequality (1.1) is reversed, then f is said to be concave.

Let A ⊂ Rn. We introduce the following notion: for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ A, we
write x ≺ y, if

n∑
i=1

x[i] =

n∑
i=1

y[i] and

k∑
i=1

x[i] ≤
k∑

i=1

y[i] for k = 1, . . . , n− 1,

where x[i] denotes the i−th-largest component in x.

Definition 2. Function F : A ⊂ Rn → R is said to be Schur-convex on A if for every x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ A such that x ≺ y, we have

F (x1, . . . , xn) ≤ F (y1, . . . , yn).

Function F is said to be Schur-concave on A if −F is Schur-convex.

Remark 1. Every convex and symmetric function is Schur-convex.

Numerous researchers have recently investigated Schur-geometric and Schur-harmonic convexities
[2, 8, 9].

First, let us define for x = (x1, . . . , xn) ∈ Rn, ln x := (lnx1, . . . , lnxn) and 1
x :=

(
1
x1
, . . . , 1

xn

)
.

Let us give the following definitions:

Definition 3. Function F : A ⊂ Rn
+ → R is said to be Schur-geometrically convex on A if for

every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ A such that ln x ≺ ln y, we have

F (x1, . . . , xn) ≤ F (y1, . . . , yn).

Function F is said to be Schur-geometrically concave on A if −F is Schur-convex.

Definition 4. Function F : A ⊂ Rn → R is said to be Schur-harmonically convex on A if for
every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ A such that 1

x ≺
1
y , we have

F (x1, . . . , xn) ≤ F (y1, . . . , yn).

Function F is said to be Schur-harmonically concave on A if −F is Schur-convex.

2020 Mathematics Subject Classification. 26D10,26D15,26D20, 26D99.
Key words and phrases. Weight function, Schur convex, Schur-geometric convexity, Schur-harmonic convexity.
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Schur-convexity has been investigated by numerous researchers. The following result was proved
in [4] for the arithmetic integral mean.

Theorem 1. Let f be a continuous function on an interval I with a non-empty interior. Then

F (x, y) =

{
1

y−x
∫ y

x
f(t)dt x, y ∈ I, x 6= y

f(x) x = y ∈ I

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I.

The next result for Schur-convexity of the weighted arithmetic integral mean was proved several
years ago [7].

Theorem 2. Let f be a continuous function on I ⊂ R and let w be a positive continuous weight on I.
Then the function

Fw(x, y) =

{
1∫ y

x
w(t)dt

∫ y

x
w(t)f(t)dt x, y ∈ I, x 6= y

f(x) x = y ∈ I

is Schur-convex (Schur-concave) on I2 if and only if the inequality∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

≤ w(x)f(x) + w(y)f(y)

w(x) + w(y)

holds (reverses) for all x, y ∈ I.

The Schur-convex property of the functions

M(x, y) =

{
1

y−x
∫ y

x
f(t)dt− f

(
x+y

2

)
x, y ∈ I, x 6= y

0 x = y ∈ I

T (x, y) =

{
f(x)+f(y)

2 − 1
y−x

∫ y

x
f(t)dt x, y ∈ I, x 6= y

0 x = y ∈

has been recently investigated (see [1, 3]).
The objective of this paper is to give the necessary and sufficient condition for the function Fw(x, y),

function Mw : I2 → R defined by

Mw(x, y) =

{
1∫ y

x
w(t)dt

∫ y

x
w(t)f(t)dt− f

(
x+y

2

)
x, y ∈ I, x 6= y

0 x = y ∈ I

and function Tw : I2 → R defined by

Tw(x, y) =

{
f(x)+f(y)

2 − 1∫ y
x

w(t)dt

∫ y

x
w(t)f(t)dt x, y ∈ I, x 6= y

0 x = y ∈ I

to be Schur-geometrically convex (Schur-geometrically concave) and Schur-harmonically convex (Schur-
harmonically concave) on I2. The necessary and sufficient condition for the functions Mw(x, y) and
Tw(x, y) to be Schur-convex on I2 is given in [5].

Let us recall the weighted one-point quadrature formula [6]. If f : [x, y]→ R is such that f (n) is a
piecewiese continuous function, then we have

y∫
x

w(t)f(t)dt =

n∑
j=1

Aj(z)f
(j−1)(z) + (−1)n

y∫
x

Wn,w(t, z)f (n)(t)dt, (1.2)

where for j = 1, . . . , n

Aj(z) =
(−1)j−1

(j − 1)!

y∫
x

(z − s)j−1w(s)ds
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and

Wn,w(t, z) =

{
w1n(t) = 1

(n−1)!

∫ t

x
(t− s)n−1w(s)ds t ∈ [x, z],

w2n(t) = 1
(n−1)!

∫ t

y
(t− s)n−1w(s)ds t ∈ (z, y].

In order to prove our results, we shall use the following characterization of the Schur-geometric
convexity and Schur-harmonic convexity [9]:

Lemma 1. Let f : I2 ⊂ R+ → R be a continuous function on I2 and differentiable in the interior
of I2. Then f is Schur-geometrically convex (Schur-geometrically concave) on I2 if and only if it is
symmetric and

(log b− log a)

(
b
∂f

∂b
− a∂f

∂a

)
≥ 0(≤ 0) (1.3)

for all a, b ∈ I.

Lemma 2. Let f : I2 ⊂ R+ → R be a continuous function on I2 and differentiable in the interior
of I2. Then f is Schur-harmonically convex (Schur-harmonically concave) on I2 if and only if it is
symmetric and

(b− a)

(
b2
∂f

∂b
− a2 ∂f

∂a

)
≥ 0(≤ 0) (1.4)

for all a, b ∈ I.

2. Main result

Theorem 3. The function Fw(x, y) is Schur-geometrically convex (concave) on I2 ⊂ R2
+ if and only

if the inequality ∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

≤ xw(x)f(x) + yw(y)f(y)

xw(x) + yw(y)
(2.1)

holds (reverses) for every x, y ∈ I.

Proof. Obviously, Fw(x, y) is continuous on I2, differentiable in the interior of I2 and symmetric. Let
x, y ∈ I, and without loss of generality, we can assume that x ≤ y. After direct computation we get

(log y − log x)

(
y
∂f

∂y
− x∂f

∂x

)
= (log y − log x) ·

(
y ·

w(y)f(y)
∫ y

x
w(t)dt−

∫ y

x
w(t)f(t)dt · w(y)(∫ y

x
w(t)dt

)2
− x ·

−w(x)f(x)
∫ y

x
w(t)dt−

∫ y

x
w(t)f(t)dt · (−w(x))(∫ y

x
w(t)dt

)2
)

=
log y − log x∫ y

x
w(t)dt

·

(
yw(y)f(y) + xw(x)f(x)−

(xw(x) + yw(y)) ·
∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

)

=
(log y − log x) (xw(x) + yw(y))∫ y

x
w(t)dt

(
xw(x)f(x) + yw(y)f(y)

xw(x) + yw(y)
−
∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

)
, (2.2)

so, the sign of the expression (2.2) depends on the sign of the term in the brackets. According to
Lemma 1, the function Fw is Schur-geometrically convex (concave) if and only if (2.1) holds (reverses),
so we have proved the theorem. �

Theorem 4. The function Fw(x, y) is Schur-harmonically convex (concave) on I2 ⊂ R2
+ if and only

if the inequality ∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

≤ x2w(x)f(x) + y2w(y)f(y)

x2w(x) + y2w(y)
(2.3)

holds (reverses) for every x, y ∈ I.
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Proof. The function Fw(x, y) is continuous on I2, differentiable in the interior of I2 and symmetric.
Let x, y ∈ I, and without loss of generality, we can assume that x ≤ y. We compute

(y − x)

(
y2 ∂Fw

∂y
− x2 ∂Fw

∂x

)
= (y − x) ·

(
y2 ·

w(y)f(y) ·
∫ y

x
w(t)dt−

∫ y

x
w(t)f(t)dt · w(y)(∫ y

x
w(t)dt

)2
− x2 ·

−w(x)f(x) ·
∫ y

x
w(t)dt−

∫ y

x
w(t)f(t)dt · (−w(x))(∫ y

x
w(t)dt

)2
)

=
y − x∫ y

x
w(t)dt

·

(
x2w(x)f(x) + y2w(y)f(y)−

(
x2w(x) + y2w(y)

) ∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

)

=
(y − x)

(
x2w(x) + y2w(y)

)∫ y

x
w(t)dt

(
x2w(x)f(x) + y2w(y)f(y)

x2w(x) + y2w(y)
−
∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

)
. (2.4)

The term
(y−x)(x2w(x)+y2w(y))∫ y

x
w(t)dt

is always positive, so the sign of the expression (2.4) depends only on

the sign of the term in brackets. According to Lemma 2, function Fw is Schur-harmonically convex
(concave) if and only if (2.3) holds (reverses), so we have proved the theorem. �

Remark 2. If w(t) = 1
y−x (the case of a uniform weight function), we get the following classification

of Schur-geometrically and Schur-harmonically convexity (concavity):

F (x, y) is Schur-geometrically convex (concave)⇔
∫ y
x

f(t)dt

y−x ≤ xf(x)+yf(y)
x+y , holds (reverses) for every

x, y ∈ I.

F (x, y) is Schur-harmonically convex (concave) ⇔
∫ y
x

f(t)dt

y−x ≤ x2f(x)+y2f(y)
x2+y2 , holds (reverses) for

every x, y ∈ I.

Theorem 5. The function Mw(x, y) is Schur-geometrically convex (concave) if f : I → R is decreasing
(increasing) and the inequality∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

≤ xw(x)f(x) + yw(y)f(y)

xw(x) + yw(y)
(2.5)

holds (reverses) for all x, y ∈ I.

Proof. It is easy to check that Mw(x, y) is symmetric, contionuous on I2 and differentiable on the
interior of I2. According to Lemma 1, we have to check that Mw(x, y) satisfies condition (1.3). Let
x, y ∈ I, and without loss of generallity we can assume that x ≤ y. Then we have

(log y − log x)

(
y
∂Mw

∂y
− x∂Mw

∂x

)
= (log y − log x)

(
y ·

w(y)f(y) ·
∫ y

x
w(t)dt−

∫ y

x
w(t)f(t)dt · w(y)(∫ y

x
w(t)dt

)2 − y

2
f ′
(
x+ y

2

)

− x ·
−w(x)f(x) ·

∫ y

x
w(t)dt−

∫ y

x
w(t)f(t)dt · (−w(x))(∫ y

x
w(t)dt

)2 +
x

2
f ′
(
x+ y

2

))

=
log y − log x∫ y

x
w(t)dt

(
xw(x)f(x) + yw(y)f(y)− (xw(x) + yw(y)) ·

∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

− y − x
2

y∫
x

w(t)dt · f ′
(
x+ y

2

) =
(log y − log x)(xw(x) + yw(y))∫ y

x
w(t)dt
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×

(
xw(x)f(x) + yw(y)f(y)

xw(x) + yw(y)
− y − x

2
·

∫ y

x
w(t)dt

xw(x) + yw(y)
· f ′(x+ y

2
) −

∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

)
(If the function f is decreasing (increasing),

then the middle term in the upper identity is ≥ 0 (≤ 0) so)

≥ (≤)
(log y − log x)(xw(x) + yw(y))∫ y

x
w(t)dt

(
xw(x)f(x) + yw(y)f(y)

xw(x) + yw(y)
−
∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

)
.

Since (2.5) holds (reverses), the condition in Lemma 1 is satisfied and the proof is completed. �

Theorem 6. The function Mw(x, y) is Schur-harmonically convex (concave) if f is decreasing (incre-
asing) and the inequality ∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

≤ x2w(x)f(x) + y2w(y)f(y)

x2w(x) + y2w(y)
(2.6)

holds (reverses) for all x, y ∈ I.

Proof. Since Mw(x, y) is symmetric, continuous on I2 and differentiable on the interior of I2, according
to Lemma 2 we have to check that Mw(x, y) satisfies condition (1.4). Let x, y ∈ I, and without loss
of generality, we can assume that x ≤ y. Then we have

(y − x)

(
y2 ∂Mw

∂y
− x2 ∂Mw

∂x

)
=

y − x∫ y

x
w(t)dt

·

(
x2w(x)f(x) + y2w(y)f(y)−

(
x2w(x) + y2w(y)

)
·
∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

− y2 − x2

2

y∫
x

w(t)dt · f ′
(
x+ y

2

)
=

(y − x)(x2w(x) + y2w(y))∫ y

x
w(t)dt

·

(
x2w(x)f(x) + y2w(y)f(y)

x2w(x) + y2w(y)
−
∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

− y2 − x2

2
f ′(

x+ y

2
)

∫ y

x
w(t)dt

x2w(x) + y2w(y)

)
(If the function f is decreasing (increasing),

then the last term in the upper identity is ≥ 0 (≤ 0) so)

≥ (≤)
(y − x)(x2w(x) + y2w(y))∫ y

x
w(t)dt

(
x2w(x)f(x) + y2w(y)f(y)

x2w(x) + y2w(y)
−
∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

)
.

Since (2.6) holds (reverses), the condition in Lemma 2 is satisfied and the proof is completed. �

Remark 3. For the case of the uniform weight function we have:

M(x, y) is Schur-geometrically convex (concave) if f is decreasing (increasing) and
∫ y
x

f(t)dt

y−x ≤
xf(x)+yf(y)

x+y , holds (reverses) for every x, y ∈ I.

M(x, y) is Schur-harmonically convex (concave) if f is decreasing (increasing) and
∫ y
x

f(t)dt

y−x ≤
x2f(x)+y2f(y)

x2+y2 , holds (reverses) for every x, y ∈ I.

Theorem 7. The function Tw(x, y) is Schur-geometrically convex (concave) if f : I → R is convex
(concave), twice differentiable and ∫ y

x
tw(t)dt∫ y

x
w(t)dt

=
xw(x) + yw(y)

w(x) + w(y)
(2.7)
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and

2
w(x)w(y)(y − x)

w(x) + w(y)
≤

y∫
x

w(t)dt (2.8)

holds (reverses) for all x, y ∈ I.

Proof. The function Tw(x, y) is symmetric, continuous on I2 and differentiable on the interior of I2,
so according to Lemma 1, we have to check if the condition (1.3) holds. Let us assume x, y ∈ I, x < y.
We have

(log y − log x)

(
y
∂Tw
∂y
− x∂Tw

∂x

)
= (log y − log x) ·

(
yf ′(y)

2
− yw(y)f(y)∫ y

x
w(t)dt

+
yw(y)

∫ y

x
w(t)f(t)dt(

y∫
x

w(t)dt

)2 − xf ′(x)

2
− xw(x)f(x)

y∫
x

w(t)dt

+

xw(x)
y∫
x

w(t)f(t)dt(
y∫
x

w(t)dt

)2

)

=
(log y − log x)(xw(x) + yw(y))∫ y

x
w(t)dt

·

(∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

− xw(x)f(x) + yw(y)f(y)

xw(x) + yw(y)

+

∫ y

x
w(t)dt

xw(x) + yw(y)
· yf

′(y)− xf ′(x)

2

)
. (2.9)

From (2.7), we have

(w(x) + w(y))

y∫
x

tw(t)dt = (xw(x) + yw(y))

y∫
x

w(t)dt

⇒ w(y)

y∫
x

(y − t)w(t)dt = w(x)

y∫
x

(t− x)w(t)dt. (2.10)

Further, from (2.10), we have

w(y)

y∫
x

(y − t)w(t)dt = w(x)

y∫
x

(y − x− y + t)w(t)dt

⇒ w(y)

y∫
x

(y − t)w(t)dt = (y − x)w(x)

y∫
x

w(t)dt− w(x)

y∫
x

(y − t)w(t)dt

⇒ (w(x) + w(y)) ·
y∫

x

(y − t)w(t)dt = (y − x)w(x)

y∫
x

w(t)dt

⇒
w(y)

y∫
x

(y − t)w(t)dt

y∫
x

w(t)dt

=
w(x)w(y)(y − x)

w(x) + w(y)
. (2.11)

Applying (2.11) and according to the inequality (2.7), we have∫ y

x
w(t)dt

2
−
w(y)

∫ y

x
(y − t)w(t)dt∫ y

x
w(t)dt

≥ 0.

If f is convex, we have f ′′(t) ≥ 0, so function f ′ is increasing, and we have

0 < x < y ⇒ f ′(x) ≤ f ′(y)⇒ xf ′(x) ≤ xf ′(y) ≤ yf ′(y). (2.12)
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Applying (2.10), (2.11) and (2.12), we have

yw(y)f ′(y)
∫ y

x
(y − t)w(t)dt− xw(x)f ′(x)

∫ y

x
(t− x)w(t)dt

(xw(x) + yw(y)) ·
∫ y

x
w(t)dt

=

w(y)
y∫
x

(y − t)w(t)dt

(xw(x) + yw(y))
y∫
x

w(t)dt

· (yf ′(y)− xf ′(x))

≤
∫ y

x
w(t)dt

xw(x) + yw(y)
· yf

′(y)− xf ′(x)

2
. (2.13)

On the other hand, if we apply (1.2) for n = 2 and z = x and multiply by xw(x)
xw(x)+yw(y) , and also

for z = y, multiply by yw(y)
xw(x)+yw(y) , and then add those two identities, we obtain∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

− xw(x)f(x) + yw(y)f(y)

xw(x) + yw(y)

+
yw(y)f ′(y)

∫ y

x
(y − t)w(t)dt− xw(x)f ′(x)

∫ y

x
(t− x)w(t)dt

(xw(x) + yw(y)) ·
∫ y

x
w(t)dt

=

∫ y

x

[
xw(x) ·

∫ y

t
(s− t)w(s)ds+ yw(y) ·

∫ t

x
(t− s)w(s)ds

]
f ′′(t)dt

(xw(x) + yw(y)) ·
∫ y

x
w(t)dt

. (2.14)

Now, we apply (2.13) in (2.9) and use (2.14) to get

(log y − log x)

(
y
∂Tw
∂y
− x∂Tw

∂x

)
≥ (log y − log x)(xw(x) + yw(y))∫ y

x
w(t)dt

×

∫ y

x

[
xw(x) ·

∫ y

t
(s− t)w(s)ds+ yw(y) ·

∫ t

x
(t− s)w(s)ds

]
f ′′(t)dt

(xw(x) + yw(y)) ·
∫ y

x
w(t)dt

=
(log y − log x) ·

∫ y

x

[
xw(x) ·

∫ y

t
(s− t)w(s)ds+ yw(y) ·

∫ t

x
(t− s)w(s)ds

]
f ′′(t)dt(∫ y

x
w(t)dt

)2 .

Since f is convex and the integrals in the brackets are non negative, we have proved that

(log y − log x)
(
y ∂Tw

∂y − x
∂Tw

∂x

)
≥ 0, for all x, y ∈ I, x < y, so, the function Tw is Schur-geometrically

convex.
The proof for the Schur-geometrically concave case is similar. �

Theorem 8. The function Tw(x, y) is Schur-harmonically convex (concave) if f : I → R is convex
(concave), twice differentiable and ∫ y

x
tw(t)dt∫ y

x
w(t)dt

=
xw(x) + yw(y)

w(x) + w(y)
(2.15)

and

2
w(x)w(y)(y − x)

w(x) + w(y)
≤

y∫
x

w(t)dt (2.16)

holds (reverses) for all x, y ∈ I.

Proof. Since the function Tw(x, y) is symmetric, continuous on I2 and differentiable on the interior
of I2, according to Lemma 2, we have to check if the condition (1.4) holds. Let us assume x, y ∈ I,
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x < y. We have

(y − x)

(
y2 ∂Tw

∂y
− x2 ∂Tw

∂x

)
= (y − x) ·

(
y2f ′(y)

2
− y2w(y)f(y)∫ y

x
w(t)dt

+
y2w(y)

∫ y

x
w(t)f(t)dt(

y∫
x

w(t)dt

)2 − x2f ′(x)

2
− x2w(x)f(x)

y∫
x

w(t)dt

+

x2w(x)
y∫
x

w(t)f(t)dt(
y∫
x

w(t)dt

)2

)

=
(y − x)(x2w(x) + y2w(y))∫ y

x
w(t)dt

·

(∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

− x2w(x)f(x) + y2w(y)f(y)

x2w(x) + y2w(y)

+

∫ y

x
w(t)dt

x2w(x) + y2w(y)
· y

2f ′(y)− x2f ′(x)

2

)
. (2.17)

Again, as in the proof of Theorem 7, we conclude that (2.10), (2.11) and∫ y

x
w(t)dt

2
−
w(y)

∫ y

x
(y − t)w(t)dt∫ y

x
w(t)dt

≥ 0

hold.
If f is convex, we have f ′′(t) ≥ 0, so, the function f ′ is increasing, and we have

0 < x < y ⇒ f ′(x) ≤ f ′(y)⇒ x2f ′(x) ≤ x2f ′(y) ≤ y2f ′(y). (2.18)

Applying (2.10), (2.11) and (2.18), we have

y2w(y)f ′(y)
∫ y

x
(y − t)w(t)dt− x2w(x)f ′(x)

∫ y

x
(t− x)w(t)dt

(x2w(x) + y2w(y)) ·
∫ y

x
w(t)dt

=

w(y)
y∫
x

(y − t)w(t)dt

(x2w(x) + y2w(y))
y∫
x

w(t)dt

·
(
y2f ′(y)− x2f ′(x)

)

≤
∫ y

x
w(t)dt

x2w(x) + y2w(y)
· y

2f ′(y)− x2f ′(x)

2
. (2.19)

On the other hand, if we apply (1.2) for n = 2 and z = x and multiply by x2w(x)
x2w(x)+y2w(y) , and also for

z = y, multiply by y2w(y)
x2w(x)+y2w(y) , and then add those two identities, we obtain∫ y

x
w(t)f(t)dt∫ y

x
w(t)dt

− x2w(x)f(x) + y2w(y)f(y)

x2w(x) + y2w(y)

+
y2w(y)f ′(y)

∫ y

x
(y − t)w(t)dt− x2w(x)f ′(x)

∫ y

x
(t− x)w(t)dt

(x2w(x) + y2w(y)) ·
∫ y

x
w(t)dt

=

∫ y

x

[
x2w(x) ·

∫ y

t
(s− t)w(s)ds+ y2w(y) ·

∫ t

x
(t− s)w(s)ds

]
f ′′(t)dt

(x2w(x) + y2w(y)) ·
∫ y

x
w(t)dt

. (2.20)

Now, we apply (2.19) in (2.17) and use (2.20) to get

(y − x)

(
y2 ∂Tw

∂y
− x2 ∂Tw

∂x

)
≥ (y − x)(x2w(x) + y2w(y))∫ y

x
w(t)dt

×

∫ y

x

[
x2w(x) ·

∫ y

t
(s− t)w(s)ds+ y2w(y) ·

∫ t

x
(t− s)w(s)ds

]
f ′′(t)dt

(x2w(x) + y2w(y)) ·
∫ y

x
w(t)dt
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=
(y − x) ·

∫ y

x

[
x2w(x) ·

∫ y

t
(s− t)w(s)ds+ y2w(y) ·

∫ t

x
(t− s)w(s)ds

]
f ′′(t)dt(∫ y

x
w(t)dt

)2 .

Since f is convex and the integrals in the brackets are non negative, we have proved that

(y − x)
(
y2 ∂Tw

∂y − x
2 ∂Tw

∂x

)
≥ 0, for all x, y ∈ I, x < y, so, the function Tw is Schur-harmonically

convex.
The proof for the Schur-harmonically concave case is similar. �

Remark 4. For w(t) = 1
y−x it is easy to check that conditions (2.7), (2.8), (2.15) and (2.16) are valid,

so, if f is convex, then T is Schur-geometrically and Schur-harmonically convex.
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RATIONAL PÁL TYPE (0, 1; 0)-INTERPOLATION AND QUADRATURE

FORMULA WITH CHEBYSHEV–MARKOV FRACTIONS

SHRAWAN KUMAR1, NEHA MATHUR2, VISHNU NARAYAN MISHRA3 AND PANKAJ MATHUR1∗

Abstract. We present a Pál-type (0, 1; 0)-interpolation on an inter-scaled set of nodes, when Her-

mite and Lagrange data are prescribed on the zeros of Chebyshev–Markov sine fraction Un(x) and its

derivative U ′n(x), respectively. A quadrature formula based on the obtained Pál-type interpolation
has been constructed. Coefficients of this quadrature are obtained in the explicit form.

1. Introduction

The study of different type interpolation processes has been a subject of interest for several math-
ematicians. In almost all the cases the interpolatory polynomials are considered on the nodes which
are the zeros of certain classical orthogonal polynomials. The main idea of the present paper is to
construct a rational interpolation process and its corresponding quadrature formula.

Let R2n−1(a0, a1, a2, . . . , a2n−1) be a rational space defined as

R2n−1(a0, a1, . . . , a2n−1) :=

{
p2n−1(x)∏2n−1

k=0 (1 + akx)

}
,

where p2n−1(x) is a polynomial of degree ≤ 2n− 1 and {ak}2n−1
k=0 are real and belong to [−1, 1], or are

paired by a complex conjugation.
Chebyshev and Markov introduced rational cosine and sine fractions [9] which generalize Chebyshev

polynomials, possess many similar properties [8, 16, 18] and are called Chebyshev–Markov rational
fractions. More details on the rational generalization of Chebyshev polynomials can be found in
[1–6,19]. Let Un(x) be the rational Chebyshev–Markov sine fraction,

Un(x) =
sinµ2n(x)√

1− x2,
(1.1)

where

µ2n(x) =
1

2

2n−1∑
k=0

arccos
x+ ak
1 + akx

, µ′2n(x) = − λ2n(x)√
1− x2

,

λ2n(x) =
1

2

2n−1∑
k=0

√
1− a2

k

1 + akx
, n ∈ N. (1.2)

The rational fraction Un(x) can be expressed as

Un(x) =
Pn−1(x)√

Π2n−1
k=0 (1 + akx)

,

where Pn−1(x) is an algebraic polynomial of degree n− 1 with a real coefficient, and {ak}2n−1
k=0 are as

defined above. The fraction Un(x) has n− 1 zeros on the interval (−1, 1) given by

−1 < xn−1 < xn−2 < · · · < x2 < x1 < 1,

2020 Mathematics Subject Classification. Primary 05C38, 15A15, Secondary 05A15, 15A18.
Key words and phrases. Pál-type interpolation; Lobatto-type quadrature; Rational space; Chebyshev–Markov

fractions.
∗Corresponding author.
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with
µ2n(xk) = kπ, k = 1, 2, . . . , n− 1.

Also, the rational function λ2n(x) can be expressed as

λ2n(x) =
p2n−1(x)∏2n−1

k=0 (1 + akx)
,

where p2n−1(x) is a polynomial of degree atmost 2n − 1. It has no zeros in the interval [−1, 1]. On
differentiating (1.1), we get

U ′n(x) =
− cosµ2n(x)λ2n(x)

√
1− x2 + x sinµ2n(x)

(1− x2)3/2
(1.3)

and

U ′n(xk) = − λ2n(xk)

(1− x2
k)
. (1.4)

In 1962, Rusak [15] initiated the study of interpolation processes by means of rational functions on
the interval [−1, 1]. The nodes were taken to be the zeros of Chebyshev–Markov rational fractions.
In [13], rational interpolation functions of Hermite–Fejér-type were constructed. Min [10] was the
first, who considered the rational quasi-Hermite-type interpolation. He constructed the interpolated
function and proved its uniform convergence for the continuous functions on the segment with the
restriction that the poles of the approximating rational functions should not have limit points on
the interval [−1, 1]. Based on the ideas of [13] and using the method, somewhat different from that
of [10], Rouba et al. [12], [14] revisited the rational interpolation functions of Hermite–Fejér-type.
They also proved the uniform convergence of the interpolation process for the function f ∈ C[−1, 1]
and obtained explicitly its corresponding Lobatto type quadrature formula. Recently, Shrawan Kumar
et al. [7] studied the Radau type quadrature for an almost quasi-Hermite–Fejér-type interpolation in
rational spaces.

In this paper, we have considered the existence and explicit representation of a Pál type (0, 1; 0)-
interpolation on the rational space R3n−3(a0, a1, . . . , a2n−1), when the Hermite and Lagrange data
are prescribed on the zeros of Un(x) ({xk}n−1

k=1) and its derivative U ′n(x) ({tk}n−2
k=1), respectively. These

zeros are inter-scaled such that

−1 = xn < xn−1 < tn−2 < xn−2 < · · · < x2 < t1 < x1 < 1 = x0.

A quadrature formula corresponding to the interpolation process has also been obtained.

2. Explicit Representation of Pál type (0, 1; 0)-interpolation

For any function f ∈ C[−1, 1] the Pál type (0,1;0)-interpolation function Wn(x, f) satisfying the
conditions 

Wn(xk, f) = f(xk), k = 0, 1, . . . , n,

W ′n(xk, f) = αk, k = 1, 2, . . . , n− 1,

Wn(tk, f) = f(tk), k = 1, 2, . . . , n− 2,

(2.1)

can be explicitly represented as

Wn(x, f) =

n∑
k=0

f(xk)Ek(x) +

n−1∑
k=1

αkDk(x) +

n−2∑
k=1

f(tk)Ck(x), (2.2)

where αk, k = 1, 2, . . . , n − 1 are arbitrarily given real numbers, {Ek(x)}nk=0, {Dk(x)}n−1
k=1 and

{Ck(x)}n−2
k=1 are fundamental functions of the Pál type (0,1;0) interpolation Wn(x, f), satisfying the

following conditions: for k = 1, 2, . . . , n− 2,
Ck(xj) = 0, j = 0, 1, . . . , n,

C ′k(xj) = 0, j = 1, 2, . . . , n− 1,

Ck(tj) = δjk, j = 1, 2, . . . , n− 2,

(2.3)
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for k = 1, 2, . . . , n− 1, 
Dk(xj) = 0, j = 0, 1, . . . , n,

D′k(xj) = δjk, j = 1, 2, . . . , n− 1,

Dk(tj) = 0, j = 1, 2, . . . , n− 2

(2.4)

and for k = 0, 1, 2, . . . , n, 
Ek(xj) = δjk, j = 0, 1, . . . , n,

E′k(xj) = 0, j = 1, 2, . . . , n− 1,

Ek(tj) = 0, j = 1, 2, . . . , n− 2.

(2.5)

In the following lemmas, we give the explicit representation of these fundamental functions of the Pál
type (0, 1; 0)-interpolation Wn(x, f).

Lemma 1. The fundamental functions {Ck(x)}n−2
k=1 satisfying conditions (2.3) can be explicitly rep-

resented for k = 1, 2, . . . , n− 2, as

Ck(x) =
(λ2n(tk))3/2(1− x2)U2

n(x)Lk(x)

(1− t2k)U2
n(tk)(λ2n(x))3/2

, (2.6)

where Un(x) are given by (1.1), λ2n(x) are given by (1.2) and {Lk(x)}n−2
k=1 are given by

Lk(x) =
U ′n(x)

(x− tk)U ′′n (tk)
.

Proof. We will show that {Ck(x)}n−2
k=1 given by (2.6) satisfies conditions (2.3). Obviously, for k =

1, 2, . . . , n − 2, Ck(xj) = 0, j = 0, 1, . . . , n and C ′k(xj) = 0, j = 1, 2, . . . , n − 1. Also, for j 6= k,
Ck(tj) = 0, j = 1, . . . , n− 2 and for j = k,

lim
x→tk

Ck(x) =
(λ2n(tk))3/2

(1− t2k)U2
n(tk)

(1− t2k)U2
n(tk)

(λ2n(tk))3/2
lim
x→tk

Lk(x) = 1

which completes the proof of the Lemma. �

Lemma 2. The fundamental functions {Dk(x)}n−1
k=1 satisfying conditions (2.4) can be explicitly rep-

resented for k = 1, 2, . . . , n− 1, as

Dk(x) =
(λ2n(xk))3/2

(1− x2
k)(U ′n(xk))2

(1− x2)Un(x)U ′n(x)`k(x)

(λ2n(x))3/2
, (2.7)

where U ′n(x) are given by (1.3), λ2n(x) are given by (1.2) and {`k(x)}n−1
k=1 are given by

`k(x) =
Un(x)

(x− xk)U ′n(xk)
. (2.8)

Proof. Obviously, for k = 1, 2, . . . , n − 1, Dk(xj) = 0, j = 0, 1, . . . , n and for j 6= k, D′k(xj) = 0,
j = 1, 2, . . . , n− 1, for j = k,

lim
x→yk

D′k(x) =

(
(λ2n(xk))3/2

(1− x2
k)(U ′n(xk))2

)(
(1− x2

k)U ′n(xk)

(λ2n(xk))3/2

)
lim

x→xk

(
Un(x)

x− xk

)
= 1.

Also, Dk(tj) = 0, j = 0, 1, . . . , n, which shows that {Dk(x)}n−1
k=1 , given by (2.7), satisfies all conditions

(2.4) and hence completes the proof of the Lemma. �

Lemma 3. The fundamental functions {Ek(x)}nk=0 satisfying conditions (2.5) can be explicitly rep-
resented as

E0(x) =
(λ2n(1))3/2

2U2
n(1)U ′n(1)

(1 + x)U2
n(x)U ′n(x)

(λ2n(x))3/2
, (2.9)

for k = 1, 2, . . . , n− 1,

Ek(x) =
(λ2n(xk))3/2

(1− x2
k)U ′n(xk)

(1− x2)U ′n(x)

(λ2n(x))3/2

(
1 + bk(x− xk)

)
`2k(x), (2.10)
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where

bk = − xk
1− x2

k

− U ′′n (xk)

U ′n(xk)
+

λ′2n(xk)

2λ2n(xk)
(2.11)

and

En(x) =
(λ2n(−1))3/2

2U2
n(−1)U ′n(−1)

(1− x)U2
n(x)U ′n(x)

(λ2n(x))3/2
. (2.12)

Proof. Obviously, for j 6= k, we have Ek(xj) = 0, j = 0, 1, . . . , n and for j = k, using de L’Hospital’s
rule and (1.4), we have

lim
x→xk

Ek(x) =
(1− x2

k)

λ2
2n(xk)

(
lim

x→xk

sinµ2n(x)

(x− xk)

)2

=
(1− x2

k)

λ2
2n(xk)

(
lim

x→xk

−λ2n(x) cosµ2n(x)√
1− x2

)2

= 1.

Also, for k = 1, 2, . . . , n− 1, we have Ek(tj) = 0, j = 1, 2, . . . , n− 2.
On differentiating (2.10) with respect to x and using (1.4), we get

E′k(x) =
(1− x2

k)

U ′n(xk)(λ2n(xk))1/2

[
2U ′n(x){1 + bk(x− xk)}

(λ2n(x))3/2

(
sinµ2n(x)

x− xk

)′
+

(
bkU

′
n(x) + {1 + bk(x− xk)}U ′′n (x)

(λ2n(x))3/2

− 3λ′2n(x)U ′n(x){1 + bk(x− xk)}
2(λ2n(x))5/2

)(
sinµ2n(x)

x− xk

)](
sinµ2n(x)

x− xk

)
,

then for j 6= k, we have E′k(xj) = 0, j = 1, 2, . . . , n− 1 and for j = k,

lim
x→xk

E′k(x) =
(1− x2

k)

U ′n(xk)(λ2n(xk))1/2

[
2U ′n(xk)

(λ2n(xk))3/2

(
lim

x→xk

(
sinµ2n(x)

x− xk

)(
sinµ2n(x)

x− xk

)′)
+

(
bkU

′
n(xk) + U ′′n (xk)

(λ2n(xk))3/2
− 3λ′2n(xk)U ′n(xk)

2(λ2
2n(xk))5/2

)(
lim

x→xk

sinµ2n(x)

x− xk

)2 ]
.

We know that

lim
x→xk

sinµ2n(x)

(x− xk)
= µ′2n(xk) cosµ2n(xk) = − λ2n(xk)√

1− x2
k

and

lim
x→xk

(
sinµ2n(x)

x− xk

)′
=

1

2
cosµ2n(xk)µ′′2n(xk),

where

µ′′2n(x) = −xλ2n(x) + (1− x2)λ′2n(x)

(1− x2)3/2
,

therefore

lim
x→xk

E′k(x) =

[
xk

1− x2
k

+
U ′′n (xk)

U ′n(xk)
− λ′2n(xk)

2λ2n(xk)
+ bk

]
= 0,

due to (2.11) which shows that {Ek(x)}n−1
k=1 given by (2.10) satisfy all the conditions given by (2.5)

for k = 1, 2, . . . , n− 1.
Similarly, we can show that E0 and En(x) given by (2.9) and (2.12), respectively, satisfy conditions

(2.5) for k = 0 and (2.5), for k = n, respectively, which completes the proof of the Lemma. �

Remark 4. The Pál type (0, 1; 0)-interpolation Wn(f, x), satisfying conditions (2.1) can be explicitly
represented as (2.2) with the help of Lemmas 1–3. Taking all ai’s as zero, Wn(f, x) reduces to the
interpolated polynomials of degree ≤ 3n− 3.
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Theorem 5. The function Wn(f, x) is a rational function, that is,

Wn(f, x) ∈ R3n−3(a0, a1, a2, . . . , a2n−1).

Proof. Since Un ∈ Rn−1(a0, a1, . . . , a2n−1), we can express it as

Un(x) :=
Sn−1(x)

S∗n(x)
,

where S∗n(x) :=
√∏2n−1

k=0 (1 + xak), Sn−1(x) := cn−1(x− x1)(x− x2) . . . (x− xn−1) and cn−1 depends

on n and {ak}2n−1
k=0 . So, we have

`k(x) =
S∗n(xk)

S∗n(x)
qk(x), k = 1, 2, . . . , n− 1,

where

qk(x) :=
Sn−1(x)

S′n−1(xk)(x− xk)
, k = 1, 2, . . . , n− 1.

Thus `k(x) ∈ Rn−2(a0, a1, . . . , a2n−1). Similarly, we can express

U ′n(x) :=
Qn−2(x)

S∗n(x)
,

where Qn−1(x) := dn−1(x− t1)(x− t2) . . . (x− tn−2) and dn−1 depends on n and {ak}2n−1
k=0 . Then

Lk(x) =
S∗n(tk)

S∗n(x)
q∗k(x), k = 1, 2, . . . , n− 1,

where

q∗k(x) :=
Qn−2(x)

Q′n−2(tk)(x− tk)
, k = 1, 2, . . . , n− 2.

Thus Lk(x) ∈ Rn−3(a0, a1, . . . , a2n−1). Hence, by (2.6), (2.7) and (2.10) the lemma follows. �

Remark 6. Notice that the poles of the rational function Wn(f, x) can be found from the equality
λ2n(x) = 0. They depend on the parameters ak, k = 0, 1, . . . , 2n − 1. The relationship between the
zeros of the function λ2n(x) and the parameters ak is described in [17].

3. Quadrature Formula

Under the same assumption on the parameters a1, a2, . . . , a2n1, we consider the following Pál type
(0, 1; 0)-interpolation.

For the given function f defined on [−1, 1], we define the function

Vn(f, x) =

n∑
k=0

f(xk)Ωk(x) +

n−1∑
k=1

αkσk(x) +

n−2∑
k=1

f(tk)γk(x), (3.1)

where, for k = 1, 2, . . . , n− 1,

Ωk(x) =
(1− x2)U ′n(x)

(1− x2
k)U ′n(xk)

[
1− 2

(
U ′′n (xk)

U ′n(xk)
+

xk
(1− x2

k)

)
(x− xk)

]
`2k(x),

Ω0(x) =
(1 + x)U2

n(x)U ′n(x)

2U2
n(1)U ′n(1)

, Ωn(x) =
(1− x)U2

n(x)U ′n(x)

2U2
n(−1)U ′n(−1)

,

for k = 1, 2, . . . , n− 1,

σk(x) =
(1− x2)Un(x)U ′n(x)`k(x)

(1− x2
k)(U ′n(xk))2

and for k = 1, 2, . . . , n− 2,

γk(x) =
(1− x2)U2

n(x)Lk(x)

(1− t2k)U2
n(tk)

.
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The function Vn(x) given by (3.1), satisfies conditions (2.1) and hence is the Pál type (0, 1; 0)-
interpolation, and

Vn(f, x) ∈ R3n−3(a1, a2, . . . , a2n−1).

The quadrature formula corresponding to the interpolatory function (3.1) is given by

1∫
−1

(1− x2)f(x)dx ≈
n∑

k=0

f(xk)

1∫
−1

(1− x2)Ωk(x)dx

+

n−1∑
k=1

f ′(xk)

1∫
−1

(1− x2)σk(x)dx+

n−2∑
k=1

f(yk)

1∫
−1

(1− x2)γk(x)dx

≈
n∑

k=0

Ekf(xk) +

n−1∑
k=1

Dkf
′(xk) +

n−2∑
k=1

Ckf(yk), (3.2)

where

Ek =

1∫
−1

(1− x2)Ωk(x)dx, k = 0, 1, . . . , n, (3.3)

Dk =

1∫
−1

(1− x2)σk(x)dx, k = 1, 2, . . . , n− 1, (3.4)

Ck =

1∫
−1

(1− x2)γk(x)dx, k = 1, 2, . . . , n− 2. (3.5)

Theorem 7. The quadrature formula (3.2) can be expressed as

1∫
−1

(1− x2)f(x)dx =

n−1∑
k=1

(
2π(1− x2

k)3/2

λ2n(xk)

)
f(xk). (3.6)

Remark 8. The quadrature formula (3.6) can be evaluated by finding the value of the integrals
(3.3), (3.4) and (3.5). These integrals have singularities lying in the interval [−1, 1]. The integrals are
evaluated by performing suitable transformations and using the Cauchy residue theorem at the poles
which lie in the interval.

To prove Theorem 7, we shall need the following lemmas below.

Lemma 9. For Dk, k = 1, 2, . . . , n− 1, given by (3.4), we have

Dk =
1

(1− x2
k)(U ′n(xk))3

1∫
−1

(1− x2)2U2
n(x)U ′n(x)

(x− xk)
dx = 0.

Proof. Dk for k = 1, 2, . . . , n− 1, given by (3.4), can be represented as

Dk =
1

(1− x2
k)(U ′n(xk))3

Ik, (3.7)

where

Ik =

1∫
−1

(1− x2)2U2
n(x)U ′n(x)

(x− xk)
dx
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=

1∫
−1

sin2 µ2n(x)

(x− xk)

(
x sinµ2n(x)− cosµ2n(x)λ2n(x)

√
1− x2

√
1− x2

)
dx = Ik1 − Ik2,

where

Ik1 =

1∫
−1

x sin3 µ2n(x)

(x− xk)
√

1− x2
dx (3.8)

and

Ik2 =

1∫
−1

sin2 µ2n(x) cosµ2n(x)λ2n(x)

(x− xk)
dx. (3.9)

Consider the transformation

x =
1− y2

1 + y2
(3.10)

which gives

dx = − 4y

(1 + y2)2
dy, (3.11)√

1− x2 =
2y

(1 + y2)
, (3.12)

(x− xk) =
−2(y2 − y2

k)

(1 + y2)(1 + y2
k)
. (3.13)

We know that

sinµ2n

(
1− y2

1 + y2

)
= sinφ2n(y), (3.14)

where sinφ2n(y) is Bernstein’s sine fraction

sinφ2n(y) =
1

2i

(
χn(y)− χ−1

n (y)
)
, (3.15)

where

χn(y) =

2n−1∏
j=0

y − zj
y − z̄j

and zk are the roots of the equations y2 +(1+ak)(1−ak)−1 = 0, Izk > 0, k = 0, 1, . . . , 2n−1. Taking
into account the assumptions on the parameters ak, k = 0, 1, . . . , 2n − 1, we have the following:
1) z0 = i, 2) if ak and al are paired by a complex conjugation, then the corresponding numbers zk
and zl are symmetric with respect to the imaginary axis. Besides, the function sinφ2n(y) has zeros at

±yk, yk =
√

(1− xk)/(1 + xk), k = 1, 2, . . . , n− 1. Thus, by using transformation (3.10)–(3.13) and
(3.14) in (3.8), we get

Ik1 =− 1 + y2
k

2

∞∫
−∞

(
1− y2

1 + y2

)
sin3 φ2n(y)

(y2 − y2
k)

dy

= −1 + y2
k

2
lim

z→yk,Izk>0
Jk1(z),

where

Jk1(z) =

∞∫
−∞

(
1− y2

1 + y2

)
sin3 φ2n(y)

(y2 − z2)
dy.

From (3.14), we have

sin3 φ2n(y) = − 1

8i

(
χ3
n(y)− 3χn(y) + 3χ−1

n (y)− χ−3
n (y)

)
. (3.16)
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Thus

Jk1(z) =
1

8i

(
Jk11(z)− 3Jk12(z) + 3Jk13(z)− Jk14(z)

)
, (3.17)

where

Jk11(z) =

∞∫
−∞

(
1− y2

1 + y2

)
χ3
n(y)

(y2 − z2)
dy,

Jk12(z) =

∞∫
−∞

(
1− y2

1 + y2

)
χ−3
n (y)

(y2 − z2)
dy,

Jk13(z) =

∞∫
−∞

(
1− y2

1 + y2

)
χn(y)

(y2 − z2)
dy

and

Jk14(z) =

∞∫
−∞

(
1− y2

1 + y2

)
χ−1
n (y)

(y2 − z2)
dy.

Since z0 = i, thus the integrand of Jk11(z) has only a singular point y = z in the upper half plane.
Thus by the residue theorem, we have

Jk11(z) =2πi lim
y→z

(
1− y2

1 + y2

)
χ3
n(y)

(y + z)

=

(
1− z2

1 + z2

)
χ3
n(z)

z
πi. (3.18)

Similarly,

Jk12(z) =

(
1− z2

1 + z2

)
χ−3
n (z)

z
πi, (3.19)

Jk13(z) =

(
1− z2

1 + z2

)
χn(z)

z
πi (3.20)

and

Jk14(z) =

(
1− z2

1 + z2

)
χ−1
n (z)

z
πi (3.21)

Using (3.18), (3.19), (3.20) and (3.21) in (3.17), we get

Jk1(z) =
1

8i

((
1− z2

1 + z2

)
χ3
n(z)

z
πi−

(
1− z2

1 + z2

)
χ−3
n (z)

z
πi

− 3

(
1− z2

1 + z2

)
χn(z)

z
πi+ 3

(
1− z2

1 + z2

)
χ−1
n (z)

z
πi

)
.

Taking the limit as lim
z→yk,Izk>0

and using χn(yk) = 1, it follows that

Ik1 = 0. (3.22)

Now we evaluate Ik2, given by (3.9). Using (3.11) and (3.13) in (3.9), we get

Ik2 = −(1 + y2
k)

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
sin2 µ2n

(
1−y2

1+y2

)
cosµ2n

(
1−y2

1+y2

)
(1 + y2)(y2 − y2

k)
dy.

We know that

cosµ2n

(
1− y2

1 + y2

)
= cosφ2n(y),
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where cosφ2n(y) is Bernstein’s cosine fraction

cosφ2n(y) =
1

2

(
χn(y) + χ−1

n (y)
)
. (3.23)

Thus by (3.14) and (3.23), we have

Ik2 = −(1 + y2
k) lim

z→yk,=zk>0

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
sin2 φ2n(y) cosφ2n(y)

(1 + y2)(y2 − z2)
dy.

By virtue of (3.14) and (3.23), we have

sin2 φ2n(y) cosφ2n(y) = −1

8

(
χ3
n(y) + χ−3

n (y)− χn(y)− χ−1
n (y)

)
. (3.24)

Thus

Ik2 =
(1 + y2

k)

8
lim

z→yk,=zk>0

(
Jk21(z) + Jk22(z)− Jk23(z)− Jk24(z)

)
, (3.25)

where

Jk21(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(1 + y2)(y2 − z2)
dy,

Jk22(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ−3
n (y)

(1 + y2)(y2 − z2)
dy,

Jk23(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χn(y)

(1 + y2)(y2 − z2)
dy

and

Jk24(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(1 + y2)(y2 − z2)
dy.

Since z0 = i, thus the integrand of Jk21(z) has only a singular point y = z in the upper half-plane.
Hence by the residue theorem, we have

Jk21(z) =2πi lim
y→z

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(1 + y2)(y + z)

=
λ2n

(
1−z2

1+z2

)
χ3
n(z)

(1 + z2)
πi. (3.26)

Similarly,

Jk22(z) =
λ2n

(
1−z2

1+z2

)
χ−3
n (z)

(1 + z2)
πi, (3.27)

Jk23(z) =
λ2n

(
1−z2

1+z2

)
χn(z)

(1 + z2)
πi (3.28)

and

Jk24(z) =
λ2n

(
1−z2

1+z2

)
χ−1
n (z)

(1 + z2)
πi. (3.29)
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Putting the values of Jk21(z), Jk22(z), Jk23(z) and Jk24(z) from (3.26), (3.27), (3.28) and (3.29), re-
spectively, in (3.25), we get

Ik2 =
(1 + y2

k)

8
lim

z→yk,=zk>0

λ2n

(
1−z2

1+z2

)
(1 + z2)

(
χ3
n(z) + χ−3

n (z)− χn(z)− χ−1
n (z)

)
πi.

Since χn(yk) = 1, thus

Ik2 = 0. (3.30)

Using (3.22) and (3.30) in (3.7), the Lemma follows. �

Lemma 10. For Ek, k = 1, 2, . . . , n− 1 given by (3.3), we have

Ek =
2π(1− x2

k)3/2

λ2n(xk)
.

Proof. Ek for k = 1, 2, . . . , n− 1 given by (3.3), due to (2.8) and Lemma 2 can be represented as

Ek =
1

(1− x2
k)U ′n(xk)

1∫
−1

(1− x2)2U ′n(x)`2k(x)dx

=
(1− x2

k)

λ2
2n(xk)U ′n(xk)

1∫
−1

(1− x2)U ′n(x) sin2 µ2n(x)

(x− xk)2
dx.

Since

U ′n(x) =
− cosµ2n(x)λ2n(x)

√
1− x2 + x sinµ2n(x)

(1− x2)3/2
,

we have

Ek(x) =
(1− x2

k)

λ2
2n(xk)U ′n(xk)

Ik, (3.31)

where

Ik = Ik1 − Ik2 (3.32)

with

Ik1 =

1∫
−1

x sin3 µ2n(x)√
1− x2(x− xk)2

dx (3.33)

and

Ik2 =

1∫
−1

λ2n(x) sin2 µ2n(x) cosµ2n(x)

(x− xk)2
dx. (3.34)

Using transformation (3.10) and due to (3.11), (3.13) and (3.14), (3.33) can be transformed to

Ik1 =
(1 + yk)2

2

∞∫
−∞

(1− y2) sin3 φ2n(y)

(y2 − y2
k)2

dy

=
(1 + y2

k)2

2
lim

z→yk,=zk>0

∞∫
−∞

(1− y2) sin3 φ2n(y)

(y2 − z2)2
dy. (3.35)

Due to (3.16), (3.35) can be represented as

Ik1 = − (1 + yk)2

16i
lim

z→yk,=zk>0
(Ik11(z)− 3Ik12(z) + 3Ik13(z)− Ik14(z)) , (3.36)
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where

Ik11(z) =

∞∫
−∞

(1− y2)χ3
n(y)

(y2 − z2)2
dy,

Ik12(z) =

∞∫
−∞

(1− y2)χn(y)

(y2 − z2)2
dy,

Ik13(z) =

∞∫
−∞

(1− y2)χ−1
n (y)

(y2 − z2)2
dy

and

Ik14(z) =

∞∫
−∞

(1− y2)χ−3
n (y)

(y2 − z2)2
dy.

Since z0 = i, the integrand of Ik11(z) has only a singular point y = z in the upper half-plane. Thus
by the residue theorem, we have

Ik11(z) = 2πi lim
y→z

d

dy

(1− y2)χ3
n(y)

(y + z)2

which implies

Ik11(z) = 2πi

(
z{3(1− z2)χ2

n(z)χ′n(z)− 2zχ3
n(z)} − (1− z2)χ3

n(z)

4z3

)
.

On simple calculations and using χn(yk) = 1, we get

lim
z→yk,=zk>0

Ik11(z) =
πi

2y3
k

(
3yk(1− y2

k)

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

− (1 + y2
k)

)
. (3.37)

Similarly,

lim
z→yk,=zk>0

Ik14(z) =
πi

2y3
k

(
3yk(1− y2

k)

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

− (1 + y2
k)

)
. (3.38)

Since the integrand of Ik12(z) has only a singular point y = z in the upper half-plane. Thus again,
using the residue theorem, we have

Ik12(z) = 2πi lim
y→z

d

dy

(1− y2)χn(y)

(y + z)2

which gives

Ik12(z) = 2πi

(
z{(1− z2)χ′n(z)− 2zχn(z)} − (1− z2)χn(z)

4z3

)
.

On simple calculations and using χn(yk) = 1, we get

lim
z→yk,=zk>0

Ik12(z) =
πi

2y3
k

(
yk(1− y2

k)

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

− (1 + y2
k)

)
. (3.39)

Similarly,

lim
z→yk,=zk>0

Ik13(z) =
πi

2y3
k

(
yk(1− y2

k)

2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

− (1 + y2
k)

)
(3.40)

Using (3.37), (3.38), (3.39), (3.40) in (3.36), we get

Ik1 = 0. (3.41)
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Now we evaluate Ik2 given by (3.34). Using the transformation (3.10) and due to (3.11), (3.13) and
(3.14), (3.34) can be written as

Ik2 = (1 + y2
k)2

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
sin2 µ2n

(
1−y2

1+y2

)
cosµ2n

(
1−y2

1+y2

)
(y2 − y2

k)2
dy.

Thus by (3.15) and (3.23), we have

Ik2 = (1 + y2
k)2 lim

z→yk,=zk>0

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
sin2 φ2n(y) cosφ2n(y)

(y2 − z2)2
dy.

Using (3.24) in the above equation, we get

Ik2 = − (1 + y2
k)2

8
lim

z→yk,=zk>0
(Ik21(z) + Ik22(z)− Ik23(z)− Ik24(z)) , (3.42)

where

Ik21(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(y2 − z2)2
dy,

Ik22(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ−3
n (y)

(y2 − z2)2
dy,

Ik23(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χn(y)

(y2 − z2)2
dy

and

Ik24(z) =

∞∫
−∞

yλ2n

(
1−y2

1+y2

)
χ−1
n (y)

(y2 − z2)2
dy.

Since z0 = i, the integrand of Ik21(z) has only a singular point y = z in the upper half-plane. Thus
by the residue theorem, we have

Ik21(z) =2πi lim
y→z

d

dy

yλ2n

(
1−y2

1+y2

)
χ3
n(y)

(y + z)2

=
πi

2z

(
3λ2n

(
1− z2

1 + z2

)
χ2
n(z)χ′n(z) +

(
λ2n

(
1− y2

1 + y2

))′
z

χ3
n(z)

)
.

On simple calculations and using χn(yk) = 1, we get

lim
z→yk,=zk>0

Ik21(z) =
πi

2yk

(
3λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

+

(
λ2n

(
1− y2

1 + y2

))′
yk

)
. (3.43)

Similarly,

lim
z→yk,=zk>0

Ik22(z) =
πi

2yk

(
3λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

+

(
λ2n

(
1− y2

1 + y2

))′
yk

)
. (3.44)
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The integrand of Ik23(z) has only a singular point y = z in the upper half-plane. Thus by the residue
theorem, we have

Ik23(z) =2πi lim
y→z

d

dy

yλ2n

(
1−y2

1+y2

)
χn(y)

(y + z)2

=
πi

2z

(
λ2n

(
1− z2

1 + z2

)
χ′n(z) +

(
λ2n

(
1− y2

1 + y2

))′
z

χn(z)

)
which on simple calculations and using χn(yk) = 1, gives

lim
z→yk,=zk>0

Ik23(z) =
πi

2yk

(
λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

+

(
λ2n

(
1− y2

1 + y2

))′
yk

)
(3.45)

lim
z→yk,=zk>0

Ik24(z) =
πi

2yk

(
λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

+

(
λ2n

(
1− y2

1 + y2

))′
yk

)
. (3.46)

Using (3.43), (3.44), (3.45) and (3.46) in (3.42), we get

Ik2 = − (1 + y2
k)2

4yk
πi

(
λ2n

(
1− y2

k

1 + y2
k

) 2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

)
.

We know that
2n−1∑
j=0

zj − z̄j
(yk − zj)(yk − z̄j)

= −4λ2n(xk)

i(1 + y2
k)
,

hence

Ik2 =
2πλ2

2n(xk)√
1− x2

k

. (3.47)

Putting the values of Ik1 and Ik2 from (3.41) and (3.47), respectively, in (3.32), we get

Ik = −2πλ2
2n(xk)√

1− x2
k

.

Substituting this value of Ik in (3.31), the Lemma follows. �

Lemma 11. For E0 defined by (3.3) for k = 0, we have

E0 = 0.

Proof. For k = 0, (3.3) can be represented as

E0 =
1

2U2
n(1)U ′n(1)

I0, (3.48)

where

I0 =

1∫
−1

(1 + x)(1− x2)U2
n(x)U ′n(x)dx

=

1∫
−1

(1 + x) sin2 µ2n(x)

(
x sinµ2n(x)− cosµ2n(x)λ2n(x)

√
1− x2

(1− x2)3/2

)
dx,
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I0 = I01 − I02, (3.49)

where

I01 =

1∫
−1

√
1 + x

1− x

(
x sin3 µ2n(x)

(1− x2)

)
dx (3.50)

and

I02 =

1∫
−1

√
1 + x

1− x

(
sin2 µ2n(x) cosµ2n(x)λ2n(x)√

1− x2

)
dx. (3.51)

First, we evaluate I01. Using transformations (3.10) and (3.11), (3.12) and (3.14) in (3.50), we have

I01 =
1

2

∞∫
−∞

1

y2

(
1− y2

1 + y2

)
sin3 φ2n(y)dy,

and due to (3.15), I1 can be represented as

I01 = − 1

16i

∞∫
−∞

(
I011 − I012 − 3I013 + 3I014

)
, (3.52)

where

I011 =

∞∫
−∞

(1− y2)χ3
n(y)

y2(1 + y2)
dy, (3.53)

I012 =

∞∫
−∞

(1− y2)χ−3
n (y)

y2(1 + y2)
dy,

I013 =

∞∫
−∞

(1− y2)χn(y)

y2(1 + y2)
dy (3.54)

and

I014 =

∞∫
−∞

(1− y2)χ−1
n (y)

y2(1 + y2)
dy.

Since z0 = i, the integrand of I011, given by (3.53), has only a singular point y = 0 in the upper
half-plane. Thus by the residue theorem, we have

I011 = 2πi lim
y→0

d

dy

1− y2

1 + y2
χ3
n(y) = 6πi

2n−1∑
j=0

(
1

z̄j
− 1

zj

)
= −24πλ2n(1). (3.55)

Similarly,

I012 = −24πλ2n(1). (3.56)

Again, using the residue theorem for I013, given by (3.54), we get

I013 = 2πi lim
y→0

d

dy

1− y2

1 + y2
χn(y) = 2πi

2n−1∑
j=0

(
1

z̄j
− 1

zj

)
= −8πλ2n(1). (3.57)

and, similarly,

I014 = −8πλ2n(1). (3.58)

Thus using (3.55), (3.56), (3.57) and (3.58) in (3.52), we get

I01 = 0. (3.59)
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Now, for I02, given by (3.51), due to (3.10)–(3.12) and (3.14), on a simple calculation, we have

I02 =

∞∫
−∞

sin2 φ2n(y) cosφ2n(y)λ2n

(
1−y2

1+y2

)
y(1 + y2)

dy

which, due to (3.24), can be represented as

I02 = −1

8

(
I021 + I022 − I023 − I024

)
, (3.60)

where

I021 =

∞∫
−∞

λ2n

(
1−y2

1+y2

)
χ3
n(y)

y(1 + y2)
dy,

I022 =

∞∫
−∞

λ2n

(
1−y2

1+y2

)
χ−3
n (y)

y(1 + y2)
dy,

I023 =

∞∫
−∞

λ2n

(
1−y2

1+y2

)
χn(y)

y(1 + y2)
dy

and

I024 =

∞∫
−∞

λ2n

(
1−y2

1+y2

)
χ−1
n (y)

y(1 + y2)
dy.

Now, since for I021, the only singularity on the upper half plane is y = 0, hence by residue theorem,
we have

I021 = 2πi lim
y→0

λ2n

(
1−y2

1+y2

)
χ3
n(y)

(1 + y2)
= 2πiλ2n(1). (3.61)

Similarly,

I022 = 2πiλ2n(1). (3.62)

Again, for I023, by the residue theorem, we have

I023 = 2πi lim
y→0

λ2n

(
1−y2

1+y2

)
χn(y)

(1 + y2)
= 2πiλ2n(1) (3.63)

and

I024 = 2πiλ2n(1). (3.64)

Substituting the values of (3.61), (3.62), (3.63) and (3.64) in (3.60), we get

I02 = 0. (3.65)

Putting the value of I01 and I02 from (3.59) and (3.65), respectively, in (3.49), we get I0 = 0 which,
due to (3.48), implies

E0 = 0.

�

Lemma 12. For En defined by (3.3) for k = n, we have

En = 0.
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Proof. For k = n, (3.3) can be represented as

En(x) =
1

2U2
n(−1)U ′n(−1)

In,

where

In =

1∫
−1

(1− x)(1− x2)U2
n(x)U ′n(x)dx

=

1∫
−1

√
1− x
1 + x

(
x sin3 µ2n(x)

(1− x2)
− sin2 µ2n(x) cosµ2n(x)λ2n(x)√

1− x2

)
dx = In1 − In2.

Following the same steps as in Lemma 11, we get In1 = In2 = 0 which implies that In = 0 and hence
the Lemma follows. �

Lemma 13. For Ck given by (3.5), we have Ck = 0, k = 1, 2, . . . , n− 2.

Proof. Ck given by (3.5), can be represented as

Ck =
1

(1− t2k)U2
n(tk)U ′′n (tk)

Ik,

where

Ik =

1∫
−1

(1− x2)2U2
n(x)U ′n(x)

(x− tk)
dx,

which reduces to

Ik =

1∫
−1

1

(x− tk)

(
x sin3 µ2n(x)√

1− x2
− sin2 µ2n(x) cosµ2n(x)λ2n(x)

)
dx = Ik1 − Ik2,

where

Ik1 =

1∫
−1

x sin3 µ2n(x)

(x− tk)
√

1− x2
dx

and

Ik2 =

1∫
−1

sin2 µ2n(x) cosµ2n(x)λ2n(x)

(x− tk)
dx.

Proceeding as in the above lemmas, it follows that Ik1 = Ik2 = 0 which implies that Ik = 0, from
which the Lemma follows. �

From Lemma 9–13 and (3.2), Theorem 7 follows.

4. Conclusion

Here, a quadrature formula corresponding to the Pál type (0, 1; 0)-interpolation in rational spaces
has been obtained. This study may further be extended to the case of lacunary interpolation in
rational spaces.
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FRACTAL STRUCTURES FROM THE BAND MATRICES FOR MATRIX

ALGORITHMS

RICHARD MEGRELISHVILI1 AND SOFIA SHENGELIA2

Abstract. The aim of the present paper is to construct a set of high order strong matrices for
a key-exchange matrix algorithm on an open channel and to create a high-speed one-way matrix

function. Fractal structures are synthesized from band matrices. Square matrices are considered

over a Galois field of GF (2). Each initial n-th order square matrix is primitive (the degree value is
equal to 2n − 1) or its degree value is a Mersenne number 2j − 1, when j < n (except n = 18).

1. Introduction

In cryptographic algorithms, the main task is the question of reliability of the algorithm. In matrix
algorithms, the process of encryption and decryption is implemented by matrices, and for the algorithm
to be reliable it is necessary to create powerful high-order matrix sets.

Each cryptographic system uses its own procedure, types of keys, methods of their distribution and
coding algorithms. The essence of the asymmetric cryptography consists in a specific character of a
one-way function. The one-way function is a y = f(x) function; its value can be obtain by computer
calculations in case x is known, but it is impossible to get the value of x argument by means of the
function f(x) and computer calculations at a real time. This fact is clearly illustrated by an example
of the Diffie–Hellman [2] one-way function ax = y(mod p).

2. The Matrix Function

To implement a one-way matrix function, we have the n × n matrix A. For simplicity of the
statement, the matrices are considered over the GF (2) field. Matrix A presents a secret parameter

selected randomly from a group of high powered Â; thus, A ∈ Â, v ∈ Vn, where Vn is a vector space
over GF (2) (v is an open parameter). Then the one-way matrix function looks as

vA = u, (2.1)

where both v ∈ Vn and u are open parameters.
It should be mentioned that if for Diffie–Hellman’s algorithm the one-way function

ax = y mod p (2.2)

is based on the problem of a discrete logarithm, then the problem for that function appears to be
the recursion inside the matrix [4, 7]. In a cryptographic algorithm, the use is made of a one-way
function for solving the authentication and verification tasks for a certain period of time. We also
use this function for solving the problem of stability of our matrix one-way function for a certain
period of time. Towards this end, using the exponential one-way function, the key exchange takes
place through the open channel. The result of this key exchange is the secret parameter k = v. At
the same time period, the key exchange or other operations are performed with our algorithm. In this
case, parameters v and A in (2.1) are secret and only parameter u is open [3].

In authors’ opinion, after reading the next section there should be no doubt both about the high-
speed of the matrix one-way function and about that of the key exchange algorithm on an open
channel.

2020 Mathematics Subject Classification. 15B99.
Key words and phrases. Fractal Structures; Band Matrices; Matrix Algorithms.
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The function (2.1) fundamentally differs from the function (2.2) by the fact that for the function
(2.1) is used the operation of multiplication, whereas the function (2.2) is exponential.

3. The Matrix Algorithm

The Matrix Algorithm about Key-Exchange on an Open Channel is Implemented in the Following
Way:
• Mariami chooses (randomly) an n× n matrix A1 ∈ Â and sends to George the following vector:

u1 = vA1;

• George chooses (randomly) an n× n matrix A2 ∈ Â and sends to Mariami the vector

u2 = vA2,

where n is a size of vector u (open), A1 and A2 are (secret) matrix keys.
• Mariami computes

k1 = u2A1;

• George computes

k2 = u1A2,

where, k1 and k2 are secret keys, k1 = k2 = k, because k = vA1A2 = vA2A1.
The one-way matrix function and a new matrix algorithm for the corresponding open channel key

exchange considered in this paper have been first obtained and studied by the first author.
As is shown above, for the implementation of the key-exchange algorithm we need high power

multiple n×n matrices which are, at the same time, commutative. A number commutation in Diffie–
Hellman’s algorithm is implemented naturally, in accordance with the construction of the commutative
multiplicity of Â for each value of dimension n, while for our algorithm this task is difficult.

In the given work, we present an effective and constructive solution. The characteristics of effective
and constructive methods for construction of matrices are included in the following statements:
• For each n > 1 dimension, the initial n× n matrix should generate either a maximum number of

matrices (2n − 1), or this number should be the number of Mersenne, meaning 2j − 1, where j < n.
• The method of synthesis of any n × n matrix of any dimension, should be the same (where n

is probably implementable maximal dimension of the initial matrices). Hence the technology of the
construction for initial matrices should be implementable and similar to any given dimension of n.

For simplicity, the n-th order square matrices and other structures are considered in the Galois
GF(2) field. Obviously, of great importance is generation of a high power matrix set for the functioning
of a new key exchange function. The synthesis of such matrix sets and their structural study attract
particular attention [5, 6].

The new algorithm is an original cryptographic approach, especially, when its quickness is taken
into account. However, at the same time, this algorithm needs analyzing in regard to its cracking and
generating a required set of high order matrices. The study, analysis and software implementation of
such issues is also the main goal.

4. Software Implementation

The object of our study is a matrix, finding such a structure, whose existence makes the matrix
able to generate a multiplication cyclic group of matrices with a maximum value or a value equal to
the Mersenne prime degree.

In order to find out such structures it is necessary to verify the matrices of different orders regarding
whether this scheme gives such a multiplication group of matrices that is generated by any matrix
constructed by this structure and its value of degree is maximal, i.e., whether this matrix is primitive
(a matrix is primitive in case it generates a group with a maximum value of the degree). For this
purpose a method for natural increase of matrix order has been introduced, i.e., a method for natural
increase of the n order.

Several types of nondegenerate initial matrixes are experimentally tested. As a result, a general
structure is obtained, the matrices generating multiplication groups, sometimes with maximum degree
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value and sometimes with a degree value equal to Mersenne prime are alo abtained. Only in a single
case, (except for n = 18) [8–10], the matrix degree value is not a Mersenne prime and it is a subject
to an individual structural study. The paper also deals with new original fractal matrix structures,
banded matrices, etc.

The original matrix algorithm described in the paper is in some degree a similar model to the
Diffie–Hellman open channel key exchange algorithm. When the Diffie–Hellman algorithm stability
depends on the highest values of p simple number (i.e., stability depending on a real scale of time),
the one-way matrix function stability also depends on the high value of the A set.

The research is carried out for the matrices that are free from the internal recursion. A high order
matrix set consisting of primitive matrices is constructed (see Figures 1, 2, 3).

Matrix of the first Fractal structure:

n = 3, A =

1 0 1
0 0 1
1 1 0

 ; n = 4, A =


1 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0

 ; n = 5, A =


1 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

 .

Matrix of the second Fractal structure:

n = 3, A =

0 1 1
1 1 0
1 0 0

 ; n = 4, A =


0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 0

 ; n = 5, A =


0 0 0 1 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0
1 0 0 0 0

 .

Figure 1. The fractal structure from the band matrix.

Matrix of the third Fractal structure:

n = 3, A =

0 1 0
1 0 1
0 1 1

 ; n = 4, A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 ; n = 5, A =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 1

 .
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Figure 2. The fractal structure from the band matrix.

Figure 3. The fractal structure from the band matrix.

By using software, the orders of e were calculated for the initial normal n × n matrix structures
and the results are shown in the table below (Table 1).

1. Each initial n order square matrix is primitive (the degree value is equal to 2n− 1) or its degree
value is a Mersenne prime 2j − 1, when j < n (except for n = 18).

2. The corresponding matrices of the pairs (3, 4), (7, 8), (15, 16), (31, 32), (63, 64), (127, 128),
(255, 256) and (511, 512) of values (n, n + 1) are described by the following formulae:

A2r+1−1
2r−1 = E2r−1; A2r+1−1

2r = E2r , where r ≥ 2.

3. It is also noteworthy that nowadays in cryptographic algorithms the 289 probable selection
variants are very difficult even for the latest computers. We have calculated all matrices including the
1000×1000 size matrices. Each initial n order square matrix is primitive and its degree value is equal
to 2n − 1 (Table 2).
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Table 1. The results for calculated orders of e for the initial normal n× n matrices.

Table 2. Higher order matrices.

4. It is noteworthy that these results completely coincide with the results of Ukrainian scientist,
Professor Anatoly Beletsky. Although, as is well known, the initial matrices have completely different
structures, [1] i.e., the structures that are derived from the generalized Gray Codes.
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During the last decades overwhelming necessity has arisen for modern scientific-theoretical and
technological studies in security (reliability) and high-speed performance and their practical use in
asymmetric cryptography systems. The paper considers a new trend in asymmetric cryptography,
namely, a single-sided matrix function and the issues of generation of matrix sets, necessary for its
fulfilment, and also the problems of new fractal matrix structure synthesis. The above circumstances
provide actuality of the issue and its immense theoretical and practical value.
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A COMPARISON BETWEEN BERNOULLI-COLLOCATION METHOD AND

HERMITE–GALERKIN METHOD FOR SOLVING TWO-DIMENSIONAL MIXED

VOLTERRA–FREDHOLM SINGULAR INTEGRAL EQUATIONS

DOAA SHOKRY MOHAMED AND DINA MOHAMED ABDESSAMI

Abstract. In this paper, a numerical solution of two-dimensional singular integral equations is

proposed. For this, two operative methods are demonstrated, Bernoulli polynomials with collocation

method and Hermite polynomials through Galerkin method which is a useful technique in two-
dimensional integral equations. Various numerical examples are presented to illustrate the efficiency

of these two methods. Maple 17 program will be used to solve the system numerically.

1. Introduction

In the last years, there was a significant importance of multidimensional singular integral equations
(MSIE). Many problems in physical, biological and applied mathematics fields reduce to a singu-
lar integral equation. Such as hydrodynamics, population genetics, elasticity, and others. In 1928,
F. G. Tricomi [20] was the first who proposed an important study concerning (MSIE). He considered
double singular integrals. Recently, many researchers had studied the numerical solutions of singular
integral equations in several formulas. For instance, [2, 7] involved solutions of the nonlinear singular
integral equations, whereas in [6,15] with Hilbert kernel. J. Obaiyst et al. [11] deal with hypersingular
integral equations. E. Hashim [5], V. A. Zisis and E. G. Ladopoulus [21] presented solutions for the
singularity of linear integral equations. S. Banerjea et al. [3] worked on a weak singular kernel with a
water wave problem as an application. There are different methods for solving two-dimensional integral
equations (see [4, 8–10] and others). M. Rahman [14] discussed the solution of linear integral equa-
tions in one-dimension using the Hermite–Galerkin method. In our paper, we work on the solution of
two-dimensional singular mixed Volterra–Fredholm integral equations using the Bernoulli-collocation
method and Hermite–Galerkin method. One can observe that the Hermite–Galerkin method is a novel
technique in the two-dimensional integral equations.

The aim of this paper is to convert the singular integral equation to a non-singular form by repeal-
ing the singularity and then converting it into a system of algebraic equations based on orthogonal
polynomials.

The next sections are arranged as follows; some definitions and properties of Bernoulli and Hermite
polynomials are introduced in Section 2. The description of the collocation and Galerkin methods
with two-dimensional singular mixed Volterra–Fredholm integral equations are explained in Section 3.
Section 4 includes some numerical examples that illustrate the above-mentioned methods. Finally,
Section 5 gives the conclusions.

We list here some of the most important advantages of the proposed methods.
• The proposed methods are easy to implement, and it is a powerful mathematical tool to obtain the
numerical solution of various kind of problems with little additional works.
• By using these methods, the problem under consideration is transformed into a system of algebraic
equations which can be solved via a suitable numerical method.
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2. Some Definitions and Properties

2.1. Bernoulli Polynomials. In many topics of mathematics, Bernoulli polynomials have a vital
role, e.g., in the theory of numbers [13] and in complex differential equations [19].

The Bernoulli polynomials are expressed by the formula [19]

Bn(x) =

n∑
k=0

(
n

k

)
xn−k Bk, (2.1)

where
(
n
k

)
= n!

k! (n−k)! and Bn(x) is the Bernoulli polynomial of nth degree.

In a special case, if x = 0 in (2.1), then Bn(0) = Bn are called Bernoulli numbers, and B0 = 1.
The Bernoulli numbers can be calculated as follows:

n∑
k=0

(
n+ 1

k

)
Bk(x) = (1− n) xn , n = 0, 1, 2, . . . .

The first few Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3

2
x2 +

1

2
x,

B4(x) = x4 − 2x3 + x2 − 1

30
, B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x,

B6(x) = x6 − 3x5 +
5

2
x4 +

1

2
x2 − 1

42
.

2.2. Hermite Polynomials [12]. The differential equation y′′ − 2xy′ + 2λy = 0 has polynomial
solutions called Hermite polynomials which were introduced for the first time by Pierre–Simon Laplace
in 1810. Charles Hermite defined the multidimensional polynomials. Hermite polynomials are a
mutually orthogonal function with weight functions, which can be determined easily by using the
Rodrigues formula

Hn(x) = (−1)n ex
2 dn

dxn
(e−x

2

) , n = 0, 1, 2, . . . .

The first few Hermite polynomials are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 160x3 + 120x, H6(x) = 64x6 − 480x4 + 720x2 − 120.

Hermite polynomials have the generating function

w(x, t) = e2xt−x
2

=

∞∑
n=0

Hn(x)

n!
tn, |t| <∞.

3. The Description of Methods

We are concerned with solving the two-dimensional singular mixed Volterra–Fredholm integral
equations which have the form

u(x, t) = f(x, t) +

t∫
c

b∫
a

(t− z)α−1 φ(x, y) u(y, z)dydz, (3.1)

where 0 < α < 1 and (x, t) ∈ [a, b] × [c, d], where u(x, t) is an unknown function, f(x, t) is a given
function defined on [a, b] × [c, d] and k(x, t, y, z) = (t − z)α−1 φ(x, y) is the singular kernel satisfying
the discontinuity condition in the domain ([a, b]× [c, d])2.
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3.1. Bernoulli-Collocation method [16,19]. This method is based on approximating the unknown
function u(x, t) in (3.1) on the form

u(x, t) =

∞∑
i=0

∞∑
j=0

aij Bi(x) Bj(t), (3.2)

where Bi(x), Bj(t) are Bernoulli polynomials and aij are unknown coefficients to be determined in
order to obtain the approximate solution, in the following steps:

Curtailing the infinite series (3.2), we get

ũ(x, t) '
N∑
i=0

N∑
j=0

aij Bi(x) Bj(t), (3.3)

Substituting from (3.3) into (3.1) we get

N∑
i=0

N∑
j=0

aij [Bi(x) Bj(t)−
t∫
c

b∫
a

(t− z)α−1 φ(x, y) Bi(y) Bj(z)dydz] = f(x, t). (3.4)

Using the collocation points xp, tq of Bernoulli polynomials given by

xp = a+
b− a
N

p , tq = c+
d− c
N

q, (3.5)

for p, q = 0, 1, 2, . . . , N and xp ∈ [a, b], tq ∈ [c, d],
equation (3.4) would be written as

N∑
i=0

N∑
j=0

aij [Bi(xp) Bj(tq)−
tq∫
c

b∫
a

(tq − z)α−1 φ(xp, y) Bi(y) Bj(z)dydz] = f(xp, tq), 0 < α < 1. (3.6)

Substituting collocation points (3.5) into (3.6), we get a system of algebraic equations which contains
(N + 1)2 of aij unknown coefficients. Solving this system to obtain aij values, we get an approximate
solution ũ(x, t).

The accuracy of this method is given by the formula (see [18])

‖u(x, t)− ũ(x, t)‖ ≤ γ λ C N(2π)−N ,

where

λ = max
0≤x≤b,c≤t≤d

| k(x, t, y, z) |,

λ is a positive constant, independent of N , and a bound for the partial derivative of u(x, t), γ is a
positive constant and C is the coefficient matrix.

3.2. The Hermite–Galerkin method. Assume that u(x, t) is an approximate solution of (3.1). We
use Hermite polynomials through the Galerkin method which has the form

ũ(x, t) '
N∑
i=0

N∑
j=0

ci,j Hi(x) Hj(t), (3.7)

where Hi(x), Hj(t) are Hermite polynomials and ci,j are unknown Hermite coefficients to be deter-
mined in the following steps.

Substituting from (3.7) into (3.1), we get

N∑
i=0

N∑
j=0

ci,j [Hi(x) Hj(t)−
t∫
c

b∫
a

(t− z)α−1 φ(x, y) Hi(y) Hj(z)dydz] = f(x, t), (3.8)

where 0 < α < 1, (x, t) ∈ [a, b]× [c, d].
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Multiplying both sides in equation (3.8) by Hp(x) Hq(t), then integrate with respect to x and y
from a to b and from c to d, respectively, such that p and q = 0, 1, 2, . . . , N. Hence, equation (3.8)
becomes of the form

N∑
i=0

N∑
j=0

ci,j

d∫
c

b∫
a

Gij(x, t) Hp(x) Hq(t) dxdt = Fpq, (3.9)

where

Fpq =

d∫
c

b∫
a

f(x, t) Hp(x) Hq(t) dxdt,

Gij(x, t) = Hi(x) Hj(t)−
t∫
c

b∫
a

(t− z)α−1 φ(x, y) Hi(y) Hj(z)dydz.

Substituting p, q = 0, 1, . . . , N into (3.9), we get a system of (N+1)2 non-singular algebraic equations.
By solving this system, we get Hermite coefficients ci,j .

The accuracy of this method depends on reducing the error using low-degree interpolation poly-
nomials without increasing time of calculation (see [17]). The error function is expressed by the
formula

E(x, t) = |u(x, t)− ũ(x, t|,
for xl ∈ [a, b] and tm ∈ [c, d], the error function can be written as follows:

E(xl, tm) = |u(xl, tm)− ũ(xl, tm| ∼= 0,

or E(xl, tm) ≤ 10−ki , (ki) is a positive integer,
if max(10−ki) = 10−k, k is a positive integer.

4. Numerical Examples

In this section some numerical examples of two-dimensional singular mixed Volterra–Fredholm
integral equations are presented to illustrate the previous methods.

Example 1. Consider the singular VFIE [1]

u(x, t) = x2t2 − 25

156
t
13
5 +

t∫
0

1∫
0

y2(t− z)−0.4 u(y, z)dydz, (4.1)

where x, t ∈ [0, 1] with the exact solution u(x, t) = x2t2.

In Table 1, we give the absolute error of equation (4.1) by the Bernoulli-collocation (BC) and
Hermite–Galerkin (HG) methods for different values of x, t and N = 2, 4, 6 according to Section 3.
Figures 1, 2, and 3 clarify the exact solution of (4.1), the absolute error for N = 6 by BC and HG
methods, respectively. Moreover, these methods are compared to the Toeplitz matrix method [1] that
given for N = 40.

Example 2. Consider the singular VFIE [1]

u(x, t) = x2t2 − 125

336
x2t

12
5 +

t∫
0

1∫
0

x2 y(t− z)−0.6 u(y, z)dydz, (4.2)

where x, t ∈ [0, 1] with the exact solution u(x, t) = x2t2.

The absolute error of equation (4.2) for different values of x, t and N = 2, 4, 6 by BC and HG
methods are obtained in Table 2. We plot Figures 4 and 5 to show the absolute error with N = 6
by our methods. Furthermore, these examples compared to Toeplitz matrix method [1] are solved for
N = 60.
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Figure 1. Exact solution of Examples 1 and 2.

Figure 2. Absolute error of Example 1, N = 6 by BC method.



264 D. SH. MOHAMED AND D. M. ABDESSAMI

Figure 3. Absolute error of Example 1, N = 6 by HG method.

Figure 4. Absolute error of Example 2, N = 6 by BC method.
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Figure 5. Absolute error of Example 2, N = 6 by HG method.

Table 1. Absolute Error of Example 1 by BC and HG methods for N = 2, 4, 6.

n = 2 n = 4 n = 6
(x, y) BC method HG method BC method HG method BC method HG method

(0, 0) 1.2× 10−10 1.15× 10−8 1.0× 10−10 8.6399× 10−6 1× 10−10 3.1208× 10−5

(0.1, 0.1) 1.2× 10−10 3.6077× 10−9 6.970× 10−11 6.7453× 10−7 3.294× 10−11 2.9815× 10−7

(0.2, 0.2) 1.2× 10−10 4.545× 10−10 8.882× 10−11 1.8246× 10−6 1.255× 10−10 2.2109× 10−6

(0.3, 0.3) 1.2× 10−10 7.659× 10−12 1.388× 10−10 1.8611× 10−7 1.774× 10−10 1.1138× 10−5

(0.4, 0.4) 1.2× 10−10 7.046× 10−10 2.048× 10−10 5.9285× 10−7 2.531× 10−10 9.7149× 10−6

(0.5, 0.5) 1.2× 10−10 1.4533× 10−9 2.702× 10−10 1.6656× 10−6 3.322× 10−10 1.8397× 10−6

(0.6, 0.6) 1.2× 10−10 1.6322× 10−9 3.480× 10−10 8.6798× 10−7 4.016× 10−10 5.3769× 10−6

(0.7, 0.7) 1.2× 10−10 1.0899× 10−9 4.788× 10−10 6.5042× 10−8 5.385× 10−10 1.6465× 10−5

(0.8, 0.8) 1.2× 10−10 1.455× 10−10 6.838× 10−10 1.2693× 10−6 8.329× 10−10 1.0652× 10−5

(0.9, 0.9) 1.2× 10−10 4.114× 10−10 9.297× 10−10 6.7722× 10−7 1.0599× 10−9 1.2718× 10−5

(1, 1) 1.2× 10−10 6.791× 10−10 1.2191× 10−9 6.2889× 10−6 1.0661× 10−9 3.9371× 10−5
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Table 2. Absolute Error of Example 2 by BC and HG methods for N = 2, 4, 6.

n = 2 n = 4 n = 6

(x, y) BC method HG method BC method HG method BC method HG method

(0, 0) 8.10× 10−11 1.24× 10−8 1.100× 10−10 4.6954× 10−6 2× 10−10 1.0264× 10−4

(0.1, 0.1) 6.9× 10−11 2.9013× 10−9 6.996× 10−11 2.3239× 10−8 9.8772× 10−11 1.7232× 10−5

(0.2, 0.2) 5.6× 10−11 4.559× 10−11 1.181× 10−10 68951× 10−7 1.8759× 10−10 1.1683× 10−5

(0.3, 0.3) 4.1× 10−11 4.518× 10−10 2.444× 10−10 3.1453× 10−7 1.5683× 10−10 7.8709× 10−6

(0.4, 0.4) 2.4× 10−11 1.6951× 10−9 3.745× 10−10 1.5990× 10−7 1.3114× 10−10 9.7149× 10−6

(0.5, 0.5) 5× 10−12 2.3067× 10−9 5.165× 10−10 5.5695× 10−8 4.0122× 10−12 1.6494× 10−5

(0.6, 0.6) 1.6× 10−11 1.7741× 10−9 7.210× 10−10 2.9392× 10−7 4.6349× 10−11 9.1906× 10−6

(0.7, 0.7) 3.9× 10−11 5.408× 10−10 1.0063× 10−9 8.5861× 10−8 6.43557× 10−11 1.9329× 10−6

(0.8, 0.8) 6.4× 10−11 6.763× 10−12 1.3374× 10−9 1.2693× 10−7 1.73078.× 10−10 4.1436× 10−6

(0.9, 0.9) 9.1× 10−11 2.5278× 10−9 1.6814× 10−9 6.5965× 10−8 5.42449× 10−10 4.2443× 10−6

(1, 1) 1.2× 10−10 1.1416× 10−8 2.0952× 10−9 2.6867× 10−6 7.8985× 10−10 6.3423× 10−5

5. Conclusions and Discussions

In this paper, two methods are presented to solve the two-dimensional singular mixed Volterra–
Fredholm integral equations by the results of the given two examples we compare between the two
methods and establish the following deductions

1. The two methods are better and more effective than Toeplitz matrix method [1], numerically.
2. The Bernoulli-collocation method is more effective than the Hermite–Galerkin method in appli-

cation.
3. The proposed computational methods could be further applied to the non-linear Volterra–

Fredholm integral equations.
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ON AN ABSTRACT FORMULATION OF A THEOREM OF SIERPIŃSKI

DEBASISH SEN1 AND SANJIB BASU2

Abstract. In our earlier paper, we gave an abstract formulation of a theorem of Sierpiński in

uncountable commutative groups. In this paper, we prove a result which generalizes the earlier
formulation.

1. Introduction

Sierpiński [9] in one of his classical papers proved that there exist two Lebesgue measure zero sets
in R whose algebraic sum is nonmeasurable. In establishing this result, he used the Hamel basis
and Steinhaus famous theorem on a distance set. Several generalizations of Sierpiński’s theorem are
available in the literature. Kharazishvili [7] proved that for every σ-ideal I in R which is not closed
with respect to the algebraic sum, and for every σ-algebra S(⊇ I) for which the quotient algebra
satisfies the countable chain condition, there exist X, Y ∈ I such that X + Y /∈ S. Now, instead of
the real line R, if we choose a commutative group G and any non-zero, σ-finite, complete, G-invariant
(or, G-quasi-invariant) measure µ, then an analogue of Sierpiński’s theorem can be established with
respect to some extension of µ. In fact, it was shown by Kharazishvili [10] that for every uncountable
commutative group G and for any σ-finite, left G-invariant (or, G-quasi-invariant) measure µ on G,
there exists a left G-invariant (or, G-quasi-invariant) complete measure µ′ extending µ and two sets
A,B ∈ I(µ′) (the σ-ideal of µ′-measure zero sets) such that A+B /∈ dom(µ′). In [1], the authors gave
an abstract and generalized formulation of Sierpiński’s theorem in uncountable commutative groups
which do not involve any use of measure.

Most of the notations, definitions and results of this paper are taken from [1] (see also [2, 3]).
Throughout the paper, we identify every infinite cardinal with the least ordinal representing it as
card(E) for the cardinality of any set E, and use the symbols such as ξ, ρ, α, k etc. for any arbitrary

infinite cardinal k and k
+

for the successor of k. Further, given an infinite group G and a set A ⊆ G,
we denote by gA (g ∈ G) the set {gx : x ∈ A} and call a class C of subsets of G as G-invariant if
gA ∈ C for every g ∈ G and A ∈ C.

Definition 1.1. A pair (Σ, I) consisting of two non-empty classes of subsets of G is called a G-
invariant, k-additive measurable structure on G if:

(i) Σ is an algebra and I (⊆ Σ) is a proper ideal in G;
(ii) both Σ and I are k-additive. This means that the both classes Σ and I are closed with respect

to the union of at most k number of sets;
(iii) Σ and I are G-invariant.

A k-additive algebra Σ is diffused if {x} ∈ Σ for every x ∈ G and a k-additive measurable structure

(Σ, I) is called k
+

-saturated if the cardinality of any arbitrary collection of mutually disjoint sets from
Σ \ I is atmost k.

In the sixtieth of the past century, Riecan and Neubrunn developed the notion of small systems and
used the same to give abstract formulations of several well-known theorems in classical measure and
integration (see [12–14], etc.). Small systems have been used by several other authors in the subsequent
periods [5, 6, 11,15]. The following Definition introduces a modified and generalized version.
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Definition 1.2. For any infinite cardinal k, a transfinite k-sequence {Nα}α<k of nonempty classes of
sets in G is called a G-invariant, k-small system on G if:

(i) ∅ ∈ Nα for all α < k;
(ii) each Nα is a G-invariant class;
(iii) E ∈ Nα and F ⊆ E implies F ∈ Nα;

(iv) E ∈ Nα and F ∈
⋂
α<k

Nα implies E ∪ F ∈ Nα;

(v) for any α < k, there exists α∗ > α such that for any one-to-one correspondence β → N
β

with

β > α∗,
⋃
β

E
β
∈ Nα whenever E

β
∈ N

β
;

(vi) for any α, β < k, there exists γ > α, β such that N
γ
⊆ N

α
and N

γ
⊆ N

β
.

We further define

Definition 1.3. A G-invariant k-additive algebra S on G is admissible with respect to the k-small
system {Nα}α<k if for every α < k:

(i) S \ Nα 6= ∅ 6= S ∩ Nα;
(ii) Nα has an S-base, i.e., E ∈ Nα is contained in some F ∈ Nα ∩ S;
(iii) S\Nα satisfies the k-chain condition, i.e., the cardinality of any arbitrary collection of mutually

disjoint sets from S \ Nα is at most k.

The above two Definitions have been used by the present authors in some of their recently done

works (see, for example, [1–3]). We set N∞ =
⋂
α<k

Nα. From conditions (ii), (iii) and (v) of Defini-

tion 1.2, it follows that N∞ is a G-invariant, k-additive ideal in G and denote by S̃ the G-invariant

k-additive algebra generated by S and N∞. Every element of S̃ is of the form (X \ Y ) ∪ Z, where

X ∈ S and Y,Z ∈ N∞, and (S̃,N∞) turns out to be a G-invariant, k-additive measurable structure
on G. Moreover, we have the following

Theorem 1.4. If S is admissible with respect to {Nα}α<k , then the G-invariant, k-additive measurable

structure (S̃,N∞) on G is k
+

-saturated.

A proof of the above theorem follows directly from condition (iv) of Definition 1.2 and from condi-
tions (i), (ii) and (iii) of Definition 1.3 or, in short, from the admissibility of S. Based on the above
Definitions and Theorems, some combinatorial properties of sets [9, Ch. 7] and also on the important
representation theorem for infinite commutative groups [9, Appendix 2], the present authors have
proved in [1] the following

Theorem 1.5. Let G be an uncountable commutative group with card(G) = k
+

. Let {Nα}α<k be a G-
invariant, k-small system on G and let S be a diffused, k-additive algebra on G which is also admissible

with respect to {Nα}α<k . Then there exists a subset A of G such that A ∈ N∞, but A+A /∈ S̃.

2. Result

Theorem 1.5 is an abstract formulation of Sierpiński’s theorem given in terms of any diffused, G-
invariant, k-additive measurable structure on a commutative group G to which we have referred to
in the Introduction. In this section we prove a result which extends our previous formulation to the
groups that are not necessarily commutative.

Definition 2.1 ([4]). Let R be an equivalence relation on a set X and E ⊆ X. The saturation of
E in X with respect to the equivalence relation is the union of all equivalence classes of R whose
intersection with E is nonvoid.

In other words, it is
⋃
{C : C ∩ E 6= ∅ and C ∈ X/R}.

It is easy to check that if H is a normal subgroup of any group G, then the saturation of any
set E in G with respect to the equivalence relation generated by the quotient group G/H is the set
HE. If E coincides with its saturation, then it is called saturated. Thus E is saturated if HE = E.
A saturated set is also called H-invariant [8].
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Theorem 2.2. Let G be any uncountable group with card(G) = k
+

. Let {Nα}α<k be a G-invariant,
k-small system on G and S be a G-invariant, k-additive algebra on G which is admissible with respect
to {Nα}α<k . We further assume that G has a normal subgroup H ∈ S such that G/H is commutative

with card(G/H) = k
+

and the saturation of any set E in G with respect to G/H also belongs to S.

Then there exists a subset A of G such that A ∈ N∞ and AA /∈ S̃.

Proof. We write Γ = G/H. By the hypothesis, Γ is commutative. Let f : G → Γ be the canonical
homomorphism. We set S ′ = {Y ⊆ Γ : f−1(Y ) ∈ S} and N ′α = {Y ⊆ Γ : f−1(Y ) ∈ Nα} for any
α < k.

Since S is a G-invariant, k-additive algebra on G and f is a canonical homomorphism, so S ′ is a
Γ-invariant, k-additive algebra on Γ. Also, since H ∈ S, therefore S ′ is diffused.

Condition (i) of Definition 1.2 for {N ′α}α<k is obvious. Let h ∈ Γ and F ∈ N ′α. Then h = f(x)
for every x ∈ gH, where g ∈ G and f−1(F ) ∈ Nα. Since Nα is G-invariant, therefore f−1(hF ) =
xf−1(F ) ∈ Nα. Hence hF ∈ N ′α which proves condition (ii) of Definition 1.2 for {N ′α}α<k . Finally,
from the Definition of N ′α and some simple properties of inverse images of any function, it follows that
conditions (iii)-(vi) of Definition 1.2 also hold for {N ′α}α<k . Thus {N ′α}α<k is a Γ-invariant, k-small
system on Γ.

We shall now show that S ′ is admissible with respect to {N ′α}α<k . Clearly, ∅ ∈ S ′ ∩N ′α for α < k.
Since S is admissible with respect to {Nα}α<k , so by (i) of Definition 1.3, there exists for every α < k,
a set Aα ∈ S\Nα. If Aα is saturated with respect to the equivalence relation generated by the quotient
group G/H, then Aα = f−1(Bα) for some Bα ∈ S ′ \ N ′α. If Aα is not saturated, we replace it by
HAα which is saturated, and choose Bα such that HAα = f−1(Bα). Consequently, Bα ∈ S ′ \ N ′α and
condition (i) of Definition 1.3 is satisfied.

Let F ∈ N ′α and E = f−1(F ). Then E ∈ Nα by (ii) of Definition 1.3 there exists A ∈ S ∩ Nα
such that E ⊆ A. If A is saturated, then A = f−1(B) for some B ∈ S ′ ∩ N ′α and F ⊆ B. If A is not
saturated, we choose the saturation of G \ A, i.e., H(G \ A) with respect to the equivalence relation
generated by the quotient group G/H. But H(G \ A) ∈ S and so, G \ H(G \ A) ∈ S. Moreover,
G \ H(G \ A) is a subset of A. Therefore G \ H(G \ A) ∈ Nα ∩ S. We choose B(⊆ Γ) such that
G \ H(G \ A) = f−1(B). Then F ⊆ B and B ∈ S ′ ∩ N ′α. This shows that N ′α has an S ′-base for
every α < k and condition (ii) of Definition 1.3 is proved. Lastly, any arbitrary collection of mutually
disjoint sets from S ′ \N ′α is at most k which follows directly from the fact that a similar result is true
for the sets from S \Nα. This shows that S ′ \N ′α satisfies the k-chain condition for every α < k which
proves (iii) of Definition 1.3.

Thus we find that S ′ is a Γ-invariant, k-additive algebra on Γ which is diffused and admissible with
respect to the Γ-invariant, k-small system {N ′α}α<k on Γ.

Let N ′∞ =
⋂
α<k

N ′α and S̃ ′ be the Γ-invariant, k-additive algebra generated by S ′ and N ′∞. Thus

(S̃ ′,N ′∞) is a Γ-invariant, k-additive, measurable structure on the quotient group Γ which is k
+

-

saturated. Hence by Theorem 1.5, there exists B ∈ N ′∞ such that BB /∈ S̃ ′. Let A = f−1(B). Then

AA = f−1(B)f−1(B) = f−1(BB). So, AA is saturated. If possible, let AA ∈ S̃. Then AA = E∆P ,
where E ∈ S, P ∈ N∞ and E, P are both saturated. Hence E = f−1(F ), P = f−1(Q), where F ∈ S ′,
Q ∈ N ′∞ and therefore AA = E∆P = f−1(F )∆f−1(Q) = f−1(F∆Q) = f−1(BB). But this implies

that BB ∈ S̃ ′ – a contradiction. �

Remark. In general for Theorem 2.2, G need not be commutative. LetH ′ be a noncommutative group
with card(H ′) = ω (the first infinite cardinal) and A′ be a commutative group with card(A′) = ω1

(the first uncountable cardinal). We set G = H ′ × A′ as the external direct product of H ′ and A′.
Then G is isomorphic with the internal direct product HA, where H = {(h, eA′) : h ∈ H ′} and
A = {(e

H′ , a) : a ∈ A′}. Moreover, G is noncommutative having H as a normal subgroup and G/H=
A is commutative with card(G/H) = ω1.
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(Received 26.05.2018)

1Saptagram Adarsha vidyapith (High), Habra, 24 Parganas (North), W.B. India

2Dept of Mathematics, Bethune College, Kolkata, W.B. India

E-mail address: reachtodebasish@gmail.com

E-mail address: sanjibbasu08@gmail.com



Transactions of A. Razmadze
Mathematical Institute
Vol. 175 (2021), issue 2, 273–278

ON THE ABSOLUTE MATRIX SUMMABILITY FACTORS OF FOURIER

SERIES

ŞEBNEM YILDIZ

Abstract. In this paper, a general theorem on the local property of the
∣∣N̄, pn; δ

∣∣
k

summability of

factored Fourier series, which generalizes some known results has been extended to absolute matrix

summability factors of Fourier series.

1. Introduction

Let
∑
an be a given infinite series with partial sums (sn). Let (pn) be a sequence of positive

numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv

defines the sequence (tn) of the Riesz means or, simply, the (N̄ , pn) mean of the sequence (sn) generated
by the sequence of coefficients (pn) (see [4]).

The series
∑
an is said to be

∣∣N̄ , pn; δ
∣∣
k

summable, where k ≥ 1 and δ ≥ 0, if (see [2])

∞∑
n=1

(
Pn
pn

)δk+k−1

| tn − tn−1 |k<∞.

In the special case, pn = 1 for all n (resp., δ = 0), the
∣∣N̄ , pn; δ

∣∣
k

summability is the same as the

|C, 1; δ|k (resp.,
∣∣N̄ , pn∣∣k) summability (see [1]).

A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n, where
∆2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1 (see [9]).

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)),
where

An(s) =

n∑
v=0

anvsv n = 0, 1, . . . .

The series
∑
an is said to be |A, pn; δ|k summable, where k ≥ 1 and δ ≥ 0, if (see [5])

∞∑
n=1

(
Pn
pn

)δk+k−1

|An(s)−An−1(s)|k <∞.

If we take anv = pv
Pn

, then the |A, pn; δ|k summability is the same as the
∣∣N̄ , pn; δ

∣∣
k

summability. If

we take anv = pv
Pn

and δ = 0, then the |A, pn; δ|k summability reduces to the
∣∣N̄ , pn∣∣k summability.

Also, if we take δ = 0, then the |A, pn; δ|k summability reduces to the |A, pn|k summability (see [6]).

2020 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99, 42A24.
Key words and phrases. Hölder’s inequality; Minkowski’s inequality; Summability factors; Absolute matrix summa-

bility; Infinite series; Fourier series.
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Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv)
as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, . . . (1)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . . . (2)

It should be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. So, we get

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav

and

∆̄An(s) =

n∑
v=0

ânvav.

2. The Known Results

Let f be a periodic function with period 2π, integrable (L) over (−π, π). We may assume that the
constant term of the Fourier series of f is zero, that is,

π∫
−π

f(t)dt = 0,

f(t) ∼
∞∑
n=1

(an cosnt+ bn sinnt) ≡
∞∑
n=1

Cn(t).

In [3], Bor proved the following result dealing with the
∣∣N̄ , pn; δ

∣∣
k

summability factors of Fourier series.

Theorem 2.1 ([3]). Let k ≥ 1 and 0 ≤ δ < 1/k. If (λn) is a convex sequence such that
∑
pnλn is

convergent and

m∑
v=1

(
Pv
pv

)δk
Pv∆λv = O(1) as m→∞,

m∑
v=1

(
Pv
pv

)δk
pvλv = O(1) as m→∞,

∞∑
n=v+1

(
Pn
pn

)δk−1
1

Pn−1
= O

((
Pv
pv

)δk
1

Pv

)
,

then the
∣∣N̄ , pn; δ

∣∣
k

summability of the series
∑
Cn(t)λnPn at a point can be ensured by a local prop-

erty.

In [7], Sulaiman has obtained a result from which a special case improved the result of [3] in the
following form.
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Theorem 2.2 ( [7]). Let k ≥ 1 and 0 ≤ δ < 1/k. Let (ϕn) be a complex sequence. If (|λn|) is
non-increasing such that

∑
pn|λn| is convergent and

m∑
v=1

(
Pv
pv

)δk
pv
P kv
|λv||ϕv|k = O(1) as m→∞, (3)

m∑
v=1

(
Pv
pv

)δ
|∆λv||ϕv| = O(1) as m→∞, (4)

m∑
v=1

(
Pv
pv

)δk
1

pk−1
v+1

|λv+1||∆ϕv|k = O(1) as m→∞, (5)

∞∑
n=v+1

(
Pn
pn

)δk−1
1

Pn−1
= O

((
Pv
pv

)δk
1

Pv

)
,

then the
∣∣N̄ , pn; δ

∣∣
k

summability of the series
∑
Cn(t)λnPn at a point can be ensured by a local prop-

erty.

3. Main Result

The aim of this paper is to generalize Sulaiman’s result in [7] for the |A, pn; δ|k summability method.

Theorem 3.1. Let (ϕn) be a complex sequence. Let k ≥ 1 and 0 ≤ δ < 1/k. Suppose that A = (anv)
is a positive normal matrix such that

an0 = 1, n = 0, 1, . . . , (6)

an−1,v ≥ anv, for n ≥ v + 1, (7)

ann = O

(
pn
Pn

)
.

If (|λn|) is non-increasing such that
∑
pn|λn| is convergent and satisfy conditions (3)–(5) of Theorem

2.2 and the conditions
m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)| = O

((
Pv
pv

)δk
pv
Pv

)
as m→∞, (8)

m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1| = O

((
Pv
pv

)δk)
as m→∞ (9)

are satisfied, then the |A, pn; δ|k summability of the series
∞∑
n=1

Cn(t)λnϕn,

at any point is a local property of f .

Lemma 3.1 ([8]). From conditions (1), (2) and (6), (7), we have

n−1∑
v=1

|∆v(ânv)| ≤ ann,

|ân,v+1| ≤ ann.
Lemma 3.2 ( [7]). If (|λn|) is non-increasing such that

∑
pn|λn| < ∞, then Pn|λn| = O(1), as

n→∞.

Lemma 3.3. Let (ϕn) be a complex sequence. If (sn) is bounded, and all the conditions of Theorem 3.1
are satisfied, then the series

∞∑
n=1

anλnϕn
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is |A, pn; δ|k summable, where k ≥ 1 and 0 ≤ δ < 1/k, and (|λn|) is the same as in Theorem 3.1.

Proof. Let (In) denotes the A-transform of the series
∞∑
n=1

anλnϕn, then

∆̄In =

n∑
v=1

ânvavλvϕv.

Applying Abel’s transformation to this sum, we have

∆̄In =

n−1∑
v=1

∆v(ânvλvϕv)

v∑
r=1

ar + annλnϕn

n∑
v=1

av

=

n−1∑
v=1

∆v(ânvλvϕv)sv + annλnϕnsn

=

n−1∑
v=1

∆(ânv)λvϕvsv +

n−1∑
v=1

∆λvϕvân,v+1sv +

n−1∑
v=1

∆ϕvλv+1ân,v+1sv + annλnϕnsn

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Lemma 3.3, it suffices to show that

∞∑
n=1

(
Pn
pn

)δk+k−1

| In,r |k<∞, for r = 1, 2, 3, 4.

First, applying Hölder’s inequality, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,1 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|∆v(ânv)| |λv||ϕv||sv|
}k

≤
m+1∑
n=2

(
Pn
pn

)δk+k−1 n−1∑
v=1

|∆(ânv)| |sv|k|λv|k|ϕv|k ×
{ n−1∑
v=1

|∆v(ânv)|
}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

{ n−1∑
v=1

|∆v(ânv)||λv|k|ϕv|k
}

= O(1)

m∑
v=1

|λv|k|ϕv|k
m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)|

= O(1)

m∑
v=1

(
Pv
pv

)δk
pv
Pv
|λv|k|ϕv|k

= O(1)

m∑
v=1

(
Pv
pv

)δk
(Pv|λv|)k−1|λv||ϕv|k

pv
P kv

= O(1)

m∑
v=1

(
Pv
pv

)δk
|λv||ϕv|k

pv
P kv

= O(1) as m→∞,

by virtue of the hypotheses of Lemma 3.3 and by using condition (3) of Theorem 2.2, condition (8) of
Theorem 3.1 and also taking into account Lemma 3.1 and Lemma 3.2. Now, using Hölder’s inequality,
we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,2 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|ân,v+1|∆λv||ϕv||sv|
}k



ON THE ABSOLUTE MATRIX SUMMABILITY FACTORS OF FOURIER SERIES 277

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1 n−1∑
v=1

(
pv
Pv

)δk−δ
|ân,v+1||∆λv||ϕv||sv|k×

{ n−1∑
v=1

(
Pv
pv

)δ
|ân,v+1||∆λv||ϕv|

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

n−1∑
v=1

(
pv
Pv

)δk−δ
|ân,v+1||∆λv||ϕv| ×

{ n−1∑
v=1

(
Pv
pv

)δ
|∆λv||ϕv|

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk { n−1∑
v=1

(
pv
Pv

)δk−δ
|ân,v+1||∆λv||ϕv|

}

= O(1)

m∑
v=1

(
pv
Pv

)δk−δ
|∆λv||ϕv|

m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1|

= O(1)

m∑
v=1

(
pv
Pv

)δk−δ (
Pv
pv

)δk
|∆λv||ϕv|

= O(1)

m∑
v=1

(
Pv
pv

)δ
|∆λv||ϕv|

= O(1) m→∞,

by virtue of the hypotheses of Lemma 3.3 and by taking condition (4) of Theorem 2.2 and also
condition (9) of Theorem 3.1. Further, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,3 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|ân,v+1|∆ϕv||λv+1||sv|
}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1 n−1∑
v=1

|∆ϕv|k|ân,v+1|
|λv+1|
pk−1
v+1

×
{ n−1∑
v=1

|ân,v+1||λv+1|pv+1

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

n−1∑
v=1

|∆ϕv|k|ân,v+1|
|λv+1|
pk−1
v+1

×
{ n−1∑
v=1

|λv+1|pv+1

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk n−1∑
v=1

|∆ϕv|k|ân,v+1|
|λv+1|
pk−1
v+1

= O(1)

m∑
v=1

|∆ϕv|k
|λv+1|
pk−1
v+1

m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1|

= O(1)

m∑
v=1

(
Pv
pv

)δk
|∆ϕv|k

|λv+1|
pk−1
v+1

= O(1) m→∞,

by virtue of the hypotheses of Lemma 3.3 and using condition (5) of Theorem 2.2, condition (9) of
Theorem 3.1 and also taking Lemma 3.1 and Lemma 3.2. Finally, by virtue of the hypotheses of
Lemma 3.3 and using condition (3) of Theorem 2.2 and taking Lemma 3.2, we have

m∑
n=1

(
Pn
pn

)δk+k−1

| In,4 |k =

m∑
n=1

(
Pn
pn

)δk+k−1

|annλnϕnsn|k ≤
m∑
n=1

(
Pn
pn

)δk+k−1

aknn|λn|k|ϕn|k|sn|k

= O(1)

m∑
n=1

(
Pn
pn

)δk−1

|λn|k|ϕn|k

= O(1)

m∑
n=1

(
Pn
pn

)δk
pn
P kn
|λn||ϕn|k(Pn|λn|)k−1
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= O(1)

m∑
n=1

(
Pn
pn

)δk
pn
P kn
|λn||ϕn|k = O(1) as m→∞,

which completes the proof of Lemma 3.3. �

Proof of Theorem 3.1. Since the convergence of Fourier series at a point is a local property of its
generating function f , our theorem follows immediately from Lemma 3.3.

4. Conclusions

If we take anv = pv
Pn

in Theorem 3.1, then we have a result of Theorem 2.2. Also, if we take δ = 0

in Theorem 3.1, we have a new result dealing with the |A, pn|k summability of Fourier series.

Acknowledgement

The author wishes her sincerest thanks to the referee for invaluable suggestions for the improvement
of this paper.

References

1. H. Bor, On two summability methods. Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 147–149.

2. H. Bor, On local property of |N, pn; δ|k summability of factored Fourier series. J. Math. Anal. Appl. 179 (1993),

no. 2, 646–649.
3. H. Bor, A note on local property of factored Fourier series. Nonlinear Anal. 64 (2006), no. 3, 513–517.

4. G. H. Hardy, Divergent Series. Oxford, at the Clarendon Press, 1949.
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ASYMPTOTIC ANALYSIS OF COUPLED OSCILLATORS EQUATIONS IN A

NON-UNIFORM PLASMA

GRIGOL GOGOBERIDZE

Abstract. We study a set of coupled oscillators equations describing Alfvén’s linear coupling and
fast magnetosonic waves in a magnetized plasma. Using the methods of asymptotic analysis, we

derive analytical expressions for the transformation coefficient, as well as Liouville–Green asymp-

totic solutions. The obtained results are compared with the mathematically similar Landau–Zener
problem in quantum mechanics.

1. Introduction

The aim of the present paper is to study coupled evolution of linear plasma waves in a shear flow.
This mechanism is expected to be responsible for generation of compressible perturbations in the solar
wind [5].

In a plasma with the uniform background velocity shear U0 = (Ay, 0, 0) equations that describe
coupled evolution of the Alfvén waves (AW) and fast magnetosonic waves (FMW) are governed by
the following coupled oscillators equations [4]:

d2by
dτ2

+
[
1 +K2

y(τ)
]
by = −Ky(τ)Kzbz, (1)

d2bz
dτ2

+
[
1 +K2

z

]
bz = −Ky(τ)Kzby. (2)

Here, by and bz are the Fourier amplitudes of the corresponding magnetic field components, Kz is the
dimensionless wave number Kz = kz/kx, kz and kx are the components of the wave number vector,
Ky(τ) = Ky − Sτ is the dimensionless wave number, S = A/kxVA is a dimensionless shear rate, VA
is the Alfvén speed and τ = VAkxt is a dimensionless time.

The solutions of the characteristic equation of the set of equations (1), (2) are

Ω2
F (τ) = 1 +K2

z +K2
y(τ), Ω2

A = 1. (3)

They can be easily identified as the frequencies of FMW and AW, respectively.
In the next section we present detailed analysis of equations (1), (2). We study the phenomenon

of a mutual transformation of wave modes and derive analytical expression for the transformation
coefficient.

2. Asymptotic Analysis

It is well known from the theory of coupled oscillator systems that if inhomogeneity is weak enough
(in the considered case the condition implies that the normalized shear rate should be small S � ΩA =
1) and the frequencies of the modes are not close to each other (in the case under consideration this
condition of weak coupling implies [4] δ ≡ |Kz|/S1/3 � 1), then the Liouville–Green approximation
[2,6,7] is valid and the asymptotic solutions of equations (1), (2) are given by the following expressions:

Ψ± =
DF,A±√
ΩF,A(τ)

e±i
∫

ΩF,A(τ)dτ ,

2020 Mathematics Subject Classification. 33C10, 34E05.
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where DF,A± are the Liouville–Green amplitudes of the corresponding oscillations determined by the
initial conditions. It is well known [6] that the signs ± correspond to the waves propagating along
and backward with respect to the x-axis, respectively.

If one considers equations (1), (2) in a complex τ -plane, then the Liouville–Green solution is
valid everywhere, except some vicinities of turning points, where ΩF = 0, and the resonant points,
where ΩF = ΩA. If the Liouville–Green approximation is valid, then there is no energy exchange
between FMWs and AWs and the energy densities of the modes satisfy the standard relation EF,A± =
ΩF,AD

2
F,A±. Analysis of equation (3) shows that if S � 1, the turning points are not located close to

the real τ -axis, i.e., physically speaking, in this case the wave reflection is absent [3]. When solving
the equation ΩF = ΩA, one finds that there are two second order resonant points Ky(τ1,2) = ±iKz

(the resonant point τ1 has the order n if (Ω1 − Ω2) ∼ (τ1 − τ)n/2 in the neighborhood of τ1).
As follows from equation (3), the frequencies are closest, i.e., an effective coupling is possible

only in some vicinity at the time moment when Ky(τ) = 0. This means that the Liouville–Green
approximation is always valid far on the left– and right-hand sides of this point. This circumstance
enables to study the wave coupling based on the asymptotic analysis that is usual in the scattering
theory. Assume that at the initial moment of time Ky(0)� 1 and the initial amplitudes of the modes
are DL

F,A. Denote the amplitudes on the right of the resonant area by DR
F,A. If so, the problem

reduces to the derivation of the so-called transformation coefficient TFA that connects the initial and
final amplitudes TFA = (DL

F )2/(DR
A)2. Physically, TFA represents a part of energy of the initial FMW

transformed into the AW energy.
If the condition for the effective coupling δ ≡ |Kz|/S1/3 < 1 is not satisfied, the transformation

coefficient is exponentially small, namely [4],

TFA ≈
π

2
exp

(
−δ

3

3

)
. (4)

Analytical expression for the transformation coefficients can be derived also in the opposite limit
δ � 1. In this case, it can be readily shown that by and bz coincide with the eigenfunctions of FMW
and AW, accurate to the terms of order K2

z . Consequently, the terms on the right-hand sides of
equations (1), (2) represent the coupling terms of the same accuracy. Since Kz � S1/3, the coupling
is weak, and if initially there exists only FMW, one can neglect the feedback of AW to FMW. Then,
using the well-known expressions for the solution of a linear inhomogeneous second-order differential
equation, in the above-considered limit (δ � 1), we obtain

TFA ≈ 22/3δ

∞∫
0

x sin

(
x3

3
− δ2

22/3
x

)
dx.

Note that
∞∫

0

x sin

(
x3

3
− γx

)
dx ≡ π ∂

∂γ
Ai(−γ),

and using the expansion of the Airy function Ai(γ) into power series [1], we finally obtain

TFA ≈
22/3π

31/3Γ
(

1
3

)δ(1−
Γ
(

1
3

)
27/431/3Γ

(
2
3

)δ4

)
. (5)

The results of numerical solution of the initial set of equations (1), (2) (solid line), as well as
analytical expressions (4) (dash-dotted line) and (5) (dashed line) are presented in Figure 1. It shows
that the transformation coefficient reaches its maximal value (T 2

FA)max = 1/2 at δcr that can be found
numerically, or alternatively, by finding the maximum of the analytical expression presented by the
equation (5):

δcr =

(
27/431/3Γ

(
2
3

)
5Γ
(

1
3

) )1/4

. (6)
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Figure 1. The transformation coefficient TFA vs δ. Dash-dotted line and dashed
line represent analytical expressions (4) and (5), respectively. Solid line is obtained
by numerical solution of equations (1), (2).

Formula (6) is in a perfect accordance with the numerically calculated δcr (see Figure 1), despite
the failure of equation (5) at δ ∼ 1. This fact can be explained as follows: the only reason why
equation (5) fails is the neglect of the feedback mentioned above. The feedback changes the value of
the transformation coefficient, but does not affect the value of δcr.

3. Discussion and Conclusions

It is well known (see [2, 7] and references therein) that if in the coupled oscillators system with
eigenfrequencies Ω1,2, in the neighborhood of the real τ -axis there exist only a pair of complex con-
jugated first-order resonant points τ1 and τ2, the transformation coefficient can be derived from the
exact asymptotic formula

T12 = exp

(
−
∣∣∣∣Im

τ1∫
τ0

(Ω1 − Ω2)dτ

∣∣∣∣). (7)

We shall make two remarks about this equation. Firstly, it shows that in the case of the first-
order resonant points only the eigenfrequencies are needed to derive the transformation coefficient.
Secondly, equation (7) is valid in the case of strong wave interactions. For instance, if a complex
conjugate resonant point of the first order tends to the real τ -axis, then T12 tends to unity, i.e., the
energy of one wave mode is entirely transformed into another.

None of these properties remain valid in the case of the second order resonant points. Firstly,
the transformation coefficient is small in the both limiting cases δ � 1 and δ � 1, i.e., when the
resonant points are both close and far from the real τ -axis. Secondly, only the expressions of the
eigenfrequencies are not sufficient for the derivation of the transformation coefficient, the problem
needs deeper analysis. Thirdly, the maximum value of the transformation coefficient is 1/2. This
means that even in the optimal regime, only half of the energy of FMW can be transformed into AW,
and vice versa. It has to be noted that the Landau–Zener theory [6] provides the same maximum
value for the transition probability in the two-level quantum mechanical systems.

The last point we would like to discuss in the present paper is the comparison of our problem
with the theory of quantum transitions in the two-level systems. First of all, note that equations
(1), (2) correspond to the so-called quantum mechanical diabatic representation. On the other hand,
the normal variables that were introduced in [3, 4], correspond to the adiabatic representation. As
in the two-level quantum systems, both representations are useful for derivation of a transformation
coefficient in different limits. One distinction that makes our problem different and generally more
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difficult is that in the area of the effective interaction the ’coupling terms’ (terms on the right-hand
side of equations (1), (2)) cannot be treated as constants. This circumstance does not allow to use
another powerful asymptotic method, the so-called momentum representation [6, 7].
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ON NONMEASURABLE UNIFORM SUBSETS OF THE EUCLIDEAN PLANE

ALEXANDER KHARAZISHVILI

Abstract. It is shown that the cardinality continuum is not measurable in the Ulam sense if and

only if for every nonzero σ-finite diffused measure µ on R2 there is a µ-nonmeasurable uniform
subset of R2. Several related results are also considered.

The main goal of this communication is to discuss briefly uniform subsets of the Euclidean plane
R2 in the context of their nonmeasurability in some generalized sense.

Let l be a straight line in the plane R2 considered as a certain direction in R2.
A set Z ⊂ R2 is called uniform in direction l if any line of R2, parallel to l, meets Z at most at

one point.
A set Z ⊂ R2 is called a graph in direction l if any line of R2, parallel to l, meets Z exactly at one

point.
Accordingly, we say that a set Z ⊂ R2 is uniform in R2 (is a graph in R2) if there exists a line l

in R2 such that Z is uniform (is a graph) in direction l.
There were established interesting properties of uniform subsets of the plane, which are closely

related to the Continuum Hypothesis (CH) and to certain propositions in the plane geometry (see,
e.g., [1–3,8, 9]).

Some other properties of uniform sets in R2 are connected (more or less) with the notion of
measurability. To illustrate the above-said, let us give several examples.

1. Every uniform set is G-negligible, where G denotes the group of all translations of R2 (see [5,6]).
2. There exist uniform sets which are not G-absolutely negligible (see again [5, 6]).
3. For any straight line l in R2, there exists a G-invariant measure µl on R2 which extends the

standard Lebesgue measure λ2 on R2 and is such that all uniform sets in direction l belong to dom(µl)
(it is clear that if Z is uniform in direction l, then µl(Z) = 0).

4. There exists a graph in direction l, which is a Hamel basis of R2. Since every Hamel basis of R2

is G-absolutely negligible (see [4]), one can conclude that there exist G-absolutely negligible graphs
in R2.

5. No finite family of uniform subsets of R2 can be a covering of R2 (see [8]).
Observe that the last fact easily follows from Banach’s classical result stating that there exists a

finitely additive translation invariant measure on R2, which extends λ2 and is defined for all bounded
subsets of R2. Notice also that the analogous fact remains valid for uniform hyper-surfaces in the
multi-dimensional Euclidean spaces.

In the sequel, we need a simple auxiliary proposition.
Let l be any fixed straight line in R2 and let Z ⊂ R2 be uniform in direction l. The following two

assertions are valid:
(a) every subset of Z is uniform in the same direction l;
(b) Z = Z1 ∩ Z2, where Z1 and Z2 are two graphs in the same direction l.

Recall that a measure µ defined on some σ-algebra of subsets of a ground set E is diffused (or
continuous) if all singletons in E belong to dom(µ) and µ vanishes on all of them.

Also, recall that a cardinal number a is measurable in Ulam’s sense if there exists a probability
diffused measure whose domain is the power set of a.

Theorem 1. Let {lj : j ∈ J} be a countably infinite family of pairwise non-parallel directions in R2.
The following two assertions are equivalent:

2020 Mathematics Subject Classification. 28A05, 28D05.
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(1) the cardinality continuum c is not measurable in Ulam’s sense;
(2) for any nonzero σ-finite diffused measure µ on R2, there exist a direction lj and a graph in this

direction, which is nonmeasurable with respect to µ.

The proof of Theorem 1 is essentially based on the profound result of Davies [3].

Remark 1. Let {lk : k ∈ K} be a fixed finite family of pairwise non-parallel directions in R2 and
suppose that for any nonzero σ-finite diffused measure µ on R2 there exist a direction lk and a uniform
set in this direction, which is nonmeasurable with respect to µ. Then, using the result from [1], it can
be shown that c = ωn for some natural number n. So, in this case, c is substantially restricted in its
size and automatically turns out to be nonmeasurable in Ulam’s sense.

Theorem 2. Assume Martin’s Axiom (MA) and let {lj : j ∈ J} be a countably infinite family of
pairwise non-parallel directions in R2.

Then there exists a countable family {Zt : t ∈ T} of sets in the plane R2 such that:
(1) every set Zt is a graph in some direction lj(t), where j(t) ∈ J ;

(2) for any nonzero σ-finite diffused measure µ on R2, at least one set from the family {Zt : t ∈ T}
is nonmeasurable with respect to µ.

The proof of Theorem 2 is again based on the result of Davies [3] and on the fact that under MA
there exists a countable family {Bi : i ∈ I} of subsets of R2, which is absolutely nonmeasurable with
respect to the family of all nonzero σ-finite diffused measures on R2. Actually, the role of {Bi : i ∈ I}
can be played by a countable topological base of some generalized Luzin subset of R2.

Remark 2. Under the assumption that c is not measurable in Ulam’s sense, the problem of generalized
nonmeasurability can be considered for other classes of point sets in R2, e.g., for the class of all Vitali
subsets of R2, for the class of all Bernstein subsets of R2, or for the class of all Hamel bases of R2

(cf. [6, 7]).
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WEIGHTED EXTRAPOLATION IN MIXED NORM FUNCTION SPACES

VAKHTANG KOKILASHVILI1 AND ALEXANDER MESKHI1,2∗

Abstract. Rubio de Franćıa’s weighted extrapolation results for pairs of functions in mixed-norm

Banach function spaces defined on the product of quasi-metric measure spaces are obtained. As a
consequence, we formulate appropriate results for the mixed-norm Lebesgue, Lorentz, Orlicz and

grand Lebesgue spaces. Here we treat only the weighted extrapolation in grand Lebesgue spaces

with mixed norms.

1. Introduction and Preliminaries

In this note we formulate weighted extrapolation theorems for pairs of functions (f, g) in mixed
norm spaces defined on the product of quasi-metric measure spaces with doubling measures (spaces of
homogeneous type). Let (X, d, µ) and (Y, ρ, ν) be the spaces of homogeneous type. We showed that
if the one-weight inequality holds in the classical weighted Lebesgue space for all weights from the
”strong” Muckenhoupt class A(S)(X ×Y ) defined with respect to products of balls B1×B2, B1 ⊂ X,
B2 ⊂ Y , then appropriate inequality holds for the same pair of functions in mixed-norm Banach
function spaces (E1(X), E2(Y )) provided that the Hardy–Littlewood maximal operators MX and MY

are bounded in the spaces
(
E

1/q0
1

)′
(X) and

(
E

1/q0
2

)′
(Y ), respectively, for some q0 > 1 (for a similar

result in the Euclidean setting see [12]). We treat both cases: diagonal and off-diagonal ones.
Rubio de Franćıa’s extrapolation theory is one of the important tools to study the boundedness of

integral operators in the weighted function spaces.
By taking (f, g) = (f, Tf), as a special case, one can obtain one-weighted inequalities for that

multiple operator T of Harmonic Analysis for which the strong Muckenhoupt condition guarantees
the one-weighted boundedness. To such operators belong, for example, strong maximal operators,
Calderón–Zygmund singular integrals with product kernels and multiple fractional integral operators.
Based on the extrapolation result for the mixed-norm Lebesgue spaces we can derive, for example,
the one-weight mixed-norm inequality due to D. Kurtz [18] regarding the strong maximal operator in
mixed-norm Lebesgue spaces under the Aq(Ap) condition on weights, and formulate an appropriate
weighted extrapolation result.

One of the novelties of this note is that together with the extrapolation results we determine
weighted bounds in terms of the weighted Muckenhuopt characteristics. The derived extrapolation
results are applied to the weighted extrapolation in the mixed-norm Lebesgue, Lorentz, Orlicz and
grand Lebesgue spaces. It should be emphasized that the majority of the results are new even for the
case of Euclidean spaces with the Lebesgue measure.

Let (X, d, µ) be a quasi-metric measure space with a quasi-metric d and measure µ. In what
follows, we will assume that the balls B(x, r) := {y ∈ X; d(x, y) < r} with center x and radius r are
measurable with positive µ for all x ∈ X and r > 0.

If µ satisfies the doubling condition µ(B(x, 2r)) ≤ Cdµ(B(x, r)), with a positive constant Cd,
independent of x and r, then we say that (X, d, µ) is a space of homogeneous type (SHT, shortly).

We assume that (X, d, µ) and (Y, ρ, ν) are the spaces of homogeneous type without atoms.
For the definition, examples and some properties of an SHT see, e.g., [3]. We also assume that the

class of continuous functions is dense in L1 defined on an SHT .

2020 Mathematics Subject Classification. 26A33, 45P05, 46E30, 42B25.
Key words and phrases. Weighted extrapolation; Muckenhoupt’s weights; Multiple operators; Banach function

spaces; Mixed norm function spaces; Mixed norm grand Lebesgue spaces.
∗Corresponding author.



288 V. KOKILASHVILI AND A. MESKHI

For a given quasi-metric measure space (X, d, µ) and q, satisfying 1 < q < ∞, we denote as usual
by Lq(µ) = Lq(X,µ) the Lebesgue space equipped with the standard norm.

Let (X, d, µ) be an SHT . The Hardy–Littlewood maximal function defined on X and given by the
formula

MXf(x) = sup
B3x

1

µ(B)

∫
B

|f(y)|dµ(y) (1)

is the Hardy–Littlewood maximal operator defined on an SHT (X, d, µ).
For the sharp bounds of the norm of the maximal operator MX in terms of characteristics of weights

we refer to [13] and references cited therein.
Let 1 < r < ∞. We say that a weight function w defined on X × Y belongs to the Muckenhoupt

class A
(S)
r if

[w]
A

(S)
r

:= sup
B1×B2

(
1

µ(B1)ν(B2)

∫
B1×B2

w dµ× ν
)(

1

µ(B1)ν(B2)

∫
B1×B2

w1−r′ dµ× ν
)r−1

<∞,

where the supremum is taken over all products of the balls B1 ×B2 ⊂ X × Y .
Let 1 < p, q < ∞. Suppose that ρ is a µ-a.e. positive function on X × Y such that ρq is locally

integrable. We say that ρ ∈ A(S)
p,q if

[ρ]A(S)
p,q

:= sup
B1×B2

(
1

µ(B1)ν(B2)

∫
B1×B1

ρq dµ× ν
)(

1

µ(B1)ν(B2)

∫
B

ρ−p
′
dµ× ν

)q/p′
<∞,

where the supremum is taken over all products of balls B1 ×B2 ∈ X × Y .

If p = q, then we denote A(S)
p,q by A(S)

p .
Let E be a Banach function space (BFS) on X (for the Definition and some essential properties

of BFSs, see [1]). For a BFS E, we denote by E′ its Köthe dual (or associated) space.
Now we define the mixed-norm space for BFSs E1 and E2 defined on quasi-metric measure spaces

(X, d, µ) and (Y, ρ, ν) respectively. The mixed-norm space, denoted by (E1(X), E2(Y )) (or simply,
(E1, E2)), is defined with respect to the norm defined for the µ×ν- measurable function f : X×Y → R:

‖f‖(E1,E2) =
∥∥∥‖f‖E1

∥∥∥
E2

.

It can be checked that (E1, E2) is a BFS.
For a Banach space E and 0 < p <∞, the p-convexification of E is defined as follows:

Ep = {f : |f |p ∈ E}.

Ep may be equipped with the quasi-norm ‖f‖Ep = ‖|f |p‖1/pE . It can be observed that if 1 ≤ p < ∞,
then Ep is a Banach space, as well. For 1 ≤ p <∞ and BFSs E1 and E2, we have

(E1, E2)p = (Ep1 , E
p
2 ).

Before formulating the main results we recall that Rubio de Franćıa’s extrapolation in the setting
of a strong Muckenhoupt condition was treated in [6] (see also [12,15]).

We say that a BFS E belongs to M(X) if the maximal operator MX defined with respect to the
balls B ⊂ X (see (1)) is bounded in E. The class M(Y ) is defined similarly.

To formulate the main results, we need the following notation:

[MX ,MY ] := ‖MX‖(E1/q0
1 )′

‖MY ‖(E1/q0
2 )′

; [MX ,MY ] := ‖MX‖(E1/q̃0
1 )′

‖MY ‖(E1/q̃0
2 )′

.

2. Main Results

Now we formulate the main extrapolation results for the mixed-norm BFSs.
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Theorem 2.1 (Diagonal Case). Let F be a family of pairs (f, g) of measurable functions f and g

defined on X × Y . Suppose that for some 1 < p0 < ∞ and for every w ∈ A(S)
p0 and (f, g) ∈ F , the

one-weight inequality( ∫
X×Y

gp0(x, y)w(x, y) dµ× ν
) 1
p0

≤ CN
(
[w]

A
(S)
p0

)( ∫
X×Y

fp0(x, y)w(x, y) dµ× ν
) 1
p0
,

(2)

with some non-decreasing function s → N(s), holds. Suppose that there exists 1 < q0 < ∞ such that

E
1/q0
1 and E

1/q0
2 are again BFSs. If (E

1/q0
1 )′ ∈M(X) and (E

1/q0
2 )′ ∈M(Y ), then for any (f, g) ∈ F ,

‖g‖(E1,E2) ≤ 161/q0CC̃J
(
[MX ,MY ], p0, q0

)
‖f‖(E1,E2),

where the positive constant C is defined in (2),

J
(
[MX ,MY ], p0, q0

)
:=

N
(

2p0−q0(c̄q′0)2(p0−q0)
(
[MX ,MY ]

)(2((q0)′−1)+1)(p0−q0)
)
, q0 < p0

N
(

2(q0−p0)/(q0−1)(c̄(q0)′)2(q0−p0)/(q0−1)
(
[MX ,MY ]

)(2q0−p0−1)(q0−1))
, q0 > p0

and C̃ is defined by C̃ = max
{

2, 2(q0−p0)/(q0p0−p0)
}
.

Theorem 2.2 (Off-diagonal Case). Let F be a family of pairs (f, g) of measurable functions f, g ∈
L0(µ × ν) defined on X × Y . Suppose that for some 1 < p0 ≤ q0 < ∞ and for every w ∈ A(S)

1+q0/p′0
and (f, g) ∈ F , the one-weight inequality( ∫

X×Y

gq0(x, y)w(x, y) dµ× ν
) 1
q0

≤ CN
(
[w]

A
(S)

1+
q0
p′0

)( ∫
X×Y

fp0(x, y)w
p0
q0 (x, y) dµ× ν

) 1
p0
,

(3)

with some positive constant C and non-decreasing function s→ N(s), holds. Suppose that there exist
1 < p̃0 <∞, 1 < q̃0 <∞ such that

1

p̃0
− 1

q̃0
=

1

p0
− 1

q0
,

and E1(X)1/q̃0 , E1(X)1/p̃0 , E2(Y )1/q̃0 , E2(Y )1/p̃0 are BFSs, and also the following condition(
E1(Y )1/q̃0

)′
=
[(
E1(Y )1/p̃0

)′]p̃0/q̃0
;
(
E2(Y )1/q̃0

)′
=
[(
E2(Y )1/p̃0

)′]p̃0/q̃0
is satisfied.

If
(
E

1/q̃0
1

)′
∈M(X) and

(
E

1/q̃0
2

)′
∈M(Y ), then for any (f, g) ∈ F ,

‖g‖(E1,E2)
≤ 16q̃0 CCJ

(
[MX ,MY ], p0, q0, p̃0, q̃0

)
‖f‖(E1,E2),

where the constant C is the same as in (3),

J
(
[MX ,MY ], p0, q0, p̃0, q̃0

)

:=


N

[(
2c2
(

1 +
q̃′0
q̃0

)2)γ(q̃0−q0)(
[MX ,MY ]

)1+2
γq̃0(q0−q)

q̃′0

]
, q̃0 < q0,

N

[(
2c2
(

1 + q̃0
p̃′0

)2) γ(q̃0−q0)
γq̃0−1 (

[MX ,MY ]
)(2γq̃0−γq0−1)/(γq̃0−1)]

, q̃0 > q0,

and C := max

{
2γq̃0

(
1
q̃0
− 1
q0

)
, 2γ(p̃0)

′
(

1
p0
− 1
p̃0

)}
.
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As corollaries, we have appropriate extrapolation results for the mixed-norm Lebesgue, Lorentz,
Orlicz and grand Lebesgue spaces. Here, we give the statements about only grand Lebesgue spaces
with mixed norms.

In 1992, T. Iwaniec and C. Sbordone [14], in their studies related to the integrability properties of
the Jacobian in a bounded open set Ω, introduced a new type of function spaces Lp)(Ω), called grand
Lebesgue spaces. A generalized version of spaces Lp),θ(Ω) can be found in the work of L. Greco, T.
Iwaniec and C. Sbordone [11].

Harmonic analysis related to these spaces and their associate spaces (called small Lebesgue spaces),
was intensively studied during the last years due to their various applications, we mention here,
e.g., [2, 7–10], the monograph [17] and references therein.

To formulate and prove the main result of this section we need to introduce the following notation:
let σi, i = 1, 2, be sufficiently small positive numbers and let ψ1(·) and ψ2(·) be n-tuple positive
increasing functions on the intervals (0, σi), i = 1, 2, such that lim

λ→0
ψi(λ) = 0, i = 1, 2. In this case,

we say that ψi ∈ Ψσi , i = 1, 2.
We say that for weight functions u and v on X and Y , respectively, a function f : X × Y belongs

to
(
L
p1),ψ1(·),σ1
u (X), L

p2),ψ2(·),σ2
v (Y )

)
1 < p1, p2 <∞, if

‖f‖(
L
p1),ψ1(·),σ1
u (X),L

p2),ψ2(·),σ2
v (Y )

)
= sup

0<ε1<σ1

sup
0<ε2<σ2

(
ψ2(ε2)

∫
Y

(
ψ1(ε1)

∫
X

|f(x, y))|p1−ε1u(x)dµ(x)

) p2−ε2
p1−ε1

v(y)dν(y)

) 1
p2−ε2

<∞.

If ψi(·) ≡ 1, i = 1, 2, then the space
(
Lp1),ψ1(·),σ1(X), Lp2),ψ2(·),σ2(Y )

)
is the mixed norm Lebesgue

space. Further, if ψi(·) = θi, i = 1, 2, then we denote
(
Lp1),ψ1(·),σ1(X), Lp2),ψ2(·),σ2(Y )

)
by
(
Lp1),θ1,σ1(X),

Lp2),θ2,σ2(Y )
)
.

Theorem 2.3. Let F be a family of pairs (f, g) of non-negative functions f, g ∈ L0(µ × ν) defined

on X × Y . Suppose that for some 1 ≤ p0 < ∞ and for every w ∈ A(S)
p0 (X × Y ) and (f, g) ∈ F , the

one-weight inequality( ∫
X×Y

gp0(x, y)w(x, y) dµ× ν
) 1
p0

≤ CN
(
[w]

A
(S)
p0

)( ∫
X×Y

fp0(x, y)w(x, y) dµ× ν
) 1
p0
,

(4)

with some non-decreasing function s→ N(s), holds. Then there is a positive constant C such that for
every 1 < p1, p2 <∞, ψi ∈ Ψσi , i = 1, 2, and u ∈ Ap1(X), v ∈ Ap2(Y ),

‖g‖
(L
p1),ψ1(·),σ1
u (X),Lp1),ψ2(·),σ2 (Y ))

≤ C‖f‖
(L
p1),ψ1(·),σ1
u (X),Lp1),ψ2(·),σ2 (Y ))

,

where σ1, σ2 > 0 are the numbers such that u ∈ Ap1−σ1
(X), u ∈ Ap2−σ2

(X).

Theorem 2.4 (Off-diagonal Case). Let F be a family of pairs (f, g) of non-negative functions f, g ∈
L0(µ×ν) defined on X×Y . Suppose that for some 1 < p0 ≤ q0 <∞ and for every w ∈ A(S)

1+q0/p′0
(X×Y )

and (f, g) ∈ F , the one-weight inequality( ∫
X×Y

gq0(x, y)w(x, y) dµ× ν
) 1
q0

≤ CN
(
[w]

A
(S)

1+
q0
p′0

)( ∫
X×Y

fp0(x, y)w
p0
q0 (x, y) dµ× ν

) 1
p0
,

with some non-decreasing function s→ N(s), holds.
Then for any 1 < p1, q1, p2, q2 <∞, satisfying the condition

1

p1
− 1

q1
=

1

p2
− 1

q2
=

1

p0
− 1

q0
,

any θ1, θ2 > 0, u ∈ Ap1,q1(X), v ∈ Ap2,q2(Y ), and for all (f, g) ∈ F
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we have∥∥∥v(y)‖u(x)g(x, y)
∥∥
L
q1),

θ1q1
p1

,σ1
u (X)

∥∥∥
L
q2),

θ2q2
p2

,σ2
v (Y )

≤ C
∥∥∥v(y)‖u(x)f(x, y)‖

L
p1),θ1,η1
u

∥∥∥
L
p2),θ2,η2
v

,

with a positive constant C independent of (f, g), constants σi and ηi, i = 1, 2 satisfying the condition

1

p1 − η1
− 1

q1 − σ1
=

1

p2 − η2
− 1

q2 − σ2
=

1

p0
− 1

q0
,

where σ1, σ2, η1 and η2 > 0 are positive numbers such that uq1 ∈ A1+(q1−σ1)/(p1−η2)′(X),
vq1 ∈ A1+(q2−σ2)/(p2−η2)′(Y ).
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ON POISSON TYPE INTEGRALS IN THE POLYBALL

ROMI F. SHAMOYAN

Abstract. We consider some natural extensions of Poisson integral in the unit ball to polyballs

and extend some known classical results to the case of product domains (polyballs). In particular,
we extend some known results in the unit ball on Poisson integrals related to BMO to the product

domain case.

1. Introduction

Let Bn = |z| < 1 be the unit ball in Cn, Sn = ∂B be the unit sphere in Cn.

Let d(z, w) = |1 − 〈z, w〉| 12 , z, w ∈ B̄n, be the restriction of d on Sn; it is a non-isotropic metric
(see [4, 6]).

Let also Q(ξ, r) =
{
η ∈ Sn : |1− 〈ξ, η〉| 12 < r

}
, r > 0, ξ ∈ Sn. We call Q a d-ball putting r

sometimes as a subscript for the extension to the ball, Sn = {|z| = 1} .
We denote various constants appearing in this paper by C,C1, C2, c. As usual, we define both a

Poisson kernel P (z, w), z, w ∈ B̄n, P (z, w) = (1−|z|2)n
|1−〈z,w〉|2n , and a Poisson integral of a positive Borel

measure µ P (µ) in a standard way (see, e.g., [6]). For some new and classical results on these objects
we refer the reader to [4, 6] and [2, 5]. By dσ we denote the Lebesgue measure on Sn. For the d
function we refer to [4, 6] (see also below).

In this note we discuss some problems in an open new research area of Poisson type integrals in
product domains in Cn. Some new objects in this note will be defined and some interesting new
problems will be posed and solved. We provide first known results in a unit ball (see [6]).

It has been shown in [4, 6] that for an f function of a certain class (these estimates were used in
the study of analytic BMO)∫

Sn

|f(η)− f(a)|2P (a, η)dσ(η) ≥
(

c̃

σ(Q)

∫
Q

|f − f(a)|2dσ
)
, (1)

we can see that for all 3
4 < |a| < 1,∫

Sn

|f(ξ)− f(a)|2P (a, ξ)dσ(ξ) ≤ c(sup)
( 1

σ(Q)

)∫
Q

|f − fQ|2dσ <∞ (2)

(see [4, 6]). Next, it has been shown (see [4, 6]) that(
sup
z∈Bn

) ∫
Bn

P (z, w)dµ(w) ≥
(
µ(Qr(ξ))

4nr2n

)
, (3)

for a positive Borel measure µ in B.

And if c =
(

sup
ξ,r

)
µ(Qr(ξ))
r2n , then we have

(
sup
|z|> 3

4

) ∫
Bn

(P (z, w))dµ(w) ≤ (c16n)

∞∑
k≥0

( 1

2nk

)
, (4)

(see [4, 6]) for a positive µ Borel measure.

2020 Mathematics Subject Classification. P32,44,46.
Key words and phrases. Poisson integral; Unit ball; d-balls, Carleson type measures; Polyball.
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The question is how to extend these and other similar results for a positive µ Borel measure to
more general situation if, for example, we consider more general Poisson type kernels of the type

P̃ (~z, ξ) =
n∏
(1−|z|2)βj

n∏
j=1
|1−zjξ|αj

, where

m∑
i=1

βj = n,

m∑
i=1

αj = 2n,

with zj ∈ B, j = 1, . . . , n, ξ ∈ S (we assume sometimes |zj | = |z|) and to a group of positive Borel
(µj) measures, where j = 1, . . . , n.

In this paper, we have found some ways on how to extend (2)–(4) to this more general situation.
These results may have various applications in the function theory. Complete proofs will be provided
in a separate note. We simply modify already known proofs provided in one domain.

Indeed, a natural idea consists in finding some ways to modify old and known proofs to the product
domain case. However, there exist some technical difficulties.

Following the proof for the case m = 1 (see [4, 6]), for a positive Borel µ measure we find

sup
zj∈Bn

( ∫
Bn

· · ·
( ∫
Bn

[ m∏
j=1

(1− |zj |)αj
]p1

dµ(w1)

m∏
j=1

|1− 〈zj , wj〉 |βjp1

) p2
p1

· · ·µ(wm)

) 1
pm

≥ c (µ(Qr(ξ)))

m∑
i=1

1
pi

r2n
, (Ã)

where Qr(ξ) = {z ∈ Bn : d(z, ξ) < r}, ξ ∈ Sn; r > 0,
m∑
j=1

αj = n,
m∑
j=1

βj = 2n, βj > 0; αj > 0,

j = 1, . . . ,m, 0 < pi <∞, i = 1, . . . ,m.
Next, we have the following known estimate (see [6])(

sup
|z|> 3

4

) ∫
Bn

P (z, w)dµ(w) ≤ 16nc

( ∞∑
k=0

1

2nk

)
, where ( ˜̃A)

P (z, w) =
(1− |z|2)n

|1− 〈z, w〉|2n
, c =

(
sup
ξ,r

)(µ(Qr(ξ))

r2n

)
, n ∈ N, z, w ∈ Bn.

The natural question to give an extension of this ( ˜̃A) estimate to

M̃ =

(
sup
|zj |> 3

4

)( ∫
Bn

· · ·
∫
Bn

(P̃ (~z, ~w))dµ1(w1) . . . dµm(wm)

) 1
pm

,

where

P̃ (~z, ~w) =

m∏
j=1

(1− |zj |)αj

m∏
j=1

(1− 〈zj , wj〉)βj
,

and
m∑
j=1

αj = n,

m∑
j=1

βj = 2n, 0 < pj <∞, zj , wj ∈ Bn, j = 1, . . . ,m,

following carefully one functional known proof (see [4, 6]).
Note that here µj are positive Borel measures on B, i = 1, . . . ,m.
We have found the following generalization:

(
sup
|zj |>τ
|zj |=R

) ∫
Bn

m∏
j=1

(1− |zj |)αjdµ(w)

m∏
j=1

|(1− zjw)βj |
≤ (16n)C

( ∞∑
k=0

1

2nk

)
≤ Cn · C; (B)
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where
m∑
j=1

βj = 2n,
m∑
j=1

αj = n, for some positive constant Cn.

We mention another known estimate and provide below some similar type extensions to the poly-
balls.

Note (see [4, 6]) that for Q = Q( a

|a|,
√

1−|a|2
), a ∈ B, a 6= 0,

Ia =

∫
Sn

|f(ξ)− f(a)|2 (1− |a|2)n

|1− ξa|2n
dσ(ξ) ≥ 1

4n(1− |a|2)n

and
∫
Q

|f−f(a)|2dσ ≥ const
σ(Q1)

∫
Q1

|f−f(a)|2dσ, where Q = Q
(
a
|a| ,
√

1− |a|2
)

as runs over Bn/0, whereas

the above Q1 runs over all d balls of radius less than 1 (see [4, 6]). We provide some generalizations
of such estimates.

Let now f ∈ Lp1(Sn × · · · × Sn),

I~a =

(∫
Sn

· · ·
(∫
Sn

|f(ξ1, . . . , ξn)− f(a1, . . . , am)|p1 ×

m∏
i=1

(1− |ai|2)αi

m∏
i=1

|1− ξiai|βi
dσ(ξ1)

) p2
p1

· · · dσ(ξm)

) 1
pm

,

0 < pi <∞, i = 1, . . . ,m,

m∑
i=1

αi = n,

m∑
i=1

βj = 2n, αj , βj > 0, j = 1, . . . ,m.

Then

I~a≥
4−

n
p1

m∏
i=1

(1− |ai|2)
(2βi−αi)

p1

(∫
Q

· · ·
(∫
Q

|f(ξ1, . . . , ξn)− f(a1, . . . , am)|p1dσ(ξ1)

)
· · · dσ(ξm)

) 1
pm

(C)

Q = Q
( a
|a|
,
√

1− |a|2
)
, a ∈ Bn, a 6= 0, 2βi − αi > 0, i = 1, . . . ,m.

And for same parameters, let

Ĩ~a =

(∫
Sn

· · ·
(∫
Sn

m∏
i=1

|fi(ξi)− fi(ai)|p1 ×

m∏
i=1

(1− |ai|)αi

m∏
i=1

|1− ξiai|βi
dσ(ξ1)

) p2
p1

· · · dσ(ξm)

) 1
pm

.

Then we also have

Ĩ~a ≥
4−

n
p1

m∏
i=1

(1− |ai|2)
(2βi−αi)

p1

m∏
i=1

(∫
Q

|fi(ξi)− fi(ai)|pi
) 1
pi

, (C̃)

where fi ∈ Lp1(B), i = 1, . . . ,m; the proof is based on the estimate

(|1− (a, ξ)|) = 1−
( a
|a|
, ξ
)

+ (1− |a|)
( a
|a|
, ξ
)

and, hence, |1−aξ| ≤ 2(1−|a|2) (see [4,6]), where ξ ∈ Q and is similar to one domain proof (see [4,6]).
The above estimates may have various applications. In this note we omit the details of proofs of

the last estimates refereing to [4, 6] for complete elegant proofs of simpler “one domain” cases.
We have also the following known estimate (see [4, 6]):∫

Sn

|f(ξ)− f(a)|P (1− |a|2)

|1− aξ|2n
dσ ≤ c Ct,p∗ , (A)
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r0 < |a| < 1, for some constant C, where

Ct,p∗ = (sup)
( 1

σ(Q)t

)∫
Q

|f − fQ|P dσ <∞, f ∈ HP (B), (fQ) =
1

σ(Q)

(∫
Q

fdσ

)
.

We refer to [4, 6] for t = 1, p = 2 case of (A).
We wish to extend (A) again using an extension of classical Poisson kernel P (z, ξ) and carefully

studying the classical known proof in [1, 2]. We have found the following result, the main result of
this note. Here we formulate this result.

Theorem 1. Let f ∈ LP (S), p ≥ 1. Then we have

(1)

(
sup

z0<|aj |<1
j=1,...,m

)∫
Sn

|f(ξ)− f(Q0)|
P ×

m∏
j=1

(1− |aj |)αj
|1− ξaj |βj

dσ(ξ) ≤ C̃C1,p
∗ ,

for some positive constant C, where αj, βj > 0, j= 1, . . . ,m, Q0 =Q
(
a1
|ã| ,
√

1− |ã|
)
, a1 ∈B |ã|>r0,

m∑
j=1

βj =
m∑
j=1

αj + n.

Also,

(2)
(

sup
j

)∫
Sn

|f(ξ)− f(aj)|P · P̃ (~a, ξ)dσ(ξ) ≤ Cσ
(
C1,p
∗
)
,

for all |aj | ∈ [r0, 1), |aj | = |ã|, aj = ã|ϕj, P̃ (~a, ξ) = P̃ =

(
m∏
j=1

(1−|aj |)αj
|1−ξaj |βj

)
, where

m∑
j≥1

βj =

m∑
j≥1

αj + n, f ∈ HP , 1 ≤ p <∞, j = 1, . . . ,m.

Putting fSQ = 1
σ(Q)S

( ∫
Q

fdσ
)

, S > 0, we can similarly provide another version of our theorem with

other restrictions on αj , βj , j = 1, . . . , m̄, extending classical results.
It will be interesting to consider another object

fSQ =
1

σ(Q̃)S

(∫
Q̃

fdσ

)
, Q̃ = Q×Q, S > 0,

on the product domains and to prove similar to our theorem result for those domains, as well.
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TWO-DIMENSIONAL UNSTEADY PULSATION FLOW OF A VISCOUS

INCOMPRESSIBLE FLUID BETWEEN THE POROUS WALLS

VARDEN TSUTSKIRIDZE

Abstract. Two-dimensional unsteady pulsation flow of a viscous incompressible fluid through a
porous channel is considered. This motion gets excited from the periodical time change of a pressure

drop and a percolation velocity.

1. Introduction

The problems of viscous conducting fluid flows in channels are classical problems of magnetic
hydrodynamics. Beginning with the work of Hartmann, who considered the flow in a planar channel,
up to present days, a considerable number of studies have been devoted to this issue. Recently, interest
in such flows has increased due to applications to MHD generators. There we have to deal with the flow
of a conducting fluid in a common rectangular cross-section channel with two non-conducting and two
conducting walls, with a transverse magnetic field applied along the latter walls. A similar problem for
perfectly conducting electrodes and ideally insulating sidewalls was solved in the articles [1,2,6,8,9,12].
However, its solution was either not obtained in a finite form, or it was impossible to obtain integral
characteristics of the flow for large Hartmann numbers from a formal solution.

The approximate method presented below gives the possibility to find a solution in a practically
convenient form, as well as take into account the final conductivity of the channel walls.

2. Basic Part

Let us consider the unsteady flow of a viscous fluid in a porous channel with a constant cross-section.
If ox is directed in parallel to the walls, and the axis oy is perpendicular to them, then the equations of
non-steady two-dimensional motion of a viscous incompressible fluid will be as in [3–5,7,10,11,13–15]:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (1)

∂u

∂x
+
∂v

∂y
= 0.

The desired velocities u(x, y, t) and v(x, y, t) must satisfy the following limiting conditions:

u(x, y, 0) =0, v(x, y, 0) = 0,

u(x,−h, t) =0, v(x,−h, t) = vw1(t), (2)

u(x, h, t) =0, v(x, h, t) = vw2
(t).

Let us introduce the following dimensionless quantities:

u = u0u1, v = v0v1, x = lx1 =
u0
v0
hx1, y = hy1, t =

A2

ν
t1,

ρ =
νu20
v0h

P1, vw1 = v0v01, vw2 = v0v02.
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Then from system (1) we will have equations in a dimensionless form:( v0
u0

)2 ∂2u
∂x2

+
∂2u

∂y2
− ∂u

∂t
= R0

(
u
∂u

∂x
+ v

∂u

∂y

)
+
∂p

∂x
,( v0

u0

)2 ∂2v
∂x2

+
∂2v

∂y2
− ∂v

∂t
= R0

(
u
∂v

∂x
+ v

∂v

∂y

)
+
(u0
v0

)∂p
∂y
, (3)

∂u

∂x
+
∂v

∂y
= 0,

where u0,v0 - are the characteristic average velocity and rate of infiltration, accordingly;
l - is the length of the channel,
h - is half distance between the walls,
R0 = v0h

ν - is the number of Reynolds infiltration. In system (3) indices are down for the sake of
simplicity.

We are looking for solutions of system (3) in the following form:

u(x, y, t) = (1− x)
∂f(y, t)

∂y
, v(x, y, t) = f(y, t).

Then it will be as

∂3f

∂y3
− ∂2f

∂y∂t
=R0

[
f
∂2f

∂y2
−
(∂f
∂y

)2]
+

1

1− x
∂p

∂x

∂2f

∂y2
− ∂f

∂t
=R0f

∂f

∂y
+
u0
v0

∂p

∂y
. (4)

Let the values 1
1−x

∂p
∂x , v01(t) and v02(t) vary according to the periodic law:

1

1− x
∂p

∂x
= a+ εeiωtb,

v01 = c
(
1 + εeiωt

)
,

where a , b are unknown constants determined from the boundary conditions;
c and d are the stated constants.
We will search for the function af(y, t) in the following form:

f(y, t) = ϕ(y) + εeiωtφ(y). (5)

Substituting (5) into system (4) and neglecting the terms containing and above from the first
equation of system (4), we have

ϕ
′′′

=R0

(
ϕϕ

′
− ϕ

′2
)

+ a, (6)

φ
′′′
− iωφ

′
=R0

(
φϕ

′′
+ ϕφ

′′
− 2ϕ

′
φ

′
)

+ b, (7)

and from (2), we have the following boundary conditions:

ϕ(−1) = c, ϕ(1) = d

ϕ
′
(−1) = 0, ϕ

′
(1) = 0,

φ(−1) = c, φ(1) = d,

φ
′
(−1) = 0, φ

′
(1) = 0.
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Assume that the Reynolds number of infiltration R0 = v0h
ν is a small quantity. Here, we present

the functions ϕ(y) and φ(y), as well as the unknown constants a and b as the series on powers R0:

ϕ(y) =

∞∑
k=0

Rk0 , φ(y) =

∞∑
k=0

Rk0φk(y),

a =

∞∑
k=0

Rk0ak, b =

∞∑
k=0

Rk0bk.

(8)

Substituting (8) into equations (6) and (7) and equating the coefficients at the same powers R0,
we get in the first two approximations:

ϕ
′′′

0 = a0,

φ
′′′

0 − iωφ
′

0 = b0,

. . . . . . . . . . . . . . .

ϕ
′′′

1 = ϕ0ϕ
′′

0 − ϕ
′2

+ a1,
(9)

φ
′′′

1 − iωφ
′

1 = b1 + ϕ0φ
′′

0 + ϕ
′′

0φ0 − 2ϕ
′

0φ
′

0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

where the functions ϕ0, φ0, ϕ1 and φ1 functions must satisfy the following boundary conditions:

ϕ0(−1) = c, ϕ0(1) = d, ϕ
′

0(−1) = 0, ϕ
′

0(1) = 0,

φ0(−1) = c, φ0(1) = d, φ
′

0(−1) = 0, φ
′

0(1) = 0,

ϕk(−1) = 0, ϕk(1) = 0, φ
′

k(−1) = 0, φ
′

0(1) = 0,

where k ≥ 1, 2, . . . , and strokes show derivatives on y.
The solution of system (9) is not difficult. We find the functions ϕ0, ϕ1 and φ0, as well as the

values a0, b0, a1. Finding the function ϕ1 and value b1 in the allowed approximation does not make
sense, since the terms φ1 and b1 have coefficients as the product of two infinitely small values εR0.

Thus, for ϕ0, φ0, ϕ1, a0, b0 and a1, we obtain the following expressions:

ϕ0(y) = A
(
y3 − 3y

)
+B,

φ0(y) =
1

D

[
4A
(
sh
√
iωy − y

√
iωch

√
iω
)

+B
]
,

a0 = 6A, b0 =
1

D

[
4a(iω)

3/2ch
√
iω
]
, a1 =

324

35
A2

ϕ1 =
AB

4

(
y2 − 1

)2 − A2

70

(
y7 − 3y3 + 2y

)
,

with the notation

A =
c− d

4
, B =

c+ d

2
, D = 2

(
sh
√
iω −

√
iωch

√
iω
)
.

Finally, for the components of velocity and pressure drops along and across the main flow, in the
proposed approximation, we will have

u(x, y, t) = (1− x)
[
ϕ

′

0(y) +R0ϕ
′

1(y) + εeiωtφ
′

0(y)
]
,

v(x, y, t) = ϕ0(y) +R0ϕ1(y) + εeiωt
[
φ0(y) +R0φ1(y)

]
,

∂p

∂x
= (1− x)[a0 +R0a1 + εeiωtb0],

∂p

∂y
=
vo
u0

[
ϕ

′′

0 +R0ϕ
′′

1 + εeiωt
(
φ

′′

0 − iωφ0
)
−R0ϕ0ϕ

′

0

]
.
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3. Conclusion

Thus, the pulsating flow of a viscous incompressible fluid between porous walls was studied. Fluid
flow is caused by pulsating pressure drop and pulsating movement of porous walls [3, 10,11,14].
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