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HIGHLIGHTS OF RESEARCH WORK OF ESTATE KHMALADZE

ROBERT M. MNATSAKANOV

The goodness of fit problem and scanning martingales. Here we briefly outline one of the
central problems of mathematical statistics, the difficulties which remained open there from the mid
50s to the early 80s and the way they were overcome using very unexpected “martingale approach”
developed by Khmaladze (1981), as well as its nontrivial extension to the case of multidimensional
time.

Let Fn be an empirical distribution function of a sequence of n independent scalar random variables
with distribution function F . The normalised difference

√
n(Fn − F ) = vn, one of the basic processes

in statistical theory, is called the empirical process.
Certainly, both the distribution of the process vn for finite n and its limiting distribution as n→∞

depend on F (the limiting process v is called F -Brownian bridge). However, the amazingly simple
Kolmogorov’s transformation (Kolmogorov (1933)), un = vn ◦ F−1 with the condition that F is con-
tinuous, maps vn into the so-called uniform empirical process un with the standard (and independent
of F ) distribution. This opens an extremely important possibility to use asymptotic theory for un
only in asymptotic statistical inference concerning any continuous F . This “asymptotic distribution
freeness” of un became one of the basic facts in nonparametric statistics and in the theory of the so
called goodness of fit tests.

In the late 1950’s and early 1960’s it was discovered (see Kac, Kiefer and Wolfowitz (1955) or
Gikhman (1953)) that in most practical cases, where F = Fθ is known only up to a finite dimensional
parameter θ to be estimated from the data, the process vn,θ̂ =

√
n(Fn − Fθ̂) has the asymptotic

distribution not only different from that of F -Brownian bridge, but also such that vn,θ̂ ◦ F
−1
θ̂

is no

longer asymptotically distribution free. The bibliography on this subject is huge; one review paper
is Durbin (1973). Chibisov (1971) and Moore and Spruill (1975) demonstrated that the chi-square
statistics with estimated parameter is, in general, also not asymptotically chi-square distributed. All
developments in the late 1960’s and throughout the 1970’s persuaded statisticians that this was an
unavoidable complication which needed to be lived with.

However, Khmaladze’s paper (1981) changed this stereotype completely. It was shown that using
a different point of view on vn, a transformation of vn,θ̂ can be found, wn,θ̂ =

√
n(Fn −Kθ̂,n), which

converges to Fθ-Brownian motion, and therefore wn,θ̂ ◦ F
−1
θ̂

, is asymptotically a standard Brownian

motion on [0, 1], and thus asymptotically distribution free. The process wn,θ̂ can be thought of as the

innovation martingale of the process vn,θ̂ with respect to the natural filtration of the later. In this

way, the whole beauty and usefulness of asymptotically distribution free procedures were restored.
Further work of E. Khmaladze developed similar transformations in the difficult case of empirical

processes based on multidimensional random variables. As is know, the existing theory of martingales
in multidimensional time is complicated and involves restrictive conditions, not satisfied by many
important processes with multidimensional time (cf., e.g., Wong and Zakai (1974), Cairoli and Walsh
(1975), Hajek and Wong (1980), Gikhman (1982), Nualart (1983)). Therefore a new approach to
the stochastic calculus of Gaussian random processes with multidimensional time was required. The
notion of “scanning martingales”, suggested by Khmaladze (1988a, 1993), provides such an approach
and leads to an elegant and simple theory of innovation martingales in multidimensional spaces. In
Khmaladze (1988a), the general goodness of fit problem for simple hypothesis was formulated for the
first time, and Khmaladze (1993) gives the solution of this problem in a completely general setting and
opens a way to distribution free “model testing” in multidimensional spaces, the possibility, previously
nonexistent in the statistical theory.
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Mathematically, the paper establishes new connections between the goodness of fit problem of
statistics and empirical processes with functional time on one side, and the theory of stochastic
differential equations for measure-value processes and Volterra decompositions of Hilbert-Schmidt
operators on the other side.

The paper of Einmahl and Khmaladze (2001) gives a similar solution in Rd for another classical
problem of statistics, the so- called two-sample problem in a multidimensional space.

Sequential ranks. The sequential rank Sk of a random variable Xk is its rank among random vari-
ables X1, X2, . . . , Xk as compared with the “ordinary” rank Rkn which is the rank of Xk amongst all
n “available” random variables X1, X2, . . . , Xk, . . . , Xn, with k ≤ n. Sequential ranks are practically
very convenient when observations arrive one-by-one. However, their asymptotic theory meets with
certain difficulties; it was not known how to study the efficiency of statistical procedures based on
sequential ranks. Consequently, this theory fell into disuse, whereas the theory of “ordinary” ranks
received considerable attention in the 1960’s through to the 1980’s. For example, in Sen (1978),
although primarily devoted to sequential problems, it was necessary for the authors to work with “or-
dinary” ranks, which are inconvenient in this setting, because asymptotic methods were unavailable
for sequential ranks.

On the other hand, if X1, X2, . . . , Xn are independent and identically distributed, the sequential
ranks are of very nice behaviour: S1, S2, . . . , Sn are independent and each Sk has uniform distribution
on integers 1, 2, . . . , k.

The difficulties connected with efficiency of the tests based on sequential ranks were overcome
in the papers of Khmaladze and Parjanadze (1986), Pardzhanadze and Khmaladze (1986), which
established an asymptotic theory of sequential ranks in the same basic framework as the existing
theory for “ordinary” ranks. This was possible due to the development of asymptotic methods, not
normally applied in the theory of rank statistics. Namely, it was shown that the partial sum processes
based on (functions of) “ordinary” ranks and those based on sequential ranks may be asymptotically
connected through a linear stochastic differential equation and hence the properties of one can be
carried over into the properties of another.

In particular, it was shown that asymptotic distributions of linear statistics
n∑
k=1

cka(Rkn/n)

from “ordinary” ranks and linear statistics
n∑
k=1

(
ck −

∑
m≤k

cm/k

)
a(Sk/k)

from sequential ranks have the same asymptotic distribution under all contiguous alternatives. Equiv-
alently, statistics

n∑
k=1

cka(Sk/k) and

n∑
k=1

(
ck −

∑
m≥k

cm/m

)
a(Rkn/n)

have the same limit distributions under all contiguous alternatives. Thus, whenever one of them is
optimal against some contiguous alternative, the other is also optimal for the same alternative.

Multinomial distributions of increasing dimension. The research in this field may be of interest
to the colleagues in discrete mathematics.

The sequence of multinomial distributionsM(·, pN , n), where pN = {pin}N1 , pin > 0 and
N∑
1
pin = 1,

which have the number of different possible outcomes N = Nn increasing with number of trials n, form
a surprisingly rich class of distributions. They reflect and illustrate a very large number of interesting
problems found in other parts of statistics, such as:
• the asymptotic behaviour and properties of statistics like the classical χ2-statistic when Nn →∞

as n→∞ are sharply different from those which one can deduce when first letting n→∞ and then
N →∞;
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• statistical problems with increasing numbers of parameters, like the problem of estimating spectra
of matrices of increasing dimension or problems with “fine” partitions, are very similar to what one
meets in the asymptotic analysis of M(·, pN , n) — the normalised probabilities npin, i = 1, . . . , Nn,
are these parameters;
• the class of asymptotic laws of which the famous Zipf - Mandelbrot’s law is the most remarkable

representative, are highly connected with the sequences M(·, pN , n) where n → ∞. We comment on
Zipf – Mandelbrot’s law separately below.

The paper of Khmaladze (1983) completely modified the tools and approaches used in this field.
Instead of considering sums, called “divisible statistics”,

Nn∑
i=1

g(νin, npin)

and limit theorems for each sum, the paper studied partial sums

k∑
i=1

g(νin, npin), k = 1, 2, . . . , Nn,

and derived limit theorems for these processes. They are treated as semimartingales associated not
with its natural filtration, but with richer filtration Fk = σ{ν1n, . . . , νkn}, k = 1, 2, . . . , Nn, based
on underlying frequencies. The point of it is that the conditional distribution of νin given previous
frequencies νjn, j = 1, 2, . . . , i−1, is much simpler object, than conditional distribution of g(νin, npin)
given previous summands g(νjn, npjn), j = 1, 2, . . . , i− 1.

It showed how new at a time limit theorems for semimartingales could be utilised and lead to
general functional limit theorems for the basic statistics of the field – the so-called additively divisible
statistics (statistics of increasing numbers of small, separate frequencies). The paper demolished an
unnecessary partition between different parts of asymptotic statistics (for a better picture, see Ivchenko
and Levin’s review paper (1996)). It led to similar advances in the theory of general spacings (see
Borovikov (1987)) and in the analysis of the so-called “very rare events” (see Mnatsakanov (1985) or
Prakasa Rao (1987)).

Large number of rare events (LNRE) theory. The text of Dante’s “Divina Comedia” is in
length some 100,000 words. Approximately 13,000 of these words are different, that is, the vocabulary
of “Divine Comedia” is only 13,000 words. It would be, however, very incorrect to suppose that each
word was used by Dante approximately 8 times. There is certainly nothing like an even usage of
words, few words were used hundreds of times, while about 6,000 words (half the vocabulary) were
used only once and about 2,000 words were used only twice.

This is the typical situation in a surprisingly large number of applied statistical problems, not only
in all sorts of large texts, but also in studies of the number of species in an environment, opinions in
a survey, chemical analysis, income distributions, distribution of languages, etc.

According to Zipf’s law, if µn(m) is the number of words (species, opinions, etc.) which occurred
m times in a sample of size n and if µn is the number of all different words (species, opinions, etc.)
in the same sample, then

µn(m)

µn
→ 1

m(m+ 1)
as n→∞.

Its slightly modified form
µn(m)

µn
→ 1

(a+ bm)q
as n→∞

is called Zipf - Mandelbrot’s law. In the words of Mandelbrot (1953), “The form of Zipf’s law is so
striking and also so very different from any classical distribution of statistics that it is quite widely felt
that it “should” have a basically simple reason, possibly as “weak” and general as the reasons which
account for the role of Gaussian distribution. But, in fact, these laws turn out to be quite resistant to
such an analysis. Thus, irrespective of any claim as to their practical importance, the “explanation”
of their role has long been one of the best defined and most conspicuous challenges to those interested
in statistical laws of nature”.
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The present interest in Zipf’s law is, perhaps, characterised by the increase of interest in the more
general concept of LNRE distributions, which was introduced and first systematically studied in an
unpublished paper of Khmaladze (1988b), partly reproduced by Khmaladze and Chitashvili (1989)
and called and treated as “fundamental” in the monograph of Baayen (2001).

“Chimeric” contiguous alternatives. The theory of contiguity of probability measures is a main
tool in asymptotic statistics to study the efficiency and power of statistical procedures. Contiguous
distributions or contiguous alternatives (to a given distribution) form a class of alternatives which are,

heuristically speaking, most difficult to detect. It is well known that if P and P̃ are two distributions,
then n-fold direct products P(n) and P̃(n) are either asymptotically singular as n → ∞ or coincide
(alternative of Kakutani). In order for P̃(n) to be contiguous to P(n), the distribution P̃ must depend
on n in such a way, basically, that(

dP̃
dP

)1/2

= 1 +
1√
n
hn with lim sup

n→∞
‖hn‖L2(P) <∞

(see, e.g., Oosterhof and van Zwet (1979)). Practically all papers which use contiguity theory replace

the latter condition by hn
L2(P)−→ h and for very good reasons. Nevertheless, the paper of Khmaladze

(1998) studies such contiguous alternatives that ‖hn‖ ≥ 1, but hn
ω→ 0, that is, hn has no limiting

points in L2(P). It is clear that no classical goodness of fit test based on empirical process can detect
any such “chimeric” alternative. Yet the paper of Khmaladze (1998) shows that new versions of
empirical processes can be constructed and a goodness of fit theory can be developed which is no less
rich than that which exists for converging contiguous alternatives.

The paper also shows that although they look exotic, “chimeric” alternatives can frequently be
found in real problems. After all, the existence of our civilisation is itself an enormous “chimeric”
alternative.

Change-set problem (spacial change-set problem). The idea of transferring the range of prob-
lems usually unified by the term “change-point problem” for real line to finite-dimensional Euclidean
space was entertained and discussed by E. Khmaladze at the end of 80-ies, while still in Moscow, in
particular, at the Moscow Seminar of Young Statisticians. But he started working himself only in
1996.
With the help of the concept of the local covering numbers, the papers of Khmaladze, Mnatsakanov
and Toronjadze (2006a, 2006b) investigated the convergence of statistical estimators of the change-set
and finally obtained the correct rate of n−1. This is the rate of convergence of what is called “super-
efficient” estimators in statistics. The smoothness of the boundaries were not required – only that the
class of possible change-sets was locally compact.

Differentiation of set-valued functions. The research work of E. Khmaladze here has a story.
Heuristically, the idea came from the work on the change-set problem. In this problem, the object of
interest is a set, say A ∈ Rd as a hypothesis, and a sequence of sets Bn ∈ Rd, converging in Hausdorff
metric to A as a sequence of contiguous alternatives. What a statistician observes is a point process
Nn in Rd, and, as n→∞, the intensity of this point process increases, so that there appear more and
more points, and symmetric difference A∆Bn shrinks towards the boundary of A at the same time.
Since the number of points increases, it is not necessary that their number in A∆Bn decreases to zero.
In the most interesting cases this number becomes a Poisson random variable. So, the corresponding
points do not disappear; but where do they eventually “live”? The first intuition was that they must
“live” on the boundary of A. But later the feeling grew that this should not be true. Some sort of
“differentiation” seems to be lurking behind the scenes.

All this were talks and guesses, and some reading for several years. The actual work started after
2004. In Karlsruhe, a very good colleague and very highly regarded geometer, Wolfgang Weil, came
one day to the small temporary library room, where Estate was accommodated, and put down the
famous book of J-P. Aubin and E. Frankowska (1990) on a set-valued analysis. The book contained
two chapters on differentiation of set-valued functions. And this meant that secure, but not very
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original work, lied ahead. W. Weil was not too enthusiastic about this prospect. And in spite of joint
paper of Khmaladze and Weil (2008), which was then the work in progress, Estate was on his own.

A year later, the draft of the paper on differentiation of set-valued functions was ready and in 2007
the paper Khmaladze (2007) was published. One short corollary of the new notion of a derivative is
the following:
• if, as t → 0, the symmetric difference A∆Bt is differentiable at the boundary ∂A, then for any

absolutely continuous distribution P in Rd there exists an absolutely continuous distribution Q on the
normal cylinder of ∂A such that

d

dt
P(A∆Bt) = Q

( d
dt
Bt

)
.

Later, a review article with W. Weil was invited to the Annals of the Institute of Statistical Mathe-
matics, Khmaladze and Weil (2018), where the derivative was given a name of “fold-up derivative” and
was defined in more general class of situations. Before that, a paper with John Einmahl established
CLT for the point process Nn on classes of sets in shrinking neighbourhoods of ∂A (see Einmahl and
Khmaladze (2011)).

In a personal letter to E. Khmaladze, J.-P. Aubin calls the work of fold-up derivatives a “mathe-
matical virtuosity”.

Questionnaires – the problem of diversity in spaces of increasing dimension. A person
is asked q binary questions: “yes” or “no”. The person fills in this questionnaire and this is one
“opinion”. Altogether 2q different opinions are possible. Lots of people, N , are asked to fill this
questionnaire. So, there are lots of questionnaires with many possible opinions expressed in them.
Exactly, how many different opinions will be found in the sample? How many opinions will be unique?
These and all other similar questions have been answered by Khmaladze (2011). But the answers did
not come without surprise also for the author.

Imagine, again, that we are in [0, 1]q = [0, 1] × · · · × [0, 1], and we divide the first interval [0, 1]
in proportion a1 : 1 − a1, the second [0, 1] as a2 : 1 − a2, and so on. In this way one will obtain
2q elementary cubes. In one-dimensional space, each of subintervals [0, a1] and [a1, 1] is divided as
a2 : 1 − a2, then each of the resulting four are divided as a3 : 1 − a3, and so on, q times. The
first impression was that this would be some other version of random partition of a “stick” into 2q

subintervals: if 0 < U1 < U2 < · · · < U2q−1 < 1 are uniformly distributed random variables, arranged
in increasing order, then the spacings [Ui, Ui+1] are forming this random partition. If we now throw
N random points on [0, 1], or in [0, 1]q, and count frequencies of these points in each subinterval, or
small cubes, what will be their behaviour?, how many subintervals will remain empty?, how many will
contain just one point?, etc. For a random partition, the answers are more or less known and initially
Estate wanted an analogue of this.

However, the behaviour of these frequencies turn out to be very different. Very uneven. Behaviour
of spacings is, strictly speaking, also “uneven”, but not so far from being even. But sizes of intervals, or
volumes of cubes, obtained through these ai-s are sharply uneven. And behaviour of the frequencies of
random points in them, consequently, is also uneven. First of all, the number of cells with some filling
turns to be o(N), i.e., much smaller than the number of points thrown; or the number of different
opinions is much smaller, than the number of persons asked. The fraction of cells with one, two, and
in general k points in them, relative to the number of all non-empty cells, follows some “law”, which
“almost” does not depend on the choice of ai-s. Yet, this law is not the famous Zipf’s law, which
many of us could have heard about.

A complete description of the situation is given by Khmaladze (2011) and partly in the 18-years
earlier paper of Khmaladze and Tsigroshvili (1993). This was a strong step forward within the theory of
diversity and occupation problem. Division in more than two subintervals at each step is a fascinating
problem for the future.

Unitary operators. The last several years a new development took place in the direction of distri-
bution free testing theory. The main idea can be explained as follows.

The empirical process with estimated parameter vn,θ̂, or estimated empirical process for short, is

not just a process with different limit distribution from the empirical process vn, it has the specific
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structure – its limit distribution is that of the projection of Fθ-Brownian bridge, orthogonal to the
score function ḟθ/fθ. Thus the distribution of the projected Fθ-Brownian bridge is dependent on this
score function. This asymptotic phenomenon was first described by Khmaladze (1979). It implies
that for any regular parametric family of distributions Gθ, θ ∈ Θ, as a limit of the estimated empirical
process, one will obtain again a projection of Gθ-Brownian bridge, orthogonal to a corresponding score
function. However, if the dimension of parameters in both families is the same, than with the help of
unitary mappings one projection can be mapped to another projection thus rendering the two testing
problems equivalent, in the sense that one can be transformed into other and the other way around.

Convenient framework for application of operators on empirical processes is provided by the function-
parametric version of empirical processes

vn,θ̂(φ) =

∫
φ(x)vn,θ̂(dx), φ ∈ L2(Fθ),

because then the operator U on vn,θ̂ can be naturally defined as the adjoint operator U∗ on L2(Fθ):

(Uvn,θ̂)(φ) = vn,θ̂(U
∗φ).

However, this notion of equivalence creates very wide classes of equivalence, and in each class one
needs only one representative, for which the distributional work for test statistics should be carried
through; this is no different to assuming that the sample came from uniform distribution while testing
simple hypothesis.

The projections, as a result of estimation of parameters, are ubiquitous. They appear in situations
where so far nobody considered testing problems. Estimation of parameters - yes, but not testing,
in particular, not goodness of fit testing. From the families of discrete distributions, for which the
goodness of fit testing theory appeared only in 2013 (see Khmaladze (2013)), to empirical processes
in regression, and now testing models for point processes (see the article of Khmaladze (2020) in this
issue), testing parametric hypothesis for Markov chains and for Markov diffusion processes, like the
Ornstein – Uhlenbeck process, all are work in progress.

In this account of scientific contribution of Estate Khmaladze in statistics and stochastic models
we do not comment on the other fields of his research such as

– kernel density estimators,
– asymptotic of non-crossing probabilities with moving boundaries,
– formulation of the strong law of large numbers for Voronoi tessalation,
– extreme value theory and record processes

and various others. One can find these, e.g., in Mnacakanov and Hmaladze (1981), Kotel’nikova and
Khmaladze (1982), Khmaladze, Nadareishvili and Nikabadze (1997), Khmaladze and Shinjikashvili
(2001), Khmaladze and Toronjadze (2001) (see also Schneider and Weil (2008)), Can, Einmahl, Khmal-
adze and Laeven (2015).

References

1. J. -P. Aubin, H. Frankowska, Set-valued Analysis. Birkhäuser Boston, MA, 1990.
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ON THE TESTING HYPOTHESIS OF EQUALITY OF TWO BERNOULLI

REGRESSION FUNCTIONS

PETRE BABILUA AND ELIZBAR NADARAYA

Abstract. We establish the limit distribution of the square-integrable deviation of two nonpara-
metric kernel-type estimations for the Bernoulli regression functions. The criterion of testing the

hypothesis of two Bernoulli regression functions is constructed. The question as to its consistency

is studied. The power asymptotics of the constructed criterion is also studied for certain types of
close alternatives.

Assume that random variables Y (i), i = 1, 2, take two values: 1 and 0 with probabilities pi (“suc-
cess”) and 1 − pi (“failure”), i = 1, 2, respectively. Assume that the probability of “success” pi is a
function of an independent variable x ∈ [0, 1], i.e., pi = pi(x) = P{Y (i) = 1 | x} (see [2, 3, 8]). Let tj ,
j = 1, . . . , n, be points of a partition of the segment [0, 1]:

tj =
2j − 1

2n
, j = 1, . . . , n.

Let Y
(1)
i and Y

(2)
i , i = 1, . . . , n, be mutually independent Bernoulli random variables with

P{Y (k)
i = 1 | ti} = pk(ti) and P{Y (k)

i = 0 | ti} = 1− pk(ti),

i = 1, . . . , n, k = 1, 2.

Using the samples Y
(1)
1 , . . . , Y

(1)
n and Y

(2)
1 , . . . , Y

(2)
n , it is required to test the hypothesis

H0 : p1(x) = p2(x) = p(x), x ∈ [0, 1],

against a sequence of “close” alternatives:

H1n : p1(x) = p(x), p2(x) = p(x) + αnu(x) + o(αn),

where αn tends to 0 in a suitable way, u(x) 6= 0, x ∈ [0, 1], and the third term is o(αn) uniformly with
respect to x ∈ [0, 1].

The problem of comparison of two Bernoulli regression functions may appear in some applications,
e.g., in the quantum bioanalyses carried out in pharmacology. In this case, x is a dose of medicine
and p(x) is the probability of efficiency of the dose x [3, 6].

To test the hypothesis H0 we use the statistic:

Tn =
1

2
nbn

∫
Ωn(τ)

[
p̂1n(x)− p̂2n(x)

]2
p2
n(x) dx

=
1

2
nbn

∫
Ωn(τ)

[
p1n(x)− p2n(x)

]2
dx,

Ωn(τ) = [τbn, 1− τbn], τ > 0,

2020 Mathematics Subject Classification. 62G10, 62G20.
Key words and phrases. Bernoulli regression function; Power; Consistency; Limiting distribution.
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where

p̂in(x) = pin(x)p−1
n (x),

pin(x) = (nbn)−1
n∑
j=1

K
(x− tj

bn

)
Y

(i)
j , i = 1, 2,

pn(x) = (nbn)−1
n∑
j=1

K
(x− tj

bn

)
,

K(x) is a distribution density, bn → 0 is a sequence of positive numbers, and p̂in(x) is a kernel estimate
for the regression function [6, 9].

We assume that the kernel K(x) ≥ 0 is chosen so that it is a function with bounded variation
satisfying the following conditions: K(x) = K(−x), K(x) = 0 for |x| ≥ τ > 0 and∫

K(x) dx = 1,

By H(τ), we denote the class of such functions.
We also introduce the following notation:

T (1)
n =

1

2
nbn

∫
Ωn(τ)

[
p̃1n(x)− p̃2n(x)

]2
dx,

p̃in(x) = pin(x)−Epin(x), i = 1, 2.

It is clear that

T (1)
n = Hn +

1

2nbn

n∑
i=1

ε2
iQii, Hn =

1

nbn

∑
1≤i<j≤n

εiεjQij ,

εi = ε1i − ε2i, εki = Y
(k)
i − pk(ti), k = 1, 2, i = 1, . . . , n,

Qij = ψn(ti, tj), ψn(u, v) =

∫
Ωn(τ)

K
(x− u

bn

)
K
(x− v

bn

)
dx.

It is easy to see that

σ−1
n (T (1)

n −∆n) =

n∑
k=1

ξ
(n)
k +

1

2nbnσn

n∑
i=1

(ε2
i −Eε2

i )Qii,

∆n = ET (1)
n , σ2

n = V arHn = (nbn)−2
n∑
k=2

dk

k−1∑
i=1

diQ
2
ik,

di = d(ti) = V ar εi, i = 1, . . . , n,

ξ
(n)
k =

k−1∑
i=1

η
(n)
ik , k = 2, . . . , n, ξ

(n)
1 = 0, ξ

(n)
k = 0, k > n,

η
(n)
ij =

εiεjQij
nbnσn

, F (n)
k = σ(ε1, . . . , εk),

i.e., F (n)
k is a σ-algebra generated by random variables ε1, . . . , εk and F (n)

0 = (∅,Ω) in what follows,

for simplicity, we use the notation ξ
(n)
k , η

(n)
ij and F (n)

k instead of ξk, ηij Fk.

Lemma 1. The stochastic sequence (ξk,Fk)k≥1 is a martingale difference

Lemma 2 ( [7]). Let K(x) ∈ H(τ) and p(x), 0 ≤ x ≤ 1, be a function of bounded variation. If
nbn →∞, then

1

nbn

n∑
i=1

Kν1
(x− ti

bn

)
Kν2

(y − ti
bn

)
pν3(ti)
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=
1

bn

1∫
0

Kν1
(x− u

bn

)
Kν2

(y − u
bn

)
pν3(u) du+O

( 1

nbn

)
,

uniformly with respect x, y ∈ [0, 1], where νi ∈ N ∪ {0}, i = 1, 2, 3.

Lemma 3. Let K(x) ∈ H(τ), p(x) ∈ C1[0, 1] and let u(x) be a continuous function on [0, 1]. If

nb2n →∞ and αn = n−1/2b
−1/4
n , then, for the hypothesis H1n

b−1
n σ2

n −→ σ2(p) = 2

1∫
0

p2(x)(1− p(x))2 dx

∫
|x|≤2τ

K2
2 (x) dx (1)

and

b−1/2
n (∆n −∆(p)) = O(b1/2n ) +O(αnb

−1/2
n ) +O

( 1

nb
3/2
n

)
, (2)

where

∆n = ET (1)
n , ∆(p) =

1∫
0

p(x)(1− p(x)) dx

∫
|x|≤τ

K2(u) du, K2 = K ∗K,

and ∗ denotes the operation of convolution.

The following statement is true:

Theorem 1. Let K(x) ∈ H(τ) and p(x), u(x) ∈ C1[0, 1]. If nb2n → ∞ and αn = n−1/2b
−1/4
n , then,

for the hypothesis H1n,

b−1/2
n (Tn −∆(p))σ−1(p)

d−→ N(a, 1),

where ∆(p) and σ2(p) are defined in Lemma 3,
d−→ denotes the convergence in distribution, N(a, 1)

is a random variable having normal distribution with parameters (a, 1), and

a =
1

2σ(p)

1∫
0

u2(x) dx.

Proof. We have

Tn = T (1)
n + L(1)

n + L(2)
n ,

where

L(1)
n = nbn

∫
Ωn(τ)

[
p̃1n(x)− p̃2n(x)

] [
Ep1n(x)−Ep2n(x)

]
dx,

L(2)
n =

1

2
nbn

∫
Ωn(τ)

[
Ep1n(x)−Ep2n(x)

]2
dx.

By virtue of Lemma 2, we conclude that

b−1/2
n L(2)

n =
1

2
nb1/2n α2

n

∫
Ωn(τ)

{
1

bn

1∫
0

K
(x− t

bn

)
u(t) dt+O

( 1

nbn

)}2

dx. (3)

Since
[
x−1
bn

, xbn

]
⊃ [−τ, τ ] for all x ∈ Ωn(τ), it follows from (3) that

b−1/2
n L(2)

n =
1

2
nb1/2n α2

n

∫
Ωn(τ)

[ τ∫
−τ

K(t)u(x− bnt) dt+O
( 1

nbn

)]2

dx. (4)
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Further, since u(x) ∈ C1[0, 1], in view of (4), we get

b−1/2
n L(2)

n −→
1

2

1∫
0

u2(t) dt. (5)

We now show that

b−1/2
n L(1)

n
P−→ 0.

Thus, we have

b−1/2
n L(1)

n =
1

2
nb1/2n

∫
Ωn(τ)

p̃1n(x)
(
Ep1n(x)−Ep2n(x)

)
dx

− nb
1/2
n

2

∫
Ωn(τ)

p̃2n(x)
(
Ep1n(x)−Ep2n(x)

)
dx = I(1)

n + I(2)
n . (6)

It is clear that

E|I(1)
n | ≤

(
E(I(1)

n )2
)1/2

=
1

2
nb1/2n

[
E

( ∫
Ωn(τ)

p̃1n(x)
(
Ep1n(x)−Ep2n(x)

)
dx

)2]1/2

=
1

2
nb1/2n

[ ∫
Ωn(τ)

cov
(
p1n(x1), p1n(x2)

)(
Ep1n(x1)−Ep2n(x1)

)

×
(
Ep1n(x2)−Ep2n(x2)

)
dx1 dx2

]1/2

, Ωn(τ) = Ωn(τ)× Ωn(τ).

It is easy to see that

cov
(
p1n(x1), p1n(x2)

)
=

1

(nbn)2

n∑
i=1

K
(x1 − ti

bn

)
K
(x2 − ti

bn

)
p1(ti)(1− p1(ti)).

By virtue of Lemma 2, we find

cov
(
p1n(x1), p1n(x2)

)
= n−1b−2

n

1∫
0

K
(x1 − u

bn

)
K
(x2 − u

bn

)
p1(u)(1− p1(u)) du+O

( 1

(nbn)2

)
.

Hence,

E|I(1)
n | ≤

1

2
nb1/2n

{ ∫
Ωn(τ)

[
1

nb2n

×
1∫

0

K
(x1 − u

bn

)
K
(x2 − u

bn

)
p1(u)(1− p1(u)) du+

1

(nbn)2

]

×
(
Ep1n(x1)−Ep2n(x1)

)(
Ep1n(x2)−Ep2n(x2)

)
dx1 dx2

}1/2

≤ c3
√
n b1/2n αn = c3

1√
nαn

−→ 0,
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because
√
nαn =

1

b
1/4
n

−→∞.

Therefore, I
(1)
n

P−→ 0. Similarly, we prove that I
(2)
n

P−→ 0.
By using (6), we get

b−1/2
n L(1)

n
P−→ 0. (7)

To prove the theorem, it remains to show that

T
(1)
n −∆n

σn

d−→ N(0, 1).

We have
T

(1)
n −∆n

σn
= K(1)

n +K(2)
n ,

where

K(1)
n =

n∑
k=1

ξk, K(2)
n =

n∑
i=1

(ε2
i −Eε2

i )Qii

2nbnσn
.

We now show that K
(2)
n

P−→ 0. Indeed,

V ar(K(2)
n ) = (2nbnσn)−2

n∑
i=1

V arε2
iQ

2
ii

= (2nbnσn)−2
n∑
i=1

( 2∑
k=1

pk(ti)(1− pk(ti))
[
1− 3pk(ti)(1− pk(ti))

])
Q2
ii.

Since Qii ≤ c4bn b−1
n σ2

n −→ σ2(p) as n→∞, this yields

V ar(K(2)
n ) ≤ c5

1

nbn
.

Thus, K
(2)
n

P−→ 0.

We now prove that K
(1)
n

d−→ N(0, 1). To this end, we show that it is possible to apply Corollaries
2 and 6 of Theorem 2 in [4]. It is necessary to check the validity of conditions imposed in these
statements and guaranteeing the asymptotic normality of a square-integrable martingale difference
and to take into account the fact that, according to Lemma 1, the sequence {ξk,Fk}k≥1 is, in fact, a
square-integrable martingale difference.

It is easy to see that
n∑
k=1

Eξ2
k = 1. The asymptotic normality of K

(1)
n is realized whenever

n∑
k=1

E
[
ξ2
kI
(
|ξk| ≥ ε

)
| Fk−1

]
P−→ 0 (8)

and
n∑
k=1

ξ2
k

P−→ 1 (9)

as n→∞. In [4], it is proved that, under the conditions

sup
1≤k≤n

|ξk|
P−→ 0

and (9), condition (8) is also satisfied.
Note that, for ε > 0, we have

P

{
sup

1≤k≤n
|ξk| ≥ ε

}
≤ ε−4

n∑
k=1

Eξ4
k.
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Hence, by virtue of relation (11) presented in what follows, in order to prove

K(1)
n

d−→ N(0, 1)

it remains to check the validity of condition (9). To this end, it suffices to show that

E
( n∑
k=1

ξ2
k − 1

)2

−→ 0 as n→∞

i.e., since
n∑
k=1

Eξ2
k = 1, we get

E
( n∑
k=1

ξ2
k

)2

=

n∑
k=1

Eξ4
k + 2

∑
1≤k1<k2≤n

Eξ2
k1ξ

2
k2 −→ 1. (10)

We now prove (10). Taking into account the definitions of ηik and ξk, we obtain

n∑
k=1

Eξ4
k = I(1)

n + I(2)
n ,

where

I(1)
n =

1

(nbn)4σ4
n

n∑
k=2

Eε4
k

k−1∑
j=1

Eε4
jQ

4
jk,

I(2)
n =

3

(nbn)4σ4
n

n∑
k=2

∑
i 6=j

Eε2
jEε

2
iQ

2
jkQ

2
ik.

Since

Qij ≤ c6bn, Eε4
j ≤ 8

2∑
k=1

pk(tj)
(
1− pk(tj)

)[
1− 3pk(tj)

(
1− pk(tj)

)]
≤ 4,

Eε2
j ≤

1

2
, |Eε3

j | ≤
2∑
k=1

pk(tj)
(
1− pk(tj)

)[(
1− pk(tj)

)2
+ p2

k(tj)
]
≤ 1

and b−1
n σ2

n −→ σ2(p), we find

I(1)
n = O

( 1

(nbn)2

)
, I(2)

n = O
( 1

nb2n

)
.

Hence,
n∑
k=1

Eξ4
k −→ 0 for n→∞. (11)

Further, it follows from the definition of ξi that

ξ2
k1ξ

2
k2 = B

(1)
k1k2

+B
(2)
k1k2

+B
(3)
k1k2

+B
(4)
k1k2

,

where

B
(1)
k1k2

= σ2(k1)σ2(k2), B
(2)
k1k2

= σ2(k1)σ1(k2),

B
(3)
k1k2

= σ1(k1)σ2(k2), B
(4)
k1k2

= σ1(k1)σ1(k2),

σ1(k) =
∑

1≤i 6=j≤k−1

ηikηjk, σ2(k) =

k−1∑
i=1

η2
ik.

Therefore,

2
∑

1≤k1<k2≤n

Eξ2
k1ξ

2
k2 =

4∑
i=1

A(i)
n ,
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where
A(i)
n = 2

∑
1≤k1<k2≤n

EB
(i)
k1k2

, i = 1, 2, 3, 4.

We now consider A
(3)
n . By using the definition of ηij , we can easily show that EB

(3)
k1k2

= 0 and, hence,

A(3)
n = 0. (12)

We now estimate A
(2)
n . We have

|EB(2)
k1k2
| = 1

(nbnσn)4

∣∣∣ k1−1∑
i=1

Eε3
iEε

3
k1Eε

2
k2Q

2
ik1Qik2Qk1k2

∣∣∣.
Since E|ε3

i | ≤ 1 and Qij ≤ c6bn, we get

|EB(2)
k1k2
| ≤ c6

k1 − 1

(nσn)4
.

Further, since ∑
1≤k1<k2≤n

(k1 − 1) = O(n3) and b−1
n σ2

n −→ σ2(p) > 0,

we obtain

|A(2)
n | ≤ c7

n3

n4σ4
n

= c7
1

nb2n(b−1
n σ2

n)2
= O

( 1

nb2n

)
. (13)

We now establish that A
(1)
n → 1 as n→∞. It is clear that

A(1)
n = 2

∑
1≤k1<k2≤n

EB
(1)
k1k2

= S(1)
n + S(2)

n ,

where

S(1)
n = 2

∑
1≤k1<k2≤n

( k1−1∑
i=1

Eη2
ik1

)( k2−1∑
j=1

Eη2
jk2

)
,

S(2)
n = 2

( ∑
k1<k2

EB
(1)
k1k2
−
∑
k1<k2

( k1−1∑
i=1

Eη2
ik1

)( k2−1∑
j=1

Eη2
jk2

))
.

It follows from the definition of σ2
n that

S(1)
n = 1−

n∑
k=2

( k−1∑
i=1

Eη2
ik

)2

.

Furthermore,
n∑
k=2

( k−1∑
i=1

Eη2
ik

)2

≤ c8
b4nn

3

(nbn)4σ4
n

= O
( 1

nb2n

)
.

This yields

S(1)
n = 1 +O

( 1

nb2

)
. (14)

Further, we show that S
(2)
n → 0. The quantity S

(2)
n can be rewritten in the form

S(2)
n = 2

∑
k1<k2

[ k1−1∑
i=1

cov(η2
ik1 , η

2
ik2) +

k1−1∑
i=1

cov(η2
ik1 , η

2
k1k2)

]
.

It is easy to see that

cov(η2
ik1 , η

2
ik2) = O

( 1

n4σ4
n

)
.

However, since ∑
1≤k1<k2≤n

(k1 − 1) = O(n3),
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we conclude that

S(2)
n = O

( 1

nσ4
n

)
= O

( 1

nb2n

)
. (15)

Hence, according to (14) and (15), we find

A(1)
n = 1 +O

( 1

nb2n

)
. (16)

Finally, we show that A
(4)
n → 0 as n → ∞. By using the definition of ηij and the inequalities

Qij ≥ 0 and

Eε2
i = d(ti) ≤

1

2
,

we obtain

EB
(4)
k1k2

= 4
∑

1≤t<s≤k1−1

Eηsk1ηtk1ηsk2ηtk2

≤ c8
n4b4nσ

4
n

∑
1≤t<s≤k1−1

Qsk1Qtk1Qsk2Qtk2 .

Thus,

A(4)
n ≤

c9
n2b4nσ

4
n

∑
k1<k2

Ak1k2 ,

where

Ak1k2 =
1

n2

∑
1≤t<s≤k1−1

Qsk1Qtk1Qsk2Qtk2 .

At the same time, ∑
k1<k2

Ak1k2 ≤
n∑

k1,k2=1

( 1

n

n∑
t=1

Qtk1Qtk2

)2

.

Therefore,

A(4)
n ≤ c10

1

n2b4nσ
4
n

n∑
k1,k2=1

[ ∫
Ω(τ)

∫
Ωn(τ)

K
(x− xk1

bn

)
K
(y − xk2

bn

)

× 1

n

n∑
i=1

K
(x− xi

bn

)
K
(y − xi

bn

)
dx dy

)]2

. (17)

Further, in view of Lemma 2, it follows from (17) that

A(4)
n ≤

c11

b4nσ
4
n

n∑
k1,k2=1

{
1

n

1∫
0

∫
Ωn(τ)

∫
Ωn(τ)

K
(x− xk1

bn

)
K
(y − xk2

bn

)

×K
(x− u

bn

)
K
(y − u

bn

)
du dx dy

}2

+O
( 1

nb2n

)
. (18)

In relation (18), we now apply Lemma 2 once again. This yields

A(4)
n ≤

c12

b4nσ
4
n

1∫
0

1∫
0

1∫
0

1∫
0

ψn(u1, v2)ψn(u1, v1)

×ψn(u2, v1)ψn(u2, v2) du1 du2 dv1 dv2, (19)

where

ψn(x, y) =

∫
Ωn(τ)

K
( t− x

bn

)
K
( t− y
bn

)
dt.
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We now estimate the integral in (19). Since
[
x−1
bn

, xbn

]
⊇ [−τ, τ ] for all x ∈ Ωn(τ), we get

1∫
0

ψn(u1, v2)ψn(u1, v1) du1

= bn

∫
Ωn(τ)

K
( t− v2

bn

)
K
(z − v1

bn

)
K2

(z − t
bn

)
dt dz

≤ c13b
3
n, K2 = K ∗K, Ωn(τ) = Ωn(τ)× Ωn(τ).

Hence,

A(4)
n ≤ c14

1

bnσ4
n

1∫
0

1∫
0

1∫
0

ψn(u2, v1)ψn(u2, v2) du2 dv1 dv2 +O
( 1

nb2n

)
. (20)

Further, in a similar way, we derive the following result from (20):

A(4)
n ≤ c15

b4n
bnσ4

n

+O
( 1

nb2n

)
= O

( b4n
b3n(b−1

n σ2
n)2

)
+O

( 1

nb2n

)
= O(bn) +O

( 1

nb2n

)
. (21)

Combining relations(12), (13), (16) and (21), we conclude that

2
∑

1≤k1<k2≤n

Eξ2
k1ξ

2
k2 −→ 1.

In view of relation (11), this yields that

E
( n∑
k=1

ξ2
k − 1

)2

−→ 0 for n→∞.

Hence,

T
(1)
n −∆n

σn

d−→ N(0, 1). (22)

Further, by using the representation Tn = T
(1)
n +L

(1)
n +L

(2)
n , Lemma 3 and relations (5), (7), and (22)

we get

b−1/2
n

(Tn −∆(p)

σ(p)

)
d−→ N

(
1

2σ(p)

1∫
0

u2(x) dx, 1

)
.

Theorem 1 is proved. �

Corollary 1. Let K(u) ∈ H(τ) and p(x) ∈ C1[0, 1]. If nb2n →∞, then the following relation is true
for the hypothesis H0:

b−1/2
n (Tn −∆(p))σ−1(p)

d−→ N(0, 1). (23)

As an important application of Corollary 1, we construct a criterion for the testing of a simple
hypothesis H0 of equality of two Bernoulli regression functions p1(x) = p2(x) = p(x), where the
function p(x) is completely defined. The critical domain is determined by the inequality

Tn ≥ dn(α) = ∆(p) + b1/2n σ(p)λα,

where Φ(λα) = 1− α and Φ(λ) is the standard normal distribution.

Corollary 2. Let K(u) ∈ H(τ) and p(x), u(x) ∈ C1[0, 1]. If nb2n → ∞ and αn = n−1/2b
−1/4
n , then

the local behavior of the power PH1n
(Tn ≥ dn(α)) has the form

PH1n
(Tn ≥ dn(α)) −→ 1− Φ

(
λα −

A(u)

σ(p)

)
,
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where

A(u) =
1

2

1∫
0

u2(x) dx > 0.

We now assume that p(x) is not defined by the hypothesis (i.e., we testing a composite hypothesis).
In this case, it is impossible to apply inequality (1) directly. First, it is necessary to replace the

unknown parameters ∆(p) and σ2(p) appearing in (23) by certain estimates ∆̃n and σ̃2
n, respectively.

As the estimates ∆(p) and σ2(p), we take the following statistics:

∆̃n =

∫
Ωn(τ)

λn(x) dx

∫
|x|≤τ

K2(x) dx,

σ̃2
n = 2

∫
Ωn(τ)

λ2
n(x) dx

∫
|x|≤2τ

K2
2 (x) dx,

λn(x) =
1

2

[
p1n(x)

(
pn(x)− p1n(x)

)
+ p2n(x)

(
pn(x)− p2n(x)

)]
.

We now show that

b−1/2
n (∆̃n −∆(p))

P−→ 0, σ̃2
n

P−→ σ2(p). (24)

Indeed, since

pn(x) = 1 +O
( 1

nbn

)
uniformly with respect to x ∈ Ωn(τ) and |pin(x)| ≤ c16, x ∈ [0, 1], i = 1, 2, we find

b−1/2
n E|∆̃n −∆(p)|

≤ c17b
−1/2
n

[ ∫
Ωn(τ)

(
E
(
p1n(x)−Ep1n(x)

)2)1/2

dx

+

∫
Ωn(τ)

(
E
(
p2n(x)−Ep2n(x)

)2)1/2

dx

]

+b−1/2
n

∫
Ωn(τ)

∣∣Ep1n(x)− p(x)
∣∣ dx+ b−1/2

n

∫
Ωn(τ)

∣∣Ep2n(x)− p(x)
∣∣ dx.

Further, by using Lemma 2 and taking into account the facts that p(x) ∈ C1[0, 1] and
[
x−1
bn

, xbn

]
⊃

[−τ, τ ] for all x ∈ Ωn(τ), we immediately conclude that

b−1/2
n E|∆̃n −∆(p)|

≤ c18b
−1/2
n

{ ∫
Ωn(τ)

[
1

nbn

1

bn

1∫
0

K2
(x− u

bn

)
p(u)(1− p(u)) du+O

( 1

(nbn)2

)]1/2

+O(bn) +O
( 1

nbn

)}
= O

( 1√
n bn

)
+O(b1/2n ) +O

( 1

nb3/2

)
.

Hence, b
−1/2
n (∆̃n −∆(p))

P−→ 0. Similarly, we can show that σ̃2
n

P−→ σ2(p).

Theorem 2. Let K(x) ∈ H(τ) and p1(x) = p2(x) = p(x) ∈ C1[0, 1]. If nb2n →∞, then, as n→∞,

b−1/2
n (Tn − ∆̃n)σ̃−1

n
d−→ N(0, 1).

The proof follows from (23) and (24).
Theorem 2 enables us to construct an asymptotic criterion for the testing of the composite hy-

pothesis
H0 : p1(x) = p2(x), x ∈ [0, 1].
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The critical domain for the testing of this hypothesis is given by the inequality

Tn ≥ d̃n(α) = ∆̃n + b−1/2
n σ̃nλα, Φ(λα) = 1− α. (25)

Now let us investigate the asymptotic property of criterion (25) (i.e., the behavior of the power
function as n→∞).

Theorem 3. Let K(x) ∈ H(τ), p1(x), p2(x) ∈ C1[0, 1]. If nb2n →∞, then

γn(p1, p2) = PH1

(
Tn ≥ d̃n(α)

)
−→ 1

as n→∞. Any pair (p1(x), p2(x)), 0 ≤ pi(x) ≤ 1, pi(x) ∈ C1[0, 1], i = 1, 2, such that p1(x) 6= p2(x)
at at least one point x, x ∈ [0, 1]. is an alternative of the hypothesis H1.

Proof. Denote

Tn =
1

2
nbn

∫
Ωn

(
p1n(x)− p2n(x)

)2
dx,

pin(x) = pin(x)−Epin(x), i = 1, 2.

By analogy with (1), (2) and (24), we can readily show that the following is true for the hypothesis H1

b−1
n σ2

n −→ σ2(p1, p2) = 2

1∫
0

d2(x) dx

∫
|x|≤2τ

K2
2 (x) dx,

σ̃2
n

P−→ σ2(p1, p2), ∆̃n
P−→ ∆(p1, p2), ETn −→ ∆(p1, p2),

∆(p1, p2) =

1∫
0

d(x) dx

∫
|x|≤τ

K2(x) dx,

d(x) =
1

2

2∑
k=1

pk(x)(1− pk(x)).

(26)

Further, in view of Lemma 2 and the fact that
[
x−1
bn

, xbn

]
⊃ [−τ, τ ], x ∈ Ωn(τ) we obtain∫

Ωn

(
Ep1n(x)−Ep2n(x)

)2
dx

=

∫
Ωn

( τ∫
−τ

K(t)
(
p1(x− bn(u))− p2(x− bn(u))

)2
du

)
dx+O

( 1

nbn

)
.

According to the condition p1(x), p2(x) ∈ C1[0, 1], we get∫
Ωn

(
Ep1n(x)−Ep2n(x)

)2
dx =

1∫
0

(
p1(x)− p2(x)

)2
dx+O(bn) +O

( 1

nbn

)
. (27)

By using (26) and (27), after simple transformations, we find

γn(p1, p2) = PH1

[
Tn −ETn

σn

≥ −nb1/2n

( 1∫
0

(
p1(x)− p2(x)

)2
dx+ op(1)

)]
. (28)

Finally, since

(Tn −ETn)σ−1
n

d−→ N(0, 1)
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(the proof of this statement is similar to the proof of (22)) and nb
1/2
n →∞, it follows from (28) that

γn(p1, p2)→ 1 as n→∞. �
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MARAO, ABOUT HOPF FIBRATIONS

GURAM BERISHVILI

Abstract. A marao is a cover of a vector space by a set of equidimensional subspaces with pairwise

trivial intersections. Such structures give rise to fibrations of particular kind. Naturally occurring
examples are described. In particular, it is explained how the classical Hopf fibrations can be

uniformly obtained from maraos.

The stratification of the spheres is known, which Hopf noticed and published in 1931. It is a
foliation of a three-dimensional sphere by circles, and this set of circles carries natural structure of a
manifold diffeomorphic to a sphere of two dimensions. This situation is easy to describe, if we see a
three-dimensional sphere as the set of rays of four-dimensional linear space. I must also draw attention
to the analogy: a quotient space of linear space is the decomposition of the space into a set of affine
subspaces, and Marao is the decomposition of the space into a set of linear subspaces.
Definition.

A set of linear subspaces of a linear space S is a marao if
– the intersection of each pair of two subspaces is zero
– the union of all subspaces is equal to the basic space S.

Notation: Mk(S) is a marao of k-dimensional subspaces in the linear space S.

An example. The set of all one-dimensional subspaces of the linear space S is called projective
space. This set meets the requirements of the definition and therefore it is the Marao M1(S).

The main example. Let W ⊃ V be an extension of fields. Each W -linear space is also V -linear.
The set of all W -linear subspaces of dimension one in a W -linear space S is a projective space. This
set as the set of V -linear subspaces of the space S remains again a marao, but of larger dimension,
M1(S) as seen from W and Mk(S) as seen from V , k = dimV W .

From this example, we can show marao as a generalization of field extension.
The dimension of subspaces of the Marao does not exceed half of the dimension of the main space.

The only exception is when Marao has a single element, Marao trivial, the only element of which
is itself the linear space S. Marao M with only one subspace S ∈ M . Marao with dimension of
subspaces half of the dimension of the main space will be called middle marao.

Let us have a marao Mk(S). Let’s consider the map from the set of all non-zero vectors in S
to the marao m : S∗ → Mk(S), x 7→ m(x) 3 x, x ∈ m(x) ∈ Mk(S). This map is part of the
standard fibration over the Grassmanian, when viewing Mk(S) as a subset of the Grassmanian of all
k-dimensional linear subspaces of S. S∗ → M and S → S/p are two orthogonal fibrations, for any
p ∈M : the fiber of one is a section in the other and vice versa.

Suppose that Mk(S) is a marao in a linear space S of dimension n and the dimension of the
members of the marao is k. Choose a point p of the marao and a complementary subspace A for p in
S, of dimension n − k and divide M into two subspaces M1 and M2. M1 is the set of points of the
marao which have zero intersection with A, while M2 is the set of points having nonzero intersection
with A, that is, elements of the marao which are completely in A or partially intersect A. Since a
point of M1 is completely (except zero, of course) outside A, it is represented as a graph of a linear
map from p to A, hence M1 can be identified with a subset of the space of all linear maps from p to
A, M1 ⊂ Lin(p,A). Consider the map A∗ → Mk(S), x 7→ m(x) ∈ Mk(S). So the marao Mk(S) is
the union of the image of A∗ under this map and of the subspace M1 of the linear space Lin(p,A).
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The above simplifies for middle maraos since in that case for a complementary subspace can be used
any point q of the marao different from p, and in this case the map (q = A)∗ → Mk(S) sends every
vector to the same point q. Hence in this case the marao is obtained from M1 ⊂ Lin(p,A) by adding
the single point q. Moreover, in this case fixing any vector e not in q, the map x → m(e + x) gives
a bijection between the linear space q and the set Mk(S)\{q} of all elements of the marao except q.
Thus, a middle marao is obtained from the linear space q by adding a single point.

To a vector u from S/p can be assigned a subspace of the marao: to the vector x of u we associate its
containing element m(x) of the marao, and the subset of all m(x) for x ∈ u is denoted by m(u) ⊂M ,
x ∈ m(x) ∈ m(u) ⊂Mk(S).

There are many structures on the Grassmannian: the natural linear bundle, the fiber over the
point p being itself p as linear space, and the tangent space of the Grassmanian at its point p is
naturally isomorphic to Lin(p, S/p). The map m : S∗ → M induces linear map on tangent spaces
S → TpM ⊂ Lin(p, S/p) with the kernel p. The tangent space TpM is therefore isomorphic to the
quotient space S/p.
Hopf fibration Suppose given a linear space S and in S a Marao Mn(S) (dimension of the sub-
spaces n), and given as well a marao in each of its elements C (dimension of the subspaces k). We
have a total space Mk(S) of the fibration (the union of the small Maraos Mk(C); it is a marao in
S with dimension of the subspaces k) and the base Marao Mn(S). Over each point p the fiber is
equal to the Marao Mk(p). Such a fibration can be named as Hopf fibration since the famous Hopf
fibrations are main examples.

(C8 = R16)∗ → S15 → RP 15 = M1(R16)→ CP 7 = M2(R16)→M4(R16)→M8R16 = S8

fibers: ray, two opposite directional rays or the sphere S0, M1(R2) or the sphere S1, M2(R4) or the
sphere S2, M4(R8) or the sphere S4, from the second to the end the fiber is rays of the 8-dimensional
linear space or the sphere S7.

(C4 = R8)∗ → S7 → RP 7 = M1(R8)→M2R8 = (CP 3)→M4(R8) = S4

fibers: ray, two opposite directional rays or the sphere S0, M1
2 or the sphere S1, M2

4 or the sphere S2,
from the second to the end the fiber is rays of the 4-dimensional linear space or the sphere S3.

(C2 = R4)∗ → S3 → RP 3 = M1
4 → CP 1 = M2

4 = S2

fibers: ray, two opposite directional rays or the sphere S0, M1
2 or the sphere S1, from the second to

the end the fiber is rays of the 4-dimensional linear space or the sphere S3.

(C = R2)∗ → S1 → RP 1 = M1
2 = S1

fibers: ray, two opposite directional rays or the sphere S0, two points or sphere S0.
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CURIOSITIES REGARDING WAITING TIMES IN PÓLYA’S URN MODEL

NORBERT HENZE1 AND MARK HOLMES2

Abstract. Consider an urn, initially containing b black and w white balls. Select a ball at random

and observe its colour. If it is black, stop. Otherwise, return the white ball together with another
white ball to the urn. Continue selecting at random, each time adding a white ball, until a black ball

is selected. Let Tb,w denote the number of draws until this happens. Surprisingly, the expectation

of Tb,w is infinite for the “fair” initial scenario b = w = 1, but finite if b = 2 and w = 109. In fact,

E[Tb,w] is finite if and only if b ≥ 2, and the variance of Tb,w is finite if and only if b ≥ 3, regardless

of the number w of white balls. These observations extend to higher moments.

1. Introduction

The classical Pólya–Eggenburger urn is an elegant model in probability theory that is often pre-
sented in a first course on martingales (typically in a graduate probability theory course). In its
simplest case, the model can be described as follows. Starting with b black and w white balls in an
urn, choose a ball uniformly at random from the urn, observe the colour, return the chosen ball to
the urn together with another ball of the same colour, then repeat. The number Bn (say) of times a
black ball is drawn after n drawings has the well-known Pólya distribution

P(Bn = k) =

(
n

k

)∏k−1
i=0 (b+ i)

∏n−k
j=0 (w + j)∏n−1

`=0 (b+ w + `)
, k = 0, . . . , n, (1)

where an empty product is defined to be one, see, e.g., [4, p. 177]. It is easy to see that the proportion
Xn = (b + Bn)/(b + w + n) of black balls at time n is a bounded martingale (with respect to the
natural filtration), with B0 = b/(b + w), and thus Xn converges almost surely to a random variable
X. Here, X has a beta β(b, w) distribution, see, e.g., [7, Theorem 2.1]. In the special case b = w = 1,
equation (1) reduces to the discrete uniform distribution P(Bn = k) = 1/(n+ 1), and the limit X has
a standard uniform distribution.

For later purposes, it will be convenient to regard the distribution of Bn as a special case of a
Beta-binomial distribution, see, e.g., [5, p. 242]. The latter distribution originates as follows: Let P
have a Beta β(u, v)-distribution, where u, v > 0. Suppose that, conditionally on P = p, the random
variable M has a binomial distribution Bin(n, p). Then, for k ∈ {0, 1, . . . , n}, we have

P(M = k) =

1∫
0

(
n

k

)
pk(1− p)n−k · 1

B(u, v)
pu−1(1− p)v−1 dp (2)

=

(
n

k

)
B(u+ k, v + n− k)

B(u, v)
, (3)

where B(·, ·) is the Beta function. The distribution of M is called the Beta-binomial distribution with
parameters n, u and v. By using the relation B(u, v) = Γ(u)Γ(v)/Γ(u+ v), where Γ(·) is the Gamma
function, we see that the distribution of Bn is obtained from (3) by putting u = b and w = v.

Inverse Pólya distributions originate if one asks for the number of drawings needed to observe a
specified number of black balls under the above or more general replacement schedules, see, e.g., [4,
p. 192]. Paper [3] considers waiting times for the first occurrence of a specified pattern in Pólya’s urn
scheme. A special case is the waiting time until the first occurrence of a black ball, which we will
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focus on in this note. For the recent work on the inverse Pólya distributions, see, e.g., [1, 2], and [6].
In what follows, we consider some curiosities concerning the (random) time until we first draw a black
ball, denoted by Tw,b, that evidently have not been highlighted before.

2. One Black Ball

We first consider the standard “fair” case where the urn contains one black and one white ball at
the outset. We then have

P(T1,1 > n) =
1

2
· 2

3
· · · · · n− 1

n
· n

n+ 1
=

1

n+ 1

and thus P(T1,1 < ∞) = 1. Hence, the black ball will be drawn with probability one in finite time.
However, since

∑∞
n=0 P(T1,1 > n) =∞, the expectation of T1,1 is infinite.

In view of P(T1,1 = j) = P(T1,1 > j − 1) − P(T1,1 > j) = 1/(j(j + 1)), notice that the conditional
expectation of T1,1, given T1,1 ≤ k, is

E[T1,1|T1,1 ≤ k] =
1

P(T1,1 ≤ k)

k∑
j=1

j P(T1,1 = j) =
(k + 1)

k

k∑
j=1

1

j + 1
.

Using
∑n

j=1
1
j = log n + γ + o(1), where γ = 0.57721 . . . is the Euler–Mascheroni constant, it follows

that

E[T1,1|T1,1 ≤ k] = log k + γ − 1 + o(1), as k →∞.
In other words, given that you have selected a black ball by time k, on average you first picked one at
a relatively early time of log(k). This is intuitively reasonable because it is much easier to choose a
black ball for the first time at an early time, before white balls have been reinforced too much. Indeed,
for large k, we find that P(T1,1 > k/2|T1,1 ≤ k) is of order 1/k.

We incidentally note that the probability that T1,1 takes an odd value equals log 2, since

∞∑
`=0

P(T1,1 = 2`+ 1) =

∞∑
`=0

1

(2`+ 1)(2`+ 2)
=

∞∑
`=0

(
1

2`+ 1
− 1

2`+ 2

)

=

∞∑
j=1

(−1)j−1

j
.

Continue to set b = 1, but now allow w to be arbitrarily large. Since

P(T1,w > n) =
w

w + 1
· w + 1

w + 2
· · · · · w + n− 2

w + n− 1
· w + n− 1

w + n
=

w

w + n
,

it follows that P(T1,w < ∞) = 1, regardless of the number of white balls. If, for example, w = 109,
drawing the only black ball seems to be like finding a needle in a haystack, but you have time beyond
all limits, and the situation of having one black and 109 white balls in the urn could have happended
in the course of the stochastic process involving over time under the initial scenario b = w = 1 after
109 − 1 draws.

3. A Second Black Ball Works Wonders

Suppose now that at the beginning there are b = 2 black and w white balls in the urn. We now
have

P(T2,w > n) =
w

w + 2
· w + 1

w + 3
· w + 2

w + 4
· · · · · w + n− 1

w + n+ 1
=

w(w + 1)

(w + n)(w + n+ 1)
.

Since
∑∞

n=1 P(T2,w > n) <∞, we do not only have P(T2,w <∞) = 1, but, in addition, the expectation
of T2,w is finite, irrespective of the number of white balls. More specifically, we have

E[T2,w] =

∞∑
k=0

P(T2,w > k) = w(w + 1)

∞∑
k=0

1

(w + k)(w + k + 1)
= w + 1.

Here, the last equality follows because the series is telescoping.
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Remark 3.1. Starting from b = 1, w = 1, we may continue observing Pólya’s urn after T1,1 until

the time T
(2)
1,1 at which we draw a second black ball. At the time T1,1 that we first draw a black

ball, we return it and add another, so there are then 2 black balls and T1,1 white balls. Since

E[T
(2)
1,1 −T1,1 |T1,1 = w] = E[T2,w] = w+1, we know that this expectation is finite for every w. We can

interpret this as E[T
(2)
1,1 −T1,1 |T1,1] = T1,1 +1, or “given the value of T1,1, the expected additional time

required to draw a second black ball is finite” (a.s.). Nevertheless, E[T
(2)
1,1 − T1,1] = E[T1,1 + 1] =∞.

4. The General Case

We now assume that the initial configuration is b black and w white balls. The event that each of
the first n draws yields a white ball has probability

P(Tb,w > n) =

n−1∏
i=0

w + i

b+ w + i

=
(b+ w − 1)!

(w − 1)!
· (w − 1 + n)!

(b+ w − 1 + n)!
, n ≥ 1.

The first ratio does not depend on n, and the second is equal to

1

(w + n) · · · · · (b+ w − 1 + n)
. (4)

It immediately follows that P(Tb,w < ∞) = 1, but we can infer more from (4). To this end, notice
that this expression is bounded from below by (b+w+ n)−b and from above by n−b, which, for each
integer r, shows that

E
[
T r
b,w

]
=

∞∑
n=1

nrP(Tb,w = n)

=

∞∑
n=1

nr
(b+ w − 1)!

(w − 1)!

(w + n− 2)!

(b+ w + n− 2)!

b

b+ w + n− 1

=

∞∑
n=1

nrO(n−(b+1)).

Hence, E
[
T r
b,w

]
<∞ if and only if b > r. Surprisingly, this moment condition does not depend on

the number w of white balls. In particular, the variance of Tb,w exists if and only if there are at least
3 black balls in the urn at the beginning. In the case b = 3, straightforward calculations involving
telescoping series yield E[T3,w] = (w + 2)/2, and, using the fact that E[L2] =

∑∞
n=0(2n+ 1)P(L > n)

for a nonnegative integer-valued random variable L, we have E[T 2
3,w] = (w + 2)(2w + 1)/2, and thus

the variance is V(T3,w) = 3w(w + 2)/4.

Remark 4.1. In [8], one finds the general formula

E[Tb,w] =
b+ w − 1

b− 1
(5)

if b ≥ 2, which was obtained from a hypergeometric series. As remarked in [9], (5) follows readily from
(2), since, conditionally on P = p, drawings are according to an independent and identically distributed
Bernoulli sequence with probability of success given by p, where success means drawing a black ball.
Since, conditionally on P = p, the distribution of Tb,w is geometric, we have E[Tb,w|P = p] = 1/p and
thus

E[Tb,w] =

1∫
0

E[Tb,w|P = p]
1

B(b, w)
pb−1(1− p)w−1 dp =

B(b− 1, w)

B(b, w)

=
b+ w − 1

b− 1
.
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From (2) and the fact that V(Tb,w) = E[V(Tb,w|P )] + V(E[Tb,w|P ]), we can also obtain a general
formula for the variance of Tb,w if b ≥ 3. Since the conditional variance of Tb,w, given P = p, is the
variance of a geometric distribution with parameter p and thus equal to (1− p)/p2, a straightforward
algebra gives

E[V(Tb,w|P )] =

1∫
0

1− p
p2

1

B(b, w)
pb−1(1− p)w−1 dp =

w(b+ w − 1)

(b− 1)(b− 2)
.

Furthermore, E[Tb,w|P ] = 1/P , and thus some algebra yields

V(E[Tb,w|P ]) =
w(b+ w − 1)

(b− 1)2(b− 2)
.

Summing up, we obtain

V(Tb,w) =
bw(b+ w − 1)

(b− 1)2(b− 2)
.

Notice that, in view of E[T `
b,w] = E

[
E[T `

b,w|P ]
]
, one can fairly easily even obtain closed-form expressions

for higher moments of Tb,w.

5. A General Replacement Scheme

Suppose now that if a white ball shows up at time k, we return this ball and additionally ak white
balls, where ak ≥ 1. Notice that this flexible model includes the special case ak = 1 that has been
considered so far, but also the case that a constant number larger than one of white balls is returned to
the urn together with the chosen ball. The following result gives a necessary and sufficient condition
on the sequence (ak) for the probability that a black ball shows up at a finite time.

Lemma 5.1. Let sk = a1 + · · ·+ ak, k ≥ 1. We then have

P(Tb,w <∞) = 1⇐⇒
∞∑
j=1

1

sj
=∞.

Proof. Putting s0 = 0, we have

P(Tb,w > n) =

n−1∏
j=0

w + sj
b+ w + sj

.

Using the inequalities 1− 1/t ≤ log t ≤ t− 1, t > 0, straightforward calculations yield

−b
n−1∑
j=0

1

w + sj
≤ logP(Tb,w > n) ≤ −b

n−1∑
j=0

1

b+ w + sj
.

Hence logP(Tb,w > n)→ −∞ as n→∞ if and only if the series
∑∞

j=0 1/sj diverges, and the assertion
follows. �

From this result it follows that P(Tb,w < ∞) = 1 even if b = 1, w is arbitrarily large, and a fixed
huge number of additional white balls is added to the urn after each draw of a white ball, but not if
at the kth time we select a white ball we return it and add k extra white balls, for example.

In the case where we add a constant c additional number of white balls to the urn whenever we
select a white ball, we can also consider the expected time to select a black ball.

Lemma 5.2. In the case where we start with w white balls and b black balls in the urn, and add c ≥ 1
additional white balls whenever white is selected from the urn, we find that E[Tb,w] <∞ if and only if
b > c.
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Proof. In this context we can write

P(Tb,w > n) =

n−1∏
j=0

w
c + j

b
c + w

c + j

=
w
c

b
c + w

c

×
w
c + 1

b
c + w

c + 1
× · · · ×

w
c + n− 2

b
c + w

c + n− 2
×

w
c + n− 1

b
c + w

c + n− 1
.

If b/c ≤ 1, then the numerator of the j + 1st term in the product is greater than or equal to the
denominator of the jth term and so this product is at least

w
c

w
c + b

c + n− 1
,

which is not summable in n, so the expectation of Tb,n is infinite.
If b/c ≥ 2, then the numerator of the j+2nd term in the product is no larger than the denominator

of the jth term, so for some constant a we have P(Tb,w > n) ≤ an−2 for all n sufficiently large. This
is summable in n, so the expectation is finite when b/c ≥ 2.

The case b/c ∈ (1, 2) can be handled by a slightly more elaborate (but standard) approach, which
we now quickly present. We can write

P(Tb,w > n) =

n−1∏
j=0

(
1−

b
c

b
c + w

c + j

)
≤ exp

{
− b

c

n−1∑
j=0

1
b
c + w

c + j

}
,

where we have used 1 − x ≤ e−x and that the product of exponentials is the exponential of a sum.

For n ≥ 1, the sum is at least
∫ n−1

0
1

d+xdx = log(d+ n− 1)− log(d), where d = (b+ w)/c > 0. Thus
for n ≥ 1,

P(Tb,w > n) ≤ db/c exp
{

log
(

(n− 1 + d)−b/c
)}

=
db/c

(n− 1 + d)b/c
.

Since b/c > 1, this is summable in n. �
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PROJECTION APPROACH TO DISTRIBUTION-FREE TESTING FOR POINT

PROCESSES. REGULAR MODELS

ESTATE V. KHMALADZE

Abstract. We create the notion of equivalence between different martingale models for point pro-
cesses. This allows to map one model into another model in the same equivalence class. Therefore

the distribution of test statistics for goodness of fit testing needs to be calculated in only once, for

“standard” model, in each equivalence class. The equivalence classes are surprisingly broad, and
thus the economy on computational work is considerable.Namely, any such class includes a non-time

homogeneous Poisson model. Therefore it is sufficient to know the distribution of test statistics only

for Poisson models.
The situation, therefore, becomes comparable to testing simple hypothesis about a continuous

distribution function for a sample of i.i.d. random variables with continuous distribution F , when it
is sufficient to consider F , uniform on [0, 1]. However, for point processes we consider here parametric

cases, and the nature of equivalence is entirely different.

1. In Place of Introduction

This text was mainly written as a basic background material for the project which I was working on
with Dr. S. Umut Can and Prof. R. Laeven from the University of Amsterdam. The aim of the project
is to establish equivalence between testing parametric models for point processes with different forms
of random intensities. Eventually, we intend to show that a huge majority of testing such models is
equivalent to that of the non-time-homogeneous Poisson process which involves estimated parameters.

The text is not yet the final version, it is even not completely finished, but as it is, it may be useful
for many readers. It is the first general and unified text with the material, which can be either found
in various papers, or is new.

Umut Can greatly helped in preparation of the text and Roger Laeven made a number of useful
remarks and I am grateful to both.

2. Basic Asymptotic Set-up

The method we want to develop for the testing problems for intensities of point processes can be
first explained by drawing parallels between point processes and empirical processes, as the method
for the latter has already been developed (see [6–8]).

Given a sample, i.e., a collection of independent and identically distributed (i.i.d.) positive random
variables X1, . . . , Xn, let us first consider the so-called binomial process

Zn(t) =

n∑
i=1

1{Xi≤t} =

n∑
i=1

1{X(i:n)≤t}, t ≥ 0. (1)

Here, X(i:n) denotes the ith order statistic of the sample X1, . . . , Xn, with X(1:n) = min{X1, . . . ,
Xn} and X(n:n) = max{X1, . . . , Xn}. Also, 1E denotes the indicator function of the event E, so for
example,

1{Xi≤t} =

{
1 if Xi ≤ t
0 otherwise

, t ≥ 0.

2020 Mathematics Subject Classification. 62C07, 62E20, 62F03, 60G55.
Key words and phrases. Martingale models for point processes; Models with estimated parameters; Asymptotic

methods; Unitary operators.
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For a given Xi, the indicator function 1{Xi≤t} is a step function of t, and since X1, . . . , Xn are i.i.d.
random variables, 1{X1≤t}, . . . ,1{Xn≤t} are i.i.d. stochastic processes in t. If we fix the value of t > 0,
then 1{X1≤t}, . . . ,1{Xn≤t} become independent Bernoulli random variables with

P [1{Xi≤t} = 1] = P [Xi ≤ t] = F (t),

where F denotes the common distribution function of the Xi’s. It now follows from the first equality
in (1) that Zn(t) ∼ Binom(n, F (t)) and, in particular, E[Zn(t)] = nF (t). It also follows from the
Central Limit Theorem that for any t > 0,

vn(t) :=
1√
n

[Zn(t)− nF (t)] (2)

is asymptotically Gaussian as n→∞. In fact, we know from the Functional Limit Theorem that not
just vn(t) for any given t > 0 is asymptotically Gaussian, but the stochastic process {vn(t) : t ≥ 0} is
asymptotically Gaussian as well, in the sense that it converges weakly to a Gaussian process v. The
process vn is called the empirical process associated with the sample X1, . . . , Xn, and the limiting
Gaussian process v is called the F -Brownian bridge. Occasionally, it will be convenient to use the
notation Fn(t) = Zn(t)/n for an empirical distribution function and write empirical process vn in the
equivalent form

vn(t) :=
√
n[Fn(t)− F (t)].

For these and many more nice facts about empirical processes we refer the readers to the monograph
[10]. Some of these facts may not be, however, very visible from the second definition in (1). Indeed,
the random variables X(1:n), . . . , X(n:n) are neither independent nor identically distributed. Although
1{X(1:n)≤t}, . . . ,1{X(n:n)≤t} are still the Bernoulli random variables for any fixed t ≥ 0, they are now
very much dependent, and the distribution functions

F(i:n)(t) := P [X(i:n) ≤ t]
are very different for different i. The properly centered form of Zn(t) taken from the second definition
in (1) is, therefore,

Zn(t)−
n∑
i=1

F(i:n)(t), t ≥ 0, (3)

and it is almost an accident that
n∑
i=1

F(i:n)(t) = nF (t).

The second definition in (1) has, however, the advantage that it represents Zn(t) as a point process
with order statistics corresponding to arrival times: X(i:n) can be interpreted as the arrival time of

the ith event.
As the martingale theory of point processes is well-developed and widely known, almost nobody

would center point processes by their unconditional expected values as in (3). What is done instead
is the conditional centering of increments of Zn(t) given the past history of this process:

dZn(t)− E[dZn(t) |Zn(s), 0 ≤ s ≤ t] =: dMn(t). (4)

The resulting process {Mn(t) : t ≥ 0} is a martingale and the equality (4) itself is called the Doob-
Meyer decomposition of Zn(t), which we now view as a submartingale.

Let us now define
λn(t) = E[dZn(t) |Zn(s), 0 ≤ s ≤ t]/dt, t ≥ 0,

which is called the intensity of the point process Zn(t), and

wn(t) =
1√
n
Mn(t) =

1√
n

[
Zn(t)−

t∫
0

λn(s) ds

]
,

which is also a martingale in t. Thus from Zn(t) we have produced, using different methods of
centering, two different processes, namely, the empirical process vn(t) and the process wn(t), which
we will refer to as an innovation martingale of the process Zn(t). Yet, we will see below that there is a



PROJECTION APPROACH TO DISTRIBUTION-FREE TESTING 157

very important similarity between the asymptotic behavior of vn and wn in the practically important
case when the underlying distribution function F depends on some finite-dimensional parameter θ,
and when the random intensity λn also depends on such a parameter.

In the context of goodness of fit testing, when the null hypothesis does not completely specify the
distribution function F , but only states that it belongs to a parametric family {Fθ : θ ∈ Θ}, with
Θ ⊂ Rm, we call this hypothesis a parametric hypothesis. The same term is used if we hypothesize
that the intensity of Zn belongs to a parametric family of intensities {λn,θ : θ ∈ Θ}. In the case of
a parametric hypothesis, we will need to estimate the parameter θ and then to make a judgment on
whether the hypothesis is true or not, by observing the behavior of the processes

1√
n

[Zn(t)− nFθ̂(t)] = vn,θ̂(t) = v̂n(t)

and

1√
n

[
Zn(t)−

t∫
0

λn,θ̂(s) ds

]
= wn,θ̂(t) = ŵn(t),

respectively. The ‘similarity’ that was alluded to above consists in the fact that v̂n is asymptotically

a projection of vn, and ŵn is asymptotically a projection of wn; substituting the estimate θ̂ in place
of the true parameter θ is asymptotically equivalent to projecting the initial process. Thus if we have
a method that exploits this geometric fact in the case a parametric hypothesis about distribution
functions, it should be possible to develop a similar method in the situation with point processes.

Let us now review why we have a projection in the case of a parametric hypothesis about F .
Suppose that {Fθ : θ ∈ Θ} is a regular parametric family of distributions in the following sense:

(a1) the space Θ of feasible parameter values is an open subset of the Euclidean space Rm;
(a2) the vector of the derivatives

∂

∂θ
ln fθ(x) = [ḟ/f ]θ(x)

is square-integrable, i.e., the Fisher information matrix

Rθ =

∫
[ḟ/f ]θ(x) [ḟ/f ]Tθ (x) fθ(x) dx

is finite and non-degenerate for every θ ∈ Θ,
(a3) for any θ ∈ Θ; ∫

[ḟ/f ]θ(x) fθ(x) dx = 0.

The openness of Θ is useful because then every θ has a neighborhood in Θ and we can differentiate at
θ without worrying about boundary effects. Conditions (a2) and (a3) are ubiquitous in all asymptotic
statistics with regular parametric families.

To describe the difference between v̂n and vn we first need an asymptotic representation of the

maximum likelihood estimator (MLE) θ̂, or rather, of
√
n(θ̂ − θ). The MLE is the (correctly chosen)

root of the maximum likelihood equation

n∑
i=1

[ḟ/f ]θ̂(Xi) = 0. (5)

Using the regularity condition (a3), we can rewrite (5) as∫
[ḟ/f ]θ̂(x) [dZn(x)− ndFθ̂(x)] = 0,

that is, ∫
[ḟ/f ]θ̂(x) dvn,θ̂(x) = 0. (6)
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Replacing the left-hand side of (6) by the Taylor expansion around θ, we obtain

0 =

∫
[ḟ/f ]θ(x) dvn,θ(x) +

∫
∂

∂θ
[ḟ/f ]θ(x) dvn,θ(x)(θ̂ − θ)

−
√
n

∫
[ḟ/f ]θ(x) ḟθ(x)Tdx(θ̂ − θ) + oP (1). (7)

Here, the assumption that the residual term is indeed oP (1) is, actually, another regularity assumption,
(a4), on the family {Fθ : θ ∈ Θ}. Note that we can write the second term in the right-hand side of
(7) as

1√
n

∫
∂

∂θ
[ḟ/f ]θ(x) dvn,θ(x)

√
n(θ̂ − θ)

=

∫
∂

∂θ
[ḟ/f ]θ(x) d [Fn(x)− Fθ(x)]

√
n(θ̂ − θ),

which is asymptotically negligible as long as the matrix

∂

∂θ

[
ḟ/f

]
θ

(x) =
∂2

∂θ2
ln fθ(x)

is integrable with respect to Fθ – this follows from the Law of Large Numbers. Using the regularity
assumption (a2) for the third term on the right-hand side of (7), we obtain

0 =

∫
[ḟ/f ]θ(x) dvn,θ(x)−Rθ

√
n(θ̂ − θ) + oP (1),

or equivalently,
√
n(θ̂ − θ) = R−1

θ

∫
[ḟ/f ]θ(x) dvn,θ(x) + oP (1), (8)

which is the asymptotic MLE representation we wanted.
Now, let us apply the Taylor expansion again and write

vn,θ̂(t) = vn,θ(t)−
[
∂

∂θ
Fθ(t)

]T√
n(θ̂ − θ) + oP (1),

or, by virtue of (8),

vn,θ̂(t) = vn,θ(t)−
t∫

0

[ḟ/f ]Tθ (s)fθ(s) ds R−1
θ

∫
[ḟ/f ]θ(x) dvn,θ(x) + oP (1). (9)

The main part on the right-hand side of (9) is a linear transformation of vn,θ; moreover, as the
proposition below shows, it is a projection.

Proposition 2.1. The linear operator Π defined by

Πγ(t) = γ(t)−
t∫

0

[ḟ/f ]Tθ (s) dFθ(s)R
−1
θ

∫
[ḟ/f ]θ(x) dγ(x)

is an orthogonal projector, i.e., it satisfies the conditions

(i) ΠΠγ(t) = Πγ(t),

(ii) Πγ(t) ≡ 0 ⇔ dγ

dF
(t) = cT[ḟ/f ]θ(t) for some c ∈ Rm,

(iii)

∫
[ḟ/f ]θ(s) dΠγ(s) = 0.

This fact has several useful consequences which we will discuss later. Right now we would like to
establish the analogous result for point processes.

Given a point process {Nn(t) : t ≥ 0}, let

λn,θ(t)dt = E[dNn(t) |Nn(s), 0 ≤ s ≤ t]
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denote the intensity as above, and let t0 = 0 < t1 < · · · < tk = T be a partition of the interval [0, T ),
where we are considering our point process. If the partition is sufficiently fine, the likelihood of the
vector (Nn(t1), . . . , Nn(tk))T is given as a product of Bernoulli’s likelihoods:

k∏
j=1

[
λn,θ(tj)∆tj

]∆Nn(tj)[
1− λn,θ(tj)∆tj

]1−∆Nn(tj)

= exp

{ k∑
j=1

∆Nn(tj) ln
[
λn,θ(tj)∆tj

]
+

k∑
j=1

(
1−∆Nn(tj)

)
ln
[
1− λn,θ(tj)∆tj

]}
. (10)

The likelihood of the same vector under the assumption that Nn is a Poisson process with constant
intensity λ has a similar form, with λn,θ replaced by λ. This Poisson likelihood is only a reference
likelihood and we could have used many other measures in order to create likelihood ratios. If we take
the limit of the likelihood in (10) as k →∞ and maxj{∆tj : 1 ≤ j ≤ k} → 0, we will obtain zero, but
the likelihood ratio below will have a non-trivial limit:∏k

j=1

[
λn,θ(tj)∆tj

]∆Nn(tj)[
1− λn,θ(tj)∆tj

]1−∆Nn(tj)∏k
j=1

[
λ∆tj

]∆Nn(tj)[
1− λ∆tj

]1−∆Nn(tj)

= exp

{ k∑
j=1

∆Nn(tj) ln
λn,θ(tj)

λ
+

k∑
j=1

(
1−∆Nn(tj)

)
ln

1− λn,θ(tj)∆tj
1− λ∆tj

}

→ exp

{ T∫
0

ln
λn,θ(t)

λ
dNn(t)−

T∫
0

[λn,θ(t)− λ] dt

}
.

Differentiating this log-likelihood ratio with respect to θ and setting the result equal to zero, we obtain
the maximum likelihood equation

T∫
0

[λ̇/λ]n,θ(t) dNn(t)−
T∫

0

λ̇n,θ(t) dt = 0,

which can be rewritten as
T∫

0

[λ̇/λ]n,θ(t) [dNn(t)− λn,θ(t)dt] = 0,

or
T∫

0

[λ̇/λ]n,θ(t) dwn,θ(t) = 0.

Now we need regularity assumptions on λn,θ as a function of θ, namely:

(b1) differentiation with respect to θ, integration with respect to dNn(t), and dt can be inter-
changed,

(b2) the ratio [λ̇/λ]n,θ(t) is well-defined on {t : λn,θ(t) > 0}, and can be defined as a constant on
{t : λn,θ(t) = 0},

(b3) we have

1√
n

T∫
0

∂

∂θ
[λ̇/λ]n,θ(t) dwn,θ(t) =

T∫
0

∂

∂θ
[λ̇/λ]n,θ(t)

[dNn(t)

n
− λn,θ(t)

n
dt
]

= oP (1),

which is a form of Law of Large Numbers for the processNn and the vector function [λ̇/λ]n,θ(t).
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To obtain a suitable asymptotic expansion for the MLE θ̂, we use the Taylor expansion once again,
and rewrite the maximum likelihood equation

T∫
0

[λ̇/λ]n,θ̂(t) dwn,θ̂(t) = 0

as follows:

0 =

T∫
0

[λ̇/λ]n,θ(t) dwn,θ(t) +
1√
n

T∫
0

∂

∂θ
[λ̇/λ]n,θ(t) dwn,θ(t)

√
n(θ̂ − θ)

− 1

n

T∫
0

[λ̇/λ]n,θ(t)[λ̇/λ]Tn,θ(t)λn,θ(t) dt
√
n(θ̂ − θ) + oP (1).

Here, the last oP (1) is our regularity assumption (b4) and we will also use

(b5) the random matrix

Rn,θ =
1

n

T∫
0

[λ̇/λ]n,θ(t) [λ̇/λ]Tn,θ(t)λn,θ(t) dt

is well-defined and non-degenerate for all θ ∈ Θ and all n sufficiently large. Moreover, there
is a non-degenerate matrix Rθ such that Rn,θ → Rθ as n→∞.

This leads to the desired asymptotic representation

√
n(θ̂ − θ) = R−1

n,θ

T∫
0

[λ̇/λ]n,θ(t) dwn,θ(t) + oP (1), (11)

which is an analog of (8) for point processes.
Now we turn to the difference between wn,θ and wn,θ̂. Using Taylor’s expansion again, we obtain

wn,θ̂(t) = wn,θ(t)−
1

n

t∫
0

[λ̇/λ]Tn,θ(s)λn,θ(s) ds
√
n(θ̂ − θ) + oP (1),

or, by virtue of (11),

wn,θ̂(t) = wn,θ(t)−
1

n

t∫
0

[λ̇/λ]Tn,θ(s)λn,θ(s) dsR−1
n,θ

T∫
0

[λ̇/λ]n,θ(t) dwn,θ(t) + oP (1),

an expression analogous to (9). The main part on the right-hand side is a linear transformation of
wn,θ. Moreover, defining

Λn,θ(t) =

t∫
0

λn,θ(s) ds,

we have the following analog of Proposition 2.1.

Proposition 2.2. The linear operator Πn defined by

Πnγ(t) = γ(t)− 1

n

t∫
0

[λ̇/λ]Tn,θ(s) dΛn,θ(s)R
−1
n,θ

T∫
0

[λ̇/λ]n,θ(t) dγ(t)

is an orthogonal projector, i.e., it satisfies the conditions

(i) ΠnΠnγ(t) = Πnγ(t),

(ii) Πnγ(t) ≡ 0 ⇔ dγ

dΛn,θ
(t) = cT[λ̇/λ]n,θ(t) for some c ∈ Rm,
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(iii)

T∫
0

[λ̇/λ]n,θ(s) dΠnγ(s) = 0.

Therefore, substitution of ML estimation in place of the ‘true’ value of the parameter again is
asymptotically equivalent to taking a projection of the martingale wn,θ. Heuristically speaking, this
makes the process wn,θ̂ stochastically ‘smaller’, less volatile, less ‘noisy’, and makes the tests based

on wn,θ̂ better, more powerful, as it is the case for the process vn,θ̂ (see, e.g., [4]).

3. Function Parametric Versions and Unitary Operators

We realised that the empirical process vn,θ̂ with estimated parameter θ̂ is essentially a projection of

the corresponding empirical process vn,θ (see (9)). However, for different parametric families we have

different score functions ḟ/f , and therefore different projections. Even within the same parametric

family, different values of the parameter θ again lead to different ḟ/f , and vn,θ̂ will have different limit

behavior. Consequently, the limiting distribution of any given test statistic T (vn,θ̂) will be different

in any new testing problem.
In the goodness of fit problems, the test statistics T , as functionals of vn,θ̂, are non-linear and their

limiting distributions are difficult to calculate, so that numerical methods have to be used. The theory
becomes fragmented. Our eventual goal is to unify the theory again. We will see that what looks like
many similar but different problems actually is one single problem, which requires the calculation of
limiting distributions of test statistics T (vn,θ̂), for many “similar” vn,θ̂, only once. The same is true

for testing parametric hypotheses about (random) intensities of point processes.
The main idea behind the methods we are going to employ consists in building a unitary operator,

or rotation, of one testing problem into another, thus creating surprisingly broad families of equivalent
testing problems. However, it may look awkward to “rotate” empirical processes. We introduce now
a form of empirical processes which will create a natural setting to apply unitary operators.

Let vF denote an F -Brownian bridge, i.e., a Gaussian process with mean zero and covariance
function

E[vF (t)vF (t′)] = min{F (t), F (t′)} − F (t)F (t′).

This process is the limit in distribution of the empirical process vn in (2). It is convenient to recall
that if wF is an F -Brownian motion, i.e., a Gaussian process with mean zero and covariance

E[wF (t)wF (t′)] = min{F (t), F (t′)},

then one well-known connection between wF and vF is

vF (t)
d
= wF (t)− F (t)wF (∞), (12)

and if we agree to choose F supported on the unit interval [0, 1] so that F (0) = 0 and F (1) = 1, then
we can write wF (1) instead of wF (∞).

If {Fθ : θ ∈ Θ} is a regular parametric family, then from (9) it is possible to derive that the
Gaussian process

v̂F (t) = vF (t)−
t∫

0

[ḟ/f ]Tθ (s) dFθ(s)R
−1
θ

∫
[ḟ/f ]θ(x) dvF (x)

is the limit in distribution of the parametric empirical process vn,θ̂ with θ denoting the true parameter

value. Now let us rewrite v̂F in what is called function parametric form.
Suppose, as before, that θ is an m-dimensional parameter. Then [ḟ/f ]θ(·) is an m-dimensional

vector function with linearly independent components. Let us introduce the notation

qθ(·) = R
−1/2
θ [ḟ/f ]θ(·)
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for the ortho-normalised form of the score function [ḟ/f ]θ. Indeed, qθ is a vector function with
orthogonal and normalized components in the space L2(F ), since∫

qθ q
T
θ dFθ = R

−1/2
θ

∫
[ḟ/f ]θ[ḟ/f ]Tθ dFθ R

−1/2
θ = I.

Below, we will drop the subscript θ in Fθ when Fθ is used as a subscript.
Now, given a function ϕ ∈ L2(Fθ), let us introduce what is called function parametric version of

our processes. Consider the integral

v̂F (ϕ) :=

∫
ϕ(x) dv̂F (x) =

∫
ϕ(x) dvF (x)−

∫
ϕ(x)qTθ (x) dFθ(x)

∫
qθ(y) dvF (y). (13)

This is a Wiener stochastic integral, well-defined on L2(Fθ). It is clear that

vF (ϕ) =

∫
ϕ(x) dvF (x)

is linear in ϕ, that is, if ϕ1, ϕ2 ∈ L2(Fθ) and α1, α2 ∈ R, then

vF (α1ϕ1 + α2ϕ2) = α1vF (ϕ1) + α2vF (ϕ2).

This implies that v̂F (ϕ) is also linear in ϕ, and (13) can be rewritten as

v̂F (ϕ) = vF (ϕ)− 〈ϕ, qθ〉TF vF (qθ) = vF
(
ϕ− 〈ϕ, qθ〉TF qθ

)
, (14)

where 〈ϕ, qθ〉F denotes the vector of inner products in L2(F ) of ϕ and the components of qθ:

〈ϕ, qθ〉F :=

∫
ϕ(x)qθ(x) dFθ(x).

Thus we have the following reformulation of Proposition 2.1. To formulate its (ii) part, we extend the
m-dimensional vector of score functions qθ to the (m + 1)-dimensional vector having q0 as the first
coordinate:

q =

(
q0

qθ

)
=


q0

q1

...
qm

 .

Here q0 is the function, which is constant and equals 1 for all x. Note that the extended q will still
be a vector with orthonormal coordinates, because our regularity assumption (a3) implies∫

[ḟ/f ]θ(x) dFθ(x) = 〈[ḟ/f ]θ, q0〉F = 0, or 〈qθ, q0〉F = 0,

Proposition 3.1 ([4]). For the limiting processes of vn,θ and vn,θ̂ we have

(i)
v̂F (ϕ) = vF

(
ϕ− 〈ϕ, qθ〉TF qθ

)
,

which represents v̂F as a projection of function parametric Brownian bridge vF , and
(ii)

v̂F (ϕ) = wF
(
ϕ− 〈ϕ, q〉TF q

)
, (15)

which represents v̂F as a projection of function parametric Brownian motion wF .

Proof. To see that (i) is true, note that the form of the argument of vF in (i) follows from (14), and
since qθ is orthonormal, this is the orthogonal projection of ϕ, parallel to qθ,

πϕ = ϕ− 〈ϕ, qθ〉TF qθ.
To see that (ii) is true, we use the projection structure behind the function parametric form of
Brownian bridge vF (ϕ), ϕ ∈ L2(F ), as well. According to (12),

vF (ϕ) =

∫
ϕ(x) dvF (x) =

∫
ϕ(x) dwF (x)−

∫
ϕ(x) dFθ(x)wF (∞)

= wF (ϕ)− 〈ϕ, q0〉F wF (q0), (16)
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where we recall that q0 denotes the function, identically equal to 1, q0(·) ≡ 1. Again, since wF (ϕ) is
linear in ϕ, we can rewrite the last expression as

vF (ϕ) = wF
(
ϕ− 〈ϕ, q0〉F q0

)
, (17)

and the argument of wF here is the orthogonal projection of ϕ, parallel to q0. Now we substitute (16)
into (14). This will represent v̂F as a projection of wF :

v̂F (ϕ) = wF (ϕ)− 〈ϕ, q0〉F wF (q0)− 〈ϕ, qθ〉TF wF (qθ). (18)

We replaced the term vF (qθ) in (14) by the term wF (qθ), and we can indeed do this: as it follows
from (17),

vF (qθ) = wF (qθ − 〈qθ, q0〉F q0),

while 〈qθ, q0〉F = 0, and therefore vF (qθ) = wF (qθ). �

Now let us consider two different regular parametric families {Fθ : θ ∈ Θ} and {Gθ : θ ∈ Θ}, with
two different score functions q and r (extended and orthonormal, as above). We assume, however, that
the vector functions q and r are of equal dimensions. In this notation we use the same letters θ and
Θ, but we do not mean to say that these are in any sense the “same” parameters, say shift and scale
parameters in both cases. They may be parameters of entirely different nature in these two different
families. They only should be of the same dimension and they should lead to linearly independent,
and therefore eventually orthonormal, score functions.

Consider two limiting Gaussian processes

v̂F (ϕ) = wF

(
ϕ−

m∑
i=0

〈ϕ, qi〉F qi
)
, ϕ ∈ L2(Fθ), 〈qi, qj〉F = δij ,

andv̂G(ψ) = wG

(
ψ −

m∑
i=0

〈ψ, ri〉G ri
)
, ψ ∈ L2(Gθ), 〈ri, rj〉G = δij .

What we will show now is that, under the additional assumption of equivalence (mutual absolute
continuity) between the distributions Fθ and Gθ, we can map v̂F to v̂G in a one-to-one way, and the
mapping has a practically convenient form. More specifically, we will construct a unitary operator
K = Kq,r mapping L2(Gθ) onto L2(Fθ), so that

v̂F (Kψ)
d
= v̂G(ψ), ψ ∈ L2(Gθ).

Because this K is a unitary operator, we will also have

v̂G(K−1ϕ)
d
= v̂F (ϕ), ϕ ∈ L2(Fθ).

Allowing ourselves some freedom of speech, we will say that v̂F is “rotated” into v̂G.
For the sake of better transparency, let us construct K in a sequence of three problems. In the

first, or “zero problem,” let us map wF into wG isometrically. Here, the dependence on the parameter
θ will play no role, and it can be skipped from the notations. Consider the square root of the density
of G with respect to F :

`(x) =

(
dG(x)

dF (x)

)1/2

.

Since F and G are equivalent measures, we have

` ∈ L2(F ), with ‖`‖2F =

∫
`2(x) dF (x) = 1,

1/` ∈ L2(G), with ‖1/`‖2G =

∫
1

`2(x)
dG(x) = 1.

Let `ψ(·) = `(·)ψ(·) denote the operator of multiplication by the function `, acting on functions
ψ ∈ L2(G).

Lemma 3.2. The operator ` is an isometry from L2(G) to L2(F ), and we have wF (`ψ) = wG(ψ).
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Proof. Indeed, ∫ [
l(x)ψ(x)

]2
dF (x) =

∫
ψ2(x) dG(x),

and therefore,
Ew2

F (`ψ) = ‖`ψ‖2F = ‖ψ‖2G = Ew2
G(ψ). �

The next problem is to rotate the Brownian bridge vF into the Brownian bridge vG. Now we have
one-dimensional functions q0(·) = 1 and r0(·) = 1. Note that the latter function is identically equal to
1 in L2(G), but its image under the operator ` will not be identically equal to 1 in L2(F ). We know
that

vG(ψ) =

{
wG(ψ) if ψ ⊥ r0

0 if ψ = r0

and vF (ϕ) =

{
wF (ϕ) if ϕ ⊥ q0

0 if ϕ = q0

.

Therefore, in order to rotate vF into vG we need a unitary operator from L2(G) to L2(F ) which
will map the linear subspace LG(r0) = {cr0(·) : c ∈ R} into the linear subspace LF (q0), and which,
therefore, will map the orthogonal complement of LG(r0) in L2(G) (denoted by LG,⊥(r0)) into the
orthogonal complement of LF (q0) in L2(F ) (denoted by LF,⊥(q0)). In order to do this, consider first
the operator Ka,b mapping L2(F ) to L2(F ) via

Ka,b(·) = I − 2
〈a− b, ·〉F
‖a− b‖2F

(a− b), (19)

where a, b ∈ L2(F ) are two fixed functions of unit norm, and I is the identity operator. It is easy to
check that this operator has the following properties:

1. Ka,b is unitary, i.e., ‖Ka,bϕ‖F = ‖ϕ‖F ,

2. Ka,b = K−1
a,b , i.e., Ka,bKa,b = I,

3. Ka,b is self-adjoint, i.e., 〈Ka,bϕ, γ〉F = 〈ϕ,Ka,bγ〉F ,
4. Ka,b a = b and Ka,b b = a.
Now let us choose a = q0 and b = `r0, and consider the process vF (Kq0,`r0`ψ) for ψ ∈ L2(G). We

claim that this process has the same distribution as vG(ψ). Together with the statement on Brownian
motions, above, we obtain

Proposition 3.3. If distributions F and G are equivalent, then

wF (`ψ) = wG(ψ) and vF (Kq0,`r0`ψ)
d
= vG(ψ).

Proof. Indeed, if ψ = r0, then Kq0,`r0`ψ = q0, and so

vF (Kq0,`r0`r0) = vF (q0) = 0 = vG(r0).

On the other hand, if ψ ⊥ r0, then `ψ ⊥ `r0, and therefore Kq0,`r0`ψ ⊥ q0. From the equality
vF (ϕ) = wF (ϕ) when ϕ ⊥ q0, it follows that

vF (Kq0,`r0`ψ) = wF (Kq0,`r0`ψ),

and the variance of the right-hand side for any such ψ is

Ew2
F (Kq0,`r0`ψ) = 〈Kq0,`r0`ψ,Kq0,`r0`ψ〉F = 〈`ψ, `ψ〉F = 〈ψ,ψ〉G = Ew2

G(ψ).

Therefore, indeed, vF was “rotated” into vG. �

We are now ready to tackle the third problem in our sequence, the rotation of v̂F into v̂G. Let
us first consider the case of regular parametric families with one-dimensional parameter, leading to
two-dimensional extended score functions (q0, q1)T for one family and (r0, r1)T for the other. Now we
have

v̂F (ϕ) = wF
(
ϕ− 〈ϕ, q0〉F q0 − 〈ϕ, q1〉F q1

)
, ϕ ∈ L2(Fθ),

v̂G(ψ) = wG
(
ψ − 〈ψ, r0〉Gr0 − 〈ψ, r1〉Gr1

)
, ψ ∈ L2(Gθ).

Consider the operator Kq0,`r0 used for the previous problem above and apply it to `r1, thus creating˜̀r1 := Kq0,`r0`r1.
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The operator Kq0,`r0 correctly rotates the function `r0 into q0, but it does not necessarily rotate `r1

into q1, but only into ˜̀r1. Since it is a unitary operator, it preserves angles, and therefore ˜̀r1 ⊥ q0.

Now we can rotate ˜̀r1 further into q1 using the operator K
q1, ˜̀r1 . Note that this operator leaves

all functions orthogonal to q1 and ˜̀r1 unchanged, so it will leave q0 unchanged. Now consider the
operator K

q1, ˜̀r1Kq0,`r0 . We have

Proposition 3.4. If distributions Fθ and Gθ are equivalent and if q0, q1 ∈ L2(Fθ) are orthonormal
as well as r0, r1 ∈ L2(Gθ), then

v̂F (K
q1, ˜̀r1Kq0,`r0`ψ)

d
= v̂G(ψ), ψ ∈ L2(Gθ).

Proof. Indeed, if ψ = r0, then

v̂F (K
q1, ˜̀r1Kq0,`r0`r0) = v̂F (K

q1, ˜̀r1q0) = v̂F (q0) = 0 = v̂G(r0),

and similarly, if ψ = r1,

v̂F (K
q1, ˜̀r1Kq0,`r0`r1) = v̂F (K

q1, ˜̀r1 ˜̀r1) = v̂F (q1) = 0 = v̂G(r1).

Moreover, K
q1, ˜̀r1Kq0,`r0 is a product of unitary operators, hence it is itself a unitary operator. As we

have just seen, it maps `r0 into q0 and `r1 into q1. Therefore, it will map `ψ, for any ψ ⊥ r0, r1, into
a function, orthogonal to q0 and q1. It follows that for any such ψ,

v̂F (K
q1, ˜̀r1Kq0,`r0`ψ) = wF (K

q1, ˜̀r1Kq0,`r0`ψ),

and the variance of the right-hand side is

〈K
q1, ˜̀r1Kq0,`r0`ψ,Kq1, ˜̀r1Kq0,`r0`ψ〉F = 〈`ψ, `ψ〉F = 〈ψ,ψ〉G.

This means that for ψ ⊥ r0, r1,

v̂F (K
q1, ˜̀r1Kq0,`r0`ψ)

d
= wG(ψ) = v̂G(ψ),

as claimed. �

Finally, for parametric families with an m-dimensional parameter, we use induction. Given
j ∈ {0, 1, . . . ,m − 1}, suppose we have a unitary operator Uq,`r(j) that maps `ri to qi for 0 ≤ i ≤ j.
For example, we have constructed above Uq,`r(0) = Kq0,`r0 and Uq,`r(1) = K

q1, ˜̀r1Kq0,`r0 . Now define

the function

`̃rj+1 := Uq,`r(j)`rj+1

and introduce

Uq,`r(j + 1) = K
qj+1,˜̀rj+1

Uq,`r(j).

Then Uq,`r(j + 1) is a unitary operator that maps `ri to qi for 0 ≤ i ≤ j + 1. Continuing in this
fashion, we see that Uq,`r(m) is a unitary operator that maps `ri to qi for 0 ≤ i ≤ m. Therefore we
obtain our final statement.

Proposition 3.5 ( [7]). If distributions Fθ and Gθ are equivalent and if q and r are orthonormal
systems of m+ 1 functions (as described above) from L2(Fθ) and L2(Gθ), respectively, then

v̂F (Uq,`r(m)`ψ)
d
= v̂G(ψ). (20)

It can be proved by an argument analogous to the previous case.
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4. The Case of Point Processes. Unitary Transformations Again

In this section we describe similarities in rotation between the situation with parametric families
of distribution and parametric models for intensities of point process. Let us consider a sequence of
point processes Nn with (random) intensity functions λn,θ and compensators

Λn,θ(t) =

t∫
0

λn,θ(s) ds.

One of the key facts for us is that, if Λn,θ(t)/n converges to a deterministic function, say B(t), as
n→∞, then the normalized martingale

wn,θ =
1√
n

[Nn(t)− Λn,θ(t)]

converges to the Brownian motion (see, e.g., [2,3]), while the same process with the estimated param-
eter wn,θ̂, can be approximated by a projection of wn,θ:

wn,θ̂(t) = wn,θ(t)−
1

n

t∫
0

[λ̇/λ]Tn,θ(s)λn,θ(s) dsR−1
n,θ

T∫
0

[λ̇/λ]n,θ(s) dwn,θ(s) + oP (1).

The key regularity assumptions ate such that

[λ̇/λ]n,θ(t)→ α(t),
1

n
λn,θ(t)→ β(t), n→∞, (21)

for some deterministic functions α and β. As a consequence, we expect that

wn,θ
d→ wB , wn,θ̂

d→ ŵB ,

with B(t) =
∫ t

0
β(s) ds, and

ŵB(t) = wB(t)−
t∫

0

αT(s)β(s) dsR−1
θ

T∫
0

α(s) dwB(s). (22)

If we have another parametric model with the same regularity assumptions, then we will end up with

another Brownian motion wB̃(t), in time B̃, and another projection ŵB̃(t), parallel to a different score
function α̃. If the parameters in the two cases are of the same dimension, then it again becomes
possible to “rotate” ŵB(t) into ŵB̃(t), and back if we wish. The form of the unitary operator needed
for this task will be exactly the same as the one we have obtained for the case of i.i.d. samples.

There is, however, one difference that for the case of empirical processes the first coordinate of the
score function always is the function q0(·) = 1, while this is not the case for the point processes: the
first coordinate of the vector α may be any function, square-integrable with respect to the limiting
“time” B.

As in the i.i.d. case, there is a question how to choose the “standard” problem in which to rotate
the other problems. Indeed, one has here multiplicity of choices. As a simple choice, we suggest
below to use Poisson processes with a variable intensity. At the first glance this looks somewhat
strange, because then the function λn,θ will be a deterministic function from the very beginning and
the regularity assumptions (21) will be easily satisfied. This is surprisingly simple, but, on the other
hand, it is convenient.

Specifically, let us start with the space L2(ω) of square-integrable functions on [0, T ], T ≤ ∞, with
a weight function ω and choose orthonormal functions p0, . . . , pm−1 from L2(ω), i.e., such that

T∫
0

pj(s)pk(s)ω(s)ds = δj,k.
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One example can be given by the Laguerre polynomials with ω(t) = e−t, t ≥ 0. If we agree to consider
a finite time horizon T <∞, then it would be natural to use the constant weight function ω. Define
now the intensity function

µn,θ(t) = n exp

(m−1∑
j=0

θjpj(t)

)
ω(t), 0 ≤ t ≤ T.

Another possibility is to choose

µn,θ(t) = n exp

(m−1∑
j=0

θjpj(t)ω
1/2(t)

)
, 0 ≤ t ≤ T. (23)

In this latter case one can choose as a true “target” distribution the distribution of the time-
homogeneous Poisson process with intensity n. This distribution is a part of the parametric family
above with the vector θ = 0. As the target parametric family we choose distributions of Poisson pro-
cesses with parameter θ = (θ0, θ1, . . . , θm−1)T, which takes values in a small open neighbourhood of 0.
We need an open neighbourhood such that differentiation with respect to θ will not meet with difficul-
ties, and it suffices to have this neighbourhood small. For this neighbourhood, at θ∗ = (0, 0, . . . , 0)T

and t ∈ [0, T ] we have

[µ̇/µ]n,θ∗(t) =
(
pj(t)ω

1/2(t)
)m−1

j=0
,

while
1

n
µn,θ∗(t) = 1,

and one can easily see the consequence of the assumption of orthonormality of the functions (pj)
m−1
j=0 :

the matrix

Rθ∗ =

[ T∫
0

pj(t)pk(t)ω(t)dt

]m−1

j,k=0

= I.

Therefore the coordinates of [µ̇/µ]n,θ∗ are already ortho-normal.

Now we can show, in more or less explicit form, the rotation of wn,θ̂(t) into the process, w̃n,θ̂(t),

which would arise from our Poisson model above. As in Section 3, it is notationally convenient to
introduce orthonormal version of the vector-functions [λ̇/λ]n,θ(t) and of these functions for Poisson
process. For the intensity λn,θ(t) we could have done it already after Proposition 2.1. Namely, denote

qn,θ(t) = R
−1/2
n,θ [λ̇/λ]n,θ(t).

This is the vector-function with orthonormal coordinates in L2(Λn,θ/n):

1

n

∫
qn,θ(t)q

T
n,θ(t)λn,θ(t)dt = I.

The limits of [λ̇/λ]n,θ(t) and 1
nλn,θ(t) in (21) suggest the limiting form of this vector-function:

q(t) = R
−1/2
θ α(t) = (q0(t), q1(t), . . . , qm−1(t))T

with the orthonormality property ∫
q(t)q(t)Tβ(t)dt = I.

For our Poisson process we have already the vector-function [µ̇/µ]n,θ∗ , whose coordinates are ortho-
normal on [0, T ]. It does not change with n.
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Now the procedure will look literary the same as the rotation of Brownian bridges vF and vG.
Adopting (23) as the target parametric model, denote

Mn,θ(t) =

t∫
0

µn,θ(s)ds, so that Mn,θ∗(t) = nt.

Now choose a function ` (the Hellinger function) as

`n,θ(t) =

(
dMn,θ∗

dΛn,θ
(t)

)1/2

=

(
µn,θ∗

λn,θ
(t)

)1/2

or

`n,θ(t) =

(
n

λn,θ(t)

)1/2

.

Thus, if ψ ∈ L2(Mn,θ∗/n), then `ψ ∈ L2(Λn,θ/n).
In limiting form, this expression becomes

`θ(t) =

(
1

β(t)

)1/2

,

and if ψ ∈ L2(M), then `ψ ∈ L2(B), where, as above, B(t) =
∫ t

0
β(s)ds. Thus, for the possibility to

rotate to the Poisson model we need to require that ` be well defined, that is, λn,θ(t) > 0 and β(t) > 0
for all t > 0.

In the expression of Ka,b (see (19)), we first will go straight to the limiting expressions, that is, we
will prepare for the case of large n. If it happens that the result of our rotation behaves close to what
is expected in the Poisson case, then we will fond out that the values of n, which we have used in our
simulations, are “large enough”. We can use expressions for finite n and compare the outcomes later.

Let us use a = q0(t) and b = `p0(t) = `(t). This leads to the transformation

ŵB(Kq0,``ψ)
d
= ŵM (ψ),

and again, if we choose ψ = p0, then Kq0,``p0 = q0, and therefore

ŵB(Kq0,``p0) = ŵM (p0) = 0,

which is, certainly, correct.

As the next step, we create the function Kq0,``p1 = ˜̀p1 and use it to construct our next operator,
K
q1, ˜̀p1 . The product K

q1, ˜̀p1 Kq0,` will map `p0 and `p1 into q0 and q1, respectively. Now we have,

again,

ŵB(K
q1, ˜̀p1 Kq0,`ψ)

d
= ŵM (ψ),

and if the parameter θ is two-dimensional, then this equality is the final result. For a general dimension
m we proceed as in the previous section: for

Uq,p(0) = Kq0,` and Uq,p(1) = K
q1, ˜̀p1 Uq,p(0)

we continue with ˜̀pj = Uq,p(j − 1)`pj

and then define
Uq,p(j) = K

q1, ˜̀pjUq,p(j − 1).

It is the final operator Uq,p(m) which will be needed in the sequel: a unitary operator which will map
p0, . . . , pm−1 into q0, . . . , qm−1, and, therefore, will map all functions, orthogonal to p0, . . . , pm−1, to
functions, orthogonal to q0, . . . , qm−1.

The situation should be clearer described in terms of subspaces. Decompose L2(M) into the
subspace L(p) spanned by p0, . . . , pm−1 and its orthogonal complement L⊥(p). Similarly, decompose
L2(B) into the subspace L(q) spanned by q0, . . . , qm−1 and its orthogonal complement L⊥(q). Then
considering multiplication by ` as an isometry from L2(M) to L2(B),

ψ ∈ L2(M) =⇒ `ψ ∈ L2(B), ‖ψ‖ = ‖`ψ‖,
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then this operator will map L⊥(p) into some subspace in L2(B),

`L⊥(p) ⊂ L2(B).

Then it is the operator Uq,p(m), as an operator in L2(B), acting on `ψ, which will map `L⊥(p) into
L(q):

Uq,p(m)`pj = qj , j = 1, . . . ,m.

It would be better to consider why the mapping of any testing problem for intensities of the point
process, with only usual regularity assumptions, is basically the same problem always. This is true
because in any model with these regularity assumptions we will end up with a Brownian motion
in some time B – it will be specific for the model, and with a projection of this Brownian motion,
parallel to the functions q0, . . . , qm−1 – also specific for the model. While the method of unitary
mapping remains applicable and the same.

We will need to apply the operator Uq,p(m) to empirical processes with estimated parameters, that
is, to the situation with finite n. Then we need to be sure that the transformed process wn,θ̂(Uq,p`ψ),

ψ ∈ Ψ, where Ψ ⊂ L2(M) is a class of functions of our choice, does converge in distribution to the
limiting process ŵM (ψ), ψ ∈ Ψ. The most natural choice will be the set of indicator functions ψt(s) =
1{s≤t}) indexed by t ≥ 0. It is obvious that as the function-parametric process, ŵM (ψt) coincides
with its point-parametric version ŵM (t), and therefore the transformed empirical process wn,θ̂(Uq,p`ψt)

should asymptotically behave as the point-parametric projected Brownian motion ŵM (t).

It is very interesting to see what will be the graph of “rotated” ψt, that is, the graph of Uq,p`ψt. A
sample of three graphs is shown in Figures 5.1 and 5.2 in the case of a point process model described in
Example A of the next section. There the parameter is two-dimensional and we wished to transform
the process into the projected Poisson process described above. The graphs have been calculated by
S. Umut Can.

5. Some Specific Examples

Before we turn to specific examples, let us have a look on the expression of the limiting process
(22) in the situation when the parameter of the intensity λn,θ of the point process is one-dimensional.

In this situation α is a scalar function and Rθ =
∫ T

0
α2(s)β(s)ds is a number. Then, considering the

integral from α with respect to ŵB :

t∫
0

α(s)dŵB(s) =

t∫
0

α(s)dwB(s)−
∫ t

0
α2(s)β(s) ds∫ T

0
α2(s)β(s)ds

T∫
0

α(s) dwB(s),

we see that the right-hand side is just the Brownian bridge in time

τ =

∫ t
0
α2(s)β(s) ds∫ T

0
α2(s)β(s)ds

, t ∈ [0, T ].

Therefore, all classical goodness of fit statistics from the Brownian bridge will be distribution free as

statistics from the process
∫ t

0
α(s)dŵB(s). The projection argument behind ŵB was used here, but to

achieve distribution freeness no “rotation” was necessary. Full details are given in [9].

Example A. Consider a sequence of point processes Nn(t) with compensated form

Nn(t)−
t∫

0

cθ(t
′)[n−Nn(t′)]dt′;

in other words, the difference above is a martingale. Here we choose cθ as the failure rate of Weibull
distribution

cθ(t) =
fθ(t)

1− Fθ(t)
=
θ1

θ0

(
t

θ0

)θ1−1

,
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with parameters such that the corresponding Weibull’s distribution behaves close to the distribution
of life-times of, say, New Zealand population. These values are θ0 = 86 and θ1 = 9.
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Figure 5.1. These are images of indicator functions 1{s≤t} for t = 10, 25 and 40
after first rotation by the operator Kq0,`p0`.
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Figure 5.2. These are images of indicator functions 1{s≤t} for t = 10, 25 and 40
after two rotations, i.e., by the operator Uq,p`. Who would think that if you inte-
grate these three functions with respect to dwθ̂,n(s) the resulting three integrals will

asymptotically jointly behave as ŵM (t), t = 10, 25, and 40?
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We know that our process is, actually, a binomial process based on n i.i.d. observations from the
distribution with the failure rate cθ, i.e., from Weibull’s distribution. If we would center Nn by nFθ(t)
and normalize by

√
n, we would obtain an empirical process, of which the limiting process will be

the Fθ-Brownian bridge. Centered as in the above display, and again normalized by
√
n, we obtain a

basic martingale (cf. [1, 5, 10]), and its weak limit will be the Fθ-Brownian motion.

The vector-function [λ̇/λ]n,θ(t) is now two-dimensional,

˙λn,θ
λn,θ

(t) =
ċn,θ
cn,θ

(t) =

(
−θ1

θ0
,

1

θ1
+ ln

t

θ0

)T

.

The function λn,θ/n and its limit is

1

n
λn,θ(t) = cθ(t)

n−Nn(t)

n
→ βθ0,θ1(t),

where

βθ0,θ1(t) =
θ1

θ0

(
t

θ0

)θ1−1

exp

(
−(

t

θ0
)θ1
)

is density of the Weibull distribution. The distribution function itself, in the current parametrisation,

is Fθ(t) = 1− exp
(
−( t

θ0
)θ1
)

.

The covariance matrix R in its limiting form becomes

Rθ =

∫ [
(θ1/θ0)2, −(1 + θ1 ln(t/θ0))/θ0

−(1 + θ1 ln(t/θ0))/θ0, (1 + θ1 ln(t/θ0))2/θ2
1

]
βθ0,θ1(t)dt

or, changing the variable t to τ = t/θ0 and separating the constant terms, we obtain a slightly simpler
expression

Rθ =

∫ [
(θ1/θ0)2, −(1 + θ1 ln τ)/θ0

−(1 + θ1 ln τ)/θ0, (1 + θ1 ln τ)2/θ2
1

]
β1,θ1(τ)dτ.

We note, as a side remark, that the matrix under the integral sign is, certainly, degenerate for every
t, but the matrix Rθ is non-degenerate, it is invertible.

Now consider the integral on the anti-diagonal of this matrix. Since

d

dϑ
ϑtϑ−1 = (1 + ϑ ln t)tϑ−1,

one can write ∫
(1 + ϑ ln t)tϑ−1θ1 exp

(
−tθ1

)
dt =

d

dϑ

∫
ϑtϑ−1θ1 exp

(
−tθ1

)
dt.

In the last integral we change the variable tθ1 = z so that t = z1/θ1 , dt = (1/θ1)z1/θ1−1. This leads to

d

dϑ

∫
ϑtϑ−1θ1 exp

(
−tθ1

)
dt =

d

dϑ

∫
ϑz(ϑ−1)/θ1 exp (−z) z1/θ1−1dz

=
d

dϑ

∫
ϑz(ϑ/θ1−1) exp (−z) dz =

d

dϑ
ϑΓ(

ϑ

θ1
)

which at ϑ = θ1 becomes Γ̇(1). This implies that we know explicitly the elements of the matrix Rθ,
except one integral

Rθ =

 ( θ1θ0)2

, − 1
θ0

Γ̇(1)

− 1
θ0

Γ̇(1), 1
θ21

∫
(1 + θ1 ln τ)2β1,θ1(τ)dτ

 .
Example B. One real life situation where this process appears is, as we said, the analysis of life times
in human populations. However, in general human populations the huge bulk of life times belongs to
the interval of 50-100 years. For example, according to New Zealand life tables for 2012-14 for general
populations 50 (years) is only 4%-point and 100 (years) is about 99%-point. Therefore, it makes sense
to analyse the life times only after age of fifty. If Xi is a life time of an i-th individual, then we
consider Xi,x0

= max(0, Xi − x0) and the point process Nn,x0
based on these “over the threshold”
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values, and then we can choose x0 equal to 50, or to any other value of interest. We can also assume
that we know how many people of age over x0 we have in the population under study. Thus, for

Nn,x0
(t) =

n∑
i=1

1(Xi,x0
≤ t),

we have the representation

Nn,x0(t)−
t∫

0

cθ(x0 + t′)[n−Nn,x0(t′)]dt′,

where the difference is a martingale. The functions [λ̇/λ]n,θ(t) and λn,θ/n now take the form

λ̇n,θ
λn,θ

(t) =
ċn,θ
cn,θ

(x0 + t) =

(
−θ1

θ0
,

1

θ1
+ ln(

t+ x0

θ0
)

)T

and
1

n
λn,θ(t) = cθ(x0 + t)

n−Nn,x0(t)

n
→ βθ0,θ1(x0 + t)

1− Fθ0,θ1(x0)
.

The matrix Rθ will also change, but in an obvious way. It is more interesting to note that we will need,
in applications, to consider life-times not exceeding some value x1, say, x1 = 100, so that Nn,x0

(t) will
be stopped at some duration x1 − x0, equal, say, to 50 years (of life over age 50).

Example C. Now consider the same situation, but with n−Nn(t) replaced by the process of “those
at risk” (see, e.g., [1]). More specifically, consider a sequence of pairs (Xi, Ci)

n
i=1, where Xi is the

survival time of i-th individual, and Ci is a censoring random variable of this survival time. Our main
interest is in these survival times, however, one can only observe X̃i = min(Xi, Ci) together with the

indicator function δi = I(Xi = X̃i) = I(Xi < Ci). The point process of interest is given as

N c
n(t) =

n∑
i=1

1(X̃i ≤ t)δi

which counts the number of “genuine” survival times observed no later than t. Another point process,
of those at risk at time t is given as

Yn(t) =

n∑
i=1

1(X̃i ≥ t).

With the help of this process, the process N c
n can be compensated to the martingale as follows:

N c
n(t)−

t∫
0

cθ(t
′)Yn(t′)dt′, (24)

and the difference is a martingale (see [1]). Here cθ, as in Example A, is the failure rate (or the force of
mortality in demographic applications) of the hypothetical distribution Fθ, depending on parameter θ.

If one is interested in computer simulation of N c
n, one should somehow choose not only parametric

family Fθ, of interests for practitioner, but also a distribution G of truncating variables Ci’s. Evolution
in time of Yn will strongly depend on this choice. However, this evolution is not looked at too much
and evolution of N c

n is studied, as it is implied by (24).
With λn,θ(t) = cθ(t)Yn(t), let us clarify now the limit behaviour of the functions λn,θ(t)/n and

[λ̇/λ]n,θ. From the definition of Yn(t) and the Law of Large Numbers, it follows that, as n→∞,

cθ(t)
Yn(t)

n
→ cθ(t)[1− Fθ(t)][1−G(t)] = fθ(t)[1−G(t)],

while

[λ̇/λ]n,θ(t) = [ċ/c]θ(t).



PROJECTION APPROACH TO DISTRIBUTION-FREE TESTING 173

Therefore, if we choose cθ(t) the same as in Example A, i.e., the failure rate of Weibull’s distribution,
then all will not differ from what we said in that example. However, this time the limit of λn,θ(t)/n
is not a probability density.

Example D. Marked point processes. The example is interesting and has many applications, but is
not treated here. We think it will be another example of regular models which permit the treatment
as described in Section 3.
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Abstract. Consistent estimators of the mixing distribution in Poisson mixture models are con-
structed for both the right censored and the uncensored case. The estimators are based on a kind

of Laplace inversion via factorial moments. The rate of convergence of the mean integrated squared

error of these estimators is (logn/ log logn)2. It is also shown that there do not exist estimators for
which this rate is better.

1. Introduction

Consider independent and identically distributed random variables X,X1, X2, . . . , Xn with discrete
distribution

p(x) = P (X = x) =

∞∫
0

e−λ
λx

x!
dG(λ), x = 0, 1, . . . . (1.1)

In this Poisson mixture model we shall study nonparametric estimation of the unknown mixing distri-
bution G. This estimation problem is discussed by H. Robbins in [12] (pages 162–163) who suggests to
estimate the distribution p of the observations and to solve (1.1) for G with p replaced by its estimate.
We apply this approach and solve (1.1) via a kind of Laplace inversion as in Section 4 of [11]. We will
investigate the rate of convergence of our estimators as measured by their mean integrated squared
error, both in the censored and in the uncensored case. We will also prove this rate to be optimal.

Papers [6] and [8] define multinomial models with a large number of rare events, introduce the con-
cept of a structural function, and discuss its estimation. For polynomial distributions and occupancy
problems with a large number of rare events, asymptotic results for the relevant statistics are obtained
in [9] and [7], respectively. In [14], the kernel type estimators of the structural distribution function
in the multinomial scheme of [6] and [8] are studied via Poissonization.

Approximating the binomial marginals of such multinomial models by Poisson distributions, one
arrives at the Poisson mixture model with the distribution function G as a structural function.

2. Construction of the Inverse Transformation

Consider the inhomogeneous Fredholm equation of the first kind (cf. [3])

KG = p, (2.1)

where the probability mass function p(x), x = 0, 1, . . . , denotes the Poisson mixture distribution from
(1.1). Our construction of estimators of the unknown mixing distribution G is based on a particular
type of Laplace inversion as in [2] (Section VII.6, formulae (6.1)–(6.4)). For (2.1) it can be written as
follows:

(K−1
α KG)(z) = (K−1

α p)(z) =

bαzc∑
k=0

αk

k!

∞∑
j=k

(−α)j−k

(j − k)!

∞∑
x=j

x!

(x− j)!
p(x), (2.2)

where byc denotes the integer part of y.

2020 Mathematics Subject Classification. Primary: 62G05, Secondary: 62G20.
Key words and phrases. Demixing; Poisson mixture; Asymptotics; Mean integrated squared error.
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Lemma 2.1. Assume
∫∞

0
eβλdG(λ) < ∞ for all β ∈ R. As α tends to infinity, K−1

α from (2.2)
represents inversion of K from (2.1) in the weak sense, i.e.,

K−1
α KG

w→G, as α→∞.

Moreover, the transformation K−1
α can be written as

(K−1
α KG)(z) = (K−1

α p)(z) =

∞∑
x=0

bαzc∧x∑
k=0

(
x

k

)
αk(1− α)x−k p(x). (2.3)

Proof. The factorial moments of the Poisson distribution are powers of its parameter. Consequently,
Fubini’s theorem (actually Tonelli’s theorem) implies

∞∑
x=j

x!

(x− j)!
p(x) =

∞∫
0

∞∑
x=j

x!

(x− j)!
e−λ

λx

x!
dG(λ) =

∞∫
0

λjdG(λ), j = 0, 1, . . . . (2.4)

Note that retrieving G from these moments is called the moment problem. Subsequently, as the
Laplace transform

∫∞
0
eβλdG(λ) of G is finite for all β ∈ R, Fubini’s theorem yields

∞∑
j=k

(−α)j−k

(j − k)!

∞∫
0

λjdG(λ) =

∞∫
0

∞∑
j=k

(−αλ)j−k

(j − k)!
λkdG(λ) =

∞∫
0

e−αλλkdG(λ). (2.5)

From (2.2), (2.4) and (2.5) it follows, again by Tonelli’s theorem, that

(K−1
α KG)(z) =

∑
0≤k≤αz

αk

k!

∞∫
0

e−αλλkdG(λ) =

∞∫
0

∑
0≤k≤αz

e−αλ
(αλ)k

k!
dG(λ).

Chebyshev’s inequality for a Poisson random variable Z with parameter αλ yields
P (|Z − αλ| ≥ α|z − λ|) ≤ λ/(α(z − λ)2). Hence we obtain∣∣∣∣ ∑

0≤k≤αz

e−αλ
(αλ)k

k!
− 1[αλ≤αz]

∣∣∣∣ ≤ ( λ

α(z − λ)2

)
∧ 1.

Consequently, at any point of continuity z of G we have

(K−1
α KG)(z)→

∞∫
0

1[λ≤z]dG(λ) = G(z),

as α→∞; cf. formula (6.1) from Section VII.6 of [2].
Furthermore, from (2.4) and (2.5) with −α replaced by α it follows that Fubini’s theorem may be

applied to

∞∑
j=k

(−α)j−k

(j − k)!

∞∑
x=j

x!

(x− j)!
p(x) =

∞∑
x=k

x∑
j=k

(
x− k
j − k

)
(−α)j−k

x!

(x− k)!
p(x)

=

∞∑
x=k

(1− α)
x−k x!

(x− k)!
p(x),

which implies

(K−1
α p)(z) =

bαzc∑
k=0

∞∑
x=k

(
x

k

)
αk(1− α)x−k p(x). (2.6)
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For α > 1, Tonelli’s theorem yields

bαzc∑
k=0

∞∑
x=k

(
x

k

)
αk(α− 1)x−k p(x) =

∞∑
x=0

bαzc∧x∑
k=0

(
x

k

)
αk(α− 1)x−k p(x)

≤
∞∑
x=0

(2α− 1)x p(x) =

∞∑
x=0

(2α− 1)x
∞∫

0

e−λ
(λ)x

x!
dG(λ)

=

∞∫
0

e−λ
∞∑
x=0

((2α− 1)λ)x

x!
dG(λ) =

∞∫
0

e2(α−1)λdG(λ). (2.7)

By the finiteness of the Laplace transform of G the right hand side of (2.7) is finite. Consequently,
Fubini’s theorem can be applied to (2.6), which yields (2.3). �

Estimating the probability mass function KG = p from the observations and applying (2.3), we
can see by Lemma 2.1 that we might obtain consistent estimators of the mixing distribution G. This
is verified for the case of i.i.d. uncensored random variables in Section 3, and under random right
censoring in Section 4.

We remark here that the estimator of the so-called structural distribution function for a multinomial
random variable discussed in Section 4 of [11] is also based on inversion (2.3) with p replaced by an
appropriate empirical version of p.

3. Uncensored Data

Let X,X1, . . . , Xn be i.i.d. random variables with the Poisson mixture distribution p as in (1.1);
cf. (2.1). Replacing the marginal distribution p(x) = P (X = x) in (2.3) by the corresponding empirical
version

p̂n(x) =
1

n

n∑
i=1

1[Xi=x], (3.1)

restricting the sum over x in (2.3) to x ≤ Kn, and taking α = αn > 1 dependent on n, we obtain the

estimator Ĝn of G with

Ĝn(z) =

Kn∑
x=0

bαnzc∧x∑
k=0

(
x

k

)
αkn(1− αn)x−k p̂n(x), z ≥ 0. (3.2)

In view of Lemma 2.1 and (2.3), the estimator Ĝn should be consistent for appropriately chosen αn
and Kn that tend to infinity when n does. Under reasonable assumptions on the class of mixing
distribution functions G it is consistent indeed.

Theorem 3.1. Let C,D and L be positive constants. Let G(D) = 1 hold and let G have a density
g that is bounded by C and is Lipschitz continuous with the Lipschitz constant L. Then the mean
integrated squared error of Ĝn with Kn ≥ 2αnDe

2 and αn ≥ 1 satisfies

E

∞∫
0

(
Ĝn(z)−G(z)

)2

dG(z) ≤ 1

n
(2αn)2Kn + 2

(C + 1
2L(D + 2))2

α2
n

+ 2e−2Kn . (3.3)

Furthermore,

E

∞∫
0

(
Ĝn(z)−G(z)

)2

dG(z) = O

((
log log n

log n

)2
)

(3.4)

holds as n→∞, when αn and Kn are chosen as

αn =
log n

γ log log n
, Kn =

⌈
log n

κ log log n

⌉
(3.5)

with the constants γ and κ satisfying γ ≥ 2De2κ, κ > 2.
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Our proof of this theorem is based on the representation of Ĝn as an average, to wit

Ĝn(z) =
1

n

n∑
i=1

Bn(z,Xi) (3.6)

with

Bn(z, x) =

bαnzc∧x∑
k=0

(
x

k

)
αn

k (1− αn)
x−k

1[x≤Kn]. (3.7)

Subsequently, both the variance and the bias part of the mean integrated squared error are studied
in Appendix A.

4. Randomly Right Censored Data

Suppose now that X,X1, . . . , Xn are i.i.d. random variables with distribution p(x) = P (X = x)
given by (1.1) and that Y, Y1, . . . , Yn are i.i.d. nonnegative random variables distributed according to
some distribution function H. Assume that the X’s and Y ’s are independent and that one observes
Zi = min(Xi, Yi) and ∆i = 1[Xi≤Yi] only. We are interested in estimation of the unknown mixing
distribution function G in this random censoring model.

It is known that the distribution of the Xi’s can be estimated at the same
√
n rate as in the

uncensored case, provided the right censoring is not too strict (cf. [4]). Therefore, it should be possible
to estimate the mixing distribution under right censoring at the same rate as without censoring. Our
results here confirm this heuristic.

First consider the case where the censoring distribution function H is known. Observe

P (Zi = x,∆i = 1) = P (Xi = x,Xi ≤ Yi)
=P (Xi = x)(1−H(x−)) = p(x)(1−H(x−)), x = 0, 1, . . . . (4.1)

Consequently, using the observations Zi and ∆i, we can estimate p(x) by the following empirical
expression:

p̃n(x) =
1

1−H(x−)

1

n

n∑
i=1

1[Zi=x,∆i=1] (4.2)

for those x for which 1 − H(x−) is positive. In analogy to (3.1), (3.2) and (3.6) we construct our
estimator of the unknown mixing distribution function G as follows. For αn > 1 and Kn a positive
integer, we define

G̃n(z) =

Kn∑
x=0

bαnzc∧x∑
k=0

(
x

k

)
αkn(1− αn)x−k p̃n(x)

=
1

n

n∑
i=1

∆i

1−H(Zi−)

Kn∑
x=0

bαnzc∧x∑
k=0

(
x

k

)
αkn(1− αn)x−k 1[Zi=x]

=
1

n

n∑
i=1

∆i

1−H(Zi−)

bαnzc∧Zi∑
k=0

(
Zi
k

)
αkn(1− αn)Zi−k 1[Zi≤Kn]. (4.3)

Note that this estimator has the form

G̃n(z) =
1

n

n∑
i=1

∆i

1−H(Zi−)
Bn(z, Zi) =

1

n

n∑
i=1

∆i

1−H(Xi−)
Bn(z,Xi), (4.4)

where again Bn(z, x) is defined by (3.7).
Studying (4.3), we see that if the censoring random variables Yi have bounded support, then for

αnz and Kn large our estimator reduces to

G̃n(z) =
1

n

n∑
i=1

∆i

(1−H(Xi−))
,
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which by the Law of Large Numbers converges to 1. Consequently, it is crucial for the consistency of
our estimator that the right-hand tail of H be not too thin. In fact, no estimator can behave properly
if H has bounded support [0, τ ], say, as in this case it is possible to estimate p(x) consistently only for
x = 0, 1, . . . , bτc. However, the mixing distribution G is not identifiable from the bτc+ 1 equations

p(x) =

∞∫
0

e−λ
λx

x!
dG(λ), x = 0, 1, . . . , bτc. (4.5)

Actually, in Section 5, we construct mixing densities g and gn such that they differ, but yield the
same values of p(x) in (4.5) for x = 0, 1, . . . ,m−5, where m may be chosen arbitrarily large (see (5.5)
up to but not including (5.9)). Because of this unidentifiability phenomenon we will assume that the
right-hand tail of the censoring distribution H does not decrease too fast. More precisely, we will
assume condition (1.1) from [4].

Assumption 4.1. There exists a finite constant M with

∞∑
x=0

1

P (Y ≥ x)
p(x) =

∞∑
x=0

1

1−H(x−)
p(x) ≤M. (4.6)

As G̃n and Ĝn are similar averages (cf. (3.6), (4.3) and (4.4)), we can establish the consistency

of G̃n along the lines of the proof of Theorem 3.1 as given in Appendix A. In the censored case, G̃n
attains the same rate as Ĝn in the uncensored case.

Theorem 4.1. Let the conditions of Theorem 3.1 be satisfied and let αn and Kn be chosen as in
(3.5). If the censoring distribution H is known and fulfills Assumption 4.1, then the mean integrated

squared error of G̃n is of the order (log log n/ log n)2 as n→∞. More precisely,

E

∞∫
0

(
G̃n(z)−G(z)

)2

dG(z) ≤ 1

n
(2αn)2KnM + 2

(C + 1
2L(D + 2))2

α2
n

+ 2e−2Kn (4.7)

holds.

Proof. First, we estimate the variance of G̃n(z) under Assumption 4.1 (see (A.4)) as follows:

var G̃n(z) =
1

n
var

(
∆1

1−H(Z1−)
Bn(z, Z1)

)
≤ 1

n
E

(
B2
n(z,X)

(1−H(X−))2
E(1[X≤Y ] | X)

)
≤ 1

n
E

(
(2αn)2Kn

(1−H(X−))

)
≤ 1

n
(2αn)2KnM. (4.8)

Furthermore, the bias of G̃n equals

E

(
1

1−H(X−)
Bn(z,X)E(1[X≤Y ] | X)

)
−G(z) = E

[
Bn(z,X)

]
−G(z),

which in view of (A.6) is the same expression as in (A.7). Together with (A.1), (A.2), (4.8) and (A.11)
this yields (4.7) and hence the Theorem. �

Next, we consider the case where the survival function S = 1 − H of the censoring variable Y is
unknown, but is known to be continuous. Observe that the estimator Ĝn for the non-censored case
(cf. (3.6)) can de written as Ĝn(z) =

∫
Bn(z, x)dF̂n(x) with F̂n the empirical distribution function

of X. So it is natural in the censored case to consider G̃KM
n (z) =

∫
Bn(z, x)dF̃n(x) with F̃n the

Kaplan-Meier estimator of the distribution function of X. However, we have not been able to study
the asymptotic performance of the mean integrated squared error of this estimator of G.

Therefore, we construct another estimator. It is based on the technique of sample splitting as
in [10]. To explain the idea, we assume for the time being that we have an extra sample (∆̃, Z̃) =

((∆̃1, Z̃1), . . . , (∆̃n, Z̃n)) available of size n, that is, independent of and identically distributed to
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((∆1, Z1), . . . , (∆n, Zn)). The product-limit or Kaplan-Meier estimator S̃n of the survival function S
based on this extra sample is defined as

S̃n(x) =


1, 0 ≤ x ≤ Z̃(1),∏k−1
i=1 ( n−i

n−i+1 )1−∆̃(i) , Z̃(k−1) < x ≤ Z̃(k), k = 2, . . . , n,

0, Z̃(n) < x,

where Z̃(i) and ∆̃(i) denote the ordered Z̃i’s and corresponding ∆̃i’s. Note that S̃n is well defined, as

there are no ties among the Z̃(i)’s for which the ∆̃(i)’s vanish in view of the continuity of H.
We define δn and redefine Kn as follows:

δn = n
1

2κ0
− 1

2
√

log n, Kn =

⌈
log n

κ log log n

⌉
, κ > κ0 > 0. (4.9)

Replacing in (4.2), (4.3) and (4.4) the survival function S = 1−H by its estimator S̃n with δn added
to it, we obtain our estimator

G̃∗n(z) =
1

n

n∑
i=1

∆i

S̃n(Zi−) + δn
Bn(z, Zi) =

1

n

n∑
i=1

∆i

S̃n(Xi−) + δn
Bn(z,Xi),

which is based on the original sample together with the extra one.
Following the proof of Theorem 4.1, we estimate the variance of G̃∗n(z) as follows:

var
(
G̃∗n(z)

∣∣∣∆̃, Z̃ ) =
1

n
var

(
∆1

S̃n(X1−) + δn
Bn(z,X1)

∣∣∣∆̃, Z̃)

≤ 1

n
E

 B2
n(z,X)(

S̃n(X−) + δn

)2E(1[X≤Y ] | X)
∣∣∣∆̃, Z̃


≤ 1

n
E

 S(X−)(2αn)2Kn(
S̃n(X−) + δn

)2

∣∣∣∆̃, Z̃
 ≤ 1

n
E

 S(X−)(2αn)2Kn(
S(X−)[1− D̃n] + δn

)2

∣∣∣∆̃, Z̃
 , (4.10)

where D̃n is defined as

D̃n = sup
0≤y≤Kn

∣∣∣∣∣ S̃n(y)− S(y)

S(y)

∣∣∣∣∣ .
From (B.3) in Appendix B we know that for large n

−S(X−)D̃n + δn ≥ 0 almost surely

holds, which combined with (4.10) and Assumption 4.1 yields

var
(
G̃∗n(z)

∣∣∣∆̃, Z̃ ) ≤ 1

n
E

(
(2αn)2Kn

S(X−)

)
≤ 1

n
(2αn)2KnM, a.s. (4.11)

Note that for 0 ≤ x ≤ Kn and large n formula (B.3) implies S̃n(x−) + δn ∈ [S(x−), S(x−) + 2δn]
a.s. and hence

1− S(x−)

S̃n(x−) + δn
∈
[
0,

2δn
S(x−)

]
a.s.

By (A.4) and Assumption 4.1, this implies that conditionally on the extra sample the bias of our
estimator satisfies∣∣∣EBn(z,X)− E

(
G̃∗n(z) | ∆̃, Z̃

)∣∣∣ ≤ E (∣∣∣∣[1− S(X−)

S̃n(X−) + δn

]
Bn(z,X)

∣∣∣∣ | ∆̃, Z̃)
≤ 2δn(2αn)KnE

(
1

S(X−)

)
≤ 2δn(2αn)KnM a.s.
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Together with (A.11) this means (see also (4.9))

∞∫
0

[
E
(
G̃∗n(z) | ∆̃, Z̃

)
−G(z)

]2
dG(z)

≤ 4
log n

n1−1/κ0
(2αn)2KnM2 + 4

(C + 1
2L(D + 2))2

α2
n

+ 4e−2Kn , a.s.,

which in combination with (4.11) results in

E

∞∫
0

(
G̃∗n(z)−G(z)

)2

dG(z)

≤ 1

n
(2αn)2KnM + 4

log n

n1−1/κ0
(2αn)2KnM2 + 4

(C + 1
2L(D + 2))2

α2
n

+ 4e−2Kn .

With αn and Kn defined as in (3.5) and (4.9), where the constants γ and κ satisfy γ ≥ 2De2κ,
κ > κ0 = 3, we obtain (

log n

log log n

)2

E

∞∫
0

(
G̃∗n(z)−G(z)

)2

dG(z) = O(1),

as n tends to infinity.
However, G̃∗n is based on 2n observations, as it is based on the original and the extra samples. But, if

one has a sample of n observations available, the rate log n/(log log n) can still be obtained by splitting
the sample into two subsamples of about the same size and applying the natural modification of our
construction in order to get an estimate of G. Here, the first subsample plays the role of the original
sample in our construction and the second subsample the role of the extra sample. Interchanging the
roles of the two subsamples one gets another estimate of G and it makes sense to average these two
estimates to obtain G̃∗∗n (cf. [13], Section 2 of [10], or page 396 of [1]). In summary,

Theorem 4.2. Fix positive constants C,D,L, and β with CD ≥ 1. Consider the class of mixing
distributions G that have support contained in [0, D] and have a density bounded by C that is Lipschitz
continuous with Lipschitz constant L. For the class of censoring distributions H that are continuous
and fulfill Assumption 4.1, there exists an estimator G̃∗∗n of G based on (∆1, Z1), . . . , (∆n, Zn), for
which the mean integrated squared error is of the order (log log n/ log n)2.

5. Lower Bound to the Mean Integrated Squared Error

Information in the data about the mixing distribution G in the right censored case equals at most
the information in the uncensored case. Therefore, the optimal lower bound to the mean integrated
squared error for estimators of G in the censored case should have a convergence rate at most as large
as the rate in the uncensored case. As we have seen in the preceding Section, our estimators for these
two cases attain the same convergence rate (log n/ log log n)2. In this Section we shall prove that the
convergence rate equals at most this rate (log n/ log log n)2 in the uncensored case, and hence in the
censored case. Thus we have shown that our estimators attain the optimal rate and that our bound
on the rate is also optimal, in both the uncensored and censored cases.

We study the minimax risk and note that it is bounded from below by a Bayes risk. Namely, we
have

inf
Ĝn

sup
G
EG

∞∫
0

(
Ĝn(λ;X)−G(λ)

)2

dG(λ)

= inf
Ĝn

sup
α,G0,Gn

{
αEG0

∞∫
0

(
Ĝn(λ;X)−G0(λ)

)2

dG0(λ)
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+ (1− α)EGn

∞∫
0

(
Ĝn(λ;X)−Gn(λ)

)2

dGn(λ)

}

≥ sup
α,G0,Gn

inf
Ĝn

{
αEG0

∞∫
0

(
Ĝn(λ;X)−G0(λ)

)2

g0(λ)dλ

+ (1− α)EGn

∞∫
0

(
Ĝn(λ;X)−Gn(λ)

)2

gn(λ)dλ

}
, (5.1)

where the G’s are supposed to have densities g with respect to the Lebesgue measure. We introduce
the notation

pn0(x) = pn0(x1, . . . , xn) =

n∏
i=1

( ∞∫
0

e−λ
λxi

xi!
g0(λ)dλ

)
(5.2)

and similarly for pnn(x). Now the right-hand side of (5.1) can be written as

sup
α,g0,gn

inf
Ĝn

∑
x

∞∫
0

{
α
(
Ĝn(λ;x)−G0(λ)

)2

pn0(x)g0(λ)

+(1− α)
(
Ĝn(λ;x)−Gn(λ)

)2

pnn(x)gn(λ)

}
dλ

and this infimum is attained by

Ĝn(λ;x) =
G0(λ)αpn0(x)g0(λ) +Gn(λ)(1− α)pnn(x)gn(λ)

αpn0(x)g0(λ) + (1− α)pnn(x)gn(λ)
,

which results into

sup
α,g0,gn

∞∫
0

(G0(λ)−Gn(λ))
2
∑
x

α(1− α)pn0(x)pnn(x)g0(λ)gn(λ)

αpn0(x)g0(λ) + (1− α)pnn(x)gn(λ)
dλ . (5.3)

For positive reals s and t we have st/(s+ t) ≥ 1
2 (s ∧ t). Consequently, the right-hand side of (5.3) is

bounded from below by

sup
α,g0,gn

1

2

∞∫
0

(G0(λ)−Gn(λ))
2
∑
x

{(αpn0(x)g0(λ)) ∧ ((1− α)pnn(x)gn(λ))} dλ ,

which for α = 1
2 and combined with (5.1) through (5.3) results in

inf
Ĝn

sup
G
EG

∞∫
0

(
Ĝn(λ;X)−G(λ)

)2

dG(λ)

≥ sup
g0,gn

1

4

∞∫
0

(G0(λ)−Gn(λ))
2

(g0(λ) ∧ gn(λ)) dλ
∑
x

pn0(x) ∧ pnn(x) . (5.4)

In order to come close to this supremum one has to choose g0 and gn in such a way that pn0 and pnn
are close together and that simultaneously G0 and Gn are as different as possible. We shall choose g0

and gn with the help of the orthogonal system of Chebyshev polynomials Cm on [−1, 1], m = 0, 1, . . . .
They are defined as

Cm(z) = cos(m arccos z), −1 ≤ z ≤ 1,

and are orthogonal with respect to the weight function 1/
√

1− z2, −1 < z < 1. Now we choose

g0(λ) = 1(0,1)(λ), λ > 0,
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Hn(λ) =

λ∫
0

hn(µ)g0(µ)dµ = [λ(1− λ)]
3/2

eλCm(2λ− 1), (5.5)

gn(λ) = g0(λ)(1 + anhn(λ)),

where m = mn depends on n in an appropriate way to be determined below. By differentiation, for
0 < λ < 1, we obtain

hn(λ) = 1
2

√
λ(1− λ)(3−4λ− 2λ2)eλCm(2λ− 1)

−mλ(1− λ)eλ sin(m arccos(2λ− 1)),

which we may bound by

|hn(λ)| < 1
4e(m+ 3). (5.6)

In view of
1∫

0

hn(λ)g0(λ)dλ = Hn(1) = 0,

equations (5.5) and (5.6) imply that gn is a proper density provided

|an| ≤
4

e(m+ 3)
(5.7)

holds. With (5.5) in mind, by partial integration, we compute

∞∫
0

e−λ
λxi

xi!
hn(λ)g0(λ)dλ =

[
e−λ

λxi

xi!
Hn(λ)

]1

0

−
1∫

0

e−λ
λxi−1

xi!
(xi − λ)Hn(λ)dλ

=

1∫
0

λxi−1

xi!
(λ− xi)

2λ2(1− λ)2√
1− (2λ− 1)2

Cm(2λ− 1)dλ

=

1∫
−1

(1 + z)xi−1

2xi+4xi!
(z + 1− 2xi)

(1− z2)2

√
1− z2

Cm(z)dz. (5.8)

As the Chebyshev polynomial of degree m is orthogonal with respect to the weight function 1/
√

1− z2,
−1 < z < 1, to all polynomials of degree at most m− 1, the integrals in (5.8) vanish for xi ≤ m− 5.
Hence,

pnn(x) = pn0(x) (5.9)

holds (cf. (5.2)), unless at least one of the xi’s equals m − 4 or more. Actually, the probability qn
that Xi equals at least m− 4, may be bounded both under g0 and gn via

qn = P (Xi ≥ m− 4) =

1∫
0

∞∑
k=m−4

e−λ
λk

k!
dλ ≤

1∫
0

λm−4

(m− 4)!
dλ =

1

(m− 3)!
. (5.10)

Let Zn be the random variable denoting the number of Xi that equal at least m − 4. Note that Zn
has a binomial distribution with parameters n and qn.

Combining (5.6) and (5.10), we arrive at∑
x

pn0(x) ∧ pnn(x) ≥ Eg0

((
1− an sup

0<λ<1
|hn(λ)|

)Zn
)

=

(
1− qnan sup

0<λ<1
|hn(λ)|

)n
≥
(

1− ean(m+ 3)

4(m− 3)!

)n
, (5.11)
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which converges to 1/
√
e by the choice

an =
2(m− 3)!

en(m+ 3)
. (5.12)

For the time being we assume that

n = (m− 3)! (5.13)

holds. By Stirling’s formula this means

lim
m→∞

(m− 3) log log n

log n
= 1. (5.14)

Note that these choices of n, m and an satisfy (5.7). Some computation shows that all together the
above choices imply

∞∫
0

(G0(λ)−Gn(λ))
2

(g0(λ) ∧ gn(λ)) dλ =

∞∫
0

a2
nH

2
n(λ) (g0(λ) ∧ gn(λ)) dλ

≥ 1
2a

2
n

1∫
0

λ3(1− λ)3e2λ cos2(m arccos(2λ− 1))dλ

= 2−8a2
n

π∫
0

[(1 + cosα)(1− cosα)]
3
e1+cosα cos2(mα) sinαdα

≥ 2−8a2
n

π∫
0

sin7 α cos2(mα) dα ≥ 2−23/2a2
n

3π/4∫
π/4

cos2(mα) dα. (5.15)

Because this last integral converges to π/4 as m tends to infinity, the relations (5.15), (5.12), (5.13),
and (5.14) imply

lim inf
n=(m−3)!,m→∞

(
log n

log log n

)2
∞∫

0

(G0(λ)−Gn(λ))
2

(g0(λ) ∧ gn(λ)) dλ ≥ 2−15/2πe2 > 0.

Together with (5.11), this yields

lim inf
n=(m−3)!,m→∞

(
log n

log log n

)2
∞∫

0

(G0(λ)−Gn(λ))
2

(g0(λ) ∧ gn(λ)) dλ

∑
x

pn0(x) ∧ pnn(x) ≥ 2−15/2πe3/2 > 0. (5.16)

If ñ satisfies n = (m− 3)! ≤ ñ < (m− 2)!, then 1 ≤ ñ/n < m− 2 holds and hence

1 ≤ log ñ

log n
< 1 +

log(m− 2)

log n
→ 1, as m→∞. (5.17)

Combining (5.4), (5.16) and (5.17), we obtain the following lower bound.

Theorem 5.1. Let X1, . . . , Xn be i.i.d. random variables with the Poisson mixture distribution (1.1)
from the class of mixing distributions G that have density bounded by C ∈ [2,∞) and have G(D) = 1

for some D ∈ [1,∞). With Ĝn an estimator of G based on X1, . . . , Xn the minimax value of the mean

integrated squared error of Ĝn in estimating G does not tend to 0 faster than (log log n/ log n)2 as n
tends to infinity, more precisely,

lim inf
n→∞

(
log n

log log n

)2

inf
Ĝn

sup
G
EG

∞∫
0

(
Ĝn(λ;X)−G(λ)

)2

dG(λ) > 0.
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Appendix A. Proof of Theorem 3.1

The proof in this Appendix of Theorem 3.1 will be based on (3.6) with (3.7). In view of

E

∞∫
0

(
Ĝn(z)−G(z)

)2

dG(z) =

∞∫
0

E
(
Ĝn(z)−G(z)

)2

dG(z), (A.1)

we first fix z, study

E
(
Ĝn(z)−G(z)

)2

= var Ĝn(z) +
(
EĜn(z)−G(z)

)2

(A.2)

and note that

var Ĝn(z) =
1

n
var Bn(z,X). (A.3)

As Bn(z, x) from (3.7) satisfies

|Bn(z, x)| ≤
x∑
k=0

(
x

k

)
αkn |1− αn|

x−k
1[x≤Kn] ≤ (2αn)Kn , (A.4)

we have

var Bn(z,X) ≤ E
(
B2
n(z,X)

)
≤ (2αn)2Kn . (A.5)

The study of the bias is more involved. We choose the random variable Λ with a distribution
function G in such a way that the conditional distribution of X given Λ is Poisson (Λ); so

P (X = x | Λ = λ) = e−λ
λx

x!
, x = 0, 1, . . . .

By Taylor’s theorem (or partial integration),

ex =

K∑
k=0

xk

k!
+

x∫
0

(x− y)K

K!
eydy

holds. Consequently, we have

E (Bn(z,X) |Λ = λ) =

Kn∑
x=0

bαnzc∧x∑
k=0

(
x

k

)
αn

k (1− αn)
x−k

e−λ
λx

x!

=

bαnzc∧Kn∑
k=0

e−λ
(αnλ)k

k!

Kn∑
x=k

1

(x− k)!
((1− αn)λ)

x−k

=

bαnzc∧Kn∑
k=0

e−αnλ
(αnλ)k

k!

−
bαnzc∧Kn∑

k=0

e−λ
(αnλ)k

k!

(1−αn)λ∫
0

((1− αn)λ− y)Kn−k

(Kn − k)!
ey dy

= P (Uαnλ ≤ αnz ∧Kn)−Rn(z, λ) (A.6)

with Uµ, distributed as Poisson(µ). In view of G(D) = 1, only z that are at most D, are relevant and

for such z we have αnz < Kn. Hence, the bias of Ĝn equals

EĜn(z)−G(z) =

∞∫
0

(
P (Uαnλ ≤ αnz)− 1[λ≤z]

)
dG(λ)−

∞∫
0

Rn(z, λ)dG(λ). (A.7)

First, we note

|Rn(z, λ)| ≤
bαnzc∑
k=0

e−λ
(αnλ)k

k!

((αn − 1)λ)Kn−k

(Kn − k)!
≤ e−λ (αnλ)Kn

Kn!

bαnzc∑
k=0

(
Kn

k

)
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≤ e−λ (2αnλ)Kn

Kn!
≤ e−λ√

2πKn

(
2αnλe

Kn

)Kn

≤ e−Kn , (A.8)

where the second to last inequality stems from Stirling’s formula.
Furthermore, we note

G(0) = 0, lim
λ→∞

P (Uαnλ ≤ αnz) = 0

and
∂

∂λ
P (Uαnλ ≤ αnz) = −αne−αnλ

(αnλ)bαnzc

bαnzc!
.

Consequently, partial integration yields
∞∫

0

P (Uαnλ ≤ αnz) dG(λ) =

∞∫
0

G(λ)αne
−αnλ

(αnλ)bαnzc

bαnzc!
dλ = EG(Λn), (A.9)

where Λn has a gamma distribution with shape parameter bαnzc+ 1 and rate parameter αn. Hence
we have

EΛn − z =
1 + bαnzc − αnz

αn
∈ (0, 1/αn], var(Λn) =

bαnzc+ 1

α2
n

,

E(Λn − z)2 =
bαnzc+ 1

α2
n

+

(
1 + bαnzc − αnz

αn

)2

≤ z + 2

αn
.

As G has a density g that is Lipschitz continuous with Lipschitz constant L, we have

|G(λ)−G(z)− (λ− z)g(z)| =
∣∣∣∣
λ∫
z

(g(y)− g(z)) dy

∣∣∣∣ ≤ 1
2L(λ− z)2. (A.10)

Equations (A.9) through (A.10) yield∣∣∣∣
∞∫

0

(
P (Uαnλ ≤ αnz)− 1[λ≤z]

)
dG(λ)

∣∣∣∣ ≤ g(z) + 1
2L(z + 2)

αn
,

which together with (A.7) and (A.8) shows that the bias of Ĝn(z) satisfies(
EĜn(z)−G(z)

)2

= (EBn(z,X)−G(z))
2

≤ 2
(g(z) + 1

2L(z + 2))2

α2
n

+ 2e−2Kn ≤ 2
(C + 1

2L(D + 2))2

α2
n

+ 2e−2Kn , z ≤ D. (A.11)

Together with (A.1)–(A.3) and (A.5) this yields (3.3) and consequently (3.4) when αn is chosen as
in (3.5). We have chosen κ > 2 because the first term at the right hand side of (3.3) is of the order
n−1+2/κ.

Appendix B. Kaplan–Meier

In Section 4, we have used the Kaplan-Meier estimator S̃n of the survival function S of the censoring
distribution H. In this appendix we study the consistency of S̃n by applying Theorem 7 of [5]. We
choose their dn to be equal to log n/(δ log log n) and their Tn to our Kn. Their εn is related to Kn via

εn = 8P (X ∧ Y > Kn). (B.1)

As
∑
x≥Kn+1 e

−λλx/x! is decreasing in λ for λ ≤ Kn + 1, the support of G is contained in [0, D], and
Kn + 1 > D holds for n large, we have for such n

P (X > Kn) =

∞∫
0

∞∑
x=Kn+1

e−λ
λx

x!
dG(λ) ≥ C

1/C∫
0

∞∑
x=Kn+1

e−λ
λx

x!
dλ
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≥
∞∑

x=Kn+1

e−1/C (1/C)x

x!
≥ e−1/C (1/C)Kn+1

(Kn + 1)!
. (B.2)

From (B.1), (B.2) and Assumption 4.1, we derive

εn ≥ 8e−1/C (1/C)Kn+1

(Kn + 1)!
β−Kn .

With Kn as in (4.9), some computation with the help of Stirling’s formula shows

εn ≥ exp (−(log n)/κ(1 + o(1))) ,

which in view of κ > κ0 implies that for sufficiently large n

ε2n ≥ n−1/κ0

holds. Now, formula (4.16) from Theorem 7 of [5] shows that almost surely√
n1−1/κ0

log n
D̃n =

√
n1−1/κ0

log n
sup

0≤y≤Kn

∣∣∣∣∣ S̃n(y)− S(y)

S(y)

∣∣∣∣∣→ 0 (B.3)

holds as n tends to infinity.
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ALMOST PARAMETRIC SMOOTHING

ROGER KOENKER1 AND JIAYING GU2

Dedicated to Estate Khmaladze on the occasion of his 75th birthday

Abstract. Shape constraints may be a powerful aid in nonparametric function estimation, often
regularizing problems without any pesky choice of tuning parameters. In some special circumstances

they also achieve a remarkable, adaptive, nearly parametric convergence rate. After reviewing some

prominent examples of this phenomenon, we briefly consider a closely related problem arising in the
context of monotone single index models for conditional quantile functions.

1. Introduction

In regular, finite-dimensional parametric models we expect that estimated parameters converge at
a rate, proportional to 1/

√
n for sample size n. A nonparametric estimation of densities and regression

functions is, generally, more challenging, and this is typically reflected at slower rates of convergence.
Of course, a higher order kernel density estimation enables one to achieve nearly parametric rates at
the price of producing embarrassing estimates that may violate the basic non-negativity requirement
for estimated densities; consequently, they will not be considered further here. Instead, we will focus
on settings where shape constraints enable nearly parametric convergence in various related smoothing
problems.

2. Monotone Density Estimation

The leading example of the phenomenon that we wish to study is the celebrated monotone density
estimator of [10]. Given independent observations, X1, . . . , Xn from a distribution F0 with a monotone
decreasing density f0, the classical prescription for the Grenander estimator is characterized as the
left derivative of the least concave majorant of the empirical distribution function,

Fn(x) = n−1
n∑
i=1

I(Xi ≤ x).

This is illustrated in Figure 1, where the piecewise linear least concave majorant yields a piecewise
constant density estimate. An especially appealing feature of this estimator is that it is fully automatic,
not depending on any choice of tuning parameters. The location and mass associated with the resulting
“histogram bins” are determined entirely from the data. This can be seen geometrically in the Figure:
it is as if we have stretched a string over the empirical distribution function, and once this is done,
the left derivative is determined. This may seem rather ad hoc on first encounter, so it is perhaps
appropriate to find that the estimator can also be viewed as a nonparametric maximum likelihood
estimator.

Consider the shape constrained density estimation problem,

max
f

{∫
log f(x)dFn(x) | f decreasing,

∫
f(x)dx = 1

}
.

Lemma 2.2 of [13] establishes that the solution to this problem is the Grenander estimator, provided

that we adopt the convention that f̂(x) = 0 for x < 0. Jumps in f̂ occur at the order statistics of a

2020 Mathematics Subject Classification. 62G07, 62G08.
Key words and phrases. Density estimation; Penalized likelihood, Quantile regression.
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Figure 1. Grenander Estimator: The least concave majorant of the empirical distri-
bution function in the upper panel, when differentiated yields the piecewise constant
density estimate in the lower panel.

sample and at the origin. An alternative formulation, also grounded in maximum likelihood, involves
the writing of our target density f , as a scale mixture of uniforms,

max
G∈G

{∫
log f(x)dFn(x) | f(x) =

∫
t−1I(0 ≤ x ≤ t)dG(t)

}
,

where G constitutes the set of proper distribution functions. In this case, solutions Ĝ assign a mass

to a few discrete order statistics that then yield a mixture density f̂ , that is equal to the previous
solutions.1 The scale mixture formulation automatically imposes the constraint that the mixture
density is supported on the positive half-line.

There is an extensive literature on the asymptotic behavior of the Grenander estimator beginning
with [26], who established that pointwise,

n1/3(f̂n(x0)− f(x0))/[4f(x0)f ′(x0)]1/3  Z

where Z is the maximizer of two-sided Brownian motion minus a parabola,

Z = argmaxt{W (t)− t2}
The O(n−1/3) rate may be somewhat disappointing, however, it should be kept in mind that this
result applies to the entire class of decreasing densities without the (second-order) differentiability
conditions routinely assumed by kernel estimators to achieve their familiar O(n−2/5) rate.

Global convergence of the Grenander estimator was studied by [11], who established that for any
bounded decreasing density f , with compact support on [a,∞) and continuous first derivative,

lim
n→∞

n1/3Rn(f, f̂n) = K

∞∫
a

|f(x)f ′(x)/2|1/3dx

1For further computational details on these alternative formulations see demo(Grenander) in the R package

REBayes.
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where Rn(f, f̂n) = Ef
∫
|f(x) − f̂n(x)|dx. Here, the constant K is more explicitly expressed as

2E|V (0)| ≈ 0.82, where

V (a) = sup{t ∈ R |W (t) = (t− a)2 = max!}

and W (t) is a two-sided Brownian motion on R. [3] provide a more refined analysis of the local behavior
at zero including the possibility of an unbounded target density. As is noted by [4], the uniformity is

still problematic, so it is of considerable interest to have non-asymptotic risk bounds for Rn(f, f̂n). To
this end, L. Birgé shows that the piecewise constant, histogram-like nature of the Grenander estimator
is adaptive in the sense that it tends to select an optimal partition for the binning strategy of the
histogram. For smooth target densities this still yields a O(n−1/3) convergence rate, however, in the
very special case that the target density is piecewise constant with a finite number of jumps, the

results imply that f̂n achieves the parametric rate O(n−1/2). The piecewise constant, histogram-like
nature of the Grenander estimator is adaptive in the stronger sense that it selects a binning strategy
suited to histogram nature of the true density as if it were a parametric object, which of course in
a sense it is. Birgé is very careful to stress the special character of this result, so it may be easy to
lose sight of this truly remarkable feature. In contrast to an adaptive kernel density estimation that
requires a pilot estimate to guide the choice of the local bandwidth selection, the Grenander estimator
constitutes its own pilot estimator, automatically selecting bins without the benefit of any preliminary
bandwidth selection.2

3. Unimodal Density Estimation

This parametric rate performance of the Grenander estimator, however special its circumstances
may be, turns out to have interesting extensions and counterparts in a wide variety of other shape
constrained smoothing problems. For unimodal densities with the known mode results for the Grenan-
der estimator can be immediately extended, and with some further effort an estimated mode can be
accommodated. Closely related is the problem of estimating strongly unimodal, i.e., log-concave,
densities. This is also a shape constrained problem susceptible to a maximum likelihood treatment,

max
f

{ n∑
i=1

log f(xi) | log f concave,

∫
f(x)dx = 1

}
,

and can be reformulated as the convex optimization problem,

min
g

{ n∑
i=1

g(xi) | g ∈ K,
∫
eg(x)dx = 1

}
,

where K denotes the closed convex cone of convex functions. Solutions ĝn are now piecewise linear with

knots at the data points, so f̂n = eĝn is piecewise exponential, and vanishes off the empirical support

of the observations. Recently, [19] have proved that f̂n achieves the minimax rate of convergence,

inf
fn

sup
f0∈F

Ef0d2
H(fn, f0) � n−4/5,

where d2
H(f, g) =

∫
(
√
f(x) −

√
g(x))2dx is the squared Hellinger distance, F denotes the set of all

upper semi-continuous log concave densities, and fn is any estimator of f0. Again, it may be tempting
to ask, “So what? Can’t I achieve this same rate with conventional kernel methods?” When the
target density f0 is strictly log concave, the shape constraint is eventually rendered irrelevant, since
any reasonable estimator would remain in the interior of the constraint set. What if, instead, f0 lies in
the boundary of the constraint set? In the log concave case this would mean that g0 = log f0 was itself
piecewise affine with k distinct pieces. In such k-affine cases, [17] establish that the non-parametric

2Indeed, this may lead one to wonder whether, in circumstances where the monotonicity assumption is plausible, it

might be advantageous to use the Grenander f̂n as a pilot estimator, simply convolving it with a smooth density if its
piecewise constant appearance was deemed unattractive.
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maximum likelihood estimator f̂n achieves a nearly parametric rate of convergence, that is, there is a
universal constant C such that for every n ≥ 2 and every k-affine f0,

Ef0d2
H(fn, f0) ≤ Ck

n
log5/4 n.

Thus, again without any prior knowledge about the number of affine pieces, the NPMLE achieves
the almost parametric rate of O(1/

√
n), without any required tuning parameter selection. In fact,

something considerably more general is proved for f0 that are nearly k-affine. It would also be possible
to generalize to weaker forms of concavity as in [22], but we will resist going into the details. Instead,
we will turn our attention to the estimation of a general class of mixture models.

4. Nonparametric Estimation of Mixture Densities

Many statistical problems can be formulated as parametric mixtures, leading examples are the
Gaussian location mixture

f(x) =

∫
ϕ(x− θ)dG(θ)

and the Gaussian scale mixture

f(x) =

∫
θ−1ϕ(x/θ)dG(θ).

Given a sample of independent observations, X1, X2, . . . , Xn, we can consider these as models with
Xi ∼ N (θi, 1) and Xi ∼ N (0, θ2

i ), respectively. We would like to estimate the mixing distribution G
when the observations are assumed to be exchangeable. [16] proposed estimating G by a nonparametric
maximum likelihood,

max
G∈G

{
n∑
i=1

log f(Xi) | f(x) =

∫
ϕ(x, θ)dG(θ)

}
, (1)

and proved consistency of the resulting Ĝ. Computation by the EM algorithm was suggested by [23],
but remained quite challenging. Modern convex optimization methods provide a much more efficient
and scalable approach to computation as is shown in [21]. However, many problems regarding the
statistical performance of these methods remain open.

An important step forward in this respect is the recent work of [27] who consider the Gaussian
location mixture model in Rd. They evaluate performance relative to the oracle Bayes estimator
that knows the empirical measure of the true θ’s, Gn(t) = n−1

∑n
i=1 I(t− θi). Their Proposition 2.3

establishes that when Gn is discrete, supported on a set of cardinality k, there exists a constant Cd
such that

Ed2
H(f̂n, fGn) ≤ Cd

(
k

n
(
√

log n)d+(4−d)+

)
.

It follows easily that this is the minimax attainable rate. Again, we have an almost parametric
convergence rate up to the logarithmic factor for the nonparametric MLE of the mixture density.

5. Shape Constrained Regression

It should not come as a big surprise that the shape constraints can also play an important role in
regression, as well as in density estimation. Most of the literature has focused on the least squares
fidelity criterion. The simplest setting is the isotonic regression model,

Yi = θi + ui i = 1, 2, . . . , n,

where the θi are assumed to satisfy θ1 ≤ θ2 ≤ · · · ≤ θn. Implicitly, we can think of this model as
one in which we observe Yi’s at a sequence of increasing design points. The apparently more general
formulation of the model with Yi = g(xi) + ui reduces to the former model under general convex loss;
if the observations are not ordered in the covariate xi, we can simply reorder the Yi’s according to the
order of the xi’s and proceed as before. Under the monotonicity constraint, the solutions are piecewise
constant with jumps at the design points and loss depends only on the estimated function values at
these design points.
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For i.i.d. Gaussian ui with variance σ2 < ∞ the nonparametric MLE can again be formulated as
a convex optimization problem

min
θ

{
n∑
i=1

(Yi − θi)2 | θ ∈ Kn

}
,

where Kn is the convex polyhedral cone of nondecreasing sequences. This problem has a long his-
tory going back to [5] and perhaps even before. Computation of solutions are typically carried out
with the pool-adjacent-violaters algorithm (PAVA), although various modern variants of quadratic
programming could also be used.

[30] showed that the empirical risk of the nonparametric MLE, θ̂n

Rn = n−1
n∑
i=1

(θi − θ̂i)2 ≤ C

[(
σ2Vn
n

)2/3

+
σ2 log n

n

]
,

where Vn = θn − θ1 and C is a fixed constant. However, more recent refinements establish that
improvement over this O(n−1/3) rate can be achieved under the special circumstances that the θi are
piecewise constant with a small number k of pieces. In that case it is proved in [7] that

Rn ≤ inf
k

(
4σ2(1 + k)

n
log

en

1 + k

)
.

Thus, up to the log factor we again have almost parametric convergence determined by the number
of distinct piecewise constant elements in the target function. And again, it is worth stressing that
adaptation is achieved over the number and locations of these pieces without any intervention of
tuning parameters. When the monotonicity is misspecified, there is, obviously, a bias effect and this
is also characterized in the general formulation of this result.

When the monotonicity constraint is replaced by a convexity (or concavity) constraint, the non-
parametric MLE under Gaussian error is piecewise linear with knots at the observed design points. In
the simplest setting with equally spaced design points this imposes the constraint that the second dif-
ferences of θi’s are nonnegative. [14] and [7] prove that when the target regression function is k-affine,
that is, piecewise linear with k distinct pieces, the NPMLE again achieves an adaptive parametric
rate of convergence up to a log factor.

Although the prior literature has focused exclusively on the least squares, i.i.d. Gaussian noise
setting, as has most of the PAVA literature, there is nothing that prohibits us from entertaining other
fidelity criteria. A natural alternative is the family of quantile loss functions that yield estimates of
the conditional quantile functions of the response. Again, we have a convex optimization problem

min

{
n∑
i=1

ρτ (yi − g(xi)) | g ∈ K

}
, where ρτ (u) = u(τ−I(u < 0)), and K is the closed convex cone representing either monotone, convex
or concave functions. An implementation of such estimators is available in the R package quantreg

with the function rqss. In contrast to the least squares version of PAVA, the algorithmic complexity
of the quantile implementation via interior point methods is not carefully analyzed, but sparsity of the
underlying constraint matrix assures efficient practical performance. This implementation expands
the formulation in several respects: (i) there is an option to impose further smoothness on the shape
constrained estimate; (ii) general, unequally spaced design points are permitted; and (iii) additive
models with several shape constrained components are permitted. To elaborate briefly on the first
point, the general form of the rqss function permits the user to impose a total variation penalty on
the first derivative of the fitted function

TV (g′) =

∫
|g′′(x)|dx

, controlled by a tuning parameter λ. When λ is sufficiently large, the ĝn is constrained to be linear,
while when λ is sufficiently close to zero, the TV penalty has no effect, and only the shape constraint
determines the fit.
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From a computational viewpoint the polyhedral cone and total variation constraints are especially
appealing in the quantile regression setting because they maintain the linear programming structure
of the estimation problem. Due to the relative sparsity of the design matrices in such problems,
modern interior point algorithms are quite efficient even for large scale problems. It should be noted
that the form of the solutions, that is whether they are piecewise constant, piecewise linear, etc., is
entirely determined by the form of the constraints and, in particular, by the order of the differential
operator appearing there. Thus, if g ∈ K requires that Dg ≥ 0 to impose monotonicity, then solutions
will be piecewise constant. If instead D2g ≥ 0 is imposed to achieve convexity, then solutions will
be piecewise linear. Likewise, total variation penalties on g, itself, yield piecewise constant solutions,
while total variation penalties on Dg, thereby controlling the L1 norm of D2g yield piecewise linear
solutions. Although such methods have a long history in imaging and actuarial science, they only
have become widely appreciated in statistics through the relatively recent works of [18] and [28].

We conjecture that these shape constrained conditional quantile function estimators enjoy the same
almost parametric convergence as their least squares counterparts and hope to report on this at a later
time.

6. Shape Constrained Transformation Models

This brings us to our final category of shape constrained estimators: transformation models take a
variety of forms, but typically they have a single index structure like

EYi|Xi = Ψ(X>i β). (2)

The covariates and the parameter β ∈ Rp are wrapped in a function Ψ : R→ R that may be parametric
or nonparametric. Motivated by the revival of interest in the Grenander estimator, there has been an
increased interest in transformation models with monotonic Ψ. Clearly, when p = 1, the β parameter
is irrelevant and with Ψ monotonic, we are back to the methods described in the previous section.
When p > 1, we can regard such models as an heroic attempt to circumvent the curse of dimensionality
by assuming a simple form for the way the covariates enter the model while preserving some semblance
of nonlinear structure. There are a variety of closely related models, some of which replace Ψ on the
right-hand side by some transformation of the response variable itself. The monograph [6] provides a
systematic treatment of many of these models, both parametric and nonparametric.

Recently, [2] and [12] have very thoroughly explored various approaches to estimating the model
(2). They argue that it is preferable to avoid the direct profiling approach and focus on methods that
find approximate zeros of the score (gradient) equations. It is clear that the vector β is identified only
up to scale, so it is natural to impose the constraint that its Euclidean norm is one, ‖β‖ = 1. This can
be accomplished in a variety of ways, either by transformation to spherical coordinates, or by adding
a Lagrangian term. They employ the former scheme for their asymptotics, but prefer the latter from
a practical, computational standpoint. Another option is to simply set one of coordinates of β equal
to 1 or -1.

A drawback of the conditional mean formulation of the model, one that also afflicts a much broader
class of nonlinear transformation models for conditional means, is the necessity of assuming that in
the additive error formulation of the model

Yi = Ψ(X>i β) + Ui, (3)

there is a full independence between the observed covariates Xi and Ui. One way to circumvent this
requirement is to replace the mean formulation by a conditional quantile formulation

QY |X(τ |X) = Ψτ (X>βτ ). (4)

The quantile formulation also renders superfluous the unsightly moment conditions that appear in-
evitably in the analysis of the mean formulation. Such models were first considered by [8] who provide
a very thorough motivation and contextualization for this class of models. Drawing on earlier work
of Chaudhuri, they propose an average derivative estimator for β based on the nonparametric kernel
weighted quantile regression.
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When the τth conditional quantile function of Y given X is postulated to be a monotone function
of a linear predictor in Xi, as seems plausible in many applications, we can try to exploit shape
constrained methods to estimate both Ψ and β. Since quantiles are equivariant to monotone transfor-
mation, interpretation of the family of such models is also much more straightforward, than their mean
counterparts. Our initial computational strategy arose immediately from the equivariance property
of the quantiles, (4) implies

QΨ−1
τ (Y )|X(τ |X) = X>βτ . (5)

Since this linear quantile regression formulation can be efficiently estimated even for a high-dimensional
β, a simple iterative strategy in which alternate back and forth from estimation of Ψ to estimation of
β seems attractive. At each iteration we can modify the resulting β so that it has norm one. Given a
β, an estimate of Ψ can be obtained by solving the monotone quantile regression problem described
above. Both steps are linear programs. The biconvex structure of the problem is common to many
mathematical contexts (see [1] and [9] for further details). Unfortunately, there is no general assurance
that such an iterative procedure converges to a global optimum. Indeed, contrary to our initial, naive
expectations, it performed abysmally.

Thus, following the lead of [12], but not without some trepidation, we turned to the global methods
of optimization, in particular, the patterned search method of [15]. Convergence of such pattern
search algorithms to a stationary point was established in [29]. An R implementation is available
from the optimx package of [24], and an Rcpp implementation is available from the github site of Piet
Groeneboom. Provisionally, we have experimented with the former implementation which has been
performed quite well. In Figure 2, we illustrate three realizations from a sample in which the true
Ψ is piecewise constant with only one jump; there are 5 covariates drawn as independent standard
Gaussians. It is apparent from this Figure that the location and magnitude of the jump in Ψ is quite
accurately estimated, this is hardly surprising in view of the fact that all the information about the
linear predictor is contained in the neighborhood around this jump. Estimation of the level of Ψ
before and after the jump is more problematic, which is again not surprising given that in the absence
of a jump we would not be able to consistently estimate the linear index at all.
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Figure 2. Single Index Median Regression Monotone Transformation Model: The
plotted points depict the pairs (Ψτ (x>i β0), yi). Three realizations for difference sample

sizes of the final estimate of the monotone Ψ̂n based on five Gaussian covariates in
the single index. The true Ψ is depicted in black, while the estimate is in red.



196 R. KOENKER AND J. GU

To begin to explore the asymptotic behavior of our proposed estimator it is useful to reconsider
the case for a known transformation, Ψ. As is described in [20], Section 4.4, if we adopt the model

QY i|Xi=xi(τ |xi) = g(xi, β0),

it is natural to try to estimate β0 by

β̂n = argminb∈B
∑

ρτ (yi − g(xi, b)).

We emphasize the verb “try” since optimization need no longer be an assured attack on a convex
problem with a unique solution. In keeping with the vast literature on nonlinear least squares, we will
assume that the domain B is compact. In addition, we will assume that the conditional distribution
functions Fi of Yi|Xi are absolutely continuous with continuous derivatives fi(ξi) at the points ξi =
g(xi, β0), and the following conditions on design.

G1: There exist constants k0, k1 and n0 such that for β1, β2 ∈ B and n > n0,

k0 ‖ β1 − β2 ‖≤
(
n−1

n∑
i=1

(g(xi, β1)− g(xi, β2))2

)1/2

≤ k1 ‖ β1 − β2 ‖ .

G2: There exist positive definite matrices D0 and D1(τ) such that with ġi = ∂g(xi, β)/∂β|β=β0
,

(i) Eġiġ>i = D0/

(ii) Efi(ξi)ġiġ>i = D1(τ),

(iii) max
i=1,...,n

‖ ġi ‖ /
√
n→ 0.

Under these conditions, it can be shown that we have the Bahadur representation

√
n(β̂n − β0) = D−1

1

1√
n

n∑
i=1

ġiψτ (ui) + op(1),

where ψτ = ρ′τ and ui = yi − g(xi, β0). Consequently,
√
n(β̂n − β0) N (0, τ(1− τ)D−1

1 D0D
−1
1 ),

(for further details see [25]).
In the special case of the single index model, g(x, β) = Ψ(x>β) and β ∈ B is replaced by β ∈

Sp−1 ≡ {b ∈ Rp | ‖b‖ = 1}. Thus, ġ = ∂g/∂β becomes JΨ̇X, where J denotes the Jacobian of the
transformation that maps β into its (p − 1)-dimensional counterpart. When Ψ is strictly increasing
as is commonly assumed in the literature, this returns the expressions for D0 and D1 to something
closely resembling their linear quantile regression equivalents, except for the weighting factors from
the Ψ̇i terms and the dimension reduction effect of the Jacobian terms. Inverses in the sandwich
formulae now of course need to be interpreted as generalized inverses due to the dimension reduction.

At this point the obvious question is: How does all this change when Ψ is estimated? Surprisingly,
the answer would seem to be: very little. Following the arguments of [2] and several prior authors
cited there in the mean regression setting, this would entail replacing XX> in the modified expressions
for D0 and D1 by the conditional covariance Cov(X|X>β = x>β). This change reflects a reduction

in the precision of the estimator β̂n. For smoothly increasing Ψ, as in the least squares theory, it is
inevitable that we would obtain cube root convergence for Ψ̂n. A much more intriguing question, but
a considerably more difficult one, is this: Can

√
n convergence of Ψ̂n be salvaged if we are willing to

assume that the true Ψ is piecewise constant? The highly accurate estimates of the jump component
of Ψ in Figure 2 offers a hint that this may indeed be plausible. Unfortunately, we must leave this
intriguing problem for a future research.
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LIMITING DISTRIBUTION OF A SEQUENCE OF FUNCTIONS DEFINED ON

A MARKOV CHAIN

ZURAB KVATADZE1 AND TSIALA KVATADZE2

Abstract. The present article shows the limiting distribution of partial sums of a functional se-
quence defined on a Markov Chain in case the chain is ergodic, with one class of ergodicity and

contains cyclical subclasses.

Limiting behavior of sums of random variables is a classical problem in the probability theory,
which is intensely studied by contemporaneous researchers both for independent variables and for
the case of certain relationships between the terms of sequences. There exists a rich theory of sums
of independent random variables (see, e.g., [5, 12, 13]). The problem of extending this case to the
sums of dependent random variables introduces naturally the Markovian dependence, which in turn
represents particular type of a weak dependency. The limiting theorems by Rosenblatt, Ibragimov
and others concerning weakly dependent sequences are usually stated in terms of σ-algebras generated
by asymptotically separable intervals of the sequence. The process of their investigation involves
the so-called S. Bernstein’s “sectioning” method based on the weakening effect taking place during
separation of groups of dependent variables (see [6]). Contemporaneous situation in the theory of
sums of dependent random variables is expressed by using limiting theorems for martingales and
semi-martingales (see [7]).

Different authors considered sums of random variables, whose joint distribution is determined by
the controlling sequence of random variables (see [2, 3, 9]). An important part of these comprise
problems regarding the sums of variables is defined directly on a chain (see [1, 3, 8, 11]). This paper
considers the limiting theorem for functions defined on a stationary, finite, ergodic Markov chain.

We consider stationary, homogeneous, finite {ξi}i≥1 ergodic Marcov chain with one class of ergod-

icity (might containing cyclic subclasses) defined on a probability space (Ω, F, P ). The chains have a
set of states Ξ = {b1, b2, . . . , br}, a matrix of transient probabilities P = ‖Pαβ‖α,β=1,r and a vector

of limiting distribution of stationary probabilities π = (π1, π2, . . . , πr) representing a solution of the
following matrix equation:

π = πP.

We suggest that the initial distribution is stationary, the distribution

P (ξ1 = bα) = πα, α = 1, r,

is based on stationarity means and the chain has the same distribution for each step

P (ξn = bα) = πα, α = 1, r, n = 1, 2, . . . .

Next, we introduce the Cezaro definition for convergence of the sequence and, relying on that definition,
we establish all types of convergence when the chain has cyclical subclasses.

The sequence {tn}n≥1 is Cezaro convergent to t, and we write

( lim
n→∞

tn)c = t,

if the means of the first n terms of the sequence converge to t:

lim
n→∞

Tn = t,

2020 Mathematics Subject Classification. 62G05, 62G07.
Key words and phrases. Markov Chain; Limiting distribution; Class of ergodicity; Cyclical subclasses.
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where Tn = 1
n

n−1∑
i=1

ti.

Cezaro convergence may be considered upon analyzing the convergence of series.

The series
∞∑
k=1

ak is said to be Cezaro convergent and the sum be equal to a, if a is the Cezaro limit

of the sequence of the partial sum Sn =
n∑
k=1

ak,

lim
n→∞

(Sn)c = a,

which implies that there exists the limit of the sequence ãn,

lim
n→∞

ãn = a,

where ãn = 1
n

n∑
k=0

(n−k)ak and, at the same time, this a represents the Cezaro sum of the series under

consideration which can be written as ( n∑
k=1

ak

)
c

= a.

We denote by Π the limit (see [8])

lim
n→∞

(Pn)c = Π =


π1, π2, . . . , πr
π1, π2, . . . , πr
. . . . . . . . . . . . . . . . . . .
π1, π2, . . . , πr.


It is obvious that

Π = ‖παβ‖α,β=1,r ; παβ = πβ ; α, β = 1, r,

lim
n→∞

(
pnαβ
)
c

= πβ , α, β = 1, r.

Let the fundamental matrix of the chain be

Z = ‖zαβ‖α,β=1,r ,

Z = [I − (P −Π)]−1 = I +

( ∞∑
j=1

(P j −Π)

)
c

= ‖zαβ‖α,β=1,r ,

where I is the identity matrix of r × r dimensions. For the regular chain, the convergence of series is
implied to be a standard convergence.

Let us consider a vector function defined on the Ξ space

f(ξi) : Ξ→ Rk,

f(ξi) = (f1(ξi), f2(ξi), . . . , fk(ξi))

and introduce the notation:

f(bα) = f(α) = (f1(α), f2(α), . . . , fk(α)), α = 1, r,

fi(α) = fi(bα), i = 1, k, α = 1, r.

Theorem 1. When {ξi}i≥1 is the above-mentioned Markov chain and f = (f1, f2, . . . , fk) is the

k-dimensional vector function from Ξ to Rk, then if the limiting covariance matrix of the sum is

Un =
1√
n

n∑
j=1

[f(ξj)− Ef(ξj)]

Tf =
∥∥tfi,j∥∥i,j=1,k

,

tfi,j =

r∑
α,β

(παzαβ + πβzβα − παπβ − παδαβ)fi(α)fi(β) i, j = 1, k (1)
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(where δαβ is the Kronecker symbol ) is positively defined, as n→∞, there is a convergence

PUn
W−→ ΦTf .

The case for k = 1, when lim
n→∞

D(Un) > 0 (where D(·) denotes variance), is a famous fact (see [4,10])

(when lim
n→∞

D(Un) = 0, then Un converges to zero in probability) and Tf can be written explicitly as

a sum of components of the chain (see [8])

t = lim
n→∞

D(Un) =

r∑
α,β=1

(παzαβ + πβzβα − παπβ − παδαβ)f(α)f(β).

Proof. Using the Kramer-Wold method, we can derive the multidimensional case. Using the chain
characteristic, we derive a matrix representation of the matrix Tf . Let us introduce a k× r matrix F ,

F =


f1(b1), f1(b2), . . . , f1(br)
f2(b1), f2(b2), . . . , f2(br)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fk(b1), fk(b2), . . . , fk(br)

 =


f1(1), f1(2), . . . , f1(r)
f2(1), f2(2), . . . , f2(r)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
fk(1), fk(2), . . . , fk(r)


= ‖fij‖ i = 1, r

j = 1, r

, fij = fi(bj)

and denote

V0 =cov[f(ξ1)] = E{[f(ξ1)− Ef(ξ1)]T [f(ξ1)− Ef(ξ1)]},
Vj =E{[f(ξ1)− Ef(ξ1)]T [f(ξ1+j)− Ef(ξ1+j)]}, j > 0,

V−j =E{[f(ξ1+j)− Ef(ξ1+j)]
T [f(ξ1)− Ef(ξ1)]}, j > 0.

Based on the stationarity of the sequence {ξi}i≥1, as n→∞, we have

E[UTn , Un] =
1

n

[
nV0 +

n−1∑
j=1

(n− j)(Vj + V−j)

]

= V0 +
1

n

n∑
j=1

(n− j)Vj +
1

n

n∑
j=1

(n− j)V−j
n→∞−→ V0 +

( ∞∑
j=1

Vj

)
c

+

( ∞∑
j=1

V−j

)
c

, (2)

where ()c denotes the Cezaro convergence of the sum in the parenthesis. It is obvious that if the chain
is regular, this convergence is equivalent to the standard case of convergence of partial sums.

Thus, Tf represents the limiting covariance of the sum Un and we have

Tf = V0 +

( ∞∑
j=1

Vj

)
c

+

( ∞∑
j=1

V−j

)
c

. (3)

In the right-hand side, the convergence of matrix series is equivalent to that of a regular chain by
virtue of a common definition of the convergence.

We now express V0 and Vj matrices based on the components of the chain

Ef(ξ1) =

r∑
α=1

παf(α) = (

r∑
α=1

παf1(α), . . . ,

r∑
α=1

παfk(α))

= (π1, π2, . . . , πr)


f1(1), f2(1), . . . , fk(1)
f1(2), f2(2), . . . , fk(2)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
f1(r), f2(r), . . . , fk(r)

 = πFT ;
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E{f(ξ1)T f(ξ1)} = E



f1(ξ1)
f2(ξ1)

...
fk(ξ1)

 (f1(ξ1), f2(ξ1), . . . , fk(ξ1))


= ‖Efi(ξ1)fj(ξ1)‖i,j=1,k =

∥∥∥∥ r∑
α=1

παfi(α)fj(α)

∥∥∥∥
i,j=1,k

=



r∑
α=1

παf1(α)f1(α),
r∑

α=1
παf1(α)f2(α), . . . ,

r∑
α=1

παf1(α)fk(α)

r∑
α=1

παf2(α)f1(α),
r∑

α=1
παf2(α)f2(α), . . . ,

r∑
α=1

παf2(α)fk(α)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r∑

α=1
παfk(α)f1(α),

r∑
α=1

παfk(α)f2(α), . . . ,
r∑

α=1
παfk(α)fk(α)


= FΠdgF

T ;

E{f(ξ1)T f(ξ1+j)} = ‖Efi(ξ1)fs(ξ1+j)‖i,s=1,k

=



r∑
α=1

παf1(α)
r∑

β=1

P jαβf1(β),
r∑

α=1
παf1(α)

r∑
β=1

P jαβf2(β), . . . ,
r∑

α=1
παf1(α)

r∑
β=1

P jαβfk(β)

r∑
α=1

παf2(α)
r∑

β=1

P jαβf1(β),
r∑

α=1
παf2(α)

r∑
β=1

P jαβf2(β), . . . ,
r∑

α=1
παf2(α)

r∑
β=1

P jαβfk(β)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r∑

α=1
παfk(α)

r∑
β=1

P jαβf1(β),
r∑

α=1
παfk(α)

r∑
β=1

P jαβf2(β), · · · ,
r∑

α=1
παfk(α)

r∑
β=1

P jαβfk(β)



=

∥∥∥∥ r∑
α,β=1

παfi(α)P jαβfs(β)

∥∥∥∥
i,s=1,k

= FΠdgP
jFT ,

where (·)dg denotes the matrix obtained by replacing each element of the matrix in the parenthesis
by zero, except ones located on the main diagonal.

The following equality

πTπ = ΠdgΠ

holds and the derived equations will be taken into account in the expression for Vj . When j = 0, we
obtain

V0 = E
{
fT (ξ1)f(ξ1)

}
− E

{
fT (ξ1)

}
E {f(ξ1)}

= FΠdgF
T − (πFT )TπFT = FΠdgF

T − FπTπFT

= FΠdgF
T − FΠdgΠF

T = F (Πdg −ΠdgΠ)FT .

By the stationarity E {f(ξ1+j)} = E {f(ξ1)}, when j > 0, the equalities

Vj = E
{
fT (ξ1)f(ξ1+j)

}
− E

{
fT (ξ1)

}
E {f(ξ1+j)}

= E
{
fT (ξ1)f(ξ1+j)

}
− E

{
fT (ξ1)

}
E {f(ξ1)}

= FΠdgP
jFT − (πFT )TπFT = FΠdgP

jFT − FπTπFT

= FΠdgP
jFT − FΠdgΠF

T = FΠdg(P
j −Π)FT

are true.
Thus, the sum in the right-hand side of (2) can be expressed as( ∞∑

j=1

Vj

)
c

=

( ∞∑
j=1

FΠdg(P
j −Π)FT

)
c

= FΠdg

( ∞∑
j=1

(P j −Π)

)
c

FT .
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By the property of the fundamental matrix, we have( ∞∑
j=1

(P j −Π)

)
c

= Z − I.

Thus we get the following equation:( ∞∑
j=1

Vj

)
c

= FΠdg(Z − I)FT = F (ΠdgZ −Πdg)F
T . (4)

Like equation (4), the following sum can be computed by using stationarity of the chain( ∞∑
j=1

V−j

)
c

=

( ∞∑
j=1

E{[f(ξ1+j)− Ef(ξ1+j)]
T [f(ξ1)− Ef(ξ1)]}

)
c

=

( ∞∑
j=1

E({[f(ξ1)− Ef(ξ1)]T [f(ξ1+j)− Ef(ξ1+j)]})T
)
c

=

[( ∞∑
j=1

E{[f(ξ1)− Ef(ξ1)]T [f(ξ1+j)− Ef(ξ1+j)]}
)
c

]T
=

[( ∞∑
j=1

Vj

)
c

]T

=

[
F

(
ΠdgZ −Πdg

)
c

FT
]T

= F ((ΠdgZ)T −Πdg)cF
T .

Substituting the obtained results into (3) and using characteristic matrices corresponding to the
chain, we get the following matrix expression for Tf,

Tf = F [ΠdgZ + (ΠdgZ)T −ΠdgΠ−Πdg]F
T .

Obviously, the tfi,j elements of the matrix Tf can be expressed by virtue of (1).
Next, we introduce a characteristic of time moments quantity elapsed by the chain at the first n

steps in different bα, α = 1, r positions.
Let νn(α) = νn(bα), (α = 1, r) be a random variable representing the amount of time intervals

during the first n steps when the chain is in position bα, (α = 1, r) on a fixed trajectory ξ̄1n =
(ξ1, ξ2, . . . , ξn) . Then it is obvious that the equation

νn(1) + νn(2) + · · ·+ νn(r) = n

holds.
The quantity νn(α)

n is a part of time n during which the chain at the first n steps spends in
condition bα. �

Theorem 2. The νn(α), (α = 1, r), random variable is measurable with respect to the sigma algebra
induced by dividing the Ω space during fixation of a ξ̄1n trajectory.

Proof. We show that a discrete random variable νn(α) attains constant values on sets generated by
partitioning the Ω space during fixation of a ξ̄1n trajectory.

Conditions set of the chain is Ξ = {b1, b2, . . . , br}. On a fixed ξ̄1n trajectory, possible values will be
the Cartesian product Ξn = Ξ× Ξ× · · · × Ξ. Let us show how the Ω space will be partitioned.

Introduce the following sets:

D
1,2,...,n,m1,m2,...,mn=

{
ω
∣∣ξ1=bm1

,ξ2=bm2
,...,ξn=bmn

}, bmi ∈ Ξ, i = 1, r.

Fixation of a ξ̄1n trajectory will result in a partition of the Ω space,

D̄ = {D1,2,...,n,m1,m2,...,mn |mi ∈ {1, 2, . . . , r}} .
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It is clear that

Dik = {ω |ξi = bk } =
∑

mα ∈ Ξ\ {bi}
α 6= i

{D1,2,...,n,m1,m2,...,mi−1,k,mi+1,...,mn},

ξi =

r∑
k=1

bkI(Dik).

To derive analytical expression for the sum νn(i), consider the sets

Ain,j1,j2,...,jk =

ω
∣∣∣∣∣∣
j1 < j2 < · · · < jk
ξα = bi α ∈ {j1, . . . , jk}
ξα ∈ Ξ\ {bi} α /∈ {j1, . . . , jk} , α = 1, n


=

∑
j1 < j2 < · · · < jk
mj1 = mj2 = · · · = mjk = bi
mjα ∈ Ξ\ {bi} α = k + 1.n

Dj1,...,jn,mj1 ,...,mjn
;

Ain,k = {νn(bi) = k} =
∑

j1 < j2 < · · · < jk
{j1, j2, . . . , jk} ⊂ {1, 2, . . . , n}

Ain,j1,...,jk

=
∑

j1 < j2 < · · · < jk
{j1, j2, . . . , jk} ⊂ {1, 2, . . . , n}

∑
j1 < j2 < · · · < jk
mj1 = mj2 = · · · = mjk = bi
mjα ∈ Ξ\ {bi} , α = k + 1, n

Dj1,...,jn,mj1 ,...,mjn
.

Clearly, the Ain,j1,j2,...,jk type sets are (r − 1)n−k in total, while there are Ckn · (r − 1)n−k

Ain,k type sets. �

Relying on the above-said, we easily find that

νn(i) = νn(bi) =

n∑
k=0

kIAin,k .

Thus, the measurability of a νn(i) random variable with respect to partition D̄ is shown. Clearly, this
implies that the variable is measurable with respect to the sigma algebra generated by that partition.
Note finally that any function f(νn(i)) is also measurable, where f(◦) is a continuous function.
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BANACH SPACE VALUED FUNCTIONALS OF THE WIENER PROCESS

BADRI MAMPORIA1 AND OMAR PURTUKHIA2

Abstract. The problem of representation of the Banach space-valued functionals of the one- dimen-

sional Wiener process by the Ito stochastic integral is considered. Earlier, in [5] we have developed
this problem in case the joint distribution of the Wiener process and its functional is Gaussian. In

this article we consider the general case: firstly, for the weak second order Banach space-valued func-

tional the generalized random process is found as an integrand. Further, for the one-dimensional
functional of the Wiener process the sequence of adapted step functions converging to the inte-

grand function, generalizing the corresponding result for the Gaussian case, is obtained (see [2]);
the sequence of adapted step functions of generalized random elements converging to the integrand

generalized random process is constructed for a Banach space-valued functional.

In developing the Ito stochastic analysis in a Banach space the main goal of the problem is to
construct the stochastic integral in an arbitrary separable Banach space. This problem is considered
in the following cases: (a) the integrand adapted to the σ-algebra generated by the Wiener process
is Banach space-valued and the stochastic integral is constructed by the one-dimensional Wiener
process; (b) the integrand adaptive process is operator-valued (from the Banach space to the Banach
space), and the stochastic integral is constructed by the Wiener process in a Banach space; (c) the
integrand adaptive process is operator-valued (from the Hilbert space to the Banach space), and the
stochastic integral is constructed by the cylindrical Wiener process in a Hilbert space. In all the above-
mentioned cases the main difficulties are the same. Therefore, to realize simply all these difficulties,
in the previous article [5] and here we consider the first case (the Wiener process is one-dimensional).

Using traditional methods, it becomes possible to find the suitable conditions that guarantee the
construction of the Ito stochastic integral in a Banach space only in a very narrow class of Banach
spaces. This class is called the class of UMD Banach spaces (for survey, see [8]). In our approach,
the generalized stochastic integral for a wide class of adapted Banach space-valued random processes
is constructed and the problem of the existence of the stochastic integral is reduced to the problem
of decomposability of the generalized random element (cylindrical random element, or random linear
function) (see [4]).

In this article we consider the problem of representation of the functional of the Wiener process
by the stochastic integral in an arbitrary separable Banach space. This problem is, in some sense,
opposite to the problem of the existence of the stochastic integral: in this case we have the Banach
space-valued random element and the problem of finding the integrand Banach space-valued adapted
process whose stochastic integral is this random element. In [5], we considered this problem in the
case, where the joint distribution of the Wiener process and its functional is Gaussian. In [3], this
problem is considered for the case of UMD Banach space, where under special conditions the Wiener
functional is represented by the stochastic integral and the Clark–Ocone formula of representation of
the functional of the Wiener process is generalized.

Let X be a real separable Banach space, X∗ be its conjugate, and (Ω, B, P ) a probability space.
Remember that the continuous linear operator T : X∗ → L2(Ω, B, P ) is called the generalized

random element (GRE) Denote by M1 := L(X∗, L2(Ω, B, P ) the Banach space of GRE with the
norm

‖T‖2 = sup
‖x∗‖≤1

E(Tx∗)2.

2020 Mathematics Subject Classification. 60B11, 60H5, 60H10, 37L55.
Key words and phrases. Wiener process; Functional of the Wiener process; Ito stochastic integral; Generalized

random element; Covariance operator of the (generalized) random element in a Banach space.
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We can realize the weak second order random element ξ as an element of M1, Tξx
∗ = 〈ξ, x∗〉

(the boundedness of this operator follows by the closed graph theorem), but not conversely: in an
infinite-dimensional Banach space, for any T : X∗ → L2(Ω, B, P ), there does not always exist the
random element ξ : Ω→ X such that Tx∗ = 〈ξ, x∗〉 for all x∗ ∈ X∗. The problem of the existence of
such random element is well known as the problem of decomposability (radonizability) of the GRE.
Denote by M2 the linear normed space of all random elements of weak second order with the norm

‖ξ‖2 = sup
‖x∗‖≤1

E〈ξ, x∗〉2.

Thus we have M2 ⊂M1.
The family of linear operators (Tt)t∈[0,1] is called the weak second order generalized random process

(GRP) if Ttx
∗ is B([0, 1])×B(Ω) measurable and

‖Tt‖2 ≡ sup
‖x∗‖≤1

1∫
0

E(Ttx
∗)2dt <∞.

Denote by M(λ,P )
1 the Banach space of such GRP.

The Banach space-valued stochastic process f(t, ω), t ∈ [0, 1] is called a weak second order random
process, if for all x∗ ∈ X∗,

1∫
0

E〈f(t, ω), x∗〉2dt <∞.

The weak second order random process realizes the GRP Tf : X∗ → L2([0, 1] × Ω): Tfx
∗ =

〈f(t, ω), x∗〉.
Denote by M(λ,P )

2 the normed linear spaces of f(t, ω), t ∈ [0, 1], with the norm

sup
‖x∗‖≤1

( 1∫
0

E〈f(t, ω), x∗〉2dt
) 1

2

.

We have M(λ,P )
2 ⊂M(λ,P )

1 .
Let (Wt)t∈[0,1] be a real-valued Wiener process. Denote by FWt the σ-algebra generated by the

random variables (Ws)s≤t (FWt = σ(Ws, s ≤ t)), which are completed by P -null sets. Suppose that ξ
is FW1 -measurable weak second order random element i.e., ξ is the functional of the Wiener process.
Our main aim is to represent the random element ξ by the Ito stochastic integral

ξ = Eξ +

1∫
0

f(t, ω)dWt,

where f(t, ω) is the Banach space-valued FWt -adapted random process, but this is, in general, impos-
sible. We have the following positive result: For all weak second order Wiener functional we always

have integrand as a GRP, that is, an element of the Banach space M(λ,P )
1 . In developing this prob-

lem, we considered firstly in [5] the case, where ξ is a Gaussian random element which together with
the Wiener process generates the mutually Gaussian system. Even in this case we have constructed
an example (see [5, Example 1]), where a) the integrand function f(t) (in this case the integrand is
nonrandom) is X-valued; b) the integrand function is not X-valued, but it is X∗∗-valued and c) the
integrand function is not X∗∗-valued, but it is a GRE T : X∗ → L2[0, 1].

The following result gives representation of the Banach space-valued functional of the Wiener
process by the stochastic integral from the FWt -adapted GRP.
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Proposition 1. Let ξ be a Banach space-valued weak second order functional of the one-dimensional
Wiener process. There exists the FWt -adapted GRP T : X∗ → L2([0, 1]×Ω) such that for all x∗ ∈ X∗

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

Tx∗(t, ω)dWt. (0.1)

Proof. Let ξ be a Banach space-valued weak second order functional of the one-dimensional Wiener
process. For any x∗ ∈ X∗, 〈ξ, x∗〉 is one-dimensional functional of the Wiener process. By the one-
dimensional theorem, there exists the unique FWt -adapted one-dimensional random process f(x∗, t, ω)
such that

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

f(x∗, t, ω)dWt.

Consider the map T : X∗ → L2([0, 1],Ω), Tx∗ = f(x∗, t, ω). It is easy to see that T is a linear
operator. Further,

∞ > sup
‖x∗‖≤1

E〈ξ − Eξ, x∗〉2 = sup
‖x∗‖≤1

E

( 1∫
0

f(x∗, t, ω)dWt

)2

= sup
‖x∗‖≤1

1∫
0

Ef(x∗, t, ω)2dt = sup
‖x∗‖≤1

1∫
0

E(Ttx
∗)2dt.

That is, T : X∗ → L2([0, 1],Ω) is bounded, and therefore, this is the GRP. �

Remark 1. The representation (0.1) of the Wiener functional is unique for any x∗ dt ⊗ dP -almost
everywhere. Indeed, if we have two representations of ξ,

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

T1x
∗(t, ω)dWt = E〈ξ, x∗〉+

1∫
0

T2x
∗(t, ω)dWt,

then

0 = sup
‖x∗‖≤1

E

( 1∫
0

(T1x
∗(t, ω)− T2x

∗(t, ω))dWt

)2

= sup
‖x∗‖≤1

E

1∫
0

(T1x
∗(t, ω)− T2x

∗(t, ω))2dt.

For any GRP T : X∗ → L2([0, 1] × Ω) from M(λ,P )
1 , the correlation operator of T is called the

linear, bounded operator from X∗ to X∗∗, RT = T ∗T.

Proposition 2. If for any functional of the Wiener process ξ,

〈ξ, x∗〉 =

1∫
0

Tx∗(t, ω)dWt,

then RT = T ∗T maps X∗ onto X.
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Proof. For any x∗ and y∗,

〈RTx∗, y∗〉 = 〈T ∗Tx∗, y∗〉 = 〈Tx∗, Ty∗〉 =

1∫
0

ETx∗(t, ω)Ty∗(t, ω)dt

= E

( 1∫
0

Tx∗(t, ω)dWt ×
1∫

0

Ty∗(t, ω)dWt

)
= E(〈(ξ − Eξ), x∗〉 × 〈(ξ − Eξ), y∗〉) = 〈Rξx∗, y∗〉,

where Rξ is a covariance operator of ξ, which maps X∗ onto X (see [7, Theorem 3.2.1]). Therefore,
RT maps X∗ onto X. �

As is known (see [2, Theorem 5.6]), for the one-dimensional case, if the joint distribution of the
Wiener process and its one-dimensional functional is Gaussian, then the sequence of step functions

fn(t) =

2n−1∑
i=0

2nE(ξ − Eξ)(W i+1
2n
−W i

2n
)I( i

2n ,
i+1
2n ](t)

converges in L2[0, 1] to the integrand function f(t),
1∫
0

f2(t)dt <∞ and

ξn = Eξ +

1∫
0

fn(t)dWt

converges in L2(Ω, B, P ) to

ξ = Eξ +

1∫
0

f(t)dWt.

First, we give the generalization of this theorem for an arbitrary (non Gaussian) case when the
functional of the Wiener process is one-dimensional.

Theorem 1. Let the square integrable random variable ξ be a functional of the Wiener process. The
sequence of step functions

fn(t, ω) =

2n−1∑
i=0

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t) (0.2)

converges in L2([0, 1],Ω) to the FWt -adapted random process f(t, ω) and

ξ = lim
n→∞

1∫
0

fn(t, ω)dWt =

1∫
0

f(t, ω)dWt.

Proof. First of all, we prove the following

Lemma 1. Let ξ =
1∫
0

f(t, ω)dW (t) be a real-valued functional of the Wiener process. Then for any

0 ≤ a ≤ b,

E((ξb − ξa)(Wb −Wa)/FWa ) = E

( b∫
a

f(t, ω)dt/FWa

)
,

where ξt = E(ξ/FWt ) =
t∫

0

f(s, ω)dW (s).
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Proof of Lemma 1. Consider the left part of the equality and denote m ≡ (b− a)−1. Remember that
by Lemma 1.1.3 from [7], for any f(t, ω) ∈ L2([0, 1]× Ω), the sum

2n−1∑
i=1

2n

i
2n∫

i−1
2n

f(s, ω)dsI( i
2n ,

i+1
2n ](t)

converges to f(t, ω) in L2([0, 1]× Ω).
Next, we have

E((ξb − ξa)(Wb −Wa)/FWa ) = lim
n→∞

E

((( 2n−1∑
i=1

(2nm

a+ i
2nm∫

(a+
(i−1)
2nm )∨0

f(s, ω)ds)

×(W
a+

(i+1)
2nm
−Wa+ i

2nm
)

)( 2n−1∑
i=0

(W
a+

(i+1)
2nm
−Wa+ i

2nm
)

))
/FWa

)

= lim
n→∞

E

( 2n−1∑
i=1

((
2nm

a+ i
m2n∫

(a+
(i−1)
m2n )∨0

f(s, ω)ds

)
/FWa

)

×E(W
a+

(i+1)
m2n
−Wa+ i

m2n
)2

)
= lim
n→∞

2n−1∑
i=1

E

(
2nm

a+ i
m2n∫

(a+
(i−1)
m2n ∨0

f(s, ω)ds)/FWa

)
1

m2n

= lim
n→∞

E

( 2n−1∑
i=1

a+
(i+1)
m2n∫

a+ i
m2n

(
2nm

a+ i
m2n∫

(a+
(i−1)
m2n ∨0

f(s, ω)ds)I
(a+ i

m2n ,a+
(i+1)
m2n ]

(t)

)
dt/FWa

)

= lim
n→∞

E

( 2n−1∑
i=1

(
2nm

a+ i
m2n∫

(a+
(i−1)
m2n ∨0

f(s, ω)ds)
1

m2n

)
/FWa

)

= lim
n→∞

E

( 2n−1∑
i=1

a+ i
m2n∫

(a+
(i−1)
m2n )∨0

f(s, ω)ds/FWa

)
= E

( a+ 1
m∫

a

f(t, ω)dt/FWa

)
,

as

E

( a+ i
m2n∫

(a+
(i−1)
m2n )∨0

f(s, ω)ds(W
a+

(i+1)
2nm
−Wa+ i

2nm
)(W

a+
(j+1)
2nm
−Wa+ j

2nm
)/FWa

)
= 0,

when i 6= j.
Thus, the proof of the lemma 1 is completed.
Consider now the following sum

2n−1∑
i=1

2n

i+1
2n∫
i

2n

f(s, ω)dsI( i
2n ,

i+1
2n ](t).

According to Lemma 1.1.3 of [7], this sum converges likewise to f(t, ω) in L2([0, 1]×Ω). Therefore,

2n−1∑
i=1

2n

i
2n∫

i−1
2n

f(s, ω)dsI( i
2n ,

i+1
2n ](t)−

2n−1∑
i=1

2n

i+1
2n∫
i

2n

f(s, ω)ds)I( i
2n ,

i+1
2n ](t)
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tends to 0 in L2([0, 1]× Ω). That is,

1∫
0

E

( 2n−1∑
i=1

2n
( i

2n∫
i−1
2n

f(s, ω)ds−

i+1
2n∫
i

2n

f(s, ω)ds

)
I( i

2n ,
i+1
2n ](t)

)2

dt→ 0.

Hence,

2n−1∑
i=1

22nE

( i
2n∫

i−1
2n

f(s, ω)ds−

i+1
2n∫
i

2n

f(s, ω)ds

)2( 1

2n

)
→ 0.

Therefore,

2n−1∑
i=1

2nE

(
E

( i
2n∫

i−1
2n

f(s, ω)ds/FWi
2n

)
− E

( i+1
2n∫
i

2n

f(s, ω)ds/FWi
2n

))2

→ 0.

That is,

1∫
0

E

( 2n−1∑
i=1

2n

i
2n∫

i−1
2n

f(s, ω)dsI( i
2n ,

i+1
2n ](t)

−
2n−1∑
i=1

2nE

( i+1
2n∫
i

2n

f(s, ω)ds/FWi
2n

)
I( i

2n ,
i+1
2n ](t)

)2

→ 0.

But the first sum converges to the f(t, ω). Therefore the sequence of FWt -adapted step functions

2n−1∑
i=1

2nE

( i+1
2n∫
i

2n

f(s, ω)ds/FWi
2n

)
I( i

2n ,
i+1
2n ](t)

converges to f(t, ω) in L2([0, 1]× Ω).
Now we can construct the sequence of step functions fn(t, ω), n ∈ N , the stochastic integral of

which converges to ξ: let us consider

ξn =

2n−1∑
i=1

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)× (W i+1

2n
−W i

2n
) =

1∫
0

fn(t, ω)dWt,

where

fn(t, ω) =

2n−1∑
i=1

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t)

2n−1∑
i=1

2nE

( i+1
2n∫
i

2n

f(s, ω)ds/FWi
2n

)
I( i

2n ,
i+1
2n ](t). (0.3)

Then we have fn(t, ω)→ f(t, ω) in L2([0, 1]× Ω) and

1∫
0

fn(t, ω)dWt →
1∫

0

f(t, ω)dWt in L2(Ω). �



BANACH SPACE VALUED FUNCTIONALS OF THE WIENER PROCESS 213

Remark 2. In case when the joint distribution of functional of the Wiener process and of the Wiener
process is Gaussian, then

fn(t) =

2n−1∑
i=0

2nEξ(W i+1
2n
−W i

2n
)I( i

2n ,
i+1
2n ](t)

=

2n−1∑
i=0

2nE((ξ i
2n

+ (ξ i+1
2n
− ξ i

2n
) + (ξ − ξ i+1

2n
)))(W i+1

2n
−W i

2n
)I( i

2n ,
i+1
2n ](t)

=

2n−1∑
i=0

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
))I( i

2n ,
i+1
2n ](t)

=

2n−1∑
i=0

2nE(((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
))/FWi

2n
I( i

2n ,
i+1
2n ](t).

Therefore formula (0.3) is the generalization of formula (0.2) for an arbitrary (nonGaussian) case.
Let now ξ be a Banach space-valued functional of the Wiener process. As in the one-dimensional

case, consider the sequence of step functions

fn(t, ω) =

2n−1∑
i=0

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t).

The random step function fn(t, ω) does not always exist as a X-valued random process, because
the conditional expectation E((ξt − ξs)(Wt −Ws)/F

W
s ) for the weak second order random element

ξt − ξs does not exist, in general. Nevertheless, we can consider the GRE

Tx∗ = E(〈(ξt − ξs), x∗〉(Wt −Ws)/F
W
s ).

From Proposition 1 and Theorem 1 we immediately obtain the following

Proposition 3. For any weak second order Banach space-valued functional of the Wiener process
ξ : Ω → X, there exists the sequence of step generalized random functions (Tn)n∈N , such that for all
x∗ ∈ X∗,

1∫
0

E(Tnx
∗ − Tx∗)2dt→ 0,

when n→∞, where T is the GRP such that

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

Tx∗(t, ω)dWt.

Proof. For any x∗ ∈ X∗, let Tnx
∗ = 〈fn(t, ω), x∗〉. By Theorem 1, Tnx

∗ → Tx∗, when n → ∞. By
Proposition 1, we have

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

Tx∗(t, ω)dWt. �

The following theorem is a generalization of the one-dimensional Theorem 1 for the Banach space-
valued functionals of the one-dimensional Wiener process.

Theorem 2. Let ξ be a Banach space-valued FW1 measurable weak second order random element such

that in the representation (0.1) the GRP T ∈Mλ,P
1 T : [0, 1]→M1 is separable-valued and

1∫
0

‖T‖2M1
<∞.
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There exists the sequence of FWt -adapted step functions Tn(t, ω), n ∈ N converging in Mλ,P
1 to the

FWt -adapted GRP T : X∗ → L2([0, 1],Ω) such that the sequence of the stochastic integrals

1∫
0

Tnx
∗(t, ω)dWt

converges to
1∫

0

Tx∗(t, ω)dWt = 〈ξ − Eξ, x∗〉 in M1.

Proof. By Proposition 1, for the weak second order random element ξ, there exists the unique GRP
T : X∗ → L2([0, 1],Ω) such that for all x∗ ∈ X∗

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

Tx∗(t, ω)dWt.

Consider

〈Tn(t, ω), x∗〉 =

2n−1∑
i=0

2nE((〈ξ i+1
2n
, x∗〉 − 〈ξ i

2n
, x∗〉)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t).

By Theorem 1, 〈Tn(t, ω), x∗〉, n ∈ N converges in L2([0, 1],Ω) to the one-dimensional functional of
the Wiener process Tx∗(t, ω) and we have

Tnx
∗(t, ω) =

2n−1∑
i=1

2n
( i

2n∫
i−1
2n

Tx∗(s, ω)ds

)
I( i

2n ,
i+1
2n ](t).

Further, it is easy to see that Tn ∈Mλ,P
1 for all n ∈ N and ‖Tn‖ ≤ ‖T‖. Indeed,

‖Tn‖2 = sup
‖x∗‖≤1

1∫
0

E

( 2n−1∑
i=1

2n
( i

2n∫
i−1
2n

Tx∗(s, ω)dsI( i
2n ,

i+1
2n ](t)

)2

dt

)

= sup
‖x∗‖≤1

1∫
0

E

( 2n−1∑
i=1

22n

( i
2n∫

i−1
2n

Tx∗(s, ω)ds

)2

I( i
2n ,

i+1
2n ](t)

)
dt

= sup
‖x∗‖≤1

( 2n−1∑
i=1

22n 1

2n
E

( i
2n∫

i−1
2n

Tx∗(s, ω)ds

)2)

≤ sup
‖x∗‖≤1

2n−1∑
i=1

E

i
2n∫

i−1
2n

(Tx∗(s, ω))2ds

= sup
‖x∗‖≤1

E

1− 1
2n∫

0

(Tx∗(s, ω))2ds ≤ ‖Tx∗(t, ω)‖2.

If T ∈Mλ,P
1 is a continuous function T : [0, 1]→M1, then Tn → T in Mλ,P

1 . Really,

‖T − Tn‖2 = sup
‖x∗‖≤1

E

1∫
0

( 2n−1∑
i=1

2n
( i

2n∫
i−1
2n

Tx∗(s, ω)dsI( i
2n ,

i+1
2n ](t)

)
− Tx∗(t, ω)

)2

dt
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= sup
‖x∗‖≤1

E

1∫
0

( 2n−1∑
i=1

(
2n

i
2n∫

i−1
2n

Tx∗(s, ω)ds− Tx∗(t, ω)

)
I( i

2n ,
i+1
2n ](t)

)2

dt

= sup
‖x∗‖≤1

E

1∫
0

( 2n−1∑
i=1

(
2n

i
2n∫

i−1
2n

Tx∗(s, ω)ds− Tx∗(t, ω)

))2

I( i
2n ,

i+1
2n ](t)dt

= sup
‖x∗‖≤1

E

2n−1∑
i=1

i
2n∫

i−1
2n

(
Tx∗(t, ω)−

(
2n

i
2n∫

i−1
2n

Tx∗(s, ω)ds

))2

dt

≤
2n−1∑
i=1

sup
‖x∗‖≤1

E

i
2n∫

i−1
2n

(
Tx∗(t, ω)−

(
2n

i
2n∫

i−1
2n

Tx∗(s, ω)ds

))2

dt

≤
2n−1∑
i=1

i
2n∫

i−1
2n

2n−1∑
i=1

sup
‖x∗‖≤1

E

(
2n

i
2n∫

i−1
2n

(Tx∗(t, ω)− Tx∗(s, ω)ds)

)2

dt

≤
2n−1∑
i=1

i
2n∫

i−1
2n

2n−1∑
i=1

(
22n 1

2n

i
2n∫

i−1
2n

sup
‖x∗‖≤1

E(Tx∗(t, ω)− Tx∗(s, ω))2ds

)
dt < ε,

as the function T : [0, 1]→M1 is continuous, for any ε > 0 and sufficiently large n,

sup
‖x∗‖≤1

E(Tx∗(t, ω)− Tx∗(s, ω))2ds)) < ε,

when |t− s| < 1
2n .

Consider now an arbitrary separable-valued T : [0, 1] → M1. Any fixed x∗ ∈ X∗ and g ∈ L2(Ω),
generates the linear continuous functional f :M1 → R,

f(x∗, g)(T ) =

∫
Ω

Tx∗(ω)g(ω)dP.

The set of such functionals separates the points of the Banach space M1. As T : [0, 1] → M1 is
separable-valued and f(x∗, g)T (t) is measurable, by the Pettis theorem (see [6, Proposition 1.1.10]),

T : [0, 1] → M1 is measurable. As
∫ 1

0
‖T (t)‖dt < ∞, the Bochner integral

∫ t
s
T (t)dt exists for all

0 ≤ s < t ≤ 1. Let T (t) be a bounded function. Consider Tm(t) := m
∫ t

(t− 1
m )∨0

T (s)ds, m ∈ N .

Tm(t) → T (t) a.s. (see [1, Corollary 2 of Theorem 3.8.5]). By the Lebesgue theorem,
∫ 1

0
‖Tm(t) −

T (t)‖2dt→ 0. As Tm(t) is continuous for all m ∈ N , there exists the sequence of FWt - adapted step

functions Tmn, n ∈ N such that
∫ 1

0
‖Tmn(t)−Tm(t)‖2dt→ 0. Therefore we can choose the sequence of

step functions (Tn)n∈N such that
∫ 1

0
‖Tn(t)−T (t)‖2dt→ 0. It is now easy to get the sequence of step

functions converging to the arbitrary separable-valued T : [0, 1]→M1, with
∫ 1

0
‖T (t)‖2dt <∞. �

Remark 3. By Proposition 1, for the X-valued weak second order functional of the Wiener process

the integrand T (t, ω) belongs to the Banach space Mλ,P
1 . The existence of step functions converging

to the integrand we prove in the case for T ∈ L2([0, 1],M1) which is separable-valued. We prove the

convergence in L2([0, 1],M1), but there arises the question whether this theorem is true for Mλ,P
1

without the above restrictions? The answer is unknown.

Remark 4. If the sequence fn(t, ω), n ∈ N is such that the members of it as X-valued random
processes exist (for example, the functional ξ has strong p-th moment for any p > 1), then from
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Theorem 2 it follows that the integrand process T (t, ω) belongs toM(λ,P )
2 ⊂M(λ,P )

1 . If the sequence
fn(t, ω), n ∈ N , of X-valued random processes converges in X, then the integrand process is X-valued
and in this case we have the representation of the Banach space-valued functional by the stochastic
integral from the Banach space FWt -adapted X-valued random process.

Remark 5. It is easy to see that

2n−1∑
i=0

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t)

=

2n−1∑
i=0

2nE(ξ(W i+1
2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t).

As

E(ξ(W i+1
2n
−W i

2n
)/FWi

2n
)

= E(((ξ − ξ i+1
2n

) + (ξ i+1
2n
− ξ i

2n
) + ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)

= E((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
).
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LOGISTIC REGRESSION WITH TOTAL VARIATION REGULARIZATION

SARA VAN DE GEER

A paper devoted to the 75th birthday of Estate Khmaladze

Abstract. We study logistic regression with total variation penalty on the canonical parameter and

show that the resulting estimator satisfies a sharp oracle inequality: the excess risk of the estimator is

adaptive to the number of jumps of the underlying signal or an approximation thereof. In particular,
when there are finitely many jumps, and jumps up are sufficiently separated from jumps down, then

the estimator converges with a parametric rate up to a logarithmic term logn/n, provided the tuning

parameter is chosen appropriately of order 1/
√
n. Our results extend earlier results for quadratic

loss to logistic loss. We do not assume any a priori known bounds on the canonical parameter, but

instead only make use of the local curvature of the theoretical risk.

1. Introduction

In this paper we consider logistic regression with a total variation penalty on the canonical param-
eter. Total variation based de-noising was introduced in [15]. Our aim here is to develop theoretical
results that show that the estimator adapts to the number of jumps in the signal.

For i = 1, . . . , n, let Yi ∈ {0, 1} be independent binary observations. Write the unknown probability
of success as θ0i := P (Yi = 1), and let f0i := log(θ0i /(1−θ0i )) be the log-odds ratio, i = 1, . . . , n. Define
the total variation of a vector f ∈ Rn as

TV(f) :=

n∑
i=2

|fi − fi−1|.

We propose to estimate the unknown vector f0 of log-odds ratios applying logistic regression with
total variation regularization. The estimator is

f̂ := arg min
f∈Rn

{
1

n

n∑
i=1

(
−Yifi + log(1 + efi)

)
+ λTV(f)

}
.

Our goal is to derive oracle inequalities for this estimator. The approach we take shares some ideas
with [4, 11] and [13]. These papers deal with least squares loss, whereas the current paper studies
logistic loss. Moreover, instead of using the projection arguments of the previous mentioned papers,
we use entropy bounds. This allows us to remove a redundant logarithmic term: we show that the

excess risk of estimator f̂ converges under certain conditions with rate (s+ 1) log n/n, where s is the
number of jumps of f0 or of an oracle approximation thereof (see Theorem 2.1). This extends the
result in [6] to logistic loss and to a sharp oracle inequality.

To arrive at the results of this paper we require that ‖f̂‖∞ stays bounded with high probability.
In Theorem 3.1 we show that this requirement holds assuming that both ‖f0‖∞ and TV(f0) remain
bounded.

The theory for a total variation regularization with the least squares loss (the fused Lasso) has been
developed in a series of papers [4,8,14,16,17,21,22] including higher dimensional extensions [3,5,7,12]
and higher order total variation [6, 13,18,19].

Logistic regression with `1-regularization has many applications. When there are co-variables, the
penalty is on the total variation of the coefficients. In [25], logistic regression with the fused Lasso
is applied to spectral data, and in [9] to gene expression data, whereas [1] applies it to time-varying

2020 Mathematics Subject Classification. 62J07, 62G05.
Key words and phrases. Logistic regression; Oracle inequality; Total variation penalty.
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networks. In [20] the penalty alternatively takes links between variables into account using a quadratic
penalty. The papers [26] and [10] present algorithms for the fused Lasso. In [2], a Bayesian approach
with the fused Lasso is presented.

This paper is organized as follows. In Section 2 we state the oracle inequality for f̂ (Theorem

2.1). Section 3 derives a bound for ‖f̂‖∞ (Theorem 3.1). The remainder of the paper is devoted to
proofs. Section 4 states some standard tools to this end, Section 5 contains a proof of Theorem 2.1
and Section 6 a proof of Theorem 3.1.

2. A Sharp Oracle Inequality

The empirical risk in this paper is given by the normalized minus log-likelihood

Rn(f) :=
1

n

n∑
i=1

(
−Yifi + log(1 + efi)

)
, f ∈ Rn.

The theoretical risk is

R(f) := IERn(f), f ∈ Rn

and R(f)−R(f0) is called the “excess risk”. For f ∈ Rn, we write Ṙn(f) := ∂Rn(f)/∂f and Ṙ(f) :=

IEṘn(f). These are column vectors in Rn. Most of the arguments that follow go through for general
convex differentiable loss functions. We do use, however, that or all f ∈ Rn, Rn(f)−R(f) = −εT f/n
where ε = Y − IEY is the noise. In other words, f is the canonical parameter. In the case where the
entries of the response vector Y are in {0, 1}, the entries of a noise vector ε are bounded by 1. More
generally, our theory would need that ε has sub-exponential entries. To avoid digressions, we simply
restrict ourselves to logistic loss.

Fix a vector f ∈ Rn. This vector will play the role of the “oracle” as we will see in Theorem 2.1.
We let S := {t1, . . . , ts} (1 < t1 < · · · < ts < n) be the location of its jumps:

f1 = · · · = ft1−1 6= ft1 = · · · = ft2−1 6= ft2 · · · fts−1 6= fts = · · · = fn.

Let dj := tj − tj−1 be the distance between jumps, j = 1, . . . , r, where r = s + 1, tr := n + 1 and
t0 = 1. Define dmax := max1≤j≤r dj .

The quantities ∆2
n, δ2n(t), λn(t) and Γ2

n(t) we are about to introduce all depend on f although we
do not express this in our notation. Moreover, being non-asymptotic, these quantities are somewhat
involved. After the explicit expressions for ∆2

n, δ2n(t) and λn(t) we will give their asymptotic order
of magnitude. The asymptotic order of magnitude for Γ2

n(t) depends on the situation. We discuss a
special case after the statement of Theorem 2.1.

We let

∆2
n :=

4
∑
j∈[1:r]: dj≥1(log(dj − 1) + 1)

n
+
s

n
,

and define for t > 0

δ2n(t) :=

(
4νA0∆n + 8

√
1 + t+ log(3 + 2 log2 n)

n

)2

+

(
2

ν
+ 4

√
A0∆n

n
+

4
√

1 + t+ log(3 + 2 log2 n)

n

)
×
(

∆n + 2

√
s

n

)2

,

and

λn(t) :=
1√
n

(
4

ν
+ 8

√
A0∆n

n
+

8
√

1 + t+ log(3 + 2 log2 n)

n

)
.

One can see that

∆2
n = O

(
(s+ 1) log n

n

)
.
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Furthermore, for ν = 1 (say) and each fixed t

δ2n(t) = O

(
(s+ 1) log n

n

)
, λn(t) = O

(
1√
n

)
,

assuming n−1
√

(s+ 1) log n/n = O(1) which is certainly true under the standard sparsity assumption
(s+ 1) log n/n = o(1).

The quantity δ2n(t) will be a part of the bound for the excess risk of f̂ , and λn(t) can be thought
of as the “noise level” to be overruled by the penalty (see Theorem 2.1). The constant A0 is the
(universal) constant appearing when bounding the entropy of the class of functions with both ‖ · ‖∞
and TV(·) bounded by 1 (see Lemma 4.3). The free parameter t > 0 determines the confidence level
of our statements. Both δn(t) and λn(t) depend on a further free parameter ν > 0 which we do not
express in our notation as one can simply choose ν = 1. It is, however, an option to choose ν larger
than 1, possibly growing with n: larger ν relaxes the requirement on the tuning parameter λ, but
results in larger bounds for the excess risk.

Finally, we present a bound Γ2
n(t) for the so-called “effective sparsity” as introduced in [13] (see

also Definition 5.1). The effective sparsity may be seen as a substitute for the sparsity, which is
defined as the number of active parameters of the oracle, which is s+ 1. The effective sparsity will, in
general, be larger, than s+ 1. Without going into details, we remark that this is due to correlations
in the dictionary X when writing f = Xb, with dictionary X ∈ Rn×n and coefficients b1 := f1,
bk := fk − fk−1, k ∈ [2 : n].

Let qtj := sign(ftj ), j = 1, . . . , s. We write Jmonotone := {2 ≤ j ≤ s : qtj−1
= qtj} and Jchange :=

[1 : r]\Jmonotone. Thus Jmonotone are jumps with the same sign as the previous one, and Jchange are
jumps that change sign. We count the first jump as well as the endpoint tr = n+ 1 as a sign change.
Our bound for the effective sparsity is now

Γ2
n(t) :=

λ2n(t)

λ2

∑
j∈Jmonotone

8(log(dj) + 1) +
∑

j∈Jchange

8n(log(dj) + 2)

dj
.

The following theorem presents an oracle inequality for f̂ . Its proof can be found in Section 5.

Theorem 2.1. Let F be a convex subset of Rn (possibly F = Rn) and

f̂ := arg min
f∈F

{
Rn(f) + λTV(f)

}
.

Assume f ∈ F satisfies ‖f‖∞ ≤ B for some constant B and define

κ :=
(1 + eB)2

eB
.

Take

λ ≥ λn(t)

√
dmax

2n
.

Then with probability at least IP(‖f̂‖∞ ≤ B)− exp[−t], we have

R(f̂)−R(f) ≤ 4κδ2n(t) +
λ2

4
Γ2
n(t).

Keeping the constant B fixed, this theorem tells us that

R(f̂)−R(f) = OIP

(∑r
j=1(log(dj) + 1)

n
+ λ2Γ2

n

)
,

where we recall that r = s+ 1. If the jumps of f are roughly equidistant we see that dj � dmax ∼ n/r.
Taking λ � λn(t)/

√
r �

√
1/(nr), the bound for the effective sparsity Γ2

n(t) is in the worst case (where
the jumps of f have alternating signs) of order r2 log(n/r). In other words, in that case the rate is

R(f̂)−R(f) = OIP(r log(n/r)/n), which for least squares loss is the minimax rate (see [8]).
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If f is monotone, with λ �
√
dmax/n, we get

λ2Γ2
n �

∑s
j=2 log(dj) + 1

n
+

1

n

(
log(d1)dmax

d1
+

log(dr)dmax

dr

)
.

In other words, the first jump of f should not occur to early, and the last jump not too late, relative
to the distance between the jumps.

We note that the choice λ � λn(t)
√
dmax/n depends on the oracle f . Thus, if the tuning parameter

λ is given, the choice of f depends on λ.
We assumed that ‖f‖∞ ≤ B. We do not assume ‖f0‖∞ to be bounded by the same constant B,

but we do hope for a good approximation f of f0 with ‖f‖∞ ≤ B. Nevertheless, Theorem 2.1 presents

a sharp oracle inequality directly comparing R(f̂) with R(f): it does not require that the excess risk

R(f)−R(f0) is small in any sense. In the same spirit, the theorem requires that ‖f̂‖∞ ≤ B with high
probability. This can be accomplished by taking F := {f ∈ Rn : ‖f‖∞ ≤ B} (or some convex subset
thereof). Theorem 2.1 holds for any B, i.e., it is a free parameter. However, one may not want to

force f̂ to be bounded by a given constant, but let the data decide for a bound on f̂ . This is a reason
why we establish Theorem 3.1 given in the next section.

3. Showing that ‖f̂‖∞ is Bounded (Instead of Assuming this)

Since f0 minimizes R(f), a two-term Taylor expansion around f0 gives

R(f)−R(f0) =
1

2
(f − f0)T R̈(f̃)(f − f0)

where f̃i lies between fi and f0i , i = 1, . . . , n. It follows that

R(f)−R(f0) ≥ 1

2K2
f

‖f − f0‖2Qn ,

where

‖ · ‖Qn = ‖ · ‖2/
√
n

and where (for logistic loss)

K2
f :=

(1 + e‖f‖∞∨‖f
0‖∞)2

e‖f‖∞∨‖f0‖∞
.

Thus, if both ‖f‖∞ and ‖f0‖∞ stay within the bounds, we have a standard quadratic curvature of
R(·) at f0. Otherwise, the constant Kf grows exponentially fast. We will therefore assume that

‖f0‖∞ stays bounded and our task is then to show that ‖f̂‖∞ stays bounded, as well. The following
theorem (where we have not been very careful with the constants) is derived in Section 6.

Theorem 3.1. Let TV(f0) ≤M0 for some constant M0 ≥ 1. Define

K :=
(1 + e1+24M0+‖f0‖∞)2

e1+24M0+‖f0‖∞
.

Suppose

λ ≤
(

24(2K2)M0

)−1
,

λ ≥28n−2/3A
2/3
0 (2K2)1/3,

λ ≥28(2K2)
1 + t

n
,

where the last inequality holds for some t > 0, and where in the second last inequality A0 is the
constant appearing when bounding the entropy of the class of functions with both ‖ · ‖∞ and TV(·)
bounded by 1 (see Lemma 4.3). Then with probability at least 1− exp[−t] it holds that

‖f̂ − f0‖2Qn
2K2

+ λTV(f̂ − f0) ≤ 4λM0
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and

‖f̂ − f0‖∞ ≤
1 + 8M0

2
.

One may object that the conditions on the tuning parameter λ depend on f0 via the bounds on
‖f0‖∞ and TV(f0). On the other hand, the choice of λ in Theorem 2.1 will be of larger order than
n−2/3 if one aims at adaptive results, and it will need to tend to zero. For such λ and for ‖f0‖∞ and
TV(f0) remaining bounded, the conditions of Theorem 3.1 will be met for all n sufficiently large.

4. Some Standard Results Useful for Both Theorem 2.1 and Theorem 3.1

Lemma 4.1. For all vectors g ∈ Rn, we have

IP(εT g ≥ ‖g‖2
√

2t) ≤ exp[−t], ∀ t > 0.

Proof. The entries in ε have mean zero, are bounded by 1, and are independent. This means we can
apply Hoeffding’s inequality to εT g/n. �

For Q a probability measure on {1, . . . , n} and a set G ⊂ Rn we let H(·,G,Q) be the entropy1 of G
endowed with the metric induced by the L2(Q)-norm

Lemma 4.2. Let G ⊂ Rn be a set with diameter

R := sup
g∈G
‖g‖Qn .

Suppose

J(R) := 2

R∫
0

√
2H(u,G, Qn)du

exists. Then for all t > 0, with probability at least 1− exp[−t] it holds that

sup
g∈G

εT g/n ≤ J(R)√
n

+ 4R

√
1 + t

n
.

Proof. We can apply Hoeffding’s inequality to εT g/n for each g fixed (see Lemma 4.1). The result
of the current lemma is thus essentially applying Dudley’s entropy integral. The constants are taken
from Theorem 17.3 in [23]. �

Lemma 4.3. Let G := {g ∈ Rn : ‖g‖∞ ≤ 1, TV(g) ≤ 1}. It holds for any probability measure Q

H(u,G,Q) ≤ A0

u
∀ u > 0,

where A0 is a universal constant.

Proof. See [24], Theorem 2.7.5. �

5. Proof of Theorem 2.1.

5.1. The main body of the proof of Theorem 2.1. The following lemma is Lemma 7.1 in [23].
We present a proof for completeness.

Lemma 5.1. Let F be a convex subset of Rn (possibly F = Rn) and

f̂ := arg min
f∈F

{
Rn(f) + λTV(f)

}
.

Then for all f ∈ F,

−Ṙn(f̂)T (f − f̂) ≤ λTV(f)− λTV(f̂).

1For u > 0 the u-covering number N(u) of a metric space (V, d) is the smallest N such that there exists {vj}Nj=1 ⊂ V

with supv∈V min1≤j≤N d(v, vj) ≤ u. The entropy is H(·) := logN(·).
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Proof of Lemma 5.1. Define, for 0 < α < 1, f̂α := (1− α)f̂ + αf . Then, using the convexity of F

Rn(f̂) + λTV(f̂) ≤Rn(f̂α) + λTV(f̂α)

=Rn(f̂α) + (1− α)λTV(f̂) + αλTV(f).

Thus,

Rn(f̂)−Rn(f̂α)

α
≤ λTV(f)− λTV(f̂).

The result now follows by letting α ↓ 0. �

Lemma 5.2. Let F be a convex subset of Rn and

f̂ := arg min
f∈F

{
Rn(f) + λTV(f)

}
.

Then for all f ∈ F,

R(f̂)−R(f) + rem(f, f̂) ≤ εT (f̂ − f)/n+ λTV(f)− λTV(f̂),

where

rem(f, f̂) = R(f)−R(f̂)− Ṙ(f̂)T (f − f̂).

Proof of Lemma 5.2. By Lemma 5.1,

−Ṙn(f̂)T (f − f̂) ≤ λTV(f)− λTV(f̂).

So,

R(f̂)−R(f) + rem(f, f̂) =− Ṙ(f̂)T (f − f̂)

=(Ṙn(f̂)− Ṙ(f̂))T (f − f̂)− Ṙn(f̂)T (f − f̂)

=εT (f̂ − f)/n− Ṙn(f̂)T (f − f̂)

≤εT (f̂ − f)/n+ λTV(f)− λTV(f̂). �

One sees from Lemma 6.4 that we need appropriate bounds for the empirical process {εT f/n : f ∈
Rn}. These will be established in the next two subsections, Subsections 5.2 and 5.3. In Subsection 5.2
we announce the final result, and Subsection 5.3 presents the technicalities that lead to this result.

5.2. The empirical process {εT f/n : f ∈ Rn}. We consider the weights2

w2
k :=


(
k−tj−1

dj

)(
tj−k
n

)
, tj−1 + 1 ≤ k ≤ tj − 1, j ∈ [1 : r]

1
n , k = tj , j ∈ [1 : s]

.

For a vector f ∈ Rn we define (Df)k := fk − fk−1 (k = [2 : n]) so that ‖Df‖1 = TV(f). Let
w = (w1, . . . , wn)T be the vector of weights and w−1 := (1/w1, . . . , 1/wn). Write

w−S(Df)−S := {wk(Df)k}k/∈S .

2These weights are inspired by the following. Let VS be the linear space of functions that are piecewise constant
with jumps at S and ΠS be the projection operator on the space VS . Then

εT f/n = εT ΠSf/n+ εT (I −ΠS)f/n,

and one can verify that

εT (I −ΠSf)/n =
∑
k/∈S

Vk(fk − fk−1)

where V−S = {Vk}k/∈S is a vector of random variables with var(Vk) = w2
k, k /∈ S.
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We use the notation ‖ · ‖Qn := ‖ · ‖2/
√
n for the normalized Euclidean norm. For t > 0, let

δ2n(t) ≥
(

4νA0‖w−1‖Qn√
n

+ 8

√
1 + t+ log(3 + 2 log2 n)

n

)2

+

(
1

2ν
+ 4

√
A0‖w−1‖Qn/

√
n

n
+

4
√

1 + t+ log(3 + 2 log2 n)

n

)
×
(
‖Dw‖2 + 2

√
s

n

)2

,

and

λn(t) ≥ 1√
n

(
4

ν
+ 8

√
A0‖w−1‖Qn/

√
n

n
+

8
√

1 + t+ log(3 + 2 log2 n)

n

)
.

After establishing the material of Subsection 5.3 we are able show the following result:

Theorem 5.1. Let µ > 0 and t > 0 be arbitrary. With probability at least 1− exp[−t]

εT f/n ≤ µδ2n(t) +
‖f‖2Qn
µ

+ λn(t)‖w−S(Df)−S‖1,

uniformly for all f ∈ Rn.

Proof of Theorem 5.1. This follows from combining Lemma 5.7 with Lemma 5.6 (see Corollary
5.2). �

5.3. Material for the result for the empirical process {εT f/n : f ∈ Rn} in Theorem 5.1.
For all f ∈ Rn, let

γf :=

∑n
j=1 fj/wj

‖w−1‖22
and let

fP := Πw−1f := w−1γf

be the projection of f onto the vector w−1. Define the anti-projection fA := (I −Πw−1)f .
We let

wf := {wkfk}nk=1.

We start with some preliminary bounds.

Lemma 5.3. For all f ∈ Rn,
‖wf − γf‖∞ ≤ TV(wf)

holds, and
‖fA‖∞

TV(wf)
≤
√
n.

Proof of Lemma 5.3. For all i ∈ [1 : n],

wifi − γf =wifi −
∑
k=1 fk/wk
‖w−1‖22

=

∑n
k=1(wifi − wkfk)/w2

k

‖w−1‖22
≤ TV(wf),

or ‖wf − γf‖∞ ≤ TV(wf). Since, when g = wf ,

fA = w−1(g − γf ),

we see that

‖fA‖∞ ≤ ‖w−1‖∞TV(g) = ‖w−1‖∞TV(wf).

Since ‖w−1‖∞ =
√
n, we conclude that

‖fA‖∞ ≤
√
nTV(wf). �
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We use Dudley’s entropy integral to bound the empirical process over {f : ‖fA‖Qn ≤ R, TV(wf)
≤ 1} with the radius R some fixed value.

Lemma 5.4. Let R > 0 be arbitrary. For all t > 0, with probability at least 1− exp[−t],

sup
‖fA‖Qn≤R, TV(wf)≤1

εT f/n ≤ 4

√
2A0‖w−1‖QnR

n
+ 4R

√
1 + t

n
.

Proof of Lemma 5.4. Let Qw be the discrete probability measure that puts mass w−2i /‖w−1‖22 on i,
(i ∈ [1 : n]). Denote the L2(Qw)-norm by ‖ · ‖Qw . For G ⊂ Rn, we let H(·,G,Qw) denote the entropy
of G for the metric induced by ‖ · ‖Qw

. By Lemma 5.3,

‖wf − γf‖∞ ≤ TV(wf).

Thus by Lemma 4.3, with A0 the constant given there,

H(u, {wf − γf : TV(wf) ≤ 1},Qw) ≤ A0

u
∀ u > 0.

For f ∈ Rn, we have

‖fA‖2Qn =
1

n

n∑
i=1

(wifi − γf )2/w2
i = ‖wf − γf‖2Qw

‖w−1‖2Qn .

Therefore,

H(u, {fA, TV(wf) ≤ 1}, Qn) ≤ A0‖w−1‖Qn
u

∀ u > 0.

The entropy integral may therefore be bounded as follows:

2

R∫
0

√
2H(u, {fA : ‖fA‖Qn ≤ R, TV(wf) ≤ 1}, Qn)du

≤ 4
√

2A0‖w−1‖QnR.

By Lemma 4.2 the result follows. �

The next lemma invokes Lemma 5.4 and the peeling device to obtain a result for the weighted
empirical process.

Lemma 5.5. For all t > 0, with probability at least 1− exp[−t],

εT fA/n ≤8

√
A0‖w−1‖Qn

n

(√
‖fA‖QnTV(wf) ∨ TV(wf)

n3/4

)
+8

(
‖fA‖Qn ∨

TV(wf)

n3/2

)√
1 + t+ log(2 + 2 log2 n)

n

holds uniformly over all f .

Proof of Lemma 5.5. Let t > 0 and let A be the event{
εT fA/n ≥8

√
A0‖w−1‖Qn

n

√
‖f‖Qn ∨

1

n3/2

+8

(
‖f‖Qn ∨

1

n3/2

)√
1 + t+ log(2 + 2 log2 n)

n
,

for some f with ‖f‖Qn ≤
√
n and TV(wf) ≤ 1

}
.
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Let A0 be the event{
sup

‖fA‖Qn≤ 1

n3/2
, TV(wf)≤1

εT fA/n ≤8

√
A0‖w−1‖Qn

n

√
1

n3/2

+
8

n3/2

√
1 + t+ log(2 + 2 log2 n)

n

}
.

Let N ∈ N satisfy 2 log2 n ≤ N ≤ 1 + 2 log2 n and for j ∈ [1 : N ] let Aj be the event{
sup

2j−1

n3/2
<‖fA‖Qn≤ 2j

n3/2
, TV(wf)≤1

εT fA/n ≤8

√
A0‖w−1‖Qn

n

√
2j−1

n3/2

+
82j−1

n3/2

√
1 + t+ log(2 + 2 log2 n)

n

}
.

Application of Lemma 5.4 gives that for all j ≥ 0,

IP(Aj) ≤ exp[−(t+ log(2 + 2 log2 n)].

Since A ⊂ ∪Nj=0Aj , it follows that

IP(A) ≤
N∑
j=0

IP(Aj) ≤ (1 +N) exp[−(t+ log(2 + 2 log2 n)] ≤ exp[−t].

The result now follows by replacing fA by fA/TV(wf) and noting that

TV

(
wfA/TV (wf)

)
= 1,

and invoking from Lemma 5.3 the bound

‖fA/TV(wf)‖Qn ≤ ‖fA/TV(wf)‖∞ ≤
√
n. �

We present a corollary that applies the “conjugate inequality” 2ab ≤ a2 + b2 (with constants a and
b in R), then gathers terms and applies the conjugate inequality again.

Corollary 5.1. Let ν > 0 and µ > 0 be arbitrary. For all t > 0 with probability at least 1− exp[−t],

εT fA/n

≤
(

4νA0‖w−1‖Qn√
n

+ 8

√
1 + t+ log(2 + 2 log2 n)

n

)
‖fA‖Qn

+

(
4

ν
+ 8

√
A0‖w−1‖Qn/

√
n

n
+

8
√

1 + t+ log(2 + 2 log2 n)

n

)
TV(wf)√

n

≤µ
2

(
4νA0‖w−1‖Qn√

n
+ 8

√
1 + t+ log(2 + 2 log2 n)

n

)2

+
‖fA‖2Qn

2µ

+

(
4

ν
+ 8

√
A0‖w−1‖Qn/

√
n/

n
+

8
√

1 + t+ log(2 + 2 log2 n)

n

)
TV(wf)√

n
,

uniformly for all f .

We now add the missing fP = f − fA.
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Lemma 5.6. For all t > 0 with probability at least 1− exp[−t],

εT f/n

≤µ
2

(
4νA0‖w−1‖Qn√

n
+ 8

√
1 + t+ log(3 + 2 log2 n)

n

)2

+
‖f‖2Qn

2µ

+

(
4

ν
+ 8

√
A0‖w−1‖Qn/

√
n

n
+

8
√

1 + t+ log(3 + 2 log2 n)

n

)
TV(wf)√

n
,

uniformly for all f .

Proof of Lemma 5.6. By Pythagoras’ rule, we have ‖f‖22 = ‖fP‖22 + ‖fA‖22. Moreover, by Hoeffding’s
inequality, with probability at least 1− exp[−t],

εT fP/n ≤ ‖fP‖Qn

√
2t

n
≤ µt

n
+
‖fP‖2Qn

2µ
. �

In Lemma 5.6, the term including TV(wf) is almost, but not yet quite the one to be dealt with by
the penalty. We bound it by ‖w−S(Df)−S‖1 with appropriate remaining terms invoking the “chain
rule”. Here,

w−S(Df)−S := {wk(Df)k}k/∈S .

Lemma 5.7. For all f ∈ Rn,

TV(wf) ≤
√
n

(
‖Dw‖2 + 2

√
s/n

)
‖f‖Qn + ‖w−S(Df)−S‖1.

Proof of Lemma 5.7. We use the fact that

TV(wf) ≤
n∑
i=2

|(wi − wi−1)fi−1|+
n∑
i=2

|wi(fi − fi−1)|

≤‖Dw‖2‖f‖2 + ‖wDf‖1.

Moreover,

‖wDf‖1 = ‖wS(Df)S‖1 + ‖w−S(Df)−S‖1
with

wS(Df)S := {wk(Df)k}k∈S ,
satisfying

‖wS(Df)S‖1 =

s∑
j=1

|ftj+1 − ftj |/
√
n

≤
√
s

√√√√ s∑
j=1

|ftj+1 − ftj |2/
√
n

≤2
√
s‖f‖2/

√
n.

Thus,

TV(wf) ≤
(
‖Dw‖2 + 2

√
s/n

)
‖f‖2 + ‖w−S(Df)−S‖1. �

Corollary 5.2. The result from Theorem 5.1 now follows by using(
‖Dw‖2 + 2

√
s/n

)
‖f‖Qn ≤

µ

2

(
‖Dw‖2 + 2

√
s/n

)2

+
‖f‖2Qn

2µ
, f ∈ Rn.
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5.4. Bounds for the weights and their inverses. So far we assumed in this section (see Subsection
5.2), that for t > 0, the quantities δ2n(t) and λn(t) involved in the bound for the empirical process in
Theorem 5.1 satisfy

δ2n(t) ≥
(

4νA0‖w−1‖Qn√
n

+ 8

√
1 + t+ log(3 + 2 log2 n)

n

)2

+

(
1

2ν
+ 4

√
A0‖w−1‖Qn/

√
n

n
+

4
√

1 + t+ log(3 + 2 log2 n)

n

)
×
(
‖Dw‖2 + 2

√
s

n

)2

,

and

λn(t) ≥ 1√
n

(
4

ν
+ 8

√
A0‖w−1‖Qn/

√
n

n
+

8
√

1 + t+ log(3 + 2 log2 n)

n

)
,

involving ‖w−1‖Qn and ‖Dw‖2. In this subsection, we present the bounds for these, leading to the
values δ2n(t) and λn(t) presented in Section 2.

Lemma 5.8. It holds that

‖w−1‖22 ≤ 2n
∑
dj≥2

(log(dj − 1) + 1) + ns ≤ n2∆2
n

and

‖Dw‖22 ≤ 4
∑
dj≥2

(log(dj − 1) + 1)/n+ s/n =: ∆2
n.

Proof of Lemma 5.8. We have3

‖w−1‖22 =
∑
dj≥2

dj−1∑
k=1

ndj
k(dj − k)

+ ns

≤2n

r∑
j=1

(log(dj − 1) + 1) + ns.

Moreover, for 1 ≤ k ≤ dj − 1, j ∈ [1 : r],

|
√
k
√
dj − k −

√
k − 1

√
dj − (k − 1)| ≤

√
dj − k
k

+

√
k − 1

dj − k

≤
√
dj − 1

k
+

√
dj − 2

dj − k
≤
√
dj
k

+

√
dj

dj − k
,

so that

dj−1∑
k=1

|
√
k
√
dj − k −

√
k − 1

√
dj − (k − 1)|2

ndj

≤ 2

n

dj−1∑
k=1

(
1

k
+

1

dj − k

)

≤ 1

n

r∑
j=1

(4 log(dj − 1) + 2).

3We use
∑d−1

k=1
d

k(d−k)
=
∑d−1

k=1

(
1
k

+ 1
d−k

)
= 2

∑d−1
k=1

1
k
≤ 2(1 + log(d− 1)).
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Finally, for j ∈ [1 : s],

|wtj − wtj−1| =
∣∣∣∣ 1√
n
−

√
dj − 1

dj

1√
n

∣∣∣∣ ≤ 1√
n
. �

5.5. A bound for the effective sparsity. For all f ∈ Rn, we let

(Df)S := {(Df)k}k∈S , (Df)−S := {(Df)k}k/∈S .

and recall that

w−S(Df)−S := {wk(Df)k}k/∈S .
Let qtj := sign(ftj ), j ∈ [1 : s]. We define qS := {qtj}sj=1.

Definition 5.1. Let λ ≥ λn(t)
√
dmax/(2n). The effective sparsity at f is

Γ2(f , t) :=

(
min

{
‖f‖Qn : qT (Df)S − ‖(1− w−Sλ(t)/λ)(Df)−S‖1 = 1

})−2
.

Recall the definitions

Jmonotone := {2 ≤ j ≤ s : qtj = qtj−1
)}, Jchange := [1 : r]\Jmonotone.

Lemma 5.9. For λ ≥ λn(t)
√
dmax/n we have

Γ(f , t) ≤ Γ2
n(t),

where

Γ2
n(t) :=

λ2n(t)

λ2

∑
j∈Jmonotone

8(log(dj) + 1) +
∑

j∈Jchange

8n(log(dj) + 2)

dj
.

Proof of Lemma 5.9. The proof uses interpolating vectors q ∈ Rn as in [13], where q = (q1, q−1)T is
given below. We show that

qTS (Df)S − ‖(1− w−Sλ(t)/λ)(Df)−S‖1 ≤ qT−1D(f − f̂).

The result then follows from

qT−1D(f − f) = (DT q−1)T (f − f) ≤ ‖DT q−1‖2‖f − f‖2.

Furthermore, under the boundary conditions q1 = qn = 0 we see that ‖DT q−1‖2 = ‖Dq‖2. Define

ω2
k :=



(
k−tj−1

dj

)(
tj−k
n

)
λn(t)
λ , tj−1 + 1 ≤ k ≤ tj − 1, j ∈ Jmonotone, dj ≥ 2(

k−tj−1

dj

)(
tj−k
dj

)
, tj−1 + 1 ≤ k ≤ tj − 1, j ∈ Jchange

0, k = tj , j ∈ [1 : s]

.

For j ∈ [1 : r], we let t̄j =
tj−1+tj

2 be the midpoints. Moreover, for k /∈ {t1, . . . , ts}, let

qk :=



0 1 ≤ k < t̄1

sign(ft1)(1− 2ωk), t̄1 ≤ k ≤ t1 − 1

sign(ftj−1)(1− 2ωk), tj−1 + 1 ≤ k < t̄j , j ∈ [2 : s]

sign(ftj )(1− 2ωk), t̄j ≤ k ≤ tj − 1, j ∈ [2 : s]

sign(ftr−1
)(1− 2ωk), tr−1 ≤ k < t̄r

0 t̄r ≤ k ≤ n

.

For t̄j − 1 ≤ k < t̄j , j ∈ J1, we get

|1− 2ωk| ≤
4

dj
.
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For j ∈ Jmonotone, we see that

dj∑
k=1

|qtj−1+k − qtj−1+k−1|2 ≤
λ2n(t)

λ2
8(log dj + 1)

n
,

and for j ∈ Jchange,
dj∑
k=1

|qtj−1+k − qtj−1+k−1|2 ≤
8(log dj + 2)

dj
.

Thus,

‖Dq‖22 ≤
λ2n(t)

λ2

∑
j∈Jmonotone

8(log(dj) + 1)

n
+

∑
j∈Jchange

8(log(dj) + 2)

dj
.

The lemma now follows from Γ2(f , t) ≤ n‖Dq‖22. �

5.6. Finalizing the proof of Theorem 2.1. By Lemma 6.4, we have

R(f̂)−R(f) + rem(f , f̂)

≤µδ2n(t) +
‖f̂ − f‖Qn

µ
+ λn(t)‖w−S(Df̂)−S‖1 + λ‖DSf‖1 − λ‖Df̂‖1

=µδ2n(t) +
‖f̂ − f‖2Qn

µ
+ λ

(
‖(Df)S‖1 − ‖(Df̂)S‖1 − ‖(1− λn(t)w−S/λ)(Df̂)−S‖1

)
≤µδ2n(t) +

‖f̂ − f‖2Qn
µ

+ λΓn(t)‖f̂ − f‖Qn

≤µδ2n(t) +
2‖f̂ − f‖2Qn

µ
+
λ2

4
Γ2
n(t).

Choose µ = 4κ to obtain

2‖f̂ − f‖2Qn
µ

=
‖f̂ − f‖2Qn

2κ
≤ rem(f , f̂),

whenever ‖f̂‖∞ ≤ B. �

6. Proof of Theorem 3.1

6.1. Some lemmas used in the proof of Theorem 3.1. The proof of Theorem 3.1 applies some
auxiliary lemmas which we develop in this subsection. Define

τ(f) := ‖f‖Qn/(
√

2K) + (λ/δ)TV(f)

with

δ2 := 24λM0, K
2 :=

(1 + e1+24M0+‖f0‖∞)2

e1+24M0+‖f0‖∞
,

where M0 ≥ TV(f0) ∨ 1. Moreover, we let

f̂α := αf̂ + (1− α)f0

with

α :=
δ

δ + τ(f − f0)
.

Let F0 := {f : τ(f) ≤ δ}.

Lemma 6.1. It holds that f̂α − f0 ∈ F0, i.e., τ(f̂α − f0) ≤ δ. Moreover, if in fact τ(f̂α − f0) ≤ δ/2,

then f̂ − f0 ∈ F0, as well.
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Proof. We have

τ(f̂α − f0) = ατ(f̂ − f0) =
δτ(f̂ − f0)

δ + τ(f̂ − f0)
≤ δ.

If in fact τ(f̂α − f0) ≤ δ/2, we have

τ(f̂α − f0) =
δτ(f̂ − f0)

δ + τ(f̂ − f0)
≤ δ/2

which gives τ(f̂ − f0) ≤ δ/2 + τ(f̂ − f0)/2, or τ(f̂ − f0) ≤ δ. �

Lemma 6.2. For all f ∈ Rn,
‖f‖∞ ≤ ‖f‖Qn + TV(f).

Moreover,

F0 ⊂ {f : ‖f‖∞ ≤
√

2Kδ + δ2/λ, TV(f) ≤ δ2/λ}.

Proof. For f ∈ Rn, we denote its average by

f̄ :=
1

n

n∑
i=1

fi.

Then
‖f‖2Qn = f̄2 + ‖f − f̄‖Qn ≥ f̄2.

Moreover, for all i,

fi − f̄ =
1

n

n∑
j=1

(fi − fj) ≤ TV(f).

It follows that
‖f‖∞ ≤ f̄ + ‖f − f̄‖∞ ≤ ‖f‖Qn + TV(f).

For f ∈ F0, we have ‖f‖2/
√
n ≤
√

2Kδ and TV(f) ≤ δ2/λ, so that also ‖f‖∞ ≤
√

2Kδ + δ2/λ. �

Lemma 6.3. Let

K2 :=
(1 + e1+24M0+‖f0‖∞)2

e1+24M0+‖f0‖∞

and let δ2 := 24λM0 ≤ 1/(2K2). Then for all f with f − f0 ∈ F0, it is true that Kf ≤ K.

Proof. Since for f −f0 ∈ F0, ‖f −f0‖∞ ≤
√

2Kδ+ δ2/λ ≤ 1 + 24M0, we see that ‖f‖∞ ≤ 1 + 24M0 +
‖f0‖∞. Therefore,

K2
f =

(1 + e‖f‖∞∨‖f
0‖∞)2

e‖f‖∞∨‖f0‖∞
≤ K2.

�

Lemma 6.4. We have

0 ≤ R(f̂)−R(f0) ≤ εT (f̂ − f0)/n+ λTV(f0)− λTV(f̂).

This inequality is also true with f̂ replaced by f̂α.

Proof. For any f ,

0 ≤ R(f)−R(f0) =−
[(
Rn(f)−R(f)

)
−
(
Rn(f0)−R(f0)

)]
+Rn(f)−Rn(f0)

=εT (f − f0)/n+Rn(f)−Rn(f0).

Insert the basic inequality

Rn(f̂) + λTV(f̂) ≤ Rn(f0) + λTV(f0),

or
Rn(f̂)−Rn(f0) ≤ λTV(f0)− λTV(f̂),
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to arrive at the first statement of the lemma. To obtain the second statement, we note that by the

convexity of f 7→ Rn(f) such basic inequality is also true for f̂α:

Rn(f̂α) + λTV(f̂α)

≤αRn(f̂) + αλTV(f̂) + (1− α)Rn(f0) + (1− α)λTV(f0)

≤Rn(f0) + λTV(f0). �

6.2. Proof of Theorem 3.1. We have for f ∈ F0, ‖f‖∞ ≤
√

2Kδ + δ2/λ ≤ 2δ2/λ as well as
TV(f) ≤ δ2/λ ≤ 2δ2/λ. It follows from Lemma 4.3 that

H(u,F0, Qn) ≤ 2A0δ
2

λu
∀ u > 0,

so that

2

√
2Kδ∫
0

√
2H(u,F0, Qn)du ≤4

√
2A0

√
2K

δ√
λ

√
2Kδ∫
0

1√
u
du

=8

√
2A0

√
2K

λ
δ3/2.

But then, in view of Lemma 4.2, for all t > 0 with probability at least 1− exp[−t],

sup
f∈F0

εT f/n ≤ 8

√
2A0

√
2K

nλ
δ3/2 + 4

√
2Kδ

√
1 + t

n
.

Since, by Lemma 6.1, f̂α−f0 ∈ F0 we know from Lemma 6.3 that Kf̂α
≤ K. Thus, in view of Lemma

6.4 and the bound

R(f̂α)−R(f0) ≥
‖f̂α − f0‖2Qn

2K2
,

we have shown that with probability at least 1− exp[−t],

‖f̂α − f0‖2Qn
2K2

+ λTV(f̂α − f0)

≤2λTV(f0) + 8

√
2A0

√
2K

nλ
δ3/2 + 4

√
2Kδ

√
1 + t

n

≤ 2λM0 + 8

√
2A0

√
2K

nλ
δ3/2 + 4

√
2Kδ

√
1 + t

n
.

We want the three terms on the right-hand side to add up to at most δ2/4. We choose

λM0 =δ2/23,

8

√
2A0

√
2K

nλ
δ3/2 ≤δ2/24,

4
√

2Kδ

√
1 + t

n
≤δ2/24.

or

24λM0 =δ2,(
27
√

2A0

√
2K√

nλ

)4

≤δ2,(
26
√

2K

√
1 + t

n

)2

≤δ2.
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The first one is the largest of the three. This leads to the requirement

24λM0 ≥
(

27

√
2A0

√
2K

nλ

)4

,

which is true for
λ ≥ 28n−2/3A

2/3
0 (
√

2K)2/3,

and

24λM0 ≥
(

26
√

2K

√
1 + t

n

)2

,

which holds for

λ ≥ 28(2K2)
1 + t

n
,

where we invoked for both requirements that M0 ≥ 1. Then with probability at least 1− exp[−t],

‖f̂α − f0‖2Qn
2K2

+ λTV(f̂α − f0) ≤ δ2/4.

For all f ∈ Rn,

δτ(f) =
δ‖f‖Qn√

2K
+ λTV(f) ≤ δ2/4 +

‖f‖22/n
2K2

+ λTV(f).

Thus we have shown that
δτ(f̂α − f0) ≤ δ2/4 + δ2/4 = δ2/2

or
τ(f̂α − f0) ≤ δ/2.

By Lemma 6.1, this implies f̂ ∈ F0. We can now apply the same arguments to f̂ as we did for f̂α to
obtain that with probability at least 1− 2 exp[−t],

‖f̂ − f0‖2Qn
2K2

+ λTV(f̂ − f0) ≤ δ2/4 = 4λM0

holds. By Lemma 6.2, this implies

‖f̂−f0‖∞ ≤
√

2Kδ

2
+
δ2

4λ
≤ 1 + 8M0

2
. �
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THE METHOD OF PROBABILISTIC SOLUTION FOR DETERMINATION OF

ELECTRIC AND THERMAL STATIONARY FIELDS IN CONIC AND

PRISMATIC DOMAINS

MAMULI ZAKRADZE∗, MURMAN KUBLASHVILI, NANA KOBLISHVILI, AND ALEKSANDRE CHAKHVADZE

Abstract. In this paper, for determination of the electric and thermal stationary fields the Dirichlet

ordinary and generalized harmonic problems are considered. The term “generalized” indicates that

a boundary function has a finite number of first kind discontinuity curves. For numerical solution of
boundary problems the method of probabilistic solution (MPS) is applied, which in its turn is based

on a modeling of the Wiener process. The suggested algorithm does not require an approximation

of a boundary function, which is main of its important properties. For examining and to illustrate
the effectiveness and simplicity of the proposed method four numerical examples are considered on

finding the electric and thermal fields. In the role of domains are taken: finite right circular cone

and truncated cone; a rectangular parallelepiped. Numerical results are presented.

1. Introduction

Let D be a finite domain in the Euclidian space R3, bounded by one closed piecewise smooth

surface S (i.e., S =
p⋃

j=1

Sj), where each part Sj is a smooth surface. Besides, we assume: equations

of the parts Sj are given; for the surface S it is easy to show that a point x = (x1, x2, x3) ∈ R3 lies in
D or not.

It is known (see, e.g., [1,2,6,12,14–17]) that in practical stationary problems (for example, for the de-
termination of the temperature of the thermal field or the potential of the electric field, and so on) there
are cases when it is necessary to consider the Dirichlet ordinary (or generalized) harmonic problems: A
(or B).

Problem A. Find a function u(x) ≡ u(x1, x2, x3) ∈ C2(D)
⋂
C(D) satisfying the conditions:

∆u(x) = 0, x ∈ D,
u(y) = h(y), y ∈ S,

where ∆ =
3∑

i=1

∂2

∂x2
i

is the Laplace operator and h(y) ≡ h(y1, y2, y3) is a continuous function on S.

It is known (see, e.g., [12, 16, 17]) that Problem A is correct, i.e., its solution exists, is unique and
depends on data continuously. It should be noted that in general the difficulties and respectively
the laboriousness of solving problems sharply increase along with the dimension of the problems
considered. Therefore, as a rule, one fails to develop standard methods for solving a wide class of
multidimensional problems with the same high accuracy as in the one-dimensional case. For example,
the exact solution of Problem A for a circle is written by one-dimensional Poisson’s integral and in the
case of kernel by two-dimensional Poisson’s integral. The given simple example shows the difficulty in
determining of the solution with the high accuracy of the Dirichlet ordinary harmonic problem when
the dimension increases. In this paper, besides the fact that numerical solution of problems of type A
by MPS is interesting and important (see, e.g., [3, 4, 18]), it has an additional role in this paper (see
section 3).

2020 Mathematics Subject Classification. 34J25, 35J05, 65C30, 65N75.
Key words and phrases. Electric and thermal fields; Dirichlet ordinary and generalized harmonic problems; Method

of probabilistic solution; Wiener process.
∗Corresponding author.
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Problem B. Function g(y) is given on the boundary S of the domain D and is continuous everywhere,
except a finite number of curves l1, l2, . . . , ln which represent discontinuity curves of the first kind for

the function g(y). It is required to find a function u(x) ≡ u(x1, x2, x3) ∈ C2(D)
⋂
C(D\

n⋃
k=1

lk)

satisfying the conditions:

∆u(x) = 0, x ∈ D, (1.1)

u(y) = g(y), y ∈ S, y ∈ lk ⊂ S (k = 1, n), (1.2)

|u(y)| < c, y ∈ D, (1.3)

where c is a real constant.

It is shown (see [5,20]) that Problem (1.1), (1.2), (1.3) has a unique solution depending continuously
on the data, and for a generalized solution u(x) the generalized extremum principal is valid:

min
x∈S

u(x) < u(x)
x∈D

< max
x∈S

u(x), (1.4)

where for x ∈ S it is assumed that x∈lk (k = 1, n).
It is evident that actually, the surface S is divided into open parts Si (i = 1,m) by curves lk

(k = 1, n) or S = (
m⋃
i=1

Si)
⋃

(
n⋃

k=1

lk), where for the concrete case, between m and n from the following

conditions: n = m, n < m, n > m take place one of. On the basis of noted, the boundary function
g(y) has the following form

g(y) =


g1(y), y ∈ S1,

g2(y), y ∈ S2,

. . . . . . . . . . . .

gm(y), y ∈ Sm,

(1.5)

where the functions gi(y), y ∈ Si are continuous on the parts Si of S, respectively.
Note (see [20]) that the additional requirement (1.3) of boundedness concerns actually only the

neighborhoods of discontinuity curves of the function g(y) and it plays an important role in the
extremum principle (1.4).

On the basis of (1.3), in general, the values of u(y) are not defined on the curves lk. For example,
if Problem B concerns the determination of the thermal (or the electric) field, then u(y) = 0 when
y ∈ lk, respectively, in this case, in physical sense the curves lk are non-conductors (or dielectrics).

Remark 1. If inside the surface S there is a vacuum then we have the ordinary and generalized
problems with respect to closed shells.

In general, it is known (see [6, 7, 20]) that the methods used to obtain an approximate solution to
ordinary boundary problems are less suitable (or not suitable at all) for solving boundary problems of
type B. In particular, the convergence of the approximate process is very slow in the neighborhood of
boundary singularities and, consequently, the accuracy of the approximate solution of the generalized
problem is very low.

The choice and construction of computational schemes (algorithms) mainly depend on problem
class, its dimension, geometry and location of singularities on the boundary, e.g., Dirichlet generalized
plane problems for harmonic functions with concrete location of discontinuity points in the cases of
simply connected domains are considered in [1, 2, 6, 8, 15], and general cases for finite and infinite
domains are studied in [9–11,13,14,19].

In the case of 3D harmonic generalized problems, due to their higher dimension, the difficulties
become more significant. In particular, there does not exist a standard scheme which can be applied
to a wide class of domains. In the classical literature, simplified, or so called “solvable” generalized
problems (problems whose “exact” solutions can be constructed by series, whose terms are represented
by special functions) are considered, and for their solution the classical method of separation of
variables is mainly applied and therefore the accuracy of the solution is rather low. In the mentioned
problems, the boundary functions (conditions) are mainly constants, and in the general case, the
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analytic form of the “exact” solution is so difficult in the sense of numerical implementation, that it
only has theoretical significance (see, e.g., [1, 2, 6, 12,15]).

As a consequence of the above, from our viewpoint, the construction of high accuracy and effec-
tively realizable computational schemes for approximate solution of 3D Dirichlet generalized harmonic
problems (whose application is possible to a wide class of domains) have both theoretical and practical
importance.

It should be noted that in literature (see, e.g., [1, 2, 6, 12, 15]), while solving Dirichlet generalized
harmonic problems, the existence of discontinuity curves often is neglected. This fact and application
of classical methods to solving problems of type B are reasons of the inaccuracies. Therefore, for
numerical solution of generalized harmonic problems we should apply such methods which do not
require approximation of a boundary function and in which the existence of discontinuity curves is
not ignored. The suggested algorithm is one of such methods.

2. The Method of Probabilistic Solution

In this section the essence of the suggested algorithm for numerical solving problems of type A and
B is given, and its detail description is in [21]. The main theorem in realization of the MPS is the
following one (see, e.g., [5])

Theorem 1. If a finite domain D ∈ R3 is bounded by piecewise smooth surface S and g(y) is
continuous (or discontinuous) bounded function on S, then the solution of the Dirichlet ordinary (or
generalized) boundary problem for the Laplace equation at the fixed point x ∈ D has the form

u(x) = Exg(x(τ)). (2.1)

In (2.1): Exg(x(τ)) is the mathematical expectation of the values of the boundary function g(y) at
the random intersection points of the trajectory of the Wiener process and the boundary S; τ is the
random moment of first exit of the Wiener process x(t) = (x1(t), x2(t), x3(t)) from the domain D. It
is assumed that the starting point of the Wiener process is always x(t0) = (x1(t0), x2(t0), x3(t0)) ∈ D,
where the value of the desired function is being determined. If the numberN of the random intersection
points yi = (yi1, y

i
2, y

i
3) ∈ S (i = 1, 2, . . . , N) is sufficiently large, then according to the law of large

numbers, from (2.1) we have

u(x) ≈ uN (x) =
1

N

N∑
i=1

g(yi) (2.2)

or u(x) = limuN (x) for N → ∞, in probability. Thus, in the presence of the Wiener process the
approximate value of the probabilistic solution to Problems A and B at a point x ∈ D are calculated
by formula (2.2).

In order, to simulate of the Wiener process we use the following recursion relations (see, e.g., [21]):

x1(tk) = x1(tk−1) + γ1(tk)/nq,

x2(tk) = x2(tk−1) + γ2(tk)/nq,

x3(tk) = x3(tk−1) + γ3(tk)/nq,

(k = 1, 2, . . . ), x(t0) = x,

(2.3)

according of which the coordinates of the point x(tk) = (x1(tk), x2(tk), x3(tk)) are being determined.
In (2.3): γ1(tk), γ2(tk), γ3(tk) are three normally distributed independent random numbers for the
k-th step, with zero means and variances one; nq is a number of quantification (nq) such that 1/nq =√
tk − tk−1 and when nq →∞, then the discrete process approaches to the continuous Wiener process.

In the implementation, the random process is simulated at each step of the walk and continues until
it crosses the boundary.

In the considered case computations and generation of random numbers are done in MATLAB.
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3. Numerical Examples

In this section, problems of type A and B are solved for one and the same domain. The reason of
this is the following: since there exist exact test problems for type A, and there are none for type B,
therefore, Problem A has an additional role in this paper. Namely, verification of a scheme needed for
numerical solution of Problem B and corresponding calculating program is carried out with the help
of Problem A, which consists in following.

Function

u(x0, x) =
1

|x− x0|
, x ∈ D, x0 = (x01, x

0
2, x

0
3) ∈ D, (3.1)

is taken in the role of the exact test solution for Problem A under boundary condition h(y) =
1

|y−x0| , y ∈ S, where |x− x0| denotes the distance between the points x and x0. After this, function

h(y) is taken in the role of functions gi(y) (i = 1,m) in Problem B and consequently in calculating
program. Evidently, in this case curves lk represent removable discontinuity curves for function g(y),
therefore instead of problem of type B we have problem of type A. For the obtained problem, verifica-
tion of the scheme needed for numerical solution of Problem B and corresponding calculating program
(comparison of the obtained results with exact solution) is carried out first of all, and then Problem
B is being solved under boundary conditions (1.5).

In the case when Problems A and B concern electrostatic field, for full investigation of the field
it is necessary to find both potential and strength of the field. It is known [6, 15] that the strength
E(x) = (E1(x), E2(x), E3(x)) of electrostatic field is defined as follows:

E(x) = −
(
∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3

)
, x ∈ D, (3.2)

where u(x) is potential of electrostatic field. It is known that the vector E(x) is directed where the
potential of the electric field is less.

Since in our case Problems A and B are solved by a numerical method, therefore, for the test
problem, coordinates of vector E(x) are defined by formula (3.2), and in the case of numerical solution
by the central difference formula

f ′(t) ≈ f(t+ h)− f(t− h)

2h
(3.3)

is used, whose accuracy is O(h2)
Thus on the basis of (3.2) and (3.3) for definition components of the vectors E(x) and EN (x) we

have:

Ek(x) = −∂u(x)

∂xk
=

xk − x0k
|x− x0|3

, (k = 1, 2, 3); (3.4)

EN
k (x) = −∂uN (x)

∂xk
≈ −[uN ((x1 + h)δ1k, (x2 + h)δ2k, (x3 + h)δ3k)

−uN ((x1 − h)δ1k, (x2 − h)δ2k, (x3 − h)δ3k)]/(2h), (3.5)

where δik is Kronecker symbols.
In the present paper the MPS is applied to four examples. In tables, N is the number of the

implementation of the Wiener process for the given points xi = (xi1, x
i
2, x

i
3) ∈ D, and nq is the

number of the quantification. For simplicity, in the considered examples the values of nq and N
are the same. In tables for problems of type A we present the maximum absolute errors ∆i at the
points xi ∈ D of uN (x), in the MPS approximation, for nq = 200 and various values of N , and under
notations of type (E ± k), 10±k are meant. In particular, ∆i = |uN (xi) − u(x0, xi)|, where uN (xi)
is the approximate solution of Problem A at the point xi, which is defined by formula (2.2), and the
exact solution u(x0, xi) of the test problem is given by (3.1). In tables, for problems of type B, the
probabilistic solution uN (x) is presented at the points xi, defined by (2.2).

Remark 2. The Problems A and B for ellipsoidal, spherical, cylindrical domains and for the kernel
layer are considered in [21].
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Example 3.1. In the first example it is required to determine the electrostatic field in the domain D.
In the role of D is taken interior of the finite right circular cone Sc :

(x1)2 + (x2)2 −
( r
h

)2
(h− x3)2 = 0, 0 ≤ x3 ≤ h, (3.6)

where h is a height of the cone, r is a radius of its base S1, and x(x1, x2, x3) is a current point of the
conic surface Sc (the full surface S of D is S = Sc

⋃
S1).

In numerical experiments for the considered example, is taken: 1) h = 2, r = 1; 2) in the test
Problem A the boundary function h(y) = 1/|y − x0|, y ∈ S, x0 = (0, 0,−5); 3) in Problem B the
boundary function g(y) ≡ g(y1, y2, y3) has the form

g(y) =



2, y ∈ S1 = {y ∈ S |0 ≤ (y1)2 + (y2)2 < 1, y3 = 0},
1.5, y ∈ S2 = {y ∈ Sc |0 < y3 < 0.5},
1, y ∈ S3 = {y ∈ Sc |0.5 < y3 < 1},
0.5, y ∈ S4 = {y ∈ Sc |1 < y3 ≤ 2},
0, y ∈ lk (k = 1, 2, 3).

(3.7)

It is evident that in the considered case l1 is the circle of the base S1; l2 and l3 are the circles,
which are obtained by intersection of the planes x3 = 0.5, x3 = 1 and the surface Sc. Besides, in the
physical sense the circles lk are non-conductors.

In order to determine the intersection points yi = (yi1, y
i
2, y

i
3) (i = 1, N) of the trajectory of the

Wiener process and the surface S, we operate in the following way. During the implementation of
the Wiener process, for each current point x(tk), defined from (2.3), its location with respect to S is
checked, i.e., for the point x(tk) the value

d = (x1(tk))2 + (x2(tk))2 −
( r
h

)2
(h− x3(tk))2

is calculated and the following conditions: 1) d = 0 and 0 < x3(tk) < h; 2) d < 0 and 0 < x3(tk) < h;
3) d < 0 or d > 0 and x3(tk) < 0; 4) d > 0 and 0 < x3(tk) < h are checked. In the first case x(tk) ∈ Sc

and yi = x(tk). In the second case x(tk) ∈ D and the process continuous until it crosses the boundary
of D. In the cases (3) and (4) x(tk) ∈ D.

Let x(tk−1) ∈ D for the moment t = tk−1 and x(tk) ∈ D for the moment t = tk. In the mentioned
case we have only two variants: 3) or 4). In the case 3) we find the intersection point y = (y1, y2, 0) of
the plane x3 = 0 and a line l passing through the points x(tk−1) and x(tk). If 0 ≤ (y1)2 + (y2)2 < r2

then yi = (y1, y2, 0). In the case 4), for approximate determination of the point yi, a parametric
equation of a line L passing through the points x(tk−1) and x(tk) is firstly obtained, which has the
following form 

x1 = xk−11 + (xk1 − xk−11 )θ,

x2 = xk−12 + (xk2 − xk−12 )θ,

x3 = xk−13 + (xk3 − xk−13 )θ,

(3.8)

where (x1, x2, x3) is the current point of L and θ is a parameter (−∞ < θ <∞), and xk−1i ≡ xi(tk−1),
xki ≡ xi(tk) (i = 1, 2, 3). After this, for definition of the intersection points x∗ and x∗∗ of the line L
and the surface S equation (3.6) is solved with respect to θ.

It is easy to see that for parameter θ we obtain an equation

Aθ2 + 2Bθ + C = 0 (3.9)

whose discriminant d∗ = B2 −AC > 0.
Since the discriminant of (3.9) is positive, the points x∗ and x∗∗ are defined respectively on the

basis of (3.8) for solutions of (3.9) θ1 and θ2. In the role of the points yi the one (from x∗ and x∗∗)
for which |x(tk)− x| is minimal is chosen.

In Table 3.1A the errors ∆i of the approximate solution uN (x) of the test problem at the points
xi ∈ D (i = 1, 5) are presented. On the basis of (3.4) and (3.5) we calculated exact and approximate
strengths of the electric field (or E3(x) and EN

3 (x)) on the axis Ox3 at the points xi (i = 1, 2, 3)
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Table 3.1A. Results for Problem A (in Example 3.1)

xi (0, 0, 0.5) (0, 0, 1) (0, 0, 1.8) (0.2, 0.2, 0.5) (−0.2,−0.2, 0.5)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.30E − 3 0.39E − 3 0.74E − 5 0.52E − 4 0.17E − 4
1E + 4 0.63E − 4 0.14E − 3 0.13E − 4 0.11E − 3 0.15E − 3
5E + 4 0.98E − 4 0.72E − 4 0.40E − 4 0.25E − 4 0.72E − 4
1E + 5 0.24E − 4 0.49E − 4 0.18E − 4 0.49E − 4 0.21E − 4
5E + 5 0.66E − 5 0.26E − 4 0.31E − 4 0.18E − 4 0.36E − 4
1E + 6 0.32E − 5 0.42E − 4 0.31E − 4 0.15E − 4 0.27E − 4

for N = 106, nq = 200, h = 0.03. We obtained the following results: E3(0, 0, 0.5) = 0.033111;
E3(0, 0, 1) = 0.027778; E3(0, 0, 1.8) = 0.021626; EN

3 (0, 0, 0.5) = 0.033061; EN
3 (0, 0, 1) = 0.027781;

EN
3 (0, 0, 1.8) = 0.021651;
It is evident that the results obtained for EN

3 (xi) are in good agreement with the values of E3(xi)
(i = 1, 2, 3).

Table 3.1B. Results for Problem B (in Example 3.1)

xi (0, 0, 0.5) (0, 0, 1) (0, 0, 1.8) (0.2, 0.2, 0.5) (−0.2,−0.2, 0.5)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 1.32910 0.77620 0.50010 1.31410 1.31470
1E + 4 1.33335 0.77370 0.50010 1.32060 1.31690
5E + 4 1.33374 0.77282 0.50016 1.31599 1.32765
1E + 5 1.33447 0.77314 0.50035 1.32166 1.32319
5E + 5 1.33318 0.77234 0.50023 1.32131 1.32318
1E + 6 1.33356 0.77211 0.50023 1.32223 1.32185

In Table 3.1B the values of the approximate solution uN (x) to Problem B at the same points
xi(i = 1, 5) are given. The boundary function (3.7) is symmetric with respect to the axis Ox3,
respectively, the obtained results for x4 and x5 are symmetric with respect to the axis Ox3 and have
sufficient accuracy for many practical problems.

For illustration, we calculated the electrostatic field strength by (3.5) on the axis Ox3 at the
same points xi(i = 1, 2, 3) for N = 106, nq = 200, h = 0.03. We obtained the following results:
EN

3 (0, 0, 0.5) = 1.234714; EN
3 (0, 0, 1) = 0.989775;EN

3 (0, 0, 1.8) = 0.00426. The obtained results are in
good agreement with the real physical picture.

Example 3.2. In this example, the problem on the temperature distribution is considered. In the role
of domain D the interior of a truncated right circular cone Sc is taken:

(x1)2 + (x2)2 −
(R− r

h

)2( Rh

R− r
− x3

)2
= 0, 0 ≤ x3 ≤ h,

where h is the height, R the radius of the lower base, r is the radius of the upper base, and x(x1, x2, x3)
is a current point of the conic surface Sc. The boundary of D is S = S1

⋃
Sc

⋃
S2, where S1 = {y ∈

S |0 ≤ d < R, y3 = 0} and S2 = {y ∈ S |0 ≤ d < r, y3 = h}, and d = sqrt((y1)2 + (y2)2).
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The problems A and B are solved when h = 2, R = 1, r = 0.5, x0 = (0, 0,−5), and the boundary
function g(y) has the form

g(y) =



2, y ∈ S1,

0, y ∈ S2,

1.5, y ∈ S3,

1, y ∈ S4,

1.5, y ∈ S5,

1, y ∈ S6,

0, y ∈ lk (k = 1, 6).

(3.10)

In (3.10): l1, l2 are the circles of the bases S1 and S2; l3, l4, l5, l6 are the generatices of the conic
surface Sc, which pass through the points (R, 0), (0, R), (−R, 0), (0,−R), respectively; S3 = {y ∈
Sc |r < d < R, y1 > 0, y2 > 0, 0 < y3 < h}; S4 = {y ∈ Sc |r < d < R, y1 < 0, y2 > 0, 0 < y3 < h};
S5 = {y ∈ Sc |r < d < R, y1 < 0, y2 < 0, 0 < y3 < h}; S6 = {y ∈ Sc |r < d < R, y1 > 0, y2 < 0, 0 <
y3 < h}. Besides, in this case the curves lk and S2 are non-conductors.

In the considered case, for determination of the intersection points yi (i = 1, N) of the trajectory
of the Wiener process and the surface S the same algorithm, described in Example 3.1 is applied.

In Table 3.2A the errors ∆i of the approximate solution uN (x) of the test problem are presented
at the points xi ∈ D (i = 1, 5).

Table 3.2A. Results for Problem A (in Example 3.2)

xi (0, 0, 0.5) (0, 0, 1) (0, 0, 1.8) (0.5, 0.5, 1) (−0.5,−0.5, 1)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.99E − 4 0.27E − 3 0.99E − 4 0.58E − 4 0.10E − 3
1E + 4 0.66E − 4 0.11E − 3 0.88E − 4 0.48E − 4 0.58E − 4
5E + 4 0.65E − 4 0.52E − 4 0.90E − 4 0.27E − 4 0.30E − 4
1E + 5 0.40E − 4 0.26E − 4 0.25E − 4 0.17E − 4 0.48E − 4
5E + 5 0.16E − 4 0.19E − 4 0.55E − 4 0.24E − 4 0.23E − 4
1E + 6 0.81E − 5 0.28E − 4 0.53E − 4 0.27E − 4 0.25E − 4

The values of the approximate solution uN (x) of Problem B at the same points xi are given in
Table 3.2B. Since the boundary function (3.10) is symmetric with respect to the axis Ox3, therefore,
for control in the role of xi (i = 4, 5), the points which are symmetric with respect to the axis Ox3
are taken. The obtained results have sufficient accuracy for many practical problems and are in good
agreement with the real physical picture.

Table 3.2B. Results for Problem B (in Example 3.2)

xi (0, 0, 0.5) (0, 0, 1) (0, 0, 1.8) (0.5, 0.5, 1) (−0.5,−0.5, 1)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 1.53710 1.29085 0.56980 1.48650 1.48660
1E + 4 1.52895 1.29140 0.56875 1.48575 1.48580
5E + 4 1.52950 1.28705 0.57235 1.48548 1.48538
1E + 5 1.52615 1.28884 0.57426 1.48584 1.48558
5E + 5 1.52680 1.28701 0.57756 1.48578 1.48579
1E + 6 1.52670 1.28710 0.57615 1.48558 1.48566

Example 3.3. Here in the role of domain D the interior of rectangular parallelepiped
MNKOM1N1K1O1 is taken with the vertex at the origin O(0, 0, 0) of Cartesian coordinate right-
handed system and measurements a, b and c. It is evident that the boundary S of D is S =
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(
6⋃

j=1

Sj)
⋃

(
12⋃
k=1

lk), where Sj are open faces and lk are edges. In this example, the problem on the

temperature distribution is considered.

In order to determine the intersection points yi = (yi1, y
i
2, y

i
3) (i = 1, N) of the trajectory of the

Wiener process and the surface S of mentioned parallelepiped the following way is used. During the
implementation of the Wiener process, for each current point x(tk), defined by (2.3), its location with
respect to S is checked, i.e., for the point x(tk) the following conditions

0 < x1(tk) < a, 0 < x2(tk) < b, 0 < x3(tk) < c

are checked. If the mentioned conditions are fulfilled then the process (2.3) continuous. If x(tk) ∈ S
then yi = x(tk).

Let x(t) ∈ D for the moment t = tk−1 and x(t) ∈ D for the moment t = tk. In this case, for
approximate determination of the point yi, a parametric equation of a line L passing through the
points x(tk−1) and x(tk) is firstly obtained in the form (3.8). After this, the intersection point x∗

of the line L and that face, which is intersected by the trajectory of wiener process is found and
respectively, in this case yi = x∗.

In numerical experiments, we took: 1) a = 1, b = 2, c = 3; 2) in the test Problem A, x0 =
(0.5, 1,−5); 3) in Problem B the boundary function g(y) has the following form

g(y) =



3, y ∈ S1 = {y ∈ S |y1 = 0, 0 < y2 < b, 0 < y3 < c},
1, y ∈ S2 = {y ∈ S |y1 = a, 0 < y2 < b, 0 < y3 < c},
0.5, y ∈ S3 = {y ∈ S |0 < y1 < a, y2 = 0, 0 < y3 < c},
0.5, y ∈ S4 = {y ∈ S |0 < y1 < a, y2 = b, 0 < y3 < c},
0, y ∈ S5 = {y ∈ S |0 < y1 < a, 0 < y2 < b, y3 = 0},
2, y ∈ S6 = {y ∈ S |0 < y1 < a, 0 < y2 < b, y3 = c},
0, y ∈ lk (k = 1, 12),

(3.11)

where lk and S5 are dielectrics.
The errors ∆i of the approximate solution uN (x) to test Problem A at the points xi ∈ D (i = 1, 5)

are given in Table 3.3A.

Table 3.3A. Results for Problem A (in Example 3.3)

xi (0.5, 1, 0.5) (0.5, 1, 1) (0.5, 1, 1.5) (0.5, 1, 2) (0.5, 1, 2.5)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.11E − 3 0.28E − 3 0.17E − 3 0.14E − 3 0.14E − 3
1E + 4 0.73E − 4 0.28E − 4 0.25E − 3 0.77E − 4 0.13E − 4
5E + 4 0.57E − 4 0.66E − 4 0.40E − 4 0.48E − 4 0.12E − 4
1E + 5 0.17E − 4 0.20E − 4 0.61E − 4 0.29E − 4 0.15E − 4
5E + 5 0.35E − 4 0.32E − 4 0.25E − 4 0.15E − 4 0.21E − 4
1E + 6 0.65E − 5 0.43E − 5 0.49E − 5 0.19E − 4 0.19E − 4

The values of the approximate solution uN (x) of Problem B at the points xi ∈ D (i = 1, 2, 3) are
given in Table 3.3B. Since the boundary function (3.11) is symmetric with respect to the plane x2 = 1,
therefore, for control in the role of xi (i = 4, 5), the points which are symmetric with respect to the
plane x2 = 1 are taken. The obtained results have sufficient accuracy for many practical problems
and are in good agreement with the real physical picture (see Table 3.3B).

Example 3.4. In this example, the problems A and B on the temperature distributionn are considered.
In the role of D we took the same rectangular parallelepiped as in Example 3.3. In this case, Problem
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B under the boundary function g(y) with specific form

g(y) =


v1, y ∈ S1 = {y ∈ S |y1 = 0, 0 < y2 < b, 0 < y3 < c},
v2, y ∈ S2 = {y ∈ S |y1 = a, 0 < y2 < b, 0 < y3 < c},

0, y ∈ (
6⋃

j=3

Sj)
⋃

(
12⋃
k=1

lk)

(3.12)

is solved, where Sj(j = 1, 6), lk(k = 1, 12) are the same as in Example 3.3, v1 and v2 are constants.
It is evident that Sj (j = 3, 6) and lk (k = 1, 12) are non-conductors.

Table 3.3B. Results for Problem B (in Example 3.3)

xi (0.5, 1, 0.5) (0.5, 1, 1.5) (0.5, 1, 2.5) (0.5, 0.5, 1.5) (0.5, 1.5, 1.5)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 1.36592 1.77016 1.87272 1.51024 1.50580
1E + 4 1.37656 1.79118 1.87680 1.48596 1.49162
5E + 4 1.38256 1.79529 1.87079 1.49502 1.50417
1E + 5 1.37245 1.79176 1.87154 1.51296 1.49943
5E + 5 1.36930 1.78991 1.86844 1.50475 1.50233
1E + 6 1.37228 1.78882 1.86735 1.50309 1.50362

In numerical experiments we took: a = 1, b = 2, c = 3, v1 = 3, v2 = 1 and x0 = (0.5, 1,−5). For
determination of the intersection points yi (i = 1, N) the same algorithm is applied, which is described
in Example 3.3.

In Table 3.4A the errors ∆i of the approximate solution uN (x) of the test problem A are presented
at the points xi ∈ D (i = 1, 5). The obtained results have sufficient accuracy for many practical
problems.

Table 3.4A. Results for Problem A (in Example 3.4)

xi (0.9, 1, 1.5) (0.8, 1, 1.5) (0.5, 1, 1.5) (0.2, 1, 1.5) (0.1, 1, 1.5)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.17E − 3 0.48E − 4 0.19E − 3 0.17E − 3 0.53E − 4
1E + 4 0.40E − 4 0.14E − 4 0.69E − 4 0.23E − 3 0.69E − 5
5E + 4 0.52E − 4 0.46E − 4 0.14E − 6 0.39E − 4 0.25E − 4
1E + 5 0.23E − 4 0.73E − 5 0.18E − 4 0.51E − 4 0.51E − 5
5E + 5 0.72E − 5 0.27E − 4 0.19E − 4 0.19E − 5 0.27E − 5
1E + 6 0.69E − 5 0.56E − 5 0.19E − 4 0.14E − 4 0.38E − 5

The values of the approximate solution uN (x) of Problem B at the same points xi ∈ D are given
in Table 3.4B. The obtained results have sufficient accuracy for many practical problems and are in
good agreement with the real physical picture.

It should be noted that Example 3.4 is considered in [2], where it is solved by the method of
separation of variables. It is shown that in conditions (3.12) the analytical solution to Problem B has
the following form

u(x) ≡ u(x1, x2, x3) =
16

π2

∞∑
p=0

∞∑
q=0

f1(x1)f2(x2, x3)

(2p+ 1)(2q + 1)
, (3.13)

where

f1(x1) =
v1sh(l(a− x1)) + v2sh(lx1)

sh(la)
,
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f2(x2, x3) = sin
(2p+ 1)πx2

b
sin

(2q + 1)πx3
c

,

l =
π

bc

√
(c(2p+ 1))2 + (b(2q + 1))2,

and sh(t) is hyperbolic sine.

Table 3.4B. Results for Problem B (in Example 3.4)

xi (0.9, 1, 1.5) (0.8, 1, 1.5) (0.5, 1, , 1.5) (0.2, 1, 1.5) (0.1, 1, 1.5)
N uN (x1) uN (x2) uN (x3) uN (x4) nuN (x5)

5E + 3 1.13260 1.26040 1.75080 2.46040 2.73280
1E + 4 1.12920 1.27440 1.74840 2.44380 2.70770
5E + 4 1.12640 1.25490 1.74864 2.44730 2.71620
1E + 5 1.12798 1.25773 1.74749 2.45006 2.71432
4E + 5 1.12858 1.26055 1.75092 2.44749 2.71528
1E + 6 1.12824 1.25857 1.75128 2.44603 2.71731

It is easy to see that the series (3.13) converges rapidly for all points x = (x1, x2, x3) ∈ D, when
p, q → ∞. In order to compare the results obtained by the MPS and the (3.13), the partial sum
um(x) of the series (3.13) for p = 0,m and q = 0,m at the points xi (i = 1, 5) were calculadet
(see Table 3.4B). Because of rapid convergence of the series (3.13) when x ∈ D, the calculations
have shown that practically um(0.9, 1, 1.5) = 1.12524, um(0.8, 1, 1.5) = 1.25747, um(0.5, 1, 1.5) =
1.75388, um(0.2, 1, 1.5) = 2.45277, um(0.1, 1, 1.5) = 2.72234, when m = 50, 100, 150. These results are
sufficiently close to results which are presented in Table 3.4B.

It is evident that for the solution u(x) the boundary condition (3.12) is satisfied on (
6⋃

j=3

Sj)
⋃

(
12⋃
k=1

lk).

If x ∈ S1

⋃
S2, then the rate of convergence of (3.13) becomes worse, especially in the neighborhood

of the discontinuity curves. In particular, the convergence is very slow and consequently, the accuracy
in the satisfaction of boundary condition on S1

⋃
S2 is very low (see Section 1). This is caused by the

fact that, when x ∈ S1

⋃
S2 and tends to the discontinuity curves (edges), then all the terms of the

series (3.13) tend to zero.

Table 3.4C. Results for partial sum um(x)

i xi um(x),m = 50 um(x),m = 100 um(x),m = 150
1 (1, 1, 1.5) 0.987309 0.993644 0.995760
2 (1, 1.8, 1.5) 0.973200 0.986554 0.991000
3 (1, 1.9, 1.5) 1.033759 0.976574 1.011400
4 (1, 1.99, 1.5) 0.867110 1.175235 1.021747
5 (1, 1.999, 1.5) 0.099228 0.198273 0.295694
6 (1, 1, 2.99) 0.623372 1.044791 1.176482
7 (1, 1, 2.999) 0.662021 0.132586 0.198485
8 (1, 1.99, 2.99 0.547480 1.235730) 1.207186
9 (1, 1.999, 2.999) 0.006653 0.026456 0.058941
10 (1, 0.001, 0.5) 0.100479 0.199549 0.295065

From Table 3.4C it is clear that accuracy of the solution u(x) is very low in the neighborhood of
the discontinuity curves, as expected.

Remark 3. if V1 or V2 is not constant then the analytic form of the solution is so difficult in the
sense of numerical implementation, that it has only theoretical significance (see [1]).
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In this work the problems of type B are specially solved when boundary functions gi(y) (i = 1,m)
are constants. This was caused by our interest to find out how much the obtained results were in
agreement with real physical picture. It is evident that solving Problem B under condition (1.5) is as
easy as Problem A. In general, Problem B can be solved for all such locations of discontinuity curves,
which give the possibility to establish the part of surface S where the intersection point is located.

The analysis of the results of numerical experiments show that the results obtained by the suggested
algorithm are reliable and it is effective for numerical solution of problems of type A and B. In
particular, the algorithm is sufficiently simple for numerical implementation.

Besides, it should be noted that the accuracy of probabilistic solution of problems A and B is
not significantly increasing (except some cases, see tables) when N → ∞. It is caused by the fact
that nq (the number of the quantification) is fixed. If more accuracy is needed then calculations for
sufficiently large values of nq and N (see [20]) must be realized. In this case, numerical realization on
a PC takes much time. This difficulty can be avoided by applying the method of parallel calculation.
For this suitable computing technique is needed. Respectively, significantly less time will be needed
for numerical realization and besides the accuracy of the obtained results will improve.

4. Concluding Remarks

1. In this work have demonstrated that the method of probabilistic solution(MPS) is ideally suited
for numerical solving of both ordinary and generalized(2D and 3D) Dirichlet problems for rather a
wide class of domains, in the case of Laplace equation.

2. The MPS does not require an approximation of a boundary function, which is one of its important
properties.

3. The MPS is a fast solver for the above noted problems. Besides, it is easy to programme, its
computational cost is low, it characterized by an accuracy which is sufficient for many problems.
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5. E. B. Dynkin, A. A. Juškevič, Theorems and Problems on Markov Processes. (Russian) Nauka, Moscow, 1967.

6. G. A. Grinberg, Selected Problems of the Mathematical Theory of Electric and Magnetic Phenomena. (Russian)

Izd. Akad. Nauk SSSR, 1948.
7. L. V. Kantorovich, V. I. Krylov, Approximate Methods of Higher Analysis. (Russian) Fifth corrected edition Gosu-

darstv. Izdat. Fiz.-Mat. Lit., Moscow-Leningrad 1962.

8. A. Karageorghis, Modified methods of fundamental solutions for harmonic and biharmonic problems with boundary
singularities. Numer. Methods Partial Differential Equations 8 (1992), no. 1, 1–19.

9. N. Koblishvili, M. Zakradze, On solving the Dirichlet generalized problem for a harmonic function in the case of
infinite plane with holes. Proc. A. Razmadze Math. Inst. 164 (2014), 71–82.

10. N. Koblishvili, Z. Tabagari, M. Zakradze, On reduction of the Dirichlet generalized boundary value problem to an

ordinary problem for harmonic function. Proc. A. Razmadze Math. Inst. 132 (2003), 93–106.
11. N. Koblishvili, M. Kublashvili, Z. Sanikidze, M. Zakradze, On solving the Dirichlet generalized problem for a

harmonic function in the case of an infinite plane with a crack-type cut. Proc. A. Razmadze Math. Inst. 168 (2015),

53–62.
12. N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Equations in Partial Derivatives of Mathematical Physics. (Russian)

Vysshaya Shkola, Moscow, 1970,

13. M. Kublashvili, Z. Sanikidze, M. Zakradze, A method of conformal mapping for solving the generalized Dirichlet
problem of Laplace’s equation. Proc. A. Razmadze Math. Inst. 160 (2012), 71–89.

14. M. A. Lavrentjev, B. V. Shabat, Methods of the Theory of Functions of a Complex Variable. (Russian) Nauka,

Moscow, 1973.
15. W. R. Smythe, Static and Dynamic Electricity. second edition. New York, Toronto, London, 1950.

16. A. N. Tikhonov, A. A. Samarskii, The Equations of Mathematical Physics. (Russian) Fourth edition, corrected.

Nauka, Moscow, 1972.



246 M. ZAKRADZE, M. KUBLASHVILI, N. KOBLISHVILI, AND A. CHAKHVADZE

17. V. S. Vladimirov, Equations of Mathematical Physics. (Russian) Second edition, revised and augmented. Nauka,

Moscow, 1971.
18. M. Zakradze, Z. Sanikidze, Z. Tabagari, On solving the external three-dimensional Dirichlet problem for a harmonic

function by the probabilistic method. Bull. Georgian Natl. Acad. Sci. (N.S.) 4 (2010), no. 3, 19–23.

19. M. Zakradze, N. Koblishvili, A. Karageorghis, Y. Smyrlis, On solving the Dirichlet generalized problem for harmonic
function by the method of fundamental solutions. Semin. I. Vekua Inst. Appl. Math. Rep. 34 (2008), 24–32, 124.

20. M. Zakradze, M. Kublashvili, Z. Sanikidze, N. Koblishvili, Investigation and numerical solution of some 3D internal

Dirichlet generalized harmonic problems in finite domains. Trans. A. Razmadze Math. Inst. 171 (2017), no. 1,
103–110.

21. M. Zakradze, B. Mamporia, M. Kublashvili, N. Koblishvili, The method of probabilistic solution for 3D Dirichlet
ordinary and generalized harmonic problems in finite domains bounded with one surface. Trans. A. Razmadze Math.

Inst. 172 (2018), no. 3, part A, 453–465.

(Received 22.07.2019)

Georgian Technical University, N. Muskhelishvili Institute of Computational Mathematics, Tbilisi,
Georgia

E-mail address: mamuliz@yahoo.com

E-mail address: mkublashvili@mail.ru

E-mail address: nanakoblishvili@yahoo.com

E-mail address: aleqsandre92@gmail.com



Transactions of A. Razmadze Mathematical Institute

Volume 174, 2020, issue 2, 249–259

PRELIMINARY COMMUNICATIONS





Transactions of A. Razmadze
Mathematical Institute
Vol. 174 (2020), issue 2, 249–250

ON DOUBLE FOURIER SERIES WITH RESPECT TO THE CLASSICAL

REARRANGEMENTS OF THE WALSH–PALEY SYSTEM

ROSTOM GETSADZE

Abstract. The following theorem is established: there exists a continuous function on [0, 1]2 with
a certain smoothness, whose double Fourier-Walsh series diverges by rectangles on a set of positive

measure. Similar theorem is true also for the double Walsh–Kaczmarz system.

1. Introduction

There are two classical rearrangements of the Walsh–Paley system: (a) the Walsh system and (b)
the Walsh–Kaczmarz system. It is well-known (see [3, 4]) these systems are systems of convergence.
The system of Rademacher functions {rn(x)}∞n=0 on [0, 1) is defined as follows. Set

r0(x) =

{
1 for 0 ≤ x < 1

2 ,

−1 for 1
2 ≤ x < 1.

We extend the function r0(x) on (−∞,∞) with period 1. For n ≥ 1, we set

rn(x) = r0(2nx).

For each k ∈ N = {0, 1, 2, . . . }, we introduce a function αk : [0, 1)→ {0, 1} defined by the dyadic
expansion of x

x =

∞∑
k=0

αk(x)

2k+1
.

If x is a dyadic rational, then we suppose that its dyadic expansion contains infinitely many zeros.
The Walsh–Paley system of functions {Wn(x)}∞n=0 on [0, 1) is defined as follows. Set W0(x) = 1

for all x ∈ [0, 1). For n ≥ 1, we consider the dyadic representation n = 2m1 + 2m2 + · · ·+ 2mq , (n ≥ 1,
m1 > m2 · · · > mq ≥ 0) and set

Wn(x) = rm1
(x)rm2

(x) . . . rmq
(x) x ∈ [0, 1).

The modulus of continuity ω (F ; δ) of a continuous function F on [0, 1]2 is defined by

ω (F ; δ) = sup√
(x1−x2)2+(y1−y2)2≤δ

{|F (x1, y1)− F (x2, y2)|, (x1, y1), (x2, y2) ∈ [0, 1]2}.

Recently [2], we have proved the following

Theorem 1. There exists a continuous function F on [0, 1]2 such that

ω (F ; δ) = O

 1√
log2

1
δ

 , δ → 0+,

and the Fourier series of F with respect to the double Walsh–Paley system {Wm(x)Wn(y)}∞m,n=0

diverges on a set of positive measure by rectangles.

2020 Mathematics Subject Classification. 42C10.
Key words and phrases. Walsh system; Rearrangements; Double Fourier series.
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The Walsh system {ϕm(x)}∞m=0 was introduced by Walsh (see, e.g., [4]) and defined as follows:

ϕ0(x) = 1, ϕ1(x) = (−1)α0(x), ϕ2n(x) = (−1)αn−1(x)+αn(x),

ϕ2n+k(x) = ϕ2n(x)ϕk(x), k = 0, 1, . . . , 2n − 1; n = 0, 1, . . . ,

To define the Walsh–Kaczmarz system {hm(x)}∞m=1, we first introduce an auxiliary system of
functions

ψn,i(x) = rn−j1−1(x)rn−j2−1(x) . . . rn−jp−1(x), x ∈ [0, 1),

where n, i ∈ N , 2 ≤ i ≤ 2n, n ≥ 1 and

i− 1 = 2j1 + 2j2 + · · ·+ 2jp ,

with j1 > j2 > · · · > jp ≥ 0, is the dyadic expansion of the integer i− 1.
For i = 1 and n ≥ 1, we set

ψn,1(x) = 1, x ∈ [0, 1).

The Walsh–Kaczmarz system {hm(x)}∞m=1 on [0, 1) is defined as follows:

h1(x) = 1 and h2(x) = r0(x), x ∈ [0, 1).

For m = 2n + i, n ≥ 1, 1 ≤ i ≤ 2n, we set

hm(x) = h2n+i(x) = ψn,i(x)rn(x), x ∈ [0, 1).

We establish the following two theorems.

Theorem 2. There exists a continuous function G on [0, 1]2 such that

ω (G; δ) = O

 1√
log2

1
δ

 , δ → 0+,

and the Fourier series of G with respect to the double Walsh system {ϕm(x)ϕn(y)}∞m,n=0 diverges on
a set of positive measure by rectangles.

Theorem 3. There exists a continuous function H on [0, 1]2 such that

ω (H; δ) = O

 1√
log2

1
δ

 , δ → 0+,

and the Fourier series of H with respect to the double Walsh–Kaczmarz system {hm(x)hn(y)}∞m,n=1

diverges on a set of positive measure by rectangles.

A weaker result than Theorem 3 has been proved by us in [1].
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ON THE BOUNDEDNESS OF MULTIPLE CAUCHY SINGULAR AND

FRACTIONAL INTEGRALS DEFINED ON THE PRODUCT OF RECTIFIABLE

CURVES

VAKHTANG KOKILASHVILI

Abstract. The present paper deals with the boundedness criteria of multiple Cauchy singular in-

tegrals and multiple fractional integrals defined on the product of rectifiable curves in weighted

Lebesgue spaces.

1. Introduction

This research is stimulated by the R. Coifman and Y. Meyer’s well-known lectures [5] and the
paper by St. Semme [18] discussing various problems of non-harmonic Fourier Analysis, among them
the problem of boundedness of integral operators generated by the Cauchy singular integrals defined
on the sets of intricate geometry. A special interest to this problem is shown by its wide possible
applications to the boundary value problems of analytic and harmonic functions, boundary integral
equations, PDEs of Mathematical Physics, Mechanics of continuum media, etc.

A complete description of those rectifiable curves, for which Cauchy singular integral operator is
bounded in Lp(Γ) (1 < p <∞) has been done by G. David [6]. A modern weight theory for the Cauchy
singular integrals in the framework of Muckenhoupt weights is constructed in [4] and [12]. In [13],
the boundedness criteria in weighted Lp (1 < p < ∞) spaces was established for multiple Cauchy
singular integrals defined on the product of two smooth curves. The necessary and sufficient condition
both for curves and weights ensuring the boundedness of the Cauchy singular integral operator in
some non-standard Banach function spaces, namely, in weighted grand Lebesgue spaces, can be found
in [16] (see also [11,16,17]).

The mapping properties of a conjugate function of several variables and the related problems of
Fourier trigonometric series were investigated by K. Sokol–Sokolovskii [19]. Further exploration of the
problems of multi-dimensional Fourier series and conjugate functions is developed in the papers due
to A. Zygmund [23], L. V. Zhizhiashvili (see, e. g., [20–22]), C. L. Fefferman [8], P. L. Lizorkin [18].
To the comprehensive study of multiple singular integrals on the product spaces in weighted setting
are devoted the papers by R. Fefferman [10] and E. M. Stein [9]. For the surveys of multiple Fourier
series and related integral operators we refer to [1, 2] and [23].

2. Function Spaces. Integral Operators

Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ l < ∞} be a simple rectifiable curve with the arc-length
measure ν. In the sequel, we set

D(t, r) = Γ ∩B(t, r), 0 < r < d, d = diam Γ,

where
B(t, r) = {z ∈ C : |z − t| < r}, t ∈ Γ.

Γ is called Carleson (regular) curve if

sup
t∈Γ

0<r<diam Γ

νD(t, r)

r
<∞.

2020 Mathematics Subject Classification. Primary: 42A50, 44A30, 42B28, 42B35.
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An almost everywhere positive integrable on Γ function is called a weight. By Lpw(Γ), (1 < p <∞)
we denote the set of all measurable functions f : Γ −→ C for which the norm

‖f‖Lpw(Γ) =

(∫
Γ

|f(t)|pw(t)dν

) 1
p

is finite.
A weight function w is said to be of Muckenhoupt type class if

sup
t∈Γ

0<r<d

(
1

r

∫
D(t,r)

w(τ)dν

)(
1

r

∫
D(t,r)

w1−p′(τ)dν

)p−1

<∞, p′ =
p

p− 1
.

Now let Γ = Γ1 × Γ2 be the product of two simple rectifiable curves of finite lengths, endowed by
a product measure ν = ν1 × ν2.

Let 1 < p < ∞ and a weight function w be given on Γ. By Lpw(Γ) we denote the set of all
ν-measurable functions f : Γ −→ C for which the norm

‖f‖Lpw(Γ) =

(∫
Γ

|f(t, τ)|pw(t, τ)dν

)1/p

is finite.
Along with Lp(Γ) we will treat also the weighted Lebesgue spaces with a mixed norm. For the

simplicity of our presentation we consider a 2-multiple case.

Let 1 < p1 < p2 <∞, −→p = (p1, p2), −→ν = (ν1, ν2). By L
−→p
−→ν (Γ) we denote the set of all ν-measurable

functions f : Γ −→ C for which the norm

‖f‖
L
−→p
−→ν (Γ)

=

(∫
Γ1

(∫
Γ2

|f(t, τ)|p2dν2

) p1
p2

dν1

)1/p1

is finite.
The notion and properties of the mixed-norm Lebesgue spaces were introduced in [3].
The goal of our paper is to discuss the boundedness problem for multiple maximal Cauchy singular

integrals and multiple fractional integrals defined on the product Γ = Γ1 × Γ2.
Let Γεη(t, τ) = (Γ1\D1(t, ε))× ((Γ2\D2(τ, η)).
The double maximal Cauchy singular integral is defined as

S∗Γf(t, τ) = sup
0<ε1<d1
0<η<d2

∣∣∣∣ ∫
Γεη

f(t0, τ0)dν1dν2

(t− t0)(τ − τ0)

∣∣∣∣, di = diam Γi.

The double fractional integral defined on Γ looks as

Iγf(t, τ) =

∫
Γ

f(t0, τ0)dν1dν2

|t− t0|1−γ1 |τ − τ0|1−γ2
,

γ = (γ1, γ2), 0 < γi < 1, j = 1, 2.
In the sequel, we will employ the following class of weight functions:

Ap(Γ) =

{
w : sup

1

r%

∫
Vrρ(t,τ)

w(t0, τ0)dν

(
1

rρ

∫
Vrρ(t,τ)

w1−p′(t0, τ0)dν

)p−1}
<∞

where Vrρ(t, τ) = D1(t, τ)×D2(τ, ρ) and the supremum being taken over all t ∈ Γ1, τ ∈ Γ2 and r, ρ,
0 < r < d1 and 0 < ρ < d2.
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3. Main Results

Theorem 1. Let 1 < p <∞. The operator S∗Γ is bounded in Lpw(Γ) if and only if Γi are the Carleson
curves and w ∈ Ap(Γ).

The proof of Theorem 1 is based on the following lemmas.

Lemma 2. Let 1 < p <∞ and w ∈ Ap(Γ). Let Γi (i = 1, 2) be Carleson curves. Then for arbitrary
f ∈ Lpw(Γ), almost all (t, τ) ∈ Γ and arbitrary ε and η, the following equality∫

Γ1

dν1

t(s)− t(s0)

( ∫
Γ2\D(τ,η)

f(s0, σ0)dν2

τ(σ)− τ(σ0)

)

=

∫
Γ2\D(τ,η)

1

τ(σ)− τ(σ0)

(∫
Γ1

f(s0, σ0)dν1

t(s)− t(s0)

)
dν2

holds.

Lemma 3. Let Γ be a Carleson curve, 1 < p < ∞ and w ∈ Ap(Γ). Then there exists a positive
constant b such that for arbitrary f ∈ Lpw(Γ), arbitrary ε > 0, t ∈ Γ and t ∈ D

(
t, ε4
)

the inequality∣∣∣∣ f(s0)dν

t(s)− t(s0)

∣∣∣∣ ≤ b(∣∣∣∣ ∫
Γ

f(s0)dν

t(s)− t(s0)

∣∣∣∣
+

∣∣∣∣ ∫
Γ

f(s0)χD(t,ε)(s0)dν

t(s)− t(s0)

∣∣∣∣+MΓf(t)

)
holds.

Here

MΓf(t) = sup
0<r<d(Γ)

1

r

∫
D(t,r)

|f(τ)|dν.

Lemma 4. Let Γ be a Carleson curve of finite length and let ϕ ∈ L(Γ). Then for arbitrary ε > 0, for
all t ∈ D

(
t, ε4
)

and almost all t ∈ Γ the inequality∣∣∣∣ ∫
Γ\D(t,ε)

(
1

t(s)− t(s0)
− 1

t− t(s0)

)
ϕ(s0)dν

∣∣∣∣ ≤ cMΓϕ(t)

holds with a positive constant c, independent of ϕ and t.

Lemma 5. Let 1 < p < θ < ∞ and let Γ be a simple Carleson curve. Suppose w ∈ Ap(Γ). Assume
that (Y, µ) is some measure space. Then for arbitrary measurable f : Γ × Y −→ C the following
inequality (∫

Γ

(∫
Y

Mθ
Γ(f)(t, y)dµy

)p/θ
w(t)dν

)1/p

≤ c
(∫

Γ

(∫
Y

|f(t, y)|θdµy
)p/θ

w(t)dν

) 1
p

holds with a constant c > 0, independent of f .

Theorem 6. Let 1 < pi < ∞ (i = 1, 2). The operator SΓ is bounded in L
−→p
−→w (Γ) if and only if Γi

(i = 1, 2) are Carleson curves and wi ∈ Api(Γ).

In the sequel, we will discuss a description of those rectifiable curves for which the operator IγΓ is

bounded from L
−→p (Γ) to L

−→q (Γ), 1 < pi < qi <∞, (i = 1, 2).
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Theorem 7. Let 1 < pj < qj <∞, 0 < γj < 1 (j = 1, 2). The operator IγΓ is bounded from L
−→p
−→ν (Γ) to

L
−→q
−→ν (Γ) if and only if

sup
tjrj
j=1,2

νj (Dj(tj , rj)) r
−
pjqj(1−γj)
pjqj+pj−qj

j <∞.

From Theorem 7 follows

Theorem 8 (Sobolev type statement). Let 1 < pj <
1
γj

and let 1
qj

= 1
pj
− γj. Then the operator IγΓ

is bounded from L
−→p (Γ) to L

−→q (Γ) if and only if Γj (j = 1, 2) are Carleson curves.
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6. G. David, Opérateurs intgraux singuliers sur certaines courbes du plan complexe. (French) Ann. Sci. École Norm.
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A NOTE ON THE MULTIPLE FRACTIONAL INTEGRALS DEFINED ON THE

PRODUCT OF NONHOMOGENEOUS MEASURE SPACES

VAKHTANG KOKILASHVILI1 AND TSIRA TSANAVA1,2

Abstract. In this note we present a trace type inequality in the mixed-norm Lebesgue spaces for
multiple fractional integrals defined on an arbitrary measure quasi-metric space.

1. Introduction

Let (X, d, µ) be of nonhomogeneous type, i.e., a topological space endowed with a locally finite
complete measure µ and quasi-metric d : X −→ R satisfying the following conditions:

(i) d(x, x) = 0, for all x ∈ X;
(ii) d(x, y) > 0, for all x 6= y, x, y ∈ X;
(iii) there exists a positive constant a0 such that d(x, y) ≤ a0d(y, x) for every x, y ∈ X;
(iv) there exists a positive constant a0 such that

d(x, y) ≤ a1 (d(x, z) + d(z, y)) for every x, y, z ∈ X;

(v) for every neighbourhood V of the point x ∈ X there exists r > 0 such that the ball B(x, r) =
{y ∈ X : d(x, y) < r} is contained in V ;

(vi) the ball B(x, r) is measurable for every x ∈ X and for arbitrary r > 0.
Let

Iγf(x) =

∫
X

(d(x, y))γ−1f(y)dµ, 0 < γ < 1.

In [3] (see also [2, Chapter 6]), the following statement is proved.

Theorem A. Let 1 < p < q < ∞ and 0 < γ < 1. The operator Iγ acts boundedly from Lpµ(X) to
Lqµ(X) if and only if there exists a constant c > 0 such that

µB(x, r) ≤ crβ , β =
pq(1− γ)

pq + p− q

for an arbitrary ball B(x, r).

Let now Xj , dj , µj (j = 1, 2, . . . , n) be the measure quasi-metric spaces. Assume that −→p =

(p1, . . . , pn), 1 < pj <∞ (j = 1, 2, . . . , n) and −→µ = (µ1, µ2, µ . . . , µn). For the measure f :
n∏
j=1

Xj −→

R1 we set the mixed-norm Lebesgue spaces L
−→p
−→µ

(
n∏
j=1

Xj ,
n∏
j=1

µj

)
with the norm

‖f‖
L
−→p
−→µ

=

(∫
X1

· · ·
( ∫
Xn−1

( ∫
Xn

|f(x1, . . . , xn)|pndµn
) pn−1

pn

dµn−1

) pn−2
pn−1

. . . dµ1

) 1
p1

.

The mixed-norm Lebesgue spaces were introduced and studied in [1].
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Key words and phrases. Multiple fractional integrals; Mixed-norm Lebesgue space; Trace inequality; Nonhomoge-

neous measure space.
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Consider the multiple fractional integral defined on the product space X = X1 × · · · ×Xn:

Iγf(x) =

∫
X

f(y1, . . . , yn)dµ1 · · · dµn
n∏
j=1

(dj(xj , yj))
1−γj

, γ = (γ1, . . . , γn).

The following statement is true.

Theorem 1. Let 1 < pj < qj < ∞ (j = 1, 2, . . . , n). The operator Iγ is bounded from L
−→p
−→µ to L

−→q
−→µ if

and only if there exists a positive constant c such that

µjBj(xj , rj) ≤ cr
pjqj(1−γj)
pjqj+pj−qj
j , j = 1, 2, . . . , n (1)

for arbitrary balls Bj from Xj.

Theorem 1 says that if the condition (1) fails, then Iγ is unbounded from L
−→p
−→µ to L

−→q
−→µ . Nevertheless,

there exists a weight −→v : X −→ R1 such that Iγ is bounded from L
−→p
−→µ to L

−→q
−→µ (−→v ).

Let us introduce the functions

Ω(xj) = sup
rj>0

µjB(xj , rj)

r
βj
j

,

where

βj =
pjqj(1− γj)
pjqj + pj − qj

. (2)

The following statement holds.

Theorem 2. Let 1 < pj < qj <∞ (j = 1, 2, . . . , n). Then there exists a positive constant c > 0 such

that for an arbitrary f ∈ L−→pµ (X) we have∥∥∥∥Iγf(x1, . . . , xn)

n∏
j=1

Ω

γj−1

pj

j (xj)

∥∥∥∥
L
−→q
−→µ

≤ c‖f‖
L
−→p
−→µ
.

Let now Γi = {t ∈ C : t = t(s), 0 ≤ s ≤ l} be arbitrary rectifiable simple curves with arc-length
measures νi (i = 1, 2, . . . , n).

Suppose

Dj(tj , rj) = Γj
⋂
Bi(tj , rj),

where

Bi(ti, ri) = {zi ∈ C : |zj − tj | < rj}, tj ∈ Γj .

Let

Ωj(tj) = sup
rj>0

νjD(tj , rj)

r
βj
j

,

where βj are defined by (2).
Then for the operator

IγΓf(t1, t2, . . . , tn) =

∫
Γ

f(τ1, τ2, . . . , τn)dν1 . . . dνn
n∏
j=1

|tj − τj |1−γj
, Γ = Γ1 × · · · × Γn

we have the following assertion.

Theorem 3. Let 1 < pj < qj <∞. Then there exists a positive constant c such that for an arbitrary

f ∈ L
−→p
−→ν (Γ) we have

‖IγΓf(t1, t2, . . . , tn) · Ω
γj−1

pj

j (tj)‖L−→q−→ν (Γ)
≤ c‖f‖

L
−→q
−→ν
.
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