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M. Mastyło Adam Mickiewicz University in Poznań; and Institute of Mathematics, Polish Academy

of Sciences (Poznań branch), Poland
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email: silva-h@javeriana.edu.co
S. G. Samko Universidade do Algarve, Campus de Gambelas, Portugal
J. Saneblidze A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, Georgia
H. J. Schmaißer Friedrich-Schiller-Universität, Mathematisches Institut, Jena, Germany,
N. Shavlakadze A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, Georgia
A. N. Shiryaev Steklov Mathematical Institute, Lomonosov Moscow State University, Russia
Sh. Tetunashvili A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, Georgia
W. Wein School of Mathematics & Statistics, University of Western Australia, Perth, Australia

Managing Editors:

L. Shapakidze A. Razmadze Mathematical Institute
I. Javakhishvili Tbilisi State University

M. Svanadze Faculty of Exact and Natural Sciences
I. Javakhishvili Tbilisi State University



Transactions of A. Razmadze Mathematical Institute
Volume 171, Issue 3, December 2017

Contents

Conservation of time scale for one-dimensional pulsating flow
G. Aptsiauri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

2-adic cofiltration of SO3(Q)

T. Bokelavadze and R. Caserta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Method of fundamental solutions for mixed and crack type problems in the classical theory of elasticity
T. Buchukuri, O. Chkadua and D. Natroshvili . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

New generalizations of Popoviciu type inequalities via new green functions and Fink’s identity
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Abstract

In the work by analysis of one-dimensional unsteady flows, based on the fundamental law of conservation with application of
Fourier series is shown that in the presence of periodic, steady pulsations along the flow, the main frequency as well as all higher
frequencies remain constant and only the amplitude of oscillations is changed that is in full agreement with the results of analysis
of more complex three-dimensional flows. Thus, is confirmed the validity of the principle of conservation of frequencies or time
scale along the flow. So, is obtained very interesting result for turbulence problem solution.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Oscillation; Turbulence; Time scale; Conservation

1. Introduction

Integrating the Navier–Stokes differential equation, Osborne Reynolds admitted that:

∇F = ∇
(
F

)
. (1.1)

In the work [1] was shown, that one of the main reasons of the Reynolds problem arising is this assumption.
If we have an arbitrary periodic function:

F =
1
τ0

∫ τ0

0
F (x, y, z, t) dt. (1.2)

The following relations are valid:

∇F = ∇
(
F

)
+

F
τ0

∇τ0 = ∇
(
F

)
− F A. (1.3)

∇2 F = ∇
2 (

F
)
− 2A

[
∇

(
F

)]
− F (∇ A) + F A2, (1.4)

where-τO is the duration of oscillation. A = (1/ f ) grad ( f ) = grad (ln f ) = −grad (ln τ0).

E-mail address: gegiaptsiauri@gmail.com.
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Integrating the differential equations of Navier–Stokes by taking in account (1.2)–(1.4), are obtained differential
equations, that differ from the Reynolds equation. At the same time, the Reynolds equations express conservation laws
for integral flows and they do not cause doubt. Consequently, the presence of two different systems makes it possible
to obtain very important additional information on the turbulence problem. One of these results is the principle of
conservation of frequencies (or time scales) along the flow.

In this paper, we prove what has been said on the example of a one-dimensional nonstationary periodic flow.
From acoustic theory it is well known that at propagation of acoustic waves, pressure fluctuation period and

character at various locations of the perturbation region are qualitatively identical [2,3]. With increasing of distance
from the source of vibration the amplitude of perturbations changes due to dissipation at perturbations spreading in a
large space (in the case of spherical waves), however, the period of oscillation at this is not changing. Therefore, audio
signals are not distorted, despite that they become weaker. In terms of acoustics theory, mathematically this would be
easily explained, since perturbations that are propagating with the constant speed C should create the same pattern
in different locations of space with shift in time x/C (see solutions of wave equations). Thus, we can say that for the
case of acoustic disturbances, the preservation of oscillation frequency is observed. However, let us put the question
of whether or not to preserve as constant the oscillation frequency along the flow, if we have arbitrary, strong periodic
disturbances? The theory of acoustic waves in this issue does not help us, because, at significant perturbations, the
wave propagation velocity is not constant due to its dependence on the changing of the environment state parameters.

However, as will be shown below, if in the one-dimensional flow are propagated periodic waves of arbitrary shape,
the frequency of these oscillations in arbitrary cross section also will be the same. In other words, we show that
conservation of frequency along certain lines is a property not only of acoustic disturbances, but also of arbitrary
non-stationary periodic processes. Starting from simple examples, with the transition to a more general problem, we
show that this property is a common feature of all periodic oscillatory processes. Therefore, this feature would be
called as principle of conservation of frequencies (or time scales) along the vector of substance that is subject of
periodic fluctuations.

2. Basic part

For obviousness, let us assume that in the straight channel receives periodic stream. If in the initial section of the
channel we install the pressure sensor, it will register the oscillation process with the period of τ0 (Fig. 1, line 1) or
with the frequency f = 1/τ0 = ω/2π . For these processes, there is a conventional, minimum angular velocity that
will be determined from the equation ω = 2π f = 2π/τ0.

The sensor located in a certain distance from the entrance section will also detect a certain periodic process with
interval τx , and the perturbation amplitude will be relatively less (line 2). But third sensor that is located very far from
the entrance, almost will not register vibrations due to dissipation and smoothing of the waves, the flow will gradually
make stationary character (line 3).

We will show that, in arbitrary section of one-dimensional periodic flow, the oscillation period of the pulsating flow
parameters must be the same not only for small but also for any perturbations (τ0 = τx = idem). In other words, in
any section, the period of the vibration and main angular velocity will be the same

∂ω

∂x
= 0, (2.1)

∂τx

∂x
= 0 (2.2)

to confirm the above mentioned, let us consider the instantaneous value of mass flow in an arbitrary cross-section
of flow G = ρU F . The instantaneous specific mass flow would be written as the sum of two functions, one of that
depends on the coordinate x and the other is a periodic function, (and dependent on x and t)

g = ρU = η (x) + ϕ (x, t) , (2.3)

thus, a periodic function is possible to express as a Fourier series [4,5]

ϕ (x, τ ) =

∑
i=1,∞

[
a(x)i cos (iωt) + b(x)i sin (iωt)

]
, (2.4)
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Fig. 1. The fluctuation of pressure in different cross-sections of one-dimensional unsteady flow.

wherein the amplitudes a(x)i , b(x)i and main frequency ω as well are dependent on x. Knowing the instantaneous
value of mass flow, the total amount of transferred per second substance is possible to determine from the expression

g =
1
τx

∫ τx

0
gdt = η (x) +

ω

2π

∫ τx

0
ϕ (x, t) dt

= η (x) +
1

2π

∑
i=1,∞

{
a(x)i

∫ 2π

0
cos (iωt) d (ωt) + b(x)i

∫ 2π

0
sin (iωt) d (ωt)

}
= η (x) . (2.5)

It is natural that, regardless of the nature of pulsation, in arbitrary section of the periodic flow will be passed the
same amount of mass. Therefore we will have:

∂g
∂x

=
∂η

∂x
= 0. (2.6)

Thus, the function η does not depend on the coordinate x and for the instantaneous mass flow we have

g = ρU = C +

∑
i=1,N

[
a(x)i cos (iωt) + b(x)i sin (iωt)

]
. (2.7)

And now, on the basis of the last expression, let us analyze the law of mass conservation. As it is known, for
one-dimensional non-stationary flows this law is expressed grounded on the equation of continuity

∂ρ

∂t
+

∂ρU
∂x

= 0. (2.8)

The integrating of this expression with respect to time, in an arbitrary section gives:∫ τX

0

∂ρU
∂x

dt = 0, (2.9)

if (2.7) will be differentiated along the x and substitute in (2.9) we obtain:∫ τx

0

∑
i=1,N

[
∂a(x)i

∂x
cos (iωt) +

∂b(x)i

∂x
sin (iωt)

]
dt

−

∫ τx

0

∂ω

∂x

∑
i=1,N

[
a(x)i (i t) sin (iωt) − b(x)i (i t) cos (iωt)

]
dt = 0, (2.10)
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or, after introducing of integration sign within the summation sign:∑
i=1,N

[
∂a(x)i

∂x

∫ τx

0
cos (iωt) dt +

∂b(x)i

∂x

∫ τx

0
sin (iωt) dt

]
+

−
1
ω2

∂ω

∂x

∑
i=1,N

[
a(x)i

∫ 2π

0
(iωt) sin (iωt) d (ωt) − b(x)i

∫ 2π

0
(iωt) cos (iωt) d (ωt)

]
= 0. (2.11)

It is easily seen that first two members of Eq. (2.11) are equal to zero, thus we have

∂ω

∂x

∑
i=1,N

[
a(x)i

∫ 2π

0
(iωt) sin (iωt) d (ωt) − b(x)i

∫ 2π

0
(iωt) cos (iωt) d (ωt)

]
= 0. (2.12)

At the same time, from the theory of definite integrals follows:∫ 2π

0
(iωt) cos (iωt) d (ωt) = 0, (2.13)∫ 2π

0
(iωt) sin (iωt) d (ωt) = −2π. (2.14)

Therefore, we will obtain

2π
∂ω

∂x

∑
i=1,N

[
a(x)i

]
= 0, (2.15)

or
∂ω

∂x
= 0. (2.16)

Thus, we have shown that in any periodic mass flux the main frequency remains constant along the flow.
In the work [1] we have shown that the vibration frequency gradients are directed perpendicular to the vector of

flow, that indicates the direction of propagation of physical substance. Obtained by us for one-dimensional flow result
entirely coincides within the framework of this principle. I.e. we have shown that this result is valid for any flow. At
this the stated judgments are valid not only for the mass flow, but also for energy flux and flows of various substances.

In the future we will show that — in the continuum where are processes with periodic disturbances, the minimum,
main frequency and all higher oscillation frequencies of substances flows (mass, concentration, energy, etc.) remain
constant in the direction of dissemination of substance (or along the streamlets of given substances).

3. Conclusion

Based on Eqs. (1.2)–(1.4) and above mentioned analysis of one-dimensional pulsating flow, is shown that, proposed
by Professor Aptsiauri principle of conservation of frequencies (or the time scales) has convincing theoretical basis. At
the same time, the system of obtained additional theoretical equations creates the possibility of solving the turbulence
problem.
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Abstract

We prove that the group SO3(Q) of rational rotations is the inverse limit of a family of finite solvable groups of order 23k−2
· 3,

whose 2-Sylow subgroups have nilpotency class 2k − 3, exponent 2k−1, and Frattini subgroups coinciding with the commutator
subgroups, and we give generators for these groups.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Profinite groups; Hurwitz quaternions

This paper gives a presentation of the orthogonal group

SO3(Q) = {X ∈ Q3×3
: X X t

= I3}

of rational isometries of the quadratic form Q(x, y, z) = x2
+ y2

+ z2 as a profinite group.
Equivalently, we consider a set of infinitesimal generators for (a representative subgroup of) the inverse limit

SO3(Q), and we notice that they are scalar multiples of infinitesimal generators for SO3(R) by a scalar factor of the
form arcsin(2θ ), which has 2-adic norm greater than one. Thus, each term of the inverse limit is nilpotent, and the
Baker–Campbell–Hausdorff formula has a finite number of terms, an effective tool for further computations.

1. SO3(Q)

For the presentation of the elements of SO3(Q), it is natural to consider the Q-algebra of Hurwitz quaternions

H = {z = m + ni + pj + qk : m, n, p, q ∈ Q, ij = −ji = k; i2 = j2
= −1}.

In fact, the subgroup N of Hurwitz quaternions of norm 1, by conjugation, on the 3-dimensional rational space of
vector quaternions z = x i + yj + zk, and this action gives back a representation of the group SO3(Q).

∗ Corresponding author.
E-mail addresses: bokel71@yahoo.com (T. Bokelavadze), raffaello.caserta@unipa.it (R. Caserta).
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.
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Representing the quaternion z = m + ni + pj + qk as a rational matrix of the shape

Z =

⎛⎜⎜⎝
m −n −p −q
n m q −p
p −q m n
q p −n m

⎞⎟⎟⎠ ,

one sees that the norm is√
det(Z ) =

√
m2 + n2 + p2 + q2.

For the normalized quaternion w of norm 1, the elements wiw−1, wjw−1 and wkw−1 are respectively:

1
m2 + n2 + p2 + q2

⎛⎜⎜⎝
0 q2

+ p2
− n2

− m2 2mq − 2np −2nq − 2mp
−q2

− p2
+ n2

+ m2 0 2nq + 2mp 2mq − 2np
2np − 2mq −2nq − 2mp 0 −q2

− p2
+ n2

+ m2

2nq + 2mp 2np − 2mq q2
+ p2

− n2
− m2 0

⎞⎟⎟⎠ ,

1
m2 + n2 + p2 + q2

⎛⎜⎜⎝
0 −2mq − 2np q2

− p2
+ n2

− m2 2mn − 2pq
2mq + 2np 0 2pq − 2mn q2

− p2
+ n2

− m2

−q2
+ p2

− n2
+ m2 2mn − 2pq 0 2mq + 2np

2pq − 2mn −q2
+ p2

− n2
+ m2

−2mq − 2np 0

⎞⎟⎟⎠ ,

1
m2 + n2 + p2 + q2

⎛⎜⎜⎝
0 2mp − 2nq −2pq − 2mn −q2

+ p2
+ n2

− m2

2nq − 2mp 0 q2
− p2

− n2
+ m2

−2pq − 2mn
2pq + 2mn −q2

+ p2
+ n2

− m2 0 2nq − 2mp
q2

− p2
− n2

+ m2 2pq + 2mn 2mp − 2nq 0

⎞⎟⎟⎠ .

If m, n, p, q ∈ Z and if we write the coordinates of the above conjugate elements of i, j, and k in columns, then
we obtain the following representation of SO3(Q):

1
m2 + n2 + p2 + q2

⎛⎝m2
+ n2

− p2
− q2 2 m q + 2 n p 2 n q − 2 m p

2 n p − 2 m q m2
− n2

+ p2
− q2 2 p q + 2 m n

2 n q + 2 m p 2 p q − 2 m n m2
− n2

− p2
+ q2

⎞⎠ .

The above construction shows that, similarly to the classical case of Pythagorean triples, a primitive Pythagorean
quadruple (a, b, c, d) is parametrized by (m, n, p, q), and, in fact, all 3 × 3 orthogonal matrices with rational
coefficients are obtained in this manner (cf. [1]). The same result follows also from the Lebesgue identity (cf. [2])

(m2
+ n2

+ p2
+ q2)2

= (m2
+ n2

− p2
− q2)2

+ (2mq + 2np)2
+ (2nq − 2mp)2.

2. Cofiltration

For an odd prime p let p = a2
+ b2

+ c2
+ d2 and let w =

√
p

p (a + ib + jc + kd). The conjugation by w of a vector
quaternion x i + yj + zk produces the following rotation of Q3

1
p

⎛⎝a2
+ b2

− c2
− d2 2bc − 2ad 2ac + 2bd

2ad + 2bc a2
− b2

+ c2
− d2 2cd − 2ab

2bd − 2ac 2ab + 2cd a2
− b2

− c2
+ d2

⎞⎠ .

This shows that, for any p > 2, there are elements in SO3(Q) which cannot be reduced modulo p. For instance, let
p = 7. In this case, w =

√
7

7 (2 + i3 + j6) gives in turn

1
7

⎛⎝−3 −2 6
6 −3 2
2 6 3

⎞⎠ ∈ SO3(Q).
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On the contrary, for p = 2, we can see that, for each k = 1, 2, . . . , it is possible to reduce modulo 2k the arbitrary
element

1
m2 + n2 + p2 + q2

⎛⎝m2
+ n2

− p2
− q2 2 m q + 2 n p 2 n q − 2 m p

2 n p − 2 m q m2
− n2

+ p2
− q2 2 p q + 2 m n

2 n q + 2 m p 2 p q − 2 m n m2
− n2

− p2
+ q2

⎞⎠
of SO3(Q), because the 2-adic valuation of each numerator is never smaller than the 2-adic valuation of the
denominator m2

+ n2
+ p2

+ q2, that is, the coefficients of each element in SO3(Q) are always rational numbers
with odd denominators.

In fact, it is well-known that the only prime where the Hurwitz quaternion ramify is p = 2, whereas for any odd
prime p the algebra Qp ⊗ H splits, becoming isomorphic to the Qp-algebra Q2×2

p of 2 × 2 matrices (cf. e.g. [3]).
We notice that the reduction modulo 2k induces a homomorphism

SO3(Q) −→ Ξk ≤ SO3(Z/2kZ),

which, for k > 1, is not surjective. In fact, putting for short

Gk = SO3(Z/2kZ) = {X ∈ (Z/2kZ)3×3
: X X t

= I },

and denoting by Pk a 2-Sylow subgroup of Gk and by Φ(∗) the Frattini subgroup, we find that

k |Gk | ncl(Pk) exp Pk Φ(Pk) P ′

k Z (Pk) P ′

k ∩ Z (Pk)
2 26

· 3 2 22 P ′

k ( Z
2Z )2 ( Z

2Z )3 P ′

k
3 29

· 3 3 22 P ′

k ( Z
2Z )4 ( Z

2Z )3 ( Z
2Z )2

whereas, for k ≥ 4 we always find ( Z
2Z )3

= Z (Pk) < P ′

k and:

k |Gk | ncl(Pk) exp Pk Φ(Pk) ncl(P ′

k) |P ′

k |

4 212
· 3 5 23 P ′

k 2 27

5 215
· 3 7 24 P ′

k 3 210

6 218
· 3 9 25 P ′

k 4 213

Hence we conjecture, for k ≥ 4, ( Z
2Z )3

= Z (Pk) < P ′

k and

|Gk | ncl(P) exp P Φ(P) ncl(P ′) |P ′
|

23k
· 3 2k − 3 2k−1 P ′ k − 2 23k−5

For the image Ξk of SO3(Q), denoting again by Pk a 2-Sylow subgroup of Ξk , we claim that

|Ξk | ncl(Pk) exp P Φ(Pk) ncl(P ′

k) |P ′

k |

23k−2
· 3 2k − 3 2k−1 P ′ k − 2 23k−6

In fact, as a consequence of Hensel Lemma, the following elements are generators of Ξk :

Ax =

⎛⎝1 0 0
0 0 −1
0 1 0

⎞⎠ ; Bx =

⎛⎜⎜⎜⎝
1 0 0

0
3
5

4
5

0 −
4
5

3
5

⎞⎟⎟⎟⎠ ;

By =

⎛⎜⎝ 0 0 −1

−1 0 0

0 1 0

⎞⎟⎠ ; C =

⎛⎜⎜⎜⎜⎜⎜⎝

1
3

−
2
3

2
3

2
3

−
1
3

−
2
3

2
3

2
3

1
3

⎞⎟⎟⎟⎟⎟⎟⎠
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and the following are generators of its 2-Sylow subgroup:

Ax =

⎛⎝1 0 0
0 0 −1
0 1 0

⎞⎠ ; Bx =

⎛⎜⎜⎜⎝
1 0 0

0
3
5

4
5

0 −
4
5

3
5

⎞⎟⎟⎟⎠ ;

Bz =

⎛⎜⎜⎜⎜⎝
3
5

−
4
5

0

4
5

3
5

0

0 0 1

⎞⎟⎟⎟⎟⎠ ; C =

⎛⎜⎜⎜⎜⎜⎜⎝

1
3

−
2
3

2
3

2
3

−
1
3

−
2
3

2
3

2
3

1
3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

because one can directly check that they generate the first reduction modulo 24.

Remark. Since

1
3

=
1

1 + 2
≡ (1 − 2 + 4 − 8 + · · · ) =

k−1∑
i=0

(−2)i (mod 2k) · · · ,

the series
∑

∞

k=0(−2)k converges to 1
3 with respect to the 2-adic metric, and since manifestly

∑
∞

k=0(−2)k
≡ 3(mod 8),

the matrix

C =

⎛⎜⎜⎜⎜⎜⎜⎝

1
3

−
2
3

2
3

2
3

−
1
3

−
2
3

2
3

2
3

1
3

⎞⎟⎟⎟⎟⎟⎟⎠ =

∞∑
k=0

(−2)k
·

⎛⎝1 −2 2
2 −1 −2
2 2 1

⎞⎠ ∈ SO3(Q),

corresponding to a rotation having the axis (1, 0, 1), and the angle θ such that cos(θ ) = −
1
3 and sin(θ ) =

2
√

2
3 , is

mapped onto

3 ·

⎛⎝1 −2 2
2 −1 −2
2 2 1

⎞⎠ =

⎛⎝3 −6 6
6 −3 −6
6 6 3

⎞⎠ ∈ SO3(Z/8Z),

which does not belong to the subgroup generated by

⎛⎝1 0 0

0
3
5

−
4
5

0
4
5

3
5

⎞⎠ and

⎛⎝ 3
5

−
4
5

0

4
5

3
5

0

0 0 1

⎞⎠.

3. Logarithms in SO3(Q)

It is well-known that, in the case of SO3(R), the Baker–Campbell–Hausdorff formula is weakened by the fact that
it is an infinite series, rather than a polynomial (cf. [4]). This is also the case for SO3(Q). In this last section, we
consider the logarithmic image of the nilpotent group Ξk , in order to get the Baker–Campbell–Hausdorff formula as a
polynomial. In passing, we also notice that this representation makes it possible to represent the elements in SO3(R)
as Witt vectors, an effective tool for an arithmetic analogue of ordinary differential equations, where the rôle of the
derivative is played by the Fermat quotient operator ∂(x) =

x−x2

2 (cf. [5,6]).
Notice that, since the logarithm is defined on elements of the shape I + 2X , the element log(A) does not converge

in our group. Consider therefore the subgroup H generated by Bx , Bz, C , having index 4 in the 2-Sylow subgroup Pk
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of the projection of SO3(Q), that is,⎛⎜⎜⎜⎝
1 0 0

0
3
5

4
5

0 −
4
5

3
5

⎞⎟⎟⎟⎠ ;

⎛⎜⎜⎜⎜⎝
3
5

−
4
5

0

4
5

3
5

0

0 0 1

⎞⎟⎟⎟⎟⎠ ;

⎛⎜⎜⎜⎜⎜⎜⎝

1
3

−
2
3

2
3

2
3

−
1
3

−
2
3

2
3

2
3

1
3

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since H ∋

(
−1 0 0
0 1 0
0 0 −1

)
, which has no logarithm, we have to split again

H = ⟨B2
x , Bz, C⟩ ⋊

⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠ .

It turns out that H and ⟨B2
x , Bz, C⟩, modulo 2k , have nilpotency class k − 1.

Since

Bz =
1
2

⎛⎝1 1 0
i −i 0
0 0 2

⎞⎠
⎛⎜⎜⎜⎝

3 + 4i
5

0 0

0
3 − 4i

5
0

0 0 1

⎞⎟⎟⎟⎠
⎛⎝1 −i 0

1 i 0
0 0 1

⎞⎠
we get

bz = log(Bz) = log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

⎛⎝1 1 0
i −i 0
0 0 2

⎞⎠
⎛⎜⎜⎜⎝

3 + 4i
5

0 0

0
3 − 4i

5
0

0 0 1

⎞⎟⎟⎟⎠
⎛⎝1 −i 0

1 i 0
0 0 1

⎞⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

=
1
2

⎛⎝1 1 0
i −i 0
0 0 2

⎞⎠ log

⎛⎜⎜⎜⎝
3 + 4i

5
0 0

0
3 − 4i

5
0

0 0 1

⎞⎟⎟⎟⎠
⎛⎝1 −i 0

1 i 0
0 0 1

⎞⎠

=
1
2

⎛⎝1 1 0
i −i 0
0 0 2

⎞⎠ ⎛⎝−iϑ 0 0
0 iϑ 0
0 0 0

⎞⎠ ⎛⎝1 −i 0
1 i 0
0 0 1

⎞⎠ =

⎛⎝0 −ϑ 0
ϑ 0 0
0 0 0

⎞⎠ ,

where ϑ = arcsin(4/5), and

arcsin(x) =

∞∑
n=0

(2n − 1)!!
2n!!

·
x2n+1

2n + 1
= x +

1
2

·
x3

3
+

1 · 3
2 · 4

·
x5

5
+ · · ·

(here the double factorial k!! denotes the product of the integer from 1 to k having the same parity of k). Since, for
x ∈ 2Z2,

arcsin(x) ≡ x (mod 2) ≡ x +
1
6

x3 (mod 22) ≡ x +
1
6

x3
+

3
40

x5
+

15
336

x7 (mod 23) ≡ . . . ,

we get for ϑ = arcsin(4/5) ∈ Z/2kZ the following values

mod 2 22 23 24 25 26

ϑ 0 0 4 4 20 20

The same computations yield

2bx = log(B2
x ) =

⎛⎝0 0 0
0 0 −2ϑ

0 2ϑ 0

⎞⎠ .
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Finally, since

C =
1
4

⎛⎝ 1 1 2
−

√
2 i

√
2 i 0

−1 −1 2

⎞⎠
⎛⎜⎜⎜⎜⎝

4 i −
√

2

3
√

2
0 0

0 −
4 i +

√
2

3
√

2
0

0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎝1

√
2 i −1

1 −
√

2 i −1
1 0 1

⎞⎠

then

c = log(C) =
1
4

⎛⎝ 1 1 2
−

√
2 i

√
2 i 0

−1 −1 2

⎞⎠ log

⎛⎜⎜⎜⎜⎝
4 i −

√
2

3
√

2
0 0

0 −
4 i +

√
2

3
√

2
0

0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎝1

√
2 i −1

1 −
√

2 i −1
1 0 1

⎞⎠

=
1
4

⎛⎝ 1 1 2
−

√
2 i

√
2 i 0

−1 −1 2

⎞⎠ ⎛⎝−iθ 0 0
0 iθ 0
0 0 0

⎞⎠ ⎛⎝1
√

2 i −1
1 −

√
2 i −1

1 0 1

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎝
0

θ
√

2
0

−
θ

√
2

0
θ

√
2

0 −
θ

√
2

0

⎞⎟⎟⎟⎟⎟⎠ ,

where for θ
√

2
=

arcsin(2
√

2/3)
√

2
∈ Z/2kZ we get the following values

mod 2 22 23 24 25 26

θ
√

2
0 2 6 14 14 46

For instance, for k = 6 we find

2bx = log

⎛⎜⎜⎜⎝
1 0 0

0
3
5

4
5

0 −
4
5

3
5

⎞⎟⎟⎟⎠
2

≡ 24

⎛⎝0 0 0
0 0 1
0 −1 0

⎞⎠ (mod 64),

bz = log

⎛⎜⎜⎜⎜⎝
3
5

4
5

0

−
4
5

3
5

0

0 0 1

⎞⎟⎟⎟⎟⎠ ≡ 44

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ (mod 64),

c = log

⎛⎜⎜⎜⎜⎜⎝
1
3

−
2
3

2
3

2
3

−
1
3

−
2
3

2
3

2
3

1
3

⎞⎟⎟⎟⎟⎟⎠ ≡ 18

⎛⎝ 0 1 0
−1 0 1
0 −1 0

⎞⎠ (mod 64).

It is worthwhile to remark that, even if c is not zero modulo 4, the exponential series exp(c) converges, because
(c/2)5

≡ 0 modulo 4.
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Abstract

We analyse some new aspects concerning application of the fundamental solution method to the basic three-dimensional
boundary value problems, mixed transmission problems, and also interior and interfacial crack type problems for steady state
oscillation equations of the elasticity theory. First we present existence and uniqueness theorems of weak solutions and derive the
corresponding norm estimates in appropriate function spaces. Afterwards, by means of the columns of Kupradze’s fundamental
solution matrix special systems of vector functions are constructed explicitly. The linear independence and completeness of these
systems are proved in appropriate Sobolev–Slobodetskii and Besov function spaces. It is shown that the problem of construction
of approximate solutions to the basic and mixed boundary value problems and to the interior and interfacial crack problems
can be reduced to the problems of approximation of the given boundary vector functions by elements of the linear spans of the
corresponding complete systems constructed by the fundamental solution vectors. By this approach the approximate solutions of
the boundary value and transmission problems are represented in the form of linear combinations of the columns of the fundamental
solution matrix with appropriately chosen poles distributed outside the domain under consideration. The unknown coefficients of
the linear combinations are defined by the approximation conditions of the corresponding boundary and transmission data.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Method of fundamental solutions; Theory of elasticity; Elastic vibrations; Mixed boundary value problem; Mixed transmission
problem; Crack problem; Approximate solutions

1. Introduction

The Method of Fundamental Solutions (MFS) for partial differential equations was first proposed by V. Kupradze
in the 1960s (see the pioneering works in this direction by V. Kupradze and M. Alexidze, [1,2], [KuAl]). The main
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idea of the MFS is to distribute the singularity poles {y(k)
}
∞

k=1 of the fundamental solution Γ (x − y) of a differential
operator outside the domain under consideration, construct the set of functions {Γ (x − y(k))}∞k=1, prove its density
properties in appropriate function spaces, and then approximate the sought-for solution by a linear combination of the
fundamental solutions,

∑N
k=1Ck Γ (x − y(k)) with unknown coefficients Ck , which are to be determined by satisfying

the corresponding boundary conditions.
Starting from the 1970s, the MFS gradually became a useful technique and is used to solve a large variety boundary

value problems (BVP) arising in the mathematical models of physics, engineering, and biomedicine (see [1–18], and
the references therein). However, it should be mentioned that until now it has not been worked out how to apply
the MFS to crack type problems in solid mechanics, since the different approaches related to MFS described in
the scientific literature are not applicable to crack type problems. To work out this problematic topic and to extend
the MFS to crack type boundary-value problems are among the main goals of the present investigation. We will
reformulate crack type problems in the form of mixed type transmission problems introducing an artificial interface
boundary containing the crack faces and then substantiate mathematically the MFS on the basis of the results obtained
for mixed transmission problems.

For the basic and mixed exterior boundary value problems, as well as for the crack and mixed transmission
problems of steady state elastic oscillations, here we develop the approach which is applicable for all values of the
oscillation frequency parameter.

We have to mention here that the main shortage of the MFS is its poor conditioning which should be alleviated,
e.g., by preconditioning of the corresponding system matrix or by iterative refinement or by some other artificial
approaches available for special particular cases (see, e.g. [19]).

However, the MFS features remarkable and unusual ease of implementation due to the following reasons (see,
e.g. [3,17,19]): “Uniform character of the trial functions, complete absence of singular integral evaluations, it does
not require an elaborate discretization of the boundary, simplicity of finding values of approximate solution at inner
points of the domain of interest, the derivatives of the MFS approximation can also be evaluated directly, extreme
abundance of the set of trial functions that results in a high adaptivity of the method, MFS can be applied even in the
case of domains with irregular boundaries (e.g., for domains with Lipschitz boundaries)”. More detailed overview of
the results related to the fundamental solution method can be found in [17] and the references therein.

In this paper we prove linear independence and density property of the appropriately chosen systems of vector
functions constructed by the corresponding fundamental solutions (Kupradze’s matrix of fundamental solutions).
These systems are associated with particular type of problems and actually they reduce the solving procedure of
boundary value problems to the approximation problems of the boundary data in the appropriate non-orthogonal
complete systems of vector functions.

The paper is organized as follows. In Section 2, we introduce the notions of regular, semi-regular and weak
solutions and formulate classical and weak settings of boundary value and transmission problems for steady
state oscillation equations of the elasticity theory. We formulate also the corresponding uniqueness theorems for
the problems under consideration in the class of vector functions satisfying the Sommerfeld–Kupradze radiation
conditions at infinity. In Section 3, existence and uniqueness theorems are proved for weak solutions and the
corresponding estimates are obtained in appropriate function spaces. Section 4 is devoted to the fundamental solution
method for basic and mixed boundary value problems, as well as for the basic and mixed transmission problems
containing crack type problems as special particular cases. Special systems of vector functions are constructed
explicitly by means of the columns of Kupradze’s fundamental solution matrix and their linear independence and
completeness are proved in appropriate Sobolev–Slobodetskii and Besov function spaces. The problem of construction
of approximate solutions to the boundary value and transmission problems are reduced to the approximation problems
of the given boundary vector functions by linear combinations of the elements of the corresponding nonorthogonal,
linearly independent, complete vector systems. In Appendix A, we collect some auxiliary material needed in the main
text of the paper concerning properties of layer potentials and the corresponding boundary operators. In Appendix B,
we present alternative integral representations of radiating solutions in unbounded regions. Finally, in Appendix C,
we recall some results from the theory of strongly elliptic pseudodifferential equations on manifolds with boundary
in Bessel potential and Besov spaces which are the main tools for proving existence theorems for mixed boundary,
boundary-transmission, and crack type problems by the potential methods.

The approach developed in this paper can be successfully applied to boundary value problems of mathematical
physics for homogeneous and piecewise homogeneous bounded and unbounded composite media containing interior



266 T. Buchukuri et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 264–292

or interfacial cuts where the screen or crack type conditions are prescribed. In particular, it can be applied to the
interior and exterior problems of statics of the theory of elasticity, as well as to the interior BVP of steady state
oscillations for bounded domains. As it is well-known, the interior problems of steady state oscillations have discrete
(countable) sets of resonant frequencies for arbitrary bounded domain and the corresponding nonhomogeneous BVPs
are not solvable for arbitrary data (see e.g., [12, Ch. 7], [20]). However, the approach described in the paper can be
applied also to the interior problems if the oscillation parameter does not belong to the set of resonant frequencies,
i.e., if the corresponding homogeneous boundary value and transmission problems of steady state oscillations possess
only the trivial solutions.

2. Basic equations and operators, statement of problems, and uniqueness theorems

The basic equation of elastic vibrations in the case of isotropic solids reads as [12]

A(∂, ω)u(x) ≡ µ∆u(x) + (λ+ µ) grad div u(x) + ϱ ω2 u(x) = 0, (2.1)

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator, ∂ = (∂1, ∂2, ∂3), ∂k := ∂/∂xk , ϱ is the constant density of the

homogeneous elastic solid under consideration, ω ∈ R is the oscillation frequency parameter, u = (u1, u2, u3)⊤ is the
displacement vector (the amplitude), and A(∂, ω) is the matrix differential operator,

A(∂, ω) =
[
µδk j ∆ + (λ+ µ) ∂k∂ j + ϱ ω2 δk j

]
3×3,

δk j is the Kronecker symbol, λ and µ are the Lamé constants satisfying the inequalities µ > 0, 2λ+ 3µ > 0.When
ω = 0, Eq. (2.1) coincides with the Lamé equilibrium equations of statics and generates the operator A(∂) := A(∂, 0).
The principal homogeneous symbol matrix A(ξ ) := [µδk j |ξ |

2
+(λ+µ)ξkξ j ]3×3 of the operators −A(∂, ω) and −A(∂)

is positive definite, A(ξ )η · η ≥ δ0 |ξ |2 |η|2, ∀ξ ∈ R3, ∀η ∈ C3, where δ0 is a positive constant, a · b denotes the
scalar product of complex valued vectors a = (a1, a2, a3) and b = (b1, b2, b3): a · b =

∑3
k=1ak bk ; R3 and C3 stand

for the set of real and complex 3-tuples respectively.
Let Ω+ be a bounded 3-dimensional domain in R3 with a boundary S = ∂Ω+, Ω+ = Ω+

∪ S, and Ω−
= R3

\Ω+.
Throughout the paper, for simplicity, we assume that S is an infinitely smooth surface if not otherwise stated.
By Ck(Ω±) we denote the subspace of functions from Ck(Ω±) whose derivatives up to the order k are continuously

extendable to S from Ω±.
The symbols { · }

+

S and { · }
−

S denote one-sided limits (traces) on S from Ω+ and Ω−, respectively. We often drop
the subscript S if it does not lead to misunderstanding.

By L p, L p, loc, L p, comp, W r
p, W r

p, loc, W r
p, comp, H s

p, and Bs
p,q (with r ≥ 0, s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞) we

denote the well-known Lebesgue, Sobolev–Slobodetskii, Bessel potential, and Besov function spaces, respectively
(see, e.g., [21,22]). Recall that H r

2 = W r
2 = Br

2,2, H s
2 = Bs

2,2, W t
p = B t

p,p, and H k
p = W k

p , for any r ≥ 0, for any
s ∈ R, for any positive and non-integer t , and for any non-negative integer k. In our analysis we essentially employ
also the following function spaces:

H̃ s
p(M) :=

{
f : f ∈ H s

p(M0), supp f ⊂ M
}
,

B̃s
p,q (M) :=

{
f : f ∈ Bs

p,q (M0), supp f ⊂ M
}
,

H s
p(M) :=

{
rM f : f ∈ H s

p(M0)
}
,

Bs
p,q (M) :=

{
rM f : f ∈ Bs

p,q (M0)
}
,

where M0 is a closed manifold without boundary and M is an open proper submanifold of M0 with nonempty smooth
boundary ∂M ̸= ∅; rM is the restriction operator onto M .

Remark 2.1. Let a function f be defined on an open proper submanifold M of a closed manifold M0 without
boundary. Let f ∈ Bs

p,q (M) and f̃ be an extension of f by zero to M0 \ M . If the extension preserves the space, i.e., if
f̃ ∈ B̃s

p,q (M), then we write f ∈ B̃s
p,q (M) instead of f ∈ rM B̃s

p,q (M) when it does not lead to misunderstanding.

Now let us introduce some definitions (cf. [23]).

Definition 2.2. We say that w is a regular function in Ω± if w ∈ C1(Ω±) ∩ C2(Ω±).
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Definition 2.3. Let us consider the following smooth dissection of the boundary surface S = SD ∪ SN , SD ∩ SN = ∅,
ℓ = SD ∩ SN ∈ C∞, and let Ω̃±

ℓ := Ω± \ ℓ.

We say that w is a semi-regular function in Ω̃±

ℓ and write w ∈ C(Ω̃±

ℓ ; δ) if

(i) w is continuous in Ω±;
(ii) the first order derivatives of w are continuous in Ω̃±

ℓ and there is a constant δ ∈ [0, 1), such that at the collision
curve ℓ the following estimates hold

|∂kw(x)| ⩽ C [dist(x, ℓ)]−δ, x ∈ Ω̃±

ℓ , C = const, k = 1, 2, 3,

where dist(x, ℓ) is the distance from the reference point x to the collision curve ℓ;
(iii) the second order derivatives of w are continuous in Ω± and integrable over Ω+ and over any subdomain of Ω−

of finite diameter.

Evidently, C(Ω̃±

ℓ ; δ) ⊂
[
C(Ω±) ∩ C1(Ω̃±

ℓ ) ∩ C2(Ω±)
]
.

Definition 2.4. Let an elastic solid occupying the domain Ω± contain an interior crack. We identify the crack surface
as a two-dimensional, two-sided smooth manifold Σ ⊂ Ω± with the crack edge ℓc := ∂Σ . We assume that Σ is a
proper submanifold of a closed surface S0 surrounding a bounded domain Ω0 which is a proper subdomain of Ω±.
We choose the direction of the unit normal vector to the fictitious surface S0 such that it is outward with respect to the
domain Ω0. This agreement defines uniquely the direction of the normal vector to the crack surface Σ . The symbols
{ · }

+

Σ and { · }
−

Σ denote the one-sided limits on Σ from Ω0 and Ω±
\ Ω0, respectively.

Further, let Ω±

Σ := Ω±
\ Σ and Ω̃±

Σ := Ω± \ Σ with Σ = Σ ∪ ℓc.
We say that w is a semi-regular function in Ω̃±

Σ and write w ∈ C(Ω̃±

Σ ; δ) if

(i) w is continuous in Ω̃±

Σ and one-sided continuously extendable to Σ from Ω0 and from Ω+
\ Ω0, i.e., w is

continuous in the regions Ω̃±

Σ , Ω± \ Ω0, and Ω0;
(ii) the first order derivatives of w are continuous in Ω̃±

Σ and one-sided continuously extendable to Σ from Ω0 and
from Ω±

\ Ω0, and there is a constant δ ∈ [0, 1), such that at the crack edge ℓc = ∂Σ the following estimates
hold

|∂kw(x)| ⩽ C [dist(x, ℓc)]−δ, x ∈ Ω̃±

Σ , C = const, k = 1, 2, 3;

(iii) the second order derivatives of w are continuous in Ω±

Σ and integrable over Ω+

Σ and over any subdomain of Ω−

Σ

of finite diameter.

Evidently, formally we can write C(Ω̃±

Σ ; δ) ⊂
[
C(Ω0) ∩ C(Ω± \Ω0) ∩ C1(Ω̃±

Σ ) ∩ C2(Ω±

Σ )
]
, which is to be understood

in the following sense: if w ∈ C(Ω̃±

Σ ; δ), then r
Ω0
w ∈ C(Ω0), r

Ω±\Ω0
w ∈ C(Ω± \ Ω0), w ∈ C1(Ω̃±

Σ ), w ∈ C2(Ω±

Σ ).

Definition 2.5. We say that a vector u = (u1, u2, u3)⊤ in the exterior domain Ω− satisfies the Sommerfeld–Kupradze
type radiation conditions at infinity if u is representable in Ω− as a sum of two metaharmonic vectors, the so called
longitudinal u(1)

≡ u(p) and transverse parts u(2)
≡ u(s) (see, e.g., [12]),

u = u(1)
+ u(2) with ∆ u(m)

+ k2
m u(m)

= 0, m = 1, 2,

k1 ≡ kp = ω

√
ϱ

λ+ 2µ
, k2 ≡ ks = ω

√
ϱ

µ
,

satisfying for sufficiently large r = |x | the radiating conditions

∂u(m)(x)
∂r

− i km u(m)(x) = o (r−1) , m = 1, 2.

Denote the Sommerfeld–Kupradze class of radiating vector functions by Z (Ω−).

Assume that the domains Ω± are occupied by an isotropic homogeneous elastic material.
Denote by ekl = ekl(u) and σkl = σkl(u) the strain and stress tensors respectively associated with the displacement

vector u. Then the components of the stress vector T (∂, n)u acting upon a surface element with normal vector n read
as [12]

{T (∂, n)u}k = σkl nl , σkl = [λ δkl div u + 2µ ekl], ekl = 2−1 (∂kul + ∂luk).
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Here T (∂, n) is the boundary stress operator,

T (∂, n) := [Tkl(∂, n)]3×3, Tkl(∂, n) = λ nk ∂xl + µ nl ∂xk + µδkl ∂n, (2.2)

where ∂n = ∂/∂n stands for the normal derivative.
Now we formulate the basic exterior BVPs of steady state elastic oscillations.

The Dirichlet problem (D)−ω : Find a regular complex-valued solution vector u ∈ [C1(Ω−)]3
∩ [C2(Ω−)]3

∩ Z (Ω−) to
the steady state oscillation equation (2.1) in Ω− satisfying the Dirichlet type boundary condition

{u(x)}− = f (x), x ∈ S, (2.3)

where f ∈ [C1(S)]3 is a given smooth vector function on S.
The Neumann problem (N)−ω : Find a regular complex-valued solution vector u ∈ [C1(Ω−)]3

∩ [C2(Ω−)]3
∩ Z (Ω−)

to the steady state oscillation equation (2.1) in Ω− satisfying the Neumann type boundary condition

{T (∂, n)u(x)}− = F(x), x ∈ S, (2.4)

where F ∈ [C(S)]3 is a given vector function on S.
Mixed type problem (M)−ω : Find a semi-regular complex-valued solution vector u ∈ [C(Ω̃−

ℓ ; δ)]3
∩ Z (Ω−) to the

steady state oscillation equation (2.1) in Ω− satisfying the mixed type boundary conditions:

{u(x)}− = f ∗(x), x ∈ SD, (2.5){
T (∂, n)u(x)

}−
= F∗(x), x ∈ SN , (2.6)

where f ∗
∈ [C1(SD)]3 and F∗

∈ [C(SN )]3 are given vector functions.
Crack type problem (C)−ω : Find a semi-regular complex-valued solution vector u ∈ [C(Ω̃−

Σ ; δ)]3
∩ Z (Ω−

Σ ) to the
steady state oscillation equation (2.1) in Ω−

Σ satisfying either the Dirichlet or Neumann type boundary condition on S
and the following crack type conditions on Σ :{

T (∂, n)u(x)
}+

= F (+)(x), x ∈ Σ , (2.7){
T (∂, n)u(x)

}−
= F (−)(x), x ∈ Σ , (2.8)

where F (±)
∈ [C(Σ )]3 are given vector functions.

Note that, if the mixed type boundary conditions are prescribed on the boundary surface S, then in addition we
have to require that a solution is semi-regular in a neighbourhood of the collision curve ℓ.
Basic crack type problem (BC)−ω : Find a semi-regular complex-valued solution vector u ∈ [C(R3

Σ ; δ)]3
∩ Z (R3

Σ ) to
the steady state oscillation equation (2.1) in R3

Σ := R3
\ Σ satisfying the crack type conditions on Σ :{

T (∂, n)u(x)
}+

= F (+)(x), x ∈ Σ , (2.9){
T (∂, n)u(x)

}−
= F (−)(x), x ∈ Σ , (2.10)

where F (±)
∈ [C(Σ )]3 are given vector functions.

Now let us assume that the domains Ω (1)
= Ω+ and Ω (2)

= Ω− are occupied by isotropic elastic materials with
Lamé constants λ(κ), µ(κ), and the density ϱ(κ), κ = 1, 2. In this case S is the interface of the composite elastic solid
where various type transmission conditions are to be prescribed.
Basic transmission problem (BT)ω: Find regular complex-valued solution vectors u(1)

∈ [C1(Ω+)]3
∩ [C2(Ω+)]3

and u(2)
∈ [C1(Ω−)]3

∩ [C2(Ω−)]3
∩ Z (Ω−) to the steady state oscillation equations

A(κ)(∂, ω)u(κ)(x) ≡ µ(κ) ∆u(x) + (λ(κ)
+ µ(κ)) grad div u(x) + ϱ(κ) ω2 u(κ)(x)

= 0, x ∈ Ω (κ), κ = 1, 2, (2.11)

satisfying the rigid transmission conditions

{u(1)(x)}+ − {u(2)(x)}− = f (x), x ∈ S, (2.12)

{T (1)(∂, n)u(1)(x)}+ − {T (2)(∂, n)u(2)(x)}− = F(x), x ∈ S, (2.13)

where f ∈ [C1(S)]3 and F ∈ [C(S)]3 are given vector functions on S and

T (κ)(∂, n) := [T (κ)
kl (∂, n)]3×3, T (κ)

kl (∂, n) = λ(κ)nk∂xl + µ(κ)nl ∂xk + µ(κ)δkl∂n. (2.14)
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If the interface S contains a crack along a subsurface SC ⊂ S, then we have the following dissection S = SC ∪ ST ,
where ST = S \ SC is the rigid transmission part of the interface, and SC ∩ ST = ∅.
Basic mixed transmission problem (MT)ω: Find semi-regular complex-valued solution vectors u(1)

∈ [C(Ω̃+

ℓ ; δ)]3

and u(2)
∈ [C(Ω̃−

ℓ ; δ)]3
∩ Z (Ω−), ℓ = SC ∩ ST , to the steady state oscillation equations (2.11) satisfying the rigid

transmission conditions on ST ,

{u(1)(x)}+ − {u(2)(x)}− = f (T )(x), x ∈ ST , (2.15)

{T (1)(∂, n)u(1)(x)}+ − {T (2)(∂, n)u(2)(x)}− = F (T )(x), x ∈ ST , (2.16)

and the crack conditions on SC ,

{T (1)(∂, n)u(1)(x)}+ = F (+)
C (x), x ∈ SC , (2.17)

{T (2)(∂, n)u(2)(x)}− = F (−)
C (x), x ∈ SC , (2.18)

where f (T )
∈ [C1(ST )]3, F (T )

∈ [C(ST )]3, and F (±)
C ∈ [C(SC )]3 are given vector functions.

Weak setting of the problems. In the case of weak formulation of the above boundary value and boundary-
transmission problems we look for weak solution vectors in the spaces [W 1

p(Ω+)]3 and [W 1
p, loc(Ω−)]3

∩ Z (Ω−),
1 < p < +∞, respectively. In this case the differential equations (2.1) and (2.11) are understood in the distributional
sense, the Dirichlet type conditions (2.3), (2.5), (2.12), and (2.15) are understood in the usual trace sense, while the
Neumann type conditions (2.4), (2.6)–(2.10), (2.13), (2.16)–(2.18) are understood in the generalized functional trace
sense, defined with the help of Green’s identity (cf. [12,24]):

⟨{T u}
± , {v}±⟩S = ±

∫
Ω±

[ E(u, v) − ϱ ω2 u · v ]dx, (2.19)

where u ∈ [W 1
p(Ω+)]3, v ∈ [W 1

p ′ (Ω+)]3, or u ∈ [W 1
p,loc(Ω−)]3, v ∈ [W 1

p ′,comp(Ω−)]3 with 1/p + 1/p ′
= 1,

1 < p < +∞, the over-bar denotes complex conjugation, the symbol ⟨·, ·⟩S denotes bilinear duality brackets between

the mutually adjoint spaces [B
−

1
p

p,p (S)]3 and [B
1
p

p ′,p ′ (S)]3,

E(u, v) =
3 λ+ 2µ

3
div u div v +

µ

2

∑
k ̸=l

(∂luk + ∂kul) (∂lvk + ∂kvl) +
µ

3

3∑
k,l=1

(∂kuk − ∂lul) (∂kvk − ∂lvl) .

Note that by relations (2.19) the generalized traces {T u}
±

∈ [B
−

1
p

p,p (S)]3 are well defined for weak solutions of the
homogeneous differential equation of steady state oscillations, u ∈ [W 1

p(Ω+)]3 and u ∈ [W 1
p, loc(Ω−)]3.

In the case of weak setting, the boundary data belong to the natural Besov spaces:

f ∈ [B
1−

1
p

p,p (S)]3, f ∗
∈ [B

1−
1
p

p,p (SD)]3, f (T )
∈ [B

1−
1
p

p,p (ST )]3, F ∈ [B
−

1
p

p,p (S)]3,

F∗
∈ [B

−
1
p

p,p (SN )]3, F (±)
∈ [B

−
1
p

p,p (Σ )]3, F (+)
− F (−)

∈ [B̃
−

1
p

p,p (Σ )]3,

F (T )
∈ [B

−
1
p

p,p (ST )]3, F (±)
C ∈ [B

−
1
p

p,p (SC )]3.

With the help of the Rellich–Vekua lemma the following uniqueness theorem can be proved (for details
see [12,20,25–28].

Theorem 2.6. Let the manifolds S = ∂Ω±, SD , SN , ST , SC , and Σ be Lipschitz. Then the BVPs (D)−ω , (N)−ω , (M)−ω ,
(C)−ω , (BT)ω, and (MT)ω possess at most one weak solution for p = 2 and for all values of the frequency parameter ω.

3. Existence theorems

Here we employ the notation introduced in Appendices A–C and formulate basic existence results for weak
solutions and prove representability of solutions by the layer potentials.

We apply a special representation of solutions by the layer potentials and reduce the above formulated BVPs of
elastic oscillations to the corresponding uniquely solvable integral (pseudodifferential) equations for arbitrary value
of the oscillation parameter ω. Similar approach for the Helmholtz equation has been developed in the Refs. [29–31].
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Throughout the paper, B(R) denotes the ball centred at the origin and radius R such that Ω+
⊂ B(R) and ~ is a

complex number

~ = ~1 + i ~2 ∈ C, ~1, ~2 ∈ R, ~2 ̸= 0.

Theorems 2.6, A.1, B.1 and B.2 directly lead to the following existence results for the exterior Dirichlet and
Neumann type problems.

Theorem 3.1. The Dirichlet problem (D)−ω with arbitrary boundary vector function f ∈
[
B

1−
1
p

p,p (S)
]3 is uniquely

solvable in the space [W 1
p,loc(Ω−)]3

∩ Z (Ω−), p > 1, and the solution is representable as a linear combination of the
double and single layer potentials

u(x) = W (g)(x) + ~ V (g)(x), x ∈ Ω−,

where the density vector function g ∈
[
B

1−
1
p

p,p (S)
]3 is defined by the uniquely solvable elliptic pseudodifferential

equation

N g ≡ [ −2−1 I3 + K̃ + ~H ] g = f on S.

Moreover, the following estimate holds

∥u∥[W 1
p(Ω−∩B(R))]3 ⩽ CD(R) ∥ f ∥

[B
1−

1
p

p,p (S)]3
(3.20)

where CD(R) is a constant independent of f .

Theorem 3.2. The Neumann problem (N)−ω with arbitrary boundary vector function F ∈
[
B

−
1
p

p,p (S)
]3 is uniquely

solvable in the space [W 1
p,loc(Ω−)]3

∩ Z (Ω−), p > 1, and the solution is representable as a linear combination of the
double and single layer potentials

u(x) = W (g)(x) + ~ V (g)(x), x ∈ Ω−,

where the density vector g ∈
[
B

1−
1
p

p,p (S)
]3 is defined by the uniquely solvable elliptic pseudodifferential equation

M g ≡
[
L + ~ ( 2−1 I3 + K )

]
g = F on S.

Moreover, the following estimate holds

∥u∥[W 1
p(Ω−∩B(R))]3 ⩽ CN (R) ∥F∥

[B
−

1
p

p,p (S)]3

where CN (R) is a constant independent of F.

For the mixed problem we have the following assertion.

Theorem 3.3. Let 4/3 < p < 4. The mixed problem (M)−ω with arbitrary boundary data

f ∗
∈

[
B

1−
1
p

p,p (SD)
]3
, F∗

∈
[
B

−
1
p

p,p (SN )
]3
,

is uniquely solvable in the space [W 1
p,loc(Ω−)]3

∩ Z (Ω−), and the solution is representable as a linear combination of
the double and single layer potentials

u(x) = W
(
N−1( fe + g̃)

)
(x) + ~ V

(
N−1( fe + g̃)

)
(x), x ∈ Ω−, (3.21)

where fe ∈
[
B

1−
1
p

p,p (S)
]3 is some fixed extension of the vector function f ∗ from SD onto the whole of S, while

g̃ ∈
[
B̃

1−
1
p

p,p (SN )
]3 is defined by the uniquely solvable elliptic pseudodifferential equation

rSN
MN−1g = F0 on SN ,

where

F0 = F∗
− rSN

MN−1 fe ∈
[
B

−
1
p

p,p (SN )
]3
, ∥ fe∥

[B
1−

1
p

p,p (S)]3
⩽ 2∥ f ∗

∥
[B

1−
1
p

p,p (SD )]3
.
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Moreover, the following estimate holds

∥u∥[W 1
p(Ω−∩B(R))]3 ⩽ CM (R)

[
∥ f ∗

∥
[B

1−
1
p

p,p (SD )]3
+ ∥F∗

∥
[B

−
1
p

p,p (SN )]3

]
where CM (R) is a constant independent of f ∗ and F∗.

Proof. Invertibility of the operator

rSN
MN−1

: [B̃
1−

1
p

p,p (SN )]3
→ [B

−
1
p

p,p (SN )]3 (3.22)

for 4/3 < p < 4 follows from Theorems B.2 and C.2, since the principal homogeneous symbol matrix of the operator
−MN−1,

S
(
−MN−1

; x, ξ
)

= −L(x, ξ ) [K̃−(x, ξ )]−1, x ∈ S, ξ = (ξ1, ξ2) ̸= 0,

is positive definite due to (A.19) in Remark A.4 and the null-space of the operator (3.22) is trivial.
Existence and uniqueness of a solution to the mixed problem and estimate (3.22) follow then from (3.21) and

Theorems 2.6, B.1 and A.1. □

For the weak solution of the basic crack type problem the following existence result holds.

Theorem 3.4. Let 4/3 < p < 4 and F (±)
∈

[
B

−
1
p

p,p (Σ )
]3 with F (+)

− F (−)
∈

[
B̃

−
1
p

p,p (Σ )
]3
. Then the basic crack type

problem (BC)ω is uniquely solvable in the space [W 1
p,loc(R3

Σ )]3
∩ Z (R3

Σ ) and the solution is representable as a linear
combination of the single and double layer potentials

u(x) = W
(
g
)
(x) − V

(
F (+)

− F (−))(x), x ∈ R3
Σ , (3.23)

where g ∈
[
B̃

1−
1
p

p,p (Σ )
]3 is defined by the uniquely solvable elliptic pseudodifferential equation

rSN
L g = F0 on Σ , (3.24)

where

F0 =
1
2

(
F (+)

+ F (−))
+ rΣK

(
F (+)

− F (−))
∈ [B

−
1
p

p,p (Σ )]3.

Moreover, the following estimate holds

∥u∥[W 1
p(R3

Σ∩B(R))]3 ⩽ CM (R)
[
∥F (+)

+ F (−)
∥

[B
−

1
p

p,p (Σ )]3
+ ∥F (+)

− F (−)
∥

[B
−

1
p

p,p (Σ )]3

]
(3.25)

where CM (R) is a constant independent of F (±).

Proof. Let us rewrite the boundary conditions (2.9)–(2.10) of the crack problem (BC)ω in the following equivalent
form {

T (∂, n)u
}+

−
{
T (∂, n)u

}−
= F (+)

− F (−) on Σ , (3.26){
T (∂, n)u

}+
+

{
T (∂, n)u

}−
= F (+)

+ F (−) on Σ . (3.27)

The vector function (3.23) satisfies condition (3.26) automatically, while condition (3.27) leads to Eq. (3.24).
Existence and uniqueness of a solution to the basic crack type problem and estimate (3.25) follow then from (3.23)
and Theorems 2.6, A.1, A.3, B.2 and C.2. Indeed, the principal homogeneous symbol matrix L(x, ξ ) := S(L; x, ξ )
of the operator L is positive definite (see Remark A.4) and the null-space of the operator

rSN
L : [B̃

1−
1
p

p,p (Σ )]3
→ [B

−
1
p

p,p (Σ )]3 (3.28)

is trivial implying the invertibility of the operator (3.28). Thus Eq. (3.24) is uniquely solvable and the estimate (3.25)
holds. □
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In the case of transmission problems, we use the same notation for potentials and the corresponding integral
operators as above but equipped with superscript (κ) which indicates that the layer potentials V (κ), W (κ) and the
corresponding integral operators H(κ), K(κ), K̃(κ), L(κ), N (κ), and M(κ) are constructed with the help of the fundamental
solution Γ (κ)(x − y, ω) associated with the operator A(κ)(∂, ω) and the stress operator is defined by (2.14).

Theorem 3.5. The basic transmission problem (BT)ω with arbitrary boundary vector functions f ∈
[
B

1−
1
p

p,p (S)
]3 and

F ∈
[
B

−
1
p

p,p (S)
]3 is uniquely solvable in the class of vector functions [W 1

p(Ω+)]3
×

(
[W 1

p,loc(Ω−)]3
∩ Z (Ω−)

)
, p > 1,

and the solution pair
(
u(1), u(2)

)
is representable by the layer potentials:

u(1)(x) = V (1)(h)(x), x ∈ Ω+
= Ω (1), (3.29)

u(2)(x) = W (2)(g)(x) + ~ V (2)(g)(x), x ∈ Ω−
= Ω (2), (3.30)

where the density vectors h ∈
[
B

−
1
p

p,p (S)
]3 and g ∈

[
B

1−
1
p

p,p (S)
]3 are defined by the uniquely solvable elliptic system of

pseudodifferential equations

H(1) h − N (2) g = f on S, (3.31)

[ −2−1 I3 + K(1) ] h − M(2) g = F on S. (3.32)

Moreover, the following estimates hold

∥u(1)
∥[W 1

p(Ω+)]3 ⩽ C (1)
BT

(
∥ f ∥

[B
1−

1
p

p,p (S)]3
+ ∥F∥

[B
−

1
p

p,p (S)]3

)
, (3.33)

∥u(2)
∥[W 1

p(Ω−∩B(R))]3 ⩽ C (2)
BT (R)

(
∥ f ∥

[B
1−

1
p

p,p (S)]3
+ ∥F∥

[B
−

1
p

p,p (S)]3

)
, (3.34)

where C (1)
BT and C (2)

BT (R) are constants independent of f and F.

Proof. The representations (3.29)–(3.30) lead to the system of pseudodifferential equations (3.31)–(3.32). Due to the
invertibility property of the operators N (2) and M(2) (see Appendix B, Theorem B.1), we derive

g =
(
N (2))−1H(1)h −

(
N (2))−1 f, (3.35)

T h =
(
N (2))−1 f −

(
M(2))−1 F, (3.36)

where T = [Tk j ]3×3 is the pseudodifferential operator of order −1 defined by the relation

T :=
(
N (2))−1H(1)

−
(
M(2))−1(

−2−1 I3 + K(1) ).
Rewrite system (3.35)–(3.36) in matrix form

QΦ = Ψ , (3.37)

where Φ = (g, h)⊤, Ψ :=

(
−

(
N (2)

)−1 f,
(
N (2)

)−1 f −
(
M(2)

)−1 F
)⊤

, and

Q :=

[
I3 −

(
N (2))−1H(1)

[0]3×3 T

]
6×6

.

Note that Ψ = 0 if and only if f = F = 0. Therefore the homogeneous equation (3.37) corresponds to the
homogeneous basic transmission problem (BT)ω.

The principal homogeneous symbol matrix of the operator T reads as follows (see Appendix A, Remark A.4)

S
(
T ; x, ξ

)
=

(
K̃(2)

−

)−1 H(1)
−

(
L(2))−1 K(1)

− =
(
L(2))−1[K(1)

−

(
H(1))−1

− L(2)(K̃(2)
−

)−1] (
−H(1)), (3.38)

where the matrices K(1)
− , K̃(2)

− , H(1), and L(2) are defined in (A.15). From the results stated in Remark A.4 it follows
that the matrices

(
L(2)

)−1, K(1)
−

(
H(1)

)−1
− L(2)

(
K̃(2)

−

)−1, and
(
−H(1)

)
are positive definite nonsingular matrices for

all x ∈ S and ξ ∈ R2
\ {0}. Consequently S

(
T ; x, ξ

)
is an elliptic symbol. Moreover, T is a composition of three



T. Buchukuri et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 264–292 273

Fredholm operators with zero index and due to Atkinson’s theorems (see, e.g., [32, Ch. 1, Theorem 3.3]) the index of
the Fredholm operator

T :
[
B

−
1
p

p,p (S)
]3

→
[
B

1−
1
p

p,p (S)
]3

equals to zero. Therefore the operator

Q :
[
B

1−
1
p

p,p (S)
]3

×
[
B

−
1
p

p,p (S)
]3

→
[
B

1−
1
p

p,p (S)
]3

×
[
B

1−
1
p

p,p (S)
]3 (3.39)

is Fredholm with zero index as well.
From the uniqueness theorem for the basic transmission problem (BT)ω for p = 2 and the general theory of

pseudodifferential equations on smooth manifolds without boundary it follows that the null space of the operator
(3.39) is trivial for 1 < p < ∞. Thus the operator (3.39) is invertible and the system (3.31) is uniquely solvable
implying the uniqueness and existence of a solution to the problem (BT)ω for 1 < p < ∞.

The estimates (3.33)–(3.34) follow then from Theorem A.1. □

Remark 3.6. From the arguments in the proof of Theorem 3.5 and relations (3.35) and (3.36) it follows that

h = T −1(N (2))−1 f − T −1(M(2))−1 F, (3.40)

g =
(
N (2))−1[H(1)T −1(N (2))−1

− I
]

f −
(
N (2))−1H(1)T −1(M(2))−1 F. (3.41)

Now we analyse the basic mixed transmission problem (MT)ω. To this end, rewrite the mixed transmission
conditions (2.15)–(2.18) in the formulation of problem (MT)ω in the following equivalent form

{u(1)
}
+

− {u(2)
}
−

= f (T ) on ST , (3.42)

{T (1)(∂, n)u(1)
}
+

− {T (2)(∂, n)u(2)
}
−

= F0 on S, (3.43)

{T (1)(∂, n)u(1)
}
+

+ {T (2)(∂, n)u(2)
}
−

= F (+)
C + F (−)

C on SC , (3.44)

where

F0 =

{
F (T ) on ST ,

F (+)
C − F (−)

C on SC ,
(3.45)

and we assume that the following necessary compatibility condition is fulfilled

F0 ∈
[
B

−
1
p

p,p (S)
]3
. (3.46)

Denote by f ∗ some fixed extension of the vector function f (T ) from ST onto the whole of S preserving the space,

f ∗
∈

[
B

1−
1
p

p,p (S)
]3. Evidently, an arbitrary extension has then the form f = f ∗

+ g̃, where g̃ ∈
[
B̃

1−
1
p

p,p (SC )
]3.

Motivated by the existence result for the basic transmission problem described in Theorem 3.5, let us look for a
solution to the basic mixed transmission problem (3.42)–(3.44) again in the form (3.29)–(3.30),

u(1)(x) = V (1)(h)(x), x ∈ Ω+
= Ω (1), (3.47)

u(2)(x) = W (2)(g)(x) + ~ V (2)(g)(x), x ∈ Ω−
= Ω (2), (3.48)

where (see (3.40)–(3.41))

h = T −1(N (2))−1( f ∗
+ g̃) − T −1(M(2))−1 F0, (3.49)

g =
(
N (2))−1[H(1)T −1(N (2))−1

− I
]
( f ∗

+ g̃) −
(
N (2))−1H(1)T −1(M(2))−1 F0, (3.50)

F0 is defined in (3.45), f ∗ is the above introduced fixed extension, and g̃ is an unknown vector function.
Due to Theorem 3.5, we find that

{u(1)
}
+

− {u(2)
}
−

= f ∗
+ g̃ on S,

{T (1)(∂, n)u(1)
}
+

− {T (2)(∂, n)u(2)
}
−

= F0 on S,

implying that the transmission conditions (3.42)–(3.43) are satisfied. The remaining condition (3.44) leads to the
following pseudodifferential equation for the unknown vector function g̃ on SC ,(

−2−1 I3 + K(1))h + M(2)g = F (+)
C + F (−)

C on SC ,
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which can be rewritten as

rSC
P g̃ = Ψ on SC , (3.51)

where

P :=
(
−2−1 I3 + K(1))T −1(N (2))−1

+ M(2)(N (2))−1[H(1)T −1(N (2))−1
− I3

]
, (3.52)

Ψ := F (+)
C + F (−)

C − rSC

{(
−2−1 I3 + K(1))T −1[(N (2))−1 f ∗

−
(
M(2))−1 F0

]}
− rSC

{
M(2)(N (2))−1([H(1)T −1(N (2))−1

− I3] f ∗
− H(1)T −1(M(2))−1 F0

)}
. (3.53)

Due to mapping properties of the operators involved in (3.52) and (3.53) we have (see Appendices A and B)

Ψ ∈ [B
−

1
p

p,p (SC )]3 (3.54)

and the operator

rSC
P : [B̃

1−
1
p

p,p (SC )]3
−→ [B

−
1
p

p,p (SC )]3 (3.55)

is continuous.
In view of the relations derived in Appendix A, Remark A.4, and the equality (3.38), for the principal homogeneous

symbol matrix S
(
P; x, ξ

)
of the operator P we have:

S
(
P

)
= K(1)

−

(
−H(1))−1[K(1)

−

(
H(1))−1

− L(2)(K̃(2)
−

)−1]−1L(2)(K̃(2)
−

)−1

+ L(2)(K̃(2)
−

)−1{
−

[
K(1)

−

(
H(1))−1

− L(2)(K̃(2)
−

)−1]−1L(2)(K̃(2)
−

)−1
− I3

}
= −

[
K(1)

−

(
H(1))−1

+ L(2)(K̃(2)
−

)−1] [
K(1)

−

(
H(1))−1

− L(2)(K̃(2)
−

)−1]−1L(2)(K̃(2)
−

)−1
− L(2)(K̃(2)

−

)−1

=
{[
K(1)

−

(
H(1))−1

+ L(2)(K̃(2)
−

)−1] [
K(1)

−

(
H(1))−1

− L(2)(K̃(2)
−

)−1]−1
+ I3

}[
−L(2)(K̃(2)

−

)−1]
.

Note that, due to the relations presented in Remark A.4, the matrices A := K(1)
−

(
H(1)

)−1 and B := −L(2)
(
K̃(2)

−

)−1 are
positive definite and consequently they are self-adjoint. The symbol S

(
P

)
can be rewritten as

S
(
P

)
=

{(
A − B

)(
A + B

)−1
+ I3

}
B =

{(
A − B

)(
A + B

)−1
+

(
A + B

)(
A + B

)−1} B

= 2 A
(
A + B

)−1 B = 2
(
A−1

+ B−1)−1
,

implying that the symbol S
(
P

)
is positive definite. Therefore by Remark C.1 and Theorem C.2, operator (3.55) is

invertible if (see (C.1) with s = 1 −
1
p , ν = 1, and δ j = 0, j = 1, 2, 3)

3
4
< p < 4.

The above results lead to the following existence theorem.

Theorem 3.7. Let 3
4 < p < 4,

f (T )
∈ [B

1−
1
p

p,p (ST )]3, F (T )
∈ [B

−
1
p

p,p (ST )]3, F (±)
C ∈ [B

−
1
p

p,p (SC )]3 ,

and let the vector function F0 defined in (3.45) satisfy the inclusion (3.46).
Then the basic mixed transmission problem (MT)ω is uniquely solvable in the class of vector functions [W 1

p(Ω+)]3
×(

[W 1
p,loc(Ω−)]3

∩ Z (Ω−)
)
, and the solution pair

(
u(1), u(2)

)
is representable by the layer potentials (3.47)–(3.48)

with densities given by (3.49)–(3.50), where the unknown vector function g̃ is defined by the uniquely solvable
pseudodifferential equation (3.51).

Moreover, the following estimates hold

∥u(1)
∥[W 1

p(Ω+)]3 ⩽ C (1)
MT

(
∥ f (T )

∥
[B

1−
1
p

p,p (S)]3
+ ∥F0∥

[B
−

1
p

p,p (S)]3
+ ∥F (+)

C + F (−)
C ∥

[B
−

1
p

p,p (SC )]3

)
,

∥u(2)
∥[W 1

p(Ω−∩B(R))]3 ⩽ C (2)
MT (R)

(
∥ f (T )

∥
[B

1−
1
p

p,p (S)]3
+ ∥F0∥

[B
−

1
p

p,p (S)]3
+ ∥F (+)

C + F (−)
C ∥

[B
−

1
p

p,p (SC )]3

)
,

where C (1)
MT and C (2)

MT (R) are constants independent of f (T ), F0, and F (+)
C + F (−)

C .



T. Buchukuri et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 264–292 275

Remark 3.8. The above formulated existence theorems with p = 2 remain valid also for Lipschitz domains, i.e., when
the surfaces S, SD , SN , ST , SC , Σ , and their boundaries belong to Lipschitz continuous classes.

Remark 3.9. Applying the same arguments as in [23] for mixed and crack type problems, it can be shown that for
sufficiently smooth data weak solutions to the Problems (D)−ω , (N)−ω , (BT)−ω actually are regular vector functions (see
also [12]), while the weak solutions to the Problems (M)−ω , (BC)−ω , (C)−ω , and (MT)−ω actually are semi-regular vector
functions in the corresponding domains (cf. [25,27,33–36]). Therefore all the boundary, transmission, and crack type
conditions can be understood in the classical pointwise sense.

Remark 3.10. Note that the crack problem can be considered as a particular case of the mixed transmission problem.
Indeed, if we assume that in the formulation of the problem (MT)ω both domains Ω+ and Ω− are occupied by the
same type materials, i.e., all material constants in both domains are the same, and on ST the homogeneous transmission
conditions are prescribed (i.e. f (T )

= 0 and F (T )
= 0 on ST in (2.15) and (2.16)), then the corresponding differential

operators are the same in both domains and the transmission part ST of the interface S becomes a formal interface
since the continuity of the displacement and stress vectors across the surface ST implies that in fact the differential
equation is satisfied also at the points of the surface ST and the corresponding solution actually is an analytic function
in R3

\ SC . Evidently we arrive at the basic crack problem with Σ = SC .

4. Method of fundamental solutions

Here we develop the Fundamental Solution Method for the above formulated boundary value and transmission
problems for the elastic oscillation system for arbitrary values of the frequency parameter ω.

4.1. Auxiliary lemmata

Let Ω+

0 be an arbitrary simply connected subdomain of Ω+ such that Ω+

0 ⊂ Ω+ and denote S+

0 = ∂Ω+

0 .
Further, let Ω−

0 be an arbitrary simply connected bounded subdomain of Ω− such that Ω−

0 ⊂ Ω− and denote
S−

0 = ∂Ω−

0 .
We assume that S+

0 and S−

0 are simply connected surfaces.
Let {z(k)

}
∞

k=1 be an everywhere dense countable set of points in Ω+

0 and {y(k)
}
∞

k=1 be an everywhere dense countable
set of points in Ω−

0 .
Denote by Γ ( j)(x, ω) the j th column of Kupradze’s fundamental matrix Γ (x, ω) (see (A.1) in Appendix A).
Consider the systems of functions which can be employed for constructing approximate solutions to the Dirichlet

problem,

Φ(−)
D :=

{
ϕ(l)(x)

}∞

l=1, x ∈ Ω−, Φ(+)
D :=

{
ψ (l)(x)

}∞

l=1, x ∈ Ω+,

where

ϕ(l)(x) :=

⎧⎨⎩
Γ (1)(x − z(k), ω) for l = 3(k − 1) + 1,
Γ (2)(x − z(k), ω) for l = 3(k − 1) + 2,
Γ (3)(x − z(k), ω) for l = 3k,

k = 1, 2, 3, . . . , z(k)
∈ Ω+

0 , (4.56)

ψ (l)(x) :=

⎧⎨⎩
Γ (1)(x − y(k), ω) for l = 3(k − 1) + 1,
Γ (2)(x − y(k), ω) for l = 3(k − 1) + 2,
Γ (3)(x − y(k), ω) for l = 3k,

k = 1, 2, 3, . . . , y(k)
∈ Ω−

0 . (4.57)

Note that due to definition (4.56) to each point z(k) there corresponds the triplet of vector functions

ϕ(3(k−1)+1), ϕ(3(k−1)+2), ϕ(3k), k = 1, 2, . . . . (4.58)

Similarly, in view of (4.57), to each point y(k) there corresponds the triplet of vector functions

ψ (3(k−1)+1), ψ (3(k−1)+2), ψ (3k), k = 1, 2, . . . . (4.59)
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Evidently, ϕ(l) are radiating, complex valued analytic vector functions in R3
\ Ω+

0 , while ψ (l) are radiating, complex
valued analytic vector functions in R3

\ Ω−

0 . Moreover, ϕ(l) and ψ (l) solve the homogeneous equation (2.1) in the
corresponding domains.

Now we prove several lemmas which play a crucial role in our further analysis.

Lemma 4.1. The system Φ(−)
D is linearly independent on S.

Proof. We have to prove that any finite subsystem of Φ(−)
D is linearly independent on S. Let m be an arbitrary natural

number and for some complex valued constants Cl the following equality holds

u(m)(x) =

m∑
l=1

Cl ϕ
(l)(x) = 0, x ∈ S, m ∈ N. (4.60)

Denote by z(k), k = 1, 2, . . . ,m0, the points involved in the expression (4.60). Without loss of generality we can
assume that for each z(k), k = 1, 2, . . . ,m0, the expression (4.60) contains all three vector functions associated with
the point z(k) (see (4.58)). If necessary, we can add the corresponding terms with zero coefficients. Therefore, in what
follows we assume that m is multiple of 3, m = 3m0.

Evidently, u(m) is a radiating analytic vector function in R3
\ {z(k)

}
m0
k=1 which solves the homogeneous differential

equation

A(∂, ω)u(m)(x) = 0, x ∈ R3
\ {z(k)

}
m0
k=1. (4.61)

Then in view of (4.60) and (4.61), we see that u(m) solves the homogeneous exterior Dirichlet problem (D)−ω and due
to the existence and uniqueness Theorem 3.1 we conclude that u(m)

= 0 in Ω−. By the analyticity then we get

u(m)(x) = 0 for x ∈ R3
\ {z(k)

}
m0
k=1. (4.62)

Let B(z( j), ε) be a ball centred at the point z( j) and radius ε such that z(k)
̸∈ B(z( j), ε) for k ⩽ m0 and k ̸= j . Denote

Σ (z( j), ε) = ∂B(z( j), ε), j = 1, 2, . . . ,m0.
On the one hand, in view of (4.62) we have∫

Σ (z( j),ε)
T (∂x , n(x))u(m)(x) d S = 0, j = 1, . . . ,m0. (4.63)

On the other hand, there holds the equality (see [23, Appendix D], [12, Ch.5])

lim
ε→0

∫
Σ (z( j),ε)

T (∂x , n(x))Γ (x − z( j)) d S = I3,

where Γ (x − z( j)) is Kelvin’s matrix and I3 is the 3 × 3 unit matrix. Therefore, in view of (A.2) in Appendix A, for
q = 1, 2, 3, and j = 1, 2, . . . ,m0, we have

lim
ε→0

∫
Σ (z( j),ε)

T (∂x , n(x))Γ (q)(x − z( j), ω) d S

= lim
ε→0

∫
Σ (z( j),ε)

T (∂x , n(x))Γ (q)(x − z( j)) d S = (δ1q , δ2q , δ3q )⊤. (4.64)

Keeping in mind (4.64) and passing to the limit in (4.63) as ε → 0, we find

lim
ε→0

∫
Σ (z( j),ε)

T (∂x , n(x))u(m)(x) d S = C3( j−1)+1 lim
ε→0

∫
Σ (z( j),ε)

T (∂x , n(x))Γ (1)(x − z( j)) d S

+ C3( j−1)+2 lim
ε→0

∫
Σ (z( j),ε)

T (∂x , n(x))Γ (2)(x − z( j)) d S

+ C3( j−1)+3 lim
ε→0

∫
Σ (z( j),ε)

T (∂x , n(x))Γ (3)(x − z( j)) d S

= (C3( j−1)+1,C3( j−1)+2,C3( j−1)+3)⊤ = 0,

for j = 1, 2, . . . ,m0, which implies that Cl = 0 for l = 1, 2, . . . , 3m0. This completes the proof. □
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Lemma 4.2. The system Φ(−)
D is complete in

[
B

1−
1
p

p, p (S)
]3 for p ∈ (1,+∞).

Proof. We have to show that the linear span of the system Φ(−)
D is dense in

[
B

1−
1
p

p, p (S)
]3. To this end we will apply

the following fact from the functional analysis which is a direct consequence of the Hahn–Banach theorem (see, e.g.,
[37, Ch. 1, Section 5]). Let B be a Banach space and B∗ be its adjoint space. A subset X ⊂ B is dense in B if and only
if the relation

⟨ f, x⟩ = 0 for all x ∈ X

with f ∈ B∗ implies that f is the zero functional.

Thus to prove the density of the linear span of the system Φ(−)
D in [B

1−
1
p

p, p (S)]3 it suffices to show that if a vector

function χ belongs to the adjoint space, χ ∈ [B
−1+

1
p

p′, p′ (S)]3 with 1/p + 1/p′
= 1, and

⟨χ, ϕ(l)
⟩S = 0, l = 1, 2, . . . , (4.65)

then χ = 0. As above, here the symbol ⟨·, ·⟩S denotes duality brackets between the mutually adjoint spaces

[B
1−

1
p

p,p (S)]3 and [B
−1+

1
p

p ′,p ′ (S)]3.
Condition (4.65) can be rewritten as⟨

χ, Γ ( j)(· − z(k), ω)
⟩
S = 0, j = 1, 2, 3, k = 1, 2, . . . .

Due to the density of the set {z(k)
}
∞

k=1 in Ω+

0 , we get⟨
χ, Γ ( j)(· − z, ω)

⟩
S = 0, z ∈ Ω+

0 , j = 1, 2, 3.

This implies that

V (χ )(z) =
⟨
χ, Γ (· − z, ω)

⟩
S = 0, z ∈ Ω+

0 , (4.66)

where V (χ ) is a single layer potential with the integration surface S and with the density χ (see (A.3)). Since the
single layer potential is analytic in Ω± we conclude from (4.66)

V (χ )(z) = 0, z ∈ Ω+. (4.67)

Moreover, by Theorem A.1 we have

V (χ ) ∈
[

W 1
p ′ (Ω+)

]3
, V (χ ) ∈

[
W 1

p ′, loc(Ω−)
]3

∩ Z (Ω−), p ′ > 1.

Further, by Theorem A.2, formula (A.11), and relation (4.67) it follows that the single layer potential V (χ ) solves the
homogeneous exterior Dirichlet problem in Ω− and in accordance with Theorem 3.1 vanishes in Ω−. Therefore due
to Theorem A.2{

T (∂, n)V (χ )
}−

−
{
T (∂, n)V (χ )

}+
= χ = 0 on S,

which completes the proof. □

Now, let us introduce the following systems of functions on S which can be employed for constructing approximate
solutions to the Neumann problem,

Φ(−)
N :=

{
T (∂, n(x))ϕ(l)(x)

}∞

l=1, Φ(+)
N :=

{
T (∂, n(x))ψ (l)(x)

}∞

l=1, x ∈ S,

where T (∂, n) is the boundary stress operator (2.2), ϕ(l) and ψ (l) are defined in (4.56) and (4.57) respectively.

Lemma 4.3. The system Φ(−)
N is linearly independent on S.

Proof. We have to prove that any finite subsequence of the system Φ(−)
N is linearly independent. Let m ∈ N be an

arbitrary natural number and
m∑

l=1

Cl T (∂, n(x))ϕ(l)(x) = 0, x ∈ S, (4.68)

where Cl are complex valued constants.
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As in the proof of Lemma 4.1, we denote by z(k), k = 1, 2, . . . ,m0, the points involved in the expression (4.68)
and without loss of generality we assume that for each z(k), k = 1, 2, . . . ,m0, the expression (4.68) contains all three
vector functions associated with the point z(k) (see (4.58)) implying that m = 3m0.

Now, let us set

u(m)(x) :=

m∑
l=1

Cl ϕ
(l)(x), x ̸∈ Ω+

0 . (4.69)

Evidently, u(m) is a radiating analytic vector function in R3
\ {z(k)

}
m0
k=1 which solves the homogeneous differential

equation

A(∂, ω)u(m)(x) = 0, x ∈ R3
\ {z(k)

}
m0
k=1. (4.70)

In view of (4.69), (4.68), and (4.70) it then follows that u(m) solves the homogeneous exterior Neumann problem (N)−ω
and due to uniqueness Theorem 2.6 we conclude that u(m)

= 0 in Ω− and consequently, by the analyticity property,
u(m)

= 0 in R3
\ {z(k)

}
m0
k=1. By the same arguments as in the proof of Lemma 4.1 we show that all the constants Cl ,

l = 1, 2, . . . ,m, equal to zero, which completes the proof. □

Lemma 4.4. The system Φ(−)
N is complete in

[
B

−
1
p

p, p(S)
]3 for p ∈ (1,+∞).

Proof. As in Lemma 4.2, to prove the density of the linear span of the system Φ(−)
N in [B

−
1
p

p, p(S)]3 it suffices to show

that if a vector function χ belongs to the adjoint space, χ ∈ [B
1
p

p′, p′ (S)]3 with 1/p + 1/p′
= 1, and

⟨χ , T (∂, n)ϕ(l)
⟩S = 0, l = 1, 2, . . . , (4.71)

then χ = 0. Here the symbol ⟨·, ·⟩S again denotes duality brackets between the mutually adjoint spaces [B
−

1
p

p,p (S)]3

and [B
1
p

p ′,p ′ (S)]3.
Condition (4.71) can be rewritten as

⟨χ , T (∂, n)Γ ( j)(· − z(k), ω)⟩S = 0, j = 1, 2, 3, k = 1, 2, . . .

which is equivalent to the relation

W (χ )(z(k)) = 0, k = 1, 2, . . . , (4.72)

where W (χ ) is the double layer potential with the integration surface S and with the density χ (see (A.4)). Due to the
density property of the set {z(k)

}
∞

k=1 in Ω+

0 , from (4.72) we deduce

W (χ )(z) = 0, z ∈ Ω+

0 . (4.73)

By analyticity property of the double layer potential in domains Ω± we conclude

W (χ )(z) = 0, z ∈ Ω+.

Note that by Theorem A.1 we have

W (χ ) ∈
[

W 1
p ′ (Ω+)

]3
, W (χ ) ∈

[
W 1

p ′, loc(Ω−)
]3

∩ Z (Ω−), p ′ > 1.

Further, by Theorem A.2, formula (A.12), and relation (4.73) it follows that the double layer potential W (χ ) solves
the homogeneous exterior Neumann problem in Ω− and in accordance with Theorem 3.2 vanishes in Ω−. Therefore
due to Theorem A.2{

W (χ )
}+

−
{
W (χ )

}−
= χ = 0 on S,

which completes the proof. □

Further, let us introduce the system which can be employed for constructing approximate solutions to the mixed
Dirichlet–Neumann problem,

Φ(−)
M :=

{
ν(l)(x)

}∞

l=1, x ∈ S, (4.74)
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where

ν(l)(x) :=

{
ϕ(l)(x) for x ∈ SD ,

T (∂, n(x))ϕ(l)(x) for x ∈ SN ,
(4.75)

where ϕ(l) is given in (4.56), SD and SN are the Dirichlet and Neumann parts in the mixed boundary value problem
(M)−ω .

It is evident that the vector ν(l) can be considered as the following pair of restrictions

ν̃(l)
=

(
rSD

ν(l), rSN
ν(l))

≡
(
rSD

ϕ(l), rSN
T (∂, n(x))ϕ(l)) .

Similarly, the system Φ(−)
M defined in (4.74) can be identified with the system

Φ̃(−)
M := {̃ν(l)

}
∞

l=1.

Lemma 4.5. The system Φ(−)
M is linearly independent on S.

Proof. Let m ∈ N be a natural number and
m∑

l=1

Cl ν
(l)(x) = 0, x ∈ S, (4.76)

where Cl are complex valued constants.
As in the proof of Lemma 4.1, we denote by z(k), k = 1, 2, . . . ,m0, the points involved in the expression (4.76)

and without loss of generality we assume again that for each z(k), k = 1, 2, . . . ,m0, the expression (4.76) contains all
three vector functions associated with the point z(k) (see (4.58)) implying that m is multiple of 3, m = 3m0.

Now, let us construct the vector

u(m)(x) :=

m∑
l=1

Cl ϕ
(l)(x), x ̸∈ Ω+

0 . (4.77)

Evidently, u(m) is a radiating analytic vector function in R3
\ {z(k)

}
m0
k=1 which solves the homogeneous differential

equation (4.70) in R3
\ {z(k)

}
m0
k=1. In view of (4.77), (4.76), and (4.75) it then follows that u(m) solves the exterior

homogeneous mixed problem (M)−ω and due to the existence and uniqueness Theorem 3.3 we conclude that u(m)
= 0

in Ω− and consequently, by the analyticity property, u(m)
= 0 in R3

\ {z(k)
}

m0
k=1. By the same arguments as in the proof

of Lemma 4.1 we show that all the constants Cl , l = 1, 2, . . . ,m, equal to zero, which completes the proof. □

Lemma 4.6. The system Φ̃(−)
M is complete in

[
B

1−
1
p

p, p (SD)
]3

×
[
B

−
1
p

p, p(SN )
]3 for 4/3 < p < 4.

Proof. As in Lemma 4.2, to prove the density of the linear span of the system Φ̃(−)
M in

[
B

1−
1
p

p, p (SD)
]3

×
[
B

−
1
p

p, p(SN )
]3

it suffices to show that if a pair of vector functions χ̃ = (χD , χN ) belongs to the adjoint space, χ̃ = (χD , χN ) ∈[
B̃

−1+
1
p

p ′, p ′ (SD)
]3

×
[
B̃

1
p

p ′, p ′ (SN )
]3 with 1/p + 1/p ′

= 1, and

⟨χ̃ , ν̃(l)
⟩S := ⟨χD , ν

(l)
⟩SD + ⟨χN , ν

(l)
⟩SN

= ⟨χD , ϕ
(l)

⟩SD + ⟨T (∂, n(x))ϕ(l) , χN ⟩SN = 0, l = 1, 2, . . . , (4.78)

then χ̃ = 0.
Here the symbols ⟨·, ·⟩SD and ⟨·, ·⟩SN denote duality brackets between the mutually adjoint pairs of Besov spaces

[B̃
−1+

1
p

p,p (SD)]3 and [B
1−

1
p

p ′,p ′ (SD)]3, and [B
−

1
p

p,p (SN )]3 and [B̃
1
p

p ′,p ′ (SN )]3, respectively.
Condition (4.78) can be rewritten as

⟨χD , Γ
( j)(· − z(k))⟩SD + ⟨T (∂, n)Γ ( j)(· − z(k)) , χN ⟩SN = 0, j = 1, 2, 3, k = 1, 2, . . .

which is equivalent to the relation

V (χD )(z(k)) + W (χN )(z(k)) = 0, k = 1, 2, . . . , (4.79)
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where V (χD ) and W (χN ) are the single and double layer potentials on S with the densities

χD ∈
[
B̃

−1+
1
p

p ′, p ′ (SD)
]3
, χN ∈

[
B̃

1
p

p ′, p ′ (SN )
]3
. (4.80)

Due to the density property of the set {z(k)
}
∞

k=1 in Ω+

0 , from (4.79) we get

U (z) := V (χD )(z) + W (χN )(z) = 0, z ∈ Ω+

0 .

By analyticity property of the layer potentials in domains Ω± we conclude

U (z) = V (χD )(z) + W (χN )(z) = 0, z ∈ Ω+. (4.81)

Note that if 4/3 < p < 4, then 4/3 < p ′ < 4, and by Theorem A.1 we have

U ∈
[

W 1
p ′ (Ω+)

]3
, U ∈

[
W 1

p ′, loc(Ω−)
]3

∩ Z (Ω−), 4/3 < p ′ < 4. (4.82)

Further, by Theorem A.2 and relations (4.81) and (4.80) we find that{
U

}+
−

{
U

}−
= χN = 0 on SD,

{
T (∂, n)U

}+
−

{
T (∂, n)U

}−
= −χD = 0 on SN .

Whence it follows that U belongs to the class (4.82) and solves the homogeneous exterior mixed problem (M)−ω . In
accordance with the existence and uniqueness Theorem 3.3 U vanishes in Ω− implying χD = χN = 0 on S. □

Next, we introduce the system of vector functions which can be employed for constructing approximate solutions
to the basic transmission problem (BT)ω.

By ϕ(κ,l)(x) and ψ (κ,l)(x) we denote the vector functions defined by formulas (4.56) and (4.57) respectively
constructed by the columns Γ ( j,κ), κ = 1, 2, j = 1, 2, 3, of the fundamental matrix Γ (κ) associated with the operator
A(κ)(∂, ω). Here κ = 1 corresponds to the bounded domain Ω+

= Ω (1), while κ = 2 corresponds to the exterior
unbounded domain Ω−

= Ω (2). The set of points {z(k)
}
∞

k=1 ⊂ Ω+

0 ⊂ Ω (1) and {y(k)
}
∞

k=1 ⊂ Ω−

0 ⊂ Ω (2) are the same as
above.

Let

ΦBT :=
{
Ψ (l,1)(x) ,Φ(l,2)(x)

}∞

l=1, x ∈ S,

where Ψ (l,1)(x) and Φ(l,2)(x) are six vectors defined on S by the relations

Ψ (l,1)(x) =
(
ψ (l,1)(x), T (1)(∂, n(x))ψ (l,1)(x)

)⊤
, x ∈ S, (4.83)

Φ(l,2)(x) =
(
−ϕ(l,2)(x), −T (2)(∂, n(x))ϕ(l,2)(x)

)⊤
, x ∈ S. (4.84)

Lemma 4.7. The system ΦBT is linearly independent on S.

Proof. Let m1,m2 ∈ N be arbitrary natural numbers and
m1∑
l=1

Cl,1 Ψ
(l,1)(x) +

m2∑
l=1

Cl,2 Φ
(l,2)(x) = 0, x ∈ S, (4.85)

where Cl,κ , κ = 1, 2, are complex valued constants.
Denote by z(k), k = 1, 2, . . . , p2, and y(k), k = 1, 2, . . . , p1, the points involved in the expression (4.85) and without

loss of generality assume that for each z(k), k = 1, 2, . . . , p2, and for each y(k), k = 1, 2, . . . , p1, the expression (4.85)
contains all three vector functions corresponding to the points z(k) and y(k) (see (4.58) and (4.59)) implying that m2

and m1 are multiples of 3, m2 = 3p2 and m1 = 3p1.
Now, let us construct the vectors

u(m1,1)(x) :=

m1∑
l=1

Cl,1 ψ
(l,1)(x), x ̸∈ Ω−

0 , (4.86)

u(m2,2)(x) :=

m2∑
l=1

Cl,2 ϕ
(l,2)(x), x ̸∈ Ω+

0 . (4.87)
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Evidently, u(m1,1) and u(m2,2) are radiating analytic vector function in R3
\ {y(k)

}
p1
k=1 and R3

\ {z(k)
}

p2
k=1 respectively and

solve the homogeneous differential equations

A(1)(∂, ω)u(m1,1)(x) = 0, x ̸∈ Ω−

0 , (4.88)

A(2)(∂, ω)u(m2,2)(x) = 0, x ̸∈ Ω+

0 . (4.89)

In view of relations (4.83)–(4.89) it then follows that the pair
(
u(m1,1), u(m2,2)

)
solves the homogeneous basic

transmission problem (BT)ω and due to the existence and uniqueness Theorem 3.5 we conclude that u(m1,1)
= 0

in Ω+ and u(m2,2)
= 0 in Ω−. Consequently, by the analyticity property, u(m1,1)

= 0 in R3
\ {y(k)

}
p1
k=1 and u(m2,2)

= 0
in R3

\ {z(k)
}

p2
k=1. Now, by the same arguments as in the proof of Lemma 4.1 we derive that Cl,1 = 0, l = 1, 2, . . . ,m1,

and Cl,2 = 0, l = 1, 2, . . . ,m2, which completes the proof. □

Lemma 4.8. The system ΦBT is complete in
[
B

1−
1
p

p, p (S)
]3

×
[
B

−
1
p

p, p(S)
]3 for p > 1.

Proof. To prove the density property of the linear span of the system ΦBT in
[
B

1−
1
p

p, p (S)
]3

×
[
B

−
1
p

p, p(S)
]3 it suffices

to show that if a pair of vector functions χ = (g, h) belongs to the adjoint space, χ = (g, h) ∈
[
B

−1+
1
p

p ′, p ′ (S)
]3

×[
B

1
p

p ′, p ′ (S)
]3 with 1/p + 1/p ′

= 1, and

⟨χ , Ψ (l,1)
⟩S := ⟨g , ψ (l,1)

⟩S + ⟨h , T (1)(∂, n)ψ (l,1)
⟩S = 0, l = 1, 2, . . . , (4.90)

⟨χ , Φ(l,2)
⟩S := ⟨g , ϕ(l,2)

⟩S + ⟨h , T (2)(∂, n)ϕ(l,2)
⟩S = 0, l = 1, 2, . . . , (4.91)

then χ = (g, h) = 0.
Condition (4.90) and (4.91) can be rewritten as

⟨g , Γ ( j,1)(· − y(k))⟩S + ⟨T (1)(∂, n)Γ ( j,1)(· − y(k)) , h⟩S = 0, j = 1, 2, 3, k = 1, 2, . . .

⟨ g , Γ ( j,2)(· − z(k))⟩S + ⟨ T (2)(∂, n)Γ ( j,2)(· − z(k)) , h⟩S = 0, j = 1, 2, 3, k = 1, 2, . . .

which is equivalent to the relation

V (1)(g)(y(k)) + W (1)(h)(y(k)) = 0, k = 1, 2, . . . , y(k)
∈ Ω−

0 , (4.92)

V (2)(g)(z(k)) + W (2)(h)(z(k)) = 0, k = 1, 2, . . . , z(k)
∈ Ω+

0 , (4.93)

where V (κ)(g) and W (κ)(h) are the single and double layer potentials with the integration surface S constructed by the
fundamental matrix Γ (κ) with the densities

g ∈
[
B

−1+
1
p

p ′, p ′ (S)
]3
, h ∈

[
B

1
p

p ′, p ′ (S)
]3
, p ′ > 1.

Due to the density property of the sets {y(k)
}
∞

k=1 in Ω−

0 and {z(k)
}
∞

k=1 in Ω+

0 , from (4.92) and (4.93) we get

V (1)(g)(z) + W (1)(h)(z) = 0, z ∈ Ω−

0 , (4.94)

V (2)(g)(z) + W (2)(h)(z) = 0, z ∈ Ω+

0 . (4.95)

Due to analyticity of the layer potentials in domains Ω± we conclude

U (1)(z) := V (1)(g)(z) + W (1)(h)(z) = 0, z ∈ Ω−, (4.96)

U (2)(z) := −V (2)(g)(z) − W (2)(h)(z) = 0, z ∈ Ω+. (4.97)

Note that by Theorem A.1 we have

U (1)
∈

[
W 1

p ′ (Ω+)
]3
, U (2)

∈
[
W 1

p ′, loc(Ω−)
]3

∩ Z (Ω−), p ′ > 1.

Further, by Theorem A.2 and with the help of relations (4.94)–(4.97) we find that{
U (1)}+

−
{
U (2)}−

= 0 on S,{
T (1)(∂, n)U (1)}+

−
{
T (2)(∂, n)U (2)}−

= 0 on S.
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Whence it follows that (U (1) and U (2)) belong to the appropriate classes of vector functions and solve the homogeneous
basic transmission problem (BT)−ω . In accordance with the existence and uniqueness Theorem 3.5 then U (1) vanishes
in Ω+ and U (2) vanishes in Ω− which along with (4.96) and (4.97) imply g = h = 0 on S. □

Finally, we introduce the system of vector functions which can be employed for constructing approximate solutions
to the mixed transmission problem (MT)ω which as a particular case covers the crack type problem.

Let us define the three vectors

Λ(l,1)(x) :=

{
ψ (l,1)(x) for x ∈ ST ,

T (1)(∂, n(x))ψ (l,1)(x) for x ∈ SC ,
l = 1, 2, . . . (4.98)

Λ(l,2)(x) :=

{
−ϕ(l,2)(x) for x ∈ ST ,

T (2)(∂, n(x))ϕ(l,2)(x) for x ∈ SC ,
l = 1, 2, . . . (4.99)

where ψ (l,1) and ϕ(l,2) are the same as in the above introduced system ΦBT for the basic transmission problem.
Further, we define the six vectors

Θ (l,1)(x) =
(
Λ(l,1)(x), T (1)(∂, n(x))ψ (l,1)(x)

)⊤
, x ∈ S, (4.100)

Θ (l,2)(x) =
(
Λ(l,2)(x), −T (2)(∂, n(x))ϕ(l,2)(x)

)⊤
, x ∈ S, (4.101)

and set

ΦMT :=
{
Θ (l,1)(x) ,Θ (l,2)(x)

}∞

l=1, x ∈ S. (4.102)

Lemma 4.9. The system ΦMT is linearly independent on S.

Proof. Let m1,m2 ∈ N be arbitrary natural numbers and let
m1∑
l=1

Cl,1 Θ
(l,1)(x) +

m2∑
l=1

Cl,2 Θ
(l,2)(x) = 0, x ∈ S, (4.103)

with some complex constants Cl,κ , κ = 1, 2,.
Denote by z(k), k = 1, 2, . . . , p2, and y(k), k = 1, 2, . . . , p1, the points involved in the expression (4.103) and

without loss of generality assume again that for each z(k), k = 1, 2, . . . , p2, and for each y(k), k = 1, 2, . . . , p1, the
expression (4.85) contains all three vector functions corresponding to the points z(k) and y(k) implying that m2 and m1
are multiples of 3, m2 = 3p2 and m1 = 3p1.

Now, let us construct the vectors

u(m1,1)(x) :=

m1∑
l=1

Cl,1 ψ
(l,1)(x), x ̸∈ Ω−

0 , (4.104)

u(m2,2)(x) :=

m2∑
l=1

Cl,2 ϕ
(l,2)(x), x ̸∈ Ω+

0 . (4.105)

Evidently, u(m1,1) and u(m2,2) are radiating analytic vector function in R3
\ {y(k)

}
p1
k=1 and R3

\ {z(k)
}

p2
k=1 respectively and

solve the homogeneous differential equations

A(1)(∂, ω)u(m1,1)(x) = 0, x ̸∈ Ω−

0 , (4.106)

A(2)(∂, ω)u(m2,2)(x) = 0, x ̸∈ Ω+

0 . (4.107)

In view of relations (4.98)–(4.107) it then follows that the pair
(
u(m1,1), u(m2,2)

)
solves the homogeneous mixed

transmission problem (MT)ω with equivalently transformed conditions (3.42)–(3.44) and due to the existence and
uniqueness Theorem 3.7 we conclude that u(m1,1)

= 0 in Ω+ and u(m2,2)
= 0 in Ω−. Consequently, by the analyticity

property, u(m1,1)
= 0 in R3

\ {y(k)
}

p1
k=1 and u(m2,2)

= 0 in R3
\ {z(k)

}
p2
k=1. Now, by the same arguments as in the proof of

Lemma 4.1 we derive that Cl,1 = 0, l = 1, 2, . . . ,m1, and Cl,2 = 0, l = 1, 2, . . . ,m2,which completes the proof. □

As in the case of the system Φ(−)
M , here we can identify the system ΦMT with the system Φ̃MT defined as

Φ̃MT := {Θ̃ (l,1), Θ̃ (l,2)
}
∞

l=1,
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where

Θ̃ (l,1)(x) =
(
rST
ψ (l,1), rSC

T (1)(∂, n(x))ψ (l,1), rS T (1)(∂, n(x))ψ (l,1))⊤
,

Θ̃ (l,2)(x) =
(
rST
ϕ(l,2), rSC

T (2)(∂, n(x))ϕ(l,2), rS T (2)(∂, n(x))ϕ(l,2))⊤
.

Lemma 4.10. The system Φ̃MT is complete in the space[
B

1−
1
p

p, p (ST )
]3

×
[
B

−
1
p

p, p(SC )
]3

×
[
B

−
1
p

p, p(S)
]3 (4.108)

for 4/3 < p < 4.

Proof. To prove the density property of the linear span of the system Φ̃MT in the space (4.108) it suffices to show that
if a pair of vector functions χ̃ = ( f, g, h) belongs to the adjoint space,

χ̃ = ( f, g, h) ∈

[[
B̃

−1+
1
p

p ′, p ′ (ST )
]3

×
[
B̃

1
p

p ′, p ′ (SC )
]3

]
×

[
B

1
p

p ′, p ′ (S)
]3

with 1/p + 1/p ′
= 1, and for all l = 1, 2, . . . ,

⟨χ̃ , Θ̃ (l,1)
⟩S := ⟨ f , ψ (l,1)

⟩ST +⟨g , T (1)(∂, n)ψ (l,1)
⟩SC +⟨h , T (1)(∂, n)ψ (l,1)

⟩S = 0, (4.109)

⟨χ̃ , Θ̃ (l,2)
⟩S := −⟨ f , ϕ(l,2)

⟩ST +⟨g , T (2)(∂, n)ϕ(l,2)
⟩SC −⟨h , T (2)(∂, n)ϕ(l,2)

⟩S = 0, (4.110)

then χ̃ = ( f, g, h) = 0.
Condition (4.109) and (4.110) can be rewritten as

⟨ f , Γ ( j,1)(· − y(k))⟩ST + ⟨g , T (1)(∂, n)Γ ( j,1)(· − y(k))⟩SC + ⟨T (1)(∂, n)Γ ( j,1)(· − y(k)) , h⟩S = 0,

− ⟨ f , Γ ( j,2)(· − z(k))⟩ST + ⟨g , T (2)(∂, n)Γ ( j,2)(· − z(k))⟩SC − ⟨T (2)(∂, n)Γ ( j,2)(· − z(k)) , h⟩S = 0,
j = 1, 2, 3, k = 1, 2, . . .

which is equivalent to the relations

V (1)( f )(y(k)) + W (1)(g)(y(k)) + W (1)(h)(y(k)) = 0, k = 1, 2, . . . , y(k)
∈ Ω−

0 ,

− V (2)( f )(z(k)) + W (2)(g)(z(k)) − W (2)(h)(z(k)) = 0, k = 1, 2, . . . , z(k)
∈ Ω+

0 ,

where V (κ)( f ), V (κ)(g), and W (κ)(h) are the single and double layer potentials constructed by the fundamental matrix
Γ (κ) with the integration surface S and the densities

f ∈
[
B̃

−1+
1
p

p ′, p ′ (ST )
]3
, g ∈

[
B̃

1
p

p ′, p ′ (SC )
]3
, h ∈

[
B

1
p

p ′, p ′ (S)
]3
, 4/3 < p ′ < 4. (4.111)

Due to the density property of the sets {y(k)
}
∞

k=1 in Ω−

0 and {z(k)
}
∞

k=1 in Ω+

0 , from (4.92) and (4.93) we get

V (1)( f )(z) + V (1)(g)(z) + W (1)(h)(z) = 0, z ∈ Ω−

0 ,

− V (2)( f )(z) + W (2)(g)(z) − W (2)(h)(z) = 0, z ∈ Ω+

0 .

Due to analyticity of the layer potentials in domains Ω± we conclude

U (1)(z) := V (1)( f )(z) + W (1)(g)(z) + W (1)(h)(z) = 0, z ∈ Ω−, (4.112)

U (2)(z) := −V (2)( f )(z) + W (2)(g)(z) − W (2)(h)(z) = 0, z ∈ Ω+. (4.113)

Note that by Theorem A.1 we have

U (1)
∈

[
W 1

p ′ (Ω+)
]3
, U (2)

∈
[
W 1

p ′, loc(Ω−)
]3

∩ Z (Ω−), 4/3 < p ′ < 4. (4.114)

Further, by Theorem A.2 and relations (4.112) and (4.113) we find that{
U (1)}+

= g + h on S, (4.115){
T (1)(∂, n)U (1)}+

= − f on S, (4.116){
U (2)}−

= −g + h on S, (4.117){
T (2)(∂, n)U (2)}−

= − f on S. (4.118)
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Whence in view of (4.111) we find{
U (1)}+

−
{
U (2)}−

= 0 on ST , (4.119){
T (1)(∂, n)U (1)}+

+
{
T (2)(∂, n)U (2)}−

= 0 on SC , (4.120){
T (1)(∂, n)U (1)}+

−
{
T (2)(∂, n)U (2)}−

= 0 on S. (4.121)

From (4.119)–(4.121) and (4.112)–(4.114) it follows that the pair (U (1),U (2)) belongs to the appropriate class of
functions and solves the homogeneous mixed transmission problem (MT)−ω . In accordance with the existence and
uniqueness Theorem 3.7 then U (1) vanishes in Ω+ and U (2) vanishes in Ω− which along with (4.115)–(4.118) imply
f = g = h = 0 on S. □

4.2. Construction of approximate solutions

In this subsection we describe how to construct approximate solutions of the above considered boundary value
problems. In what follows ϕ(l), ψ (l), ϕ(l,κ), ψ (l,κ) , κ = 1, 2, are the vector functions introduced in the previous
subsection.

4.2.1. The Dirichlet problem
Let us look for an approximate solution of the exterior Dirichlet problem (D)−ω , (see (2.1), (2.3)) in the form

u(m)(x) =

m∑
l=1

al ϕ
(l)(x), x ∈ Ω−, m ∈ N, (4.122)

where al are sought-for complex valued constants. These constants are to be chosen in such a way that the norm
∥u − u(m)

∥[W 1
p(Ω−∩B(R))]3 of the difference of the exact solution u and the approximate solution u(m) should be small.

Note that for all m the vector function u(m) solves the homogeneous differential equation (2.1) and is analytic and
radiating in R3

\ Ω+

0 .
Due to Theorem 3.1 and estimate (3.20), if the trace of u(m) on the boundary S approximates the boundary function

f with a sufficiently good accuracy in the space [B1−1/p
p, p (S)]3, then the norm ∥u − u(m)

∥[W 1
p(Ω−∩B(R))]3 for fixed R will

also be sufficiently small and u(m) can be considered as a good approximation of the exact solution u in the region
Ω−

∩ B(R)).
Lemmas 4.1 and 4.2 show that a good approximation on S of a boundary vector function f ∈ [B1−1/p

p, p (S)]3 is
possible within an arbitrary accuracy by the linear combinations of type (4.122):

m∑
l=1

al ϕ
(l)(x) ≈ f (x), x ∈ S. (4.123)

Thus, construction of an approximate solution of the Dirichlet BVP is reduced to the approximation problem
for the boundary vector function into the linearly independent complete system of vector functions Φ(−)

D explicitly
constructed by the columns of the fundamental solution matrix.

This approximation can be practically carried out by choosing finite sets of functions from the system Φ(−)
D

appropriately and then applying some well-known methods, e.g., Galerkin, collocation, least square, adaptive cross
approximation etc. However, this is a very serious problem which needs a special investigation from the point of view
of numerical analysis (cf. [16–19,38,39]).

Similar approach with word for word arguments can be applied to all BVP considered in Section 3. Therefore,
below we will write down schematically only the expressions of approximate solutions in the corresponding domains
and formulate the desired boundary approximation problems (counterparts of (4.122) and (4.123)).

4.2.2. The Neumann problem
Approximate solution of the exterior Neumann problem (see (2.1), (2.4))

u(m)(x) =

m∑
l=1

al ϕ
(l)(x), x ∈ Ω−, m ∈ N,

where al are sought-for complex valued constants.
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Desired boundary approximation of the vector function F ∈ [B−1/p
p, p (S)]3 in the system Φ(−)

N (see Theorem 3.2 and
Lemmas 4.3 and 4.4):

m∑
l=1

al T (∂, n(x))ϕ(l) ≈ F on S.

4.2.3. The mixed problem
Approximate solution of the exterior mixed problem (see (2.1), (2.5), (2.6))

u(m)(x) =

m∑
l=1

al ϕ
(l)(x), x ∈ Ω−, m ∈ N,

where al are sought-for complex valued constants.
Desired boundary approximation on SD and SN of the vector functions f ∗

∈ [B1−1/p
p, p (SD)]3 and F∗

∈ [B−1/p
p, p (SN )]3

in the system Φ̃(−)
M (see Theorem 3.3 and Lemmas 4.5 and 4.6):

m∑
l=1

al ϕ
(l) ≈ f ∗ on SD,

m∑
l=1

al T (∂, n)ϕ(l) ≈ F∗ on SN .

4.2.4. The basic transmission problem
Approximate solution of the basic transmission problem (see (2.1), (2.12)–(2.13))

u(m1,1)(x) :=

m1∑
l=1

al,1 ψ
(l,1)(x), x ∈ Ω+, m1 ∈ N,

u(m2,2)(x) :=

m2∑
l=1

al,2 ϕ
(l,2)(x), x ∈ Ω−, m2 ∈ N,

where al,1 and al,2 are sought-for complex valued constants.
Desired boundary approximation on SD and SN of the vector functions f ∈ [B1−1/p

p, p (S)]3 and F ∈ [B−1/p
p, p (S)]3 in

the system ΦBT (see Theorem 3.5 and Lemmas 4.7 and 4.8):
m1∑
l=1

al,1 ψ
(l,1)

−

m2∑
l=1

al,2 ϕ
(l,2) ≈ f on S,

m1∑
l=1

al,1 T (1)(∂, n)ψ (l,1)
−

m2∑
l=1

al,2 T (2)(∂, n)ϕ(l,2) ≈ F on S.

4.2.5. The mixed transmission problem
Approximate solution of the mixed transmission problem (see (2.1), (2.15)–(2.18), and (3.42)–(3.45))

u(m1,1)(x) :=

m1∑
l=1

al,1 ψ
(l,1)(x), x ∈ Ω+, m1 ∈ N,

u(m2,2)(x) :=

m2∑
l=1

al,2 ϕ
(l,2)(x), x ∈ Ω−, m2 ∈ N,

where al,1 and al,2 are sought-for complex valued constants.
Desired boundary approximation on ST , SC , and S of the vector functions

f (T )
∈ [B1−1/p

p, p (ST )]3, F (+)
+ F (−)

∈ [B−1/p
p, p (SC )]3, F0 ∈ [B−1/p

p, p (S)]3
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in the system Φ̃MT (see Theorem 3.7 and Lemmas 4.9 and 4.10):
m1∑
l=1

al,1 ψ
(l,1)

−

m2∑
l=1

al,2 ϕ
(l,2) ≈ f (T ) on ST ,

m1∑
l=1

al,1 T (1)(∂, n)ψ (l,1)
+

m2∑
l=1

al,2 T (2)(∂, n)ϕ(l,2) ≈ F (+)
+ F (−) on SC ,

m1∑
l=1

al,1 T (1)(∂, n)ψ (l,1)
−

m2∑
l=1

al,2 T (2)(∂, n)ϕ(l,2) ≈ F0 on S.

Due to Remark 3.10 the crack problem is a particular case of a special mixed transmission problem and its approximate
solution can be constructed in accordance with the approach described in the present subsection.
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Appendix A. Layer potentials and their properties

Here we collect some auxiliary material needed in the main text of the paper concerning properties of layer
potentials and the corresponding boundary operators.

Denote by Γ (x, ω) and Γ (x) respectively Kupradze’s and Kelvin’s matrices of fundamental solutions of the
differential operator of elastic oscillations A(∂, ω) and its principal homogeneous part A(∂) (Lamé’s operator)

A(∂, ω)Γ (x, ω) = I3 δ(x), A(∂)Γ (x) = I3 δ(x),

where δ(x) is the Dirac delta function. These matrices read as (see [12, Ch. 2])

Γ (x, ω) = [Γk j (x, ω)]3×3, Γk j (x, ω) =

2∑
l=1

(δk jαl + βl ∂k ∂ j )
eikl |x |

|x |
, (A.1)

αl = −
δ2l

4π µ
, βl =

(−1)l+1

4π ϱ ω2 , k1 ≡ kp = ω

√
ϱ

λ+ 2µ
, k2 ≡ ks = ω

√
ϱ

µ
,

Γ (x) = [Γk j (x)]3×3, Γk j (x) =
δk j λ

′

|x |
+
µ′ xk x j

|x |
3 ,

λ′
= −

λ+ 3µ
8π µ (λ+ 2µ)

, µ′
= −

λ+ µ

8π µ (λ+ 2µ)
.

The following relations hold true

Γ (x, ω) = Γ (−x, ω) = [Γ (x, ω)]⊤, Γ (x) = Γ (−x) = [Γ (x)]⊤,
|Γpq (x, ω)| ≤ c(λ,µ) |x |

−1, |Γ (pq x, ω) − Γpq (x)| ≤ |ω| c(λ,µ),
|∂ jΓpq (x, ω)−∂ jΓpq (x)| ≤ |ω|

2c(λ,µ), |∂ j∂lΓpq (x, ω)−∂ j∂lΓpq (x)| ≤ c(λ,µ, ω)|x |
−1,

(A.2)

where c(λ,µ) and c(λ,µ, ω) are positive constants. These relations show that the Kelvin matrix of statics Γ (x) is
the principal singular homogeneous part of Kupradze’s matrix Γ (x, ω). It is evident that the entries of Γ (x, ω) and
Γ (x) are analytic functions of the real variable x ∈ R3

\ {0} and, moreover, the columns of Γ (x, ω) satisfy the
Sommerfeld–Kupradze radiation conditions at infinity.

Introduce the single and double layer potentials of elastic oscillations

V (g)(x) :=

∫
S
Γ (x − y, ω) g(y) d Sy, x ∈ R3

\ S , (A.3)

W (h)(x) :=

∫
S
[T (∂y, n(y))Γ (x − y, ω)]⊤ h(y) d Sy, x ∈ R3

\ S, (A.4)

where g = (g1, g2, g3)⊤ and h = (h1, h2, h3)⊤ are densities of the potentials.
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By standard arguments and with the help of Green’s second formula one can derive the following integral
representation formula for a regular solution u to the homogeneous equation A(∂, ω)u = 0 in the domain Ω+,

W ({u}
+)(x) − V ({T u}

+)(x) =

{
u(x) in Ω+,

0 in Ω−.
(A.5)

Similarly, for a radiating regular solution of the homogeneous equation A(∂, ω)u = 0 in the domain Ω− we have an
analogous representation formula (see [12,27])

− W ({u}
−)(x) + V ({T u}

−)(x) =

{
0 in Ω+,

u(x) in Ω−.
(A.6)

These representation formulae can be extended to the classes [W 1
p(Ω+)]3 and [W 1

p, loc(Ω−)]3
∩Z (Ω−), and to Lipschitz

domains. From these formulae it is evident that any solution to the homogeneous equation is actually an analytic vector
function of the real variable x ∈ Ω±. Further, if u solves the homogeneous equation A(∂, ω)u = 0 in Ω+ and Ω−,
and r

Ω+
u ∈ [W 1

p(Ω+)]3, r
Ω−

u ∈ [W 1
p, loc(Ω−)]3

∩ Z (Ω−) then by adding formulae (A.5) and (A.6) we get

u(x) = W
(
[u]S

)
(x) − V

(
[T u]S

)
(x) in Ω+

∪ Ω−

with [u]S := {u}
+

S − {u}
−

S , [T u]S := {T u}
+

S − {T u}
−

S ,

which shows that if on some open part S1 ⊂ S of the common boundary S of the adjacent domains Ω+ and Ω−

the jumps of the Cauchy data equal to zero, i.e., rS1
[{u}

+
− {u}

−] = 0 and rS1
[{T u}

+
− {T u}

−] = 0, then the
vector-function ũ defined by the equality

ũ :=

⎧⎨⎩u(x) for x ∈ Ω+ ,

u(x) for x ∈ Ω− ,

{u(x)}+ for x ∈ S1,

is an analytic vector function in the connected domain R3
\ S2 with S2 = S \ S1.

Further we introduce the boundary operators generated by the single and double layer potentials,

(H g)(x) :=

∫
S
Γ (x − y, ω) g(y) d Sy , x ∈ S, (A.7)

(K g)(x) :=

∫
S

[
T (∂x , n(x))Γ (x − y, ω)

]
g(y) d Sy, x ∈ S, (A.8)

(K̃ h)(x) :=

∫
S

[
T (∂y, n(y))Γ (x − y, ω)

]⊤ h(y) d Sy, x ∈ S, (A.9)

(Lh)(x) :=
{

T (∂x , n(x))W (h)(x)
}±
, x ∈ S. (A.10)

The boundary operators H and L are pseudodifferential operators of order −1 and 1, respectively, while the operators
K and K̃ are mutually adjoint singular integral operators–pseudodifferential operators of order 0 (for details
see [12,40–45]).

We will employ the same notation equipped with subscript “0” for the elastostatic potentials constructed by the
Kelvin matrix Γ (x − y) and the corresponding boundary operators.

Now we describe the basic mapping and jump properties of the above introduced layer potentials. They can be
found in [24–26,35,40,41,43–55].

Theorem A.1. Let S be C∞-smooth and 1 < p < ∞, 1 ≤ t ≤ ∞, and s ∈ R. The operators

V :
[

Bs
p,p(S)

]3
−→

[
H

s+1+
1
p

p (Ω+)
]3

[ [
Bs

p,p(S)
]3

−→
[

H
s+1+

1
p

p, loc (Ω−)
]3

∩ Z (Ω−)
]
,

:
[

Bs
p,t (S)

]3
−→

[
B

s+1+
1
p

p,t (Ω+)
]3

[ [
Bs

p,t (S)
]3

−→
[

B
s+1+

1
p

p,t, loc (Ω−)
]3

∩ Z (Ω−)
]
,

W :
[

Bs
p,p(S)

]3
−→

[
H

s+ 1
p

p (Ω+)
]3

[ [
Bs

p,p(S)
]3

−→
[

H
s+ 1

p
p, loc(Ω−)

]3
∩ Z (Ω−)

]
,

:
[

Bs
p,t (S)

]3
−→

[
B

s+ 1
p

p,t (Ω+)
]3

[ [
Bs

p,t (S)
]3

−→
[

B
s+ 1

p
p,t, loc(Ω−)

]3
∩ Z (Ω−)

]
,

are continuous.
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If S is Lipschitz, then the operators

V :
[

H
−

1
2

2 (S)
]3

−→
[

H 1
2 (Ω+)

]3
[ [

H
−

1
2

2 (S)
]3

−→
[

H 1
2, loc(Ω−)

]3
∩ Z (Ω−)

]
,

W :
[

H
1
2

2 (S)
]3

−→
[

H 1
2 (Ω+)

]3
[ [

H
1
2

2 (S)
]3

−→
[

H 1
2, loc(Ω−)

]3
∩ Z (Ω−)

]
,

are continuous.

Theorem A.2. Let S be C∞-smooth and 1 < p < ∞, 1 ≤ t ≤ ∞, and g ∈
[

B
−

1
p

p,t (S)
]3
, h ∈

[
B

1−
1
p

p,t (S)
]3
. Then{

V (g)
}+

=
{

V (g)
}−

= H g on S, (A.11){
T (∂, n)V (g)

}±
=

[
∓ 2−1 I3 + K

]
g on S,{

W (h)
}±

=
[
± 2−1 I3 + K̃

]
h on S,{

T (∂, n)W (h)
}+

=
{

T (∂, n)W (h)
}−

= L h on S. (A.12)

The same relations hold for a Lipschitz boundary S and p = t = 2.

Theorem A.3. (i) Let S be C∞-smooth and 1 < p < ∞, 1 ≤ t ≤ ∞, s ∈ R. The operators

H :
[
H s

p(S)
]3

−→
[
H s+1

p (S)
]3

[[
Bs

p,t (S)
]3

−→
[
Bs+1

p,t (S)
]3

]
,

±2−1 I3 + K, ±2−1 I3 + K̃ :
[
H s

p(S)
]3

−→
[
H s

p(S)
]3

[[
Bs

p,t (S)
]3

−→
[
Bs

p,t (S)
]3

]
,

L :
[
H s+1

p (S)
]3

−→
[
H s

p(S)
]3

[[
Bs+1

p,t (S)
]3

−→
[
Bs

p,t (S)
]3

]
,

are continuous Fredholm operators with zero index. The principal homogeneous symbol matrices of these operators
are non-degenerate. Moreover, the principal homogeneous symbol matrices of the operators −H and L are positive
definite.

(ii) If S is Lipschitz, then the operators

H :
[

H
−

1
2

2 (S)
]3

−→
[

H
1
2

2 (S)
]3
,

±2−1 I3 + K :
[

H
−

1
2

2 (S)
]3

−→
[

H
−

1
2

2 (S)
]3
,

±2−1 I3 + K̃ :
[

H
1
2

2 (S)
]3

−→
[

H
1
2

2 (S)
]3
,

L :
[

H
1
2

2 (S)
]3

−→
[

H
−

1
2

2 (S)
]3
,

are continuous Fredholm operators with zero index, and moreover, there exist positive constants Ck , k = 1, 2, 3, 4,
such that

⟨h , −Hh⟩S ≥ C1 ∥h∥
2

[H
−

1
2

2 (S)]3
−C2 ∥T h∥

2

[H
−

1
2

2 (S)]3
for all h ∈ [H

−
1
2

2 (S)]3,

⟨Lg , g⟩S ≥ C3 ∥g∥
2

[H
1
2

2 (S)]3
− C4 ∥g∥

2
[H0

2 (S)]3 for all g ∈ [H
1
2

2 (S)]3,

(A.13)

where the symbol ⟨·, ·⟩S denotes the duality brackets between the mutually adjoint spaces [H
−

1
2

2 (S)]3 and [H
1
2

2 (S)]3,

and T : [H
−

1
2

2 (S)]3
−→ [H

−
1
2

2 (S)]3 is a compact operator.
(iii) The following operator equalities hold in appropriate function spaces:

K̃ H = H K, L K̃ = K L, L H = −4−1 I3 + K2, H L = −4−1 I3 + K̃2. (A.14)

Remark A.4. In the static case, i.e., for the operators constructed by the Kelvin fundamental matrix Γ (x − y), the
operators H0, 2−1 I3 + K̃0 and 2−1 I3 + K0 in items (i) and (ii) of Theorem A.3 are invertible. Moreover, K̃0 and K0
are mutually adjoint singular integral operators and the inequality (A.13) holds with C2 = 0 [36].

In view of the relations (A.2), it is evident that the operators of elastostatics H0, ±2−1 I3 + K0, ±2−1 I3 + K̃0,
L0, and elasto-oscillations H, ±2−1 I3 + K, ±2−1 I3 + K̃, L have the same principal homogeneous symbol matrices
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respectively:

H(x, ξ ) := S(H0; x, ξ ) = S(H; x, ξ ),
K±(x, ξ ) := S(±2−1 I3 + K0)(x, ξ ) = S(±2−1 I3 + K)(x, ξ ),
L(x, ξ ) := S(L0; x, ξ ) = S(L; x, ξ ),
K̃±(x, ξ ) := S(±2−1 I3 + K̃0)(x, ξ ) = S(±2−1 I3 + K̃)(x, ξ ),
x ∈ S, ξ ∈ R2

\ {0}.

(A.15)

The matrices −H(x, ξ ) and L(x, ξ ) are positive definite matrices with entries being real valued even functions in
ξ , while the matrices K±(x, ξ ) and K̃±(x, ξ ) are non-degenerate and mutually adjoint, i.e., K̃±(x, ξ ) = [K±(x, ξ ) ]⊤.
The following matrices related to the so called Steklov–Poincaré operators of statics [−2−1 I3 + K0]H−1

0 and
−[2−1 I3 + K0]H−1

0 corresponding to the interior and exterior domains, respectively,

S
(
[−2−1 I3 + K0]H−1

0 ; x, ξ
)

=K−(x, ξ ) [H(x, ξ )]−1, (A.16)

− S
(
[2−1 I3 + K0]H−1

0 ; x, ξ
)

= − K+(x, ξ ) [H(x, ξ )]−1, (A.17)

are positive definite as well. Moreover, from (A.14) it follows that

K̃±(x, ξ )H(x, ξ ) = H(x, ξ )K±(x, ξ ), L(x, ξ ) K̃±(x, ξ ) = K±(x, ξ )L(x, ξ ),

L(x, ξ ) H(x, ξ ) = K+(x, ξ )K−(x, ξ ), H(x, ξ )L(x, ξ ) = K̃+(x, ξ ) K̃−(x, ξ ).
(A.18)

Note that the matrices K̃−(x, ξ ) and K̃+(x, ξ ), as well as the matrices K−(x, ξ ) and K+(x, ξ ) commute each other.
Therefore from (A.18) we derive

± L(x, ξ ) [K̃±(x, ξ )]−1
= ± [H(x, ξ )]−1 K̃+(x, ξ ) K̃−(x, ξ ) [K̃±(x, ξ )]−1

= ± [H(x, ξ )]−1 K̃∓(x, ξ ) = ±K∓(x, ξ ) [H(x, ξ )]−1, (A.19)

implying that the matrices ±L(x, ξ ) [K̃±(x, ξ )]−1 are positive definite in view of the positive definiteness of the
matrices (A.16) and (A.17).

Moreover, it can be shown that the entries of the matrices H(x, ξ ) and L(x, ξ ) are real valued functions, while
K±(x, ξ ) = ±2−1 I3 + i K(x, ξ ) and K̃±(x, ξ ) = ±2−1 I3 + i K̃(x, ξ ), where the entries of the matrices K and K̃ are
real valued odd functions in ξ (see Appendix C in [23]).

Appendix B. Alternative representations of radiating solutions

Let Ω+, Ω−, and S be the same as in Appendix A, and consider the following linear combination of the single and
double layer potentials

u(x) = W (g)(x) + ~ V (g)(x), x ∈ Ω−,

where ~ = ~1 + i ~2 ∈ C with ~1, ~2 ∈ R and ~2 ̸= 0, and g ∈ (g1, g2, g3)⊤ ∈ [B
1−

1
p

p,p (S)]3 is a density vector.
Evidently, u ∈ [W 1

p, loc(Ω−)]3
∩ Z (Ω−) in view of Theorem A.1, while by Theorem A.2 we have

{u}
−

= [ −2−1 I3 + K̃ + ~H ] g ≡ N g, {T u}
−

= L g + ~ [ 2−1 I3 + K ] g ≡ M g,

where H, K, K̃ and L are given by equalities (A.7)–(A.10) respectively.
In Refs. [25] and [27] the following assertions are proved.

Theorem B.1. Let S ∈ C∞, s ∈ R, 1 < p < +∞, and 1 ≤ t ≤ +∞. Then the operators

N : [H s+1
p (S)]3

−→ [H s+1
p (S)]3 [

[Bs+1
p,t (S)]3

−→ [Bs+1
p,t (S)]3 ]

, (B.1)

M : [H s+1
p (S)]3

−→ [H s
p(S)]3 [

[Bs+1
p,t (S)]3

−→ [Bs
p,t (S)]3 ]

, (B.2)

are invertible.
For a Lipschitz manifold S these operators are also invertible for p = t = 2 and s = −1/2 and, moreover, there

are positive constants C1 and C2 such that the following inequality holds true

Re
⟨
−M[N ]−1g, g

⟩
S ⩾ C1 ∥g∥

2

[H
1
2

2 (S)]3
−C2 ∥g∥

2
[H0

2 (S)]3 for all g ∈ [H
1
2

2 (S)]3.
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Theorem B.2. If u ∈ [W 1
p, loc(Ω−)]3

∩ Z (Ω−), 1 < p < +∞, solves the homogeneous equation A(∂, ω)u(x) = 0 in
Ω−, then u can be represented uniquely in the following two equivalent to each other forms

u(x) = W (N−1g)(x) + ~ V (N−1g)(x), x ∈ Ω−,

u(x) = W (M−1h)(x) + ~ V (M−1h)(x), x ∈ Ω−,

where N−1 and M−1 are the operators inverse to N and M respectively defined in (B.1) and (B.2), while the densities
g and h, are related to the vector u by the equalities

g = {u}
−

S ∈ [B
1−

1
p

p,p (S)]3 , h = {T u}
−

S ∈ [B
−

1
p

p,p (S)]3 .

In the case of a Lipschitz surface S, the same assertion holds true with p = 2.

Appendix C. Fredholm properties of strongly elliptic pseudodifferential operators on manifolds with
boundary

Here we recall some results from the theory of strongly elliptic pseudodifferential equations on manifolds with
boundary in Bessel potential and Besov spaces which are the main tools for proving existence theorems for mixed
boundary, boundary-transmission, and crack problems by the potential methods. They can be found in [56–58].

Let M ∈ C∞ be a compact, n-dimensional, nonintersecting manifold with boundary ∂M ∈ C∞ and let A be a
strongly elliptic N × N matrix pseudodifferential operator of order ν ∈ R on M . Denote by S(A; x, ξ ) the principal
homogeneous symbol matrix of the operator A in some local coordinate system (x ∈ M, ξ ∈ Rn

\ {0}).
Let λ1(x), . . . , λN (x) be the eigenvalues of the matrix

[S(A; x, 0, . . . , 0,+1) ]−1[S(A; x, 0, . . . , 0,−1) ], x ∈ ∂M,

and introduce the notation δ j (x) = Re
[

(2π i)−1 ln λ j (x)
]
, j = 1, . . . , N , where ln ζ denotes the branch of the

logarithm function analytic in the complex plane cut along (−∞, 0]. Due to the strong ellipticity of A we have the
strong inequality −1/2 < δ j (x) < 1/2 for x ∈ M , j = 1, 2, . . . , N . The numbers δ j (x) do not depend on a particular
choice of the local coordinate system at a fixed pint x ∈ ∂M .

Remark C.1. Note that if S(A; x, ξ ) is a positive definite matrix for every x ∈ M and ξ ∈ Rn
\ {0}, we have

δ j (x) = 0 for j = 1, . . . , N , since all the eigenvalues λ j (x) ( j = 1, . . . , N ) are positive numbers for any x ∈ M . The
same holds if S(A; x, ξ ) is representable in the form

S(A; x, ξ ) = Q(1)(x, ξ ) Q(x, ξ ) Q(2)(x, ξ ),

where Q(x, ξ ) = ∥Qk j (x, ξ )∥N×N and Q(m)(x, ξ ) = ∥Q(m)
k j (x, ξ )∥N×N , m = 1, 2, are positive definite matrices and,

in addition, the entries Q(m)
k j (x, ξ ) are even functions in ξ .

The Fredholm properties of strongly elliptic pseudo-differential operators on manifolds with boundary are
characterized by the following theorem.

Theorem C.2. Let s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, and let A be a strongly elliptic pseudodifferential operator of
order ν ∈ R, that is, there is a positive constant C0 such that Re S(A; x, ξ ) η · η ≥ C0 |η|2 for x ∈ M, ξ ∈ Rn with
|ξ | = 1, and η ∈ CN .

Then the operators

A :
[
H̃ s

p(M)
]N

−→
[
H s−ν

p (M)
]N

[ [
B̃s

p,t (M)
]N

−→
[
Bs−ν

p,t (M)
]N

]
, (C.1)

are Fredholm with zero index if

1
p

− 1 + sup
x∈ ∂M, 1≤ j≤N

δ j (x) < s −
ν

2
<

1
p

+ inf
x∈ ∂M, 1≤ j≤N

δ j (x). (C.2)

Moreover, the null-spaces and indices of the operators (C.1) are the same (for all values of the parameter t ∈ [1,+∞])
provided p and s satisfy inequality (C.2).
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Abstract

We formulate new identities involving new Green functions. Inequality of Popoviciu, which was improved by Vasić and
Stanković (1976), is generalized by using newly introduced Green functions. We utilize Fink’s identity along with new Green’s
function to generalize the known Popoviciu’s inequality from convex functions to higher order convex functions. Then we construct
linear functionals from the generalized identities and formulate the monotonicity of these functionals utilizing the recent theory of
inequalities for n-convex functions at a point. New upper bounds of Grüss and Ostrowski type are computed.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Popoviciu inequality; Fink’s identity; Abel–Gontscharoff interpolating polynomial; New Green functions; Grüss upper bounds;
Ostrowski type bounds

1. Introduction and preliminary results

Systematic study of convex functions started over the period 1905–1906 by thought provoking ideas and
fascinating work of Jensen. However there also exists some literature about convex functions even before Jensen
because one may find the existence of the roots of their definition in the work of O. Hölder (1889) and J. Hadamard
(1893). The study of convex functions is used as a major tool to solve optimization problems in analysis. However
the impact of inequalities involving convex functions is magical as it solves many problems in different branches of
mathematics with considerable high rate. That is why the study of such inequalities has been given great importance
in literature.

Higher order convexity was introduced by Popoviciu, who defined it under the context of divided differences of a
function (see Ch.1, [1]). Inequalities of higher order convex functions are very important and many physicists used it
while dealing in higher dimensions. It is interesting to note that results for convex functions may not be true for convex
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functions of higher order. There are remarkable changes in the results, which forces to think about the existence of
such results. S. I. Butt and J. Pečarić pay tribute to Professor T. Popoviciu in their book [2] in 2015 at the 50th
years to Popoviciu’s inequality. They generalize Popoviciu’s inequality for higher order convex functions and give its
applications. Also in 2015 [3], a new class of n-convex functions at a point is introduced by J. Pečarić, M. Praljak
and A. Witkowski. They developed a remarkable theory to investigate linear operator inequalities with the help of
the functions, which are n-convex at a point. This theory leads to many interesting and fascinating results with lot of
applications in operator theory and statistics.

A characterization of convex function established by T. Popoviciu [4] is studied by many people (see [1,5] and
references within). In recent years the inequality of Popoviciu is studied in [6–9]. The following form of Popoviciu’s
inequality is by Vasić and Stanković in [5] (see page 173 [1]):

Theorem 1.1. Let [δ1, δ2] be interval in R, for integers s ≥ 3, 2 ≤ m ≤ s − 1, consider the tuples z = (z1, . . . , zs) ∈

[δ1, δ2]s , q = (q1, . . . , qs) be a positive s-tuple along with the condition that
∑s

i=1qi = 1. Then for ψ : [δ1, δ2] → R
being convex function

ψm,s(z,q) ≤
s − m
s − 1

ψ1,s(z,q) +
m − 1
s − 1

ψs,s(z,q) (1)

holds, where

ψm,s(z,q) :=
1

C s−1
m−1

∑
1≤i1<···<im≤s

⎛⎝ m∑
j=1

qi j

⎞⎠ψ
⎛⎜⎜⎜⎝

m∑
j=1

qi j zi j

m∑
j=1

qi j

⎞⎟⎟⎟⎠
is the linear functional with respect to ψ .

By inequality (1), we write

POP[z,q;ψ] :=
s − m
s − 1

ψ1,s(z,q) +
m − 1
s − 1

ψs,s(z,q) − ψm,s(z,q). (2)

Remark 1.2. Under the assumptions of Theorem 1.1, POP[z,q;ψ] ≥ 0 for ψ being convex function and zero for
constant and linear function.

In the current paper, we need the following results of our interest. For ψ (n−1) to be absolutely continuous on
[δ1, δ2] ⊂ R, A. M. Fink in [10] proved the following famous identity:

ψ (z) =
n

δ2 − δ1

∫ δ2

δ1

ψ (ξ) dξ +

n−1∑
ζ=1

(
n − ζ

ζ !

)(
ψ (ζ−1) (δ2) (z − δ2)

ζ
− ψ (ζ−1) (δ1) (z − δ1)

ζ

δ2 − δ1

)

+
1

(n − 1) ! (δ2 − δ1)

∫ δ2

δ1

(z − ξ)n−1 F δ2
δ1
(ξ, z) ψ (n) (ξ) dξ, (3)

where

F δ2
δ1
(ξ, z) =

{
ξ − δ1, ξ ≤ z ≤ δ2,

ξ − δ2, z < ξ ≤ δ2.
(4)

The complete reference about Abel–Gontscharoff polynomial and theorem for ‘two-point right focal’ problem
is given in [11]. As a special choice the Abel–Gontscharoff polynomial for ‘two-point right focal’ interpolating
polynomial for n = 2 can be given as:

ψ(z) = ψ(δ1) + (z − δ1)ψ ′(δ2) +

∫ δ2

δ1

GΛ,2(z, w)ψ ′′(w)dw, (5)

where GΛ,2(z, w) is the Green function for ‘two-point right focal problem’ given as

G1(z, w) = GΛ,2(z, w) =

{
δ1 − w, δ1 ≤ w ≤ z,
δ1 − z, z ≤ w ≤ δ2.

(6)

In the next section, we will present our main results by introducing some new types of Green functions.
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Fig. 1. Graph of Green functions for fix w.

2. New generalizations of Popoviciu’s inequality

We start this section by our nice observation to Abel–Gontscharoff identity (5) and the related Green’s function
for ‘two-point right focal problem’. Therefore keeping in view Abel–Gontscharoff Green’s function for ‘two-point
right focal problem’ we would like to introduce, some new types of Green functions Gk : [δ1, δ2] × [δ1, δ2] → R,
(k = 2, 3, 4, ) defined as:

G2(z, w) =

{
z − δ2, δ1 ≤ w ≤ z,
w − δ2, z ≤ w ≤ δ2.

(7)

G3(z, w) =

{
z − δ1, δ1 ≤ w ≤ z,
w − δ1, z ≤ w ≤ δ2.

(8)

G4(z, w) =

{
δ2 − w, δ1 ≤ w ≤ z,
δ2 − z, z ≤ w ≤ δ2.

(9)

The graphical representations of Gk, k = 1, 2, 3, 4, are depicted in Fig. 1 which shows that all four Green functions
are continuous and symmetric. Moreover, all functions are convex with respect to the both variables z and w. These
new Green functions enable us to introduce some new identities, stated in the form of following lemma:

Lemma 2.1. Let ψ : [δ1, δ2] → R be a twice differentiable function and Gk, (k = 1, 2, 3, 4) be the new Green
functions defined above then along with (5) the following identities hold:

ψ(z) = ψ(δ2) + (δ2 − z)ψ ′(δ1) +

∫ δ2

δ1

G2(z, w)ψ ′′(w)dw, (10)

ψ(z) = ψ(δ2) − (δ2 − δ1)ψ ′(δ2) + (z − δ1)ψ ′(δ1) +

∫ δ2

δ1

G3(z, w)ψ ′′(w)dw, (11)

ψ(z) = ψ(δ1) + (δ2 − δ1)ψ ′(δ1) − (δ2 − z)ψ ′(δ2) +

∫ δ2

δ1

G4(z, w)ψ ′′(w)dw. (12)

Proof. We can give the proofs of above identities by following same integrating scheme, therefore we would like to
give the proof of (12) only:
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As ∫ δ2

δ1

G4(z, w)ψ ′′(w)dw =

∫ z

δ1

G4(z, w)ψ ′′(w)dw +

∫ δ2

z
G4(z, w)ψ ′′(w)dw

=

∫ z

δ1

(δ2 − w)ψ ′′(w)dw +

∫ δ2

z
(δ2 − z)ψ ′′(w)dw

= (δ2 − w)ψ ′(w)|zδ1 −

∫ z

δ1

−1.ψ ′(w)dw + (δ2 − z)[ψ ′(δ2) − ψ ′(z)]

= (δ2 − z)ψ ′(z) − (δ2 − δ1)ψ ′(δ1) + ψ(z) − ψ(δ1) + (δ2 − z)ψ ′(δ2) − (δ2 − z)ψ ′(z)

= (δ2 − z)ψ ′(δ2) − (δ2 − δ1)ψ ′(δ1) − ψ(δ1) + ψ(z).

Now by simplifying terms, we will get our identity (12). □

Remark 2.2. Lemma 2.1 gives another proof of special case of Abel–Gontscharoff identity (5). G3 and G4 are new
Green functions but results are not so simple as in other two cases.

Next we formulate generalized identities with the help of identities defined in Lemma 2.1 and Fink’s identity:

Theorem 2.3. Let ψ : [δ1, δ2] → R be such that for n ≥ 3, ψ ∈ Cn[δ1, δ2] such that ψ (n−1) is absolutely continuous
and let s,m ∈ N, s ≥ 3, 2 ≤ m ≤ s − 1, z ∈ [δ1, δ2]m , q be a real s-tuple such that

∑m
j=1qi j ̸= 0 for any

1 ≤ i1 < · · · < im ≤ s and
∑s

i=1qi = 1. Also let
∑m

j=1qi j zi j∑m
j=1qi j

∈ [δ1, δ2] for any 1 ≤ i1 < · · · < im ≤ s with F δ2
δ1

(ξ, ·)

and Gk(·, w), (k = 1, 2, 3, 4) be the same as defined in (4) and Lemma 2.1 respectively. Then we have the following
new identities for k = 1, 2, 3, 4

POP[z,q;ψ(z)] = (n − 2)
(
ψ (1) (δ2)− ψ (1) (δ1)

δ2 − δ1

)∫ δ2

δ1

POP[z,q; Gk(z, w)]dw

+
1

(δ2 − δ1)

∫ δ2

δ1

POP[z,q; Gk(z, w)]

×

(n−3∑
ζ=1

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (δ2) (w − δ2)

ζ
− ψ (ζ+1) (δ1) (w − δ1)

ζ
))

dw

+
1

(n − 3) ! (δ2 − δ1)

∫ δ2

δ1

ψ (n) (ξ)

(∫ δ2

δ1

POP[z,q; Gk(z, w)](w − ξ)n−3 F δ2
δ1
(ξ, w) dw

)
dξ. (13)

Proof. Fix k = 1, 2, 3, 4. Applying Popoviciu’s functional (2) to identities (5), (10), (11), (12) along with their
respective new Green functions and following properties of POP[z,q; ·], we get

POP[z,q;ψ] =

∫ δ2

δ1

POP[z,q; Gk(z, w)]ψ ′′(w)dw. (14)

Differentiating (3), twice with respect to variable w, we get

ψ ′′ (w) =

n−3∑
ζ=0

(
n − 2 − ζ

ζ !

)(
φ(ζ+1) (δ2) (w − δ2)

ζ
− φ(ζ+1) (δ1) (w − δ1)

ζ

δ2 − δ1

)

+
1

(n − 3) ! (δ2 − δ1)

∫ δ2

δ1

(w − ξ)n−3 F δ2
δ1
(ξ, w) φ(n) (ξ) dξ

=

n−2∑
ζ=1

(
n − 1 − ζ

(ζ − 1)!

)(
φ(ζ ) (δ2) (w − δ2)

ζ−1
− φ(ζ ) (δ1) (w − δ1)

ζ−1

δ2 − δ1

)

+
1

(n − 3) ! (δ2 − δ1)

∫ δ2

δ1

(w − ξ)n−3 F δ2
δ1
(ξ, w) φ(n) (ξ) dξ
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= (n − 2)
(
ψ (1) (δ2)− ψ (1) (δ1)

δ2 − δ1

)
+

n−2∑
ζ=2

(
n − 1 − ζ

(ζ − 1)!

)(
φ(ζ ) (δ2) (w − δ2)

ζ−1
− φ(ζ ) (δ1) (w − δ1)

ζ−1

δ2 − δ1

)

+
1

(n − 3) ! (δ2 − δ1)

∫ δ2

δ1

(w − ξ)n−3 F δ2
δ1
(ξ, w) φ(n) (ξ) dξ. (15)

Substituting (15) in (14) and executing Fubini’s Theorem in the obtained terms we get (13) respectively for
k = 1, 2, 3, 4.

On the other hand, we rewrite (3) considering function ψ ′′ and replacing n by n − 2 (n ≥ 3), to get

ψ ′′ (w) = (n − 2)
(
ψ (1) (δ2)− ψ (1) (δ1)

δ2 − δ1

)
+

n−3∑
ζ=1

(
n − 1 − ζ

ζ !

)(
φ(ζ+1) (δ2) (w − δ2)

ζ
− φ(ζ+1) (δ1) (w − δ1)

ζ

δ2 − δ1

)

+
1

(n − 3) ! (δ2 − δ1)

∫ δ2

δ1

(w − ξ)n−3 F δ2
δ1
(ξ, w) φ(n) (ξ) dξ

= (n − 2)
(
ψ (1) (δ2)− ψ (1) (δ1)

δ2 − δ1

)
+

n−2∑
ζ=2

(
n − 1 − ζ

(ζ − 1)!

)(
φ(ζ ) (δ2) (w − δ2)

ζ−1
− φ(ζ ) (δ1) (w − δ1)

ζ−1

δ2 − δ1

)

+
1

(n − 3) ! (δ2 − δ1)

∫ δ2

δ1

(w − ξ)n−3 F δ2
δ1
(ξ, w) φ(n) (ξ) dξ. (16)

Now employing Fubini’s Theorem in the last term obtained by putting (16) in (14), we get (13) respectively for
k = 1, 2, 3, 4. □

The next theorem gives artistic generalization of Popoviciu’s type inequalities for n-convex functions involving
new Green functions.

Theorem 2.4. Assuming the conditions of Theorem 2.3 be true, let for n ≥ 3∫ δ2

δ1

POP[z,q; Gk(z, w)](w − ξ)n−3 F δ2
δ1
(ξ, w) dw ≥ 0, ξ ∈ [δ1, δ2], (17)

for all k = 1, 2, 3, 4. If ψ is n-convex function such that ψ (n−1) is absolutely continuous, then for k = 1, 2, 3, 4,

POP[z,q;ψ(z)] ≥ (n − 2)
(
ψ (1) (δ2)− ψ (1) (δ1)

δ2 − δ1

)∫ δ2

δ1

POP[z,q; Gk(z, w)]dw

+
1

(δ2 − δ1)

∫ δ2

δ1

POP[z,q; Gk(z, w)]

×

(n−3∑
ζ=1

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (δ2) (w − δ2)

ζ
− ψ (ζ+1) (δ1) (w − δ1)

ζ
))

dw. (18)

Proof. Fix k = 1, 2, 3, 4. Since ψ (n−1) is absolutely continuous on [δ1, δ2], ψ (n) exists almost everywhere. As ψ
is n-convex, so ψ (n)(z) ≥ 0 for almost everywhere on [δ1, δ2] (see [1], p. 16). Hence we can apply Theorem 2.3 to
obtain (18). □
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Now we state the final result of this section in the form of following theorem:

Theorem 2.5. Let in addition to the assumptions of Theorem 2.3, q = (q1, . . . , qs) be a positive s-tuple such that∑s
i=1qi = 1, and ψ : [δ1, δ2] → R be an n-convex function.

(i) For fix k = 1, 2, 3, 4, inequality (18) holds provided that n is even and greater than 3.
(ii) Let (18) be satisfied for all fix k = 1, 2, 3, 4 and

n−3∑
ζ=0

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (δ2) (w − δ2)

ζ
− ψ (ζ+1) (δ1) (w − δ1)

ζ
)

≥ 0. (19)

Then we have

POP[z,q;ψ(z)] ≥ 0. (20)

Proof.

(i) It is clear from Fig. 1 that Green’s function Gk(z, w) are convex for all k = 1, 2, 3, 4 and the weights are
assumed to be positive. Therefore applying Theorem 1.1 and taking into account Remark 1.2, we can obtain
POP[z,q; Gk(z, w)] ≥ 0 for all k = 1, 2, 3, 4. Moreover, the function σ

σ (w) := (w − ξ)n−3 F δ2
δ1
(ξ, w) =

{
(w − ξ)n−3 (ξ − δ1) , δ1 ≤ ξ ≤ w ≤ δ2,

(w − ξ)n−3 (ξ − δ2) , δ1 ≤ w < ξ ≤ δ2,

is positive for even n > 3, as a result (17) is established. Now employing Theorem 2.4, (18) is established.
(ii) Putting (19) in (18), we get (20) for all k = 1, 2, 3, 4. □

3. Related inequalities for (n + 1)-convex functions at a point

In the present section we will give related results for the class of (n + 1)-convex functions at a point introduced
in [3].

Definition 1. Let I ⊆ R be an interval, c ∈ I o and n ∈ N. A function ψ : I → R is said to be (n + 1)-convex at point
c if there exists a constant Zc such that the function

Ψ (z) = ψ(z) −
Zc

n!
zn (21)

is n-concave on I ∩ (−∞, c] and n-convex on I ∩ [c,∞). A function ψ is said to be (n + 1)-concave at point c if the
function −ψ is (n + 1)-convex at point c.

A function is (n + 1)-convex on an interval if and only if it is (n + 1)-convex at every point of the interval
(see [3]). Pečarić, Praljak and Witkowski in [3] study necessary and sufficient conditions on two linear functionals
Ω : C([δ1, c]) → R and Λ : C([c, δ2]) → R so that the inequality Ω (ψ) ≤ Λ(ψ) holds for every function ψ that
is (n + 1)-convex at point c. In the present section we will give inequalities of such type for the particular linear
functionals obtained from the inequalities in the previous section. Let σi denote the monomials σi (z) = zi , i ∈ N.
For the rest of this section, Ωk(ψ) and Λk(ψ) where k = 1, 2, 3, 4, will denote the linear functionals obtained as the
difference of the L. H. S. and R. H. S. of inequality (18), applied to the intervals [δ1, c] and [c, δ2] respectively,
i.e., for z ∈ [δ1, c]s , q ∈ Rs , y ∈ [c, δ2]s̄ and q̄ ∈ Rs̄ let

Ωk(ψ) := POP[z,q;ψ(z)] − (n − 2)
(
ψ (1) (c)− ψ (1) (δ1)

c − δ1

)∫ c

δ1

POP[z,q; Gk(z, w)]dw

−
1

(c − δ1)

∫ c

δ1

POP[z,q; Gk(z, w)]

×

(n−3∑
ζ=1

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (c) (w − c)ζ − ψ (ζ+1) (δ1) (w − δ1)

ζ
))

dw, (22)
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Λk(ψ) := POP[y, q̄;ψ(y)] − (n − 2)
(
ψ (1) (δ2)− ψ (1) (c)

δ2 − c

)∫ δ2

c
POP[y, q̄; Gk(y, w)]dw

−
1

(δ2 − c)

∫ δ2

c
POP[y, q̄; Gk(y, w)]

×

(n−3∑
ζ=1

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (δ2) (w − δ2)

ζ
− ψ (ζ+1) (c) (w − c)ζ

))
dw. (23)

It is important to notify that by introducing new linear functionals for k = 1, 2, 3, 4, Ωk(ψ) and Λk(ψ), identity (13)
applied to the respective intervals [δ1, c] and [c, δ2] takes the shape:

Ωk(ψ) =
1

(n − 3) ! (c − δ1)

∫ c

δ1

ψ (n) (ξ)

(∫ c

δ1

POP[z,q; Gk(z, w)](w − ξ)n−3 Fc
δ1
(ξ, w) dw

)
dξ, (24)

Λk(ψ) =
1

(n − 3) ! (δ2 − c)

∫ δ2

c
ψ (n) (ξ)

(∫ δ2

c
POP[y, q̄; Gk(y, w)](w − ξ)n−3 F δ2

c (ξ, w) dw
)

dξ. (25)

Now we are ready to state the following theorem for inequalities involving (n + 1)-convex function at a point:

Theorem 3.1. Let z ∈ [δ1, c]s , q ∈ Rs , y ∈ [c, δ2]s̄ and q̄ ∈ Rs̄ in such a way that for k = 1, 2, 3, 4∫ c

δ1

POP[z,q; Gk(z, w)](w − ξ)n−3 Fc
δ1
(ξ, w) dw ≥ 0, ξ ∈ [δ1, c], (26)∫ δ2

c
POP[y, q̄; Gk(y, w)](w − ξ)n−3 F δ2

c (ξ, w) dw ≥ 0, ξ ∈ [c, δ2], (27)∫ c

δ1

(∫ c

δ1

POP[z,q; Gk(z, w)](w − ξ)n−3 Fc
δ1
(ξ, w) dw

)
dξ =

(
c − δ1

δ2 − c

)
×

∫ δ2

c

(∫ δ2

c
POP[y, q̄; Gk(y, w)](w − ξ)n−3 F δ2

c (ξ, w) dw
)

dξ, (28)

where F δ2
δ1

(ξ, ·), Gk(·, w), (k = 1, 2, 3, 4) be the same as defined in (4) and Lemma 2.1 respectively, and let Ωk(ψ),
Λk(ψ) be the linear functionals given by (22) and (23). If ψ : [δ1, δ2] → R is (n + 1)-convex at point c, then we get
the monotonicity

Ωk(ψ) ≤ Λk(ψ), for k = 1, 2, 3, 4. (29)

If the inequalities in (26) and (27) are reversed, then (29) holds with the reversed sign of inequality.

Proof. Using Definition 1, construct function Ψ (z) = ψ(z) −
Zc
n!
σn is such a way that the function Ψ is n-concave on

[δ1, c] and n-convex on [c, δ2]. Fix k = 1, 2, 3, 4, and apply Theorem 2.4 to Ψ on the interval [δ1, c], we have

0 ≥ Ωk(Ψ ) = Ωk(ψ) −
Zc

n!
Ωk(σn). (30)

Analogously applying Theorem 2.4 to Ψ on the interval [c, δ2], we get

0 ≤ Λk(Ψ ) = Λk(ψ) −
Zc

n!
Λk(σ n). (31)

Moreover, identities (26) and (27) applied to the function σ n gives

Ωk(σ n) =
n3

− 3n2
+ 2n

(c − δ1)

∫ c

δ1

(∫ c

δ1

POP[z,q; Gk(z, w)](w − ξ)n−3 Fc
δ1
(ξ, w) dw

)
dξ, (32)

Λk(σ n) =
n3

− 3n2
+ 2n

(δ2 − c)

∫ δ2

c

(∫ δ2

c
POP[y, q̄; Gk(y, w)](w − ξ)n−3 F δ2

c (ξ, w) dw
)

dξ. (33)

Therefore assumption (28) is equivalent to

Ωk(σ n) = Λk(σ n).

So form (30) and (31), we obtained the desired result. □
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Remark 3.2. In the proof of Theorem 3.1, we have shown that for k = 1, 2, 3, 4

Ωk(ψ) ≤
Zc

n!
Ωk(σ n) =

Zc

n!
Λk(σ n) ≤ Λk(ψ). (34)

More importantly, inequality (29) still holds if we replace assumption (28) with the weaker assumption that is
Zc
(
Λk(σ n) − Ωk(σ n)

)
≥ 0.

4. New upper bounds of Grüss and Ostrowski type for generalized identities

In the present section we use Čebyšev functional defined for Lebesgue integrable functions F1,F2 : [δ1, δ2]
→ R as

C(F1,F2) =
1

δ2 − δ1

∫ δ2

δ1

F1(ξ )F2(ξ )dξ −
1

δ2 − δ1

∫ δ2

δ1

F1(ξ )dξ.
1

δ2 − δ1

∫ δ2

δ1

F2(ξ )dξ,

to construct some new upper bounds.
The following inequalities of Grüss type were given in [12].

Theorem 4.1. Let F1 ∈ L[δ1, δ2] and F2 : [δ1, δ2] → R be an absolutely-continuous function along with
(.− δ1)(δ2 − .)[F′

2]2
∈ L[δ1, δ2]. Then the inequality

|C(F1,F2)| ≤
1

√
2

[
C(F1,F1)
(δ2 − δ1)

] 1
2
(∫ δ2

δ1

(z − δ1)(δ2 − z)[F′

2(z)]2dz
) 1

2
, (35)

holds with 1
√

2
be the best possible constant.

Theorem 4.2. Let F1 : [δ1, δ2] → R be an absolutely continuous with F′

1 ∈ L∞[δ1, δ2] and F2 : [δ1, δ2] → R is
monotonic nondecreasing function. Then the inequality

|C(F1,F2)| ≤
∥F′

1∥∞

2(δ2 − δ1)

∫ δ2

δ1

(z − δ1)(δ2 − z)dF2(z), (36)

holds with best possible constant 1
2 .

In the sequel, we consider above theorems to construct new estimations of generalized identities proved earlier. In
what follows we let for k = 1, 2, 3, 4,

Ok(ξ ) =

∫ δ2

δ1

POP[z,q; Gk(z, w)](w − ξ)n−3 F δ2
δ1
(ξ, w) dw, ξ ∈ [δ1, δ2]. (37)

First we express some Ostrowski type inequalities affiliated with our generalized Popoviciu’s inequality.

Theorem 4.3. Consider the suppositions of Theorem 2.3 be satisfied. Let |ψ (n)
|
r

: [δ1, δ2] → R be a R-integrable
function with r, r ′

∈ [1,∞] such that 1
r +

1
r ′ = 1. Then for k = 1, 2, 3, 4, we have⏐⏐⏐⏐POP[z,q;ψ(z)] −

1
(δ2 − δ1)

∫ δ2

δ1

POP[z,q; Gk(z, w)]

×

(n−3∑
ζ=0

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (δ2) (w − δ2)

ζ
− ψ (ζ+1) (δ1) (w − δ1)

ζ
))

dw
⏐⏐⏐⏐

≤
1

(n − 3) !(δ2 − δ1)
∥ψ (n)

∥r

(∫ δ2

δ1

⏐⏐⏐⏐ ∫ δ2

δ1

POP[z,q; Gk(z, w)](w − ξ)n−3 F δ2
δ1
(ξ, w) dw

⏐⏐⏐⏐r
′

dξ
)1/r ′

. (38)

The constant on the R.H.S. of (38) is sharp for 1 < r ≤ ∞ and the best possible for r = 1.
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Proof. Fix k = 1, 2, 3, 4. Rearranging identity (13) in such a way that⏐⏐⏐⏐POP[z,q;ψ(z)] −
1

(δ2 − δ1)

∫ δ2

δ1

POP[z,q; Gk(z, w)]

×

(n−3∑
ζ=1

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (δ2) (w − δ2)

ζ
− ψ (ζ+1) (δ1) (w − δ1)

ζ
))

dw
⏐⏐⏐⏐

=

⏐⏐⏐⏐ ∫ δ2

δ1

Õk(ξ )ψ (n) (ξ) dξ
⏐⏐⏐⏐, (39)

where ˜Ok(ξ ) =
Ok (ξ )

(δ2−δ1)(n−3)! . Employing the classical Holder’s inequality to R. H. S. of (39) yields (38). The proof for
sharpness is similar to the Theorem 3.5 in [13] (see also [14]). □

Next we give some upper bounds of Grüss type.

Theorem 4.4. Consider the suppositions of Theorem 2.3 be fulfilled. Also let ψ (n) is absolutely continuous
with (. − δ1)(δ2 − .)[ψ (n+1)]2

∈ L[δ1, δ2] such that Ok (k = 1, 2, 3, 4) defined in (37). Then the remainder
Rem(δ1, δ2,Ok, ψ

(n)) given in the following identity

POP[z,q;ψ(z)] −
1

(δ2 − δ1)

∫ δ2

δ1

POP[z,q; Gk(z, w)]

×

(n−3∑
ζ=0

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (δ2) (w − δ2)

ζ
− ψ (ζ+1) (δ1) (w − δ1)

ζ
))

dw

−
ψ (n−1)(δ2) − ψ (n−1)(δ1)

(δ2 − δ1)2 (n − 3) !

∫ δ2

δ1

Ok(ξ )dξ = Rem(δ1, δ2,Ok, ψ
(n)), (40)

satisfies the bound

|Rem(δ1, δ2,Ok, ψ
(n))| ≤

1
√

2(n − 3)!

[
C(Ok,Ok)
(δ2 − δ1)

] 1
2
⏐⏐⏐⏐ ∫ δ2

δ1

(ξ − δ1)(δ2 − ξ )[ψ (n+1)(ξ )]2dξ
⏐⏐⏐⏐

1
2

.

Proof. Fix k = 1, 2, 3, 4. Using Čebyšev functional for F1 = Ok , F2 = ψ (n) and by comparing (40) with (13), we have

Rem(δ1, δ2,Ok, ψ
(n)) =

1
(n − 3)!

C(Ok, ψ
(n)).

Now applying Theorem 4.1 for the corresponding functions, we get the required bound. □

Theorem 4.5. Let ψ : [δ1, δ2] → R be such that for n ≥ 3, ψ (n) is absolutely continuous and let ψ (n+1)
≥ 0 on

[δ1, δ2] with Ok (k = 1, 3, 4) defined in (37). Then in the representation (40) the remainder Rem(δ1, δ2,Ok, ψ
(n))

satisfies the estimate

|Rem(δ1, δ2,Ok, ψ
(n))| ≤

∥O′

k∥∞

(n − 3) !

[
ψ (n−1)(δ2) + ψ (n−1)(δ1)

2
−
ψ (n−2)(δ2) − ψ (n−2)(δ1)

δ2 − δ1

]
. (41)

Proof. Fix k = 1, 2, 3, 4. Since, we have established

Rem(δ1, δ2,Ok, ψ
(n)) =

1
(n − 3)!

C(Ok, ψ
(n)).

Now applying Theorem 4.2 for F1 → Ok and F2 → ψ (n), we have

|Rem(δ1, δ2,Ok, ψ
(n))| =

1
(n − 3)!

|C(Ok, ψ
(n))|

≤
∥O′

k∥∞

2(δ2 − δ1)(n − 3)!

∫ δ2

δ1

(ξ − δ1)(δ2 − ξ )ψ (n+1)(ξ ). (42)

Simplifying the integral on R. H. S. of (42), we get the estimation in (41). □
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5. Mean value theorems and n-exponential convexity

In the present section, we construct a positive linear functionals and then give mean value theorems of Lagrange
and Cauchy type.

Remark 5.1. In virtue of Theorem 2.4, we can define the positive linear functionals from (18) (k = 1, 2, 3, 4), with
respect to n-convex function ψ as follows

Ωk(ψ) := POP[z,q;ψ(z)] −
1

(δ2 − δ1)

∫ δ2

δ1

POP[z,q; Gk(z, w)]

×

(n−3∑
ζ=0

(
n − 2 − ζ

ζ !

) (
ψ (ζ+1) (δ2) (w − δ2)

ζ
− ψ (ζ+1) (δ1) (w − δ1)

ζ
))

dw ≥ 0. (43)

Lagrange and Cauchy type mean value theorems related to above functionals are given in the following theorems.

Theorem 5.2. Let ψ : [δ1, δ2] → R be such that ψ ∈ Cn[δ1, δ2]. If the inequality in (17) (k = 1, 2, 3, 4) holds, then
there exist ξk ∈ [δ1, δ2] such that

Ωk(ψ) = ψ (n)(ξk)Ωk

(
zn

n!

)
, k = 1, 2, 3, 4,

where Ωk(·) is defined by (43).

Proof. Similar to the proof of Theorem 4.1 in [15] (see also [16]). □

Theorem 5.3. Let ψ,µ : [δ1, δ2] → R be such that ψ,µ ∈ Cn[δ1, δ2]. If the inequality in (17) (k = 1, 2, 3, 4), holds,
then there exist ξk ∈ [δ1, δ2] such that

Ωk(ψ)
Ωk(µ)

=
ψ (n)(ξk)
µ(n)(ξk)

, k = 1, 2, 3, 4,

provided that the denominators are non-zero, where Ωk(·) is defined by (43).

Proof. Similar to the proof of Corollary 4.2 in [15] (see also [16]). □

Theorem 5.3 enables us to define Cauchy means for (k = 1, 2, 3, 4), in fact

ξk =

(
ψ (n)

µ(n)

)−1 (
Ωk(ψ)
Ωk(µ)

)
,

means that ξ is the mean of δ1, δ2 for given functions ψ and µ.
We conclude our paper with the following remark.

Remark 5.4. One can construct the non trivial examples of n-exponentially and exponentially convex functions from
positive linear functionals Ωk(·) (k = 1, 2, 3, 4), by following the n-exponentially method introduced by Pečarić et al.
in [17] and [18] (see also [13,19] and [14]). As an application it enables us to construct large families of functions
which are exponentially convex. Moreover by considering the class of 2-convex functions we can get the log-convexity
of these functionals and new Cauchy means, which are monotonic in nature.
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[16] S.I. Butt, J. Pečarić, Generalized Hermite-Hadamard’s inequality, Proc. a. Razmadze Math. Inst. 163 (2013) 9–27.
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Abstract

In this work, we give sufficient conditions for the existence of a mild solution for some impulsive integro-differential equations
in Banach spaces. We study the existence without assuming the Lipschitz condition on the nonlinear term f . The compactness
on the C0-semigroup (T (t))t≥0 in a Banach space is not needed. We use Hausdorff’s measure of noncompactness, resolvent
operators and Darbo’s fixed point Theorem to obtain the main result of this work.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this work, we investigate the existence of mild solutions for the following impulsive integro-differential
equations with nonlocal conditions

u′(t) = Au(t)+
∫ t

0
C(t − s)u(s)ds + f (t, u(t)) for t ∈ J = [0, b] and t 6= ti

∆u(ti ) = Ii (u(ti )) for i = 1, . . . , p and 0 < t1 < t2 < · · · < tp < b
u(0) = g(u),

(1)

where A and C(t) are closed linear operators defined on a Banach space X with fixed domain which is denoted by
D(A) while f and g are functions that will be given later and ∆u(ti ) = u(t+i ) − u(t−i ) constitutes the impulsive
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condition. The impulsive differential equations describe the evolution systems whose state changes rapidly in some
times, which cannot be modeled by traditional initial value problems. In mathematical modeling in those processes,
the change of state takes place momentarily and is represented by jumps (discontinuities) in the state of the modeled
systems. Processes of such characters are observed in several areas of applied sciences (mechanics, population
dynamics, biology, etc.). An impulsive differential equation consists of a continuous part and a discrete part by
representing the impulses.

In the case where C ≡ 0, Eq. (1) is widely studied by several authors. Liu [1] discussed the classic initial problem
when f is Lipschitz continuous with respect to second variable and the impulsive functions Ii are Lipschitz contin-
uous. Cardinali and Rubbioni [2] studied the multivalued impulsive semilinear differential equations by means of the
Hausdorff’s measure of noncompactness. Liang et al. [3] investigated the nonlocal impulsive problems for nonlinear
differential equations in Banach spaces first by assuming that f and g are Lipschitz, second by assuming that g is
compact and f is not compact and not Lipschitz. L. Zhu, Q. Dong and G. Li [4] investigated the impulsive differ-
ential equations with nonlocal condition without the compactness condition and without the condition of Lipschitz
continuous on f but by using Hausdorff’s measure of noncompactness and Darbo’s fixed point Theorem.

The aim of this work is to use Hausdorff’s measure of noncompactness, Darbo’s fixed point Theorem and the
resolvent operators to prove the existence of at least one mild solution of Eq. (1).

The organization of this work is as follows, in Section 2, we give some preliminary results on the noncompactness
measures, the impulsive differential equations and on the resolvent operators, in Section 3, we show the existence of
mild solution of Eq. (1). Finally, in Section 4, we study an example to illustrate the abstract result of this work.

2. Hausdorff’s measure of noncompactness and integro-differential equations in Banach spaces

2.1. Noncompactness measures

Compactness plays an essential role in the proof of Schauder’s fixed point Theorem and other fixed point Theorems.

Definition 2.1 ([5]). Let X be a Banach space and B be a family of bounded subsets of X . For every Ω ∈ B, we
define Hausdorff’s measure of noncompactness α in the following way:

α(Ω) = inf{ε > 0 : Ω ⊂ ∪n
i=1 B(xi , ri ), xi ∈ X, ri < ε for i = 1, . . . , n}.

The Hausdorff’s measure of noncompactness satisfies the following properties.

Theorem 2.2 ([5]).

(i) Regularity : φ(Ω) = 0⇐⇒ Ω is compact,
(ii) Monotonicity : if Ω1 ⊂ Ω2, then φ(Ω1) ≤ φ(Ω2) for all Ω1 and Ω2 in B,

(iii) semi-homogeneity : φ(λΩ) = |λ|φ(Ω) for all λ in K and Ω in B,
(iv) semi-additivity : φ(Ω1 ∪ Ω2) = max{φ(Ω1), φ(Ω2)} for all Ω1 and Ω2 in B.

Theorem 2.3 ([5]). Let B(0, 1) be the unit ball in a Banach space X of infinite dimension. Then α(B(0, 1)) = 1.

Theorem 2.4 ([5]). Let A be a bounded subset of a Banach space X of infinite dimension, then for all r > 0

α(B(A, r)) = α(A)+ r,

where B(A, r) = ∪x∈A B(x, r) = A + B(0, r) = A + r B(0, 1).

Finally we prove a generalized Arzela–Ascoli’s Theorem by using the measure of noncompactness of Kuratowski.

Theorem 2.5 ([5]). Let X be a Banach space, K ⊂ Rn be compact. Denote by C(K , X) the Banach space of all
continuous functions from K to X and let B ⊂ C(K , X) be bounded and equicontinuous. Then

α(B) = sup
t∈K

α({x(t) : x ∈ B}).



306 M.A. Diallo et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 304–315

Theorem 2.6 ([4] (Sadovskii’s Fixed Point Theorem)). Let X be a Banach space, F be a nonempty, bounded, closed
and convex subset of X. Suppose that T : F → F is a continuous map such that

α(T (B)) < α(B) for all B ⊂ F.

Then T has at least one fixed point on F.

Throughout this work, (X, ‖·‖) is a Banach space. Denote by C(J, X) the Banach space of all continuous functions
from J into X with the norm |u| = sup{‖u(t)‖, t ∈ J }, by L1(J, X) the Banach space of all X -valued integrable
functions defined on J with the norm |u|1 =

∫ T
0 ‖u(t)‖dt , by PC(J, X) the space of all continuous functions at

t ∈ J, t 6= ti and left continuous at t = ti and the right limit u(t+) exists in X for i = 1, . . . , p and

PC1(J, X) =

{
u : J → X differentiable at t 6= ti ,

du

dt
∈ PC(J, X)

}
.

PC(J, X) is a Banach space with the norm ‖u‖pc = sup{‖u(t)‖, t ∈ J } and

C(J, X) ⊂ PC(J, X) ⊂ L1(J, X).

2.2. Resolvent operators

We recall some basic results about the resolvent operators for the following integro-differential equationu′(t) = Au(t)+
∫ t

0
C(t − s)u(s)ds for t ≥ 0,

u(0) = u0,

(2)

where A and C(·) are closed linear operators on X .
Denote by (Y, | · |) the Banach space D(A) equipped with the graph norm defined by |y| = ‖Ay‖ + ‖y‖.

Definition 2.7 ([6]). A resolvent operator for the linear Equation (2) is a family of bounded linear operators (R(t))t≥0
on X such that:

(i) R(0) = I dX and there are M > 0 and w ∈ R such that ‖R(t)‖ ≤ Mewt for all t ≥ 0
(ii) for all x ∈ X , the map t → R(t)x is strongly continuous from R+ to X

(iii) for all t ∈ R+, R(t)Y ⊂ Y
(iv) for all y ∈ Y, R(·)y ∈ C(R+, Y ) ∩ C 1(R+, X) and satisfies

R′(t)y = AR(t)y +
∫ t

0
C(t − s)R(s)yds (3)

= R(t)Ay +
∫ t

0
R(t − s)C(s)yds. (4)

In the next, we give some conditions on A and C(·) which ensure the existence of the resolvent operators for the
linear equation (2).

(H1): A generates a C0-semigroup (T (t))t≥0 on X .
(H2): For each t ∈ [0, b], C(t) is a bounded closed linear operator from Y to X . Moreover for all y ∈ Y , the

application t 7→ B(t)y is in W 1,1(J, X) and there exists ξ ∈ L1(R+,R+) such that

‖B ′(t)y‖ ≤ ξ(t)|y| for all y ∈ Y and t ∈ J.

Theorem 2.8 ([7]). Let the assumptions (H1) and (H2) be satisfied. Then there is a unique resolvent operator for the
linear Equation (2).
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Lemma 2.9 ([7]). Let the assumptions (H1) and (H2) be satisfied. Then for all a > 0, there exists C = C(a) such
that

‖R(t + h)− R(t)R(h)‖ ≤ Ch for all 0 < h ≤ t ≤ a.

Definition 2.10 ([4]). A C0-semigroup (T (t))t≥0 is said to be uniformly continuous for t > 0 if

lim
h→0
‖T (t + h)− T (t)‖ = 0 for all t > 0.

Theorem 2.11. Let (H1) and (H2) be satisfied. If the C0-semigroup (T (t))t≥0 is uniformly continuous for t > 0,
then the resolvent operator (R(t))t≥0 is uniformly continuous for t > 0.

For the proof of Theorem 2.11, we need to use the following Theorem.

Theorem 2.12 ([8]). Let (H1) and (H2) be satisfied, then

R(t)x = T (t)x +
∫ t

0
T (t − s)Q(s)xds,

where

Q(s)x =
∫ s

0
C ′(s − u)

∫ u

0
R(v)xdvdu + C(0)

∫ s

0
R(u)xdu.

Moreover, the operators Q are uniformly bounded on bounded intervals, and for each x ∈ X, Q(·)x ∈ C(J, X).

Proof of Theorem 2.11. Let t0 > 0 and h > 0. Then for ‖x‖ ≤ 1

R(t0 + h)x − R(t0)x = T (t0 + h)x +
∫ t0+h

0
T (t0 + h − s)Q(s)xds − T (t0)x −

∫ t0

0
T (t0 − s)Q(s)xds

=

[
T (t0 + h)x − T (t0)x

]
+

∫ t0+h

t0
T (t0 + h − s)Q(s)xds

+

∫ t0

0

[
T (t0 + h − s)− T (t0 − s)

]
Q(s)xds.

Thus

‖R(t0 + h)x − R(t0)x‖ ≤ ‖T (t0 + h)− T (t0)‖‖x‖ +
∫ t0+h

t0
‖T (t0 + h − s)Q(s)x‖ds

+

∫ t0

0
‖T (t0 + h − s)− T (t0 − s)‖‖Q(s)x‖ds.

By Theorem 2.12 ‖Q(s)x‖ are uniformly bounded, then there exists c > 0 such that ‖Q(s)x‖ ≤ c for s bounded and
‖x‖ ≤ 1. Thus

‖R(t0 + h)− R(t0)‖ ≤ ‖T (t0 + h)− T (t0)‖ + cMh + c
∫ t0

0
‖T (t0 + h − s)− T (t0 − s)‖ds,

where M = sup{‖T (t)‖, t ∈ J }. Since (T (t))t≥0 is uniformly continuous for t > 0, then ‖T (t0 + h) − T (t0)‖ → 0
as h → 0 and by the dominated convergence Theorem, we deduce that∫ t0

0
‖T (t0 + h − s)− T (t0 − s)‖ds → 0 as h → 0 for t0 6= s.

Then

‖R(t0 + h)− R(t0)‖ → 0 as h → 0.

We get the same estimate when t0 > 0, h < 0 such that t0 + h > 0, which allows us to conclude that (R(t))t≥0 is
uniformly continuous for t > 0.
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Theorem 2.13. Let (H1) and (H2) be satisfied. If the resolvent operator (R(t))t≥0 is uniformly continuous for t > 0,
let w ∈ L1(J,R+). Then the following set

H =
{∫ •

0
R(• − s)u(s)ds : u ∈ Ww

}
is equicontinuous J , where Ww = {u : ‖u(s)‖ ≤ w(s) for a.e.s ∈ J }.

Proof. Let us pose Hu(t) =
∫ t

0 R(t − s)u(s)ds for t ∈ J and u ∈ Ww.
Let t0 ∈ J and h > 0 such that t0 + h ∈ J .

‖Hu(t0 + h)− Hu(t0)‖ ≤
∫ t0

0
‖R(t0 + h − s)− R(t0 − s)‖w(s)ds +

∫ t0+h

t0
‖R(t0 + h − s)‖w(s)ds.

Since (R(t))t≥0 is uniformly continuous for t > 0, then by the dominated convergence Theorem, we deduce that∫ t0

0
‖R(t0 + h − s)− R(t0 − s)‖w(s)ds → 0 as h → 0 for t0 6= s.

The same proof works for h < 0. Then

lim
h→0

sup
u∈Ww

‖Hu(t0 + h)− Hu(t0)‖ = 0.

Lemma 2.14 ([4]). If W ⊂ C(J, X) is bounded, then for all t ∈ J

α(W (t)) ≤ α(W ),

where W (t) = {u(t) : u ∈ W } ⊂ X . Furthermore, if W is equicontinuous on J , then

α(W ) = α(W (J )) = sup{α(W (t)) : t ∈ J },

where W (J ) = {u(t) : u ∈ W, t ∈ J }. We consider now the problem of exchanging noncompactness measure and
integral. Let S : L1([0, b]; X)→ C([0, b]; X) be an abstract operator satisfying the following conditions.

(S1): There exists D > 0 such that

‖S f (t)− Sg(t)‖ ≤ D
∫ t

0
‖ f (s)− g(s)‖ds

for every f, g ∈ L1([0, b]; X) and t ∈ [0, b].
(S2): Let K ⊂ X be compact and sequence (gn)n≥1 ⊂ L1([0, b]; X) such that {gn(t); n ≥ 1} ⊂ K for a.e. t ∈ [0, b].

Then the weak convergence gn ⇀ g0 implies the strong convergence Sgn → Sg0.

Theorem 2.15 ([9]). If S satisfies (S1) and (S2). Let ( fn)n≥1 ⊂ L1([0, b]; X) and there exists v ∈ L1([0, b];R+)
such that ‖ fn(t)‖ ≤ v(t) for a.e. t ∈ [0, b], and for all n ≥ 1. Then

α({S fn (t) : n ≥ 1}) ≤ 2D
∫ t

0
α({ fn(s) : n ≥ 1})ds for t ∈ [0, b].

Let (R(t))t≥0 be the resolvent operator of Eq. (2). We define the operator

G : L1(J ; X)→ C(J ; X)

by

G f (t) =
∫ t

0
R(t − s) f (s)ds for t ∈ J.
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Theorem 2.16. Let (H1) and (H2) be satisfied. Let ( fn)n≥1 ⊂ L1([0, b]; X) and there exists v ∈ L1([0, b];R+) such
that ‖ fn(t)‖ ≤ v(t) for a.e. t ∈ [0, b], and for all n ≥ 1. Then

α({G fn (t) : n ≥ 1}) ≤ 2Rb

∫ t

0
α({ fn(s) : n ≥ 1})ds for t ∈ [0, b],

where Rb = supt∈[0,b] ‖R(t)‖.

Proof. It suffices to show that the operator G satisfies (S1) and (S2). Since ‖R(t)‖ ≤ Rb for all t ∈ [0, b], then
condition (S1) is automatically satisfied.

We claim that (S2) condition is satisfied. Since G is a bounded linear operator, then fn ⇀ f0 implies G fn ⇀ G f0.
By using Ascoli–Arzela’s Theorem, show that {G fn, n ≥ 1} is relatively compact in C(J, X). It suffices to show that
for each t ∈ J fixed, the set Y (t) = {G fn(t), n ≥ 1} is relatively compact in X and {G fn, n ≥ 1} is equicontinuous
on J .

Let the compact K ⊂ X, t ∈ J fixed and the set Qt ⊂ X be defined by

Qt = ∪s∈[0,t] R(t − s)K .

The set Qt is relatively compact. In fact, let us define functions gx : [0, t] → X defined by gx (s) = R(t − s)x for all
x ∈ K and s ∈ [0, t], then

Qt = {gx ([0, t]), x ∈ K }.

Note that {gx (·), x ∈ K } is equicontinuous on [0, t]. In fact, let s0 ∈ [0, t], h > 0 such that s0 + h ∈ [0, t]

‖gx (s0 + h)− gx (s0)‖ = ‖R(t − s0 − h)x − R(t − s0)x‖

≤ ‖R(t − s0 − h)− R(t − s0)‖‖x‖.

Since (R(t))t≥0 is uniformly continuous for t > 0, then

‖R(t − s0 − h)− R(t − s0)‖ → 0 as h → 0.

Thus ‖gx (s0+h)−gx (s0)‖ → 0 as h → 0 uniformly for x ∈ K . The same proof works for h < 0. Then {gx (s), x ∈ K }
is equicontinuous on [0, t]. By using Lemma 2.14, since R(t − s)K is compact, then

α(Qt ) = α({gx [0, t], x ∈ K }) = sup
s∈[0,t]

α
(
{gx (s), x ∈ K }

)
= sup

s∈[0,t]
α(R(t − s)K )

≤ sup
s∈[0,t]

‖R(t − s)‖α(K ) = 0.

Then Qt is relatively compact.

Lemma 2.17 ([10] Lemma 1.3). If f ∈ L1(J, X), then∫ b

a
f (t)dt ∈ (b − a)co({ f (t) : t ∈ [a, b]})

for all a, b ∈ J with a < b.

For all n0 ≥ 1, fn0(s) ∈ K for all s ∈ J . Then for s ∈ [0, t],

R(t − s) fn0(s) ∈ R(t − s)K ⊂ ∪τ∈[0,t] R(t − τ)K = Qt .

Then by Lemma 2.17

G fn0(t) =
∫ t

0
R(t − s) fn0(s)ds ∈ tco

(
{R(t − s) fn0(s) : s ∈ [0, t]}

)
⊂ tco(Qt ).

Since fn(t) ∈ K for all n ≥ 1 and t fixed, then {G fn(t), n ≥ 1} ⊂ tco(Qt ). We have

α({G fn(t), n ≥ 1}) ≤ α(tco(Qt )) = tα(co(Qt )) = tα(co(Qt )) = tα(Qt ) = 0.

Thus {G fn(t), n ≥ 1} is relatively compact in X .
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Let t0 ∈ J and h > 0 such that t0 + h ∈ J .

‖G fn(t0 + h)− G fn(t0)‖ ≤
∫ t0

0
‖R(t0 + h − s) fn(s)− R(t0 − s) fn(s)‖ds

+

∫ t0+h

t0
‖R(t0 + h − s)‖‖ fn(s)‖ds.

Since for all t > 0, R(t) is a bounded linear operator and K compact. Then by using Lemma 2.9 and the fact that
R(t)K is compact, we deduce that

lim
h→0

sup
n
‖R(t0 + h − s) fn(s)− R(t0 − s) fn(s)‖ = 0.

Then by the dominated convergence Theorem, we deduce that∫ t0

0
‖R(t0 + h − s) fn(s)− R(t0 − s) fn(s)‖ds → 0 as h → 0 for t0 6= s.

The same proof works for h < 0. Then

lim
h→0
‖G fn(t0 + h)− G fn(t0)‖ = 0 uniformly for n ≥ 1.

Then {G fn, n ≥ 0} is equicontinuous. By applying now Ascoli–Arzela’s Theorem, we get the relative compactness of
{G fn, n ≥ 1}. We have G fn ⇀ G f0, the relative compactness of {G fn, n ≥ 1} provides that the last convergence is in
the norm of the space C(J, X).

Let S f be the unique mild solution of the following integro-differential equationu′(t) = Au(t)+
∫ t

0
B(t − s)u(s)ds + f (t) for t ∈ J,

u(0) = u0.

(5)

Now we give the following result about α-estimation of the mild solutions.

Corollary 2.18. Let (H1) and (H2) be satisfied. Let ( fk)k≥1 be a sequence of functions. Assume that there exists a
function ϕ ∈ L1(J,R+) such that

‖ fk(t)‖ ≤ ϕ(t) for a.e. t ∈ J and k ≥ 1.

Then for all t ∈ J

α({S fk (t) : k ≥ 1}) ≤ 2Rb

∫ t

0
α({ fk(s) : k ≥ 1})ds.

3. Main results

Definition 3.1. A mild solution of Eq. (1) is a function u ∈ PC(J, X) such that

u(t) = R(t)g(u)+
∫ t

0
R(t − s) f (s, u(s))ds +

∑
0<ti<t

R(t − ti )Ii (u(ti )) for t ∈ J.

Let r > 0 and Wr = {u ∈ PC(J, X) : ‖u‖pc ≤ r}.

In order to prove the existence of mild solution, we assume the following assumptions.

(H3): The C0-semigroup (T (t))t≥0 generated by A is uniformly continuous for t > 0.
(H4): f : J × X → X satisfies the following conditions:

(i) f (·, x) : J → X is strongly measurable for x ∈ X
(ii) f (t, ·) : X → X is continuous for t ∈ J
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(iii) There exists l ∈ L1(J,R+) such that

α( f (t, B)) ≤ l(t)α(B)

for all t ∈ J and every bounded subset B ⊂ X .
(H5): Ii : X → X is Lipschitz continuous with Lipschitz constants ki , i = 1, . . . , p.
(H6): There exists a constant k ∈ (0,m) such that:

‖g(u)− g(v)‖ ≤ k‖u − v‖pc for all u, v ∈ PC(J, X),

where m = 1
Rb
−
∑p

i=1 ki .
(H7): There exists r > 0 such that

Rb

(
‖g(0)‖ +

p∑
i=1

‖Ii (0)‖ + b · sup
t∈J,u∈Wr

‖ f (t, u)‖
)
≤

(
1− Rb

(
k +

p∑
i=1

ki

))
r.

Let l1 =
∫ b

0 l(s)ds.

Theorem 3.2. Assume that the conditions (H1)–(H7) are satisfied. Then the Eq. (1) has at least one mild solution on
J provided that

Rb

(
4l1 + k +

p∑
i=1

ki

)
< 1.

Proof. We consider the operator H defined on PC(J, X) by

(Hu)(t) =
∫ t

0
R(t − s) f (s, u(s))ds for t ∈ J.

Let Br = {x ∈ X : ‖x‖ ≤ r} and Wr = {u ∈ PC(J, X) : ‖u‖pc ≤ r}.
We claim that H is continuous on PC(J, X). Let (un)n∈N ⊂ PC(J, X) be such that un → u in PC(J, X), then

there exists an integer r such that ‖un‖ ≤ r for all n ∈ N, then un ∈ Wr and u ∈ Wr . Since f (t, .) is continuous on
X , it follows that

lim
n→+∞

‖ f (s, un(s))− f (s, u(s))‖ = 0.

By using (H7) hypothesis and the dominated convergence Theorem, we deduce that

‖Hun − Hu‖ ≤ Rb

∫ b

0
‖ f (s, un(s))− f (s, u(s))‖ds → 0 when n→+∞.

Thus H is continuous on PC(J, X). Furthermore, by the assumption (H7) and Theorem 2.13, we know that H(Wr )

is bounded, equicontinuous on J . The following Lemma is needed.

Lemma 3.3 ([4]). If the condition (H7) holds, then for an arbitrary bounded set W ⊂ Wr

α(H W (t)) ≤ 4Rb

∫ t

0
α f (s,W (s))ds f or t ∈ J.

Let Q : PC(J, X)→ PC(J, X) be defined by

(Qu)(t) = u(t)− R(t)g(u)−
∑

0<ti<t

R(t − ti )Ii (u(ti )) for t ∈ J.

The fixed point of Q−1 H is the mild solution of Eq. (1). We prove that Q−1 H has a fixed point. Let u1, u2 ∈

PC(J, X), then

‖(Qu1)(t)− (Qu2)(t) ≤ ‖u1(t)− u2(t)‖ + ‖R(t)g(u1)− R(t)g(u2)‖

+

p∑
i=1

‖R(t − ti )Ii (u1(ti ))− R(t − ti )Ii (u2(ti ))‖



312 M.A. Diallo et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 304–315

≤ ‖u1 − u2‖PC + Rbk‖u1 − u2‖PC + Rb

p∑
i=1

ki‖u1 − u2‖PC

≤

(
1+ Rb

(
k +

p∑
i=1

ki

))
‖u1 − u2‖PC .

We claim that Q is bijective. For this purpose, for any fixed v ∈ PC(J, X), we prove there exists a unique
u ∈ PC(J, X) such that

(Qu)(t) = v(t) for t ∈ J.

We define the operator L : PC(J, X)→ PC(J, X) by

(Lu)(t) = R(t)g(u)+
∑

0<ti<t

R(t − ti )Ii (u(ti ))+ v(t) for t ∈ J.

The existence and uniqueness of a fixed point of L for any v ∈ PC(J, X) implies that Q is bijective. Let
u1, u2 ∈ PC(J, X), then

‖(Lu1)(t)− (Lu2)(t)‖ ≤ ‖R(t)g(u1)− R(t)g(u2)‖

+

p∑
i=1

‖R(t − ti )Ii (u1(ti ))− R(t − ti )Ii (u2(ti ))‖

≤ Rbk‖u1 − u2‖PC + Rb

p∑
i=1

ki‖u1 − u2‖PC

≤ Rb

(
k +

p∑
i=1

ki

)
‖u1 − u2‖PC .

From the condition (H6), we find that Rb

(
k +

∑p
i=1 ki

)
< 1, that is L is a contraction operator on PC(J, X). By

Banach’s fixed point Theorem, we deduce that L has a unique fixed point. Thus, Q is bijective.
We claim that Q−1 is Lipschitz continuous. Let v1, v2 ∈ PC(J, X), then

‖(Q−1v1)(t)− (Q
−1v2)(t)‖ ≤ ‖v1 − v2‖ + ‖R(t)g(Q

−1v1)− R(t)g(Q−1v2)‖

+

p∑
i=1

‖R(t − ti )Ii (Q
−1v1)(ti )− R(t − ti )Ii (Q

−1v2)(ti )‖

≤ ‖v1 − v2‖PC + Rbk‖Q−1v1 − Q−1v2‖PC

+ Rb

p∑
i=1

ki‖Q
−1v1 − Q−1v2‖PC

≤ ‖v1 − v2‖PC + Rb

(
k +

p∑
i=1

ki

)
‖Q−1v1 − Q−1v2‖PC

≤
1

1− Rb

(
k +

p∑
i=1

ki

)‖v1 − v2‖PC .

We claim that (Q−1 H)(Wr ) ⊂ Wr . In fact, for any u ∈ Wr ⊂ PC(J, X), let w = (Q−1 H)(u), from the hypotheses
(H5)–(H7), we have

‖w(t)‖ ≤ ‖R(t)g(u)‖ +
p∑

i=1

‖R(t − ti )Ii (u)(ti )‖ +
∫ t

0
‖R(t − s)‖ sup

s∈J,u∈Wr

‖ f (s, u(s))‖ds

≤ Rb

((
k +

p∑
i=1

ki

)
‖u‖PC + ‖g(0)‖ +

p∑
i=1

‖Ii (0)‖ + b · sup
s∈J,u∈Wr

‖ f (s, u(s))‖
)

≤ r,

we infer that ‖w‖PC ≤ r . Thus, (Q−1 H)(Wr ) ⊂ Wr .
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Finally, we prove that Q−1 H is a α-contraction. As Q−1 is Lipschitz continuous and H is continuous on
PC(J, X), we have Q−1 H is continuous on PC(J, X). Actually, since H(Wr ) is bounded and equicontinuous
on J , we can even deduce that (Q−1 H)(Wr ) ⊂ PC(J, X) is equicontinuous on each Ji , i = 0, 1, . . . , p, where
J0 = (0, t1]; Ji = (ti , ti+1], i = 1, . . . , p.

As Q−1 is Lipschitz with constant 1
1−Rb(k+

∑p
i=1 ki )

for W ⊂ Wr , we obtain that

α(Q−1 H W ) <
1

1− Rb

(
k +

p∑
i=1

ki

)α(H W ).

On the other hand, from Lemma 3.3 for t ∈ J , we know that

α(H W (t)) ≤ 4Rb

∫ t

0
α f (s,W (s))ds ≤ 4Rb

∫ t

0
l(s)α(W (s))ds.

From Lemma 2.14 and Lemma 3.3, we deduce that

α(H W ) ≤ 4l1 Rbα(W ).

Consequently,

α(Q−1 H W ) ≤
4l1 Rb

1− Rb

(
k +

p∑
i=1

ki

)α(W ).

Since Rb(4l1 + k +
∑p

i=1 ki ) < 1, the mapping Q−1 H is a α-contraction in Wr , by Theorem 2.6 the operator Q−1 H
has a fixed point in Wr which is just the mild solution of Eq. (1). This completes the proof.

4. Application

Consider the following partial impulsive integro-differential equation

∂

∂t
z(t, x) =

∂2

∂x2 z(t, x)+
∫ t

0
γ (t − s)

∂2

∂x2 z(s, x)ds

+ λ(t)φ(z(t, x)) for t ∈ [0, b] and x ∈ [0, π],
z(t, 0) = z(t, π) = 0,

z(0, x) =
p∑

i=1

ci z(ti , x), 0 < t1 < · · · < tp < b, x ∈ [0, π],

∆z(ti , x) = ki z(ti , x), i = 1, . . . , p; ki ∈ R for any i

(6)

where γ ∈ C 1([0, b],R), λ : R+ → R is continuous, φ : R → R is such that there exists a1 > 0 such that
|φ(x) − φ(y)| ≤ a1|x − y| for all x, y ∈ R and ci , ki ∈ R for i = 1, . . . , p. To rewrite Eq. (6) in the abstract form,
we introduce the space X = L2(0, π). Let A : D(A)→ X defined by{

D(A) = H1
0 (0, π) ∩ H2(0, π)

Ay = y′′.
(7)

Let C(t) : D(A)→ X defined by C(t)y = γ (t)Ay.
Let f : [0, b] × X → X defined by

f (t, v)(x) = λ(t)φ(v(x)) f or t ∈ [0, b] and x ∈ [0, π].

Let g : PC([0, b], X)→ X defined by

g(u)(x) =
p∑

i=1

ci u(ti )(x) f or 0 < t1 < · · · < tp < b, and x ∈ [0, π].
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Let Ii : X → X defined by

Ii (v)(x) = kiv(x) f or 0 < t1 < · · · < tp < b, and x ∈ [0, π],

where u(t)(x) = z(t, x). Let us suppose u(t) = z(t, x), Eq. (6) takes the following abstract form
u′(t) = Au(t)+

∫ t

0
C(t − s)u(s)ds + f (t, u(t)) for t ∈ J = [0, b] and t 6= ti

∆u(ti ) = Ii (u(ti )) for i = 1, . . . , p and 0 < t1 < t2 < · · · < tp < b
u(0) = g(u).

(8)

It is well known that A generates a C0-semigroup that is uniformly continuous for t > 0, which implies that (H1)

and (H3) are satisfied. Moreover (H2) is true, it follows that the linear Equation (2) has a resolvent operator (R(t))t≥0.
Claim that the application f : [0, b] × E → E defined by f (t, v)(x) = λ(t)φ(v(x)) for t ∈ [0, b] and x ∈ [0, π] is
continuous. Let (vn)n≥0 ⊂ L2(0, π) such that vn → v in L2(0, π),

‖ f (t, vn)− f (t, v)‖L2(0,π) =

(∫ π

0
| f (t, vn)(x)− f (t, v)(x)|2dx

) 1
2

=

(∫ π

0
|λ(t)φ(vn(x))− λ(t)φ(v(x))|

2dx
) 1

2

= |λ(t)|
(∫ π

0
|φ(vn(x))− φ(v(x))|

2dx
) 1

2
.

Lemma 4.1 ([11]). Let ( fn) ⊂ L2(0, π) and f ∈ L2(0, π) such that fn → f in L2(0, π). Then there exist a
subsequence ( fnk ) of ( fn) and a function ρ ∈ L2(0, π) such that

(i) fnk (x)→ f (x) as k →+∞ a.e. x ∈ [0, π]
(ii) | fnk (x)| ≤ ρ(x) for all k and for a.e. x ∈ [0, π].

By using the above Lemma 4.1. Then there exists a subsequence vnk of vn such that vnk (z) → v(z) for a.e.
z ∈ [0, π] and ρ ∈ L2((0, π),R+) such that |vnk (z)| ≤ ρ(z) for a.e. z ∈ [0, π].

By the continuity of φ, |φ(vnk (x)) − φ(v(x))| → 0 for a.e. x ∈ [0, π] and |φ(vnk (x))| ≤ a1|vnk (x)| + |φ(0)| ≤
a1ρ(x) + |φ(0)| ∈ L2(0, π). By the dominated convergence theorem φ(vnk (·)) → φ(v(·)) in L2(0, π) for any
subsequence vnk (·) of vn(·). Then φ(vn(·))→ φ(v(·)) in L2(0, π) thus ‖ f (t, vn)− f (t, v)‖L2(0,π) → 0 as n →∞
then (H4) is satisfied. The conditions (H5), (H6) and (H7) are satisfied with k =

∑p
i=1 |ci | and addition, if the

inequality

Rb

(
4l1 + k +

p∑
i=1

ki

)
< 1

held, where l1 = supx∈[0,π ]
∫ b

0 |ρ(t)φ(z(t, x))|dt . Then due to Theorem 3.2 Eq. (6) has at least one mild solution u.
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Abstract

We first establish some Ostrowski type inequalities for mappings whose second derivatives absolute values are convex. Then we
give some special cases of these inequalities which provide extensions of those given in earlier works. Finally, some applications
of these inequalities for special means are also provided.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The study of various types of integral inequalities has been the focus of great attention for well over a century by
a number of scientists, interested both in pure and applied mathematics. One of the many fundamental mathematical
discoveries of A. M. Ostrowski [1] is the following classical integral inequality associated with the differentiable
mappings:

Let f : [a, b] → R be a differentiable mapping on (a, b) whose derivative f
′

: (a, b) → R is bounded on (a, b),
i.e.,

 f ′


∞
= supt∈(a,b)

⏐⏐ f ′(t)
⏐⏐ < ∞. Then, the inequality holds:⏐⏐⏐⏐ f (x) −

1
b − a

∫ b

a
f (t)dt

⏐⏐⏐⏐ ≤

[
1
4

+

(
x −

a+b
2

)2

(b − a)2

]
(b − a)

 f ′


∞
(1.1)

for all x ∈ [a, b]. The constant 1
4 is the best possible.

Ostrowski inequality (1.1) has applications in numerical analysis, probability and optimization theory, stochastic,
statistics, information and integral operator theory, see for example [2–20].
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The remainder of this work is organized as follows: In this section, we present definition of convex function and
give an important identity which will be used to establish our main results. In Section 2, some new Ostrowski type
integral inequalities are proved for function whose second derivatives absolute values are convex. These inequalities
are provided for special means in Section 3. At the end some conclusions of research are discussed in Section 4.

Definition 1. The function f : [a, b] ⊂ R → R, is said to be convex if the following inequality holds

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)

for all x, y ∈ [a, b] and λ ∈ [0, 1]. We say that f is concave if (− f ) is convex.

Dragomir and Pearce proved the following identity and using this identity they gave important trapezoid
inequalities.

Lemma 1 ([5]). Let f : I ◦
⊂ R → R be twice differentiable function on I ◦, a, b ∈ I ◦ with a < b. If f ′′

∈ L1[a, b],
then

f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx =

(b − a)2

2

∫ 1

0
t(1 − t) f ′′(ta + (1 − t)b)dt. (1.2)

Sarikaya et al. gave the following identity for twice differentiable mapping:

Lemma 2 ([17]). Let f : I ◦
⊂ R → R be twice differentiable function on I ◦, a, b ∈ I ◦ with a < b. If f ′′

∈ L1[a, b],
then

1
b − a

∫ b

a
f (x)dx − f

(
a + b

2

)

=
(b − a)2

4

∫ 1

0
m (t)

[
f ′′(ta + (1 − t)b) + f ′′(tb + (1 − t)a)

]
dt, (1.3)

where

m(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t2, t ∈

[
0,

1
2

]

(1 − t)2, t ∈

(
1
2
, 1
]

.

Theorem 1 ([17]). Let f : I ⊂ R → Rbe twice differentiable function on I with f ′′
∈ L [a, b] . If

⏐⏐ f ′′
⏐⏐ is convex on

[a, b], then⏐⏐⏐⏐ f
(

a + b
2

)
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐ ≤
(b − a)2

24

[⏐⏐ f ′′ (a)
⏐⏐+ ⏐⏐ f ′′ (b)

⏐⏐
2

]
. (1.4)

In [10], Erden et al. gave the following important equality for twice differentiable function:

Lemma 3. Let f : I ⊂ R → R be twice differentiable function on I ◦ such that f ′′
∈ L [a, b], the interior of the

interval I , where a, b ∈ I ◦with a < b. Then the following identity holds:

1
2 (b − a)

∫ b

a
Ph (x, t) f ′′ (t) dt

=
h − 2

2

(
x −

a + b
2

)
f ′ (x) + f (x) −

f (b) − f (a)

2 (b − a)
mh(x) −

1
b − a

∫ b

a
f (t) dt

=: Sx,h ( f ) (1.5)
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for

Ph (x, t) :=

⎧⎨⎩(a − t) (t − a − mh(x)) , a ≤ t < x

(b − t) (t − b − mh(x)) , x ≤ t ≤ b

where mh(x) =
(
x −

a+b
2

)
h, h ∈ [0, 2] and x ∈ [a, b] .

Using the convexity of
⏐⏐ f ′′

⏐⏐ and identity (1.5), we establish some generalized Ostrowski type inequalities.

2. Main results

Now, we establish our main theorems and also give some results related to these theorems.

Theorem 2. Let f : I ⊂ R → R be twice differentiable function on I ◦, the interior of the interval I, where a, b ∈ I ◦

with a < b. If
⏐⏐ f ′′

⏐⏐ is a convex mapping on [a, b], then the following inequalities hold:⏐⏐Sx,h ( f )
⏐⏐

≤
1

2(b − a)2

{⏐⏐ f ′′ (a)
⏐⏐ [ (b − x)4

− (x − a)4

4
+ mh(x)

(x − a)3
+ (b − x)3

3

+ (b − a)
(x − a)3

3
− (b − a) mh(x)

(x − a)2

2
+

[mh(x)]4

6

]

+
⏐⏐ f ′′ (b)

⏐⏐ [ (x − a)4
− (b − x)4

4
− mh(x)

(x − a)3
+ (b − x)3

3

+ (b − a)
(b − x)3

3
+ (b − a) mh(x)

(b − x)2

2
−

[mh(x)]4

6
− (b − a)

[mh(x)]3

3

]}
(2.1)

for all a ≤ x ≤
a+b

2 with h ∈ [0, 2] and⏐⏐Sx,h ( f )
⏐⏐

≤
1

2(b − a)2

{⏐⏐ f ′′ (a)
⏐⏐ [ (b − x)4

− (x − a)4

4
+ mh(x)

(x − a)3
+ (b − x)3

3

+ (b − a)
(x − a)3

3
− (b − a) mh(x)

(x − a)2

2
−

[mh(x)]4

6
+ (b − a)

[mh(x)]3

3

]

+
⏐⏐ f ′′ (b)

⏐⏐ [ (x − a)4
− (b − x)4

4
− mh(x)

(x − a)3
+ (b − x)3

3

+ (b − a)
(b − x)3

3
+ (b − a) mh(x)

(b − x)2

2
+

[mh(x)]4

6

]}
(2.2)

for all a+b
2 ≤ x ≤ b with h ∈ [0, 2], where mh(x) = h

(
x −

a+b
2

)
.

Proof. Taking modulus of equality given in (1.5) and using the triangle inequality for integrals, we find that⏐⏐Sx,h ( f )
⏐⏐ =

1
2 (b − a)

⏐⏐⏐⏐∫ b

a
Ph (x, t) f ′′ (t) dt

⏐⏐⏐⏐
≤

1
2 (b − a)

∫ b

a
|Ph (x, t)|

⏐⏐ f ′′ (t)
⏐⏐ dt
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=
1

2 (b − a)

[∫ x

a
|a − t | |t − a − mh(x)|

⏐⏐ f ′′ (t)
⏐⏐ dt

+

∫ b

x
|b − t | |t − b − mh(x)|

⏐⏐ f ′′ (t)
⏐⏐ dt

]
.

Since
⏐⏐ f ′′

⏐⏐ is a convex mapping on [a, b] ,we have⏐⏐ f ′′ (t)
⏐⏐ =

⏐⏐⏐⏐ f ′′

(
b − t
b − a

a +
t − a
b − a

b
)⏐⏐⏐⏐ ≤

b − t
b − a

⏐⏐ f ′′ (a)
⏐⏐+ t − a

b − a

⏐⏐ f ′′ (b)
⏐⏐ . (2.3)

Using (2.3), we get⏐⏐Sx,h ( f )
⏐⏐

≤
1

2(b − a)2

[∫ x

a
|a − t | |t − a − mh(x)|

[
(b − t)

⏐⏐ f ′′ (a)
⏐⏐+ (t − a)

⏐⏐ f ′′ (b)
⏐⏐] dt

+

∫ b

x
|b − t | |t − b − mh(x)|

[
(b − t)

⏐⏐ f ′′ (a)
⏐⏐+ (t − a)

⏐⏐ f ′′ (b)
⏐⏐] dt

]
=

1
2(b − a)2

{⏐⏐ f ′′ (a)
⏐⏐ [∫ x

a
|a − t | |t − a − mh(x)| (b − t) dt

+

∫ b

x
|b − t | |t − b − mh(x)| (b − t) dt

]
+
⏐⏐ f ′′ (b)

⏐⏐ [∫ x

a
|a − t | |t − a − mh(x)| (t − a) dt

+

∫ b

x
|b − t | |t − b − mh(x)| (t − a) dt

]}
=

1
2(b − a)2

[⏐⏐ f ′′ (a)
⏐⏐ (I1 + I2) +

⏐⏐ f ′′ (b)
⏐⏐ (I3 + I4)

]
. (2.4)

We calculate integrals Ii , i = 1, . . . , 4, for the cases a ≤ x ≤
a+b

2 and a+b
2 ≤ x ≤ b;

In case of a ≤ x ≤
a+b

2 , using the fact that mh(x) ≤ 0, we get

I1 =

∫ x

a
(t − a) (t − a − mh(x)) (b − t) dt

= (b − a)

∫ x

a
(t − a) (t − a − mh(x)) dt −

∫ x

a
(t − a)2 (t − a − mh(x)) dt

= (b − a)
(x − a)3

3
− (b − a) mh(x)

(x − a)2

2
−

(x − a)4

4
+ mh(x)

(x − a)3

3
, (2.5)

I2 =

∫ b

x
(b − t)2

|t − b − mh(x)| dt

=

∫ b+mh (x)

x
(b − t)2 (mh(x) + b − t) dt +

∫ b

b+mh (x)
(b − t)2 (t − b − mh(x)) dt

=
[mh(x)]4

6
+ mh(x)

(b − x)3

3
+

(b − x)4

4
, (2.6)

I3 =

∫ x

a
(t − a)2 (t − a − mh(x)) dt =

(x − a)4

4
− mh(x)

(x − a)3

3
(2.7)

and

I4 =

∫ b

x
(b − t) |t − b − mh(x)| (t − a) dt
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=

∫ b+mh (x)

x
(b − t) (mh(x) + b − t) (t − a) dt

+

∫ b

x
(b − t) (t − b − mh(x)) (t − a) dt

= −
[mh(x)]4

6
− (b − a)

[mh(x)]3

3
−

(b − x)4

4
− mh(x)

(b − x)3

3

+ (b − a) mh(x)
(b − x)2

2
+ (b − a)

(b − x)3

3
. (2.8)

If we substitute the equalities (2.5)–(2.6) in (2.4), then we obtain the required inequality (2.1).
In case of a+b

2 ≤ x ≤ b, using the fact that mh(x) ≥ 0, we get

I1 =

∫ x

a
(t − a) |t − a − mh(x)| (b − t) dt

= −
[mh(x)]4

6
+ (b − a)

[mh(x)]3

3
−

(x − a)4

4
+ mh(x)

(x − a)3

3

− (b − a) mh(x)
(x − a)2

2
+ (b − a)

(x − a)3

3
(2.9)

I2 =

∫ b

x
(b − t)2 (mh(x) + b − t) dt = mh(x)

(b − x)3

3
+

(b − x)4

4
, (2.10)

I3 =

∫ x

a
(t − a)2

|t − a − mh(x)| dt =
[mh(x)]4

6
+

(x − a)4

4
− mh(x)

(x − a)3

3
(2.11)

and

I4 =

∫ b

x
(b − t) (mh(x) + b − t) (t − a) dt

= −mh(x)
(b − x)3

3
−

(b − x)4

4
+ (b − a) mh(x)

(b − x)2

2
+ (b − a)

(b − x)3

3
. (2.12)

If we substitute the equalities (2.9)–(2.12) in (2.4), then we obtain the desired inequality (2.2). The proof is thus
completed. □

Remark 1. If we choose x =
a+b

2 in Theorem 2, then the inequalities (2.1) and (2.2) reduce to the inequality (1.4).

Remark 2. If we choose h = 0 in the inequalities (2.1) and (2.2), then we have the following inequality⏐⏐⏐⏐ f (x) −

(
x −

a + b
2

)
f ′(x) −

1
b − a

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤

b − a
2

⎧⎨⎩⏐⏐ f ′′ (a)
⏐⏐ ⎡⎣⎡⎣1

4
+

(
x −

a+b
2

b − a

)2
⎤⎦(a + b

2
− x

)
+

(x − a)3

3(b − a)2

⎤⎦
+
⏐⏐ f ′′ (b)

⏐⏐ ⎡⎣⎡⎣1
4

+

(
x −

a+b
2

b − a

)2
⎤⎦(x −

a + b
2

)
+

(b − x)3

3(b − a)2

⎤⎦⎫⎬⎭
for x ∈ [a, b] .
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Corollary 1. Let us substitute x = a and x = b in Theorem 2. Subsequently, if we add the obtained result and use
the triangle inequality for the modulus, we get the inequality⏐⏐⏐⏐h − 2

2
b − a

4

(
f ′ (b) − f ′ (a)

)
+

f (a) + f (b)

2
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐
≤

(b − a)2

8

[
2
3

−
h
2

+
h3

12

] [⏐⏐ f ′′ (a)
⏐⏐+ ⏐⏐ f ′′ (b)

⏐⏐] .
Remark 3. If we take h = 0 in Corollary 1, then we obtain⏐⏐⏐⏐ f (a) + f (b)

2
−

b − a
4

(
f ′ (b) − f ′ (a)

)
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐ ≤
(b − a)2

6

[⏐⏐ f ′′ (a)
⏐⏐+ ⏐⏐ f ′′ (b)

⏐⏐
2

]
. (2.13)

Particularly, if | f (x)| < M , x ∈ [a, b] , then the inequality reduces the inequality⏐⏐⏐⏐ f (a) + f (b)

2
−

b − a
4

(
f ′ (b) − f ′ (a)

)
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐ ≤
M(b − a)2

6

which was given by Liu in [12].

Remark 4. If we take h = 2 in Corollary 1, then we have the trapezoid inequality⏐⏐⏐⏐ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐ ≤
(b − a)2

12

[⏐⏐ f ′′ (a)
⏐⏐+ ⏐⏐ f ′′ (b)

⏐⏐
2

]
(2.14)

which was given by Kiris and Sarikaya in [11].

Theorem 3. Let f : I ⊂ R → R be twice differentiable function on I ◦, the interior of the interval I, where a, b ∈ I ◦

with a < b. If
⏐⏐ f ′′

⏐⏐q , q > 1, is a convex mapping on [a, b], then the following inequalities hold:⏐⏐Sx,h ( f )
⏐⏐

≤
1

2(b − a)
1+

1
q

(
1

p + 1

) 1
p

⎧⎨⎩((x − a − mh(x))p+1
+ (−1)p[mh(x)]p+1) 1

p

×

[(
(b − a)(x − a)q+1

q + 1
−

(x − a)q+2

q + 2

) ⏐⏐ f ′′ (a)
⏐⏐q +

(x − a)q+2

q + 2

⏐⏐ f ′′ (b)
⏐⏐q] 1

q

+
(
(mh(x) + b − x)p+1

+ (−1)p+1[mh(x)]p+1) 1
p

×

[
(b − x)q+2

q + 2

⏐⏐ f ′′ (a)
⏐⏐q +

(
(b − a)(b − x)q+1

q + 1
−

(b − x)q+2

q + 2

) ⏐⏐ f ′′ (b)
⏐⏐q] 1

q
⎫⎬⎭ (2.15)

for a ≤ x ≤
a+b

2 , and⏐⏐Sx,h ( f )
⏐⏐

≤
1

2(b − a)
1+

1
q

(
1

p + 1

) 1
p

⎧⎨⎩([mh(x)]p+1
+ (x − a − mh(x))p+1) 1

p

×

[(
(b − a)(x − a)q+1

q + 1
−

(x − a)q+2

q + 2

) ⏐⏐ f ′′ (a)
⏐⏐q +

(x − a)q+2

q + 2

⏐⏐ f ′′ (b)
⏐⏐q] 1

q
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+
(
(mh(x) + b − x)p+1

− [mh(x)]p+1) 1
p

×

[
(b − x)q+2

q + 2

⏐⏐ f ′′ (a)
⏐⏐q +

(
(b − a)(b − x)q+1

q + 1
−

(b − x)q+2

q + 2

) ⏐⏐ f ′′ (b)
⏐⏐q] 1

q
⎫⎬⎭ (2.16)

for a+b
2 ≤ x ≤ b with h ∈ [0, 2], where mh(x) = h

(
x −

a+b
2

)
and 1

p +
1
q = 1.

Proof. Taking the modulus of equality given in Lemma 3 and then using the well-known Hölder’s inequality, we have

⏐⏐Sx,h ( f )
⏐⏐

≤
1

2 (b − a)

∫ b

a
|Ph (x, t)|

⏐⏐ f ′′ (t)
⏐⏐ dt

=
1

2 (b − a)

[∫ x

a
|a − t | |t − a − mh(x)|

⏐⏐ f ′′ (t)
⏐⏐ dt

+

∫ b

x
|b − t | |t − b − mh(x)|

⏐⏐ f ′′ (t)
⏐⏐ dt

]
≤

1
2 (b − a)

[(∫ x

a
|t − a − mh(x)|pdt

) 1
p
(∫ x

a
(t − a)q

⏐⏐ f ′′ (t)
⏐⏐qdt

) 1
q

+

(∫ b

x
|t − b − mh(x)|pdt

) 1
p
(∫ b

x
(b − t)q

⏐⏐ f ′′ (t)
⏐⏐qdt

) 1
p

⎤⎦ . (2.17)

Since
⏐⏐ f ′′

⏐⏐q is a convex mapping on [a, b] ,we get⏐⏐ f ′′ (t)
⏐⏐q =

⏐⏐⏐⏐ f ′′

(
b − t
b − a

a +
t − a
b − a

b
)⏐⏐⏐⏐q ≤

b − t
b − a

⏐⏐ f ′′ (a)
⏐⏐q +

t − a
b − a

⏐⏐ f ′′ (b)
⏐⏐q . (2.18)

Using (2.18), we have∫ x

a
(t − a)q

⏐⏐ f ′′ (t)
⏐⏐qdt

≤
1

b − a

∫ x

a
(t − a)q [(b − t)

⏐⏐ f ′′ (a)
⏐⏐q + (t − a)

⏐⏐ f ′′ (b)
⏐⏐q]

=
1

b − a

{[
(b − a)(x − a)q+1

q + 1
−

(x − a)q+2

q + 2

] ⏐⏐ f ′′ (a)
⏐⏐q +

(x − a)q+2

q + 2

⏐⏐ f ′′ (b)
⏐⏐q} (2.19)

and similarly,∫ b

x
(b − t)q

⏐⏐ f ′′ (t)
⏐⏐qdt

≤
1

b − a

∫ b

x
(b − t)q [(b − t)

⏐⏐ f ′′ (a)
⏐⏐q + (t − a)

⏐⏐ f ′′ (b)
⏐⏐q]

=
1

b − a

{
(b − x)q+2

q + 2

⏐⏐ f ′′ (a)
⏐⏐q +

[
(b − a)(b − x)q+1

q + 1
−

(b − x)q+2

q + 2

] ⏐⏐ f ′′ (b)
⏐⏐q} . (2.20)

Moreover, we obtain∫ x

a
|t − a − mh(x)|pdt =

(x − a − mh(x))p+1
+ (−1)p[mh(x)]p+1

p + 1
(2.21)
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for a ≤ x ≤
a+b

2 , and∫ x

a
|t − a − mh(x)|pdt =

[mh(x)]p+1
+ (x − a − mh(x))p+1

p + 1
(2.22)

for a+b
2 ≤ x ≤ b.

Using the similar way we also have,∫ b

x
|t − b − mh(x)|pdt =

(mh(x) + b − x)p+1
+ (−1)p+1[mh(x)]p+1

p + 1
(2.23)

for a ≤ x ≤
a+b

2 , and∫ b

x
|t − b − mh(x)|pdt =

(mh(x) + b − x)p+1
− [mh(x)]p+1

p + 1
(2.24)

for a+b
2 ≤ x ≤ b.

Using the identities (2.19)–(2.21) and (2.23) for the case a ≤ x ≤
a+b

2 and using the identities (2.19), (2.20), (2.22)
and (2.24) for the case a+b

2 ≤ x ≤ b, we obtain required results (2.15) and (2.16). □

Corollary 2. If we choose x =
a+b

2 in Theorem 3, then we have the inequality⏐⏐⏐⏐ f
(

a + b
2

)
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐
≤

(b − a)2

24+
1
q

(
1

p + 1

) 1
p

×

⎧⎨⎩
[

(q + 3)
⏐⏐ f ′′ (a)

⏐⏐q + (q + 1)
⏐⏐ f ′′ (b)

⏐⏐q
(q + 1) (q + 2)

] 1
q

+

[
(q + 1)

⏐⏐ f ′′ (a)
⏐⏐q + (q + 3)

⏐⏐ f ′′ (b)
⏐⏐q

(q + 1) (q + 2)

] 1
q
⎫⎬⎭ .

Corollary 3. If we choose h = 0 in Theorem 3 , then we have the following inequality for a ≤ x ≤ b⏐⏐⏐⏐ f (x) −

(
x −

a + b
2

)
f ′(x) −

1
b − a

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤

1

2(b − a)
1+

1
q

(
1

p + 1

) 1
p

×

{
(x − a)3

[(
b − a
q + 1

−
x − a
q + 2

) ⏐⏐ f ′(a)
⏐⏐q +

x − a
q + 2

⏐⏐ f ′(b)
⏐⏐q] 1

q

+ (b − x)3
[

b − x
q + 2

⏐⏐ f ′(a)
⏐⏐q +

(
b − a
q + 1

−
b − x
q + 2

) ⏐⏐ f ′(b)
⏐⏐q] 1

q
}

where 1
p +

1
q = 1.

Corollary 4. Let us x = a and x = b in Theorem 3. Subsequently, if we add the obtained result and use the triangle
inequality for the modulus, we get the inequality for h ∈ [0, 2]⏐⏐⏐⏐h − 2

2
b − a

4

(
f ′ (b) − f ′ (a)

)
+

f (a) + f (b)

2
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐
≤

(b − a)2

23+
1
p

(
1

p + 1

) 1
p (

(2 − h)p+1
+ h p+1) 1

p
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×

⎧⎨⎩
[⏐⏐ f ′′(b)

⏐⏐q + (q + 1)
⏐⏐ f ′′(a)

⏐⏐q
(q + 1) (q + 2)

] 1
q

+

[⏐⏐ f ′′(b)
⏐⏐q + (q + 1)

⏐⏐ f ′′(a)
⏐⏐q

(q + 1) (q + 2)

] 1
q
⎫⎬⎭

where 1
p +

1
q = 1.

Remark 5. If we take h = 0 in Corollary 4 , then we have⏐⏐⏐⏐ f (a) + f (b)
2

−
(b − a)

4

[
f ′ (a) + f ′(b)

]
−

1
b − a

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤

(b − a)2

4

(
1

p + 1

) 1
p

⎧⎨⎩
[⏐⏐ f ′′(b)

⏐⏐q + (q + 1)
⏐⏐ f ′′(a)

⏐⏐q
(q + 1) (q + 2)

] 1
q

+

[⏐⏐ f ′′(b)
⏐⏐q + (q + 1)

⏐⏐ f ′′(a)
⏐⏐q

(q + 1) (q + 2)

] 1
q
⎫⎬⎭

where 1
p +

1
q = 1.

Remark 6. If we take h = 2 in Corollary 4, then we have following inequality⏐⏐⏐⏐ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (t) dt

⏐⏐⏐⏐
≤

(b − a)2

4

(
1

p + 1

) 1
p

⎧⎨⎩
[⏐⏐ f ′′(b)

⏐⏐q + (q + 1)
⏐⏐ f ′′(a)

⏐⏐q
(q + 1) (q + 2)

] 1
q

+

[⏐⏐ f ′′(b)
⏐⏐q + (q + 1)

⏐⏐ f ′′(a)
⏐⏐q

(q + 1) (q + 2)

] 1
q
⎫⎬⎭

where 1
p +

1
q = 1.

3. Applications to some special means

Let us recall the following means:
(a) The Arithmetic mean:

A = A(a, b) :=
a + b

2
, a, b ≥ 0

(b) The Geometric mean:

G = G(a, b) :=
√

ab, a, b ≥ 0

(c) The Harmonic mean:

H = H (a, b) :=
2

1
a +

1
b

, a, b > 0

(d) The Logarithmic mean:

L = L(a, b) :=

⎧⎨⎩ a if a = b
b − a

ln b − ln a
if a ̸= b

, a, b > 0

(e) The Identric mean:

I = L(a, b) :=

⎧⎪⎨⎪⎩
a if a = b

1
e

(
bb

aa

) 1
b−a

if a ̸= b
, a, b > 0

(f) The p-logarithmic mean:

L p = L p(a, b) :=

⎧⎪⎨⎪⎩
a if a = b[

bp+1
− a p+1

(p + 1) (b − a)

] 1
p

if a ̸= b
, a, b > 0

where p ∈ R \ {−1, 0} .
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The following simple relationships are known in literature

H ≤ G ≤ L ≤ I ≤ A.

It is also known that L p is monotonically increasing in p ∈ R with L0 = I and L−1 = L .

Proposition 1. Let a, b ∈ R, 0 < a < b, n ∈ Z and |n(n − 1)| ≥ 3. Then, we have⏐⏐⏐⏐n (h − 2)

2
(x − A) xn−1

+ xn
−

n.h
2

Ln−1
n−1 (x − A) − Ln

n

⏐⏐⏐⏐
≤

1
2(b − a)2

{
|n(n − 1)| an−2

[
(b − x)4

− (x − a)4

4
+ h(x − A)

(x − a)3
+ (b − x)3

3

+ (b − a)
(x − a)3

3
− (b − a) h(x − A)

(x − a)2

2
+

[h(x − A)]4

6

]

+ |n(n − 1)| bn−2

[
(x − a)4

− (b − x)4

4
− h(x − A)

(x − a)3
+ (b − x)3

3

+ (b − a)
(b − x)3

3
+ (b − a) h(x − A)

(b − x)2

2
−

[h(x − A)]4

6
− (b − a)

[h(x − A)]3

3

]}
for all a ≤ x ≤ A with h ∈ [0, 2] and⏐⏐⏐⏐n (h − 2)

2
(x − A) xn−1

+ xn
−

n.h
2

Ln−1
n−1 (x − A) − Ln

n

⏐⏐⏐⏐
≤

1
2(b − a)2

{
|n(n − 1)| an−2

[
(b − x)4

− (x − a)4

4
+ h(x − A)

(x − a)3
+ (b − x)3

3

+ (b − a)
(x − a)3

3
− (b − a) h(x − A)

(x − a)2

2
−

[h(x − A)]4

6
+ (b − a)

[h(x − A)]3

3

]

+ |n(n − 1)| bn−2

[
(x − a)4

− (b − x)4

4
− h(x − A)

(x − a)3
+ (b − x)3

3

× (b − a)
(b − x)3

3
+ (b − a) h(x − A)

(b − x)2

2
+

[h(x − A)]4

6

]}
for all A ≤ x ≤ b with h ∈ [0, 2].

Proof. The proof is immediate from Theorem 2 applied for f (x) = xn , x ∈ R, n ∈ Z , |n(n − 1)| ≥ 3. □

Remark 7. If we choose h = 0 in Proposition 1, then we have the inequality⏐⏐xn
− n (x − A) xn−1

− Ln
n

⏐⏐
≤

1
2(b − a)2

{
|n(n − 1)| an−2

[
(b − x)4

− (x − a)4

4
+ + (b − a)

(x − a)3

3

]

+ |n(n − 1)| bn−2

[
(x − a)4

− (b − x)4

4
+ (b − a)

(b − x)3

3

]}
for x ∈ [a, b] .
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Proposition 2. Let a, b ∈ (0, ∞) and a < b. Then, we have⏐⏐⏐⏐ln I +
h (x − A)

2L
−

(h − 2) (x − A)

2x
− ln x

⏐⏐⏐⏐
≤

1
2(b − a)2

{
1
a2

[
(b − x)4

− (x − a)4

4
+ h(x − A)

(x − a)3
+ (b − x)3

3

+ (b − a)
(x − a)3

3
− (b − a) h(x − A)

(x − a)2

2
+

[h(x − A)]4

6

]

+
1
b2

[
(x − a)4

− (b − x)4

4
− h(x − A)

(x − a)3
+ (b − x)3

3

+ (b − a)
(b − x)3

3
+ (b − a) h(x − A)

(b − x)2

2
−

[h(x − A)]4

6
− (b − a)

[h(x − A)]3

3

]}
for all a ≤ x ≤ A with h ∈ [0, 2] and⏐⏐⏐⏐ln I +

h (x − A)

2L
−

(h − 2) (x − A)

2x
− ln x

⏐⏐⏐⏐
≤

1
2(b − a)2

{
1
a2

[
(b − x)4

− (x − a)4

4
+ h(x − A)

(x − a)3
+ (b − x)3

3

+ (b − a)
(x − a)3

3
− (b − a) h(x − A)

(x − a)2

2
−

[h(x − A)]4

6
+ (b − a)

[h(x − A)]3

3

]

+
1
b2

[
(x − a)4

− (b − x)4

4
− h(x − A)

(x − a)3
+ (b − x)3

3

(b − a)
(b − x)3

3
+ (b − a) h(x − A)

(b − x)2

2
+

[h(x − A)]4

6

]}
for all A ≤ x ≤ b with h ∈ [0, 2].

Proof. The assertion follows from Theorem 2 applied to the mapping f : (0, ∞) → (−∞, 0), f (x) = −lnx and the
details are omitted. □

Remark 8. If we choose h = 0 in Proposition 2, then we have the inequality,⏐⏐⏐⏐ln I +
(x − A)

x
− ln x

⏐⏐⏐⏐
≤

1
2(b − a)2

{
1
a2

[
(b − x)4

− (x − a)4

4
+ (b − a)

(x − a)3

3

]

+
1
b2

[
(x − a)4

− (b − x)4

4
+ (b − a)

(b − x)3

3

]}
for x ∈ [a, b].

4. Concluding Remarks

In this study, first of all, using practical identity for twice differentiable functions proved by Erden et al., we present
some new upper bounds for generalized Ostrowski type inequalities by taking advantage of mappings whose second
derivatives absolute values are convex. Moreover, we provide these inequalities for special means.
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Abstract

In this paper, a main theorem dealing with |N̄ , pn |k summability method has been generalized for ϕ −|N̄ , pn; δ|k summability
by using different and general summability factors of Fourier series.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Summability factors; Absolute matrix summability; Fourier series; Infinite series; Hölder inequality; Minkowski inequality

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). Let A = (anv) be a normal matrix, i.e., a lower triangular
matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence
s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, . . . . (1.1)

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). (1.2)

The sequence-to-sequence transformation

σn =
1
Pn

n∑
v=0

pvsv (Pn ̸= 0), (1.3)
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defines the sequence (σn) of the (N̄ , pn) mean of the sequence (sn), generated by the sequence of coefficients (pn)
(see [1]). The series

∑
an is said to be summable

⏐⏐N̄ , pn
⏐⏐
k , k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

|∆σn−1|
k < ∞. (1.4)

In the special case when pn = 1 for all values of n (resp. k = 1), then
⏐⏐N̄ , pn

⏐⏐
k summability is the same as |C, 1|k

(resp.
⏐⏐N̄ , pn

⏐⏐) summability.
The ϕ −

⏐⏐N̄ , pn; δ
⏐⏐
k summability method is defined by Seyhan (see [3]). The series

∑
an is said to be summable

ϕ −
⏐⏐N̄ , pn; δ

⏐⏐
k , k ≥ 1 and δ ≥ 0, if

∞∑
n=1

ϕδk+k−1
n |σn − σn−1|

k < ∞. (1.5)

If we take δ = 0 and ϕn =
Pn
pn

, then ϕ −
⏐⏐N̄ , pn; δ

⏐⏐
k summability is the same as

⏐⏐N̄ , pn
⏐⏐
k summability.

Let f be a periodic function with period 2π and integrable (L) over (−π, π).
Without loss of generality we may assume that the constant term in the Fourier series of f is zero, so that∫ π

−π

f (t)dt = 0, (1.6)

and

f (t) ∼

∞∑
n=1

(an cos nt + bn sin nt) =

∞∑
n=1

Cn(t). (1.7)

2. Known result

Many papers dealing with
⏐⏐N̄ , pn

⏐⏐
k summability factors and ϕ −

⏐⏐N̄ , pn; δ
⏐⏐
k summability factors of Fourier series

have been done (see [4–10]). Among them, Bor [5] has proved the following theorem.

Theorem A. If (λn) is a non-negative and non-increasing sequence such that
∑

pnλn < ∞, where (pn) is a sequence
of positive numbers such that Pn → ∞ as n → ∞, and

∑n
v=1 PvCv(t) = O(Pn), then the series

∑
Cn(t)Pnλn is

summable |N̄ , pn|k , k ≥ 1.

3. Main result

The aim of this paper is to prove a more general theorem which includes the above mentioned result as special
cases. Now, we shall prove the following theorem.

Theorem B. Let (pn) and (λn) be sequences satisfying the conditions of Theorem A and let (ϕn) be a sequence of
positive real numbers such that

ϕn pn = O(Pn), (3.1)
∞∑

n=v+1

ϕδk−1
n

1
Pn−1

= O
(

ϕδk
v

1
Pv

)
, (3.2)

m∑
n=1

ϕδk
n pnλn = O(1) as m → ∞, (3.3)

m∑
n=1

ϕδk
n Pn∆λn = O(1) as m → ∞. (3.4)

Then the series
∑

Cn(t)Pnλn is summable ϕ −
⏐⏐N̄ , pn; δ

⏐⏐
k , k ≥ 1 and 0 ≤ δk < 1.

We need the following lemma for the proof of Theorem B.
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Lemma 1 ([5]). If (λn) is a non-negative and non-increasing sequence such that
∑

pnλn is convergent, where (pn)
is a sequence of positive numbers such that Pn → ∞ as n → ∞, then Pnλn = O(1) as n → ∞ and

∑
Pn∆λn < ∞.

Remark 1. It should be noted that if we take δ = 0 and ϕn =
Pn
pn

in this theorem, (3.4) is satisfied by Lemma 1.
Condition (3.3) is satisfied by a hypothesis of Theorem A. Also in this case conditions (3.1) and (3.2) are obvious.

4. Proof of Theorem B

Let In(t) be the sequence of (N̄ , pn) means of the series
∑

Cn(t)Pnλn . Then, by definition, we have

In(t) =
1
Pn

n∑
v=0

pv

v∑
i=0

Ci (t)Piλi =
1
Pn

n∑
v=0

(Pn − Pv−1)Cv(t)Pvλv.

Then, for n ≥ 1, we have

In(t) − In−1(t) =
pn

Pn Pn−1

n∑
v=1

Pv−1Cv(t)Pvλv.

By Abel’s transformation, we have

In(t) − In−1(t) =
pn

Pn Pn−1

n−1∑
v=1

∆(Pv−1λv)
v∑

r=1

Pr Cr (t) +
pn

Pn
λn

n∑
v=1

PvCv(t)

= O(1)

{
pn

Pn Pn−1

n−1∑
v=1

(Pvλv − pvλv − Pvλv+1)Pv

}
+ O(1)pnλn

= O(1)

{
pn

Pn Pn−1

n−1∑
v=1

Pv Pv∆λv −
pn

Pn Pn−1

n−1∑
v=1

Pv pvλv + pnλn

}
= O(1)

{
In,1(t) + In,2(t) + In,3(t)

}
.

To prove Theorem B, by Minkowski’s inequality it is sufficient to show that
∞∑

n=1

ϕδk+k−1
n |In,r (t)|k < ∞, f or r = 1, 2, 3.

First, using the hypotheses of Theorem B, we have that

m+1∑
n=2

ϕδk+k−1
n |In,1(t)|k =

m+1∑
n=2

ϕδk+k−1
n

⏐⏐⏐⏐⏐ pn

Pn Pn−1

n−1∑
v=1

Pv Pv∆λv

⏐⏐⏐⏐⏐
k

≤

m+1∑
n=2

ϕδk−1
n

1
Pn−1

{
n−1∑
v=1

Pv Pv∆λv

}
×

{
1

Pn−1

n−1∑
v=1

Pv Pv∆λv

}k−1

= O(1)
m+1∑
n=2

ϕδk−1
n

1
Pn−1

n−1∑
v=1

Pv Pv∆λv

= O(1)
m∑

v=1

Pv Pv∆λv

m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

= O(1)
m∑

v=1

ϕδk
v Pv∆λv = O(1) as m → ∞.

Now, when k > 1, applying Hölder’s inequality with indices k and k ′ where 1
k +

1
k′ = 1, we have that

m+1∑
n=2

ϕδk+k−1
n |In,2(t)|k =

m+1∑
n=2

ϕδk+k−1
n

⏐⏐⏐⏐⏐ pn

Pn Pn−1

n−1∑
v=1

Pv pvλv

⏐⏐⏐⏐⏐
k
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≤

m+1∑
n=2

ϕδk−1
n

1
Pn−1

{
n−1∑
v=1

Pk
v pvλ

k
v

}
×

{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

Pk
v λk

v pv

m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

= O(1)
m∑

v=1

Pk
v λk

v pvϕ
δk
v

1
Pv

= O(1)
m∑

v=1

ϕδk
v (Pvλv)k−1 pvλv

= O(1)
m∑

v=1

ϕδk
v pvλv = O(1) as m → ∞,

by virtue of the hypotheses of Theorem B and Lemma 1. Finally, using the fact that Pnλn = O(1), by Lemma 1, we
obtain that

m∑
n=1

ϕδk+k−1
n |In,3(t)|k =

m∑
n=1

ϕδk+k−1
n |pnλn|

k

≤

m∑
n=1

ϕδk
n ϕk−1

n (pnλn)k−1(pnλn)

=

m∑
n=1

ϕδk
n (ϕn pn)k−1λk−1

n (pnλn)

= O(1)
m∑

n=1

ϕδk
n (Pnλn)k−1(pnλn)

= O(1)
m∑

n=1

ϕδk
n (pnλn) = O(1) as m → ∞,

by virtue of the hypotheses of Theorem B. This completes the proof of Theorem B.
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Abstract

The main research line of this paper is concerned with the existence and uniqueness of solutions for a certain class of coupled
systems of Caputo type fractional ∆-difference boundary value problems at resonance. To this aim, we use coincidence degree
theory to obtain existence results and impose growth controlling conditions on nonlinearities, uniqueness results will be concluded.
At the end by means of an illustrative example the obtained main results will be implemented.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Fractional sums and differences; Coincidence degree theory; Existence and uniqueness; Resonance

1. Introduction

The main objective of this paper is devoted to study of the following coupled system of higher order Caputo type
fractional ∆-difference boundary value problems at resonance⎧⎨⎩∆

α
∗

y(t) = f (t + N − α − 2, z,∆z,∆2z, . . . ,∆N−1z),
t = a, a + 1, . . . , b,

∆α
∗
z(t) = g(t + N − α − 2, y,∆y,∆2 y, . . . ,∆N−1 y),

(1.1)

⎧⎨⎩∆
N−i y(a + N − α − 2) = 0, ∆N−1 y(a + N − α − 2) = ∆N−1 y(b + N − α − 1), i = 2, 3, . . . , N ,

∆N−i z(a + N − α − 2) = 0, ∆N−1z(a + N − α − 2) = ∆N−1z(b + N − α − 1), i = 2, 3, . . . , N ,

(1.2)

where N −1 < α ≤ N , N ∈ N2, and a ∈ Z1, b ∈ Z2 with a < b. ∆α
∗

denotes the Caputo type fractional ∆-difference
of order α > 0. In this paper we will assume that f, g : Nb+N−α−1

a+N−α−2 × RN
→ R are continuous functions.
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With a sharp overview on the theory of fractional calculus, it is easy to check that discrete versions of the fractional
order operators do not follow the standard structure of corresponding continuous ones. More precisely in general,
all of the Riemann–Liouville based fractional operators have an impulse response function hγ (t) =

(t−τ )γ−1

Γ (γ ) as their
kernels. In discrete versions of these operators, corresponding kernels take a different forms such that there is no the
power term like one appeared in hγ , any more. Instead, these new kernels are closely related with just the Euler’s
gamma function Γ (.).

The concept memory in fractional order operators turn back to these impulse response functions. Namely, according
to the varying of order γ in hγ (t), fractional operators keep or lose the memory. So fractional order operators possess
full, null or one sided memory. For more details see [1–5].

On the other hand since less than a decade earlier by now, the theory of discrete fractional calculus is taking its
standard shape. Unerring, keeping the memory can be considered as one of the extraordinary properties of the newly
defined fractional operators (fractional ∆ and ∇ difference operators). In discrete fractional operators, the impulse
response functions are of the form of fractional falling or, rising functions hγ (t) =

(t−τ−1)γ−1

Γ (γ ) or, hγ (t) =
(t−τ+1)γ−1

Γ (γ ) ,
respectively. For more details about discrete fractional calculus, see [6–11].

Besides this advantage, establishing solvability of discrete fractional order boundary value problems is one of the
most popular research areas in discrete fractional calculus. As pioneering works, we suggest the collection of papers
due to P.W. Eloe and F.M. Atici [7–9,12], works due to C. Goodrich [10,11,13,14] and Y. Gholami and K. Ghanbari
[15–17]. The most applied technique in the mentioned references is fixed point theory (fixed point theorems such as
Krasnoselśkii, Krasnoselśkii–Zabreiko, nonlinear alternative of Leray–Schauder and Banach). In this paper, we are
going to apply a different technique to obtain existence and uniqueness of solutions for coupled resonant system (1.1)
and (1.2), that is the coincidence degree theory due to Jean Mawhin. For an eager follower of the resonant problems,
we suggest the references [10,11,13,14,18–29] and references cited therein.

W. Rui in [26], considered the following two-point Caputo fractional boundary value problem{
Dα

0+ x(t) = f (t, x(t), x ′(t), x ′′(t)), t ∈ [0, 1], 2 < α ≤ 3,

x(0) = x ′(0) = 0, x ′′(0) = x ′′(1),

where f : [0, 1] × R3
→ R is continuous. The author used coincidence degree theory to obtain at least one solution

for fractional boundary value problems. This paper together with [21] are the main motivation of this work.
The rest of this paper is organized as follows. In Section 2, we present necessary requirements of the discrete

fractional calculus and a quick overview of the coincidence degree theory. In Section 3, first we apply coincidence
degree theory for the existence at least one solution for coupled resonant system (1.1), (1.2) and then by means of
nonlinearities growth restriction, an uniqueness criterion will be presented. In Section 4, implementing the theoretical
obtained results, we present an illustrative example.

2. Preliminaries

We begin this section with basic definitions and lemmas of fractional ∆-difference calculus based on the
references [6,8,10]. We then give an overview to the J. Mawhin’s coincidence degree theory [25,30].

Definition 2.1. The fractional falling function is defined by

tα
=

Γ (t + 1)
Γ (t + 1 − α)

, t ∈ R \ {..., α − 3, α − 2, α − 1}, α ∈ R, (2.1)

such that

(i) tα
= 0, provided that {t + 1 − α} ∈ Z− = {..., −2, −1, 0}, α ∈ R,

(ii) t0
= 1,

(iii) αα
= Γ (α + 1).

We will use the following notation.
Na = {a, a + 1, a + 2, . . .}, bN = {..., b − 2, b − 1, b},

Nd
c = {c, c + 1, . . . , d − 1, d}, a, b ∈ R, c, d ∈ Z.

(2.2)

As can be seen, the fractional falling functions, make the main structures of kernels for discrete fractional order
operators. So we can now define these operators as follows.
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Definition 2.2 (c.f. [10], Sec. 2.3, Def. 2.25, p. 101). The left sided fractional ∆-sum of order α > 0 for f : Na → R
is defined by

∆−α
a f (t) =

1
Γ (α)

t−α∑
s=a

(t − σ (s))α−1 f (s), (2.3)

where α > 0, σ (s) = s + 1.

Remark 2.3. The left sided fractional ∆-sum of order α > 0, defined by (2.3) has the following property:

• ∆−α
a maps functions defined on Na to functions defined on Na+α .

Definition 2.4 (c.f [6], Sec. 3, Def. 13, p. 1607). The left sided Caputo type fractional ∆-difference of order α > 0
for f : Na → R is given by

∆α
∗

f (t) = ∆−(n−α)∆n
t f (t), t ∈ Na+n−α, (2.4)

such that α > 0, n − 1 < α ≤ n, n ∈ N.

In the following lemma, we give the composition and power rules for Caputo type fractional ∆-difference operators,
that will be needed to obtain the main results.

Lemma 2.5. Assume that f is a real-valued function defined on Na and α > 0, 0 ≤ n − 1 < ν ≤ n. Then

(Q1) ∆−α
a ∆α

∗
f (t) = f (t) −

∑n−1
k=0

(t−a)k

k!
∆k f (a).

(Q2) ∆α
∗
∆−α

a f (t) = f (t).
(Q3) ∆−α

a (t − a)ν =
Γ (ν+1)

Γ (ν+α+1) (t − a)ν+α, ν + α + 1 ̸∈ Z−.

(Q4) ∆M∆−α
a f (t) = ∆M−α f (t), M ∈ N1.

Next we discuss the coincidence degree theory, see [25] and chapters IV and V in [30].

Definition 2.6. Assume that B and D are real normed spaces. A linear mapping L : domL ⊂ B → D is called a
Fredholm mapping provided that the following conditions hold:

(i) ker L has a finite dimension,
(ii) I mL is closed and has a finite codimension.

Let L be a Fredholm mapping. Then its index is given by

I nd L = dim ker L − codim I mL .

Assume that L is a Fredholm mapping with index zero and there exist continuous projectors P : B → B and
Q : D → D such that

I m P = ker L , ker Q = I mL , B = ker L ⊕ ker P, D = I mL ⊕ I m Q.

It follows that the mapping

L|domL∩ker P : domL ∩ ker P → I mL

is invertible. Let us denote the inverse by K P : I mL → domL ∩ ker P . The generalized inverse of L denoted by
K P,Q : Z → domL ∩ ker P is defined by K P,Q = K P (I − Q).

If L is a Fredholm mapping of index zero, then for every isomorphism J : I m Q → ker L , the mapping
J Q + K P,Q : Z → domL is an isomorphism and, for every u ∈ domL ,

(J Q + K P,Q)−1u = (L + J−1 P)u.

Definition 2.7. Let L : domL ⊂ B → D be a Fredholm mapping, E be a metric space, and N : E → D be a
mapping. N is to be called L-compact on E provided that, QN : E → D is continuous and K P,Q : E → B is
compact on E . In addition, we say that, N is L-completely continuous if it is L-compact on every bounded E ⊂ B.



Y. Gholami, K. Ghanbari / Transactions of A. Razmadze Mathematical Institute 171 (2017) 332–349 335

Theorem 2.8. Let Ω ⊂ B be open and bounded, L be a Fredholm mapping of index zero and N be L-compact on
Ω . Assume that the following conditions are satisfied:

(i) Lu ̸= λNu for every (u, λ) ∈ ((domL \ ker L) ∩ ∂Ω ) × (0, 1);
(ii) Nu ̸∈ I mL for every u ∈ ker L ∩ ∂Ω ;

(iii) deg(J QN |ker L∩∂Ω ,Ω ∩ ker L , 0) ̸= 0 with Q : D → D a continuous projector such that ker Q = I mL and
J : I m Q → ker L is an isomorphism.

Then the equation Lu = Nu has at least one solution in domL ∩ Ω .

Before beginning the main body of our work, we describe the resonant nature of the discrete fractional coupled
system (1.1), (1.2). The operator Ly = ∆α

a∗
y in the homogeneous fractional ∆-difference boundary value problem{

∆α
∗

y(t) = 0, t ∈ Nb
a, N − 1 < α ≤ N , N ∈ N2,

∆N−i y(a + N − α − 2) = 0, i = 2, 3, . . . , N ,
(2.5)

is said to be resonant, provided that the fractional boundary value problem (2.5) has a nontrivial solution and L is said
to be non-resonant otherwise. On the other hand by property (Q1) in Lemma 2.5, it follows that

∆α
∗

y(t) = 0 iff y(t) =

N−1∑
k=0

ck(t − a)k .

Thus

∆N− j y(t) =

N−1∑
k=0

ck∆
N− j (t − a)k, j = 2, 3, . . . , N .

So, using the power rule (Q4) in Lemma 2.5 and taking t = a + N − α − 2 one has

∆N− j y(a + N − α − 2) =

N−1∑
k=0

ck
Γ (k + 1)

Γ (k + j − N + 1)
Γ (N − α − 1)

Γ (2N − k − j − 1 − α)
, j = 2, 3, . . . , N .

Equivalently, we have the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j = 2 ⇒ CN−2
(N − 2)!

0!
.
Γ (N − α − 1)
Γ (N − α − 1)

+ CN−1
(N − 1)!

1!
.
Γ (N − α − 1)
Γ (N − α − 2)

= 0,

j = 3 ⇒ CN−3
(N − 3)!

0!
.
Γ (N − α − 1)
Γ (N − α − 1)

+ CN−2
(N − 2)!

1!
.
Γ (N − α − 1)
Γ (N − α − 2)

+ CN−1
(N − 1)!

2!
.
Γ (N − α − 1)
Γ (N − α − 3)

= 0,

.

.

.

j = N − 2 ⇒ C2
2!

0!
.
Γ (N − α − 1)
Γ (N − α − 1)

+ C3
3!

1!
.
Γ (N − α − 1)
Γ (N − α − 2)

+ · · · + CN−1
(N − 1)!
(N − 3)!

.
Γ (N − α − 1)

Γ (2 − α)
= 0,

j = N − 1 ⇒ C1
1!

0!
.
Γ (N − α − 1)
Γ (N − α − 1)

+ C2
2!

1!
.
Γ (N − α − 1)
Γ (N − α − 2)

+ · · · + CN−1
(N − 1)!
(N − 2)!

.
Γ (N − α − 1)

Γ (1 − α)
= 0,

j = N ⇒ C0
0!

0!
.
Γ (N − α − 1)
Γ (N − α − 1)

+ C1
1!

1!
.
Γ (N − α − 1)
Γ (N − α − 2)

+ · · · + CN−1
(N − 1)!
(N − 1)!

.
Γ (N − α − 1)

Γ (−α)
= 0.

Therefore, the sequence of above equalities based on the first one ( j = 2), ensure that the boundary value problem
(2.5) has a nontrivial solution. We are concerned with the resonance case.

At the end of this section, we introduce the appropriate Banach spaces as follows. Our basic Banach space is

E = C
(
Nb+N−α−1

a+N−α−2,R
)

, N − 1 < α ≤ N , N ∈ N2, (2.6)

equipped with the standard max-norm

∥f∥E = max|f(t)|, t ∈ Nb+N−α−1
a+N−α−2.
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Now we define the Banach space

X =

{
u
⏐⏐⏐⏐ u ∈ E,∆N−i u ∈ E, i = 1, 2, . . . , N − 1, N ∈ N2

}
, (2.7)

with corresponding norm

∥u∥X = max
{
∥u∥E ,

∆N−i u


E
; i = 1, 2, . . ., N − 1, N ∈ N2

}
. (2.8)

At last our desired Banach spaces are defined by

(B, ∥.∥B) ,

{
B = X × X,

∥(u, v)∥B = max{∥u∥X , ∥v∥X },
(2.9)

and

(D, ∥.∥D) ,

{
D = E × E,

∥(u, v)∥D = max{∥u∥E , ∥v∥E }.
(2.10)

3. Main results

We begin the main results with constructing preparatory tools for applying coincidence degree theory as follows.
Let us take L1 : dom L1 ∩ X → E as

L1 y = ∆α
∗

y, (3.1)

where

dom L1 =

{
y ∈ X

⏐⏐⏐⏐ ∆N−i y(a + N − α − 2) = 0,

∆N−1 y(a + N − α − 2) = ∆N−1 y(b + N − α − 1), i = 2, 3, . . . , N
}
. (3.2)

Similarly, we define L2 : dom L2 ∩ X → E as

L2z = ∆α
∗
z, (3.3)

where

dom L2 =

{
z ∈ X

⏐⏐⏐⏐ ∆N−i z(a + N − α − 2) = 0,

∆N−1z(a + N − α − 2) = ∆N−1z(b + N − α − 1), i = 2, 3, . . . , N
}
. (3.4)

Therefore we can define L : dom L ∩ B → D as

L(y, z) = (L1 y, L2z) , (3.5)

where

dom L = {(y, z) ∈ B| y ∈ dom L1, z ∈ dom L2}. (3.6)

Also we define N : B → D as below

N (y, z) = (N1z,N2 y) , (3.7)

where Nk : X → E for k = 1, 2, are defined as

N1z = f (t + N − α − 2, z,∆z,∆2z, . . . ,∆N−1z),
N2 y = g(t + N − α − 2, y,∆y,∆2 y, . . . ,∆N−1 y).

(3.8)

Therefore considering (1.1), (1.2), (3.1)–(3.8) lead us to the L(y, z) = N (y, z).
To obtain claimed solvability results for the coupled system (1.1), (1.2), we shall prepare ourselves to apply the

coincidence degree theory. So, first we prove that the mapping L defined by (3.5) is a Fredholm operator of index zero
and then the mapping N defined by (3.7) is L-compact.
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Lemma 3.1. The mapping L : dom L ∩ B → D defined by (3.1)–(3.5) is a Fredholm operator having index zero.

Proof. Using (Q1) in Lemma 2.5, it follows that ker L =
(
c1(t − a)N−1, d1(t − a)N−1

)
. So ker L ∼=R2. Suppose that

(u, v) ∈ Im L . Thus there exists (y, z) ∈ dom L such that L(y, z) = (u, v). Equivalently by means of property (Q1) in
Lemma 2.5, we deduce that

y(t) = ∆−α
a u(t) + c1(t − a)N−1

+ c2(t − a)N−2
+ · · · + cN ,

z(t) = ∆−α
a v(t) + d1(t − a)N−1

+ d2(t − a)N−2
+ · · · + dN .

The definition of the dom L in (3.2)–(3.6), implies that ci = di = 0, i = 2, 3, . . . , n. Hence

y(t) = ∆−α
a u(t) + c1(t − a)N−1,

z(t) = ∆−α
a v(t) + d1(t − a)N−1.

Therefore, it follows that

∆N−1 y(t) = ∆N−1 (∆−α
a u

)
(t) + c1Γ (N )

∆N−1z(t) = ∆N−1 (∆−α
a v

)
(t) + d1Γ (N ).

Equivalently, we have

∆N−1 y(t) = ∆N−α−1
a u(t) + c1Γ (N )

∆N−1z(t) = ∆N−α−1
a v(t) + d1Γ (N ).

(3.9)

Let us take a look once again to the boundary conditions

∆N−1 y(a + N − α − 2) = ∆N−1 y(b + N − α − 1),
∆N−1z(a + N − α − 2) = ∆N−1z(b + N − α − 1).

Imposing these boundary conditions on (3.9), we get the following
b∑

s=a

(b + N − α − 1 − s)α−N u(s) = 0,

b∑
s=a

(b + N − α − 1 − s)α−N v(s) = 0.

Assume given (u, v) satisfies the recent equalities. If we take y(t) = ∆−α
a u(t) and z(t) = ∆−α

a v(t), then immediately
one may derive that (y, z) ∈ dom L . Thus we have

Im L =

{
(u, v)

⏐⏐⏐⏐ b∑
s=a

(b + N − α − 1 − s)α−N u(s) = 0,

b∑
s=a

(b + N − α − 1 − s)α−N v(s) = 0

}
. (3.10)

We now define the operators Qk : E → E, k = 1, 2 as

Q1u(t) =

∑b
s=a(b + N − α − 1 − s)α−N u(s)∑b

s=a(b + N − α − 1 − s)α−N
, Q2v(t) =

∑b
s=a(b + N − α − 1 − s)α−N v(s)∑b

s=a(b + N − α − 1 − s)α−N
. (3.11)

Clearly Q(u, v) = (Q1u, Q2v) ∼= R2. It is easy to check that for u, v ∈ E , the following properties hold:

Q2
1u(t) = Q1u(t), Q2

2v(t) = Q2v(t).

Consequently we conclude that Q2(u, v) = Q(u, v). Since (u, v) = (u, v) − Q(u, v) + Q(u, v), one can deduce that
D = Im L + Im Q. In addition as a result of Im L ∩ Im Q = {(0, 0)}, we find that D = Im L ⊕ Im Q. Finally by
means of Definition 2.6, one has

Ind L = dim ker L − codim Im L = dim ker L − [dim D − dim Im L] = 2 − [4 − 2] = 0.

Therefore the operator L defined above is a Fredholm operator of index zero. This completes the proof. □

In this position, we define the operators Pk : X → X, k = 1, 2 by

P1u(t) =
∆N−1u(a)
(N − 1)!

(t − a)N−1, P2v(t) =
∆N−1v(a)
(N − 1)!

(t − a)N−1. (3.12)
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In this case, using the property (Q4) in Lemma 2.5, we conclude that P2
1 u = P1u and P2

2 v = P2v. Now let us define
P : B → B as P(u, v) = (P1u, P2v). So we have

ker P =

{
(u, v)

⏐⏐⏐⏐ ∆N−1u(a) = 0, ∆N−1v(a) = 0
}

.

Since (u, v) = (u, v) − P(u, v) + P(u, v), it is easy to check that B = ker P + ker L , and because of ker P ∩ ker L =

{(0, 0)}, we deduce that B = ker P ⊕ ker L .
In the sequel we define the operator K P : Im L → dom L ∩ ker P as follows:

K P (u, v) =
(
∆−α

a u,∆−α
a v

)
. (3.13)

Thus for each (u, v) ∈ I mL , we have

L K P (u, v) = L
(
∆−α

a u,∆−α
a v

)
=
(
∆α

∗
∆−α

a u,∆α
∗
∆−α

a v
)

= (u, v). (3.14)

On the other hand, since for every (u, v) ∈ dom L ∩ ker P , we have ∆N−1u(a) = 0 and ∆N−1v(a) = 0, hence in the
identities

u(t) = ∆−α
a ∆α

∗
u(t) + c1(t − a)N−1

+ c2(t − a)N−2
+ · · · + cN ,

v(t) = ∆−α
a ∆α

∗
v(t) + d1(t − a)N−1

+ d2(t − a)N−2
+ · · · + dN ,

all of the coefficients ci , di = 0 for i = 1, 2, . . . , N . This implies that

K P L(u, v) =
(
∆−α

a ∆α
a∗

u,∆−α
a ∆α

a∗
v
)

= (u, v). (3.15)

So, using (3.14) and (3.15), we conclude that K P = (Ldom L∩ker P)−1.
We are now ready to prove the second step, i.e. prove that N defined by (3.7), (3.8) is an L-compact operator.

Lemma 3.2. Assume that Ω is an open and bounded subset of B such that domL ∩ Ω ̸= ∅. Then the operator N
defined by (3.7), (3.8) is L-compact.

Proof. Continuity of f, g : Nb+N−α−1
a+N−α−2 × RN

→ R ensures that QN (Ω ) and K P (I − Q)N (Ω ) are bounded. So,
using the Arzela–Ascoli theorem, it is sufficient to prove that K P (I − Q)N (Ω ) ⊂ B is equicontinuous. The discrete
nature of the fractional delta difference operators easily proves it. Hence, the proof is completed. □

Lemma 3.3. Assume that N − 1 < α ≤ N , N ∈ N2. Then(t − a)N−1


X
= max

{
ON−1

N−1,O
i−1
i−1, i = 1, 2, . . ., N − 1

}
,

where

ON−1
N−1 = max(t − a)N−1

= max
{

((N − 1) − α − 1)N−1, (α + b − a + (N − 1))N−1
}
,

Oi−1
i−1 = max

(N − 1)!
i !

{
((i − 1) − α − 1)i−1, (α + b − a + (i − 1))i−1

}
, i = 1, 2, . . ., N − 1.

Note that the N −1 as superscript in ON−1
N−1 depends on the N −1 in the falling exponent of the falling function (...)N−1

and another one as subscript refers to the basis in the corresponding falling functions.

Proof. According to (2.8), we have(t − a)N−1


X
= max

{(t − a)N−1


E
,

∆N−i (t − a)N−1


E
; i = 1, 2, 3, . . ., N − 1

}
.

A direct calculation indicates that

∆(t − a)N−1
=

Γ (t − a + 1)
Γ (t − a − N + 3)

(N − 1), t ∈ Nb+N−α−1
a+N−α−2.
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So we have the following cases.

(i) If t ≥ a + N − 3, we have ∆t (t − a)N−1
≥ 0. Therefore max(t − a)N−1

= (α + b − a + (N − 1))N−1.

(ii) If t < a + N − 3, we have the following subcases:{
1. t − a − N + 3 < 0, Γ (t − a − N + 3) > 0,

2. t − a − N + 3 < 0, Γ (t − a − N + 3) < 0.

Thus {
1. t − a − N + 3 ∈ (m, m + 1), m = −2k, k ∈ N,

2. t − a − N + 3 ∈ (m, m + 1), m = −2k + 1, k ∈ N.

Hence, it follows that:{
1. ∆(t − a)N−1

≥ 0,

2. ∆(t − a)N−1
≤ 0.

Finally we deduce that

ON−1
N−1 = max(t − a)N−1

= max
{

(N − α − 2)N−1, (α + b − a + (N − 1))N−1
}
. (3.16)

On the other hand, (Q3) in Lemma 2.5, gives us the following

∆N−i (t − a)N−1
=

(N − 1)!
i !

(t − a)i−1, i = 1, 2, 3, . . . , N − 1.

So as calculated in (3.16), we have

Oi−1
i−1 =

∆N−i (t − a)N−1


E

= max
(N − 1)!

i !

{
((i − 1) − α − 1)i−1, (α + b − a + (i − 1))i−1

}
, i = 1, 2, . . ., N − 1.

Therefore(t − a)N−1


X
= max

{
ON−1

N−1,O
i−1
i−1, i = 1, 2, . . ., N − 1

}
.

The proof is complete. □

Remark 3.4. By an analogous analysis as presented in Lemma 3.3, one has(t − a − 1)N−1


X
= max

{
ON−1

N−2,O
i−1
i−2, i = 1, 2, . . ., N − 1

}
. (3.17)

Remark 3.5. Given (u, v) ∈ B, by means of Lemma 3.3 we have

∥P(u, v)∥B = ∥ (P1(u), P1(v)) ∥B = max
{
∥P1(u)∥X , ∥P2(v)∥X

}
= max

{⏐⏐∆N−1u(a)
⏐⏐

(N − 1)!

(t − a)N−1


X ,

⏐⏐∆N−1v(a)
⏐⏐

(N − 1)!

(t − a)N−1


X

}
≤ Λ1 max

{⏐⏐∆N−1u(a)
⏐⏐, ⏐⏐∆N−1v(a)

⏐⏐},

(3.18)

where

Λ1 =

max
{⏐⏐⏐⏐ON−1

N−1

⏐⏐⏐⏐, ⏐⏐⏐⏐Oi−1
i−1

⏐⏐⏐⏐, i = 1, 2, . . ., N − 1
}

(N − 1)!
. (3.19)
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Also, since ∆s(t − s − 1)α−1
≤ 0 with t − α ≥ s and ∆t (t − s − 1)α−1

≥ 0, it follows that

max
a≤s≤t−α

(t − s − 1)α−1
= (t − a − 1)α−1,

max
t∈Nb+N−α−1

a+N−α−2

(t − a − 1)α−1
= (α + b − a + (N − 2))α−1.

(3.20)

Hence, for (u, v) ∈ I mL we have

∥K P (u, v)∥B =

 (∆−α
a u,∆−α

a v
) 

B

= max
{∆−α

a u


X ,
∆−α

a v


X

}
≤ Λ2 max

{
∥u∥E , ∥v∥E

}
,

(3.21)

where

Λ2 =

max
{⏐⏐⏐⏐ON−1

N−2

⏐⏐⏐⏐, ⏐⏐⏐⏐Oi−1
i−2

⏐⏐⏐⏐, i = 1, 2, . . ., N − 1
}

Γ (α)
. (3.22)

The forthcoming hypotheses will enable us to obtain the main results.

(C1) The continuous functions f, g satisfy in the following properties:

f : Nb+N−α−1
a+N−α−2 × Rn

→ R+
∪ {0}, or f : Nb+N−α−1

a+N−α−2 × Rn
→ R−

∪ {0}, (3.23a)

and

g : Nb+N−α−1
a+N−α−2 × Rn

→ R+
∪ {0}, or g : Nb+N−α−1

a+N−α−2 × Rn
→ R−

∪ {0}. (3.23b)

(C2) There exist positive real constants bk, ck, d1, d2 for k = 1, 2, . . . , N and real constants θk, λk ∈ [0, 1] with
k = 1, 2, . . . , N such that for all (x1, x2, . . . , xN ) ∈ RN ,

| f (t + N − α − 2, x1, x2, . . . , xN )| ≤ d1 +

N∑
k=1

bk |xk |
θk , t ∈ Nb

a, (3.24a)

and

|g(t + N − α − 2, x1, x2, . . . , xN )| ≤ d2 +

N∑
k=1

ck |xk |
λk , t ∈ Nb

a . (3.24b)

(C3) There exists a positive real constant B such that for any wi , zi ∈ R, i = 1, 2, . . . , N , if min{|wN |, |zN |} > B,
one has either

zN . f (t + N − α − 2, w1, w2, . . . , wN ) > 0, or
zN . f (t + N − α − 2, w1, w2, . . . , wN ) < 0, t ∈ Nb

a, (3.25a)

and

wN .g (t + N − α − 2, z1, z2, . . . , zN ) > 0, or
wN .g (t + N − α − 2, z1, z2, . . . , zN ) < 0, t ∈ Nb

a . (3.25b)

(C4)

(Λ1 + Λ2)
N∑

i=1

xi < 1, x = b, c, (3.26a)

Λ1

N∑
i=1

ci + Λ2

N∑
i=1

bi < 1, (3.26b)

Λ1

N∑
i=1

bi + Λ2

N∑
i=1

ci < 1. (3.26c)
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As a fundamental step to achieve the existence of at least one solution for the coupled resonant system (1.1), (1.2),
we shall prove boundedness of the following sets:

Ω1 =

{
(u, v) ∈ domL\ ker L

⏐⏐⏐⏐ L(u, v) = λN (u, v), λ ∈ [0, 1]
}
, (3.27a)

Ω2 =

{
(u, v) ∈ ker L

⏐⏐⏐⏐ N (u, v) ∈ Im L
}
, (3.27b)

Ω3 =

{
(u, v) ∈ ker L

⏐⏐⏐⏐ λ(u, v) + (1 − λ)QN (u, v) = (0, 0), λ ∈ [0, 1]
}
, (3.27c)

Ω4 =

{
(u, v) ∈ ker L

⏐⏐⏐⏐ − λ(u, v) + (1 − λ)QN (u, v) = (0, 0), λ ∈ [0, 1]
}
. (3.27d)

Lemma 3.6. Ω1 defined by (3.27a) is bounded.

Proof. Taking a look at the Ω1, we have that λ ̸= 0. On the other hand L(u, v) = λN (u, v) ∈ Im L = ker Q, that is

λ
∑b

s=a(b + N − α − 1 − s)α−N f
(
s + N − α − 2, v,∆v,∆2v, . . . ,∆N−1v

)∑b
s=a(b + N − α − 1 − s)α−N

= 0,

λ
∑b

s=a(b + N − α − 1 − s)α−N g
(
s + N − α − 2, u,∆u,∆2u, . . . ,∆N−1u

)∑b
s=a(b + N − α − 1 − s)α−N

= 0.

Therefore by means of property (C1), there exist t0, t1 ∈ Nb+N−α−1
a+N−α−2 such that

f
(
t1, v,∆v,∆2v, . . . ,∆N−1v

)
= 0,

g
(
t0, u,∆u,∆2, . . . ,∆N−1u

)
= 0.

Thus according to the property (C3), we conclude that |∆N−1u(t0)| ≤ B and |∆N−1v(t1)| ≤ B.
(u, v) ∈ Ω1, implies that (u, v) ∈ dom L\ ker L . Hence, since P2

= P , we conclude that (I − P)(u, v) ∈

dom L ∩ ker P and L P(u, v) = (0, 0). So, by (3.21) it follows that

∥(I − P)(u, v)∥B = ∥K P L(I − P)(u, v)∥B = ∥K P (L1u, L2v) ∥B =

 (∆−α
a L1u,∆−α

a L2v
) 

B

≤ λΛ2 max
{
∥N1v∥E , ∥N2u∥E

}
≤ Λ2 max

{
∥N1v∥E , ∥N2u∥E

}
.

(3.28)

On the other hand we notice that

L(u, v) = λN (u, v), (u, v) ∈ domL

⇐⇒

{
L1u = λN1v,

L2v = λN2u.

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u(t) = λ∆−α

a N1v +

N−1∑
k=0

(t − a)k

k!
∆ku(a),

v(t) = λ∆−α
a N2u +

n−1∑
k=0

(t − a)k

k!
∆kv(a).

⇐⇒

⎧⎨⎩∆
N−1u(t) = λ∆N−α−1

a N1v + ∆N−1u(a),

∆N−1v(t) = λ∆N−α−1
a N2u + ∆N−1v(a).
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Now substituting t = t0 in the first equality of the recent coupled equalities and t = t1 in second one, since
|∆N−1u(t0)| ≤ B and |∆N−1v(t1)| ≤ B, one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|∆N−1u(a)| ≤ B + λ

∑t0−(α−N+1)
s=a (t0 − s − 1)α−N

⏐⏐⏐⏐ f (s + N − α − 2, v(s),∆v(s),∆2v(s), . . . ,∆N−1v(s))
⏐⏐⏐⏐

Γ (α − N )
,

|∆N−1v(a)| ≤ B + λ

∑t1−(α−N+1)
s=a (t1 − s − 1)α−N

⏐⏐⏐⏐g(s + N − α − 2, u(s),∆u(s),∆2u(s), . . . ,∆N−1u(s))
⏐⏐⏐⏐

Γ (α − N )
.

Equivalently, (3.20) implies that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|∆N−1u(a)| ≤ B + Λ2

⏐⏐⏐⏐ f (s + N − α − 2, v(s),∆v(s),∆2v(s), . . . ,∆N−1v(s))
⏐⏐⏐⏐,

|∆N−1v(a)| ≤ B + Λ2

⏐⏐⏐⏐g(s + N − α − 2, u(s),∆u(s),∆2u(s), . . . ,∆N−1u(s))
⏐⏐⏐⏐.

Finally applying the hypothesis (C2) represented by (3.24a) and (3.24b), we get the following⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
|∆N−1u(a)| ≤ B + Λ2

(
d1 + b1 ∥v∥

θ1
E +

N∑
i=2

bi

∆N−i+1v

θi

E

)
,

|∆N−1v(a)| ≤ B + Λ2

(
d2 + c1 ∥u∥

λ1
E +

N∑
i=2

ci

∆N−i+1u
λi

E

)
.

(3.29)

Let us consider Remark 3.5. As a result of (3.28), we have

∥(u, v)∥B = ∥P(u, v) + (I − P)(u, v)∥B ≤ ∥P(u, v)∥B + ∥(I − P)(u, v)∥B

≤ max
{{

Λ1

⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐+ Λ2∥N1v∥E

}
,

{
Λ1

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐+ Λ2∥N2u∥E

}
,{

Λ1

⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐+ Λ2∥N2u∥E

}
,

{
Λ1

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐+ Λ2∥N1v∥E

}}
. (3.30)

In the sequel, we divide the remainder of proof into the four cases as following:

(i) Using (C2) and (3.29), we conclude that

∥(u, v)∥B ≤ Λ1

⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐+ Λ2∥N1v∥E

≤ Λ1 B + (Λ1 + Λ2)

(
d1 + b1 ∥v∥

θ1
E +

N∑
i=2

bi

∆N−i+1v

θi

E

)
.

(ii) Once again using (C2) and (3.29), similarly we can derive

∥(u, v)∥B ≤ Λ1

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐+ Λ2∥N2u∥E

≤ Λ1 B + (Λ1 + Λ2)

(
d2 + c1 ∥u∥

λ1
E +

N∑
i=2

ci

∆N−i+1u
λi

E

)
.
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(iii) In the third case, we have the following

∥(u, v)∥B ≤ Λ1

⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐+ Λ2∥N2u∥E

≤ Λ1

{
B +

(
d1 + b1 ∥v∥

θ1
E +

N∑
i=2

bi

∆N−i+1v

θi

E

)}

+Λ2

(
d2 + c1 ∥u∥

λ1
E +

N∑
i=2

ci

∆N−i+1u
λi

E

)
.

(iv) In the last case, similar with case (iii) it follows that

∥(u, v)∥B ≤ Λ1

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐+ Λ2∥N1v∥E

≤ Λ1

{
B +

(
d2 + c1 ∥u∥

λ1
E +

N∑
i=2

ci

∆N−i+1u
λi

E

)}

+Λ2

(
d1 + b1 ∥v∥

θ1
E +

N∑
i=2

bi

∆N−i+1v

θi

E

)
.

Interlacing the above inequalities (3.26a)–(3.26c) in the hypothesis (C4), gives us the following:

(i)

∥(u, v)∥B ≤
Λ1 B + d1(Λ1 + Λ2)

1 − (Λ1 + Λ2)
∑N

i=1 bi
.

(ii)

∥(u, v)∥B ≤
Λ1 B + d2(Λ1 + Λ2)

1 − (Λ1 + Λ2)
∑N

i=1 ci
.

(iii)

∥(u, v)∥B ≤
Λ1 B + (Λ1d1 + Λ2d2)

1 −

[
Λ1
∑N

i=1 bi + Λ2
∑N

i=1 ci

] .

(iv)

∥(u, v)∥B ≤
Λ1 B + (Λ1d2 + Λ2d1)

1 −

[
Λ1
∑N

i=1 ci + Λ2
∑N

i=1 bi

] .

Finally, these results in the above four cases guarantee the boundedness of Ω1 defined by (3.27a), that is our desired
result. □

Lemma 3.7. Ω2 defined by (3.27b) is bounded.

Proof. Assume that (u, v) ∈ Ω2. Then u = c1(t − a)N−1, v = c2(t − a)N−1, c1, c2 ∈ R. On the other hand
N (u, v) = (N1v,N2u) ∈ Im L = ker Q, implies the following∑b

s=a(b + N − α − 1 − s)α−N f
(

s + N − α − 2, c2(s − a)N−1, c2∆(s − a)N−1, . . . , c2∆
N−1(s − a)N−1

)
∑b

s=a(b + N − α − 1 − s)α−N
= 0,

∑b
s=a(b + N − α − 1 − s)α−N f

(
s + N − α − 2, c1(s − a)N−1, c1∆(s − a)N−1, . . . , c1∆

N−1(s − a)N−1
)

∑b
s=a(b + N − α − 1 − s)α−N

= 0.
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So, using hypothesis (C1), there exist constants t0, t1 ∈ Nb
a such that

f
(
t1 + N − α − 2, c2(t1 − a)N−1, c2∆(t1 − a)N−1, . . . , c2∆

N−1(t1 − a)N−1)
= 0,

f
(
t0 + N − α − 2, c1(t0 − a)N−1, c1∆(t0 − a)N−1, . . . , c1∆

N−1(t0 − a)N−1)
= 0.

Consequently, because of the condition (C3), we have

|c1|, |c2| ≤
B

(N − 1)!
.

Recent inequalities ensure that Ω2 is bounded. This completes the proof. □

Lemma 3.8. Ω3 defined by (3.27c) is bounded.

Proof. Suppose that (u, v) ∈ Ω3. So (u, v) = (c1(t − a)N−1, c2(t − a)N−1), c1, c2 ∈ R. Therefore λ(u, v) + (1 −

λ)QN (u, v) = (0, 0) consequences the following hold

c1λ(t − a)N−1
+

(1 − λ)
∑b

s=a (b + N − α − 1 − s)α−N f
(
s + N − α − 2, c2(s − a)N−1, c2∆(s − a)N−1, . . . , c2∆

N−1(s − a)N−1)∑b
s=a (b + N − α − 1 − s)α−N

= 0,

c2λ(t − a)N−1
+

(1 − λ)
∑b

s=a (b + N − α − 1 − s)α−N f
(
s + N − α − 2, c1(s − a)N−1, c1∆(s − a)N−1, . . . , c1∆

N−1(s − a)N−1)∑b
s=a (b + N − α − 1 − s)α−N

= 0.

If λ = 0, then a similar argument as given in Lemma 3.7 yields the boundedness of Ω3. Hence, let us consider
λ ∈ (0, 1]. In this case the hypothesis (C3) and more precisely the first parts of (3.25a) and (3.25b), enable us to
achieve to the desired result. □

Applying the counter part of hypothesis (C3) that applied in Lemma 3.8, one can deduce the following lemma.

Lemma 3.9. Ω4 defined by (3.27d) is bounded.

Now we are ready to state and prove our main existence result.

Theorem 3.10. Assume that the hypotheses (C1)–(C4) hold. Then the coupled resonant system (1.1), (1.2) has at least
one solution in B.

Proof. Let Ω ⊃ ∪
3
i=1Ωi ∪{0}

(
or, Ω ⊃ ∪

2
i=1Ωi ∪ Ω4 ∪ {0}

)
be a bounded open subset f B. It follows from Lemma 3.2

that N is a L-compact operator on Ω . Also by means of Lemmas 3.6–3.9, it follows that:

(1) L(u, v) = λN (u, v) for every ((u, v), λ) ∈ [dom L \ ker L ∩ ∂Ω ] × (0, 1).
(2) N (u, v) ̸∈ Im L for every (u, v) ∈ ker L ∩ ∂Ω .

So we just need to prove:
(3) deg (J QN |ker L , Ω ∩ ker L , 0) ̸= 0.

Define

H ((u, v), λ) = ±λId(u, v) + (1 − λ)J QN (u, v).

By the degree property of invariance under a homotopy, if u ∈ ker L ∩ ∂Ω , then

deg (J QN |ker L , Ω ∩ ker L , 0)

= deg (H (., 0), Ω ∩ ker L , 0)

= deg (H (., 1), Ω ∩ ker L , 0)

= deg (±Id, Ω ∩ ker L , 0) ̸= 0.

Hence, the assumption (iii) in Theorem 2.8 is fulfilled that completes the proof. □

So far, we have been studied only existence of solutions for the fractional ∆-difference coupled resonant system
(1.1) and (1.2). So as we promised above, it is time to establish the uniqueness results.

Theorem 3.11. Assume that the condition (C2) is replaced with the following conditions:
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(C′

2,1) There exist positive constants (ai , bi ) ∈ R2, i = 1, . . . , N, such that for all
(
(xi )N

1 , (yi )N
1

)
∈ RN

× RN , one
has

| f (t + N − α − 2, x1, x2, . . . , xN ) − f (t + N − α − 2, y1, y2, . . . , yN )|

≤

N∑
i=1

ai |xi − yi |, t ∈ Nb
a, (3.31a)

|g(t + N − α − 2, x1, x2, . . . , xN ) − f (t + N − α − 2, y1, y2, . . . , yN )|

≤

N∑
i=1

bi |xi − yi |, t ∈ Nb
a . (3.31b)

(C′

2,2) There exist positive constants (ki , li ) ∈ R2, i = 1, . . . , N, such that for all
(
(xi )N

1 , (yi )N
1

)
∈ RN

× RN , one
has

| f (t + N − α − 2, x1, x2, . . . , xN ) − f (t + N − α − 2, y1, y2, . . . , yN )|

≥ kN |xN − yN | −

N−1∑
i=1

ki |xi − yi |, t ∈ Nb
a, (3.32a)

|g(t + N − α − 2, x1, x2, . . . , xN ) − f (t + N − α − 2, y1, y2, . . . , yN )|

≥ lN |xN − yN | −

N−1∑
i=1

li |xi − yi |, t ∈ Nb
a . (3.32b)

Then the coupled resonant system (1.1) and (1.2) has exactly one solution in B provided that

Λ1

[N−2∑
i=1

lN−i

lN
+

l1

lN

]
+ (Λ1 + Λ2)

N∑
i=1

|bi | > 1, (3.33a)

Λ1

[N−2∑
i=1

kN−i

kN
+

k1

kN

]
+ (Λ1 + Λ2)

N∑
i=1

|ai | > 1, (3.33b)

Λ1

[N−2∑
i=1

lN−i

lN
+

l1

lN

]
+

[
Λ1

N∑
i=1

|bi | + Λ2

N∑
i=1

|ai |

]
> 1, (3.33c)

Λ1

[N−2∑
i=1

kN−i

kN
+

k1

kN

]
+

[
Λ1

N∑
i=1

|ai | + Λ2

N∑
i=1

|bi |

]
> 1. (3.33d)

Proof. Considering yi = 0, i = 1, 2, . . . , n and defining

d1 = max f (t + N − α − 2, 0, 0, . . . , 0), d2 = max g(t + N − α − 2, 0, 0, . . . , 0), t ∈ Nb
a,

we deduce that the condition (C2) is satisfied. Thus by Theorem 3.10 the existence of at least one solution for the
coupled resonant system (1.1) and (1.2) is immediate. The uniqueness of solution will be proved as follows.

Assume that (ui , vi ) ∈ B for i = 1, 2 are two solutions of fractional resonant system (1.1) and (1.2). So we have

∆α
∗
ui (t) = f

(
t + N − α − 2, vi ,∆vi ,∆

2vi , . . . ,∆
N−1vi

)
,

∆α
∗
vi (t) = g

(
t + N − α − 2, ui ,∆ui ,∆

2ui , . . . ,∆
N−1ui

)
.

Denoting u = u1 − u2, v = v1 − v2, it follows that

∆α
∗
u(t) = f

(
t + N − α − 2, v1,∆v1, . . . ,∆

N−1v1
)
− f

(
t + N − α − 2, v2,∆v2, . . . ,∆

N−1v2
)
,

∆α
∗
v(t) = g

(
t + N − α − 2, u1,∆u1, . . . ,∆

N−1u1
)
− g

(
t + N − α − 2, u2,∆u2, . . . ,∆

N−1u2
)
.

(3.34)
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Because of equality ImL = ker Q, we conclude that∑b
s=a(b + N − α − 1 − s)α−N

{
f
(
s + N − α − 2, v1,∆v1, . . . ,∆

N−1v1
)
− f

(
s + N − α − 2, v2,∆v2, . . . ,∆

N−1v2
)}

∑b
s=a(b + N − α − 1 − s)α−N

= 0,

∑b
s=a(b + N − α − 1 − s)α−N

{
g
(
s + N − α − 2, u1,∆u1, . . . ,∆

N−1u1
)
− g

(
s + N − α − 2, u2,∆u2, . . . ,∆

N−1u2
)}

∑b
s=a(b + N − α − 1 − s)α−N

= 0.

Accordingly the hypothesis (C1) implies that there exist t2, t3 ∈ Nb
a such that

f
(

t3 + N − α − 2, v1,∆v1, . . . ,∆
N−1v1

)
= f

(
t3 + N − α − 2, v2,∆v3, . . . ,∆

N−1v2

)
,

g
(

t2 + N − α − 2, u1,∆u1, . . . ,∆
N−1u1

)
= g

(
t2 + N − α − 2, u2,∆u2, . . . ,∆

α−1u2

)
.

Now, by (C′

2,2) we have

0 =

⏐⏐⏐⏐ f
(
t3 + N − α − 2, v1,∆v1, . . . ,∆

N−1v1
)
− f

(
t3 + N − α − 2, v2,∆v2, . . . ,∆

N−1v2
) ⏐⏐⏐⏐

≥ kN

⏐⏐⏐⏐∆N−1v(t3)
⏐⏐⏐⏐− N−2∑

i=1

kN−i

⏐⏐⏐⏐∆N−i−1v(t3)
⏐⏐⏐⏐− k1|v(t3)|.

Therefore⏐⏐⏐⏐∆N−1v(t3)
⏐⏐⏐⏐ ≤

N−2∑
i=1

kN−i

kN

⏐⏐⏐⏐∆N−i−1v(t3)
⏐⏐⏐⏐+ k1

kN
|v(t3)|.

So, it follows that⏐⏐⏐⏐∆N−1v(t3)
⏐⏐⏐⏐ ≤

N−2∑
i=1

kN−i

kN

∆N−i−1v


Ei

+
k1

kN
∥v∥E ≤

[N−2∑
i=1

kN−i

kN
+

k1

kN

]
∥v∥X . (3.35)

Similarly one can derive⏐⏐⏐⏐∆N−1u(t2)
⏐⏐⏐⏐ ≤

[N−2∑
i=1

lN−i

lN
+

l1

lN

]
∥u∥X . (3.36)

Considering (3.34), we obtain

∆N−1u(t) = ∆N−α−1
a

{
f
(
t + N − α − 2, v1,∆v1, . . . ,∆

N−1v1
)

− f
(
t + N − α − 2, v2,∆v2, . . . ,∆

N−1v2
)}

+ ∆N−1u(a),

∆N−1v(t) = ∆N−α−1
a

{
g
(
t + N − α − 2, u1,∆u1, . . . ,∆

N−1u1
)

− g
(
t + N − α − 2, u2,∆u2, . . . ,∆

N−1u2
)}

+ ∆N−1v(a).

Substituting t = t2 in the first equality and t = t3 in second one and then applying the hypothesis (C′

2,1), we can derive
the following⏐⏐⏐⏐∆N − 1u(a)

⏐⏐⏐⏐ ≤

⏐⏐⏐⏐∆N−1u(t2)
⏐⏐⏐⏐+ Λ2

N∑
i=1

ai

∆N−i+1v


E
, (3.37a)

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐ ≤

⏐⏐⏐⏐∆N−1v(t3)
⏐⏐⏐⏐+ Λ2

N∑
i=1

bi

∆N−i+1u


E
. (3.37b)
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Hence, using (3.35) and (3.36), we have⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐ ≤

[N−2∑
i=1

lN−i

lN
+

l1

lN

]
∥u∥X + Λ2

N∑
i=1

bi∥v∥X , (3.38a)

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐ ≤

[N−2∑
i=1

kN−i

kN
+

k1

kN

]
∥v∥X + Λ2

N∑
i=1

ai∥u∥X . (3.38b)

Let us recall once again (3.30). So, we have

∥(u, v)∥B = ∥P(u, v) + (I − P)(u, v)∥B ≤ ∥P(u, v)∥B + ∥(I − P)(u, v)∥B

≤ max
{{

Λ1

⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐+ Λ2∥N1v∥E

}
,

{
Λ1

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐+ Λ2∥N2u∥E

}
,{

Λ1

⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐+ Λ2∥N2u∥E

}
,

{
Λ1

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐+ Λ2∥N1v∥E

}}
. (3.39)

Using (3.39) with (3.38a) and (3.38b), one can prove the following inequalities:

(i)

∥(u, v)∥B ≤ Λ1

⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐+ Λ2∥N1v∥E

≤
Λ2|d1|

1 −

{
Λ1

[∑N−2
i=1

lN−i
lN

+
l1
lN

]
+ (Λ1 + Λ2)

∑N
i=1|bi |

} .

(ii)

∥(u, v)∥B ≤ Λ1

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐+ Λ2∥N2u∥E

≤
Λ2|d2|

1 −

{
Λ1

[∑N−2
i=1

kN−i
kN

+
k1
kN

]
+ (Λ1 + Λ2)

∑
i=1|ai |

} .

(iii)

∥(u, v)∥B ≤ Λ1

⏐⏐⏐⏐∆N−1u(a)
⏐⏐⏐⏐+ Λ2∥N2u∥E

≤
Λ2|d2|

1 −

{
Λ1

[∑N−2
i=1

lN−i
lN

+
l1
lN

]
+

[
Λ1
∑N

i=1|bi | + Λ2
∑N

i=1|ai |

]} .

(iv)

∥(u, v)∥B ≤ Λ1

⏐⏐⏐⏐∆N−1v(a)
⏐⏐⏐⏐+ Λ2∥N1v∥E

≤
Λ2|d1|

1 −

{
Λ1

[∑N−2
i=1

kN−i
kN

+
k1
kN

]
+

[
Λ1
∑N

i=1|ai | + Λ2
∑N

i=1|bi |

]} .

Implying the hypotheses (3.33a)–(3.33d) in the recent inequalities, we conclude that u = v = 0. Equivalently, we
have (u1, v1) = (u2, v2). Therefore, we have proved that the fractional ∆-difference resonant system (1.1) and (1.2)
has exactly one solution. □
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4. An application

Consider the fractional ∆-difference resonant system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆

5
2
∗ y(t) = f

(
t −

3
2
, z,∆z,∆2z

)
,

t ∈ N5
1,

∆
5
2
∗ z(t) = g

(
t −

3
2
, y,∆y,∆2 y

)
,

(4.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y
(

1
2

)
= 0, ∆y

(
1
2

)
= 0, ∆2 y

(
1
2

)
= ∆2 y

(
9
2

)
,

z
(

1
2

)
= 0, ∆z

(
1
2

)
= 0, ∆2z

(
1
2

)
= ∆2z

(
9
2

)
.

(4.2)

Indeed, the aforementioned system is reduced by the primitive resonant system (1.1) under selection of N = 3, α =
5
2

and a = 1, b = 5. Also the functions f, g : N
9
2
7
2

× R × R → R+
∪ {0} in system (4.1) read as follows

f (x, u, v, w) = 1 − sin
(

π

2

[
x −

7
2

])
+

|u| + |v| + |w|

1000
, (4.3)

g(x, u, v, w) = 1 − sin
(

π

2

[
x −

7
2

])
+

|u| + |v| + |w − 2|

1000
. (4.4)

Choosing d1 = d2 = 2, bk = ck =
1

1000 , k = 1, 2, 3 and θi = 1, for i = 1, 2 and λ1 = 1, λ2 =
1
2 , it is easy to

check that the hypotheses (C1) and (C2) are satisfied. Also because of the nonnegative nature of f and g for given
positive parameter B > 2, the hypothesis (C3) is also satisfied. On the other hand, case α =

5
2 and N = 3, with a

direct calculation it follows that the parameters Λ1 and Λ2 defined by (3.19) and (3.22), respectively, satisfy

Λ1 =≈ 31.875, Λ2 ≈ 266.48444. (4.5)

Therefore (4.5)) ensures that the hypothesis (C4) holds. So, based on Theorem 3.10, the coupled system (4.1) and
(4.2) admits at least one solution in B.

For uniqueness, choosing ai = bi =
1

1000 , i = 1, 2, 3, k3 = l3 =
1

1000 and ki = li = 1, i = 1, 2 we conclude that
the hypotheses (C′

2,1), (C′

2,2) and (3.33a)–(3.33d) hold. So the coupled resonant system (4.1) and (4.2) has a unique
solution in B.
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Abstract

The paper deals with the linear theory of thermoelasticity for elastic isotropic microstretch materials with microtemperatures and
microdilatations. For the differential equations of pseudo-oscillations the fundamental matrix is constructed explicitly in terms of
elementary functions. With the help of the corresponding Green identities the general integral representation formula of solutions
by means of generalized layer and Newtonian potentials are derived. The basic Dirichlet and Neumann type boundary value
problems are formulated in appropriate function spaces and the uniqueness theorems are proved. The existence theorems for
classical solutions are established by using the potential method.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The main goal of our investigation is analysis of the basic boundary value problems for the pseudo-oscillation
equations of the theory of thermoelasticity for isotropic materials with microstructure, whose microelements possess
microtemperatures.

A theory of thermoelasticity with microtemperatures, in which the microelements can stretch and contract
independently of their translations has been studied by Ieşan [1]. This is the simplest thermomechanical theory of
elastic bodies that takes into account the microtemperatures and the inner structure of the materials. This model has
been investigate by various authors (see e.g., [2–4]).

The mathematical model of a linear theory of thermodynamics for microstretch elastic solids with microtem-
peratures, using the results established by Grot [5] has been proposed by Ieşan [6]. This theory introduces three
extra degrees of freedom over the theory presented in [1]. An interesting aspect in this theory is the coupling of
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microrotation vector with the microtemperatures even for isotropic bodies. This effect is different from the classical
theory of Cosserat thermoelasticity for isotropic bodies [7], where the microrotation vector is independent of the
thermal field. In the model [6] a material particle is equipped with 11 degrees of freedom (3 displacement components,
3 microrotation components, 3 microtemperature components, 1 microdilatation and 1 temperature).

The system of differential equations of thermodynamics for isotropic elastic materials with microstructure,
with respect to the displacement vector, microrotation vector, microtemperature vector, microdilation function, and
temperature function, represents a coupled complex system of second order partial differential equations (see [6]).

If the mechanical and thermal characteristics are time harmonic dependent (i.e. they are represented as the product
of the time dependent exponential function exp(−iσ t) with a complex parameter σ = σ1 + iσ2, σ1 ∈ R, σ2 > 0 and a
function of the spatial variable x ∈ R3), then we have the so called pseudo-oscillation equations. The corresponding
simultaneous equations generate 11 × 11 strongly elliptic formally non-self-adjoint matrix differential operator with
constant coefficients.

The present paper is devoted to investigation of the basic boundary value problems for the system of pseudo-
oscillations. First, we collect the field equations, derive the corresponding Green’s identities and formulate the basic
boundary value problems. Further, we construct the matrix of fundamental solutions explicitly in terms of elementary
functions for the differential operator of pseudo-oscillations and establish the asymptotic properties near the origin
and at infinity. Applying the potential method and the theory of singular integral equations we investigate the basic
boundary value problems of pseudo-oscillations (cf. [8–13] and the references therein).

2. Basic differential equations

The pseudo-oscillation equations of the thermoelasticity theory of microstretch materials with microtemperatures
and microdilatations in the case of isotropic homogeneous bodies according to [6] have the form

(µ+ ~)∆u + (λ+ µ) grad div u + ρσ 2u + ~ rot ω + µ0 grad v − β0 grad θ = − ρH (x), (2.1)

~ rot u + γ∆ω + (α + β) grad div ω + δω − µ1 rot w = − ρg(x), (2.2)

~6∆w + (~4 + ~5) grad divw + ~0w − iσµ1rot ω + iσµ2 grad v − ~3 grad θ = ρG(x), (2.3)

− µ0 div u − µ2 divw + a0∆v + η0v + β1θ = − ρl(x), (2.4)

iβ0T0σdiv u + ~1divw + iβ1T0σv + ~7∆θ + iσcθ = − ρS∗(x), (2.5)

where α, β, γ, λ, µ, ~, η, β0, β1, µ0, µ1, µ2, a, b, a0, b0, I, I1, ~ j , j = 1, 2, 3, 4, 5, 6, 7, are the real constants
characterizing the mechanical and thermal properties of the body, ρ is the mass density, δ = I1σ

2
−2~, ~0 = iσb−~2,

η0 = Iσ 2
− η, σ is a frequency parameter, σ = σ1 + iσ2, σ2 > 0, σ1 ∈ R, ∆ is the Laplace operator,

u = (u1, u2, u3)⊤ is the displacement vector, ω = (ω1, ω2, ω3)⊤ is the microrotation vector, w = (w1, w2, w3)⊤

is the microtemperature vector, v is the microdilatation function, θ is the temperature, measured from a fixed absolute
temperature T0 (T0 > 0), c = aT0; H = (H1, H2, H3)⊤, g = (g1, g2, g3)⊤, and G = (G1,G2,G3)⊤ are complex-
valued vector functions, connected with the body force, the body couple density, and the first heat supply moment
vector, respectively; l and S∗ are complex-valued functions connected with the external microstretch body load and
the heat supply per unit mass, respectively; the superscript (·)⊤ denotes transposition operation.

Let us introduce the matrix differential operator of order 11 × 11 generated by the left hand side expressions in
system (2.1)–(2.5)

L(∂, σ ) :=

⎡⎢⎢⎢⎢⎣
L (1)(∂, σ ) L (6)(∂, σ ) L (11)(∂, σ ) L (16)(∂, σ ) L (21)(∂, σ )
L (2)(∂, σ ) L (7)(∂, σ ) L (12)(∂, σ ) L (17)(∂, σ ) L (22)(∂, σ )
L (3)(∂, σ ) L (8)(∂, σ ) L (13)(∂, σ ) L (18)(∂, σ ) L (23)(∂, σ )
L (4)(∂, σ ) L (9)(∂, σ ) L (14)(∂, σ ) L (19)(∂, σ ) L (24)(∂, σ )
L (5)(∂, σ ) L (10)(∂, σ ) L (15)(∂, σ ) L (20)(∂, σ ) L (25)(∂, σ )

⎤⎥⎥⎥⎥⎦
11×11

, (2.6)
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where

L (1)(∂, σ ) := ((µ+ ~)∆ + ρσ 2)I3 + (λ+ µ)Q(∂), L (2)(∂, σ ) := ~R(∂),
L (3)(∂, σ ) := [0]3×3, L (4)(∂, σ ) := −µ0∇, L (5)(∂, σ ) := iβ0σT0∇,

L (6)(∂, σ ) := ~R(∂), L (7)(∂, σ ) := (γ∆ + δ)I3 + (α + β)Q(∂),
L (8)(∂, σ ) := −iσµ1 R(∂), L (9)(∂, σ ) := [0]1×3, L (10)(∂, σ ) := [0]1×3,

L (11)(∂, σ ) := [0]3×3, L (12)(∂, σ ) := −µ1 R(∂),
L (13)(∂, σ ) := (~6∆ + ~0)I3 + (~4 + ~5)Q(∂), L (14)(∂, σ ) := −µ2∇,

L (15)(∂, σ ) := ~1∇, L (16)(∂, σ ) := µ0∇
⊤, L (17)(∂, σ ) := [0]3×1,

L (18)(∂, σ ) := iσµ2∇
⊤, L (19)(∂, σ ) := a0∆ + η0, L (20)(∂, σ ) := iσβ1T0,

L (21)(∂, σ ) := −β0∇
⊤, L (22)(∂, σ ) := [0]3×1, L (23)(∂, σ ) := −~3∇

⊤,

L (24)(∂, σ ) := β1, L (25)(∂, σ ) := ~7∆ + iσc.

(2.7)

Here and in the sequel Ik stands for the k × k unit matrix and

R(∂) :=

⎡⎣ 0 −∂3 ∂2
∂3 0 −∂1

−∂2 ∂1 0

⎤⎦
3×3

, Q(∂) := [∂k∂ j ]3×3, ∇ := [∂1, ∂2, ∂3], ∂k = ∂/∂xk . (2.8)

It is easy to see that for V = (V1, V2, V3)⊤

R(∂)V = rot V, Q(∂)V = grad div V,
R(−∂) = −R(∂) = [R(∂)]⊤, Q(∂)R(∂) = R(∂)Q(∂) = 0,
Q(∂) = [Q(∂)]⊤, [R(∂)]2

= Q(∂) − I3∆, [Q(∂)]2
= Q(∂)∆.

(2.9)

Due to the above notation, system (2.1)–(2.5) can be rewritten in the matrix form as

L(∂, σ )U (x) = Φ(x), U = (u, ω,w, v, θ)⊤,

where Φ(x) = (−ρH (x), −ρg(x), ρG(x), −ρl(x), −ρS∗(x)). Note that L(∂, σ ) is not formally self-adjoint
differential operator.

Further let us introduce the generalized thermo-stress operator [6],

P(∂, n) :=

⎡⎢⎢⎢⎢⎣
P (1)(∂, n) P (2)(∂, n) [0]3×3 µ0n⊤

−β0n⊤

[0]3×3 P (3)(∂, n) P (4)(∂, n) −b0S⊤(∂, n) [0]3×1

[0]3×3 [0]3×3 P (5)(∂, n) [0]3×1 [0]3×1
[0]1×3 b0S(∂, n) −µ2n a0∂n 0
[0]1×3 [0]1×3 ~1n 0 ~7∂n

⎤⎥⎥⎥⎥⎦
11×11

, (2.10)

where

P (l)(∂, n) =

[
P (l)

k j (∂, n)
]

3×3
, l = 1, 2, 3, 4, 5,

P (1)
k j (∂, n) = (µ+ ~)δk j∂n + λnk∂ j + µn j∂k, P (2)

k j (∂, n) = ~

3∑
p=1

εpjkn p,

P (3)
k j (∂, n) = γ δk j∂n + αnk∂ j + βn j∂k, P (4)

k j (∂, n) = µ1

3∑
p=1

εk jpn p,

P (5)
k j (∂, n) = ~6δk j∂n + ~4nk∂ j + ~5n j∂k, S(∂, n) = (∂S1, ∂S2, ∂S3),

∂S1 = n2∂3 − n3∂2, ∂S2 = n3∂1 − n1∂3, ∂S3 = n1∂2 − n2∂1,

(2.11)

εk jp is the permutation (Levi-Civita) symbol, ∂n = ∂/∂n is the normal derivative, n = (n1, n2, n3).
The generalized thermo-stress vector has the form

P(∂, n)U = (T (1)(∂, n)U, T (2)(∂, n)U, T (3)(∂, n)U, T (4)(∂, n)U, T (5)(∂, n)U )⊤,
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where

T (1)(∂, n)U = P (1)(∂, n)u + P (2)(∂, n)ω + (µ0v − β0θ )n

= (2µ+ ~)
∂u
∂n

+ λn div u + µ[n × rot u] + ~[n × ω] + (µ0v − β0θ )n,

T (2)(∂, n)U = P (3)(∂, n)ω + P (4)(∂, n)w − b0S⊤(∂, n)v =

= (β + γ )
∂ω

∂n
+ α n divω + β[n × rot ω] − µ1[n × w] − b0[n × grad v],

T (3)(∂, n)U = P (5)(∂, n)w = (~5 + ~6)
∂w

∂n
+ ~4 n divw + ~5[n × rot w],

T (4)(∂, n)U = b0S⊤(∂, n)ω − µ2 n · w + a0
∂v

∂n
= a0

∂v

∂n
− µ2 n · w + b0 n · rot ω,

T (5)(∂, n)U = ~1 n · w + ~7
∂θ

∂n
.

We recall, that the central dot denotes the real scalar product a · b =
∑N

k=1akbk for a, b ∈ CN , and [c × d] denotes
the vector product of two vectors c, d ∈ C3.

Further, let us introduce the associated boundary operator which occurs in Green’s formulas and is related to the
adjoint differential operator L∗(∂, σ ) := L⊤(−∂, σ ),

P∗(∂, n) :=

⎡⎢⎢⎢⎢⎣
P (1)(∂, n) P (2)(∂, n) [0]3×3 µ0n⊤

−iβ0T0σ n⊤

[0]3×3 P (3)(∂, n) iσ P (4)(∂, n) −b0S⊤(∂, n) [0]3×1

[0]3×3 [0]3×3 P (5)(∂, n) [0]3×1 [0]3×1
[0]1×3 b0S(∂, n) −iσµ2n a0∂n 0
[0]1×3 [0]1×3 ~3n 0 ~7∂n

⎤⎥⎥⎥⎥⎦
11×11

, (2.12)

where P ( j)(∂, n), j = 1, 2, 3, 4, 5, are given by (2.11).

3. Green’s formulae

Let Ω+ be a finite three-dimensional region bounded by the Lyapunov surface ∂Ω+, Ω−
:= R3

\ Ω+.

Definition 3.1. A vector function U = (u, ω,w, v, θ)⊤ is said to be regular in a domain Ω+
⊂ R3 if U ∈

C2(Ω+) ∩ C1(Ω+).

For the regular vector functions U = (u, ω,w, v, θ)⊤ and U ′
= (u′, ω′, w′, v′, θ ′)⊤ in the domain Ω+, we have the

following Green formulae∫
Ω+

U ′
· L(∂, σ )Udx =

∫
∂Ω+

{U ′
}
+

· {P(∂, n)U }
+ds −

∫
Ω+

E(U ′,U )dx, (3.13)

where the operators L(∂, σ ) and P(∂, n) are given by (2.6) and (2.10) respectively, n is the outward unit normal
vector to ∂Ω+; the symbols {·}

± denote one-sided limiting values on ∂Ω+ from Ω± respectively; E(·, ·) is the so
called energy bilinear form

E(U ′,U ) = E (1)(u′, u) + E (2)(ω′, ω) + E (3)(w′, w) − ρσ 2u′
· u − δ ω′

· ω − η0 v
′v − iσ c θ ′θ

− ~ (ω′
· rot u + ω · rot u′) + µ1 (w · rot ω′

+ iσ w′
· rot ω) − µ2 (w · grad v′

+ iσ w′
· grad v)

+ ~3w
′
· grad θ + ~1w · grad θ ′

− ~0w
′
· w + µ0 (v div u′

+ v′ div u) − β0 (θ div u′

+ iσ T0 θ
′ div u) − β1 (v′θ + +iσ T0 vθ

′) − b0 (rot ω′
· grad v + rot ω · grad v′) + a0 grad v′

· grad v + ~7 grad θ ′
· grad θ,

(3.14)
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E (1)(u′, u) =
3λ+ 2µ+ ~

3
div u′div u +

~

2
rot u′

· rot u +
µ+ ~

3

3∑
k, j=1

(
∂u′

k

∂xk
−
∂u′

j

∂x j

) (
∂uk

∂xk
−
∂u j

∂x j

)

+
2µ+ ~

4

3∑
k, j=1, k ̸= j

(
∂u′

k

∂x j
+
∂u′

j

∂xk

) (
∂uk

∂x j
+
∂u j

∂xk

)
,

E (2)(ω′, ω) =
3α + β + γ

3
divω′divω +

γ − β

2
rot ω′

· rotω

+
γ + β

4

3∑
k, j=1, k ̸= j

(
∂ω′

k

∂x j
+
∂ω′

j

∂xk

) (
∂ωk

∂x j
+
∂ω j

∂xk

)

+
γ + β

6

3∑
k, j=1

(
∂ω′

k

∂xk
−
∂ω′

j

∂x j

) (
∂ωk

∂xk
−
∂ω j

∂x j

)
,

E (3)(w′, w) =
3~4 + ~5 + ~6

3
divw′divw +

~6 − ~5

2
rotw′

· rotw

+
~5 + ~6

4

3∑
k, j=1, k ̸= j

(
∂w′

k

∂x j
+
∂w′

j

∂xk

) (
∂wk

∂x j
+
∂w j

∂xk

)

+
~5 + ~6

6

3∑
k, j=1

(
∂w′

k

∂xk
−
∂w′

j

∂x j

) (
∂wk

∂xk
−
∂w j

∂x j

)
.

We assume that the constitutive coefficients satisfy the following inequalities [6]

ρ > 0, I > 0, I1 > 0, a0 > 0, a > 0, b > 0, µ > 0, 3λ+ 2µ > 0,
~ > 0, (3λ+ 2µ+ ~)η − 3µ2

0 ≥ 0, ~6 ± ~5 ≥ 0, 3~4 + ~5 + ~6 ≥ 0,
~7 > 0, (~1 + ~3T0)2

≤ 4T0~2~7, γ + β ≥ 0, 3α + β + γ ≥ 0,
a0(γ − β) − 2b2

0 ≥ 0.

(3.15)

With the help of relations (3.13) and (3.14) we can show that the following second Green identity holds∫
Ω+

[
U ′

· L(∂, σ )U − U · L∗(∂, σ )U ′
]

dx

=

∫
∂Ω+

[{
U ′

}+
· {P(∂, n)U }

+
− {U }

+
·
{

P∗(∂, n)U ′
}+

]
ds, (3.16)

where the differential operator L(∂, σ ) is given by (2.6), L∗(∂, σ ) = L⊤(−∂, σ ) is the formally adjoint operator to
L(∂, σ ), the boundary operators P(∂, n) and P∗(∂, n) are defined by (2.10), (2.11) and (2.12) respectively.

The corresponding Green identities hold true in the case of an exterior unbounded domain Ω− if regular vector
functions U and U ′ satisfy decay conditions at infinity.

Let us remark that the differential operator

L(∂) := L(∂, 0) (3.17)

corresponds to the static equilibrium case, while the formally self-adjoint differential operator

L0(∂) :=

⎡⎢⎢⎢⎢⎣
L (1)

0 (∂) [0]3×3 [0]3×3 [0]3×1 [0]3×1

[0]3×3 L (7)
0 (∂) [0]3×3 [0]3×1 [0]3×1

[0]3×3 [0]3×3 L (13)
0 (∂) [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 a0∆ 0
[0]1×3 [0]1×3 [0]1×3 0 ~7∆

⎤⎥⎥⎥⎥⎦
11×11

, (3.18)

with

L (1)
0 (∂) := (µ+ ~)∆I3 + (λ+ µ)Q(∂),

L (7)
0 (∂) := γ∆I3 + (α + β)Q(∂),

L (13)
0 (∂) := ~6∆I3 + (~4 + ~5)Q(∂),

(3.19)

represents the principal homogeneous part of operators (2.6) and (3.17).
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Note that the differential operators L0(∂) and L(∂, σ ) are strongly elliptic and the following inequality (the
accretivity condition) holds (cf., e.g., [14], Part I, §5)

C2|ξ |
2
|η|2 ≥ L0(ξ )η · η =

11∑
k, j=1

L0(ξ )k jη jηk ≥ C1|ξ |
2
|η|2 (3.20)

with some constants Ck > 0 (k = 1, 2) for arbitrary ξ ∈ R3 and arbitrary complex vector η ∈ C11.

4. Representation of solutions by metaharmonic functions

Let us introduce the following differential operators

Λ1(∆) =
1
d1

det

⎡⎢⎢⎣
λ0∆ + ρσ 2 0 µ0∆ −β0∆

0 l0∆ + ~0 iσµ2∆ −~3∆
−µ0 −µ2 a0∆ + η0 β1

iσβ0T0 ~1 iσβ1T0 ~7∆ + iσc

⎤⎥⎥⎦
4×4

= (∆ + k2
1)(∆ + k2

2)(∆ + k2
3)(∆ + k2

4),

Λ2(rot ) =
1
p0

det

⎡⎣ρσ 2
− (µ+ ~) rot rot ~ rot 0

~ rot δ − γ rot rot −µ1 rot
0 −iσµ1 rot ~0 − ~6 rot rot

⎤⎦
3×3

= −(rot rot − k2
5)(rot rot − k2

6)(rot rot − k2
7),

where d1 = a0λ0l0~7, λ0 = λ + 2µ + ~, l0 = ~4 + ~5 + ~6, p0 = γ (µ + ~)~6 and −k2
j , j = 1, 2, 3, 4 are the

roots of the equation

Λ1(t) = 0, (4.21)

while k2
j , j = 5, 6, 7, are the roots of the following equation

γ (µ+ ~)~6 t3
−

[
(µ+ ~)(δ~6 + γ ~0 + iσµ2

1) + ~6(ρσ 2γ + ~2)
]
t2

+
[
ρσ 2(δ~6 + γ ~0 + iσµ2

1) + ~0(δ(µ+ ~) + ~2)
]
t − δ~0ρσ

2
= 0.

(4.22)

Let Ω be a bounded region in R3.

Theorem 4.1. A vector U = (u, ω,w, v, θ)⊤ ∈ C2(Ω ) is a solution of the homogeneous system L(∂, σ )U = 0 in a
domain Ω ⊂ R3 if and only if U is representable in the form

u(x) =

7∑
j=1

u( j)(x), ω(x) = u(8)(x) +

7∑
j=5

γ j rot u( j)(x),

w(x) =

7∑
j=1

α j u( j)(x), v(x) =

4∑
j=1

γ j div u( j)(x), θ (x) =

4∑
j=1

δ j div u( j)(x),

(4.23)

where

(∆ + k2
j )u

( j)(x) = 0, j = 1, 2, . . . , 8, rot u( j)(x) = 0, j = 1, 2, 3, 4, 8,

div u( j)(x) = 0, j = 5, 6, 7, k2
8 = δ/α0, α0 = α + β + γ,

(4.24)

α j =
1
a1

[
(λ0k2

j − ρσ 2)(a0~3k2
j − η0~3 − iσβ1µ2) − µ0(µ0~3 − iσβ0µ2)k2

j

]
,

γ j =
1

a1k2
j

[
(λ0k2

j − ρσ 2)
[
β1(l0k2

j − ~0) − µ2~3k2
j

]
− β0µ0(l0k2

j − ~0)k2
j

]
,

δ j =
1

a1k2
j

[
(λ0k2

j − ρσ 2)
[
(l0k2

j − ~0)(a0k2
j − η0) − iσµ2

2k2
j

]
− µ2

0(l0k2
j − ~0)k2

j

]
, j = 1, 2, 3, 4,

(4.25)
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α j =
iσµ1((µ+ ~)k2

j − ρσ 2)

~(~0 − ~6k2
j )

, γ j =
(µ+ ~)k2

j − ρσ 2

~k2
j

, j = 5, 6, 7,

a1 = a0β0l0k4
j −

[
β0(a0~0 + l0η0 + iσµ2

2) + µ0(l0β1 − µ2~3)
]
k2

j + ~0(µ0β1 + β0η0).
(4.26)

Proof. Assume that a vector U = (u, ω,w, v, θ)⊤ ∈ C2(Ω ) is a solution of the homogeneous system L(∂, σ )U = 0.
Homogeneous equations (2.1)–(2.3) (with H = 0, g = 0, G = 0) can be rewritten in the form

u(x) = u′(x) + u′′(x), ω(x) = ω′(x) + ω′′(x), w(x) = w′(x) + w′′(x) (4.27)

where

u′(x) =
1
ρσ 2 grad(−λ0 div u(x) − µ0v(x) + β0θ (x)), (4.28)

u′′(x) =
1
ρσ 2 rot((µ+ ~)rotu(x) − ~ω(x)), (4.29)

ω′(x) = −
1
k2

8
grad divω(x), (4.30)

ω′′(x) =
1
δ

rot (γ rotω(x) − ~u(x) + µ1w(x)), (4.31)

w′(x) =
1
~0

grad (−l0 divw(x) − iσµ2v(x) + ~3θ (x)), (4.32)

w′′(x) =
1
~0

rot (~6 rotw(x) + iσµ1ω(x)). (4.33)

Applying the operator div to both sides of the homogeneous equations (2.1)–(2.3), and take into account the
homogeneous equations (2.4), (2.5) (with l = 0, S∗

= 0), with respect to the vector (div u, divw, v, θ )⊤ we find

Λ1(∆)(div u, divw, v, θ )⊤ = (∆ + k2
1)(∆ + k2

2)(∆ + k2
3)(∆ + k2

4)(div u, divw, v, θ )⊤ = 0,
(∆ + k2

8)divω = 0.

In view of the equalities (4.27)–(4.33) we establish that vectors (u′, w′, v, θ )⊤ and ω′ are solutions of the following
equations

(∆ + k2
1)(∆ + k2

2)(∆ + k2
3)(∆ + k2

4)(u′, w′, v, θ )⊤ = 0,
(∆ + k2

8) divω′
= 0, rot u′

= 0, rotω′
= 0, rotw′

= 0.

Therefore the vectors u′, ω′, w′ and the functions v, θ can be represented as follows:

u′(x) =

4∑
j=1

u( j)(x), w′(x) =

4∑
j=1

w( j)(x), v(x) =

4∑
j=1

v( j)(x),

θ (x) =

4∑
j=1

θ ( j)(x), ω′(x) = u(8)(x),

(4.34)

where

(u( j), w( j), v( j), θ ( j))⊤ =

4∏
q=1, q ̸= j

∆ + k2
q

k2
q − k2

j
(u′, w′, v, θ )⊤, j = 1, 2, 3, 4. (4.35)

With the help of relations (4.34) and (4.35), we derive

(∆ + k2
j )u

( j)(x) = 0, rot u( j)(x) = 0,
(∆ + k2

j )w
( j)(x) = 0, rotw( j)(x) = 0,

(∆ + k2
j )v

( j)(x) = 0, (∆ + k2
j )θ

( j)(x) = 0, j = 1, 2, 3, 4,

(∆ + k2
8)u(8)(x) = 0, rot u(8)(x) = 0.

(4.36)
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Since

div u = div u′, divω = divω′, divw = divw′, rot u′
= 0, rotω′

= 0, rotw′
= 0,

we find that

grad div u′
= ∆u′

+ rot rot u′
= ∆u′,

grad divω′
= ∆ω′,

grad divw′
= ∆w′.

Therefore from (4.27) and the homogeneous equations (2.4) and (2.5), with the help of equalities (4.35) and (4.36),
we get

(ρσ 2
− λ0k2

j )u
( j)

+ µ0 grad v( j)
− β0 grad θ ( j)

= 0,
(~0 − l0k2

j )w
( j)

+ iσµ2 grad v( j)
− ~3 grad θ ( j)

= 0,
−µ0 div u( j)

− µ2 divw( j)
+ (η0 − a0k2

j )v
( j)

+ β1θ
( j)

= 0,
iβ0T0σ div u( j)

+ ~1 divw( j)
+ iβ1T0σv

( j)
+ (iσc − k2

j~7)θ ( j)
= 0, j = 1, 2, 3, 4.

(4.37)

Using (4.21) we can show that the solution of the homogeneous system (4.37) has the form

w( j)(x) = α j u( j)(x), v( j)(x) = γ j div u( j)(x),
θ ( j)(x) = δ j div u( j)(x), rot u( j)(x) = 0, j = 1, 2, 3, 4,

(4.38)

where constants α j , γ j , δ j are given by (4.25), (4.26) and u( j)(x) is arbitrary vector, satisfying the equations in the
first raw (4.36).

Keeping in mind equalities (4.38), from (4.34) we find

u′(x) =

4∑
j=1

u( j)(x), ω′(x) = u(8)(x), w′(x) =

4∑
j=1

α j u( j)(x),

v(x) =

4∑
j=1

γ j div u( j)(x), θ (x) =

4∑
j=1

δ j div u( j)(x), rot u( j)(x) = 0, j = 1, 2, 3, 4, 8.

(4.39)

Further, if we apply the operator rot to both sides of homogeneous equations (2.1)–(2.3), we arrive at the following
equation with respect to the vector (rot u, rotω, rotw)⊤,

Λ2(rot )(rot u, rotω, rotw)⊤ = (∆ + k2
5)(∆ + k2

6)(∆ + k2
7)(rot u, rotω, rotw)⊤ = 0. (4.40)

By using Eq. (4.40) we can show that the vectors u′′, ω′′ and w′′, defined by relations (4.29), (4.31), and (4.33)
satisfy the following equations

(∆ + k2
5)(∆ + k2

6)(∆ + k2
7)(u′′, ω′′, w′′)⊤ = 0,

div u′′
= 0, divω′′

= 0, divw′′
= 0.

(4.41)

The vectors u′′, ω′′, and w′′, as solutions of Eq. (4.41), can be represented in the form of the following sums,

u′′(x) =

7∑
j=5

u( j)(x), ω′′(x) =

7∑
j=5

ω( j)(x), w′′(x) =

7∑
j=5

w( j)(x), (4.42)

where

(u( j), ω( j), w( j))⊤ =

7∏
q=5, q ̸= j

∆ + k2
q

k2
q − k2

j
(u′′, ω′′, w′′)⊤, j = 5, 6, 7.

Applying Eqs. (4.41), for the vectors u( j), ω( j), w( j), j = 5, 6, 7, we derive

(∆ + k2
j )u

( j)(x) = 0, div u( j)(x) = 0,

(∆ + k2
j )ω

( j)(x) = 0, divω( j)(x) = 0,

(∆ + k2
j )w

( j)(x) = 0, divw( j)(x) = 0, j = 5, 6, 7.

(4.43)
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On the other hand, since

rot u = rot u′′, rotω = rotω′′, rotw = rotw′′,

div u′′
= 0, divω′′

= 0, divw′′
= 0

and

rot rot u′′
= −∆u′′, rot rotω′′

= −∆ω′′, rot rotw′′
= −∆w′′,

from (4.29), (4.31), and (4.33) we have

(ρσ 2
− (µ+ ~)k2

j )u
( j)(x) + ~ rotω( j)(x) = 0,

~ rot u( j)(x) + (δ − γ k2
j )ω

( j)(x) − µ1 rotw( j)(x) = 0,
−iσµ1 rotω( j)(x) + (~0 − ~6 k2

j )w
( j)(x) = 0, j = 5, 6, 7.

(4.44)

Take into account (4.22) it is easy to verify that the vectors

(u( j), ω( j), w( j))⊤ = (u( j), γ j rot u( j), α j u( j))⊤, j = 5, 6, 7, (4.45)

where α j , γ j , j = 5, 6, 7, are given by (4.26), are solutions of the homogeneous system (4.44) for arbitrary u( j)

satisfying Eqs. (4.43).
Substituting the expressions of ω( j) and w( j) from (4.45) into (4.42), we get

u′′(x) =

7∑
j=5

u( j)(x), ω′′(x) =

7∑
j=5

γ j rot u( j)(x), w′′(x) =

7∑
j=5

α j u( j)(x),

div u( j)(x) = 0, j = 5, 6, 7.

(4.46)

Finally, formulas (4.27), (4.39), and (4.46) prove the first part of the theorem.
The sufficient part of the theorem we can prove by substituting the vector U = (u, ω,w, v, θ)⊤ represented by

(4.23)–(4.26) into the homogeneous system L(∂, σ )U = 0. □

Throughout the paper we assume that

Im k j > 0, j = 1, 2, . . . , 8. (4.47)

Definition 4.2. A vector U = (u, ω,w, v, θ)⊤ is said to be regular in Ω− if it is representable in the form (4.23), and:
(i) U ∈ C1(Ω−) ∩ C2(Ω−);
(ii) for |x | ≫ 1,(

∂

∂|x |
− ik j

)
u( j)

l (x) = eik j |x |O(|x |
−2), l = 1, 2, 3, j = 1, 2, . . . , 8. (4.48)

Remark 4.3. If vectors u( j), j = 1, 2, . . . , 8, satisfy equations (∆ + k2
j )u

( j)
= 0 and conditions (4.48) then for

sufficiently large |x | the following decay conditions hold true [21]

u( j)
l (x) = eik j |x |O(|x |

−1), j = 1, 2, . . . , 8. (4.49)

Keeping in mind relations (4.47) and (4.49), for sufficiently large |x | from (4.23) we have

U = (u, ω,w, v, θ)⊤ = e−ς |x |O(|x |
−1),

where ς = min
1⩽ j⩽8

(Im k j ) > 0.

Therefore a regular vector U and its partial derivatives ∂ lU decay exponentially as |x | → +∞ for arbitrary
multi-index l = (l1, l2, l3).

By the standard limiting procedure it can be shown that for regular vectors Green’s identities hold in an unbounded
domain Ω−. In particular, for regular vectors U and U ′ in the domain Ω− we have the following Green formulae∫

Ω−

U ′
· L(∂, σ )Udx = −

∫
∂Ω−

{U ′
}
−

· {P(∂, n)U }
−ds −

∫
Ω−

E(U ′,U )dx . (4.50)
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5. Boundary value problems and uniqueness theorems

Let us formulate the basic interior and exterior boundary value problems for the domains Ω+ and Ω−
= R3

\ Ω+,
S = ∂Ω+. We assume that S ∈ C1,γ ′

, 0 < γ ′
≤ 1. In what follows, n(z) stands for the outward unit normal vector at

the point z ∈ S with respect to the domain Ω+.

Problem (I (σ ))± (Dirichlet problem). Find a regular solution vector U = (u, ω,w, v, θ)⊤ to the differential
equation

L(∂, σ ) U (x) = Φ±(x), x ∈ Ω±, (5.51)

satisfying the boundary condition

{U (z)}± = f (z), z ∈ S. (5.52)

Problem (I I (σ ))± (Neumann problem). Find a regular solution vector U = (u, ω,w, v, θ)⊤ to the Eq. (5.51),
satisfying the boundary condition

{P(∂, n) U (z)}± = F(z), z ∈ S. (5.53)

We assume that the data of the boundary value problems belong to the appropriate classes,

Φ±
∈ C0,α′

(Ω )±, f ∈ C1,α′

(S), F ∈ C0,α′

(S), 0 < α′ < γ ′
≤ 1;

in addition, in the case of exterior problems we assume that the vector-function Φ− is compactly supported in Ω−.
Now we prove the following uniqueness theorem.

Theorem 5.1. Let σ = σ1 + iσ2, with σ1 ∈ R and σ2 > 0. Then the homogeneous boundary value problems (I (σ ))±

and (I I (σ ))± have only the trivial solution in the class of regular vector-function.

Proof. Let U = (u, ω,w, v, θ)⊤ be a regular solution of the homogeneous boundary value problem (I (σ ))± or
(I I (σ ))±. Since L(∂, σ )U = 0, we can apply Green’s formula of type (3.13) or (4.50) for the vector function U and
its complex conjugate U . In particular, let us perform the following operations:
(i) multiply the homogeneous equations (2.1), (2.2), (2.4) by the vectors i σ u, i σ ω, i σ v respectively;
(ii) multiply the complex conjugate of homogeneous equations (2.3) and (2.5) by w and 1

T0
θ respectively;

(iii) Sum the results and integrate over the domain Ω+ or Ω−.
We arrive at the following relation

±

∫
∂Ω±

[
i σ u(x) · T (1)(∂, n)U (x) + i σ ω(x) · T (2)(∂, n)U (x) + w(x) · T (3)(∂, n)U (x)

+ i σ v(x)T (4)(∂, n)U (x) +
1
T0
θ (x)T (5)(∂, n)U (x)

]
ds −

∫
Ω±

E∗(U ,U )dx = 0,
(5.54)

where

E∗(U ,U ) = i σ Ẽ (1)(u, u) + i σ
3λ+ 2µ+ ~

3
|div u|

2
+

i σ ~
2

|rot u|
2
− i σρ|σ |

2
|u|

2
+ i σµ0(v div u

+ v div u) − i σ~(ω · rot u + ω · rot u) + i σ Ẽ (2)(ω,ω) − i σδ|ω|
2
+ i σb0(rotω · grad v

+ rotω · grad v) + E (3)(w,w) − ~0|w|
2
+ ~3w · grad θ +

~1

T0
w · grad θ + i σa0|grad v|2

− iση0|v|
2
+
~7

T0
|grad θ |2 +

i σc
T0

|θ |2 + i σ
γ − β

2
|rotω|

2,
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Ẽ (1)(u, u) =
µ+ ~

3

3∑
k, j=1

⏐⏐⏐⏐∂uk

∂xk
−
∂u j

∂x j

⏐⏐⏐⏐2

+
2µ+ ~

4

3∑
k, j=1, k ̸= j

⏐⏐⏐⏐∂uk

∂x j
+
∂u j

∂xk

⏐⏐⏐⏐2

,

Ẽ (2)(ω,ω) =
3α + β + γ

3
|divω|

2
+
γ + β

4

3∑
k, j=1, k ̸= j

⏐⏐⏐⏐∂ωk

∂x j
+
∂ω j

∂xk

⏐⏐⏐⏐2

+
γ + β

6

3∑
k, j=1

⏐⏐⏐⏐∂ωk

∂xk
−
∂ω j

∂x j

⏐⏐⏐⏐2

,

E (3)(w,w) =
3~4 + ~5 + ~6

3
|divw|

2
+
~6 − ~5

2
|rotw|

2

+
~5 + ~6

4

3∑
k, j=1, k ̸= j

⏐⏐⏐⏐∂wk

∂x j
+
∂w j

∂xk

⏐⏐⏐⏐2

+
~5 + ~6

6

3∑
k, j=1

⏐⏐⏐⏐∂wk

∂xk
−
∂w j

∂x j

⏐⏐⏐⏐2

.

Since U = (u, ω,w, v, θ)⊤ solves the homogeneous boundary value problem (I (σ ))± or (I I (σ ))±, we see that in the
left hand side of (5.54) the surface integral vanishes and we get∫

Ω±

E∗(U ,U )dx = 0.

The real part of this equation reads as∫
Ω±

{
σ2 Ẽ (1)(u, u) + σ2ρ|σ |

2
|u|

2
+ σ2

[1
3

(3λ+ 2µ+ ~)|div u|
2
+ µ0(v div u + v div u) + η|v|2

]
+ σ2 Ẽ (2)(ω,ω) + I1σ2|σ |

2
|ω|

2
+

1
2
σ2~

[
|rot u|

2
− 2(ω · rot u + ω · rot u) + 4|ω|

2
]

+ σ2

[1
2

(γ − β)|rotω|
2
+ b0(rotω · grad v + rotω · grad v) + a0|grad v|2

]
+ E (3)(w,w) + σ2b|w|

2
+

1
T0

[
~2T0|w|

2
+

1
2

(~1 + T0~3)(w · grad θ + w · grad θ ) + ~7|grad θ |2
]

+ Iσ2|σ |
2
|v|2 + σ2a|θ |2

}
dx = 0.

(5.55)

Taking into account conditions (3.15) and the following inequalities

(1)
3λ+ 2µ+ ~

3
|div u|

2
+ µ0(v div u + vdiv u) + η|v|2

=
α′

0η − µ2
0

α′

0
|v|2 +

1
α′

0
|µ0v + α′

0 div u|
2

≥ 0, α′

0 =
3λ+ 2µ+ ~

3
,

(2) |rot u|
2
− 2(ω · rot u + ω · rot u) + 4|ω|

2
= |rot u − 2ω|

2
≥ 0,

(3)
γ − β

2
|rotω|

2
+ b0(rotω · grad v + rotω · grad v) + a0|grad v|2

=
a0(γ − β) − 2b2

0

2a0
|rotω|

2
+

1
a0

|b0rotω + a0grad v|2 ≥ 0,

(4) ~2T0|w|
2
+

1
2

(~1 + T0~3)(w · grad θ + w · grad θ ) + ~7|grad θ |2

=
4T0~2~7 − (~1 + T0~3)2

4~7
|w|

2
+

1
4~7

⏐⏐(~1 + T0~3)w + 2~7grad θ
⏐⏐2

≥ 0,

we derive

Re E∗(U ,U ) ≥ 0, x ∈ Ω±.

Therefore, from (5.55) it follows that U = 0 for x ∈ Ω±. □

6. Fundamental matrix of solutions

Let Fx→ξ and F −1
ξ→x denote the direct and inverse generalized Fourier transform in the space of tempered

distributions (Schwartz space S ′(R3)), which for regular summable functions f and f̂ read as follows

Fx→ξ [ f ] =

∫
R3

f (x) ei x ·ξdx = f̂ (ξ ), F −1
ξ→x [ f̂ ] =

1
(2π )3

∫
R3

f̂ (ξ ) e−i x ·ξdξ = f (x), (6.56)
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where x = (x1, x2, x3) and ξ = (ξ1, ξ2, ξ3). Note that for arbitrary multi-index α = (α1, α2, α3) and f ∈ S ′(R3)

F[∂α f ] = (−i ξ )αF[ f ], F −1[ξα f̂ ] = (i ∂)αF −1[ f̂ ], (6.57)

where |α| = α1 + α2 + α3 and ξα = ξ
α1
1 ξ

α2
2 ξ

α3
3 .

Denote by Γ (x, σ ) = [Γk j (x, σ )]11×11 the matrix of fundamental solutions of the operator L(∂, σ ) (see (2.6), (2.7))

L(∂, σ )Γ (x, σ ) = δ(x) I11; (6.58)

here δ( · ) is Dirac’s delta distribution. We assume that the frequency parameter σ is complex, in general,

σ = σ1 + i σ2, σ1, σ2 ∈ R.

We represent the matrix Γ (x, σ ) in the block wise form

Γ (x, σ ) =

⎡⎢⎢⎢⎢⎣
Γ (1)(x, σ ) Γ (2)(x, σ ) Γ (3)(x, σ ) Γ (4)(x, σ ) Γ (5)(x, σ )
Γ (6)(x, σ ) Γ (7)(x, σ ) Γ (8)(x, σ ) Γ (9)(x, σ ) Γ (10)(x, σ )
Γ (11)(x, σ ) Γ (12)(x, σ ) Γ (13)(x, σ ) Γ (14)(x, σ ) Γ (15)(x, σ )
Γ (16)(x, σ ) Γ (17)(x, σ ) Γ (18)(x, σ ) Γ (19)(x, σ ) Γ (20)(x, σ )
Γ (21)(x, σ ) Γ (22)(x, σ ) Γ (23)(x, σ ) Γ (24)(x, σ ) Γ (25)(x, σ )

⎤⎥⎥⎥⎥⎦
11×11

,

where

Γ ( j)(x, σ ) =
[
Γ ( j)

pq (x, σ )
]

3×3
, j = 1, 2, 3, 6, 7, 8, 11, 12, 13,

Γ ( j)(x, σ ) =
[
Γ ( j)

pq (x, σ )
]

3×1
, j = 4, 5, 9, 10, 14, 15,

Γ ( j)(x, σ ) =
[
Γ ( j)

pq (x, σ )
]

1×3
, j = 16, 17, 18, 21, 22, 23,

and Γ (19)(x, σ ), Γ (20)(x, σ ), Γ (24)(x, σ ), and Γ (25)(x, σ ) are scalar functions.
By Γ̂ (ξ, σ ) and Γ̂ (k)(ξ, σ ) we denote the Fourier transforms of the matrices Γ (x, σ ) and Γ (k)(x, σ ), k =

1, 2, . . . , 25.
Applying the Fourier transform to Eq. (6.58) and taking into consideration (6.57) and the equality F[δ(·)] = 1, we

get

L(−i ξ, σ ) Γ̂ (ξ, σ ) = I11. (6.59)

We have to determine Γ̂ (ξ, σ ) from (6.59) and afterwards with the help of the inverse Fourier transform construct
the fundamental matrix Γ (x, σ ) explicitly in terms of standard elementary functions. Evidently, first of all we have to
represent the matrix Γ̂ (ξ, σ ) = [L(−i ξ, σ )]−1 in such form which is convenient for calculation of the inverse Fourier
transform.

To this end, we proceed as follows. We set r := |ξ | =

√
ξ 2

1 + ξ 2
2 + ξ 2

3 and introduce the notation

A(ξ ) := L (1)(−iξ, σ ) = [ρ σ 2
− (µ+ ~) r2] I3 − (λ+ µ) Q(ξ ),

B(ξ ) := L (7)(−iξ, σ ) = (δ − γ r2) I3 − (α + β)Q(ξ ),
C(ξ ) := L (13)(−i ξ, σ ) = (~0 − ~6r2) I3 − (~4 + ~5) Q(ξ ),

(6.60)

where Q(·) is defined by (2.8). In view of (2.6)–(2.8) from (6.59) we easily derive

A(ξ ) Γ̂ ( j)(ξ, σ ) − i~R(ξ ) Γ̂ ( j+5)(ξ, σ ) − i µ0 ξ
⊤ Γ̂ ( j+15)(ξ, σ ) + i β0 ξ

⊤ Γ̂ ( j+20)(ξ, σ ) = δ1 j I3,

−i~R(ξ ) Γ̂ ( j)(ξ, σ ) + B(ξ ) Γ̂ ( j+5)(ξ, σ ) + i µ1 R(ξ ) Γ̂ ( j+10)(ξ, σ ) = δ2 j I3,

−σµ1 R(ξ ) Γ̂ ( j+5)(ξ, σ ) + C(ξ ) Γ̂ ( j+10)(ξ, σ ) + σ µ2 ξ
⊤ Γ̂ ( j+15)(ξ, σ ) + i~3ξ

⊤ Γ̂ ( j+20)(ξ, σ ) = δ3 j I3,

iµ0ξ Γ̂
( j)(ξ, σ ) + iµ2ξ Γ̂

( j+10)(ξ, σ ) + (η0 − a0 r2) Γ̂ ( j+15)(ξ, σ ) + β1 Γ̂
( j+20)(ξ, σ ) = δ4 j ,

β0T0σ Γ̂ ( j)(ξ, σ ) − i~1ξ Γ̂
( j+10)(ξ, σ ) + iσβ1T0 Γ̂

( j+15)(ξ, σ ) + (iσc − ~7 r2) Γ̂ ( j+20)(ξ, σ ) = δ5 j ,

j = 1, 2, . . . , 5,

(6.61)

where R(·) is defined by (2.8).
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Applying the relations (2.8), (2.9) and (6.60) we can easily show that

A(ξ ) = A(−ξ ) = A⊤(ξ ), B(ξ ) = B(−ξ ) = B⊤(ξ ), C(ξ ) = C(−ξ ) = C⊤(ξ ),

Q(ξ ) = Q⊤(ξ ), R⊤(ξ ) = −R(ξ ) = R(−ξ ), Q(ξ )R(ξ ) = R(ξ )Q(ξ ) = [0]3×3,

[Q(ξ )]2
= r2 Q(ξ ), [R(ξ )]2

= Q(ξ ) − r2 I3,

and the matrices A, B and C commute to each other.
By direct calculations, we can show that the elements of the matrix Γ̂ (ξ, σ ) from the system (6.61) have the form

Γ̂ ( j)(ξ, σ ) =
1

Λ(ξ )
[a j (ξ )I3 + b j (ξ )Q(ξ )], j = 1, 3, 7, 11, 13,

Γ̂ ( j)(ξ, σ ) =
1

Λ(ξ )
c j (ξ )R(ξ ), j = 2, 6, 8, 12,

Γ̂ ( j)(ξ, σ ) =
1

Λ(ξ )
c j (ξ )ξ⊤, j = 4, 5, 14, 15,

Γ̂ ( j)(ξ, σ ) =
1

Λ(ξ )
c j (ξ )ξ, j = 16, 18, 21, 23,

Γ̂ ( j)(ξ, σ ) =
1

Λ(ξ )
a j (ξ ), j = 19, 20, 24, 25,

Γ̂ ( j)(ξ, σ ) = [0]3×1 j = 9, 10,
Γ̂ ( j)(ξ, σ ) = [0]1×3 j = 17, 22.

Here

Λ(ξ ) = det L(−iξ, σ ) = ~6 (l0r2
− ~0)a(ξ )

(
a(ξ ) + b(ξ )r2)∆′(ξ ) = d1d2d3

11∏
j=1

(r2
− λ2

j ); (6.62)

d1 = λ0l0~7a0, d2 = α0λ0γ (µ+ ~)~2
6 , d3 = ~6l0,

λ2
1 = ρσ 2/λ0, λ

2
2 = ~0/ l0, λ

2
7 = ~0/~6, λ

2
11 = δ/α0,

λ2
8, λ

2
9, λ

2
10 are the roots of the equation a(ξ ) = 0, where

a(ξ ) = ~6(r2
− λ2

7)
[
(ρσ 2

− (µ+ ~)r2)(γ r2
− δ) + ~2r2]

+ iσµ2
1

[
(µ+ ~)r2

− ρσ 2]r2

= −γ (µ+ ~)~6(r2
− λ2

8)(r2
− λ2

9)(r2
− λ2

10);
(6.63)

b(ξ ) = −~6(r2
− λ2

7)
[
α0(λ+ µ)(r2

− λ2
11) + (α + β)((µ+ ~)r2

− ρσ 2) + ~2]
− iσµ2

1

[
(µ+ ~)r2

− ρσ 2], (6.64)

∆′

2(ξ ) = a(ξ ) + b(ξ )r2
= −α0λ0~6(r2

− λ2
1)(r2

− λ2
7)(r2

− λ2
11), (6.65)

λ2
j , j = 3, 4, 5, 6 are roots of the equation ∆′(ξ ) = 0,

∆′(ξ ) =
[
µ2

0 ~1 ~3 − β2
0 µ

2
2 T0 σ

2
− iσβ0 µ0 µ2 (~1 + T0~3)

]
r4

− λ0
[
iσµ2

2(~7r2
− iσc) + ~1~3(a0r2

− η0) − iσβ1µ2(~1 + T0~3)
]
(r2

− λ2
1)r2

− l0
[
µ2

0(~7r2
− iσc) + iβ2

0 T0σ (a0r2
− η0) − 2iσβ0β1T0µ0

]
(r2

− λ2
2)r2

+ λ0l0
[
(~7r2

− iσc)(a0r2
− η0) − iσβ2

1 T0
]
(r2

− λ2
1)(r2

− λ2
2)

= d1(r2
− λ2

3)(r2
− λ2

4)(r2
− λ2

5)(r2
− λ2

6),

(6.66)

∆2(ξ ) = a(ξ )
[
a(ξ ) + b(ξ )r2]

= d2(r2
− λ2

1)
11∏
j=7

(r2
− λ2

j ), (6.67)

∆3(ξ ) = d3(r2
− λ2

2)(r2
− λ2

7), (6.68)

∆′

2(ξ ) = a(ξ ) + b(ξ )r2
= −α0λ0~6(r2

− λ2
1)(r2

− λ2
7)(r2

− λ2
11), (6.69)
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a1(ξ ) = d3∆
′(ξ )∆′

2(ξ )(r2
− λ2

2)
[
~6(γ r2

− δ)(r2
− λ2

7) − iσµ2
1r2

]
,

a3(ξ ) = −µ1~ d3∆
′(ξ )∆′

2(ξ )(r2
− λ2

2)r2,

a7(ξ ) = ~6 d3
[
(µ+ ~)r2

− ρσ 2]∆′(ξ )∆′

2(ξ )(r2
− λ2

2)(r2
− λ2

7),
a11(ξ ) = −iσµ1~d3r2(r2

− λ2
2)∆′(ξ )∆′

2(ξ ),

a13(ξ ) =
l0

r2 − λ2
7

(r2
− λ2

2)∆′(ξ )
[
iσµ2

1((µ+ ~)r2
− ρσ 2)r2∆′

2(ξ ) − ∆2(ξ )
]
,

(6.70)

a19(ξ ) = d3(r2
− λ2

2)∆2(ξ )α22(ξ ),

a20(ξ ) = −d3(r2
− λ2

2)∆2(ξ )α12(ξ ),

a24(ξ ) = −d3(r2
− λ2

2)∆2(ξ )α21(ξ ),

a25(ξ ) = d3(r2
− λ2

2)∆2(ξ )α11(ξ ),

(6.71)

α11(ξ ) = µ2
0l0(r2

− λ2
2)r2

+ iσµ2
2λ0(r2

− λ2
1)r2

+ λ0l0(η0 − a0r2)(r2
− λ2

1)(r2
− λ2

2),

α12(ξ ) = −µ0β0l0(r2
− λ2

2)r2
− µ2λ0~3(r2

− λ2
1)r2

+ β1λ0l0(r2
− λ2

1)(r2
− λ2

2),

α21(ξ ) = −iµ0β0T0l0σ (r2
− λ2

2)r2
− i~1µ2λ0σ (r2

− λ2
1)r2

+ iσβ1T0λ0l0(r2
− λ2

1)(r2
− λ2

2),

α22(ξ ) = iσβ2
0 T0l0(r2

− λ2
2)r2

+ ~1~3λ0(r2
− λ2

1)r2
− λ0l0(~7r2

− iσc)(r2
− λ2

1)(r2
− λ2

2),

(6.72)

b1(ξ ) = α0~6d3(r2
− λ2

2)(r2
− λ2

7)(r2
− λ2

11)
{
β11(ξ )a(ξ )

−
[
λ0~6(α + β)(r2

− λ2
1)(r2

− λ2
7) + iσλ0µ

2
1(r2

− λ2
1) + b(ξ )

]
∆′(ξ )

}
,

b3(ξ ) = α0~6(r2
− λ2

11)∆3(ξ )
[
a(ξ )β13(ξ ) − λ0µ1~(r2

− λ2
1)∆′(ξ )

]
,

b7(ξ ) = −~6∆
′(ξ )∆3(ξ )

[
λ0b(ξ )(r2

− λ2
1) − (λ+ µ)∆′

2(ξ )
]
,

b11(ξ ) = ~6
[
iσµ1l0~(r2

− λ2
2)∆′

2(ξ )∆′(ξ ) + (σµ2γ41(ξ ) + i~3γ51(ξ ))∆2(ξ )
]
,

b13(ξ ) = iσµ2
1α0l0λ0~6(r2

− λ2
1)(r2

− λ2
2)(r2

− λ2
11)((µ+ ~)r2

− ρσ 2)∆′(ξ )

+ ~6(σµ2γ43(ξ ) + i~3γ53(ξ ))∆2(ξ ) + d2(~4 + ~5)(r2
− λ2

1)∆′(ξ )
11∏
j=8

(r2
− λ2

j ),

(6.73)

c2(ξ ) = −i~~6∆
′(ξ )∆′

2(ξ )∆3(ξ ),

c4(ξ ) = α0~6a(ξ )β14(ξ )(r2
− λ2

11)∆3(ξ ),

c5(ξ ) = α0~6a(ξ )β15(ξ )(r2
− λ2

11)∆3(ξ ),
c6(ξ ) = −i~~6∆

′(ξ )∆′

2(ξ )∆3(ξ ),

c8(ξ ) = iµ1d3(r2
− λ2

2)((µ+ ~)r2
− ρσ 2)∆′(ξ )∆′

2(ξ ),

c12(ξ ) = −σµ1d3((µ+ ~)r2
− ρσ 2)(r2

− λ2
2)∆′(ξ )∆′

2(ξ ),
c14(ξ ) = ~6(σµ2α22(ξ ) − i~3α21(ξ ))∆2(ξ ),
c15(ξ ) = −~6(σµ2α12(ξ ) − i~3α11(ξ ))∆2(ξ ),

c16(ξ ) = d3(r2
− λ2

2)∆2(ξ )γ41(ξ ),

c18(ξ ) = d3(r2
− λ2

2)∆2(ξ )γ43(ξ ),

c21(ξ ) = d3(r2
− λ2

2)∆2(ξ )γ51(ξ ),

c23(ξ ) = d3(r2
− λ2

2)∆2(ξ )γ53(ξ ),

(6.74)

β11(ξ ) = iµ0γ41(ξ ) − iβ0γ51(ξ ), β13(ξ ) = iµ0γ43(ξ ) − iβ0γ53(ξ ),
β14(ξ ) = iµ0α22(ξ ) + iβ0α21(ξ ), β15(ξ ) = −iµ0α12(ξ ) − iβ0α11(ξ ),

(6.75)

γ41(ξ ) = (iµ0~1~3 + σβ0µ2~3T0)r2
−

[
iµ0l0(~7r2

− iσc) + β0β1l0σT0
]
(r2

− λ2
2),

γ43(ξ ) = −β0(σµ2β0T0 + iµ0~1)r2
− iλ0

[
µ2(~7r2

− iσc) − ~1β1
]
(r2

− λ2
1),

γ51(ξ ) = σµ2(iσβ0µ2T0 − µ0~1)r2
− l0T0σ

[
β0(a0r2

− η0) − µ0β1
]
(r2

− λ2
2),

γ53(ξ ) = −µ0(i~1µ0 + σµ2β0T0)r2
+ λ0

[
i~1(a0r2

− η0) + σµ2β1T0
]
(r2

− λ2
1).

(6.76)
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Therefore, we can represent the matrix Γ̂ (ξ, σ ) in the form

Γ̂ (ξ, σ ) = [L(−i ξ, σ )]−1
=

1
Λ(ξ )

M(ξ, σ ), (6.77)

where

M(ξ, σ ) :=

⎡⎢⎢⎢⎢⎣
a1(ξ ) I3 [0]3×3 a3(ξ ) I3 [0]3×1 [0]3×1
[0]3×3 a7(ξ ) I3 [0]3×3 [0]3×1 [0]3×1

a11(ξ ) I3 [0]3×3 a13(ξ ) I3 [0]3×1 [0]3×1
[0]1×3 [0]1×3 [0]1×3 a19(ξ ) a20(ξ )
[0]1×3 [0]1×3 [0]1×3 a24(ξ ) a25(ξ )

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
b1(ξ ) Q(ξ ) [0]3×3 b3(ξ ) Q(ξ ) [0]3×1 [0]3×1

[0]3×3 b7(ξ ) Q(ξ ) [0]3×3 [0]3×1 [0]3×1
b11(ξ ) Q(ξ ) [0]3×3 b13(ξ ) Q(ξ ) [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 0 0
[0]1×3 [0]1×3 [0]1×3 0 0

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
[0]3×3 c2(ξ ) R(ξ ) [0]3×3 c4(ξ ) ξ⊤ c5(ξ ) ξ⊤

c6(ξ ) R(ξ ) [0]3×3 c8(ξ ) R(ξ ) [0]3×1 [0]3×1

[0]3×3 c12(ξ ) R(ξ ) [0]3×3 c14(ξ ) ξ⊤ c15(ξ ) ξ⊤

c16(ξ ) ξ [0]1×3 c18(ξ ) ξ 0 0
c21(ξ ) ξ [0]1×3 c23(ξ ) ξ 0 0

⎤⎥⎥⎥⎥⎦ . (6.78)

It is easy to see that the entries of the 11 × 11 matrix M(ξ, σ ) are polynomials in ξ . Therefore to invert the
Fourier transform and find an explicit form for the fundamental matrix Γ (x, σ ) we need the roots of the equation

Λ(r ) = det L(−i ξ, σ ) = 0 with r = |ξ |.

Due to the evenness of the function Λ(r ) with respect to r , it is clear that if r = r0 is a root of the equation Λ(r ) = 0,
then so is r = −r0.

In view of (6.62) the roots of the equation Λ(r ) = 0 are ±λ j , j = 1, 2, . . . , 11. For simplicity we assume that (see
Appendix) λ j ̸= λk , for j ̸= k, Im λ j > 0, and if Im λ j = 0, then λ j > 0.

Therefore in view of (6.77) we can represent the fundamental solution as

Γ (x, σ ) = F −1
ξ→x

[
Γ̂ (ξ, σ )

]
=

1
d1 d2 d3

F −1
ξ→x

[
M(ξ, σ )

1
Φ(r )

]
=

1
d1 d2 d3

M(i ∂, σ )F −1
ξ→x

[ 1
Φ(r )

]
, (6.79)

where

Φ(r ) =

11∏
j=1

(r2
− λ2

j ).

Note that

1
Φ(r )

=

11∑
j=1

p j

r2 − λ2
j
,

where the parameters p1, p2, . . . , p11 solve the system of linear algebraic equations

λ2m
1 p1 + λ2m

2 p2 + · · · + λ2m
11 p11 = 0, m = 0, 1, . . . , 9,

λ20
1 p1 + λ20

2 p2 + · · · + λ20
11 p11 = 1.

They can be represented as follows

p j =

⎡⎣ 11∏
l=1, l ̸= j

(k2
l − λ2

j )

⎤⎦−1

.
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Note that, if Im λ j ≥ 0, then

F−1
ξ→x

[
1

r2 − λ2
j

]
=

ei λ j |x |

4π |x |
.

Therefore

F−1
ξ→x

[ 1
Φ(r )

]
=

1
4π

11∑
j=1

p j
ei λ j |x |

|x |
. (6.80)

Now from (6.79) and (6.80) it follows that

Γ (x, σ ) =
1

4π d1 d2 d3
M(i ∂, σ )

11∑
j=1

p j
ei λ j |x |

|x |
(6.81)

or

Γ (x, σ ) =
1

4π d1 d2 d3
M(i ∂, σ )Ψ (x, σ ),

where the differential operator M(i ∂, σ ) is given by (6.78) with i ∂ for ξ and

Ψ (x, σ ) =

11∑
j=1

p j
ei λ j |x |

|x |
.

We can calculate the expression M(i ∂, σ )Ψ (x, σ ) and rewrite the fundamental solution in a more explicit form.
To this end let us note that

∆
ei λ j |x |

|x |
= −λ2

j
ei λ j |x |

|x |
, |x | ̸= 0,

and apply formulas (6.63)–(6.76), to obtain

a(i ∂)Ψ (x, σ ) =

11∑
j=1

p j a∗

j
ei λ j |x |

|x |
,

b(i ∂)Ψ (x, σ ) =

11∑
j=1

p j b∗

j
ei λ j |x |

|x |
,

al(i ∂)Ψ (x, σ ) =

11∑
j=1

p j a∗

l j
ei λ j |x |

|x |
, l = 1, 3, 7, 11, 13, 19, 20, 24, 25,

bl(i ∂)Ψ (x, σ ) =

11∑
j=1

p j b∗

l j
ei λ j |x |

|x |
, l = 1, 3, 7, 11, 13,

cl(i ∂)Ψ (x, σ ) =

11∑
j=1

p j c∗

l j
ei λ j |x |

|x |
, l = 2, 4, 5, 6, 8, 12, 14, 15, 16, 18, 21, 23,

where

a∗

j = γ (µ+ ~)~6

10∏
l=8

(λ2
l − λ2

j ),

b∗

j = −~6(λ2
j − λ2

7)
[
α0(λ+ µ)(λ2

j − λ2
11) + (α + β)((µ+ ~)λ2

j − ρσ 2) + ~2]
− iσµ2

1((µ+ ~)λ2
j − ρσ 2),

a∗

1 j = −α0λ0~6d1 d3 (λ2
j − λ2

11)
[
~6(γ λ2

j − δ)(λ2
j − λ2

7) − iσµ2
1λ

2
j

] 7∏
l=1

(λ2
j − λ2

l ),

a∗

3 j = −µ1~α0λ0~6d1 d3 λ
2
j (λ

2
j − λ2

11)
7∏

l=1

(λ2
j − λ2

l ),
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a∗

7 j = −α0λ0~
2
6 d1d3((µ+ ~)λ2

j − ρσ 2)(λ2
j − λ2

7)(λ2
j − λ2

11)
7∏

l=1

(λ2
j − λ2

l ),

a∗

11 j = iσµ1~α0λ0~6d1 d3 λ
2
j (λ

2
j − λ2

11)
7∏

l=1

(λ2
j − λ2

l ),

a∗

13 j = −l0d1

6∏
l=1

(λ2
j − λ2

l )
[
iσµ2

1α0λ0~6(λ2
j − λ2

11)((µ+ ~)λ2
j − ρσ 2)λ2

j + d2

11∏
l=8

(λ2
j − λ2

l )
]
,

a∗

19 j = −d2 d3 (λ2
j − λ2

1)(λ2
j − λ2

2)
11∏

l=7

(λ2
j − λ2

l )α( j)
22 ,

a∗

20 j = −d2 d3 (λ2
j − λ2

1)(λ2
j − λ2

2)
11∏

l=7

(λ2
j − λ2

l )α( j)
12 ,

a∗

24 j = −d2 d3 (λ2
j − λ2

1)(λ2
j − λ2

2)
11∏

l=7

(λ2
j − λ2

l )α( j)
21 ,

a∗

25 j = d2 d3 (λ2
j − λ2

1)(λ2
j − λ2

2)
11∏

l=7

(λ2
j − λ2

l )α( j)
11 ,

α
( j)
11 = l0µ

2
0 (λ2

j − λ2
2)λ2

j + iσµ2
2λ0(λ2

j − λ2
1)λ2

j + l0λ0(η0 − a0λ
2
j )(λ

2
j − λ2

1)(λ2
j − λ2

2),

α
( j)
12 = −µ0β0l0 (λ2

j − λ2
2)λ2

j − µ2λ0~3(λ2
j − λ2

1)λ2
j + β1λ0l0(λ2

j − λ2
1)(λ2

j − λ2
2),

α
( j)
21 = −iµ0σ l0β0T0 (λ2

j − λ2
2)λ2

j − i~1µ2σλ0(λ2
j − λ2

1)λ2
j + iσβ1λ0l0T0(λ2

j − λ2
1)(λ2

j − λ2
2),

α
( j)
22 = iσ l0β

2
0 T0 (λ2

j − λ2
2)λ2

j + ~1~3λ0(λ2
j − λ2

1)λ2
j − λ0l0(~7λ

2
j − iσc)(λ2

j − λ2
1)(λ2

j − λ2
2),

b∗

1 j = α0~6d3(λ j − λ2
2)(λ2

j − λ2
7)(λ2

j − λ2
11)

{
a∗

jβ
( j)
11

− d1

[
λ0~6(α + β)(λ2

j − λ2
1)(λ2

j − λ2
7) + iσλ0µ

2
1(λ2

j − λ2
1) + b∗

j

] 6∏
l=3

(λ2
j − λ2

l )
}
,

b∗

3 j = −α0~6d3(λ j − λ2
2)(λ2

j − λ2
7)(λ2

j − λ2
11)

[
a∗

jβ
( j)
13 − λ0µ1~d1(λ2

j − λ2
1)

6∏
l=3

(λ2
j − λ2

l )
]
,

b∗

7 j = −~6d1d3

[
λ0b∗

j + (λ+ µ)α0λ0~6(λ2
j − λ2

7)(λ2
j − λ2

11)
] 7∏

l=1

(λ2
j − λ2

l ),

b∗

11 j = ~6

[
−iσµ1~α0λ0d1d3(λ2

j − λ2
11)

7∏
l=1

(λ2
j − λ2

l ) + d2(σµ2γ
( j)
41 + i~3γ

( j)
51 )(λ2

j − λ2
1)

11∏
l=7

(λ2
j − λ2

l )
]
,

b∗

13 j = iσµ2
1α0λ0d1d3(λ2

j − λ2
11)((µ+ ~)λ2

j − ρσ 2)
6∏

l=1

(λ2
j − λ2

l )

+ d1d2(~4 + ~5)(λ2
j − λ2

1)
6∏

l=3

(λ2
j − λ2

l )
11∏

l=8

(λ2
j − λ2

l ) + ~6d2(σµ2γ
( j)
43 + i~3γ

( j)
53 )

11∏
l=8

(λ2
j − λ2

l ),

γ
( j)
41 = (iµ0~1~3 + σβ0µ2~3T0)λ2

j −
[
iµ0l0(~7λ

2
j − iσc) + β0β1l0σT0

]
(λ2

j − λ2
2),

γ
( j)
43 = −β0(σµ2β0T0 + iµ0~1)λ2

j − iλ0
[
µ2(~7λ

2
j − iσc) − ~1β1

]
(λ2

j − λ2
1),

γ
( j)
51 = σµ2(iσβ0µ2T0 − µ0~1)λ2

j − l0T0σ
[
β0(a0λ

2
j − η0) − µ0β1

]
(λ2

j − λ2
2),

γ
( j)
53 = −µ0(i~1µ0 + σµ2β0T0)λ2

j + λ0
[
i~1(a0λ

2
j − η0) + σµ2β1T0

]
(λ2

j − λ2
1),
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c∗

2 j = iα0λ0~
2
6~d1d3(λ2

j − λ2
7)(λ2

j − λ2
11)

7∏
l=1

(λ2
j − λ2

l ),

c∗

4 j = α0~6d3a∗

jβ
( j)
14 (λ2

j − λ2
2)(λ2

j − λ2
7)(λ2

j − λ2
11),

c∗

5 j = α0~6d3a∗

jβ
( j)
15 (λ2

j − λ2
2)(λ2

j − λ2
7)(λ2

j − λ2
11),

c∗

6 j = iα0λ0~~
2
6 d1d3(λ2

j − λ2
7)(λ2

j − λ2
11)

7∏
l=1

(λ2
j − λ2

l ),

c∗

8 j = −iµ1α0λ0~6d1d3(λ2
j − λ2

11)((µ+ ~)λ2
j − ρσ 2)

7∏
l=1

(λ2
j − λ2

l ),

c∗

12 j = σµ1α0λ0~6d1d3(λ2
j − λ2

11)((µ+ ~)λ2
j − ρσ 2)

7∏
l=1

(λ2
j − λ2

l ),

c∗

14 j = ~6d2(σµ2α
( j)
22 − i~3α

( j)
21 )(λ2

j − λ2
1)

11∏
l=7

(λ2
j − λ2

l ),

c∗

15 j = −~6d2(σµ2α
( j)
12 − i~3α

( j)
11 )(λ2

j − λ2
1)

11∏
l=7

(λ2
j − λ2

l ),

c∗

16 j = d2d3γ
( j)
41 (λ2

j − λ2
1)(λ2

j − λ2
2)

11∏
l=7

(λ2
j − λ2

l ),

c∗

18 j = d2d3γ
( j)
43 (λ2

j − λ2
1)(λ2

j − λ2
2)

11∏
l=7

(λ2
j − λ2

l ),

c∗

21 j = d2d3γ
( j)
51 (λ2

j − λ2
1)(λ2

j − λ2
2)

11∏
l=7

(λ2
j − λ2

l ),

c∗

23 j = d2d3γ
( j)
53 (λ2

j − λ2
1)(λ2

j − λ2
2)

11∏
l=7

(λ2
j − λ2

l ),

β
( j)
11 = iµ0γ

( j)
41 − iβ0γ

( j)
51 , β

( j)
13 = iµ0γ

( j)
43 − iβ0γ

( j)
53 ,

β
( j)
14 = iµ0α

( j)
22 + iβ0α

( j)
21 , β

( j)
15 = −iµ0α

( j)
12 − iβ0α

( j)
11 .

From (6.78) and (6.79) with the help of the above relations we get the following representation of the fundamental
matrix

Γ (x, σ ) =
1

4π d1 d2 d3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
Ψ1(x, σ ) I3 [0]3×3 Ψ3(x, σ ) I3 [0]3×1 [0]3×1

[0]3×3 Ψ7(x, σ ) I3 [0]3×3 [0]3×1 [0]3×1
Ψ11(x, σ ) I3 [0]3×3 Ψ13(x, σ )I3 [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 Ψ19(x, σ ) Ψ20(x, σ )
[0]1×3 [0]1×3 [0]1×3 Ψ24(x, σ ) Ψ25(x, σ )

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
Q(∂)Ψ̃1(x, σ ) [0]3×3 Q(∂)Ψ̃3(x, σ ) [0]3×1 [0]3×1

[0]3×3 Q(∂)Ψ̃7(x, σ ) [0]3×3 [0]3×1 [0]3×1

Q(∂)Ψ̃11(x, σ ) [0]3×3 Q(∂)Ψ̃13(x, σ ) [0]3×1 [0]3×1
[0]1×3 [0]1×3 [0]1×3 0 0
[0]1×3 [0]1×3 [0]1×3 0 0

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
[0]3×3 R(∂)Ψ ′

2(x, σ ) [0]3×3 ∇
⊤Ψ ′

4(x, σ ) ∇
⊤Ψ ′

5(x, σ )
R(∂)Ψ ′

6(x, σ ) [0]3×3 R(∂)Ψ ′

8(x, σ ) [0]3×1 [0]3×1

[0]3×3 R(∂)Ψ ′

12(x, σ ) [0]3×3 ∇
⊤Ψ ′

14(x, σ ) ∇
⊤Ψ ′

15(x, σ )
∇Ψ ′

16(x, σ ) [0]1×3 ∇Ψ ′

18(x, σ ) 0 0
∇Ψ ′

21(x, σ ) [0]1×3 ∇Ψ ′

23(x, σ ) 0 0

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (6.82)
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where

Ψl(x, σ ) =

11∑
j=1

p j a∗

l j
ei λ j |x |

|x |
, l = 1, 3, 7, 11, 13, 19, 20, 24, 25,

Ψ̃l(x, σ ) = −

11∑
j=1

p j b∗

l j
ei λ j |x |

|x |
, l = 1, 3, 7, 11, 13,

Ψ ′

l(x, σ ) = i
11∑
j=1

p j c∗

l j
ei λ j |x |

|x |
, l = 2, 4, 5, 6, 8, 12, 14, 15, 16, 18, 21, 23.

Remark 6.1. Note that (6.81) can be rewritten in the form

Γ (x, σ ) =

11∑
j=1

Φ( j)(x, σ ), (6.83)

where

Φ( j)(x, σ ) = −
p j

4π d1 d2 d3
M(i ∂, σ )

eiλ j |x |

|x |
, (6.84)

and M(i ∂, σ ) is defined by (6.78). Since M(i ∂, σ ) is a matrix differential operator with constant coefficients from
the representation (6.84) it follows that the entries of the matrix Φ( j)(x, σ ) =

[
Φ

( j)
pq (x, σ )

]
11×11

are metaharmonic
functions corresponding to the wave number λ j , i.e., solutions of the Helmholtz equation

(∆ + λ2
j )Φ

( j)
pq (x, σ ) = 0, |x | ̸= 0,

and decay exponentially at infinity:

∂

∂|x |
Φ( j)

pq (x, σ ) − i λ j Φ
( j)
pq (x, σ ) = exp{−Im λ j |x |} O(|x |

−2), p, q = 1, 11,

as |x | → +∞.
The entries of the matrix Φ( j)(x, σ ) and its derivatives satisfy also the following decay conditions at infinity [21]

Φ( j)
pq (x, σ ) = exp{−Im λ j |x |} O(|x |

−1),
∂

∂xl
Φ( j)

pq (x, σ ) − i λ j
xl

|x |
Φ( j)

pq (x, σ ) = exp{−Im λ j |x |} O(|x |
−2), l = 1, 2, 3.

These asymptotic equalities can be differentiated any times with respect to the variable x .

In accordance with formulas (6.83), (6.84) and Corollary A.2 (see Appendix) we see that for Im σ = σ2 > 0 the
entries of the matrix Γ (x, σ ) decay exponentially as |x | → ∞ since Im λ j > 0, j = 1, 11.

Remark 6.2. Note that the matrix Γ ∗(x, σ ) := [Γ (−x, σ )]⊤ represents a fundamental solution to the formally adjoint
differential operator L∗(∂, σ ) ≡

[
L(−∂, σ )

]⊤,

L∗(∂, σ )
[
Γ (−x, σ )

]⊤
= I11 δ(x).

In the case of repeated roots the fundamental solution can be obtained from (6.81) by the standard limiting procedure.

7. Principal singular part of the Fundamental matrix

The principal singular part Γ0(x) of the fundamental matrix (6.82) represents a 11 × 11 fundamental matrix of
the operator L0(∂) defined by (3.18), (3.19) and solves the equation:

L0(∂)Γ0(x) = δ(x)I11. (7.85)
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It is easy to show that

Γ0(x) =

⎡⎢⎢⎢⎢⎢⎣
Γ (1)

0 (x) [0]3×3 [0]3×3 [0]3×1 [0]3×1

[0]3×3 Γ (7)
0 (x) [0]3×3 [0]3×1 [0]3×1

[0]3×3 [0]3×3 Γ (13)
0 (x) [0]3×1 [0]3×1

[0]1×3 [0]1×3 [0]1×3 Γ (19)
0 (x) 0

[0]1×3 [0]1×3 [0]1×3 0 Γ (25)
0 (x)

⎤⎥⎥⎥⎥⎥⎦
11×11

, (7.86)

where

Γ (1)
0 (x) = −

1
8π (µ+ ~)

{ 2
|x |

I3 −
λ+ µ

λ0
Q(∂)|x |

}
,

Γ (7)
0 (x) = −

1
8π γ

{ 2
|x |

I3 −
α + β

α0
Q(∂)|x |

}
,

Γ (13)
0 (x) = −

1
8π ~6

{ 2
|x |

I3 −
~4 + ~5

l0
Q(∂)|x |

}
,

Γ (19)
0 (x) = −

1
4π a0 |x |

,

Γ (25)
0 (x) = −

1
4π ~7 |x |

.

(7.87)

Note that Γ0(x) = Γ⊤

0 (x) = Γ0(−x) and the entries of the matrix Γ0(x) are homogeneous functions of order -1.
For an arbitrary multi-index α = (α1, α2, α3) and an arbitrary complex number σ it can easily be shown that in a
neighborhood of the origin (i.e., for small |x |)

∂α[Γ (x, σ ) − Γ0(x)] = O(|x |
−α), |α| = α1 + α2 + α3,

which shows that Γ0(x) is a principal singular part of the matrix Γ (x, σ ).

8. Integral representation formulae of solutions

Let us introduce the generalized single and double layer potentials, and the Newton type volume potential

V (ϕ)(x) =

∫
S
Γ (x − y, σ )ϕ(y) d Sy, x ∈ R3

\ S, (8.88)

W (ϕ)(x) =

∫
S

[
P∗(∂y, n(y))Γ⊤(x − y, σ )

]⊤
ϕ(y) d Sy, x ∈ R3

\ S, (8.89)

NΩ± (ψ)(x) =

∫
Ω±

Γ (x − y, σ )ψ(y) dy, x ∈ R3, (8.90)

where Γ (·, σ ) is the fundamental matrix given by (6.81) or (6.82), ϕ = (ϕ1, ϕ2, . . . , ϕ11)⊤ is a density vector-function
defined on S, while a density vector-function ψ = (ψ1, . . . , ψ11)⊤ is defined on Ω± and we assume that in the case
of Ω− the support of the density vector-function ψ of the Newtonian potential (8.90) is a compact set, P∗(∂y, n(y)) is
the boundary differential operator defined by (2.12).

Due to the equality
11∑
j=1

Lk j (∂x , σ )
([

P∗(∂y, n(y))Γ⊤(x − y, σ )
]⊤

)
j p

=

11∑
j, q=1

Lk j (∂x , σ )P∗

pq (∂y, n(y))Γ jq (x − y, σ )

=

11∑
j, q=1

P∗

pq (∂y, n(y))Lk j (∂x , σ )Γ jq (x − y, σ ) = 0, x ̸= y, k, p = 1, 11,

it can easily be checked that the potentials defined by (8.88) and (8.89) are C∞–smooth in R3
\ S and solve the

homogeneous equation L(∂, σ )U = 0 in R3
\S for an arbitrary L p-summable vector function ϕ. The volume potential
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solves the nonhomogeneous equation

L(∂, σ )NΩ± (ψ) = ψ in Ω± for ψ ∈ C0,α(Ω±). (8.91)

The relation (8.91) holds true for an arbitrary ψ ∈ L p(Ω±) with 1<p<+ ∞.

Theorem 8.1. Let S = ∂Ω+ be C1, γ ′

smooth with 0 < γ ′
≤ 1, σ = σ1 + i σ2 with σ2 > 0, and let U be a regular

vector function of the class C2(Ω+). Then there holds the integral representation formula

W ({U }
+)(x) − V ({PU }

+)(x) + NΩ+ (L(∂, σ )U )(x) =

{
U (x) for x ∈ Ω+,

0 for x ∈ Ω−.
(8.92)

Proof. It follows from Green’s formula (3.16) with the domain of integration Ω+
\ B(x, ε′), where x ∈ Ω+ is treated

as a fixed parameter, B(x, ε′) is a ball centered at the point x and radius ε′ > 0 and B(x, ε′) ⊂ Ω+. One needs to
take the j th column of the fundamental matrix Γ ∗(y − x, σ ) for U ′, calculate the surface integrals over the sphere
Σ (x, ε′) := ∂B(x, ε′) and pass to the limit as ε′

→ 0 (see [15], Appendix D). □

Similar representation formula holds in the exterior domain Ω− if a vector U and its derivatives possess some
asymptotic properties at infinity. In particular, the following assertion holds.

Theorem 8.2. Let S = ∂Ω− be C1, γ ′

smooth with 0 < γ ′
≤ 1 and let U be a regular vector of the class C2(Ω−),

such that for any multi-index α = (α1, α2, α3) with 0 ≤ |α| = α1 + α2 + α3 ≤ 2, the function ∂αU j is polynomially
bounded at infinity, i.e., for sufficiently large |x |

|∂ αU j (x)| ≤ C0 |x |
m, j = 1, 2, . . . , 11, (8.93)

with some constants m and C0 > 0. Then there holds the integral representation formula

− W ({U }
−)(x) + V ({PU }

−)(x) + NΩ− (L(∂, σ )U )(x) =

{
0 for x ∈ Ω+,

U (x) for x ∈ Ω−,

where σ = σ1 + i σ2 with σ2 > 0.

Proof. The proof immediately follows from Theorem 8.1 and Remark 6.1. Indeed, one needs to write the integral
representation formula (8.92) for bounded domain Ω−

∩ B(0, R), send then R to +∞ and take into consideration
that the surface integral over Σ (0, R) tends to zero due to the conditions (8.93) and the exponential decay of the
fundamental matrix at infinity.

Remark 8.3. Let σ = σ1 + i σ2 with σ1 ∈ R and σ2 > 0, and U be a solution to the homogeneous equations
L(∂, σ )U = 0 in Ω± satisfying the condition (8.93) and U ∈ C 1, γ ′

(Ω±) with some 0 < γ ′
≤ 1. Then the following

representation formula holds

U (x) = W ([U ]S)(x) − V ([PU ]S)(x), x ∈ Ω±,

where [U ]S = {U }
+

−{U }
− and [PU ]S = {PU }

+
−{PU }

− on S. The proof immediately follows from Theorems 8.1
and 8.2.

9. Properties of layer potentials

Here we consider the mapping and regularity properties of the single and double layer potentials and the boundary
pseudodifferential operators generated by them in the Hölder Cm,γ ′

spaces. They can be established by standard
methods (see [8,15–17]). We remark only that the layer potentials corresponding to the fundamental matrices with
different values of the parameter σ have the same smoothness properties and possess the same jump relations.
Therefore, using the word for word arguments given in [8,10,16,18,19,12,13,15,17] we can prove the following
theorems concerning the above introduced layer potentials.

If not otherwise stated, for simplicity, we assume that

S = ∂Ω±
∈ Cm, γ ′

with integer m ≥ 2 and 0 < γ ′
≤ 1;

σ = σ1 + i σ2, σ1 ∈ R, Im σ = σ2 > 0.
(9.94)
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Theorem 9.1. Let S, m, and γ ′ be as in (9.94), 0 < δ′ < γ ′, and let k ≤ m − 1 be integer. Then the operators

V : Ck, δ′ (S) → Ck+1, δ′ (Ω±), W : Ck, δ′ (S) → Ck, δ′ (Ω±) (9.95)

are continuous.
For any g ∈ C 0, δ′ (S), h ∈ C 1, δ′ (S), and any x ∈ S

[V (g)(x) ]± = V (g)(x) = H g(x), (9.96)
{P(∂x , n(x)) V (g)(x)}± =

[
∓ 2−1 I11 + K

]
g(x), (9.97)

{W (g)(x)}± =
[
±2−1 I11 + N

]
g(x), (9.98)

{P(∂x , n(x)) W (h)(x)}+ = {P(∂x , n(x)) W (h)(x)}− = L h(x), (9.99)

where

H g(x) :=

∫
S
Γ (x − y, σ ) g(y) d Sy, (9.100)

K g(x) :=

∫
S

[
P(∂x , n(x))Γ (x − y, σ )

]
g(y) d Sy, (9.101)

N g(x) :=

∫
S

[
P∗(∂y, n(y))Γ⊤(x − y, σ )

]⊤ g(y) d Sy, (9.102)

L h(x) := lim
Ω±∋z→x∈S

P(∂z, n(x))
∫

S

[
P∗(∂y, n(y))Γ⊤(z − y, σ )

]⊤ h(y) d Sy . (9.103)

Proof. The proof of the relations (9.95)–(9.98) can be performed by standard arguments (see, e.g., [8,10]). We
demonstrate here only a simplified proof of the relation (9.99), the so called Lyapunov–Tauber type theorem. Let
h ∈ C 1, δ′ (S) and consider de double layer potential U := W (h) ∈ C 1, δ′ (Ω±). Then by Remark 8.3 and the jump
relations (9.98), we have

U (x) = W ([U ]S)(x) − V ([PU ]S)(x), x ∈ Ω±,

i.e.,

W (h)(x) = W (h)(x) − V ([PW (h)]S)(x), x ∈ Ω±,

since [U ]S = {W (h)}+ − {W (h)}− = h on S due to (9.98). Therefore V ([PW (h)]S) = 0 in Ω± and in view of (9.97)
we conclude

{PV ([PW (h)]S)}− − {PV ([PW (h)]S)}+ = [PW (h)]S = {PW (h)}+ − {PW (h)}− = 0

on S, which completes the proof. □

With the help of the explicit form of the fundamental matrix Γ (x − y, σ ) it can easily be shown that the operators
K and N are singular integral operators, H is a smoothing (weakly singular) integral operator, while L is a singular
integro-differential operator.

Theorem 9.2. Let S, m, γ ′, δ′ and k be as in Theorem 9.1. Then the operators

H : Ck, δ′ (S) → Ck+1, δ′ (S), (9.104)
K : Ck, δ′ (S) → Ck, δ′ (S), (9.105)
N : Ck, δ′ (S) → Ck, δ′ (S), (9.106)
L : Ck, δ′ (S) → Ck−1, δ′ (S), (9.107)

are continuous. Moreover,
(1) the principal homogeneous symbol matrices of the operators ±2−1 I11+K and ±2−1 I11+N are non-degenerate,

while the principal homogeneous symbol matrices of the operators −H and L are positive definite;
(2) the operators H, ±2−1 I11 + K, ±2−1 I11 + N , and L are elliptic pseudodifferential operators (of order −1,

0, 0, and 1, respectively) with zero index;
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(3) the following equalities hold in appropriate function spaces:

N H = HK, LN = KL,
HL = −4−1 I11 + N 2, LH = −4−1 I11 + K2.

(9.108)

Proof. The mapping properties (9.104)–(9.107) are standard and can be proved as their counterparts in [8,12,13,19].
The item (3) follows from the jump relations for the layer potentials and the general integral representation formulas

of solutions to the homogeneous equation L(∂, σ )U = 0.
Proofs of items (1) and (2) are based on the positive definiteness of the potential energy functional and positive

definiteness of the symbol matrix L0(ξ ) for ξ = (ξ1, ξ2, ξ3) ∈ R3
\ {0}, see (3.18), (3.19) (cf. [20,13,17,19],

and [15]). □

10. Existence results for boundary value problems

Now we apply the potential method and prove existence theorems for the Dirichlet and Neumann type boundary
value problems for pseudo-oscillation equations (see Section 5). We reduce the original boundary value problems
to the equivalent integral equations on the boundary of the elastic body under consideration and investigate their
Fredholm properties. In particular, we show that the corresponding integral operators are invertible. Without loss of
generality we consider the boundary value problems for the homogeneous differential equation L(∂, σ ) U = 0, since
a particular solution to the nonhomogeneous equation (5.51) can be written explicitly in the form of volume potential
NΩ± (Φ±), see (8.91).

Moreover, throughout this section we assume that the conditions (9.94) are fulfilled if not otherwise stated.

10.1. Investigation of the interior and exterior Dirichlet problems

These problems are formulated in Section 5. We assume that Φ(±)
= 0 and look for solutions in Ω± in the form

of double layer potential U = W (h) (see (8.89)). Applying the jump relations for the double layer potential (see
Theorem 9.1) and taking into consideration the boundary conditions (5.52), for the unknown density vector function
h = (h1, h2, . . . , h11)⊤ we get the following boundary integral equations,[

2−1 I11 + N
]

h = f on S, (10.109)

in the case of Problem (I (σ ))+, and[
−2−1 I11 + N

]
h = f on S, (10.110)

in the case of Problem (I (σ ))−.
Here the operator N is given by (9.102). Due to Theorem 9.2, the operators ±2−1 I11 + N are singular integral

operators of normal type with index zero. This leads to the following existence theorems.

Theorem 10.1. Let S ∈ C2, ν and f ∈ C1, τ (S) with 0 < τ < ν ≤ 1. Then the boundary value problem (I (σ ))+ is
uniquely solvable in the space C1, τ (Ω+) and the solution is represented by the double layer potential W (h) defined
by (8.89), where density h ∈ C1, τ (S) is a unique solution of the integral equation (10.109).

Proof. The uniqueness follows from Theorems 9.1 and 5.1. It remains to show that the singular integral operator

2−1 I11 + N : C1, τ (S) → C1, τ (S) (10.111)

is invertible.
Due to Theorem 9.2, we conclude that (10.111) is a Fredholm operator with zero index. Further, we show that

ker
[
2−1 I11 + N

]
is trivial. Indeed, let h0 solve the homogeneous equation[

2−1 I11 + N
]

h0 = 0 on S. (10.112)
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Construct the double layer potential W (h0). Since h0 ∈ C1, τ (S), we have W (h0) ∈ C1, τ (Ω±). In view of Eq. (10.112),
we see, that then {W (h0)(x)}+ = 0 for x ∈ S and by the uniqueness Theorem 5.1 we get W (h0)(x) = 0 for x ∈ Ω+.
Consequently, {P(∂, n) W (h0)(x)}+ = 0 for x ∈ S. By the Lyapunov–Tauber theorem (see Theorem 9.1)

{P(∂, n) W (h0)(x)}+ = {P(∂, n) W (h0)(x)}− = 0, x ∈ S,

i.e., W (h0) solves the homogeneous exterior Neumann type boundary value problem (I I (σ ))− and decays at infinity
exponentially. Therefore, W (h0)(x) = 0 in Ω− by Theorem 5.1. Since

{W (h0)(x)}+ − {W (h0)(x)}− = 2 h0(x), x ∈ S,

we conclude that h0 = 0 on S, which shows that null space of the operator 2−1 I11 + N is trivial. Therefore, (10.111)
is invertible. □

Quite similarly, by the word for word arguments and with the help of Theorem 5.1, we can show that the operator

− 2−1 I11 + N : C1, τ (S) → C1, τ (S) (10.113)

is invertible, which leads to the existence theorem for the Dirichlet type exterior boundary value problem.

Theorem 10.2. Let S ∈ C2, ν and f ∈ C1, ν(S) with 0 < τ < ν ≤ 1. Then the boundary value problem (I (σ ))− is
uniquely solvable in the class of vector functions belonging to the space C1, τ (Ω−) and decaying at infinity, and the
solution is represented by the double layer potential W (h) defined by (8.89), where h ∈ C1, τ (S) is a unique solution
of the integral equation (10.110).

10.2. Investigation of the interior and exterior Neumann problems

These problems are formulated in Section 5 as problems (I I (σ ))+ and (I I (σ ))−. As above, we assume that Φ(±)
= 0

and look for solutions in Ω± in the form of the single layer potential U = V (g) (see 8.1) and taking into consideration
the boundary conditions (5.53), for the unknown density vector function g = (g1, g2, . . . , g11)⊤ we get the boundary
integral equations,[

− 2−1 I11 + K
]

g = F on S, (10.114)

in the case of Problem (I I (σ ))+, and[
2−1 I11 + K

]
g = F on S, (10.115)

in the case of Problem (I I (σ ))−.
Here the operator K is given by (9.101). Due to Theorem 9.2, the operators ±2−1 I11 + K are singular integral

operators of normal type with index zero. This yields the following existence theorems.

Theorem 10.3. Let S ∈ C1, ν and F ∈ C0, τ (S)] with 0 < τ < ν ≤ 1. Then the boundary value problem (I I (σ ))+ is
uniquely solvable in the space C1, τ (Ω+) and the solution is represented by the single layer potential V (g) defined by
(8.88), where g ∈ C0, τ (S) is a unique solution of the integral equation (10.114).

Proof. The uniqueness is a consequence of Theorems 9.1 and 5.1. Now, we show that the operator

− 2−1 I11 + K : C0, τ (S) → C0, τ (S) (10.116)

is invertible.
Due to Theorem 9.2, the operator (10.116) is a Fredholm operator with zero index. Therefore, it remains to show

that the null space of the operator −2−1 I11 + K is trivial. Let g0 ∈ C0, τ (S) solve the homogeneous equation

[− 2−1 I11 + K ] g0 = 0 on S.

Construct the single layer potential V (g0). Evidently, V (g0) ∈ C1, τ (Ω+) due to Theorem 9.1. Moreover, V (g0) solves
the homogeneous Problem (I I (σ ))+ and therefore it vanishes identically in Ω+, due to Theorem 5.1. Further, by
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Theorem 9.1 we have {V (g0)(x)}+ = {V (g0)(x)}− = 0 for x ∈ S, and since it exponentially decays at infinity, by the
uniqueness theorem for the Dirichlet exterior boundary value problem, we conclude, that V (g0)(x) = 0 for x ∈ Ω−.
Finally, with the help of equality

{P(∂, n) V (g0)(x)}− − {P(∂, n) V (g0)(x)}+ = 2 g0 (x), x ∈ S,

we derive g0 = 0 on S. Thus, the operator (10.116) is invertible. □

By the word for word arguments we can prove that the operator

2−1 I11 + K : C0, τ (S) → C0, τ (S) (10.117)

is invertible, which leads to the existence theorem for the Neumann type exterior boundary value problem.

Theorem 10.4. Let S ∈ C1, ν and F ∈ C0, τ (S) with 0 < τ < ν ≤ 1. Then the boundary value problem (I I (σ ))− is
uniquely solvable in the class of vector functions belonging to the space C1, τ (Ω−) and decaying at infinity, and the
solution is represented by the single layer potential V (g) defined by (8.88), where g ∈ C0, τ (S) is a unique solution of
the integral equation (10.115).

10.3. Investigation of the basic boundary value problems by the first kind integral equations

Here we apply an alternative approach and reduce the basic interior and exterior boundary value problem,
considered in the previous subsections, to the first kind integral equations (cf. [13]). These results play a crucial
role in the study of mixed boundary value problems.

9.3.1. Investigation of the Dirichlet problem with the help of the first kind integral equations. We look for a
solution to the problems (I (σ ))+ and (I (σ ))− (see (5.51)–(5.52) with Φ(±)

= 0) in the form of the single layer potential
U = V (g) (see (8.88)). In both cases, for the interior and exterior boundary value problems, we arrive at the equation

H g = f on S, (10.118)

where H is defined by (9.100).
We have the following existence theorem.

Theorem 10.5. Let S ∈ C2, ν and f ∈ C1, τ (S) with 0 < τ < ν ≤ 1. Then the boundary value problems (I (σ ))± are
uniquely solvable in the class of vector functions belonging to the space C1, τ (Ω±) and decaying at infinity, and the
solution is represented by the single layer potential V (g) defined by (8.88), where g ∈ C0, τ (S) is a unique solution of
the integral equation (10.118).

Proof. The uniqueness follows from Theorems 9.1 and 5.1. Evidently, it remains to show the invertibility of the
operator

H : C0, τ (S) → C1, τ (S). (10.119)

To this end, we apply the operator L (see (9.103)) to both sides of Eq. (10.118) and take into consideration the operator
equalities (9.108),

LHg ≡
[
−4−1 I1 + K2] g = L f on S. (10.120)

Clearly, L f ∈ C0, τ (S) due to Theorem 9.2. Since the operators (10.116) and (10.117) are invertible, we conclude
that the singular integral operator

LH =
[
−2−1 I11 + K

] [
2−1 I11 + K

]
: C0, τ (S) → C0, τ (S)

is invertible as well. Therefore, from (10.120) we get the following representation of a solution of Eq. (10.118)

g =
[
−4−1

+ K2]−1 L f ∈ C0, τ (S).

With the help of the uniqueness Theorem 5.1, one can easily show that the operators

H : C0, τ (S) → C1, τ (S), L : C1, τ (S) → C0, τ (S), (10.121)
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are injective. Therefore, Eqs. (10.118) and (10.120) are equivalent and the operator (10.119) is invertible, which
completes the proof. □

Corollary 10.6. A solution U ∈ C1, τ (Ω±) of the boundary value problems (I (σ ))± with Φ(±)
= 0 is uniquely

representable in the form

U (x) = V (H−1 f )(x), x ∈ Ω±,

where f = {U }
± on S and

H−1
: C1, τ (S) → C0, τ (S)

is the inverse to the operator (10.119).

This representation plays a crucial role in the investigation of mixed boundary value problems (cf. [13]).
9.3.2. Investigation of the Neumann problem with the help of the first kind integral equations. We look for

a solution to the problems (I I (σ ))+ and (I I (σ ))− (see (5.51), (5.53) with Φ±
= 0) in the form of the double layer

potential U = W (h) (see (8.89)). In both cases, for the interior and exterior boundary value problems, we arrive at the
equation

L h = F on S, (10.122)

where L is defined by (9.103).
We have the following existence theorem.

Theorem 10.7. Let S ∈ C2, ν and F ∈ C0, τ (S) with 0 < τ < ν ≤ 1. Then the boundary value problems (I I (σ ))± are
uniquely solvable in the class of vector functions belonging to the space C1, τ (Ω±) and decaying at infinity, and the
solution is represented by the double layer potential W (h) defined by (8.89), where h ∈ C1, τ (S) is a unique solution
of the integral equation (10.122).

Proof. The uniqueness follows from Theorems 9.1 and 5.1. Evidently, it remains to show the invertibility of the
operator

L : C1, τ (S) → C0, τ (S). (10.123)

To this end, we apply the operator H (see (9.100)) to both sides of Eq. (10.122) and take into consideration the operator
equalities (9.108),

HLh ≡
[
−4−1 I11 + N 2] h = HF on S. (10.124)

Clearly, HF ∈ C1, τ (S) due to Theorem 9.2. Since the operators (10.111) and (10.113) are invertible, we conclude
that the singular integral operator

HL =
[
−2−1 I11 + N

] [
2−1 I11 + N

]
: C1, τ (S) → C1, τ (S)

is invertible as well. Therefore, from (10.124) we get the following representation formula of a solution of Eq. (10.122)

h =
[
−4−1 I11 + N 2]−1 HF ∈ C1, τ (S).

Since the operators (10.121) are injective, we conclude that Eqs. (10.122) and (10.124) are equivalent and the
operator (10.123) is invertible, which completes the proof. □

Corollary 10.8. A solution U ∈ C1, τ (Ω±) of the boundary value problems (I I (σ ))± with Φ±
= 0 is uniquely

representable in the form

U (x) = W (L−1 F)(x), x ∈ Ω±,

where F = {P(∂, n)U }
± on S and

L−1
: C0, τ (S) → C1, τ (S)

is the inverse to the operator (10.123).
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Appendix. Properties of the characteristic roots

Here we investigate the properties of roots of Eq. (6.62) with respect to r . In particular we prove the following
assertion.

Lemma A.1. Let us assume that σ = σ1 + i σ2 is a complex parameter where σ1 ∈ R and σ2 > 0. Then

det L(−i ξ, σ ) ̸= 0

for arbitrary ξ ∈ R3.

Proof. We prove the lemma by contradiction. Let det L(−i ξ, σ ) = 0, ξ ∈ R3. Then the system of linear equations
L(−i ξ, σ ) X = 0 has a nontrivial solution X ∈C11

\ {0} which can be written as X = (X (1), X (2), X (3), X (4), X (5))⊤,
where X ( j)

= (X ( j)
1 , X ( j)

2 , X ( j)
3 )⊤ ∈ C3, j = 1, 2, 3 and X ( j)

∈ C, j = 4, 5, are scalars. Taking into consideration
(2.6), the system L(−i ξ, σ ) X = 0 can be rewritten as follows:

L ( j)(−i ξ, σ ) X (1)
+ L ( j+5)(−i ξ, σ ) X (2)

+ L ( j+10)(−i ξ, σ ) X (3)
+ L ( j+15)(−i ξ, σ ) X (4)

+ L ( j+20)(−i ξ, σ ) X (5)
= 0,

j = 1, 2, 3, 4, 5,

implying[
(−(µ+ ~) |ξ |2 + ϱ σ 2) I3 − (λ+ µ) Q(ξ )

]
X (1)

− i~R(ξ )X (2)
− iµ0ξ

⊤ X (4)
+ iβ0ξ

⊤ X (5)
= 0, (A.1)

− i~R(ξ )X (1)
+

[
(−γ |ξ |2 + δ) I3 − (α + β) Q(ξ )

]
X (2)

+ i µ1 R(ξ ) X (3)
= 0, (A.2)

− σµ1 R(ξ ) X (2)
+

[
(−~6|ξ |

2
+ ~0) I3 − (~4 + ~5) Q(ξ )

]
X (3)

+ σ µ2 ξ
⊤ X (4)

+ i~3ξ
⊤ X (5)

= 0, (A.3)
iµ0ξ · X (1)

+ iµ2ξ · X (3)
+ (−a0|ξ |

2
+ η0) X (4)

+ β1 X (5)
= 0, (A.4)

β0T0σξ · X (1)
− i~1ξ · X (3)

+ iβ1T0σ X (4)
+ (−~7|ξ |

2
+ iσc) X (5)

= 0. (A.5)

Let us take the dot products of Eqs. (A.1) and (A.2) by the vectors −iσ X (1) and −iσ X (2) respectively,
multiply equality (A.4) by the function −iσ X (4), then multiply complex conjugates of Eqs. (A.3) and (A.5) by the
vector −X (3) and the function −

1
T0

X (5) respectively and sum up the results to obtain

iσ
[
(µ+ ~) |ξ |2 − ρ σ 2] ⏐⏐X (1)

⏐⏐2
+ i σ (λ+ µ)

⏐⏐ξ · X (1)
⏐⏐2

− ~ σ
([
ξ × X (2)]

· X (1) +
[
ξ × X (1)]

· X (2)
)

+µ0σ
[
( ξ · X (1) )X (4) − ( ξ · X (1) )X (4)]

+ i σ
(
γ
⏐⏐ξ ⏐⏐2

− δ
)⏐⏐X (2)

⏐⏐2
+ i σ (α + β)

⏐⏐ξ · X (2)
⏐⏐2

+
(
~6

⏐⏐ξ ⏐⏐2

− ~0
) ⏐⏐X (3)

⏐⏐2
+ (~4 + ~5)

⏐⏐ ξ · X (3)
⏐⏐2

+ i ~3( ξ · X (3))X (5) −
i ~1

T0
(ξ · X (3))X (5)

− i σ
(
−a0

⏐⏐ξ ⏐⏐2
+ η0

)⏐⏐X (4)
⏐⏐2

+
1
T0

(
~7

⏐⏐ξ ⏐⏐2
+ i σc

)⏐⏐X (5)
⏐⏐2

= 0.

By separating the real part from this equation, we deduce

σ2
[
(µ+ ~)

⏐⏐ξ ⏐⏐2
+ ϱ

⏐⏐σ ⏐⏐2] ⏐⏐X (1)
⏐⏐2

+ σ2(λ+ µ)
⏐⏐ξ · X (1)

⏐⏐2

− 2~σ2 Im
([
ξ × X (2)]

· X (1)
)
+ 2µ0σ2 Im

(
( ξ · X (1)) X (4)

)
+ σ2

(
γ

⏐⏐ξ ⏐⏐2
+ I1

⏐⏐σ ⏐⏐2
+ 2~

)⏐⏐X (2)
⏐⏐2

+ σ2(α + β)
⏐⏐ξ · X (2)

⏐⏐2
+

(
~6

⏐⏐ξ ⏐⏐2

+ σ2b + ~2
) ⏐⏐X (3)

⏐⏐2
+ (~4 + ~5)

⏐⏐ ξ · X (3)
⏐⏐2

+
~1 + ~3T0

T0
Im

((
ξ · X (3)

)
X (5))

+ σ2
(
a0

⏐⏐ξ ⏐⏐2
+ I

⏐⏐σ ⏐⏐2
+ η

)⏐⏐X (4)
⏐⏐2

+
1
T0

(
~7

⏐⏐ξ ⏐⏐2
+ σ2c

)⏐⏐X (5)
⏐⏐2

= 0. (A.6)
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With the help of inequalities (3.15) and also using the following relations⏐⏐ξ ⏐⏐2⏐⏐X ( j)
⏐⏐2

−
⏐⏐ξ · X ( j)

⏐⏐2
=

⏐⏐ [ξ × X ( j)] ⏐⏐2
, j = 1, 2, 3,

γ
⏐⏐ξ ⏐⏐2⏐⏐X (2)

⏐⏐2
+ (α + β)

⏐⏐ξ · X (2)
⏐⏐2

= (α + β + γ )
⏐⏐ξ · X (2)

⏐⏐2
+ γ

⏐⏐ [ξ × X (2)] ⏐⏐2
≥ 0,

~6
⏐⏐ξ ⏐⏐2⏐⏐X (3)

⏐⏐2
+ (~4 + ~5)

⏐⏐ξ · X (3)
⏐⏐2

= (~4 + ~5 + ~6)
⏐⏐ξ · X (3)

⏐⏐2
+ ~6

⏐⏐ [ξ × X (3)] ⏐⏐2
≥ 0,⏐⏐ [ξ × X (1)] ⏐⏐2

− 2 Im
([
ξ × X (2)]

· X (1)
)
+

⏐⏐X (2)
⏐⏐2

=
⏐⏐ [ξ × X (1)

]
+ i X (2)

⏐⏐2
≥ 0,

T0~2
⏐⏐X (3)

⏐⏐2
+ (~1 + T0~3) Im

[(
ξ · X (3)

)
X (5)]

+ ~7
⏐⏐ξ ⏐⏐2⏐⏐X (5)

⏐⏐2

=
4T0~2~7 − (~1 + T0~3)2

4~7

⏐⏐X (3)
⏐⏐2

+
1

4~7

⏐⏐(~1 + T0~3)X (3)
− 2i~7ξ X (5)

⏐⏐2
≥ 0,

λ0
⏐⏐ξ · X (1)

⏐⏐2
+ 2µ0 Im

[(
ξ · X (1))X (4)

]
+ η

⏐⏐X (4)
⏐⏐2

=
λ0η − µ2

0

λ0

⏐⏐X (4)
⏐⏐2

+
1
λ0

⏐⏐µ0 X (4)
− iλ0ξ · X (1)

⏐⏐2
≥ 0,

λ0 = λ+ 2µ+ ~ > 0, λ0η − µ2
0 > 0,

from (A.6) we conclude

X ( j)
= 0, j = 1, 2, 3, 4, 5.

Thus, the system L(−i ξ, σ ) X = 0 possesses only the trivial solution for arbitrary ξ ∈ R3. This contradiction
proves the lemma. □

Corollary A.2. Let σ = σ1 + i σ2 be a complex parameter with σ1 ∈ R and σ2 > 0. Then the equation with respect
to r = |ξ |

Λ(r ) = det L(−i ξ, σ ) = 0

possesses complex roots ±λ j , j = 1, 11 with Im λ j > 0, j = 1, 11.
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The Morrey space Mp
q with 1 ≤ q ≤ p < ∞ collects all measurable functions f for which ∥ f ∥Mp

q
≡

supQ |Q|
1
p −

1
q ∥ f ∥Lq (Q) is finite, where Q moves over all cubes having sides parallel to coordinate axis in Rn . Recently,

more and more attention has been paid to closed subspaces in the Morrey space Mp
q with 1 < q < p < ∞ [1,2]. In

this connection, we aim here to show the following:

Theorem 1. Let 1 < q < q̃ < p. Then Mp
q̃ is not dense in Mp

q .

Let E ≡ {y + (R − 1)(a1 + Ra2 + · · · ) : {a j }
∞

j=1 ∈ {0, 1}
n

∩ ℓ1(N), y ∈ [0, 1]n
}, where R > 2 solves

R
n
p −

n
q 2

n
q = 1. Note that E j ≡ E ∩ [0, R j ]n is made up of 2 jn cubes of volume 1. According to [3], the indicator

function χ of E belongs to Mp
q . We prove that χ is not in the closure of Mp

q̃ by showing f ̸∈ Mp
q̃ if f ∈ Mp

q

satisfies ∥2χ − f ∥Mp
q

< 1. Indeed, if K is one of the connected components, then ∥ f ∥L q̃ (K ) ≥ ∥ f ∥Lq (K ) > 1 since

1 > ∥2χ − f ∥Mp
q

≥ ∥2 − f ∥Lq (K ) ≥ 2 −∥ f ∥Lq (K ). Thus, ∥ f ∥Mp
q̃

≥ |[0, R j ]n
|

1
p −

1
q̃ ∥ f ∥L q̃ ([0,R j ]n ) ≥ R

jn
p −

jn
q̃ |E j |

1
q̃ =

2
jn
q̃ −

jn
q R

jn
q −

jn
q̃ for all j ∈ N. Hence, f ̸∈ Mp

q̃ , since this is valid for all j ∈ N.
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In this work, we consider iterative methods for solving a class of equilibrium problems in Hadamard Manifolds by using the
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1. Introduction

Riemannian manifolds constitute a broad and fruitful framework for the development of different fields. Actually
in the last decades concepts and techniques which fit in Euclidean spaces have been extended to this nonlinear
framework. Most of the extended methods however require the Riemannian manifold to have non-positive sectional
curvature. This is an important property which enjoyed by a large class of Riemannian manifolds and it is strong
enough to imply light topological restriction and rigidity phenomena [1–3]. Particularly, Hadamard manifolds which
are complete simply connected and finite dimensional Riemannian manifolds of non-positive sectional curvature, have
been turned out to be a suitable setting for diverse disciplines. Hadamard manifolds are examples of hyperbolic spaces
and geodesic spaces more precisely, a Busemann nonpositive curvature space and a C AT (0) spaces, see [4–9].

Equilibrium problem theory provides us with a unified, natural, novel and general framework to study a wide class
of problems, which arises in finance, economics, network analysis, transportation and optimization. This theory had
applications across all disciplines of pure and applied sciences. Equilibrium problems include variational inequalities
and related problems, see [10–14]. Very recently, much attention has been given to study the variational inequalities,
variational inclusions, complementarity problems, equilibrium problems and related optimization problems on the
Riemannian manifold and Hadamard manifold. Several idea and method from the Euclidean space have been extended
and generalized to this nonlinear system. Hadamard manifolds are examples of hyperbolic spaces and geodesics,
see [3–6,9,15–18].
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In this paper, we used the auxiliary principle techniques to suggest and analyze an iterative method for solving
the equilibrium problems on Hadamard manifolds. We also discuss the convergence of sequences generated by the
algorithms.

2. Preliminaries

Let M be a simply connected m-dimensional manifold. Given x ∈ M , the tangent space of M at x is denoted by
Tx M and the tangent bundle of M by T M =

⋃
x∈M Tx M which is naturally a manifold. A vector field A on M is a

mapping of M into T M which associates to each point x ∈ M , a vector A(x) ∈ Tx M . We always assume that M
can be endowed with a Riemannian metric to become a Riemannian manifold. We denote by ⟨·, ·⟩ the scalar product
on Tx M with the associated norm ∥ · ∥x , where the subscript x will be omitted. Given a piecewise smooth curve
γ : [a, b] −→ M joining x to y (that is, γ (a) = x and γ (b) = y), by using the metric we can define the length of γ as
L(γ ) =

∫ b
a ∥γ ′(t)∥dt . Then for any x, y ∈ M , the Riemannian distance d(x, y) which includes the original topology

on M is defined by minimizing this length over the set of all such curves joining x and y. Let △ be the Levi-Civita
connection with (M, ⟨·, ·⟩). Let γ be a piecewise smooth curve in M . A vector field A is said to be parallel along γ

if △γ ′ A = 0. If γ ′ itself is parallel along γ , we say that γ is a geodesic and in this case ∥γ ′
∥ is a constant when

∥γ ′
∥ = 1, γ is said to be normalized. A geodesic γx,y joining x to y in M is said to be minimal if its length equal

to d(x, y). A Riemannian manifold is complete if for any x ∈ M , all geodesics emanating from x are defined for all
t ∈ R. By the Hopf–Rinow Theorem, we know that if M is complete then any pair of points in M can be joined by a
minimal geodesic. Moreover (M, d) is a complete metric space and bounded closed subsets are compact.

Let M be complete, then exponential map expx : Tx M −→ M at x is defined by expxv = γv(1, x) for each
v ∈ Tx M , where γ (·) = γv(·, x) is the geodesic starting at x with velocity v (i.e., γ (0) = x and γ ′(0) = v).
Then expx tv = γv(t, x) for each real number t . A complete simply connected Riemannian manifold of non-positive
sectional curvature is called a Hadamard manifold. Throughout this paper, we always assume that M is an m-
dimensional Hadamard manifold. The geodesic triangle △(x1, x2, x3) of a Riemannian manifold is a set consisting
of three points x1, x2, x3 and three minimal geodesic joining these points.

Lemma 2.1 ([16]). Let x ∈ M. Then expx : Tx M −→ M is a diffeomorphism and for any two points x, y ∈ M there
exists a unique normalized geodesic γx,y joining x to y, which is minimal.

Lemma 2.2 ([5]). Let △(x1, x2, x3) be a geodesic triangle. Denote, for each i = 1, 2, 3 (mod 3), γi : [0, ℓi ] −→ M
as the geodesic joining xi to xi+1 and set αi = L(γ ′

i (0), −γ ′

i−1(ℓi−1)), the triangle between the vectors γ ′

i (0) and
−γ ′

i−1(ℓi−1), and ℓi = L(γi ). Then

α1 + α2 + α3 ≤ π, (2.1)

ℓ2
i + ℓ2

i+1 − 2ℓiℓi+1 cos αi+1 ≤ ℓ2
i−1. (2.2)

In terms of the distance and the exponential map, the inequality (2.2) can be rewritten as

d2(xi , xi+1) + d2(xi+1, xi+2) − 2⟨exp−1
xi+1

xi , exp−1
xi+1

xi+2⟩ ≤ d2(xi−1, xi ), (2.3)

since

⟨exp−1
xi+1

xi , exp−1
xi+1

xi+2⟩ = d(xi , xi+1)d(xi+1, xi+2) cos αi+1.

Lemma 2.3 ([19]). Let △(x, y, z) be a geodesic triangle in a Hadamard manifold M. Then there exist x ′, y′, z′
∈ R2

such that

d(x, y) = ∥x ′
− y′

∥, d(y, z) = ∥y′
− z′

∥, d(z, x) = ∥z′
− x ′

∥.

The △(x ′, y′, z′) is called the comparison triangle of the geodesic triangle △(x, y, z) which is unique up to isometry
of M.

From the law of cosine of inequality (2.3), we have the following inequality:

⟨exp−1
x y, exp−1

x z⟩ + ⟨exp−1
y x, exp−1

y z⟩ ≥ d2(x, y), ∀x, y, z ∈ M. (2.4)
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Lemma 2.4 ([15]). Let △(x, y, z) be a geodesic triangle in a Hadamard manifold M and △(x ′, y′, z′) be its
comparison triangle.

(i) Let α, β, γ (resp. α′, β ′, γ ′) be the angles of △(x, y, z)(resp. △(x ′, y′, z′)) at the vertices x, y, z (resp. x ′, y′, z′).
Then

α′
≥ α, β ′

≥ β, γ ′
≥ γ. (2.5)

(ii) Given any point q belonging to the geodesic which join x to y, its comparison point is the point q ′ in the interval
[x ′, y′] such that d(q, x) = ∥q ′

− x ′
∥ and d(q, y) = ∥q ′

− y′
∥. Then

d(z, q) ≤ ∥z′
− q ′

∥. (2.6)

Lemma 2.5 ([15]). For all x, y, z ∈ M and q ∈ M with d(x, q) = d(y, q) = d(x, y)/2, one has

d2(z, q) ≤
1
2

d2(z, x) +
1
2

d2(z, y) −
1
4

d2(x, y). (2.7)

Lemma 2.6 ([16]). Let x0 ∈ M and {xn} be a sequence in M such that xn −→ x0. Then the following assertions
hold:

(i) For any y ∈ M

exp−1
xn

y −→ exp−1
x0

y and exp−1
y xn −→ exp−1

y x0.

(ii) If {vn} is a sequence such that vn ∈ Txn M and vn −→ v0, then v0 ∈ Tx0 M.

(iii) Given sequences {un} and {vn} satisfying un, vn ∈ Txn M, if un −→ u0 and vn −→ v0 with u0, v0 ∈ Tx0 M, then

⟨un , vn⟩ → ⟨u0 , v0⟩.

A subset K ⊆ M is said to be convex if for any two points x, y ∈ K , the geodesic joining x and y is contained in
K , that is, if γ : [a, b] −→ M is a geodesic such that x = γ (a) and y = γ (b), then

γ ((1 − t)a + tb) ∈ K , ∀t ∈ [0, 1].

A real valued function f defined on K is said to be convex if for any geodesic γ of M , the composition function
f ◦ γ : R −→ R is convex, that is,

( f ◦ γ )(ta + (1 − t)b) ≤ t( f ◦ γ )(a) + (1 − t)( f ◦ γ )(b), ∀a, b ∈ R, t ∈ [0, 1].

The subdifferential of a function f : M −→ R is a set valued mapping ∂ f : M −→ 2T M , defined as

∂ f (x) = {u ∈ Tx M : ⟨u, exp−1
x y⟩ ≤ f (y) − f (x), ∀y ∈ M}, x ∈ M,

and its elements are called subgradients. The subdifferential ∂ f (x) at a point x ∈ M is a closed and convex (possibly
empty) set. Let D(∂ f ) denote the domain of ∂ f defined by

D(∂ f ) = {x ∈ M : ∂ f (x) ̸= ∅}.

Lemma 2.7 ([15]). Let M be a Hadamard manifold and f : M −→ R convex. Then for any x ∈ M, the
subdifferential ∂ f (x) of f at x is nonempty. That is D(∂ f ) = M.

Definition 2.8 ([20]). The bifunction ϕ : K × K −→ R
⋃

{+∞} is called skew-symmetric if and only if

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) − ϕ(v, v) ≥ 0, ∀u, v ∈ K .

Clearly, if the skew-symmetric (bifunction ϕ(·, ·)) is bilinear, then

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) = ϕ(u − v, u − v) ≥ 0, ∀u, v ∈ K .

For a given nonlinear continuous trifunction F : K × K × K −→ R, a single valued mapping T : K −→ T M
and a continuous bifunction ϕ : K × K −→ R

⋃
{+∞}, we consider a problem of finding u ∈ K such that

F(u, T u, v) + ϕ(v, u) − ϕ(u, u) ≥ 0, ∀v ∈ K (2.8)

called the equilibrium problems on Hadamard manifolds.
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We note that if T ≡ 0 is a zero operator and F(·, ·, ·) = F(·, ·), then (2.8) reduces to finding u ∈ K such that

F(u, v) + ϕ(v, u) − ϕ(u, u) ≥ 0, ∀v ∈ K . (2.9)

Again if ϕ(u, u) ≡ ϕ(u) ≡ 0, then (2.9) reduces to equilibrium problems on Hadamard manifolds for finding u ∈ K
such that

F(u, v) ≥ 0, ∀v ∈ K (2.10)

studied by Noor and Noor [21].
If M ≡ Rn , (2.10) is called equilibrium problem, see [11].

Again we note that if F(u, T u, v) = ⟨T u, exp−1
u v⟩, where T : K −→ T M is a single valued vector field, then

problem (2.8) is equivalent to finding u ∈ K such that

⟨T u, exp−1
u v⟩ + ϕ(v, u) − ϕ(u, u) ≥ 0, ∀v ∈ K (2.11)

called variational inclusions in Hadamard manifolds.
Again we note that if ϕ(u, u) = ϕ(u), then problem (2.11) is equivalent to finding u ∈ K such that

⟨T u, exp−1
u v⟩ + ϕ(v) − ϕ(u) ≥ 0, ∀v ∈ K (2.12)

called variational inclusions in Hadamard manifolds.
Again we note that if ϕ(u) ≡ 0, then problem (2.12) is equivalent to finding u ∈ K such that

⟨T u, exp−1
u v⟩ ≥ 0, ∀v ∈ K (2.13)

called the variational inequalities on Hadamard manifolds. Nemeth [22] and Tang et al. [18] studied the variational
inequalities on Hadamard manifolds from different points of view.

Definition 2.9. A trifunction F : K × K × K −→ R, with respect to the operator T : K −→ T M , is said to be

(i) jointly pseudomonotone, if

F(u, T u, v) + ϕ(v, u) − ϕ(u, u) ≥ 0

implies

− F(v, T v, u) + ϕ(v, u) − ϕ(u, u) ≥ 0, ∀u, v ∈ K .

(ii) partially relaxed strongly joint monotone if there exists a constant α > 0 such that

F(u, T u, v) + F(v, T v, u) ≤ αd2(z, u), ∀u, v, z ∈ K .

We note that if z = u, then a partially relaxed strongly joint monotonicity reduces to

F(u, T u, v) + F(v, T v, u) ≤ 0, ∀u, v ∈ K ,

which is known as the joint monotonicity of F .

3. Main results

We used the auxiliary principle techniques of Glowinski et al. [23] to suggest and analyze some iterative methods
for solving the equilibrium problems (2.8).

For given u ∈ K satisfying (2.8), consider the following problem of finding w ∈ K such that

ρF(w, T w, v) + ⟨exp−1
u w, exp−1

w v⟩ ≥ ρϕ(u, u) − ρϕ(v, u), ∀v ∈ K , (3.1)

where ρ > 0 is a constant. Inequality (3.1) is called auxiliary equilibrium problems on Hadamard manifolds. We
note that if w = u, then w is a solution of (2.8). This simple observation enables us to suggest the following iterative
methods for solving (2.8).

Algorithm 3.1. For given u0 ∈ K , compute an approximate solution un+1 ∈ K by iterative scheme

ρF(un+1, T un+1, v) + ⟨exp−1
un

un+1, exp−1
un+1

v⟩ ≥ ρϕ(un+1, un+1) − ρϕ(v, un+1), ∀v ∈ K . (3.2)
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Algorithm 3.1 is called the proximal point algorithm for solving equilibrium problems on Hadamard manifolds.
If K is convex set in Rn , then Algorithm 3.1 collapses to:

Algorithm 3.2. For given u0 ∈ K , compute an approximate solution un+1 ∈ K by iterative scheme

ρF(un+1, T un+1, v) + ⟨un+1 − un, v − un+1⟩ ≥ ρϕ(un+1, un+1) − ρϕ(v, un+1), ∀v ∈ K . (3.3)

Algorithm 3.2 is called the proximal point algorithm for solving the equilibrium problems.
If F(u, T u, v) = ⟨T u, exp−1

u v⟩, where T is a single valued vector field T : K −→ T M , then Algorithm 3.1
reduces to the following proximal point method for solving the variational inclusions.

Algorithm 3.3. For given u0 ∈ K , compute an approximate solution un+1 ∈ K by iterative scheme

⟨ρT un + (exp−1
un

un+1), exp−1
un+1

v⟩ ≥ ρϕ(un+1, un+1) − ρϕ(v, un+1), ∀v ∈ K . (3.4)

For M = Rn , Algorithm 3.3 reduces to:

Algorithm 3.4. For given u0 ∈ K , compute an approximate solution un+1 ∈ K by iterative scheme

⟨ρT un + un+1 − un, v − un+1⟩ ≥ ρϕ(un+1, un+1) − ρϕ(v, un+1), ∀v ∈ K . (3.5)

We note that if ϕ(u, u) ≡ ϕ(u) ≡ 0, then Algorithm 3.4 becomes:

Algorithm 3.5. For given u0 ∈ K , compute an approximate solution un+1 ∈ K by iterative scheme

⟨ρT un + un+1 − un, v − un+1⟩ ≥ 0, ∀v ∈ K , (3.6)

which can be written in the following equivalent form:

Algorithm 3.6. For given u0 ∈ K , compute an approximate solution un+1 ∈ K by iterative scheme

un+1 = PK [un − ρT un], n = 0, 1, 2, . . . , (3.7)

which is known as a projection method.
In a similar way, one can obtain several iterative methods for solving the variational inclusions and variational

inequalities on Hadamard manifolds.
Now, we consider the convergence of Algorithm 3.1 for solving the variational inclusions on Hadamard manifolds,

which is a motivation of our next results.

Theorem 3.7. Let u ∈ K be a solution of (2.8) and let un be the approximate solution obtained from Algorithm 3.1.
If F(·, ·, ·) is the jointly pseudomonotone and the bifunction ϕ(·, ·) is skew-symmetric, then

d2(un+1, u) ≤ d2(un, u) − d2(un+1, un). (3.8)

Proof. Let u ∈ K be a solution of (2.8), then

F(u, T u, v) ≥ ϕ(u, u) − ϕ(v, u), ∀v ∈ K . (3.9)

Now take v = un+1 in (3.9) we have

F(u, T u, un+1) ≥ ϕ(u, u) − ϕ(un+1, u), (3.10)

which implies that

−F(un+1, T un+1, u) ≥ ϕ(u, u) − ϕ(un+1, u), (3.11)

since F(·, ·, ·) is a pseudomonotone operator.
Taking v = u in (3.2) we get

ρF(un+1, T un+1, u) + ⟨exp−1
un

un+1, exp−1
un+1

u⟩ ≥ ρϕ(un+1, un+1) − ρϕ(u, un+1) (3.12)
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which can be written as

⟨exp−1
un+1

un, exp−1
un+1

u⟩ ≥ −ρF(un+1, T un+1, u) + ρ{ϕ(un+1, un+1) − ϕ(u, un+1)}

≥ ρ{ϕ(u, u) − ϕ(u, un+1) − ϕ(un+1, u) + ϕ(un+1, un+1)}
≥ 0, (3.13)

where we have used (3.11) and fact that the bifunction ϕ(·, ·) is skew-symmetric. Now from the geodesic triangle
△(un, un+1, u), we have

d2(un+1, u) + d2(un+1, un) − 2⟨exp−1
un+1

un, exp−1
un+1

u⟩ ≤ d2(un, u). (3.14)

Combining (3.13) and (3.14), we have

d2(u, un+1) ≤ d2(un, u) − d2(un+1, un), (3.15)

the required results (3.8). □

Theorem 3.8. Let u ∈ K be a solution of (2.8) and let un+1 be the approximate solution obtained from Algorithm
3.1. If ρ < 1

2γ
, then the sequence {un} given by Algorithm 3.1 converges to a solution u of (2.8), i.e.,

lim
n−→∞

un+1 = u.

Proof. Let u ∈ K be a solution of (2.8). Then from (3.8) it follows that the sequence {un} is monotonically decreasing
and bounded. Furthermore, we have

∞∑
n=0

d2(un+1, un) ≤ d2(u0, u),

which implies that

lim
n−→∞

d(un+1, un) = 0. (3.16)

Let û be the cluster point of {un}. Then there exists a subsequence {uni } of {un} converging to û. Replacing un+1 by
uni in (3.2), taking the limit ni −→ ∞ and using (3.16) we have

F(û, T û, v) ≥ ϕ(û, û) − ϕ(v, û), ∀v ∈ K , (3.17)

which implies that û solves the equilibrium problems on Hadamard manifolds (2.8) and

d2(un+1, û) ≤ d2(un, û).

Thus, it follows from the above inequality that {un} has exactly one cluster point û and

lim
n−→∞

un = û

is a solution of (2.8), the required results. □

It is well known that to implement the proximal methods, one has to calculate the approximate solution implicitly,
which is itself a different problem. To overcome this drawback we suggest another iterative method, the convergence of
the sequence requires only the partially relaxed strong monotonicity, which is a weaker condition than the cocoercivity.

For a given u ∈ K , consider the problem of finding w ∈ K such that

ρF(u, T u, v) + ⟨exp−1
u w, exp−1

w v⟩ ≥ ρ{ϕ(w, w) − ϕ(v, w)}, ∀v ∈ K , (3.18)

which is also called the auxiliary uniformly equilibrium problems on Hadamard manifolds. Note that the problems
(3.1) and (3.18) are quite different. If w = u, then clearly w is a solution of equilibrium problems on Hadamard
manifolds (2.8). This fact enables us to suggest and analyze the following iterative methods for solving (2.8).

Algorithm 3.9. For given u0 ∈ K , compute an approximate solution un+1 ∈ K by the iterative scheme

ρF(un, T un, v) + ⟨exp−1
un

un+1, exp−1
un+1

v⟩ ≥ ρϕ(un+1, un+1) − ρϕ(v, un+1), ∀v ∈ K . (3.19)
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Theorem 3.10. Let the trifunction F(·, ·, ·) be the partially relaxed strongly jointly monotone with the constant α > 0
and the bifunction ϕ(·, ·) be skew-symmetric, If un+1 is the approximate solution obtained from Algorithm 3.9 and
u ∈ K is a solution of (2.8), then

d2(un+1, u) ≤ d2(un, u) − (1 − 2ρα)d2(un, un+1). (3.20)

Proof. Let u ∈ K be a solution of (2.8), then

F(u, T u, v) ≥ ϕ(u, u) − ϕ(v, u), ∀v ∈ K . (3.21)

Now take v = un+1 in (3.21) we have

F(u, T u, un+1) ≥ ϕ(u, u) − ϕ(un+1, u), ∀v ∈ K . (3.22)

Taking v = u in (3.19), we have

ρF(un, T un, u) + ⟨exp−1
un

un+1, exp−1
un+1

u⟩ ≥ ρ{ϕ(un+1, un+1) − ϕ(u, un+1)},

which implies that

⟨exp−1
un+1

un, exp−1
un+1

u⟩ ≥ −ρF(un, T un, u) + ρ{ϕ(un+1, un+1) − ϕ(u, un+1)}. (3.23)

From (3.22) and (3.23), we have

⟨exp−1
un+1

un, exp−1
un+1

u⟩ ≥ −ρ{F(un, T un, u) + F(u, T u, un+1)} + ρ{ϕ(u, u)

− ϕ(u, un+1) − ϕ(un+1, u) + ϕ(un+1, un+1)}

≥ −ραd2(un+1, un), (3.24)

where we have used the fact that the trifunction F(·, ·, ·) is partially relaxed strongly jointly monotone with a constant
α > 0 and bifunction ϕ(·, ·) is skew-symmetric. For the geodesic triangle △(un, un+1, u), the inequality (3.24) can be
written as

d2(un+1, u) + d2(un+1, un) − 2⟨exp−1
un

un+1, exp−1
un+1

u⟩ ≤ d2(un, u). (3.25)

Combining (3.24) and (3.25), we have

d2(u, un+1) ≤ d2(u, un) − (1 − 2ρα)d2(un, un+1), (3.26)

the required results. □

4. Conclusion

The auxiliary principle technique is used to suggest and analyze proximal methods for solving the equilibrium
problems on Hadamard manifolds. It is shown that the convergence analysis of this method requires the joint
pseudomonotonicity and also partially relaxed strongly joint monotonicity.
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Abstract

Given a simply connected space X with polynomial cohomology H∗(X;Z2), we calculate the loop cohomology algebra
H∗(ΩX;Z2) by means of the action of the Steenrod cohomology operation Sq1 on H∗(X;Z2). This calculation uses an explicit
construction of the minimal Hirsch filtered model of the cochain algebra C∗(X;Z2).As a consequence we obtain that H∗(ΩX;Z2)
is the exterior algebra if and only if Sq1 is multiplicatively decomposable on H∗(X;Z2). The last statement in fact contains a
converse of a theorem of A. Borel (Switzer, 1975, Theorem 15.60).
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Loop space; Polynomial cohomology; Hirsch algebra; Multiplicative resolution; Steenrod operation

1. Introduction

Let X denote a simply connected topological space. The cohomology H∗(X ) is considered with coefficients
Z2 = Z/2Z unless otherwise specified explicitly. A. Borel gave a condition for H∗(X ) to be polynomial in terms
of a simple system of generators of the loop space cohomology H∗(ΩX ) that are transgressive [1, Theorem 15.60]
, [2, p. 88] (see also [3]). This was one of the first nice applications of Leray–Serre spectral sequences [4], and led in
particular to calculations of the cohomology of the Eilenberg–MacLane spaces (see [3]). For the converse direction,
that is to determine H∗(ΩX ) as an algebra for a given X with H∗(X ) polynomial, the first step is the existence of an
additive isomorphism H∗(ΩX ) ≈ H∗(B H∗(X )) where B H∗(X ) denotes the bar construction of H∗(X ) (cf. [5]). The
module B H∗(X ) with the shuffle product is a graded differential algebra, but we get no algebra isomorphism above
(cf. [6]). In general, a correct product on B H∗(X ) is induced by higher order operations on the cochain complex
C∗(X ) (see below), but when H∗(X ) is polynomial we show that these operations reduce to the⌣1-product on C∗(X ).
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Consequently, the multiplicative structure of B H∗(X ) is determined by the Steenrod cohomology operation Sq1 on
H∗(X ). This reduction is beyond a spectral sequence argument.

In this paper we completely calculate the algebra H∗(ΩX ) for H∗(X ) polynomial by means of Sq1 on H∗(X )
(Theorem 1) and then establish the criterion for H∗(ΩX ) to be exterior (Corollary 1). Namely, given H∗(X ) =
H (C∗(X ), d) with the ⌣1-product on C∗(X ), let

Sq1 : H n(X )→ H 2n−1(X ) [c]→ [c ⌣1 c], c ∈ Cn(X ), dc = 0.

Let now H∗(X ) = Z2[y1,. . . , yk,. . . ] with Y = {yk} to be a set of polynomial generators. Define a subset S ⊆ Y as

S = {zs ∈ Y | zs ̸∈ Im Sq1 mod H+ ·H+}.

Thus S = Y if and only if Sq1(yk) ∈ H+ · H+ for all k. Let 0 ≤ νi < ∞ be the smallest integer such that
Sq (νi+1)

1 (yi ) ∈ H+ · H+, where Sq (m)
1 denotes the m-fold composition Sq1 ◦ · · · ◦ Sq1. The integer νi is referred to

as the weak ⌣1-height of yi ; when the finite integer νi does not exist, we say that yi has the infinite weak ⌣1-height
νi = ∞. (This notion is motivated by the fact that Sq1 induces a binary ⌣1-product on (H∗(X ), 0); cf. Remark 1(a).)

Let σ : H∗(X )→ H∗−1(ΩX ) be the suspension homomorphism.

Theorem 1. Let X be a simply connected space with H∗(X ) = Z2[y1, . . . , yk, . . . ] and νk to be the weak ⌣1-height
of yk . Then the algebra H∗(ΩX ) is multiplicatively generated by the elements z̄s = σ zs satisfying only the relations
z̄ms

s = 0 for ms = 2νs+1 and z̄m1
s1 + · · · + z̄mr

sr
= 0 for Sq (n1)(zs1 ) + · · · + Sq (nr )(zsr ) ∈ H+ ·H+, mi = 2ni+1, ni ≤

νi , r ≥ 2, zsi ∈ S.

Corollary 1. H∗(ΩX ) = Λ(ȳ1,. . . , ȳk,. . . ) is the exterior algebra if and only if yk is of zero weak ⌣1-height,
i.e., Sq1(yk) ∈ H+ ·H+ for all k.

When Y is chosen such that yi is uniquely determined by the equality Sq1(yi ) = ykmod H+ ·H+, we get

Corollary 2. H∗(ΩX ) = Z2[z̄1,. . . , z̄s,. . . ] is the polynomial algebra if and only if zs is of the infinite weak ⌣1-
height for all s.

Our method of proving the theorem consists of using the filtered Hirsch model (RH∗, d + h)→ C∗(X ) of X [7]
(see Section 2). Note that the underlying differential (bi)graded algebra (RH∗, d) is a non-commutative version
of Tate–Jozefiak resolution of the commutative algebra H∗ [8,9], while h is a perturbation of d similar to [10].
Furthermore, the tensor algebra RH∗ = T (V ) is endowed with higher order operations E = {E p,q} that extend ⌣1-
product measuring the non-commutativity of the product on RH∗; and there also is a binary operation ∪2 on RH∗

measuring the non-commutativity of the ⌣1-product. In general, by means of (RH∗, d + h) one can recognize the
cohomology H (BC∗(X )) of the bar construction BC∗(X ) as an algebra. The case of polynomial H∗ is distinguished
because of H∗ has no multiplicative relations unless that of the commutativity; furthermore, we can equivalently take
a small multiplicative resolution Rτ H∗ = T (Vτ ) in which the Hirsch algebra structure is completely determined by
commutative and associative ⌣1-product on Vτ . This allows an explicit calculation of the algebra H (BC∗(X )), and,
consequently, of the loop space cohomology H∗(ΩX ) in question.

Obviously the hypothesis of Corollary 1 is satisfied for an evenly graded polynomial algebra H∗(X ). Note that our
method can be in fact applied to an evenly graded polynomial algebra H∗(X; k) for any coefficient ring k to establish
that H∗(ΩX; k) is exterior. Though, this fact can be also deduced from the Eilenberg–Moore spectral sequence (see,
for example, [3]; for further references of spaces with polynomial cohomology rings see also [11,12]).

I wish to thank Jim Stasheff for helpful comments and suggestions. I am also indebted to the referee for a number
of helpful comments to improve the exposition.

2. Hirsch resolutions of polynomial algebras

We adopt the notations and terminology of [7] and briefly recall some facts. A Hirsch algebra (A, dA, {E p,q}) is an
associative dga (A, dA) equipped with multilinear maps

E p,q : A⊗p
⊗ A⊗q

→ A, p, q ≥ 0, p + q > 0,
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satisfying the following conditions:

(i) deg E p,q = 1− p − q;
(ii) E1,0 = I d = E0,1 and E p>1,0 = 0 = E0,q>1;

(iii) The homomorphism E : B A ⊗ B A→ A defined by

E
(
[ ā1|· · ·|āp]⊗ [ b̄1|· · ·|b̄q ]

)
= E p,q (a1, . . . , ap; b1, . . . , bq )

is a twisting cochain in the dga (Hom(B A ⊗ B A, A),∇,⌣), i.e., ∇E = −E ⌣ E .

A morphism f : A → B between two Hirsch algebras is a dga map f that commutes with E p,q for all p, q.
Condition (iii) implies that µE : B A ⊗ B A→ B A is a chain map; thus B A is a dg bialgebra; in particular, µE10+E01
is the shuffle product on B A.

For a topological space X, there are operations E = {E p,q} on the cochain complex C∗(X ) making it into a Hirsch
algebra. Note that in the simplicial case one can choose E p,q = 0 for q ≥ 2.

A dga (A∗, d) is multialgebra if it is bigraded An
= ⊕

n=i+ j
Ai, j , i ≤ 0, j ≥ 0, and d = d0

+ d1
+ · · · + dn

+ · · ·

with dn
: Ap,q

→ Ap+n,q−n+1. A dga A is bigraded via A0,∗
= A∗ and Ai,∗

= 0 for i ̸= 0; consequently, A is a
multialgebra. A multialgebra A is homological if d0

= 0 (hence d1d1
= 0) and

H i (· · ·
d1
→ Ai,∗ d1

→ Ai+1,∗ d1
→ · · ·

d1
→ A0,∗) = 0, i < 0.

For a homological multialgebra the sum d2
+ d3

+ · · · + dn
+ · · · is called a perturbation of d1. Furthermore, d1 is

denoted by d, dr is denoted by hr , and the sum h2
+ h3
+· · ·+ hn

+· · · is denoted by h.We sometimes denote d+ h
by dh .

A multialgebra is quasi-free if it is a tensor algebra over a bigraded k-module. Given m ≥ 2, the map
hm
|A−m,∗ : A−m,∗

→ A0,∗ is referred to as the transgressive component of h and is denoted by htr . A multialgebra A
with a Hirsch algebra structure

E p,q : ⊗
p
r=1 Air ,kr

⨂
⊗

q
n=1 A jk ,ℓn −→ As−p−q+1 , t

with (s, t) =
(
i(p) + j(q) , k(p) + ℓ(q)

)
, p, q ≥ 1, is called Hirsch multialgebra. A multialgebra is quasi-free if it is a

tensor algebra over a bigraded k-module. A quasi-free Hirsch homological multialgebra (A, d+h, {E p,q}) is a filtered
Hirsch algebra if it has the following additional properties:

(i) In A = T (V ) a decomposition

V ∗,∗ = E∗,∗ ⊕U ∗,∗

is fixed where E∗,∗ = ⊕
p,q≥1

E<0 ,∗
p,q is distinguished by an isomorphism of modules

E p,q : A⊗p
⊗ A⊗q ≈

−→ Ep,q ⊂ V, p, q ≥ 1;

(ii) The restriction of the perturbation h to E has no transgressive components htr , i.e., htr
|E = 0.

An important example of a filtered Hirsch algebra is A = (R∗H∗, d, {E p,q}), an absolute Hirsch resolution of a
graded commutative algebra H∗. In particular, R∗H∗ = T (V ) with

V =
⨁

j,m≥0
V− j,m,

where V− j,m
⊂ R− j H m . The total degree of R− j H m is the sum− j+m, d is of bidegree (1, 0) and ρ : (R∗H∗, d)→

H∗ is a map of bigraded algebras inducing an isomorphism ρ∗ : H∗(RH, d)
≈
→ H∗ where H∗ is bigraded via

H 0,∗
= H∗ and H<0,∗

= 0.
Given a Hirsch algebra (A, dA, {E p,q}), a submodule J ⊂ A is a Hirsch ideal of A if it is an ideal with

E p,q (a1, . . . , ap; ap+1, . . . , ap+q ) ∈ J whenever ai ∈ J for some i.
Let ρa : (R∗a H∗, d)→ H∗ be an absolute Hirsch resolution and J ⊂ R∗a H∗ be a Hirsch ideal such that d : J → J

and the quotient map g : R∗a H∗ → R∗a H∗/J is a homology isomorphism. A Hirsch resolution of H∗ is the Hirsch
algebra R∗H∗ = R∗a H∗/J with a map ρ : R∗H∗ → H∗ such that ρa = ρ ◦ g. Thus an absolute Hirsch resolution is
a Hirsch resolution by taking J = 0.
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Given a Hirsch algebra (A, dA, {E p,q}) with H∗ = H∗(A, dA), there is a filtered Hirsch model

f : (R∗H∗, dh)→ (A, dA),

where R∗H∗ denotes an absolute Hirsch resolution. There is a (commutative) binary operation a∪2b on R∗H∗

satisfying for basis elements a, b ∈ R∗H∗ the equality

d(a∪2b) =

⎧⎨⎩a ∪2 da + a ⌣1 a, a = b,
a ⌣1 da + da ⌣1 a, da = b,
da ∪2 b + a∪2db + a ⌣1 b + b ⌣1 a, otherwise.

(Thus, the first two cases differ ∪2 from the Steenrod ⌣2-operation.) In U ⊂ V we distinguish a submodule
T ≤−2,∗

⊂ U defined by

T ≤−2,∗
= {a∪2b ∈ R∗H∗ | a∪2b ∈ U }.

For the sake of minimality of U one can express certain elements a∪2b ∈ R∗H∗ in terms of the⌣ and E p,q operations.
For example, da∪2da := a⌣1da + a · a, because d(a ⌣1 da + a · a) = da ⌣1 da.

When H∗ = Z2[y1, . . . , yk, . . . ] is polynomial, the module V is much simplified at the cost of U. Namely,

V ∗,∗ = E<0,∗
⊕U ∗,∗ = E<0,∗

⊕ T ≤−2,∗
⊕ V 0,∗.

In particular, we have that R0 H∗ is a graded subalgebra in R∗H∗ and Ker ρ ∩ R0 H∗ is an ideal in R0 H∗. Denoting
the elements of V0,∗ by xk, i.e., ρxk = yk, this ideal is generated by expressions of the form xi x j + x j xi for i ̸= j;
thus, we get

V−1,∗
= E−1,∗

= ⟨xi ⌣1 x j | xk ∈ V0,∗
⟩ with

d(xi⌣1x j ) = d(x j⌣1xi ) = xi x j + x j xi for i ̸= j and d(xi⌣1xi ) = 0,

while

T −2,∗
= ⟨xi∪2x j (= x j∪2xi ) | xk ∈ V0,∗

⟩ with d(xi∪2x j ) =
xi⌣1x j + x j ⌣1 xi for i ̸= j, and d(xi∪2xi ) = xi⌣1xi .

Here, we can minimize further both an absolute Hirsch resolution R∗H∗ and a small Hirsch resolution R∗ς H∗ in [7]
to obtain a minimal Hirsch resolution R∗τ H∗; moreover, we give an explicit construction of R∗τ H∗ below. Namely, set

R∗τ H∗ = R∗H∗/Jτ

where Jτ ⊂ R∗H∗ is a Hirsch ideal generated by{
E p,q (a1, . . . , ap; ap+1, . . . , ap+q ), d E p,q (a1, . . . , ap; ap+1, . . . , ap+q ), a∪2b, d(a∪2b)|

p + q ≥ 3, a ̸= b in V
}

with
a1, . . . , ap ∈ R∗H∗, ap+1 ∈ V, for p ≥ 1 and q = 1,

a1, . . . , ap+q ∈ R∗H∗, for p ≥ 1 and q > 1.

Because of d : Jτ → Jτ , we get a Hirsch algebra map gτ : (R∗H∗, d)→ (R∗τ H∗, d). Let ρτ : R∗τ H∗ → H∗ denote a
map of bigraded algebras so that the resolution map ρ : R∗H∗→ H∗ factors as

ρ : (R∗H∗, d)
gτ
−→ (R∗τ H∗, d)

ρτ
−→ H∗.

By definition we have h : E → E; furthermore, because of the transgressive component htr of h annihilates a∪2b
for a ̸= b in V (cf. [7, Proposition 5]), we get h : Jτ → Jτ , too. Thus gτ extends to a quasi-isomorphism of Hirsch
algebras

gτ : (R∗H∗, dh)→ (R∗τ H∗, dh),

and, hence, A and R∗τ H∗ are connected via the diagram

(A, dA)
f
←− (R∗H∗, dh)

gτ
−→ (R∗τ H∗, dh).
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The Hirsch algebra (R∗τ H∗, dh) can be described immediately. Namely, R∗τ H∗ = T (V ∗,∗τ ) with V ∗,∗τ = ⟨V∗,∗τ ⟩,

Vτ =
{

xi , x j
∪2q , bi1⌣1 · · ·⌣1bin | bir ∈ {xi , x j

∪2q
}, q = 2m, m ≥ 1, n ≥ 2,

xk ∈ V0,∗
τ , x∪2q

:= x∪2 · · · ∪2x
}
.

The ⌣1-product is commutative and associative on Vτ and extended on R∗τ H∗ by the (left) Hirsch formula

c⌣1ab = (c ⌣1 a)b + a(c⌣1b), a, b, c ∈ R∗τ H∗,

and the (right) generalized Hirsch formula

ab ⌣1 c =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a(b ⌣1 c)+ (a ⌣1 c)b, a, b ∈ R∗τ H∗ and c ∈{xi , x j

∪2q
},

q = 2m,m ≥ 1,
a(b ⌣1 c)+ (a ⌣1 c)b
+(a ⌣1 c1)(b ⌣1 c2)
+(a ⌣1 c2)(b⌣1c1), a, b ∈ R∗τ H∗ and c = c1⌣1c2 ∈ Vτ .

The differential d on R∗τ H∗ is defined by

dxk = 0, d(a⌣1b) = da⌣1 b + a⌣1db + ab + ba and d(a∪2a) = a ⌣1 a,

while the perturbation h by

hxk = 0, h(a⌣1b) = ha ⌣1 b + a⌣1hb

and

h(xk∪2xk) = htr (xk∪2xk) = bk with bk ∈ R0
τ H∗ defined by ρτbk = Sq1(yk).

Note that the value of h on x j
∪22m

for m > 1 may be non-zero (see Remark 1(b)). In particular, denoting

bk,1 := bk, bk, j+1 := h(bk, j∪2bk, j ), j ≥ 1,

and

c0 = xk∪2xk, c j = x⌣12 j

k ⌣1c j−1 + c j−1⌣1bk, j + bk, j∪2bk, j , j ≥ 1,

one gets

dh(cm−1) = x⌣12m

k + bk,m mod Rτ H+ · Rτ H+,m ≥ 1, with ρτbk,m = Sq (m)
1 (yk). (2.1)

To ensure that ρτ : (R∗τ H∗, d)→ H∗ is a multiplicative resolution of H∗, it suffices to verify the following.

Proposition 1. The chain complex (R∗τ H∗, d) is acyclic in the negative resolution degrees, i.e., H i,∗(Ri
τ H∗, d) =

0, i < 0.

Proof. First observe that as a cochain complex Ker ρτ can be decomposed via (Ker ρτ , d) = (A, d) ⊕ (B, d) in
which (A, d) = ⊕(A(n), d), n ≥ 2, A(n) has a basis consisting of all monomials formed by the ⌣ and ⌣1

products evaluated on generators xi1 , . . . , xin ∈ V 0,∗
τ with distinct xi ’s and B has a basis consisting of the other

monomials in Ker ρτ . In particular, (A(n), d) can be identified with the cellular chains of the permutohedron Pn

(cf. [13]); thus A is acyclic and a chain contracting homotopy sA : A → A can be chosen. To see that B
is also acyclic, define a map sB : B → B of degree −1 as follows. For ba, ac, bac ∈ B with a ∈ A, let
sB (ba) = bsA (a), sB (ac) = sA (a)c, sB (bac) = bsA (a)c; otherwise, for b ⌣1 b and b⌣1b⌣1c with b, c ∈ Vτ ,
let sB(b⌣1b) = b∪2b and sB(b ⌣1 b⌣1c) = b∪2b ⌣1 c, and then for a monomial u = u1 · · · um ∈ B, set

sB(u)=

⎧⎨⎩u1 · · · ui−1 ·sB (ui )·ui+1 · · · um, ui ∈ {b⌣1b , b ⌣1 b ⌣1 c} and
u j ̸∈ {b⌣1b , b⌣1b ⌣1 c}, 1 ≤ j < i,

0, otherwise.

Then for each element b ∈ B there is an integer n(b) ≥ 1 such that n(b)th-iteration of the operator sBd + dsB + I d :
B → B evaluated on b is zero, i.e., (sBd + dsB + I d)(n(b))(b) = 0 as desired. □
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3. Proof of Theorem 1

Given the Hirsch algebra (C∗(X ), dC , {E p,q}), there is an algebra isomorphism [14,15]

H∗(ΩX ) ≈ H (BC∗(X ), dBC , µE ).

(We assume C∗(X ) = C∗(Sing1 X )/C>0(Sing x), in which Sing1 X ⊂ Sing X is the Eilenberg 1-subcomplex
generated by the singular simplices that send the 1-skeleton of the standard n-simplex ∆n to the base point x of X.)

Proposition 2. A morphism g : A→ A′ of Hirsch algebras induces a Hopf dga map of the bar constructions

Bg : B A→ B A′

and if g is a homology isomorphism, so is Bg.

Proof. The proof is standard by using a spectral sequence comparison argument. □

Denote V̄τ = s−1(V>0
τ )⊕Z2 and define the differential d̄h := d̄+ h̄ on V̄τ by the restriction of d+h to Vτ to obtain

the cochain complex (V̄τ , d̄h). Let ψ : B(Rτ H )→ Rτ H → V̄τ be the standard projection of cochain complexes. We
introduce a product on V̄τ so that ψ becomes a map of dga’s. Namely, for ā, b̄ ∈ V̄τ define

āb̄ = a ⌣1 b with ā1 = 1ā = ā.

Then we get the following sequence of algebra isomorphisms

H
(
BC∗(X ), dBC , µE

) B f ∗
←−
≈

H
(
B(RH∗), dB(RH ) , µE

) Bg∗τ
−→
≈

H
(
B(Rτ H∗), dB(Rτ H ) , µEτ

) ψ∗

−→
≈

H
(
V̄τ , d̄h

)
,

where the first two isomorphisms are by Proposition 2, while the third isomorphism (additively) is a consequence of
a general fact about tensor algebras [16] (see also [5]). Thus the calculation of the algebra H∗(ΩX ) reduces to that
of H∗(V̄τ , d̄h). In particular, [x̄k] = σ (yk) ∈ H∗(ΩX ). We have that h̄ may be non-trivial only on a basis element of
the form

s−1(xk
∪2q ) and s−1(xk

∪2q⌣1a), some a ∈ Vτ , q = 2m, m ≥ 1.

By definition x̄q
k = s−1(x⌣1q

k ), q = 2m, and taking into account (2.1), the cohomology algebra H∗(V̄τ , d̄h) is as
desired.

Remark 1. (a) Refer to Example 4 from [7] and recall that there is a canonical Hirsch algebra structure Sq = {Sqp,q}

on H∗(X ) determined by Sq1. The isomorphism H∗(ΩX ) ≈ H∗(B H∗(X )) from the introduction converts into an
algebra one when B H∗(X ) is endowed with the product µSq . Details are left to the interested reader.

(b) In (V̄τ , d̄h) the transgressive terms h̄trs−1(x∪2q
i ) detect the Symmetric Massey products ⟨σ (yi )⟩q ∈ H∗(ΩX ) for

q = 2m, yi ∈ H∗(X ), or, in general, Stasheff’s A∞-algebra structure on H∗(ΩX ) ( cf. [17]). A question arises what
else other than the action of Sq1 on H∗(X ) is needed to calculate this structure.
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Abstract

We examine the third kind integral equations in Hölder class. The coefficients of the equations are piecewise strictly monotone
functions having simple zeros. By singular integral equations theory, for solvability of considered equations, we give the necessary
and sufficient conditions. Finding a solution is reduced to solving a regular integral equation of second kind.
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1. Introduction

The linear integral equation

A(x)ϕ(x) +

∫ b

a
K (x, y)ϕ(y)dy = f (x), x ∈]a, b[ (1)

where A(x) has at least one zero is commonly called an equation of the third kind. Such equations acquire more and
more significance in applied problems of mathematical physics. In particular, in kinetic theory, in transport theory,
etc. (see [1]) and investigations in this area are of great interest. After the early works of Hilbert and also Picard there
appeared a lot papers on equations of the third kind (see e.g. [2–5]). In this paper we present a method for solving
Eq. (1) when the coefficient A(x) ∈ C1([a, b]) is a piecewise strictly monotone function having simple zeros in ]a,
b[. Moreover, we assume that A′(x) ∈ H on [a, b] the kernel K ∈ H, on [a, b] × [a, b] and a free term f ∈ H∗

(Muskhelishvili’s class) [6]. Therefore we look for solutions ϕ ∈ H∗ of this class to be more appropriate in certain
applications. Our investigation is based on the spectral expansion ideas by Fridrichs [7] and Hilbert–Schmidt approach
for the second kind self-adjoint equations. Methods of the theory singular integral operators are the basic methods for
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investigating [6]. We have applied this theory often to the similar type problems [8–18]. This paper is structured
as follows: First, in Section 2, using the initial equation, we introduce integral operators and their corresponding
integral equations which depend on the auxiliary parameter. Some of their properties, which will play an important
role in further considerations, are investigated. The singular operator, which is connected to the introduced equation,
is defined and its properties are studied in Section 3. In Section 4 the problem of reduction of the singular integral
operator is studied. In Section 5, the Hilbert–Schmidt type expansion theorem assertion of an arbitrary function from
H∗ can be represented through the singular operator and the eigenfunctions depending on the parameter operator. In
Section 6, analogous Hilbert–Schmidt theorems are proved depending on the parameter integral equation and main
result is given for the initial equation. Without loss of generality, we assume that, b > a in Eq. (1). This paper is in
some sense a continuation of [8].

2. Preliminaries

Let K (x, y) satisfy Hölder conditions on [a, b] × [a, b]. Further assume that the function g(z, x) defined in
(C \ [m A,MA]) × [a, b] where m A = min A(x), MA = max A(x), x ∈ [a, b] is holomorphic with respect to z
and belongs to H with respect to x : Moreover g(z, x) has boundary values

g+(ζ, x) = lim
z→ζ

g(z, x), Rez > 0

and

g−(ζ, x) = lim
z→ζ

g(z, x), Rez < 0, ζ ∈ [m A,MA].

Denote by Ω operator Ω : g(z, x) → (Ωg)(z, x),

(Ωzg(z, ·))(z, x) := g(z, x) +

∫ b

a

K (x, y)
A(y) − z

g(z, y)dy, x ∈ [a, b] (2)

where z is an arbitrary complex number, A(x) ∈ C1([a, b]) is the piecewise strictly monotone real-valued function
having simple zeros in ]a, b[ and A′(x) ∈ H. This operator operating on any function g(z, x) piecewise holomorphic
with respect to z with the cut on [m A,MA] and satisfying the Holder condition with respect to x , will define with the
cut on [m A,MA] a piecewise holomorphic function.

Let ζ = A(x) be the piecewise strictly monotone function, we are able to partition the interval ]a, b[ into
subintervals ]ci−1, ci [, i = 1, n, c0 = a, cn = b, such that in these subintervals the function ζ = A(x) will be
strictly monotone and moreover A′(ci ) = 0, i = 1, n − 1. Let A−1

i (ζ ) be an inverse function of A(x) in subinterval
]ci−1, ci [ i.e. A−1

i (A(x)) = x for x ∈ [ci−1, ci ], i = 1, n and A−1
i (ζ ) ∈ [ci−1, ci ] .

Now, recall some properties of the Cauchy type integrals. In order to find the boundary values (Ωg)±(ζ, x) we
apply the formulas analogous to formulas for the Cauchy type integrals [19].

Let

Ψ (z) =
1

2π i

∫
L

P(τ, z)
Q(τ, z)

dτ

when P and Q are analytic functions with respect to z for all τ ∈ L
1. P satisfies the Hölder condition with respect to τ
2. Q is the differentiability with respect to τ and Q′

τ (τ, z) ∈ H
3. In the points when Q(τ, z) = 0 we have Q′

τ (τ, z) ̸= 0 and Q′
z(τ, z) ̸= 0.

Let ς = ψ(τ ) be solution of the equation Q(τ, z) = 0 and τ = ω(ς ) is its inverse, then write formulas

Ψ±(w) = ±
1
2

P(t, w)
Q′
τ (t, w)

+
1

2π i

∫
L

P(τ,w)
Q(τ,w)

dτ

when t = ω(w).
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Consequently, according to these formulas we can find the boundary values of Ω as

(Ω±

ζ g±(ζ, ·))(ζ, x) = g±(ζ, x) +

∫ b

a

K (x, y)
A(y) − ζ

g±(ζ, y)dy

±π i
n∑

i=1

χi (ζ )K (x, A−1
i (ζ ))(A−1

i (ζ ))′g±(ζ, A−1
i (ζ ))

ζ ∈]m A,MA[\{A(ci )|i = 0, n} ≡ E

(3)

where χi (ζ ) is characteristic function of [A(ci−1), A(ci )], i = 1, n.
Also, write the formula∫

L

dτ
Q(τ,w)

∫
L

P(τ, σ )
ω(τ, σ )

dσ = −π2 P(t, t)
Q′
τ (t, w)ω′

τ (t, t)
+

∫
L

dσ
∫

L

P(τ, σ )
Q(τ,w)ω(τ, σ )

dτ.

Here the function ω(τ, σ ) is continuous, differentiable with respect to τ , satisfying Hölder condition with respect to τ
and σ, ω(t, t) = 0, but ω′

τ (t, t) ̸= 0.
Let ℵ be a set of values of the z for which the equation

Ωzg = 0 (4)

has non-zero continuous solution. Such values are called eigenvalues of Ωz . Because this operator’s kernel is piecewise
analytic in z, vanishing when z → ∞, by Tamarkin’s theorem [20] it follows that the set ℵ is almost countable in a
plane z with the cut on [m A,MA]. Note that set of eigenvalues of operators in the form (2) is finite when K ∈ H (see
e.g. [21,22]).

Obviously: (i1) Let g be the solution of Eq. (4), then

τzk (x) =
g(zk, x)

A(x) − zk
zk ∈ ℵ

is the solution of the following equation

(A(x) − z)τz(x) +

∫ b

a
K (x, y)τz(y)dy = 0, x ∈ [a, b] (5)

as z = zk and also vice versa.
(i2) Let z be for Ωz the eigenvalue of the multiplicity r , then also z is the eigenvalue of the multiplicity r for

(Ω∗

z q(z, ·))(z, x) := q(z, x) +

∫ b

a

K (y, x)
A(y) − z

q(z, y)dy, x ∈ [a, b]

and also vice versa.
(i3)∫ b

a
τ ∗

z (x)τz′ (x)dx = 0 z ̸= z′ (6)

where τ ∗
z (x) be the solution of equation

(A(x) − z)τ ∗

z (x) +

∫ b

a
K (y, x)τ ∗

z (y)dy = 0, x ∈ [a, b]. (7)

Usually, τzk (x) and τ ∗
zk

(x), are called the eigenfunctions of K (x, y) and K (y, x) respectively, corresponding to the
eigenvalue zk ∈ ℵ.

Remark 2.1.
The functions and operators determined by the kernel K (y, x) just in same way as by kernel K (x, y) will be

furthermore provided with superscript ∗.
Let

ω(t, x) =

n∑
i=1

ϑi (t)ϑi (x), t, x ∈ [a, b]



D. Shulaia / Transactions of A. Razmadze Mathematical Institute 171 (2017) 396–410 399

where ϑi , i = 1, n − 1 are the characteristic functions of [ci−1, ci [ respectively and ϑn is the characteristic function
of [cn−1, cn]. Now we have already introduced special integral equation

M(t, x) +

∫ b

a
K̃ (t, x, y)M(t, y)dy = |A′(t)|K (x, t), t, x ∈ [a, b] (8)

where

K̃ (t, x, y) =

n∑
i=1

K (x, y) − χi (A(t))K (x, t (i))
A(y) − A(t)

ω(t (i), y),

t (i)
= A−1

i (A(t)) and t is the parameter.
The kernel K̃ of this equation does not belong to that type which as a rule is usually called regular. But, this

equation can be reduced to a Fredholm equation (cf. [6, Chapter 14, Section 111]) and therefore to Eq. (8) that are
applicable in all Fredholm theorems.

Theorem 2.2. Let for the some value of parameter t = t1 ∈ [a, b], the homogeneous integral equation

M0(t, x) +

∫ b

a
K̃ (t, x, y)M0(t, y)dy = 0, x ∈ [a, b] (9)

have only a trivial solution. Then z1 = A(t1) ̸∈ ℵ.

Proof. The proof is completely analogous to that of Theorem 1 in [11].
Consequently, if Eq. (9) admits only a trivial solution, then Eq. (8) will have the unique solution which satisfies

condition H uniformly over t. This solution will also satisfy the condition H over t on any closed parts of
]a, b[\{ci |i = 1, n − 1} uniformly with respect to x .

In order to eliminate additional arguments, in the sequel we shall assume that;
( j1) ℵ is the finite set.
( j2) Eq. (9) and

M∗

0 (t, x) +

∫ b

a
K̃ ∗(t, x, y)M∗

0 (t, y)dy = 0, t, x ∈ [a, b] (10)

where

K̃ ∗(t, x, y) =

n∑
i=1

K (y, x) − χi (A(t))K (t (i), x)
A(y) − A(t)

ω(t (i), y)

have only trivial solution for any value of t ∈ [a, b].
Note that for the sufficiently wide class of the kernels (see e.g. [18]) such conditions are fulfilled.
Consequently, we assume that both Eq. (8) and

M∗(t, x) +

∫ b

a
K̃ ∗(t, x, y)M∗(t, y)dy = |A′(t)|K ∗(t, x), t, x ∈ [a, b] (11)

will have a unique solution satisfying the condition H uniformly with respect to t . These solutions will also satisfy the
condition H with respect to t on any closed parts of ]a, b[\{ci |i = 1, n − 1} uniformly with respect to x .

Before proceeding further with our investigation we will also need

Lemma 2.3. There holds the equality∫ b

a

M∗(t0, x)
A(t0) − A(x)

∫ b

a

M(t, x)
A(t) − A(x)

u(t)dtdx (12)

=

∫ b

a

u(t)
A(t0) − A(t)

(∫ b

a

M∗(t0, x)M(t, x)
A(x) − A(t0)

dx −

∫ b

a

M∗(t0, x)M(t, x)
A(x) − A(t)

dx
)

dt

+ π2
n∑

i, j=1

χ j (A(t0))Q∗(t0, t ( j)
0 )χi (A(t0))Q(t (i)

0 , t ( j)
0 )u(t (i)

0 ), t0 ∈]a, b[\{ci |i = 1, n}
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where u ∈ H∗, and Q(t, x), Q∗(t, x) defined from the following equations

Q(t, x) +

∫ b

a
K̃ (t, x, y)Q(t, y)dy = K (x, t), x, t ∈ [a, b]

and

Q∗(t, x) +

∫ b

a
K̃ ∗(t, x, y)Q∗(t, y)dy = K (t, x), x, t ∈ [a, b]

respectively.

Proof. Indeed, we can write∫ b

a

M∗(t0, x)
A(t0) − A(x)

∫ b

a

M(t, x)
A(t) − A(x)

u(t)dtdx

=

n∑
i, j=1

∫ ci

ci−1

∫ c j

c j−1

M∗(t0, x)
A(t0) − A(x)

M(t, x)
A(t) − A(x)

u(t)dtdx .

Then, having applied the analogous formula of the Poincare–Bertrand [19, Chapter 1, Section 9.3] to the every
component of this sum we obtain∫ ci

ci−1

∫ c j

c j−1

M∗(t0, x)
A(t0) − A(x)

M(t, x)
A(t) − A(x)

u(t)dtdx =

∫ c j

c j−1

∫ ci

ci−1

M∗(t0, x)
A(t0) − A(x)

M(t, x)
A(t) − A(x)

u(t)dxdt

+ π2χ j (A(t0))Q∗(t0, t ( j)
0 )χi (A(t0))Q(t (i)

0 , t ( j)
0 )u(t (i)

0 )

and the result follows.
It is seen that

M(t, x) = |A′(t)|Q(t, x) and M∗(t, x) = |A′(t)|Q∗(t, x).

3. Singular integral operator and its fundamental properties

The concept of complete kernel is necessary in the study of second-order linear equations depending on a parameter.
In the theory of Hilbert and Schmidt for the second kind integral equations a set of eigenfunctions is assumed to be
complete [23], and also an important role is played by one property of eigenfunctions, which corresponds here to the
equality

(A(x) − z)τzk (x) +

∫ b

a
K (x, y)τzk (y)dy = (zk − z)τzk (x). (13)

But, a set of the eigenfunctions is not the complete system here. Therefore, based on the spectral expansion theory we
consider the following integral operator

(Lu(·))(x) := |A′(x)|u(x) +

n∑
i=1

αi (x)u(x (i)) +

∫ b

a

M(t, x)
A(t) − A(x)

u(t)dt (14)

where

αi (x) =

∫ b

a

χi (A(x))(x (i))′M(x (i), y)
A(y) − A(x)

ω(x, y)dy.

The singular integral operator L transforms the arbitrary function u(t) ∈ H∗, t ∈]a, b[, into the new function
v(t) ∈ H∗, t ∈]a, b[\{ci |i = 1, n} and if u(t ′) = 0, t ′

∈ {ci |i = 1, n − 1}, then v(t) also will satisfy H condition
in a neighborhood of the t ′ (cf. [6, Chapter 1, Section 20]).

Theorem 3.1. The following equality is true

(A(x) − z)(Lu(·))(x) +

∫ b

a
K (x, y)(Lu(·))(y)dy = (L(A(·) − z)u(·))(x).
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Proof. From (14) and (8) by simple calculation we have∫ b

a
K (x, y)(Lu(·))(y)dy =

∫ b

a
M(t, x)u(t)dt.

Using (8) we deduce

(L(A(·) − A(x))u(·))(x) =

∫ b

a
M(t, x)u(t)dt

and consequently the result yields.

The latter result gives us a motive to more thoroughly study the singular operator L . Before beginning our
systematic investigation we shall prove the

Lemma 3.2. The algebraic equations system

|A′(t (i))|X0
i +

n∑
j=1

α j (t (i))X0
j = 0, i = 1, n (15)

for all t ∈]a, b[\{ci |i = 1, n} admits only the trivial solution.

Proof. Let us assume the contrary. Suppose that for some t = t0 ∈]a, b[\{ci |i = 1, n} this system has a non-zero
solution. Then, from (15) and (8),

M̃(t0, x) =

n∑
i=1

χi (A(t0))(t (i)
0 )′M(t (i)

0 , x)X0
i (t0)

will be the non-zero solution of Eq. (4) when z = A(t0) ∈ ℵ, which contradicts with Theorem 2.2 .
Now, we are able to prove the main result concerning the operator L.

Theorem 3.3. Let ψ0 ∈ H∗ on ]a, b[. For the singular integral equation

Lu = ψ0 (16)

to have a solution in the class H∗, it is necessary and sufficient that the function ψ0 satisfies the conditions∫ b

a
ψ0τ

∗

zk
dx = 0, zk ∈ ℵ. (17)

If are fulfilled these conditions, then the solution is unique.

Proof of the Necessity. Suppose that u ∈ H∗ satisfies (16) and introduce into consideration the function

Ψ (z, x) =
1

2π i

∫ b

a

M(t, x)
A(t) − z

u(t)dt x ∈ [a, b], z ̸∈ [m A,MA].

It is seen that this function has the properties:
(p1) It is piecewise holomorphic with respect to z, in a plane with the cut [m A,MA], while for x it satisfies the H

condition.
(p2) It tends to zero uniformly in x as z → ∞.
(p3) From the Plemelj formulas

Ψ±(ζ, x) =
1

2π i

∫ b

a

M(t, x)
A(t) − ζ

u(t)dt

±
1
2

n∑
j=1

χ j (ζ )(A−1
j (ζ ))′M(A−1

j (ζ ), x)u(A−1
j (ζ )),

ζ ∈ E, x ∈ [a, b].
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Combining (3) with the latter equality we get

(Ω+

ζ Ψ
+(ζ, ·))(ζ, x) − (Ω−

ζ Ψ
−(ζ, ·))(ζ, x)

=

n∑
j=1

(
χ j (ζ )(A−1

j (ζ ))′M(A−1
j (ζ ), x)u(A−1

j (ζ ))

+

∫ b

a

K (x, y)
A(y) − ζ

χ j (ζ )M(A−1
j (ζ ), x)u(A−1

j (ζ ))dy

+ χ j (ζ )K (x, A−1
j (ζ ))

∫ b

a

M(t, A−1
j (ζ ))

A(t) − ζ
u(t)dt

)
where ζ ∈ E and x ∈ [a, b].

Recall that M(t, x) satisfies (8), from (16) we obtain

(Ω+

ζ Ψ
+)(ζ, x) − (Ω−

ζ Ψ
−)(ζ, x)

=

n∑
j=1

χ j (ζ )(A−1
j (ζ ))′K (x, A−1

j (ζ ))ψ0(A−1
j (ζ ))

ζ ∈ E, x ∈ [a, b].

Taking into account the Plemelj formula, we can also write

(ΩzΨ )(z, x) =
1

2π i

∫ MA

m A

n∑
j=1

χ j (ζ )(A−1
j (ζ ))′K (x, A−1

j (ζ ))ψ0(A−1
j (ζ ))

ζ − z
dζ

where Ωz is the operator (2). After transformation we conclude that the function Ψ (z, x) satisfies the following integral
equation

(ΩzΨ )(z, x) =
1

2π i

∫ b

a

K (x, t)
A(t) − z

ψ0(t)dt, x ∈ [a, b]. (18)

However the condition of the solubility of the integral equation (18) is that its free term be orthogonal to the
eigenfunctions of the kernel K (y, z). That is,∫ b

a
τ ∗

zk
(x)

∫ b

a

K (x, t)
A(t) − zk

ψ0(t)dtdx = 0, zk ∈ ℵ.

By using (7) we immediately come to conditions (17).

Proof of the Sufficiency. Let ψ0 ∈ H∗ satisfy conditions (17). From Tamarkin’s Theorem [20] we get; there is the
unique solution of (18) and for this solution the following properties hold:

(r1) With respect to z it is the piecewise holomorphic in the plane with a cut [m A,MA], while for x satisfies H
condition

(r2) It tends to zero uniformly in x as z → ∞

(r3) It can be written as

Ψ (z, x) =
1

2π i

∫ MA

m A

κ̃(t, x)
t − z

dt, x ∈ [a, b], z ̸∈ [m A,MA]

where κ̃(t, x) is the uniquely determined function.
By the Plemelj formulas for the boundary values the equality is true

Ψ+(ζ, x) + Ψ−(ζ, x) =
1
π i

∫ MA

m A

Ψ+(t, x) − Ψ−(t, x)
t − ζ

dt.
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From (3) and (18) we obtain

Ψ̃ (ζ, x) +

∫ b

a

K (x, y)
A(y) − ζ

Ψ̃ (ζ, y)dy

+

n∑
j=1

χ j (ζ )K (x, A−1
j (ζ ))

(∫ MA

m A

Ψ̃ (t, A−1
i (ζ ))

t − ζ
dt + ψ0(A−1

j (ζ ))
)

= 0

ζ ∈ E, x ∈ [a, b]

(19)

where

Ψ̃ (ζ, x) = Ψ+(ζ, x) − Ψ−(ζ, x).

Now consider the nonhomogeneous system of equations:

A′(x (i))X i +

n∑
j=1

α j (x (i))X j = ψ̃0(x (i)), i = 1, n x ∈]a, b[\{ck |k = 1, n} (20)

where x (i)
= A−1

i (A(x)) and

ψ̃0(x) =

∫ MA

m A

Ψ̃ (t, x)
t − A(x)

dt + ψ0(x).

Lemma 3.2 shows us that there is a unique solution of (20). Moreover, X i (x) is a function of variables x (i),
i.e. X i (x) = u(x (i)). In addition, u(ci ) = 0 when i = 1, n − 1.

Denote

M̃(ζ, x) = Ψ̃ (ζ, x) −

n∑
j=1

χ j (ζ )M(A−1
j (ζ ), x)u(A−1

j (ζ )), ζ ∈]m A,MA[.

By (8) and (20) and from (19) we conclude that M̃(ζ, x) is solution of Eq. (4) when z = ζ ∈]m A,MA[. On the other
hand Ωz has no eigenvalues on ]m A,MA[ and consequently,

Ψ̃ (ζ, x) =

n∑
j=1

χ j (ζ )M(A−1
j (ζ ), x)u(A−1

j (ζ )), x ∈ [a, b].

By this assertion, from (20), we can write

|A′(x)|u(x) +

n∑
j=1

α j (x)u(x ( j)) = ψ0(x) −

∫ MA

m A

n∑
j=0

χ j (ζ )M(A−1
j (ζ ), x)u(A−1

j (ζ ))

ζ − A(x)
dζ.

Consequently, (16) holds and proof is complete.

Remark 3.4. If ψ0 ∈ H∗ on ]a, b[\{ci |i = 1, n} then result is also true and u ∈ H∗ on ]a, b[\{ci |i = 1, n}.

4. On the reduction of singular integral operator

Now a goal of ours is to study the singular operator L more deeply. To do this, we introduce, in the class H∗, the
following singular operators:

(Sv(·))(x) := |A′(x)|v(x) +

n∑
j=1

β j (x)v(x ( j)) +

∫ b

a

M(x, t)
A(x) − A(t)

v(t)dt, x ∈]a, b[ (21)

where

β j (x) =

∫ b

a

χ j (A(x))M(x, y)
A(y) − A(x)

ω(x ( j), y)dy, v ∈ H∗
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and operator S∗ which is defined analogously on the S accordingly mentioned in Remark 2.1 to the rule

(S∗v(·))(x) := |A′(x)|v(x) +

n∑
j=1

β∗

j (x)v(x ( j)) +

∫ b

a

M∗(x, t)
A(x) − A(t)

v(t)dt, x ∈]a, b[

where

β∗

j (x) =

∫ b

a

χ j (A(x))M∗(x, y)
A(y) − A(x)

ω(x ( j), y)dy.

It can be proved that αi (x ( j)) = β j (x (i)). Note that singular operator S can be rewritten as

(Sv(·))(x) := |A′(x)|v(x) +

∫ b

a

n∑
j=1

v(y) − χ j (A(y))v(x ( j))
A(x) − A(y)

ω(x ( j), y)M(x, y)dy.

Also the singular operator S∗ can be represented similarly.
It is easy to see that for each two functions v and u from H∗∫ b

a
u(x)(Sv(·))(x)dx =

∫ b

a
v(x)(Lu(·))(x)dx .

Hence, if there exists u such that (16) is fulfilled, then it is necessary that∫ b

a
v(x)ψ0(x)dx = 0, (22)

here v is solution of the equation

Sv = 0. (23)

Also is true the converse statement.
To this end we formulate some properties of the introduced operators. From definition of S together with Eq. (8)

as an immediate consequence

Lemma 4.1. The following equality

(SK (x, ·))(t) = M(t, x), x, t ∈ [a, b],

is true.
A similar lemma is valid for the operator S∗.

Lemma 4.2. The following equality

(S∗K (·, x))(t) = M∗(t, x), x, t ∈ [a, b],

is true.
It can be seen that

Lemma 4.3. The following equality

(S∗M(x, ·))(t) = (SM∗(t, ·))(x), x, t ∈ [a, b], (24)

is true.

Proof. Really, from (8), by Lemma 4.2 we obtain

(S∗M(x, ·))(t) = |A′(x)|M∗(t, x) +

∫ b

a

n∑
i=1

M∗(t, y) − χ (x (i))M∗(t, x (i))
A(x) − A(y)

ω(x (i), y)M(x, y)dy

= (SM∗(t, ·))(x).
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Denote

γ j (x) = |A′(x ( j))|β∗

j (x) + |A′(x)|α j (x) +

n∑
s=1

(
β∗

s (x)α j (x (s))

+ π2
n∑

s=1

χs(A(x))Q∗(x, x (s))χ j (A(x))Q(x ( j), x (s))
)
.

We shall prove the following theorem

Theorem 4.4. Composition S∗L contains no singularity and there exists the following equality

(S∗Lu)(x) = (A′(x))2u(x) +

n∑
j=1

γ j (x)u(x ( j)). (25)

Proof. After performing operations which are indicated on left-hand side of (25) and using the identity (12) for the
repeated integration, we deduce

(S∗Lu)(x) = (A′(x))2u(x) +

n∑
j=1

γ j (x)u(x ( j))
∫ b

a

u(t)
A(x) − A(t)

(
(S∗M(t, ·))(x) − (SM∗(x, ·))(t)

)
dt

and Lemma 4.3 completes proof.

Consequently, the operator S∗ reduces to L.

5. Expansion theorem

Now, we have to prove that any function from H∗ can be expressed by eigenfunctions and singular integral operator
L. Note that this result plays the same role in the investigation of integral equations of the type (1) as the well known
Hilbert–Schmidt expansion Theorem does in the theory of the self-adjoint Fredholm integral equations. To do this we
prove some necessary statements.

Taking Lemma 4.3 into account, by substituting into (21) t = x (i)
0 , x = x ( j)

0 we have

Corollary 5.1. The equality

|A′(x (i))|M(x ( j), x (i)) +

n∑
s=1

β∗

s (x (i))M(x ( j), x (s))

= |A′(x ( j))|M∗(x (i), x ( j)) +

n∑
s=1

βs(x ( j))M∗(x (i), x (s))

i, j = 1, n

is true (here, the x0 is replaced by the x).

Now, we examine the following system of equations

(A′(x (i)))2 X0
i +

n∑
j=1

γ j (x (i))X0
j = 0, i = 1, n. (26)

Before we proceed further, for the study of this system, it is convenient to use the matrix notation. To this end, we
introduced the following matrices:

1. A = ∥ai j (x)∥ (i, j = 1, n) is square matrix with elements:

ai j = δi, j |A′(x (i))| + α j (x (i))

where δi, j is the Kronecker symbol
2. A∗

= ∥a∗

i j (x)∥ (i, j = 1, n) is the square matrix with the elements:

a∗

i j = δi, j |A′(x (i))| + β∗

i (x ( j))
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3. Q = ∥qi j (x)∥ (i, j = 1, n) with elements:

qi j = Q(x ( j), x (i))

4. Q∗
= ∥q∗

i j (x)∥ (i, j = 1, n) with elements:

q∗

i j = Q∗(x ( j), x (i))

5. B = ∥bi j (x)∥ (i, j = 1, n) with the elements:

bi j = δi, j (A′(x (i)))2
+ γ j (x (i)).

From Corollary 5.1, after simple calculation we get

A∗
′

Q = Q∗
′

A

(here, the sign ′ denotes transposed).
From this fact it follows

Lemma 5.2. The matrix B admits the following decomposition

B = (A∗
′

+ iπQ∗
′

)(A − iπQ).

From the Lemmas 5.2 and 3.2 the following result can be derived.

Lemma 5.3. The following system of the equations (26)

BX = 0

has only zero solution and therefore

| B(x) | := det B ̸= 0.

Denote

(Tv(·))(x) :=

n∑
i, j=1

ϑi (x)
| B(x) |

Bi j (x)(S∗(v))(x ( j)) x ∈]a, b[ (27)

where Bi j (x) is algebraic adjunct of b j i (x) in | B(x) |.

The operator T transforms any function v(t) ∈ H∗ into a new function u(t) ∈ H∗ on ]a, b[. Moreover, u(ci ) = 0
when i = 1, n − 1. For Theorem 4.4 we get

Theorem 5.4. The singular operator T regularizes the operator L and the equality

TLu = u (28)

is true.
Now we shall investigate a relationship between the eigenfunctions and the above introduced operators.

Theorem 5.5. Eigenfunctions of kernel K (y, x) satisfy the singular Eq. (23), i.e.

Sτ ∗

zk
= 0, zk ∈ ℵ.

Proof. Taking (7) into account, from the definition (21) of S we obtain

Sτ ∗

zk
= |A′(x)|τ ∗

zk
(x) +

n∑
i=1

βi (x)τ ∗

zk
(x (i)) +

∫ b

a

M(x, t)
A(t) − A(x)

∫ b

a

K (y, t)τ ∗
zk

(y)

A(t) − zk
dydt.

Because
1

A(t) − A(x)
1

A(t) − zk
=

(
1

A(t) − A(x)
−

1
A(t) − zk

)
1

A(x) − zk
,
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we have that

Sτ ∗

zk
= |A′(x)|τ ∗

zk
(x) +

n∑
i=1

βi (x)τ ∗

zk
(x (i))∫ b

a

dt
A(x) − zk

M(x, t)
A(t) − A(x)

∫ b

a
K (y, t)τ ∗

zk
(y)dy −

∫ b

a

M(x, t)
A(x) − zk

τ ∗

zk
(t)dt

and from (8), we get∫ b

a

τ ∗
zk

(t)

A(x) − zk
M(x, t)dt = |A′(x)|τ ∗

zk
(x) +

n∑
i=1

βi (x)τ ∗

zk
(x (i))

∫ b

a

dt
A(x) − zk

M(x, t)
A(t) − A(x)

∫ b

a
K (y, t)τ ∗

zk
(y)dy.

The proof is complete.

Similarly we have

Theorem 5.6. The equality

S∗τzk = 0, zk ∈ ℵ

is true.

Corollary 5.7. The equality

Tτzk = 0, zk ∈ ℵ

is true.

Now we shall prove one important property of the eigenfunctions.

Theorem 5.8. Systems of the eigenfunctions {τzk } and {τ ∗
zk

} represent the biorthogonal system.

Proof. Owing to equality (6), it remains for us to show that

Nzk =

∫ b

a
τzk τ

∗

zk
dx, zk ∈ ℵ

are different from zero. Let us assume on the contrary that Nz p = 0 is true for the some z p. Then, τz p satisfies
conditions of Theorem 3.3 and therefore the singular integral equation

Lu = τz p

admits the unique solution. It follows from Theorem 5.4 and Corollary 5.7, that u = 0. Thus we obtain a contradiction
and the theorem is proved.

Remark 5.9. This result implies:
(q1) Solutions of Eq. (23) are only the eigenfunctions τ ∗

zk
, zk ∈ ℵ, also their linear combination.

(q2) The condition (22) also is sufficient for the solvability of (16).
The main result of this section is summarized in the following Hilbert–Schmidt type expansion theorem.

Theorem 5.10. Let ψ ∈ H∗, then

ψ =

∑
k

dkτzk + Lu (29)

where

dk =
1

Nzk

∫ b

a
ψτ ∗

zk
dx, u = Tψ.

Moreover, dk and also u are defined uniquely.
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Proof. In view of Theorem 5.8 it is evident that the following function

ψ0 = ψ −

∑
k

dkτzk

where

dk =
1

Nzk

∫ b

a
ψτ ∗

zk
dx, zk ∈ ℵ,

satisfies the conditions:∫ b

a
ψ0τ

∗

zk
dx = 0, zk ∈ ℵ.

By Theorem 3.3 this yields (29). The question of uniqueness of the dk and u is obvious.

6. Main results

Now, from a comparison of the results, obtained in the preceding sections, with the foundations of the Hilbert–
Schmidt approach from the theory of Fredholm integral equations of second kind we can solve the equation

(A(x) − z)ϕ̃z(x) +

∫ b

a
K (x; y)ϕ̃z(y)dy = f (x), x ∈]a, b[, (30)

(cf. [8]).

Theorem 6.1. Let f ∈ H∗ and let z ̸∈ [m A,MA] ∪ ℵ. Then Eq. (30)) has one and only one solution ϕ̃z ∈ H∗

expressed by the formula

ϕ̃z(x) =

∑
k

τzk (x)
zk − z

1
Nzk

∫ b

a
f (y)τ ∗

zk
(y)dy +

(
L

1
A(·) − z

(T f )(·)
)

(x). (31)

Proof. Let ϕ̃z ∈ H∗ be the solution of (30). By virtue of Theorem 5.10 this solution can be written in the form

ϕ̃z =

∑
k

d̃kτzk + Lũ. (32)

To find the coefficients d̃k and the function ũ, we proceed in the following way. Putting (32) into Eq. (30) and using
the relation (13) and Theorem 3.1, we get∑

k

d̃k(zk − z)τzk + L(A(·) − z)ũ(·) = f.

From this, by Theorem 5.10 we obtain

(zk − z)d̃k =
1

Nzk

∫ b

a
f τ ∗

zk
dy, zk ∈ ℵ,

(A(t) − z)ũ(t) = (T f )(t), t ∈]a, b[.

Now, after replacing in (30) ϕ̃z by expression (31), direct calculation gives∑
k

τzk

1
Nzk

∫ b

a
f τ ∗

zk
dy + LT f = f.

But from Theorem 5.10 it follows, this last equality holds.

Theorem 6.2. If z = z1 ∈ ℵ is an eigenvalue of the multiplicity r of the kernel K , then the solution of Eq. (30) exists
only when the conditions∫ b

a
f τ ∗

zk
dx = 0, k ≤ r (33)
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are fulfilled. Then Eq. (30) has in the class H∗ solutions represented by the formula

ϕ̃z1 (x) =

∑
k≤r

d̃kτzk (x) +

∑
k>r

τzk (x)
zk − z1

1
Nzk

∫ b

a
f (y)τ ∗

zk
(y)dy +

(
L

1
A(·) − z1

(T f )(·)
)

(x) (34)

where {d̃k} are arbitrary constants.

Proof. Assume that ϕ̃z1 ∈ H∗ is the solution of Eq. (30). Using the equality

(A(x) − z)τ ∗

zk
(x) +

∫ b

a
K (y, x, )τ ∗

zk
(y)dy = (zk − z)τ ∗

zk
(x),

owing to (30) we get

(zk − z1)
∫ b

a
ϕ̃z1 (x)τ ∗

zk
(x)dx =

∫ b

a
f (x)τ ∗

zk
(x)dx .

Since zk = z1 for k ≤ r , we have (33). We are now able to show that the following function

ϕ̃0
z1

=

∑
k≤r

d̃kτzk

satisfies Eq. (30). Also, we have to prove that the following function

ϕ̄z1 (x) =

∑
k>r

τzk (x)
zk − z1

1
Nzk

∫ b

a
f τ ∗

zk
dx +

(
L

1
A(·) − z1

(T f )(·)
)

(z1, x)

satisfies Eq. (30). Really, just as in Theorem 6.1 we find∑
k>r

ϕzk

1
Nzk

∫ b

a
f τ ∗

zk
dx + LT f = f.

From Theorem 5.10 it follows that there holds latter equality

Theorem 6.3. Let z = A(t0) where t0 ∈]a, b[\{ci }. In order that Eq. (30) be solvable in the class H∗; it is necessary
and sufficient that its free term f satisfies the conditions

(T f )(t (i)
0 ) = 0, i = 1, n − 1. (35)

Then the unique solution of Eq. (30) may be represented by (31).

Proof. As in Theorem 6.1, if a solution of (30) exists, then

A(t) − A(t0)u(t) = (T f )(t).

Therefore, in this case, when t = t (i)
0 we have (35). Besides, if the conditions (35) are fulfilled, we are able to show

that the function ϕz ∈ H∗, defined by (31) where z = A(t0), satisfies Eq. (30).

Corollary 6.4. Let z ̸∈ ℵ and let

f (x) =

∑
k

mkτzk (x) (36)

where mk is the arbitrary constant. Then Eq. (30) has one and only one solution which is expressed by the formula

ϕ̃z(x) =

∑
k

mk

zk − z
τzk (x).

Corollary 6.5. Let z = z1 be the eigenvalue of the multiplicity r and assume that f is of the form (36). Then Eq. (30)
admits the solutions if and only if the following conditions mk = 0, k ≤ r are fulfilled. When these latter conditions
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are fulfilled, then the solution of Eq. (30) may be given by the

ϕ̃z1 (x) =

∑
k≤r

dkτzk (x) +

∑
k>r

mk

zk − z1
τzk (x)

where {dk} are the arbitrary constants.

A comparison of the obtained results, namely Theorems 3.1 and 5.10, with the foundations of the theory of Hilbert–
Schmidt leads to a solution of the integral equation (1)

A(x)ϕ(x) +

∫ b

a
K (x, y)ϕ(y)dy = f (x), x ∈]a, b[.

Let A(x) ∈ C1 be the piecewise strictly monotone function having simple zeros xs on ]a, b[\{ci |i = 1, n}, s =

1, n0, in addition we suppose that A′(x) ∈ H and K (x, y) ∈ H such that the assumptions ( j1) and ( j2) are fulfilled,
f (x) ∈ H∗.

Main Theorem.
Eq. (1) is solvable in the class H∗ if and only if f satisfies the conditions

(T f )(xs) = 0, s = 1, n0.

Provided these conditions are satisfied, Eq. (1) admits one and only one solution ϕ(x) ∈ H∗ on ]a, b[, moreover this
solution may be written as

ϕ(x) =

∑
k

τzk (x)
zk Nzk

∫ b

a
f (y)τ ∗

zk
(y)dy +

(
L

1
A(·)

(T f )(·)
)

(x)

where the operators L and T are defined by (14) and (27) respectively.
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Abstract

In this paper, using Sinc-Galerkin and Levenberg–Marquardt methods a stable numerical solution is obtained to a nonlinear
inverse parabolic problem. Due to this, this problem is reduced to a parameter approximation problem. To approximate unknown
parameters, we consider an optimization problem where objective function is minimized by Levenberg–Marquardt method. This
objective function is obtained by using Sinc-Galerkin method and the overposed measured data. Finally, some numerical examples
are given to demonstrate the accuracy and reliability of the proposed method.
c⃝ 2017 Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Inverse problem; Sinc-Galerkin method; Nonlinear parabolic partial differential equation; Levenberg–Marquardt method

1. Introduction

Sinc methods have been increasingly used for finding a numerical solution of ordinary and partial differential
equations [1–3]. The books [4,5] provide overviews of existing methods based on Sinc functions for solving ODEs,
PDEs, and integral equations [1]. These methods have also been employed for some inverse problems [6–8].

There are many reasons that why these methods motivated authors to use them. First, the most important benefit of
the Sinc methods is good accuracy that they make in the neighborhood of singularities [5,9]. Second, they are typified
by exponentially decaying errors and in special cases by optimal convergence rate, even for problems over infinite and
semi-infinite domains [5,9]. Finally, due to their rapid convergence rate, these methods do not suffer from the usual
instability problems that typically occur in different methods [5,9,10].
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The main aim of this paper is to use the Sinc-Galerkin method for solving a nonlinear inverse parabolic problem
of the form

ut − uxx + H (u) = F(x, t), 0 < x < 1, t > 0
u(x, 0) = φ(x) 0 ⩽ x ⩽ 1
u(0, t) = p(t) t ⩾ 0
u(1, t) = q(t) t ⩾ 0

(1.1)

where H (u) is considered as follows

H (u) = un(n > 1), sin(u), cos(u), exp(±u), sinh(u), cosh(u),

or any analytic function of u that has a power series expansion. In the above problem, F(x, t), φ(x) and q(t) are
known analytic functions in an open interval 0 < x < 1, t > 0 and may be singular in 0 or 1 or both, and the analytic
functions p(t) and u(x, t) are unknown. If p = p(t) is given, then the problem (1.1) is called direct problem (DP).
The existence and uniqueness of DP (1.1) have been widely investigated in [11–14].

To find the pair (u, p), we use the overposed measured data

u(x∗, t) = E(t), 0 < x∗ < 1. (1.2)

Let us denote by the notation u[x, t; p] the solution of the DP (1.1). Then from the additional condition (1.2) it is seen
that the nonlinear inverse parabolic problem (1.1) consists of solving the following nonlinear functional equation

u[x∗, t; p] = E(t), 0 < x∗ < 1. (1.3)

In general, instead of solving the functional equation (1.3), an optimization problem is solved, where objective
function is minimized by an effective regularization method. This objective function is defined as

S(p) =

I∑
i=1

(u[x∗, ti ; p] − E(ti ))2. (1.4)

In this paper, we attempt to obtain an approximate solution for the unknown function p(t). For this purpose, first let

p̄(t) ≃

n∑
i=1

pi Sinc
(

t − ih
h

)
,

be a linear combination of Sinc functions, where h is the step size of time and pi ’s are unknown parameters that
should be derived. Then, the Sinc-Galerkin Method is used to obtain the approximate solution umx ,mt [x, t, p̄] of the
problem (1.1) with p̄(t) instead of p(t). In other words, the problem (1.1) is reduced to a parameter approximation
problem. These parameters are determined by minimizing the objective function (1.4) such that u[x∗, ti ; p] is replaced
by umx ,mt [x, t, p̄]. Due to this the Levenberg–Marquardt method is used. This method is a Newton-type method for
nonlinear least-squares problem that is treated in many numerical optimization text books, e.g. [15]. The Levenberg–
Marquardt method has also been successfully applied to the solution of linear problems that are too ill-conditioned to
permit the application of linear algorithms [16,17].

The paper is organized as follows. Section 2 is devoted to the basic formulation of the Sinc function required for
our subsequent development. In Section 3, the computational algorithm based on the Sinc-Galerkin method and the
Levenberg–Marquardt method is provided and sensitivity matrix is obtained. Finally, in Section 4 some numerical
examples are given and shown the efficiency and accuracy of the proposed numerical scheme.

2. Sinc function properties

In this section using the notations of [2,3,5,10], an overview of the basic formulation of the Sinc function is
presented.

The Sinc function is defined on the whole real line −∞ < x < ∞ by

Sinc(x) =

{ sin(π x)
π x

x ̸= 0

1 x = 0.
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For hx > 0 and ht > 0, the translated Sinc functions with evenly spaced nodes for space and time variables are
given as

S(k, hx )(z) = Sinc
(

z − khx

hx

)
, k = 0, ±1, ±2, . . .

S∗(k, ht )(z) = Sinc
(

z − kht

ht

)
, k = 0, ±1, ±2, . . . .

To construct approximations on the interval (0, 1), which is used in this paper, the eye-shaped domain in
the z-plane, DE =

{
z = x + iy :

⏐⏐arg
( z

1−z

)⏐⏐ < d ⩽ π
2

}
is mapped conformally onto the infinite strip DS ={

w = t + is : |s| < d ⩽ π
2

}
with

w = ϕ(z) = ln
(

z
1 − z

)
.

The composition

S j (x) = S( j, hx )oϕ(x) = Sinc
(
ϕ(x) − jhx

hx

)
,

defines the basis element on the interval (0, 1), where hx is the mesh size in DS for the uniform grids khx ,
−∞ < k < ∞. The inverse map of w = ϕ(z) is

z = ϕ−1(w) = ψ(w) =
exp(w)

exp(w) + 1
.

Thus, the inverse images of the equispaced grids are xk = ψ(khx ), k = 0,±1,±2, . . ..
For the temporal space [5], we define the function Υ (t) = ln(t) which is a conformal mapping from DW ={

t = r + is : |arg(t)| < d ⩽ π
2

}
the wedge-shaped temporal domain onto DS . The basis element on the interval

(0,∞) are derived from the composite translated Sinc functions

S j
∗(t) = S∗( j, ht )oΥ (t) = Sinc

(
Υ (t) − jht

ht

)
.

The mesh size ht is the mesh size in DS for the uniform grids kht , −∞ < k < ∞. The inverse map Υ−1(t) is exp(t).
Thus, the inverse images of the equispaced grids are tk = exp(kht ), k = 0,±1,±2, . . ..

3. Sinc-Galerkin solution of the nonlinear inverse parabolic problem

3.1. The direct problem

An approximate solution of DP (1.1) is considered by

ûmx ,mt (x, t) =

Nx +1∑
i=−Mx −1

Nt∑
j=−Mt −1

ui, j X i (x)Θ j (t), (3.1)

where mx = Mx + Nx + 1, m t = Mt + Nt + 1,

X i (x) =

⎧⎨⎩ 1 − x i = −Mx − 1
S(i, hx )oϕ(x) −Mx ⩽ i ⩽ Nx

x i = Nx + 1

and

Θ j (t) =

⎧⎨⎩
t + 1
t2 + 1

j = −Mt − 1

S∗( j, ht )oΥ (t) −Mt ⩽ j ⩽ Nt .
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Using the boundary and initial conditions in DP (1.1), we have

ûmx ,mt (0, t) =

Nt∑
i=−Mt −1

u−Mx −1, jΘ j (t) = p(t),

ûmx ,mt (1, t) =

Nt∑
i=−Mt −1

uNx +1, jΘ j (t) = q(t),

ûmx ,mt (x, 0) =

Nx +1∑
i=−Mx −1

ui,−Mt −1 X i (x) = φ(x).

Thus, we can write the approximate solution (3.1) based on Sinc basis functions as

ûmx ,mt (x, t) =

Nx∑
i=−Mx

Nt∑
j=−Mt

ui, j Si (x)S∗

j (t) + p∗(t)X−Mx −1(x) + q∗(t)X Nx +1(x) + φ(x)Θ−Mt −1(t),

where

p∗(t) = p(t) − φ(0)Θ−Mt −1(t),

and

q∗(t) = q(t) − φ(1)Θ−Mt −1(t).

The unknown coefficients ui, j , i = −Mx , . . . , Nx , j = −Mt , . . . , Nt are determined by orthogonalizing the
residual with respect to the functions Sk,l , i.e.,(

Lûmx ,mt − F, Sk,ℓ
)

= 0, −Mx ⩽ k ⩽ Nx , −Mt ⩽ l ⩽ Nt ,

where Lu ≡ ut − uxx + H (u) and

Sk,l = Sk(x)S∗

l (t) = (S(k, hx )oϕ(x)) (S(l, ht )oΥ (t)) .

The weighted inner product here is defined by

( f, g) =

∫
∞

0

∫ 1

0
f (x, t)g(x, t)w(x)τ (t)dxdt,

where w(x)τ (t) is a product weight function. This orthogonalization may be written(
Lumx ,mt − F∗, Sk,ℓ

)
= 0, −Mx ⩽ k ⩽ Nx , −Mt ⩽ l ⩽ Nt ,

in which the homogeneous part of the approximate solution is given by

umx ,mt (x, t) =

Nx∑
i=−Mx

Nt∑
j=−Mt

ui, j Si (x)S∗

j (t), (3.2)

and

F∗(x, t) = F(x, t) −
∂

∂t

(
p∗(t)X−Mx −1(x) + q∗(t)X Nx +1(x) + φ(x)Θ−Mt −1(t)

)
+
∂2

∂x2

(
p∗(t)X−Mx −1(x) + q∗(t)X Nx +1(x) + φ(x)Θ−Mt −1(t)

)
− H

(
p∗(t)X−Mx −1(x) + q∗(t)X Nx +1(x) + φ(x)Θ−Mt −1(t)

)
,

for more details, one can refer to [4, Page 244].
An alternative approach is to analyze instead((

umx ,mt

)
t , Sk,l

)
−

((
umx ,mt

)
xx , Sk,l

)
+

(
H

(
umx ,mt

)
, Sk,l

)
=

(
F∗, Sk,l

)
. (3.3)
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The method of approximating the integrals in (3.3) begins by integrating by parts to transfer all derivatives from umx ,mt

to Sk,l . Thus, we have((
umx ,mt

)
t , Sk,l

)
=

∫
∞

0

∫ 1

0

∂

∂t

(
umx ,mt (x, t)

)
Sk(x)w(x)S∗

l (t)τ (t)dxdt,

= BT1 −

∫
∞

0

∫ 1

0
umx ,mt (x, t)

∂

∂t

(
S∗

l (t)τ (t)
)

Sk(x)w(x)dxdt,

and ((
umx ,mt

)
xx , Sk,l

)
=

∫
∞

0

∫ 1

0

∂2

∂x2

(
umx ,mt (x, t)

)
Sk(x)w(x)S∗

l (t)τ (t)dxdt,

= BT2 +

∫
∞

0

∫ 1

0
umx ,mt (x, t)

∂2

∂x2 (Sk(x)w(x)) S∗

l (t)τ (t)dxdt,

where

BT1 =

∫ 1

0
Sk(x)w(x)

(
umx ,mt (x, t)S∗

l (t)τ (t)
) ⏐⏐∞

0 dx,

and

BT2 =

∫
∞

0
S∗

l (t)τ (t)
(
∂

∂x

(
umx ,mt (x, t)

)
Sk(x)w(x)

) ⏐⏐1
0 dt

−

∫
∞

0
S∗

l (t)τ (t)
(

umx ,mt (x, t)
∂

∂x
(Sk(x)w(x))

) ⏐⏐1
0 dt.

So, we can write∫
∞

0

∫ 1

0
umx ,mt (x, t)

(
−
∂

∂t

(
S∗

l (t)τ (t)
)

Sk(x)w(x) +
∂2

∂x2 (Sk(x)w(x)) S∗

l (t)τ (t)
)

dxdt

+ BT +

∫
∞

0

∫ 1

0
H

(
umx ,mt (x, t)

)
Sk(x)S∗

l (t)w(x)τ (t)dxdt

=

∫
∞

0

∫ 1

0
F∗(x, t)Sk(x)S∗

l (t)w(x)τ (t)dxdt,

where BT = BT1 + BT2. The weight functions w(x) and τ (t) are defined in the following forms

w(x) =
1

√
ϕ′(x)

, τ (t) =

√
Υ ′(t).

These weight functions cause BT = 0.
For approximating the above double integrals, we use the Sinc quadrature rule that is given in the following

theorem.

Theorem 3.1 ([18,19]). For each fixed t, let G(z, t) ∈ B(DE ) and h > 0. Let ϕ and Υ be one-to-one conformal
maps of the domains DE and DW onto DS , respectively. Let zi = ϕ−1(ihz), t j = Υ−1( jht ) and Γz = ϕ−1(R),
Γt = Υ−1(R). Assume there are positive constants αz , βz , and Cz(t) such that⏐⏐⏐⏐G(z, t)

ϕ′(z)

⏐⏐⏐⏐ ⩽ Cz(t).
{

exp(−αz |ϕ(z)|), z ∈ Γ (z)
a ,

exp(−βz |ϕ(z)|), z ∈ Γ (z)
b ,

where Γ (z)
a ≡ {z ∈ Γz : ϕ(z) = u ∈ (−∞, 0)}, Γ (z)

b ≡ {z ∈ Γz : ϕ(z) = u ∈ [0,∞)}. Also for each fixed z, let
G(z, t) ∈ B(DW ) and assume there are positive constants αt , βt , and Ct (z) such that⏐⏐⏐⏐G(z, t)

Υ ′(z)

⏐⏐⏐⏐ ⩽ Ct (z).
{

exp(−αt |Υ (t)|), t ∈ Γ (t)
a ,

exp(−βt |Υ (t)|), t ∈ Γ (t)
b ,
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where Γ (t)
a ≡ {t ∈ Γt : Υ (t) = u ∈ (−∞, 0)}, Γ (t)

b ≡ {t ∈ Γt : Υ (t) = u ∈ [0,∞)}. Then the Sinc trapezoidal
quadrature rule is∫

Γt

∫
Γz

G(z, t)dzdt = hzht

Nz∑
i=−Mz

Nt∑
j=−Mt

G(zi , t j )
ϕ′(zi )Υ ′(t j )

+ O(exp(−αz Mzhz)) + O(exp(−βz Nzhz))

+ O(exp(−2πd/hz)) + O(exp(−αt Mt ht )) + O(exp(−βt Nt ht )) + O(exp(−2πd/ht )).

Hence, make the selections

Nz =

[⏐⏐⏐⏐αz

βz
Mz + 1

⏐⏐⏐⏐] , Mt =

[⏐⏐⏐⏐αz

αt
Mz + 1

⏐⏐⏐⏐] , Nt =

[⏐⏐⏐⏐αz

βt
Mz + 1

⏐⏐⏐⏐]
where h ≡ hz = ht , and

h =
√

2πd/(αz Mz),

and the exponential order of the Sinc trapezoidal quadrature rule is O(exp(−
√

2πdαz Mz)).

Applying the Sinc quadrature rule that is defined in Theorem 3.1 yields

−

∫
∞

0

∫ 1

0
umx ,mt (x, t)Sk(x)w(x)

∂

∂t

(
S∗

l (t)τ (t)
)

dxdt

≃ −hx ht

Nx∑
p=−Mx

Nt∑
q=−Mt

umx ,mt (x p, tq )Sk(x p)w(x p) ∂
∂t (S∗

l (t)τ (t))
⏐⏐
t=tq

ϕ′(x p)Υ ′(tq )

≃ −hx ht

Nx∑
p=−Mx

Nt∑
q=−Mt

u p,q Sk(x p)w(x p) ∂
∂t (S∗

l (t)τ (t))
⏐⏐
t=tq

ϕ′(x p)Υ ′(tq )
,

where x p = ϕ−1(phx ) and tq = Υ−1(qht ). Also, we have∫
∞

0

∫ 1

0
umx ,mt (x, t)

∂2

∂x2 (Sk(x)w(x)) S∗

l (t)τ (t)dxdt

≃ hx ht

Nx∑
p=−Mx

Nt∑
q=−Mt

umx ,mt (x p, tq )S∗

l (tq )τ (tq ) ∂
2

∂x2 (Sk(x)w(x))
⏐⏐
x=x p

ϕ′(x p)Υ ′(tq )

≃ hx ht

Nx∑
p=−Mx

Nt∑
q=−Mt

u p,q S∗

l (tq )τ (tq ) ∂
2

∂x2 (Sk(x)w(x))
⏐⏐
x=x p

ϕ′(x p)Υ ′(tq )
,

∫
∞

0

∫ 1

0
H

(
umx ,mt (x, t)

)
Sk(x)S∗

l (t)w(x)τ (t)dxdt

≃ hx ht

Nx∑
p=−Mx

Nt∑
q=−Mt

H (umx ,mt (x p, tq ))Sk(x p)S∗

l (tq )w(x p)τ (tq )
ϕ′(x p)Υ ′(tq )

≃ hx ht

Nx∑
p=−Mx

Nt∑
q=−Mt

H (u p,q )Sk(x p)S∗

l (tq )w(x p)τ (tq )
ϕ′(x p)Υ ′(tq )

,

and ∫
∞

0

∫ 1

0
F∗(x, t)Sk(x)S∗

l (t)w(x)τ (t)dxdt ≃ hx ht

Nx∑
p=−Mx

Nt∑
q=−Mt

F∗(x p, tq )Sk(x p)S∗

l (tq )w(x p)τ (tq )
ϕ′(x p)Υ ′(tq )

.

The Sinc-Galerkin method actually requires the evaluated derivatives of Sinc basis functions S(i, hx )oϕ(x) and
S∗( j, ht )oΥ (t) at the Sinc nodes x = xk and t = tk , respectively. The p-th derivative of S(i, hx )oϕ(x), with respect to
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ϕ, evaluated at the nodal point xk is denoted by

δ
(p)
i,k ≡ h p d p

dϕ p [S(i, h)oϕ(x)]
⏐⏐

x=xk
. (3.4)

Theorem 3.2 ([4,5]). Let ϕ be a conformal one-to-one map of the simply connected domain DE onto DS then

δ
(0)
i,k = [S(i, h)oϕ(x)]

⏐⏐
x=xk

=

{
1, k = i
0, k ̸= i,

δ
(1)
i,k = h

d
dϕ

[S(i, h)oϕ(x)]
⏐⏐

x=xk
=

⎧⎨⎩
0, k = i

(−1)(k−i)

(k − i)
, k ̸= i

and

δ
(2)
i,k = h2 d2

dϕ2 [S(i, h)oϕ(x)]
⏐⏐

x=xk
=

⎧⎪⎪⎨⎪⎪⎩
−π2

3
, k = i

−2(−1)(k−i)

(k − i)2 , k ̸= i.

Proof. See [4,5]. □

We note that, the similar formula as (3.4) and similar theorem as above for S∗( j, ht )oΥ (t) are satisfied.
Define the m × m matrices I (p)

m for 0 ≤ p ≤ 2 by

I (0)
m =

[
δ

(0)
i,k

]
=

⎛⎜⎝1 . . . 0
...

. . .
...

0 · · · 1

⎞⎟⎠ = I,

I (1)
m =

[
δ

(1)
i,k

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1
1
2

. . .
(−1)m−1

m − 1

−1
...

1
2

. . .
1
2

... −1
(−1)m−1

m − 1
. . . −

1
2

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

I (2)
m =

[
δ

(2)
i,k

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−π2

3
2

−2
22 . . .

−2(−1)m−1

(m − 1)2

2
...

−2
22

. . .
−2
22

... 2
−2(−1)m−1

(m − 1)2
. . .

−2
22 2

−π2

3
,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The above matrices are the m × m Toeplitz matrices (see [3]). Then the discrete system can be represented in the
following matrix form

Ax V + V BT
t + H = G, (3.5)

where

V = D(w)Ū D∗

(
τ

√
Υ ′

)
,
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H = D(w)H̄ D∗

(
τ

√
Υ ′

)
,

G = D(w)F̄ D∗

(
τ

√
Υ ′

)
,

Ax = D
(
ϕ′(x)

) ⎡⎣−
1
h2

x
I (2)
mx

+ D

⎛⎝ −1(
ϕ′

x
) 3

2

(
1

√
ϕ′(x)

)′′

⎞⎠⎤⎦ D
(
ϕ′(x)

)
,

Bt = D∗

(√
Υ ′(t)

) [
−

1
ht

I (1)
mt

− D∗

(
−τ ′

τΥ ′(t)

)]
D∗

(√
Υ ′(t)

)
,

and

D(g) =

⎛⎜⎝g(x−Mx ) 0
. . .

0 g(xNx )

⎞⎟⎠
mx ×mx

,

D∗(g) =

⎛⎜⎝g(t−Mt ) 0
. . .

0 g(tNt )

⎞⎟⎠
mt ×mt

,

Ū =
(
ui, j

)
mx ×mt

,

H̄ =
(
H (ui, j )

)
mx ×mt

,

F̄ =
(
F∗(xi , t j )

)
mx ×mt

.

Now, we have a nonlinear system of mx × m t equations of the mx × m t unknown coefficients ui, j . These coefficients
are obtained by using Newton’s method or many other different methods such as, conjugate gradient method, genetic
algorithms, Steffensen’s methods and so on [4,20,21].

3.2. The nonlinear inverse parabolic problem

In this subsection, to find the unknown function p(t) of the problem (1.1), a computational algorithm is provided.
Algorithm: Identification of the unknown function p(t)
Step 1. Put

p̄(t) ≃

n∑
i=1

pi Sinc
(

t − ih
h

)
,

be an approximation of the unknown function p(t), where h is the step size of time and pi ’s are unknown parameters.
Step 2. Using the Sinc-Galerkin solution (3.2), obtain an approximate solution for u[x, t, p̄]. In this case, when we

solve the nonlinear system of Eqs. (3.5), the unknown coefficients ui, j are obtained according to pi ’s. In other words,
we have

umx,mt
[x, t, p̄] =

Nx∑
i=−Mx

Nt∑
j=−Mt

ui, j (p1, p2, . . . , pn)Si (x)S∗

j (t).

Step 3. Obtain the n unknown parameters pi , based on the minimization of the least squares norm

S(p) =

I∑
i=1

(umx,mt
[x∗, ti ; p̄] − E(ti ))2. (3.6)

Since, the obtained system of algebraic equations is ill-conditioned, therefore the Levenberg–Marquardt method
according to step 4 is used.
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Step 4. Levenberg–Marquardt regularization [17]. Suppose that,

Umx ,mt (p) = [U1,U2, . . . ,UI ]T

E = [E1, E2, . . . , E I ]T ,

and p = [p1, p2, . . . , pn]T , where Ei = E(ti ) and Ui = umx,mt
[x∗, ti ; p̄], i = 1, 2, . . . , I . Then the matrix form of

the functional (3.6) is given by

S(p) =
[
E − Umx ,mt (p)

]T [
E − Umx ,mt (p)

]
,

in which[
E − Umx ,mt (p)

]T
≡ [E1 − U1, E2 − U2, . . . , E I − UI ] .

The superscript T denotes the transpose and I is the total number of measurements. To minimize the least squares
norm, the derivatives of S(p) with respect to each unknown parameters {pi }

i=n
i=1 are equated to zero. That is

∂S(p)
∂p1

=
∂S(p)
∂p2

= · · · =
∂S(p)
∂pn

= 0,

or in matrix form

∇S(p) = 2

[
−
∂U T

mx ,mt
(p)

∂p

] [
E − Umx ,mt (p)

]
= 0,

where

∂U T
mx ,mt

(p)
∂p

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂p1
∂

∂p2
...
∂

∂pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
U1 U2 . . . UI

]
.

Hence, the sensitivity matrix can be written in the form [17]

J (p) =

[
∂U T

mx ,mt
(p)

∂p

]T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂U1

∂p1

∂U1

∂p2

∂U1

∂p3
. . .

∂U1

∂pn
∂U2

∂p1

∂U2

∂p2

∂U2

∂p3
. . .

∂U2

∂pn
...

...
...

...
∂UI

∂p1

∂UI

∂p2

∂UI

∂p3
. . .

∂UI

∂pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.7)

Remark 3.3. We note that [17], when the sensitivity coefficients (J (P))i, j =
∂Ui
∂p j

are small, we have
⏐⏐(J (P))T J (P)

⏐⏐ ≈

0 and the inverse problem is ill-conditioned. It can also be shown that
⏐⏐(J (P))T J (P)

⏐⏐ is null if any column of J (p)
can be expressed as a linear combination of the other columns [17].

Now, the computational algorithm for the Levenberg–Marquardt regularization is provided as follows [17].
Suppose an initial guess for the vector of unknown coefficients p is available. Denote it with p(0).
1. Set µ0 be an arbitrary regularization parameter (for example µ0 = 0.001 ) and k = 0.
2. Compute Umx ,mt (p(0)) and S(p(0)).
3. Compute the sensitivity matrix J k defined by (3.7) and then Ω k

= diag[(J k)T J k], by using the current values
of p(k).

4. Solve the following linear system of algebraic equations[
(J k)T J k

+ µkΩ k]1pk
= (J k)T [

E − Umx ,mt (p(k))
]
,

in order to compute 1pk
= pk+1

− pk .
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Fig. 1. The approximate solution p̄(t) with hx =
π
4 , ht =

π
2 , h =

π
4 , Mx = Nx = 16, Mt = Nt = 4 and H (u) = u2.

Table 1
The L1-norm error of the introduced method for Mx = Nx = Mt = Nt = 4 and H (u) = u2.

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.15239 0.20502 0.04755 0.01921 0.00060 0.01034 0.00293 0.00390 0.00456 0.00246

Table 2
The L1-norm error of the introduced method for Mx = Nx = 8, Mt = Nt = 4 and H (u) = u2.

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.17440 0.19443 0.03191 0.00316 0.00788 0.00826 0.01176 0.00322 0.00638 0.00119

5. Compute pk+1
= 1pk

+ pk .
6. If S(pk+1) ≥ S(pk) replace µk by 10µk and go to 4.
7. If S(pk+1) < S(pk) accept pk+1 and replace µk by 0.1µk .
8. Assume that tol (tolerance) is given. If

pk+1
− pk

 ≤ tol, then an acceptable approximation is obtained.
Otherwise, replace k by k + 1 and go to 3.

In last section, the application of the proposed approach to solve the problem (1.1) is illustrated by three examples.

4. Numerical results

In this section, to show the validation of the introduced method three numerical examples are given. In these
examples, the numerical results are listed with different values of hx , ht , h, Mx , Mt , Nx , Nt and for 0 ≤ t ≤ 50. Also,
in order to solve the obtained nonlinear system of equations in (3.5), we apply Newton’s method.

Example 4.1. Consider the nonlinear inverse parabolic problem of the form

ut − uxx + u2
= F(x, t), 0 < x < 1, t > 0

u(x, 0) = 0 0 ⩽ x ⩽ 1
u(0, t) = p(t) t ⩾ 0
u(1, t) = 0.9te−t sin(1) t ⩾ 0

where F(x, t) = −2te−t cos(x) + e−t (x − 0.1) sin(x)
(
1 + e−t t2(x − 0.1) sin(x)

)
and p(t) is unknown. We note that

the exact solutions are u(x, t) = (x − 0.1)te−t sin(x) and p(t) = 0. In this example the overposed measured data is
considered by u(0.1, t) = 0 and p(t) is approximated by

p(t) ∼= p̄(t) = p1Sinc
(

t − h
h

)
+ p2Sinc

(
t − 2h

h

)
. (4.1)

The numerical results are listed in Table 1 for hx = ht = h =
π
2 , in Table 2 for hx =

π

2
√

2
, ht =

π
2 , h =

π

2
√

2
and

in Table 3 for hx =
π
4 , ht =

π
2 , h =

π
4 . As we observe, the results show the efficiency and accuracy of the method.

Also, Fig. 1 shows the approximate solution p̄(t).
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Table 3
The L1-norm error of the introduced method for Mx = Nx = 16, Mt = Nt = 4 and H (u) = u2.

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.08626 0.00097 0.00991 0.00424 0.00381 0.00334 0.00278 0.00218 0.00156 0.00109

Table 4
The L1-norm error of the introduced method for Mx = Nx = Mt = Nt = 4 and H (u) =

1
1+u2 .

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.42572 0.70087 0.06571 0.00311 0.07001 0.05146 0.04958 0.04253 0.03651 0.00209

Table 5
The L1-norm error of the introduced method for Mx = Nx = 8, Mt = Nt = 4 and H (u) =

1
1+u2 .

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.44657 0.77071 0.10003 0.06335 0.05201 0.03154 0.00761 0.03009 0.01810 0.00158

Table 6
The L1-norm error of the introduced method for Mx = Nx = 16, Mt = Nt = 4 and H (u) =

1
1+u2 .

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.13101 0.08657 0.00116 0.00254 0.00122 0.00045 0.00043 0.00111 0.00108 0.00025

Fig. 2. The approximate solution p̄(t) with hx =
π
4 , ht =

π
2 , h =

π
4 , Mx = Nx = 16, Mt = Nt = 4 and H (u) =

1
1+u2 .

Example 4.2. For second example, we consider the following problem

ut − uxx +
1

1 + u2 = F(x, t), 0 < x < 1, t > 0

u(x, 0) = 0 0 ⩽ x ⩽ 1
u(0, t) = p(t) t ⩾ 0
u(1, t) = 0.9te−t sin(1) t ⩾ 0

where

F(x, t) = −2e−t t cos(x) + e−t (x − 0.1) sin(x) +
1

1 + e−2t t2(x − 0.1)2 sin(x)2

and p(t) is unknown. The exact solutions are u(x, t) = (x − 0.1)te−t sin(x) and p(t) = 0. Again the overposed
measured data is considered by u(0.1, t) = 0 and p(t) is approximated by (4.1). The numerical results are listed in
Table 4 for hx = ht = h =

π
2 , in Table 5 for hx =

π

2
√

2
, ht =

π
2 , h =

π

2
√

2
and in Table 6 for hx =

π
4 , ht =

π
2 , h =

π
4 .

As we observe, the results show the validation and accuracy of the method. Also, Fig. 2 shows the approximate solution
p̄(t).
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Fig. 3. The approximate solution p̄(t) with hx =
π
4 , ht =

π
2 , h =

π
4 , Mx = Nx = 16, Mt = Nt = 4 and H (u) = sin(u).

Table 7
The L1-norm error of the introduced method for Mx = Nx = Mt = Nt = 4 and H (u) = sin(u).

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.14522 0.15112 0.03212 0.01584 0.00431 0.00220 0.00063 0.00047 0.00131 0.00317

Table 8
The L1-norm error of the introduced method for Mx = Nx = 8, Mt = Nt = 4 and H (u) = sin(u).

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.16707 0.16232 0.03149 1.88 × 10−6 0.00451 0.00826 0.00952 0.00130 0.00622 0.00106

Table 9
The L1-norm error of the introduced method for Mx = Nx = 16, Mt = Nt = 4 and H (u) = sin(u).

t 1 4.1415 10.4248 19.8496 22.9911 27.7035 32.4159 37.1283 41.8407 48.1239
∥p(t) − p̄(t)∥1 0.04484 0.01749 0.00242 0.00075 0.00169 0.00059 0.00011 0.00038 0.00065 0.00109

Example 4.3. Consider the following problem

ut − uxx + sin(u) = F(x, t), 0 < x < 1, t > 0
u(x, 0) = 0 0 ⩽ x ⩽ 1
u(0, t) = p(t) t ⩾ 0
u(1, t) = 0.9te−t sin(1) t ⩾ 0

where

F(x, t) = −2te−t cos(x) + e−t (x − 0.1) sin(x) + sin
(
te−t (x − 0.1) sin(x)

)
,

and p(t) is unknown. The exact solutions are u(x, t) = (x − 0.1)te−t sin(x) and p(t) = 0. The overposed measured
data is considered by u(0.1, t) = 0 and p(t) is approximated by (4.1). The numerical results are listed in Table 7 for
hx = ht = h =

π
2 , in Table 8 for hx =

π

2
√

2
, ht =

π
2 , h =

π

2
√

2
and in Table 9 for hx =

π
4 , ht =

π
2 , h =

π
4 . As we

observe, the results show the accuracy of the method. Also, Fig. 3 shows the approximate solution p̄(t).
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