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Abstract

In this work, we consider a generalized system of partial differential operators, we define the related Fourier transform and
establish some harmonic analysis results. We also investigate a wide class of integral transforms of Riemann–Liouville type. In
particular we give a good estimate of these integrals kernels, inversion formula and a Plancherel theorem for the dual.
c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Fourier transform; Convolution product; Integral operators; Mehler representation; Dual operator; Inversion formula

1. Introduction

The operator Rα defined by

Rα( f )(r, x) =


2α
Π

∫ 1

0

∫ Π /2

−Π /2
f (r cos θ, x + r sin θ) cos2α θ(1− s2)α−1dθ ds for α > 0

1
Π

∫ Π /2

−Π /2
f (r cos θ, x + r sin θ)dθ for α = 0,

and its dual t Rα are of interest in several applications for example in image processing of the so-called aperture
radar (SAR), data. . . [1], or in the linearized inverse scattering problems in acoustics [2,3]. These operators have been

∗ Corresponding author.
E-mail addresses: alayanawel@yahoo.fr (N. Alaya), moncef.dziri@iscae.rnu.tn (M. Dziri).
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.
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2346-8092/ c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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extensively studied in [4–14]. They arise in connection with the system
∆1 =

∂

∂x
,

∆2 =
∂2

∂r2 +
2α + 1

r

∂

∂r
−
∂2

∂x2 ,

(1.1)

of partial differential operators [15,6,16–19].
The main aim of this article is to define and study a wide class of integral transforms which generalize the operators

Rα and t Rα;α ≥ 0.
More precisely, we consider the singular partial differential operators ∆1 and ∆2,A such that

∆1 =
∂

∂x
,

∆2,A =
∂2

∂r2 +
A′(r)

A(r)

∂

∂r
+ ρ2

−
∂2

∂x2 ,

(1.2)

where ρ is non negative real number and A is a non negative function satisfying some properties.

First, we define a generalized Fourier transform F A and generalized shift operator T(r,x);
(
(r, x) ∈ [0,∞[×R

)
related with ∆2,A. We give some harmonic analysis results associated with F A and T(r,x). Second we establish
an integral representation of the eigenfunction of the operator ∆2,A. This result and by using the same techniques
as Fitouhi [20,21], we define and study a wide class of integral transforms RA and t RA related with ∆2,A. More
precisely we establish for these operators the same results given by Helgason [9], Ludwig [12] and Solmon [14] for
the classical Radon transform on R2. Also, we define and characterize some spaces of functions on which RA and
t RA are isomorphism.

The paper is arranged as follows. In Section 2, we recall some basic properties and results about the singular
second order differential operator £A =

∂2

∂r2 +
A′(r)
A(r)

∂
∂r +ρ

2. In Section 3, we define a generalized Fourier transform F A
associated with the system (1.2) and we establish some harmonic analyses (inversion Formula, Paley–Wiener theorem
and Plancherel theorem for F A). Also, we define and study a generalized shift operator T(r,x); (r, x) ∈ [0,∞[×R
and a generalized convolution product associated with T(r,x). Section 4 deals with the integral representation of the
eigenfunction related with ∆2,A and the operator RA and its dual t RA. In Section 5 we give an inversion formula for
RA, t RA and Plancherel theorem for t RA.

2. Preliminaries of Chébli–Trimèche hypergroups

In this section we briefly recall some results of harmonic analysis related with the following second order singular
differential operator on the half line:

£= £A =
∂2

∂r2 +
A′(r)

A(r)

∂

∂r
+ ρ2, (2.3)

where A is continuous on [0,∞[, twice continuously differentiable on ]0,∞[ and satisfies the conditions:

(1) A(0) = 0 and A(x) > 0 for x > 0.
(2) A is increasing and unbounded.
(3) A′(x)

A(x) =
2α+1

x + B(x) on a neighborhood of 0, where α > −1
2 and B is an odd C∞-function on R.

(4) A′(x)
A(x) is a decreasing C∞-function on ]0,∞[ and lim+∞

A′(x)
A(x) = 2ρ ≥ 0.

(5) There exists a constant δ > 0, satisfying
A′(r)

A(r)
= 2ρ + F(r) exp(−δr), for ρ > 0.

A′(r)

A(r)
=

2α + 1
r
+ F(r) exp(−δr), for ρ = 0,
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where F is an infinite function on ]0,∞[, bounded together with all their derivatives on all intervals [r0,∞[,
r0 > 0, [22–24,15,20,21,25,26,10,11,27–30].

From the properties of the function A, we deduce the following results:

Lemma 2.1 ([19]).

(i) For ρ > 0, we have

A(x) ∼ exp(2ρx), (x −→ +∞).

(ii) For ρ = 0, we have

A(x) ∼ x2α+1, (x −→ +∞).

From [23,24,15,20,21,28,29,31,32] we have:

for λ ∈ C the equation

£A u = −λ2u (2.4)

has a unique solution on [0,∞[ satisfying u(0) = 1 and u′(o) = 0, which can be extended on R in an even C∞

function denoted by ϕλ.
In the case of the Bessel operator that is (A(x) = x2α+1), this solution is α(λx), where

ϕλ(x)= α(λx) =


2αΓ (α + 1)
(λx)α

Jα(λx) if λx 6= 0

1 if λx = 0.
(2.5)

In the case of the Jacobi operator that is A(x) = (2 sinh(x))2α+1(2 cosh(x))2β+1, α ≥ β > −1
2 ;

∀x ≥ 0, λ ∈ C; ϕλ(x) = ϕ(α,β)λ (x) = 2 F1

(
1
2
(ρ − iλ),

1
2
(ρ + iλ), α + 1, 1− sinh2 x

)
,

where ρ = α + β + 1 and 2 F1 is the Gauss hypergeometric function.
Eq. (2.4) also has two linear independent solutions φλ and we have

ϕλ(x) = c(λ)φλ(x)+ c(−λ)φ−λ(x),

where c(.) is the Harish-Chandra type function [23,24,15,28,29].

Properties of the eigenfunction ϕλ, [23,24,20,28,29].

We have

• For

ρ = 0,∀r ≥ 0, ϕ0(r) = 1. (2.6)

• For ρ > 0, there exists k > 0 such that

∀r > 0, exp(−ρr) ≤ ϕ0(r) ≤ k(1+ r) exp(−ρr). (2.7)

• For λ ∈ R,

|ϕλ(r)| ≤ ϕ0(r); ∀r ≥ 0. (2.8)

• For all λ ∈ C such that |=m(λ)| ≤ ρ and r ≥ 0 we have

|ϕλ(r)| ≤ 1. (2.9)
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• For all λ ∈ {λ ∈ C; |=m(λ)| ≤ ρ}

sup
r≥0
|ϕλ(r)| = 1. (2.10)

• ∀r > 0,∀λ ∈ C,

ϕλ(r) =
∫ r

0
K (r, u) cos λudu, (2.11)

where K (r, .) is an even positive C∞-function on ] − r, r [ with support in [−r, r ].

• For all s, r ∈ [0,∞[, and λ ∈ C,

ϕλ(r)ϕλ(s) =
∫
+∞

0
w(r, s, t)ϕλ(t)A(t)dt, (2.12)

wherew(r, s, .) is a positive function with support in the interval [|r−s|, r+s] and satisfying the following properties:

(i) ∫
∞

0
w(r, s, t)A(t)dt = 1, (2.13)

(ii) {
ω(r, s, t) = ω(s, r, t), ∀t > 0.
ω(r, s, t) = ω(r, t, s), ∀t > 0.

(2.14)

Proposition 2.1 ([20,21]). There exist constants c1, c2 and c3 such that, for every x ≥ 0 and λ ∈ C, we have

|ϕλ(x)| ≤
c1
√

B(x)
exp(|=mλ|x).

|ϕ′λ(x)| ≤ c2|λ
2
+ ρ2
|

x
√

B(x)
exp(|=mλ|x |).

|ϕ′′λ(x)| ≤ c3|λ
2
+ ρ2
|

(
1+ x

A′(x)

A(x)

)
exp(|=mλ|x)
√

B(x)
.

Proposition 2.2 ([20,21]). There exist analytic functions Ak such that√
A(x)ϕλ(x) =

m∑
k=0

√
x Ak(x)

Jα+k(λx)

λα+k + Rm,λ(x),

where

|Rm,λ(x)| ≤
c1

λα+m+3/2

(∫ x

0
|A′m+1(t)|dt

)
exp

(
c2

λ

∫ x

0
|Q(t)|dt

)
,

with c1 and c2 two constants and

Q(t) = (2α + 1)
B ′(t)

2t B(t)
+

1
2

(
B ′(t)

B(t)

)′
+

1
4

(
B ′(t)

B(t)

)2

− ρ2.

Remark 2.1. From the above result, we can write

ϕλ(x) =
m∑

k=0

ak(x)α+k(λx)+ O

(
1

λα+m+3/2

)
(2.15)
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where

ak(x) =
xk Ak(x)

2α+kΓ (α + k + 1)
√

B(x)
, (2.16)

are continuous functions.

Properties of the Harish-Chandra function, [28].

(i) For λ ∈ R; c(−λ) = c(λ).
(ii) The function λ 7→ |c(λ)|−2 is continuous on [0,∞[ and there exist k1, k2, k3 such that
• ρ ≥ 0, α > −1

2 ,∀λ ∈ C; |λ| > k
k1|λ|

2α+1
≤ |c(λ)|−2

≤ k2|λ|
2α+1,

• ρ > 0, α > −1
2 ,∀λ ∈ C; |λ| ≤ k

k1|λ|
2
≤ |c(λ)|−2

≤ k2|λ|
2,

• ρ = 0, α > 0,∀λ ∈ C; |λ| ≤ k
k1|λ|

2α+1
≤ |c(λ)|−2

≤ k2|λ|
2α+1.

(iii) λ 7→ c(λ) is different from zero on {λ ∈ C∗/=mλ ≤ 0}.
(iv) We suppose also, that the function λ 7−→ c(λ) is C∞ on ]0,∞[ and for all n ∈ N, ( d

dλ )
n
|c(λ)|−2 is different

from zero on ]0,∞[ and there exist pn ∈ N and kn > 0 such that
• ∀λ ≥ 1; ( d

dλ )
n
|c(λ)|−2

≤ kn|λ|
pn ,

• ( d
dλ )

n
|c(λ)|−2 ↪→ anλ

qn ; an ∈ R, qn ∈ Z.

3. Harmonic analysis associated with a generalized system of partial differential operators

In this section we investigate harmonic analysis associated with the system (1.2), we define and study a generalized
Fourier transform and convolution product linked with ∆2,A.

Proposition 3.3. For all (µ, λ) ∈ C2, the system
∆1u(r, x) = −iλu(r, x),
∆2,Au(r, x) = −µ2u(r, x),

u(0, 0) = 1;
∂u

∂r
(0, x) = 0, ∀x ∈ R

(3.17)

has a unique solution given by

ψ(µ,λ)(r, x) = ϕ√
µ2+λ2(r) exp(−iλx),

where ϕν is the eigenfunction of the operator £A such that ϕν(0) = 1 and ϕ′ν(0) = 0.

Proof. Let ψ(µ,λ) be the solution of the system (3.17) and let us put

v(µ,λ)(r, x) = ψ(µ,λ)(r, x) exp(iλx).

Then
∂v(µ,λ)(r, x)

∂x
= 0,

therefore v(µ,λ)(r, x) = w(µ,λ)(r), with{
£Aw(r) = −(µ

2
+ λ2)w(r),

w(0) = 1, w′(0) = 0.

By Eq. (2.4), we have

w(µ,λ)(r) = ϕ√µ2+λ2(r)

which finishes the proof. �
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Remark 3.2. Using the fact that for all (r, x) ∈ R2, |ϕν(r)| ≤ 1, we deduce that for all (µ, λ) ∈ Γ , we have

|ψ(µ,λ)(r,x)| ≤ 1,

where Γ is the set given by

Γ = R2
∪ {(iµ, λ); (µ, λ) ∈ R2

; |µ| ≤ |λ|}. (3.18)

Notation

In the sequel of the paper we denote • dν(r, x) = A(r)drdx .

• X = [0,∞[×R.
• L p

ν (X): The space of measurable functions f on X satisfying

‖ f ‖p,ν =

(∫
X
| f (r, x)|pdν(r, x)

) 1
p

, if 1 ≤ p <∞

and

‖ f ‖∞ = esssup(r,x)∈X | f (r, x)|, if p = ∞.

• dm(µ, λ) = ds(µ)dλ, where ds(µ) = dµ
|c(µ)|2

.

• dγ (µ, λ) the measure defined on Γ , by∫
Γ

f (µ, λ)dγ (µ, λ) =
∫

X
f (µ, λ)µθ(µ, λ)dµdλ+

∫
R

∫
|λ|

0
f (iµ, λ)µθ(iµ, λ)dµdλ,

where θ is the function defined on Γ , by

θ(µ, λ) =
1√

µ2 + |λ|2|c(
√
µ2 + |λ|2)|2

. (3.19)

• L p
m the space of measurable functions f on X satisfying

‖ f ‖p,m =

(∫
X
| f (r, x)|pdm(µ, λ)

) 1
p

<∞, 1 ≤ p <∞

and

‖ f ‖∞,m = ‖ f ‖∞ = esssup(r,x)∈X | f (r, x)| <∞, p = ∞.

• L p,γ the space of measurable functions f on Γ satisfying

‖ f ‖p,γ =

(∫
Γ
| f (µ, λ)|pdγ (µ, λ)

) 1
p

, 1 ≤ p <∞

and

‖ f ‖∞,γ = ‖ f ‖∞ = esssup(µ,λ)∈Γ | f (µ, λ)| <∞, p = ∞.

• ξ∗(R2) the space of infinitely differentiable functions on R2 even with respect to the first variable.

• D∗(R2) the space of C∞ functions on R2, with compact support and even with respect to the first variable.

• H∗(C2) the space of entire functions f : C2
−→ C even with respect to the first variable rapidly decreasing of

exponential type, that is there exists a positive constant M such that for all k ∈ N,

sup
(µ,λ)∈C2

(1+ |µ|2 + |λ|2)k | f (µ, λ)| exp(−=m(µ, λ)M) <∞,
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where

=m(µ, λ) = |=mµ| + |=mλ|.

• H∗,0(C2) the subspace of H∗(C2) consisting of functions f : C2
−→ C such that for all k ∈ N

sup
(µ,λ)∈R2,|µ|≤|λ|

(1− µ2
+ 2|λ|2)k | f (iµ, λ)| <∞.

• H∗(C2) the space of entire functions f : C2
−→ C even with respect to the first variable slowly increasing of

exponential type, that is there exists a positive constant M and an integer k such that

sup
(µ,λ)∈C2

(1+ |µ|2 + |λ|2)−k
| f (µ, λ)| exp(−=m(µ, λ)M) <∞.

•H∗,0(C2) the subspace of H∗(C2) consisting of functions f : C2
−→ C such that there exists k ∈ N

sup
(µ,λ)∈C2,|µ|≤|λ|

(1− µ2
+ 2|λ|2)−k

| f (iµ, λ)| <∞.

• S∗(R2), the space of infinitely differentiable functions on R2, rapidly decreasing together with all their derivatives
even with respect to the first variable;

•

S 2
∗,ρ(R

2) =

{
ϕ0(r)S∗(R2), if ρ > 0
S∗(R2), if ρ = 0.

• S∗(Γ ), the space of functions g : Γ −→ R, even with respect to the first variable, infinitely differentiable and
rapidly decreasing together with all derivatives.

Each of these spaces is equipped with usual topology.

Definition 3.1. The generalized Fourier transform associated with the system (1.2) is defined on L1
ν by

F( f )(µ, λ) =
∫

X
f (r, x)ψ(µ,λ)(r, x)dν(r, x); (µ, λ) ∈ Γ .

Proposition 3.4. For every f ∈ L1
ν , we have

F( f ) = (B ◦ F̃)( f ), (3.20)

where B is the mapping defined on L1
ν by

B f (µ, λ) = f (
√
µ2 + λ2, λ), (µ, λ) ∈ Γ (3.21)

and

F̃( f )(µ, λ) =
∫

X
f (r, x)ϕµ(r) exp(−iλx)dν(r, x), (µ, λ) ∈ R2. (3.22)

Using adequate change of variable, we deduce the following results.

Proposition 3.5. (a) f ∈ L1
m if and only if B f ∈ L1

γ and we have

‖B f ‖1,γ = ‖ f ‖1,m . (3.23)

(b) ∫
Γ

B f (µ, λ)dγ (µ, λ) =
∫

X
f (µ, λ)dm(µ, λ). (3.24)
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Proposition 3.6. (a) B is a linear continuous operator from S∗(R2) into S∗(R2).

(b) B is an isomorphism from S∗(R2) into S∗(Γ ).
(c) B is an isomorphism from L2

m into L2
γ .

(d) B is an isomorphism from H∗(C2) respectively H∗(C2) into H∗,0(C2) respectively H∗,0(C2).

From Proposition 3.5(a) and properties of the generalized Fourier transform associated with £A [23,24,15,28], we
deduce the following theorems.

Theorem 3.1 (Inversion formula for F ). Let f ∈ L1
ν such that F( f ) ∈ L1

γ , then for all almost every (r, x) ∈ X we
have

f (r, x) =
∫
Γ

F( f )(µ, λ)ψ(µ,λ)(r,x)dγ (µ, λ).

Theorem 3.2. (1) Plancherel formula for F : for f ∈ S 2
∗,ρ(R2) we have

‖F( f )‖2,γ = ‖ f ‖2,ν .

(2) Parseval formula for F : for f1, f2 ∈ S 2
∗,ρ(R2) we have∫

X
f1(r, x) f2(r, x)A(r)drdx =

∫
Γ

F( f1)(µ, λ)F( f2)(µ, λ)dγ (µ, λ).

Using Proposition 3.6 and the density of S 2
∗(R2) (resp S∗(Γ )) in L2

A (resp L2
γ ), we have

Theorem 3.3 (of Plancherel). The Fourier transform associated with the system (1.2) can be extended to an isometric
isomorphism from L2

ν onto L2
ν .

Theorem 3.4. (1) (Paley–Wiener theorem): The generalized Fourier F is a topological isomorphism from D∗(R2)

onto H∗,0(C2).

(2) (Schwartz theorem): The Fourier F associated with the system (1.2) is an isomorphism from S 2
∗,ρ(R2) onto

S∗(Γ ).

Now we shall define the generalized shift operator and the convolution product associated with (1.2).
From relation (2.12), we obtain:

for all (µ, λ) ∈ C2, (r, x) ∈ X,

ψ(µ,λ)(r, x) · ψ(µ,λ)(s, y) =
∫
∞

0
w(r, s, t)ψ(µ,λ)(t, x + y)A(t)dt. (3.25)

So we have the following definition.

Definition 3.2. The generalized shift operator associated with the system (1.2) is defined on L1
ν by,

∀(r, x), (s, y) ∈ X,

T(r,x) f (s, y) =


∫
∞

0
w(r, s, t) f (t, x + y)A(t)dt, for r > 0

f (s, y), for r = 0.

Definition 3.3. The convolution product associated with the system (1.2) of f, g in L1
ν is defined by the following

∀(r, x) ∈ X, f ∗ g(r, x) =
∫

X
T(r,−x) f̆ (s, y)g(s, y)dν(s, y), (3.26)

where, f̆ (r, x) = f (r,−x).
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Properties:

(1) ∀(µ, λ) ∈ C2, (r, x) ∈ X , we have

ψµ,λ(r, x)ψµ,λ(s, y) = T(r,x)ψµ,λ(s, y); (3.27)

(2) if f ∈ L p
ν , 1 ≤ p ≤ ∞, then for all (r, x) ∈ X, T(r,x) f belongs to L p

ν , and we have

‖T(r,x) f ‖p,ν ≤ ‖ f ‖p,ν; (3.28)

(3) Let f ∈ L p
ν , p ∈ [1,∞] and g ∈ Lq

ν , q ∈ [1,∞]; then f ∗ g belongs to Lr
ν, r ∈ [1,∞], such that 1

p +
1
q − 1 = 1

r ,
and we have,

‖ f ∗ g‖r,ν ≤ ‖ f ‖p,ν‖g‖q,ν; (3.29)

(4) for all f ∈ L1
ν and (r, x) ∈ X , we have (µ, λ) ∈ Γ ,

F(T(r,−x)( f ))(µ, λ) = ψ(µ,λ)(r, x)F( f )(µ, λ); (3.30)

(5) for f, g ∈ L1
ν

F( f ∗ g)(µ, λ) = F( f )(µ, λ) · F(g)(µ, λ). (3.31)

4. Riemann–Liouville type transform and its dual transform associated with the system of partial differential
operators (1.2)

In this section, using the following Mehler integral representation, (we refer to [33,32])

jα(s) =
Γ (α + 1)

√
ΠΓ (α + 1/2)

∫ 1

−1
(1− t2)α−1/2 exp(−ist)dt (4.32)

of the modified Bessel function jα and by the same techniques as Fitouhi [20,21], we define a generalized
Riemann–Liouville type transform RA and its dual t RA and we give some properties of these operators. In particular
we give a nice estimates of there kernels which we will use in the coming paper to study these operators on weighted
Lebesgue spaces L p, 1 < p <∞.

First, we can see that relation (2.15) allows us to get

ψ(µ,λ)(r, x) = ψ1,(µ,λ)(r, x)+ θ(µ,λ)(r, x),

where

ψ1,(µ,λ)(r, x) =

(
m∑

k=0

ak(r) jα+k(r
√
µ2 + λ2)

)
exp(−iλx)

and

θ(µ,λ)(r, x) = R
m,
√
µ2+λ2(r)A

−1/2(r) exp(−iλx)

with (ak)0≤k≤m , respectively Rm,λ are defined by relation (2.16), respectively Proposition 2.2.

Proposition 4.7. The function ψ1,(µ,λ) has the following Mehler integral representation

ψ1,(µ,λ)(r, x) =



∫ 1

−1

∫ 1

−1
km(r, s, t) cos(µrs

√
1− t2) exp(−iλ(x + r t))dsdt, for α > 0

a0(r)

Π

∫ 1

−1
cos(rµ

√
1− t2) exp(−iλt)

dt
√

1− t2

+

∫ 1

−1

∫ 1

−1
k∗m(r, s, t) cos(µrs

√
1− t2) exp(−iλ(x + r t))dsdt, for α = 0,
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where

km(r, s, t) = (1− t2)α−1/2(1− s2)α−1
m∑

k=0

ak(r)(α + k)

Π
(1− t2)k(1− s2)k

and

k∗m(r, s, t) =
m∑

k=1

kak(r)

Π
(1− t2)k−1/2(1− s2)k−1.

Proof. From the following expansion of the function jα

jα(r) = 2αΓ (α + 1)
Jα(r)

rα
= Γ (α + 1)

∞∑
i=0

(−1)i

i !Γ (α + i + 1)

(r

2

)2i
,

we have

jα+k(r
√
µ2 + λ2) = Γ (α + k + 1)

∞∑
p=0

(−1)p

p!Γ (α + k + p + 1)

(rµ

2

)2p
jα+k+p(rλ).

So relation (4.32), allows us

jα+k(r
√
µ2 + λ2) =

Γ (α + k + 1)
√

ΠΓ (α + k + 1/2)

∫ 1

−1
jα+k−1/2(rµ

√
1− t2)(1− t2)α+k−1/2 exp(−iλr t)dt.

Then

• For α = 0,

ψ1,(µ,λ) = f1(r, x)+ f2(r, x),

where

f1(r, x) = a0(r) j0(r
√
µ2 + λ2) exp(−iλx)

and

f2(r, x) =
m∑

k=1

ak(r) jk(r
√
µ2 + λ2) exp(−iλx).

Thus

f1(r, x) =
a0(r)

Π

∫ 1

−1
j−1/2(rµ

√
1− t2) exp(−iλ(r t + x))

dt
√

1− t2
.

But; j−1/2(x) = cos x , then

f1(r, x) =
a0(r)

Π

∫ 1

−1
cos(rµ

√
1− t2) exp(−iλ(r t + x))

dt
√

1− t2
.

On the other hand

f2(r, x) =
m∑

k=1

ak(r) jk(r
√
µ2 + λ2) exp(−iλx)

=

m∑
k=1

ak(r)Γ (k + 1)

Γ (k + 1
2 )

∫ 1

−1
jk−1/2(rµ

√
1− t2) exp(−iλ(r t + x))(1− t2)k−1/2dt.

So, using again relation (4.32), we get the result for α = 0.

• For α > 0, we obtain the result by the same way as α = 0. This completes the proof. �
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Proposition 4.8. The function defined by

ψ2,(µ,λ)(r, x) = ψ(µ,λ)(r, x)− ψ1,(µ,λ)(r, x)

has the following Mehler integral representation

ψ2,(µ,λ)(r, x) =
∫ ∫

B+r
Sm(r, s, t) cos(sµ) exp(−iλ(t + x))dsdt,

where

• Sm(r, ., .) is continuous function on R2 with support in Br = {(u, v) ∈ R2, u2
+ v2

≤ r2
} even with each variables.

• B+r = {(u, v); u > 0, u2
+ v2 < r2

}.

Proof. The result is obtained by Proposition 2.2, Remark 2.1 and the classical Paley–Wiener theorem [34]. �

Corollary 4.1. The function ψ(µ,λ) has the following integral representation

ψ(µ,λ)(r, x) =



∫ 1

−1

∫ 1

−1
km(r, s, t) cos(µrs

√
1− t2) exp(−iλ(x + r t))dsdt

+

∫ ∫
B+r

Sm(r, s, t) cos(µs) exp(−iλ(x + t))dsdt, for α > 0.

a0(r)

Π

∫ 1

−1
cos(µr

√
1− t2) exp(−iλ(x + r t))

dt
√

1− t2

+

∫ 1

−1

∫ 1

−1
km(r, s, t) cos(µrs

√
1− t2) exp(−iλ(x + r t))dsdt

+

∫ ∫
B+r

Sm(r, s, t) cos(µs) exp(−iλ(x + t))dsdt, for α = 0,

where

km(r, s, t) = (1− t2)α−1/2(1− s2)α−1
m∑

k=0

ak(r)(α + k)

Π
(1− t2)k(1− s2)k

and

k∗m(r, s, t) =
m∑

k=1

kak(r)

Π
(1− t2)k−1/2(1− s2)k−1,

and Sm(r, ., .) is the function defined by Proposition 4.8.

Now, we give some estimates of the kernel Sm .

Theorem 4.5. For α ≥ 0 and a > 0 there exists a positive constant Cα,a such that s2
+ (t − x)2 ≤ r2

; (r, x) ∈
[0, a] × [0, a]

|hm((r, x), (s, t))| ≤ Cα,ar1/2 A(r)−1/2

where

hm((r, x), (s, t)) = Sm((r, s), t − x).

Proof. From the fact that the functions

(s, t) 7→ rα−1/2 A(r)1/2hm((r, x), (s, t))

and

(µ, λ) 7→ rα−1/2 A(r)1/2ψ2,(µ,λ)(r, x)
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are integrable, then by inversion formula for the classical Fourier transform, we have

rα−1/2 A(r)1/2hm((r, x), (s, t)) =
2

Π 2

∫
+∞

0

∫
R

rα−1/2 A(r)1/2ψ2,(µ,λ)(r, x) cos(µs) exp(iλt)dµdλ.

So,

|rα−1/2 A(r)1/2hm((r, x), (s, t))| ≤ I1(r, x)+ I2(r, x),

where

I1(r, x) =
2

Π 2

∫ ∫
{µ2+λ2≤1}

rα−1/2 A(r)1/2|ψ2,(µ,λ)(r, x)|dµdλ

and

I2(r, x) =
2

Π 2

∫ ∫
{µ2+λ2>1}

rα−1/2 A(r)1/2|ψ2,(µ,λ)(r, x)|dµdλ.

• Estimation of I1(r, x).

I1(r, x) =
2

Π 2 r2α−1
∫ ∫

{µ2+λ2<1}
f(µ,λ)(r, x)dµdλ,

where

f(µ,λ)(r, x) = r−α+1/2 A(r)1/2ψ2,(µ,λ)(r, x).

f(µ,λ)(0, x) = 0, then by Taylor formula, we deduce that there exists a positive constant C1(α, a) such that

| f(µ,λ)(r, x)| ≤ C1(α, a)r.

Therefore, there exists a positive constant C2(α, a) satisfying

|I1(r, x)| ≤ C2(α, a)r2α.

• Estimation of I2(r, x).
Proposition 2.2 allows us that

I2(r, x) ≤
2c1

Π 2 rα−1/2 A(r)1/2 A(r)−1/2
∫ ∫

{µ2+λ2>1}

χ(r)

(µ2 + λ2)(2m+2α+3)/4
exp

(
c2

χ̃(r)√
µ2 + λ2

)
,

where

χ(r) =
∫ r

0
A′m+1(t)dt, χ̃(r) =

∫ r

0
Q(t)dt

with

Q(t) = (2α + 1)
B ′(t)

2t B(t)
+

1
2

(
B ′(t)

B(t)

)′
+

1
4

(
B ′(t)

B(t)

)2

− ρ2.

Thus, from the fact that |χ(r)| ≤ r supt∈[0,a] |A
′
m(t)| and by using change of variable, we deduce that there exists a

positive constant C3(α, a)

I2(r, x) ≤ C3(α, a)rα+1/2.

Hence, there exists a positive constant C(α, a) such that

|hm((r, x), (s, t))| ≤ C(α, a)(r1/2+α
+ r)A(r)−1/2,

which completes the proof. �
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Definition 4.4. The generalized Riemann–Liouville type transform associated with 41 and 42,A is the mapping
defined on C∗(R2) (the space of continuous function on R2 even with respect to the first variable) by the following.
For all (r, x) ∈ [0,∞[×R

RA( f )(r, x) =



∫ 1

−1

∫ 1

−1
km(r, s, t) f (rs

√
1− t2, x + r t)dsdt

+

∫ ∫
B+r

Sm(r, s, t) f (s, t + x)dsdt, for α > 0

a0(r)

Π

∫ 1

−1
f (r
√

1− t2, x + r t)
dt

√
1− t2

+

∫ 1

−1

∫ 1

−1
k∗m(r, s, t) f (rs

√
1− t2, x + r t)dsdt

+

∫ ∫
B+r

Sm(r, s, t) f (s, t + x)dsdt, for α = 0.

Remark 4.3. (1) If you make adequate change of variables we obtain

RA( f )(r, x) =



∫ ∫
B+r (0,x)

Nm((r, x)), u, v) f (u, v)dudv, for α > 0

a0(r)

Π

∫ Π /2

−Π /2
f (r cos θ, x + r sin θ)dθ

+

∫ ∫
B+r (0,x)

N∗m((r, x), u, v)dudv, for α = 0,

where

Nm((r, x), u, v) = 1B+r (0,x)

(
2r−2α(r2

− u2
− (v − x)2)α−1

·

m∑
k=0

r−2k(α + k)

Π
ak(r)(r

2
− u2

− (v − x)2)k + Sm(r, u, v − x)

)
(4.33)

and

N∗m((r, x), u, v) = 2
m∑

k=1

kr−2k

Π
ak(r)(r

2
− u2

− (v − x)2)k + Sm(r, u, v − x). (4.34)

(2) ψ(µ,λ)(r, x) = RA
(
cos(µ.) exp(−iλ.)

)
(r, x).

(3) If A(x) = x2α+1
; RA = Rα , with Rα is the integral operator defined in the introduction.

By using Fubini’s theorem we have

Proposition 4.9. For f ∈ C∗(R2) f bounded and g ∈ S 2
∗,ρ(R2), we have∫

X
RA( f )(r, x)g(r, x)dν(r, x) =

∫
X

f (r, x)t RAg(r, x)drdx,

where t RA is an integral operator defined on S 2
∗,ρ(R2), called the dual operator of RA.

Now, we give the connection between the generalized Fourier transform F and the dual operator t RA associated
with the system (1.2).

Proposition 4.10. For every f ∈ S 2
∗,ρ(R2), we have

F( f ) = Λ ◦ t RA( f ), (4.35)



124 N. Alaya, M. Dziri / Transactions of A. Razmadze Mathematical Institute 171 (2017) 111–130

where Λ is a constant multiple of the classical Fourier transform on R2 defined by

Λ( f )(µ, λ) =
∫

X
f (r, x) cos(µr) exp(−iλx)drdx .

Proof. The result is obtained by using Definition 3.1 Remark 4.3(2) and Proposition 4.9. �

In the following, we will give analogous results to Weyl transform in Schwartz spaces, see [28].

Proposition 4.11. (a) The operator t RA associated with the partial differential operators (1.2) is linear and
continuous from S 2

∗,ρ(R2) onto S∗(R2).

(b) t RA is not injective when applied to S 2
∗,ρ(R2).

(c) t RA(S 2
∗,ρ(R2)) = S∗(R2).

Proof. To prove (b) it suffices to consider a function g ∈ S∗(R2) such that supp(g) = {(r, x) ∈ R2
; |r | < |x |} and g 6=

0. Since the Fourier transform F̃ is an isomorphism from S 2
∗(R2) into S∗(R2), then there exists f ∈ S∗(R2); f 6= 0

such that F̃( f ) = g. This result leads us to get F( f ) = 0, this means that there exists f 6= 0 such that Λ◦ t RA( f ) = 0.
Thus the result is deduced from the fact that the Fourier Λ is an isomorphism from S∗(R2) into itself.

The assertion (c) is obtained by using the same techniques as [4, pp. 218]. �

Theorem 4.6. The operator t RA satisfies the following properties:

(1) t RA maps injectively D∗(R2) into itself.
(2) t RA(D∗(R2)) 6= D∗(R2).

In the following we determine subspaces of S∗(R2) and S 2
∗,ρ(R2) on which the Riemann–Liouville type operator

RA and its dual t RA are bijective.

We denote by
• N the subspace of S∗(R2), consisting of functions f satisfying

∀k ∈ N, and x ∈ R,
(
∂ f

∂r2

)k

(0, x) = 0.

• S∗,0(R2), the subspace of S∗(R2), consisting of functions f such that,

∀k ∈ N, and x ∈ R,
∫
+∞

0
f (r, x)r2kdr = 0.

• S 2,0
∗,ρ(R2), the subspace of S 2

∗,ρ(R2), consisting of functions f such that suppF̃( f ) ⊂ {(µ, λ) ∈ R2/|µ| > |λ|}.

It is easy to see that the space N can be written as{
f ∈ S∗(R2),∀k ∈ N,∀x ∈ R,

(
∂ f

∂r

)2k

(0, x) = 0

}
.

Lemma 4.2. The classical Fourier transform Λ is an isomorphism from S∗,0(R2) onto N .

Theorem 4.7. The Fourier transform F associated with the partial differential operator (1.2) is an isomorphism from
S 2,0
∗,ρ(R2) onto N .

To prove this Theorem we need the following lemma.

Lemma 4.3. For f ∈ N , the function g defined by

g(r, x) =

{
f (
√

r2 − x2, x) if |r | > |x |
0 otherwise,

belongs to S∗(R2).
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Proof. Let f ∈ S 2,0
∗,ρ(R2). So, suppF̃( f ) ⊂ {(µ, λ) ∈ R2/|µ| > |λ|}. Then by relation (3.20), we get(

∂

∂µ2

)k

F( f )(0, λ) = B

((
∂

∂µ2

)k

F̃( f )

)
(0, λ) =

(
∂

∂µ2

)k

F̃( f )(|λ|, λ) = 0. (4.36)

This means that for all f ∈ S 2,0
∗,ρ(R2),F( f ) belongs to N .

On the other hand since F is injective then F maps injectively S 2,0
∗,ρ(R2) onto N . To achieve the proof it suffices

to show that F is surjectively, from S 2,0
∗,ρ(R2) onto N . Let h ∈ N and we consider g be a function defined by

g(r, x) =

{
h(
√

r2 − x2, x) if |r | > |x |
0 otherwise.

By Lemma 4.3 we have the function g belongs to S∗,ρ(R2). Therefore, since F̃ is an isomorphism from S 2
∗,ρ(R2)

onto S∗(R2), then there exists f ∈ S 2
∗(R2) such that

F̃( f ) = g. (4.37)

suppF̃( f ) ⊂ {(µ, λ) ∈ R2/|µ| > |λ|}. This result implies that f ∈ S 2,0
∗,ρ(R2). Furthermore, from identities (3.20) and

(4.37) we get, F( f ) = B ◦ F̃( f ) = B(g) = h. Thus F is surjectively operator from S 2,0
∗,ρ(R2) onto N . �

By Lemma 4.2 and Theorem 4.7 we deduce the following result.

Corollary 4.2. The dual transform t RA is an isomorphism from S 2,0
∗,ρ(R2) onto S∗,0(R2).

5. Inversion formula for RA, t RA and Plancherel theorem for t RA

In this section, we will give the inversion formula for RA and its dual by using the following integral transform K1
and K2 defined by

K1( f )(r, x) = Λ−1(h · Λ( f ))(r, x), (5.38)

K2( f )(r, x) = F−1(h · F(g))(r, x), (5.39)

where

h(µ, λ) = Cα|µ|θ(µ, λ),

with

Cα =
Π

2α+1[Γ (α + 2)]2
, α ≥ 0.

We will give inversion formula for RA and t RA.

Theorem 5.8. Let θ be the function defined by relation (3.19) and l ∈ R. Then the mappings

(1)

f −→ s(
√
µ2 + λ2) f,

(2)

f −→ θ(µ, λ) f,

(3)

f −→ |µ|l f

are an isomorphism from N onto itself.
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Proof. Let f ∈ N , ∂
β
x = (

∂
∂x )

β .

By Leibniz formula, we have(
∂

∂r

)m1

∂βx [s(
√

r2 + x2) f ](r, x) =
m1∑

k=0

∑
γ≤β

Ck
mCγ

β Pk(r)Pγ (x)

(
∂s

∂λ2

)γ+k

(
√

r2 + x2)

×

(
∂

∂r

)m1−k

∂
β−γ
x f (r, x), (5.40)

where

Ck
m1
=

m1!

k!(m1 − k)!
,Cγ

β =
β!

γ !(β − γ )!
,(

∂

∂r

)m1−k

f (r, x) = r2
∫ 1

0
(1− t)

(
∂

∂r

)m1−k+2

f (r t, x)dt

= r2
∫
∞

1
(1− t)

(
∂

∂r

)m1−k+2

f (r t, x)dt.

It follows(
∂

∂r

)m1−k

Dβ−γ
x f (r, x) = r2

∫ 1

0
(1− t)

(
∂

∂r

)m1−k+2

∂βx f (r t, x)dt

= −r2
∫
∞

1
(1− t)

(
∂

∂r

)m1−k+2

∂
β−γ
x f (r t, x)dt.

Thus by properties of the Harish-Chandra function we deduce that there exists mγ,k ∈ R such that∣∣∣∣∣
(
∂s

∂λ2

)γ+k

(
√

r2 + x2)

(
∂

∂r

)m1−k

∂
β−γ
x f (r, x)

∣∣∣∣∣
≤ r2(r2

+ x2)mγ,k

∫
∞

1
(1− t)

(
∂

∂r

)m1−k+2

∂
β−γ
x f (r t, x)dt. (5.41)

Then relations (5.40) and (5.41) allow us to get that the function s(
√

r2 + x2) f belongs to N and that the mapping
f −→ s(

√
r2 + x2) f is continuous from N into itself. The inverse mapping is given by

f −→ |c(
√

r2 + x2)|2 f.

The assertions (2) and (3) are obtained by the same way as (1). �

Theorem 5.9. (1) The operator K1 defined by relation (5.38) is an isomorphism from S∗,0(R2) onto itself. (2) The
operator K2 defined by relation (5.39) is an isomorphism from S 2,0

∗,ρ(R2) onto itself.

Proof. The assertion (1) is obtained by Lemma 4.2 and Theorem 5.8. The assertion (2) is obtained by using
Theorems 5.8 and 4.7. �

Theorem 5.10. (1) For all f ∈ S∗,0(R2) and g ∈ S 2,0
∗,ρ(R2) we have the following inversion formula for RA,

g = RA K1
t RA(g), f = K1

t RA RA( f )

(2) For all f ∈ S∗,0(R2) and g ∈ S 2,0
∗,ρ(R2) we have the following inversion formula for t RA,

f = t RA K2 RA( f ), g = K2 RA
t RA(g).

Proof. Let g ∈ S 2,0
∗,ρ(R2). By Theorem 4.7, we have F(g) belongs to N , which implies that, F(g) belongs to

L1(dγ (µ, λ)). Therefore, from the inversion formula for F , we have

g(r, x) =
∫
Γ

F(g)(µ, λ)ψ(µ,λ)(r, x)dγ (µ, λ) = I1(r, x)+ I2(r, x), (5.42)
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where

I1(r, x) =
∫

X
F(g)(µ, λ)ψ(µ,λ)(r, x)µθ(µ, λ)dµdλ

and

I2(r, x) =
∫

R

∫
|λ|

0
F(g)(iµ, λ)ψ(iµ,λ)(r, x)µθ(iµ, λ)dµdλ

=

∫
R

∫
|λ|

0
F̃(g)(

√
|λ2 − µ2|, λ)ψ(iµ,λ)(r, x)µθ(iµ, λ)dµdλ.

But suppF̃(g) ⊂ {(µ, λ) ∈ R2/|µ| > |λ|}, so, we have

∀(r, x) ∈ X, I2(r, x) = 0. (5.43)

We treat next I1(r, x). From Remark 4.3(2) and relation (4.35) we get

I1(r, x) =
∫

X
Λ ◦t RA(g)(µ, λ)RA(cos(µ.) exp(iλ.))(r, x)µθ(µ, λ)dµdλ,

where θ is the function defined by relation (3.19). Therefore, Fubini’s theorem enables us to get

I1(r, x) = RA

(∫
X

µ cos(µ.) exp(iλ.)Λ ◦t RA(g)dµdλ√
µ2 + λ2|c(

√
µ2 + λ2)|2

)
(r, x).

Consequently

I1(r, x) = RA

(
Λ−1

(
Cα

µ√
µ2 + λ2|c(

√
µ2 + λ2)|2

Λ ◦t R A,n(g)

))
(r, x).

This identity shows that,

I1(r, x) = RA ◦K1
t RA(g)(r, x). (5.44)

Thus, by relations (5.42)–(5.44), we deduce that for all g ∈ S 2,0
∗,ρ(R2), we have

g = RA K1
t RA(g). (5.45)

We note that the relation (5.45), allows us to get that RA is an isomorphism from S∗,0(R2) onto S 2,0
∗,ρ(R2) and K1

t RA
is its inverse. In particular, for all f ∈ S∗,0(R2), we have

f = K1
t RA RA( f ). (5.46)

Now, we shall prove the second part of the theorem.

Let f ∈ S∗,0(R2) and g = RA( f ).

From the above note we have g ∈ S 2,0
∗,ρ(R2). Therefore, relation (5.46) implies that

R−1
A (g) = K1

t RA(g).

Thus, from the expression of the operator K1 we obtain

R−1
A (g)(r, x) = Λ−1

(
Cα

|µ|√
µ2 + λ2|c(

√
µ2 + λ2)|2

Λ ◦ t RA(g)

)
(r, x).

This result leads to that

t R−1
A ◦ R−1

A (g)(r, x) = t R−1
A ◦ Λ−1

(
Cα

|µ|√
µ2 + λ2|c(

√
µ2 + λ2)|2

Λ ◦ t RA(g)

)
(r, x).

The result follows from relation (4.35) and Theorem 5.9. �
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In the following we shall state a Plancherel theorem type for the usual transform t RA.

Proposition 5.12. The operator K3 defined by

K3( f )(r, x) = Λ−1

(
Cα|µ|

1
2 (µ2
+ λ2)−

1
4

[
s

(√
µ2 + λ2

)] 1
2

Λ( f )

)
(r, x)

is an isomorphism from S∗,0(R2) onto itself, where s(λ) = |c(λ)|−2.

Proof. The result is obtained by the same way as Theorem 5.9. �

Theorem 5.11. (1) (Plancherel Formula) For f ∈ S 2,0
∗,ρ(R2), we have∫

X
| f (r, x)|2dν(r, x) =

∫
X
|K3(

t R A)( f )(r, x)|2drdx .

(2) (Plancherel theorem) The operator K3 ◦
t R A can be extended to an isometric isomorphism from L2

A,0 onto

L2(X, drdx), where L2
A,0 is the subspace of L2

A consisting of functions f such that

suppF̃( f ) ⊂ {(µ, λ) ∈ R2/|µ| ≥ |λ|}.

Proof. Let f ∈ S 2,0
∗,ρ(R2). By Plancherel Formula for F we have∫

X
| f (r, x)|2dν(r, x) =

∫
Γ
|F( f )(µ, λ)|2dγ (µ, λ) = I1 + I2, (5.47)

where

I1 =

∫
X
|F( f )(µ, λ)|2

|µ|√
µ2 + |λ|2

1

|c(
√
µ2 + λ2)|2

dµdλ

and

I2 =

∫
R

∫
|λ|

0
|F( f )(iµ, λ)|2

|µ|√
λ2 − µ2

1

|c(
√
λ2 − µ2)|2

dµdλ.

First by using the fact that f ∈ S 2,0
∗,ρ(R2), and relations (3.20), (3.21) we have,

I2 =

∫
R

∫
|λ|

0

∣∣∣∣F̃( f )

(√
λ2 − µ2, λ

)∣∣∣∣2 |µ|√
λ2 − µ2

1

|c(
√
λ2 − µ2)|2

dµdλ = 0. (5.48)

Second, (4.35) yields

I1 =

∫
X

∣∣∣∣ |µ| 12 Λ ◦t RA( f )(µ, λ)

(µ2 + λ2)
1
4 |c(

√
µ2 + λ2)

∣∣∣∣2dµdλ.

Therefore identities (5.47), (5.48) and Proposition 5.12 enable us to obtain∫
X
| f (r, x)|2dν(r, x) =

∫
X
|Λ ◦K3(

t RA)( f )|2(µ, λ)dµdλ.

Therefore, the first part of theorem is obtained by using Plancherel formula for the classical Fourier transform on
R2, defined by Theorem 3.2. The second part of theorem follows from Plancherel theorem, Proposition 4.11 and the
density of S∗,0(R2) respectively S 2,0

∗,ρ(R2) in L2(X, drdx) respectively L2
A,0. �

In the following we shall prove that the Riemann–Liouville transform RA and its dual operator are a permutation
and transmutation integral operators.
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Lemma 5.4. For every f ∈ ξ∗(R2) and g ∈ D∗(R2), we have∫
X

∆A( f )(r, x)g(r, x)dν(r, x) =
∫

X
f (r, x)∆A(g)(r, x)dν(r, x).

Theorem 5.12. (1) The integral transform RA is a transmutation operator of ∂2

∂r2 , ∂x , into ∆A, ∂x from S∗,0(R2) onto

S 2,0
∗,ρ(R2).

(2) The dual transform t RA is a transmutation operator of ∆A, ∂x , into ∂2

∂r2 , ∂x from S 2,0
∗,ρ(R2) onto S∗,0(R2).

Proof. First we shall prove that:

t RA(∆A f ) =
∂2

∂r2 (
t RA f ),t RA(∂x f ) = ∂x (

t RA f ), (5.49)

for every f ∈ S 2
∗,ρ(R2)

and

∆A(RA f ) = RA

(
∂2

∂r2 f

)
, RA(∂x f ) = ∂x (RA f ), (5.50)

for every f ∈ ξ∗(R2),

where

∂x =
∂

∂x
,

and

∆A =
∂2

∂r2 +
A′(r)

A(r)

∂

∂r
+ ρ2

− ∂2
x .

It is well known that for all ∂x ,
∂2

∂r2 are continuous mappings from S∗(R2) into itself. Also, we can see that ∆A, ∂x , is

a linear mapping from S 2
∗,ρ(R2) into itself, and that the transform t RA is a linear continuous mapping from S 2

∗,ρ(R2)

into S∗(R2). Thus, by applying the usual Fourier transform Λ, we have

Λ
(t RA(∆A f )

)
(µ, λ) = −µ2 F( f )(µ, λ) = Λ

(
∂2

∂r2 (
t RA f )

)
(µ, λ),

and

Λ
(t RA(∂x f )

)
(µ, λ) = −iλF( f )(µ, λ) = Λ

(
∂x (

t RA f )
)
(µ, λ),

where Λ is the usual Fourier transform on R2. Consequently, (5.49) follows from the fact that Λ is an isomorphism
from S∗(R2) into itself. The result (5.50) is obtained by using (5.49), Lemma 5.4 and Proposition 4.9.

Finally, using (5.49), Corollary 4.2 and the fact that RA is an isomorphism from S∗,0(R2) onto S 2,0
∗,ρ(R2) we deduce

the result. �
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Abstract

Bruckner proved that with exception of a set of first category, all other points of any second category set having Baire property
in the Euclidean plane are points of directional linear categorical density of the set in almost all directions in the sense of category.
In this article, we investigate this result of Bruckner in relation to sets not necessarily having Baire property and with respect to a
more general definition of directional linear categorical density frammed after the pattern originally introduced by Wilczyński for
linear categorical density.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Baire property; Directional linear categorical density; c-thick; c-contained; c-disjoint; c-saturated; Continuum hypothesis

1. Introduction and results

Throughout this paper, we use some standard notations such as
Rn(n ≥ 1) for the Euclidean n-space (n > 1) and R for the Real line.
A \ B for the difference, A∆B for the symmetric difference of sets A and B and χA for the characteristic function

of A
S(x; r) for the open sphere in Rn with centre at x and radius r > 0.
ω1 for the first uncountable ordinal, and
E

y
for the y-section of any set E ⊆ X × Y , where X, Y are any two sets and X × Y represents their Cartesian

product.
We also utilize the standard definition of Baire property of a set in any topological space X as introduced in [3].
Apart from these, we further define E to be c-thick in F , if B ⊆ F \ E(E ⊆ F) and B having Baire-property

implies that B is a set of first category; c-contained in F , c-disjoint from F if B ⊆ E \ F , B ⊆ E ∩ F and B having
Baire property implies that B is a set of first category.
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For ‘Ec-contained in F’ and ‘Ec-disjoint from F’ we use symbols E ⊆
c

F and E ∩c F = ∅ respectively.

Bruckner and Rosenfeld [1] proved that given any measurable set M of positive Lebesgue measure in R2, almost all
points of M are its points of directional linear metric density in almost all directions. More explicitly speaking, there
is a small (in the sense of measure) exceptional set such that each point (x, y) in M and not belonging to this set is a
one-dimensional metric density point in all but a small (in the sense of measure) set of directions. Later Bruckner [2]
showed that the above mentioned result has an analogue for Baire category. He proved that if B is a second category
set having Baire property in R2, then there is a small exceptional set (small in the sense of category) such that each
point (x, y) in B and not in this set is a directional linear categorical density point in all but a small (in the sense of
category) set of directions.

In defining ‘directional linear categorical density’, Bruckner made use of the notion of linear categorical density
as introduced in [2]. But Wilczyński later pointed out that this classical definition of linear categorical density cannot
be regarded as an exact analogue of the definition of linear metric density. In [4], using the idea Riesz convergence
theorem (which describes convergence in measure without using measure), he introduced the notion of I-density point
of any linear set A ∈ S where S is the σ -algebra of the sets having Baire property I is the σ -ideal of first category sets
in R. In defining point of directional linear categorical density of a set in Rn , we utilize this approach of Wilczyński
with the only exception that here we do not assume the sets to possess the property of Baire.

Let Λ
(n)

denote the set of all directions in Rn , i.e. Λ
(n)
= {y = (y1, y2, . . . , yn) ∈ Rn

: ‖y‖ = 1} (where ‖.‖ denotes
the usual norm in Rn). Let Rn

+ = {x = (x1, x2, . . . , xn) ∈ Rn
: xn > 0}, Rn

− = {x = (x1, x2, . . . , xn) ∈ Rn
: xn < 0},

Λ
(n)

+ = {y = (y1, y2, . . . , yn) ∈ Λ
(n)
: yn > 0} i.e. Λ

(n)

− = {y = (y1, y2, . . . , yn) ∈ Λ
(n)
: yn < 0} and write L

(y)

0

to represent the straight line in Rn passing through the origin such that the half line (or, the half ray) L
(y)

0 ∩ Rn
+ has

direction y ∈ Λ
(n)

+ . Now upon setting L
(y)

01
= L

(y)

0
∩ S(0; 1), we define

Definition 1.1. A point x ∈ Rn as a point of directional linear categorical density of a set A ⊆ Rn in the direction
y ∈ Λ

(n)

+ if for every increasing sequence {t j } j (t j ∈ R, t j > 0) tending to infinity, there exists a subsequence {t j
k
}k

such that χ
t j

k
(A−x)∩L(y)

01
−→ χ

L
(y)
01

a.e. (category) which means that the set {z ∈ L
(y)

01
: χ

t j
k
(A−x)∩L(y)

01
(z) 6→ χ

L
(y)
01

(z)}

is a set of first category in L
(y)

01
. Equivalently, L

(y)

01
\ lim inf j→∞ t j (A − x) ∩ L

(y)

01
is a set of first category in L

(y)

01
.

Based on the above definition, we write
A
∗

c
= {x ∈ Rn

: x is a point of directional linear categorical density of A in almost all directions}. Here almost all
is meant in the sense of category or in the topological sense. In other words,

A
∗

c
= {x ∈ Rn

: there exists a set Λx ⊆ Λ
(n)

+ which is residual in Λ
(n)

+ such that x is a point of directional linear
categorical density of A in the direction y for every y ∈ Λx }.

Here we call a set E ⊆ F residual in F if F \ E is a set of first category. The following definition expresses A
∗

c
is

a little more generalized form.

Definition 1.2. Ã
∗

c
= {x ∈ Rn

: there exists a set Λx ⊆ Λ
(n)

+ which is c-thick in Λ
(n)

+ such that x is a point of
directional linear categorical density of A in the direction y for every y ∈ Λx }.

However, based on the above definition of A
∗

c
, we now state and prove a variant formulation of Bruckner’s theorem

applicable for all sets in Rn .

Theorem 1.3. Let A ⊆ Rn . Then for every subset B of A having the Baire property, B⊆
c

A
∗

c
and for every subset B

of Rn
\ A having Baire property, B ∩c A

∗

c
= ∅. Thus, every subset of A having Baire property is c-contained in A

∗

c
,

and every subset of Rn disjoint from A is c-disjoint from A
∗

c
.

Lemma 1.4. Let B be any second category set having Baire property in Rn . Then B \ B
∗

c
is a set of first category.

Proof. According to the hypothesis, we may write B = G∆P where G(6=∅) is open and P is a set of first category.
Now to prove the lemma, it is sufficient to establish that G \ P ⊆ B

∗

c
. Let x ∈ G \ P and {t j } j (t j ∈ R, t j > 0) be an

arbitrary increasing sequence tending to infinity. Now consider the mappings
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τ1 : (0,∞)× Λ
(n)

+ −→ Rn
+ defined by

x1 = r y1

x2 = r y2

...

xn = r+
√

1− y2
1 − y2

2 − · · · − y2
n−1

and τ2 : (0,∞)× Λ
(n)

− −→ Rn
− defined by

x1 = r y1

x2 = r y2

...

xn = r−
√

1− y2
1 − y2

2 − · · · − y2
n−1.

Since both of these mappings are homeomorphisms and (P − x) ∩Rn
+ ∩ S(0; 1), (P − x) ∩Rn

− ∩ S(0; 1) are sets

of first categories in Rn
+, Rn

−, so are the sets τ
−1

1
((P − x) ∩ Rn

+ ∩ S(0; 1)), τ
−1

2
((P − x) ∩ Rn

− ∩ S(0; 1)) sets of first

categories in the product topological spaces (0,∞)×Λ
(n)

+ and (0,∞)×Λ
(n)

− . Similarly, τ
−1

1
((G− x)∩Rn

+ ∩ S(0; 1)),

τ
−1

2
((G− x)∩Rn

− ∩ S(0; 1)) are also open sets in the product spaces (0,∞)×Λ
(n)

+ , (0,∞)×Λ
(n)

− respectively. So by

Kuratowski–Ulam theorem, there exist sets Λ
+
⊆ Λ

(n)

+ , Λ
−
⊆ Λ

(n)

− such that Λ
+

, Λ
−

are residual in Λ
(n)

+ , Λ
(n)

− and for

every y ∈ Λ
+
(resp, y ∈ Λ

−
), (τ

−1

1 {
⋂
∞

k=1
⋃

j≥k t j (P − x) ∩ S(0; 1) ∩ Rn
+})

y
(resp, (τ

−1

2 {
⋂
∞

k=1
⋃

j≥k t j (P − x) ∩

S(0; 1) ∩ Rn
−})

y
) are first category sets in (0,∞).

But τ1[(τ
−1

1 {
⋂
∞

k=1
⋃

j≥k t j (P − x) ∩ S(0; 1) ∩ Rn
+})

y
] =

⋂
∞

k=1
⋃

j≥k t j (P − x) ∩ Rn
+ ∩ L

(y)

01
for y ∈ Λ+

and τ2[(τ
−1

2 {
⋂
∞

k=1
⋃

j≥k t j (P − x) ∩ S(0; 1) ∩ Rn
−})

y
] =

⋂
∞

k=1
⋃

j≥k t j (P − x) ∩ Rn
− ∩ L

(−y)

01
for y ∈ Λ−.

Again, because for some m, S(0; 1
t j
) ⊆ G − x for all j ≥ m,

so (τ
−1

1 {
⋂
∞

k=1
⋃

j≥k{S(0; 1) ∩ Rn
+ \ t j (G − x) ∩ S(0; 1) ∩ Rn

+}})
y
= ∅ for every y ∈ Λ

(n)

+

and (τ
−1

2 {
⋂
∞

k=1
⋃

j≥k{S(0; 1) ∩ Rn
− \ t j (G − x) ∩ S(0; 1) ∩ Rn

−}})
y
= ∅ for every y ∈ Λ

(n)

− .

Therefore, L
(y)

01
∩ Rn
+ \

⋃
∞

k=1
⋂

j≥k t j (G − x) ∩ Rn
+ ∩ L

(y)

01
= τ1[(τ

−1

1 {
⋂
∞

k=1
⋃

j≥k{S(0; 1) ∩ Rn
+ \ t j (G − x) ∩

S(0; 1) ∩ Rn
+}})

y
] = ∅ for y ∈ Λ

(n)

+

and L
(−y)

01
∩Rn
− \

⋃
∞

k=1
⋂

j≥k t j (G− x)∩Rn
−∩ L

(−y)

01
= τ2[(τ

−1

2 {
⋂
∞

k=1
⋃

j≥k{S(0; 1)∩Rn
− \ t j (G− x) ∩ S(0; 1)∩

Rn
−}})

y
] = ∅ for y ∈ Λ

(n)

− .
Now upon setting Λx = {y ∈ Λ+ : −y ∈ Λ−}, we derive that

L
(y)

01
∩ Rn
+\lim inf j→∞ t j (B−x)∩L

(y)

01
∩Rn
+ ⊆

⋂
∞

k=1
⋃

j≥k{L
(y)

01
∩Rn
+\t j (G−x)∩Rn

+∩L
(y)

01
}
⋃
{
⋂
∞

k=1
⋃

j≥k t j (P−

x) ∩ Rn
+ ∩ L

(y)

01
} is a set of first category in L

(y)

01
∩ Rn
+ and likewise

L
(y)

01
∩Rn
−\lim inf j→∞ t j (B−x)∩L

(y)

01
∩Rn
− ⊆

⋂
∞

k=1
⋃

j≥k{L
(y)

01
∩Rn
−\t j (G−x)∩Rn

−∩L
(y)

01
}
⋃
{
⋂
∞

k=1
⋃

j≥k t j (P−

x) ∩ Rn
− ∩ L

(y)

01
} is a set of first category in L

(y)

01
∩ Rn
− for every y ∈ Λx where Λx is residual in Λ

(n)

+ .

Finally, for every y ∈ Λx , L
(y)

01
\ lim inf j→∞ t j (B − x) ∩ L

(y)

01
as a set of first category in L

(y)

01
. Hence G \ P ⊆ B

∗

c
.

This proves the lemma.

Proof of the Theorem 1.3. Let B ⊆ A and B possesses the Baire property. If B is a set of first category, there is
nothing to prove. Otherwise if B is of second category, then by preceding lemma B \ B

∗

c is a set of first category.
Again as B

∗

c ⊆ A
∗

c , therefore B⊆
c

A
∗

c .

Again, let B ∩ A = ∅ and B possesses the property of Baire. If B is of first category, there is nothing to prove.
Otherwise, let B be of second category, and suppose that there is a set C of second category having Baire property
such that C ⊆ B ∩ A

∗

c . But C ⊆
c
(Rn
\ A)

∗

c by the preceding lemma. So there is a point x ∈ A
∗

c ∩ (Rn
\ A)

∗

c
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which means that there exists a set Λx residual in Λ
(n)

+ such that both the sets L
(y)

01
\ lim inf j→∞ t j (A − x) ∩ L

(y)

01
and

L
(y)

01
\ lim inf j→∞ t j ((Rn

\ A)− x) ∩ L
(y)

01
are sets of first category for every y ∈ Λx . But this is a contradiction.

Hence the theorem.
As a direct consequence of Theorem 1.3, we obtain the following corollary.

Corollary 1.5. Let A ⊆ Rn . Then no second category subset of A∆A
∗

c having Baire property can exist which can be
expressed as B = B1 ∪ B2, where B1 ⊆ A \ A

∗

c , B2 ⊆ A
∗

c \ A and both have the property of Baire.

Definition 1.6. A partition {A, B} of Rn by disjoint nonempty sets is called c-admissible if both A and B are c-thick
in Rn . A set which together with its complement in Rn forms a c-admissible partition of Rn is called c-saturated.

Theorem 1.3 (and therefore of Corollary 1.5) is trivially valid for sets that are c-saturated. But unlike that of
Bruckner’s theorem (which states that A∆A

∗

c is a set of first category whenever A possesses the property of Baire),
Theorem 1.3 has little to say regarding the nature of A∆A

∗

c , for in fact for sets lacking the property of Baire, the nature
of A∆A

∗

c can be quite bizarre. Below we give two examples showing that there exist sets E in R2 for which E
∗

c (resp.

Ẽ∗c ) can be c-thick and E∆E
∗

c (resp. E∆Ẽ∗c ) may be c-saturated as well.

Example 1.7. In [3] (Theorem 15.5, Ch15), Oxtoby showed that there exists a set in R2 which meets every second
category Gδ set and no three points of which are collinear. Denoting the complement of this set by E , it is easy to
verify that E

∗

c = R2 and E∆E
∗

c = R2
\ E . Thus E

∗

c is a trivially c-thick and E∆Ẽ∗c is c-saturated in R2.

Example 1.8. Assuming continuum hypothesis, let us arrange the class of second category Gδ sets in R2 in the form of
a well ordering {Fα : α < ω1}. Without any loss of generality, we may assume that each of the families {Fα : α is even}
and {Fα : α is odd} consists of all sets belonging to the entire collection {Fα : α < ω1}. Let {Ωα : α < ω1} be

a well ordering of all second category Gδ sets in [0, π). We now choose a point p0 ∈ F0 , directions θ
(0)

0
∈ Ω0 ,

θ
(0)

1
∈ Ω1 \ {θ

(0)

0
} and straight lines Lθ

(0)

0
p0

, Lθ
(0)

1
p0

through p0 in the directions θ
(0)

0
, θ

(0)

1
such that the sets F0 ∩ Lθ

(0)

0
p0

,

F0∩Lθ
(0)

1
p0

are of second category and a point t
(0)

θ
(0)
0

,p0

(6=p0) ∈ F0∩Lθ
(0)

0
p0

. Next we choose a point p1 ∈ F1 \Lθ
(0)

0
p0
∪Lθ

(0)

1
p0

,

a direction θ
(1)

1
∈ Ω1 \ {θ

(0)

0
, θ

(0)

1
}, a straight line Lθ

(1)

1
p1

through p1 in the direction θ
(1)

1
which does not pass through

p0 , t
(0)

θ
(0)
0

,p0

and for which F1 ∩ Lθ
(1)

1
p1

is a set of second category, and also choose points t
(1)

θ
(0)
0

,p0

(6=p0) ∈ F0 ∩ Lθ
(0)

0
p0

,

t
(1)

θ
(0)
1

,p0

(6=p0) ∈ F0 ∩ Lθ
(0)

1
p0

and t
(1)

θ
(1)
1

,p1

(6=p1) ∈ F1 ∩ Lθ
(1)

1
p1

such that t
(1)

θ
(0)
0

,p0

6∈ Lθ
(0)

0
p0
∩ Lθ

(1)

1
p1

, t
(1)

θ
(0)
1

,p0

6∈ Lθ
(0)

1
p0
∩ Lθ

(1)

1
p1

and

t
(1)

θ
(1)
1

,p1

6∈ Lθ
(0)

0
p0
∩ Lθ

(1)

1
p1
, Lθ

(0)

1
p0
∩ Lθ

(1)

1
p1

.

Thus each of the points lies on exactly one straight line and all the above choices are possible because of
Theorem 1.3 and by virtue of some elementary properties of countable sets.

Now suppose that for any ordinal α < ω1 , we have already selected points pβ ∈ Fβ , lines Lθ
(β)

γ

pβ
through pβ in

the direction θ
(β)

γ
for β < α and β ≤ γ < α such that the sets Fβ ∩ Lθ

(β)

γ

pβ
are of second category and also points

t
(δ)

θ
(β)

γ
,pβ

∈ Fβ ∩ Lθ
(β)

γ

pβ
for γ ≤ δ < α such that the points pβ , t

(δ)

θ
(β)

γ
,pβ

lie on exactly one straight line in the entire

collection {Lθ
(β)

γ

pβ
: 0 ≤ β < α, β ≤ γ < α}. Since we assume continuum hypothesis, so on account of similar

reasonings as referred to in the previous paragraph, we may now select directions θ
(β)

α
∈ Ωα \

⋃
0≤ξ<β

⋃
ξ≤γ≤α{θ

(ξ)

γ
},

straight lines Lθ
(β)

α
pβ

through pβ in the direction θ
(β)

α
such that the set Fβ ∩Lθ

(β)

α
pβ

is of second category and Lθ
(β)

α
pβ

does not
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pass through any point pξ , t
(δ)

θ
(ξ)

γ
,pξ

for 0 ≤ ξ < α, ξ ≤ γ < α and γ ≤ δ < α where ξ 6= β. Further, we select a point

pα ∈ Fα \
⋃

0≤β<α
⋃
β≤γ≤α Lθ

(β)

γ

pβ
, a direction θ

(α)

α
∈ Ωα \

⋃
0≤β<α

⋃
β≤γ≤α θ

(β)

γ
, a straight line Lθ

(α)

α
pα

through pα in

the direction θ
(α)

α
such that the set Fα ∩ Lθ

(α)

α
pα

is of second category and points t
(α)

θ
(β)

γ
,pβ

∈ Fβ ∩ Lθ
(β)

γ

pβ
for 0 ≤ β ≤ γ ≤ α

such that each point lies on exactly one straight line in the entire collection.
Now as any straight line L

θ

p
through some point p in the direction θ can be rotated clockwise with p as fixed so

that it becomes parallel to the x-axis and then properly translated so that it coincides with the x-axis with p as the
origin, each such straight line can be identified with the real line and every point on it with the corresponding real

number. This facilitates choosing points t
(α)

θ
(β)

γ
,pβ

on the line Lθ
(β)

γ

pβ
according to the following rule:

t
(α)

θ
(β)

γ
,pβ

∈ Lθ
(β)

γ

pβ
\ {r

−1

η
rσ t

(δ)

θ
(β)

γ
,pβ

: γ ≤ η, σ ≤ α} where R = {rα : 0 ≤ α < ω1} can be considered as a well

ordering of the set of all real numbers. We now set E = {R2
\ {pβ , t

(α)

θ
(β)

γ
,pβ

: 0 ≤ α < ω1 , β ≤ γ < ω1 , γ ≤ α <

ω1}} ∪ {pβ : β is even}. Then E is c-saturated and hence without the property of Baire. Moreover, it is easy to see that

Ẽ∗
c

is c-thick and E 4 Ẽ∗
c

is c-saturated.

Remark 1.9. In proving the categorical directional density theorem, Bruckner [2] used Kuratowski–Ulam theorem
(a category analogue of Luzin’s theorem) in the product space B × [0, π), where B is a set with Baire property
in R2. But this technique of Bruckner is not applicable in the present situation, because in framming the definition
of directional linear categorical density point in Rn , we have used the approach of Wilczyńsky instead of using the
classical definition as given in [2]. This is the reason why we use here the Kuratowski–Ulam theorem separately in
the product spaces (0,∞) × Λ

(n)

+ , (0,∞) × Λ
(n)

− and also the homeomorphisms τ1 and τ2 . However, we are not sure
whether our process could be replicated in the measure theoretic case.
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1. Introduction

Let f : [a, b] → R be a differentiable mapping on (a, b) whose derivative f ′
: (a, b) → R is bounded on (a, b),

i.e.
 f ′


∞

:= supt∈(a,b)

⏐⏐ f ′(t)
⏐⏐ < ∞. Then, we have the inequality⏐⏐⏐⏐ f (x) −

1
b − a

∫ b

a
f (t)dt

⏐⏐⏐⏐ ≤

[
1
4

+

(
x −

a+b
2

)2

(b − a)2

]
(b − a)

 f ′


∞
, (1.1)

for all x ∈ [a, b] [1]. The constant 1
4 is the best possible. This inequality is well known in the literature as the Ostrowski

inequality.
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Definition 1. Let P : a = x0 < x1 < · · · < xn = b be any partition of [a, b] and let ∆ f (xi ) = f (xi+1) − f (xi ).
Then f (x) is said to be of bounded variation if the sum

m∑
i=1

|∆ f (xi )|

is bounded for all such partitions. Let f be of bounded variation on [a, b], and
∑

(P) denotes the sum
∑n

i=1 |∆ f (xi )|
corresponding to the partition P of [a, b]. The number

b⋁
a

( f ) := sup
{∑

(P) : P ∈ P([a, b])
}

,

is called the total variation of f on [a, b]. Here P([a, b]) denote the family of partitions of [a, b].

In [2], Dragomir proved the following Ostrowski type inequalities for functions of bounded variation:

Theorem 1. Let f : [a, b] → R be a mapping of bounded variation on [a, b]. Then⏐⏐⏐⏐∫ b

a
f (t)dt − (b − a) f (x)

⏐⏐⏐⏐ ≤

[
1
2

(b − a) +

⏐⏐⏐⏐x −
a + b

2

⏐⏐⏐⏐] b⋁
a

( f ) (1.2)

holds for all x ∈ [a, b]. The constant 1
2 is the best possible.

Dragomir gave the following trapezoid inequality in [3]:

Theorem 2. Let f : [a, b] → R be a mapping of bounded variation on [a, b]. Then we have the inequality⏐⏐⏐⏐ f (a) + f (b)
2

(b − a) −

∫ b

a
f (t)dt

⏐⏐⏐⏐ ≤
1
2

(b − a)

b⋁
a

( f ). (1.3)

The constant 1
2 is the best possible.

We introduce the notation In : a = x0 < x1 < · · · < xn = b for a division of the interval [a, b] with hi := xi+1 − xi

and v(h) = max {hi : i = 0, 1, . . . , n − 1}. Then we have∫ b

a
f (t)dt = AT ( f, In) + RT ( f, In) (1.4)

where

AT ( f, In) :=

n∑
i=0

f (xi ) + f (xi+1)
2

hi (1.5)

and the remainder term satisfies

|RT ( f, In)| ≤
1
2
v(h)

b⋁
a

( f ). (1.6)

In [4], Dragomir proved the following companion Ostrowski type inequalities related functions of bounded
variation:
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Theorem 3. Assume that the function f : [a, b] → R is of bounded variation on [a, b]. Then we have the
inequalities:⏐⏐⏐⏐12 [ f (x) + f (a + b − x)] −

1
b − a

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤

1
b − a

[
(x − a)

x⋁
a

( f ) +

(
a + b

2
− x

) a+b−x⋁
x

( f ) + (x − a)

b⋁
a+b−x

( f )

]

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1
4

+

⏐⏐⏐⏐⏐ x −
3a+b

4

b − a

⏐⏐⏐⏐⏐
]

b⋁
a

( f ),[
2
(

x − a
b − a

)α

+

(
a+b

2 − x
b − a

)α] 1
α

×

⎡⎣[ x⋁
a

( f )

]β

+

[
a+b−x⋁

x

( f )

]β

+

[
b⋁

a+b−x

( f )

]β
⎤⎦ 1

β

, if α > 1,
1
α

+
1
β

= 1,

[
x − a +

b−a
2

b − a

]
max

{
x⋁
a

( f ),
a+b−x⋁

x

( f ),
b⋁

a+b−x

( f )

}
(1.7)

for any x ∈
[
a, a+b

2

]
where

⋁d
c ( f ) denotes the total variation of f on [c, d]. The constant 1

4 is the best possible in
the first branch of second inequality in (1.7).

For recent results concerning the above Ostrowski’s inequality and other related results see [1–26].
In this work, we obtain a new companion of Ostrowski type integral inequalities for functions of bounded variation.

Then we give some applications for our results.

2. Main results

Now, we give a new companion of Ostrowski type integral inequalities for functions of bounded variation:

Theorem 4. Let f : [a, b] → R be a mapping of bounded variation on [a, b]. Then, we have the inequality⏐⏐⏐⏐b − a
4

[
f (x) + f (a + b − x) + f

(
a + x

2

)
+ f

(
a + 2b − x

2

)]
−

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤ max

{⏐⏐⏐⏐x −
3a + b

4

⏐⏐⏐⏐ ,(a + b
2

− x
)

,
x − a

2

} b⋁
a

( f ) (2.1)

where x ∈
[
a, a+b

2

]
and

⋁d
c ( f ) denotes the total variation of f on [c, d] .

Proof. Consider the kernel P(x, t) defined by Qayyum et al. in [7]

P(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t − a, t ∈

[
x,

a + x
2

]
t −

3a + b
4

, t ∈

(
a + x

2
, x
]

t −
a + b

2
, t ∈ (x, a + b − x]

t −
a + 3b

4
, t ∈

(
a + b − x,

a + 2b − x
2

]
t − b, t ∈

[
a + 2b − x

2
, b
]

.
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Integrating by parts, we get∫ b

a
P(x, t)d f (t) =

b − a
4

[
f (x) + f (a + b − x) + f

(
a + x

2

)
+ f

(
a + 2b − x

2

)]
−

∫ b

a
f (t)dt. (2.2)

It is well known that if g, f : [a, b] → R are such that g is continuous on [a, b] and f is of bounded variation on
[a, b], then

∫ b
a g(t)d f (t) exists and⏐⏐⏐⏐∫ b

a
g(t)d f (t)

⏐⏐⏐⏐ ≤ sup
t∈[a,b]

|g(t)|
b⋁
a

( f ). (2.3)

On the other hand, by using (2.3), we get⏐⏐⏐⏐∫ b

a
P(x, t)d f (t)

⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐
∫ a+x

2

a
(t − a) d f (t)

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐
∫ x

a+x
2

(
t −

3a + b
4

)
d f (t)

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐∫ a+b−x

x

(
t −

a + b
2

)
d f (t)

⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ a+b−x

2

a+b−x

(
t −

a + 3b
4

)
d f (t)

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐
∫ b

a+b−x
2

(t − b) d f (t)

⏐⏐⏐⏐⏐
≤ sup

t∈[a, a+x
2 ]

|t − a|

a+x
2⋁
a

( f ) + sup
t∈[ a+x

2 ,x]

⏐⏐⏐⏐t −
3a + b

4

⏐⏐⏐⏐ x⋁
a+x

2

( f ) + sup
t∈[x,a+b−x]

⏐⏐⏐⏐t −
a + b

2

⏐⏐⏐⏐ a+b−x⋁
x

( f )

+ sup
t∈
[
a+b−x, a+2b−x

2

]
⏐⏐⏐⏐t −

a + 3b
4

⏐⏐⏐⏐
a+2b−x

2⋁
a+b−x

( f ) + sup
t∈
[

a+2b−x
2 ,b

] |t − b|

b⋁
a+2b−x

2

( f )

=
x − a

2

a+x
2⋁
a

( f ) + max
{⏐⏐⏐⏐x −

3a + b
4

⏐⏐⏐⏐ , 1
2

(
a + b

2
− x

)} x⋁
a+x

2

( f ) +

(
a + b

2
− x

) a+b−x⋁
x

( f )

+ max
{⏐⏐⏐⏐x −

3a + b
4

⏐⏐⏐⏐ , 1
2

(
a + b

2
− x

)} a+2b−x
2⋁

a+b−x

( f ) +
x − a

2

b⋁
a+2b−x

2

( f )

≤ max
{⏐⏐⏐⏐x −

3a + b
4

⏐⏐⏐⏐ ,(a + b
2

− x
)

,
x − a

2

} b⋁
a

( f ).

This completes the proof. □

Remark 1. If we choose x = a in Theorem 4, the inequality (2.1) reduces the inequality (1.3).

Corollary 1. Under the assumption of Theorem 4 with x =
a+b

2 , then we have the following inequality⏐⏐⏐⏐b − a
4

[
2 f
(

a + b
2

)
+ f

(
3a + b

4

)
+ f

(
a + 3b

4

)]
−

∫ b

a
f (t)dt

⏐⏐⏐⏐ ≤
1
4

(b − a)
b⋁
a

( f ). (2.4)

The constant 1
4 is the best possible.

Proof. For proof of the sharpness of the constant, assume that (2.4) holds with a constant A > 0, that is,⏐⏐⏐⏐b − a
4

[
2 f
(

a + b
2

)
+ f

(
3a + b

4

)
+ f

(
a + 3b

4

)]
−

∫ b

a
f (t)dt

⏐⏐⏐⏐ ≤ A(b − a)
b⋁
a

( f ). (2.5)
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If we choose f : [a, b] → R with

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x ∈

{
a + b

2
,

3a + b
4

,
a + 3b

4

}
0, if x ∈ [a, b] /

{
a + b

2
,

3a + b
4

,
a + 3b

4

}
then f is of bounded variation on [a, b], and

2 f
(

a + b
2

)
+ f

(
3a + b

4

)
+ f

(
a + 3b

4

)
= 4,

∫ b

a
f (t)dt = 0, and

b⋁
a

( f ) = 4,

giving in (2.5), 1 ≤ 4A, thus A ≥
1
4 . □

Corollary 2. Under the assumption of Theorem 4 with x =
3a+b

4 , then we get the inequality⏐⏐⏐⏐b − a
4

[
f
(

3a + b
4

)
+ f

(
a + 3b

4

)
+ f

(
7a + b

8

)
+ f

(
a + 7b

8

)]
−

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤

1
8

(b − a)
b⋁
a

( f ). (2.6)

The constant 1
8 is the best possible.

Proof. For proof of the sharpness of the constant, assume that (3.4) holds with a constant B > 0, that is,⏐⏐⏐⏐b − a
4

[
f
(

3a + b
4

)
+ f

(
a + 3b

4

)
+ f

(
7a + b

8

)
+ f

(
a + 7b

8

)]
−

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤ B(b − a)

b⋁
a

( f ). (2.7)

If we choose f : [a, b] → R with

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x ∈

{
3a + b

4
,

a + 3b
4

,
7a + b

8
,

a + 7b
8

}
0, if x ∈ [a, b] /

{
3a + b

4
,

a + 3b
4

,
7a + b

8
,

a + 7b
8

}
then f is of bounded variation on [a, b], and

f
(

3a + b
4

)
+ f

(
a + 3b

4

)
+ f

(
7a + b

8

)
+ f

(
a + 7b

8

)
= 4,∫ b

a
f (t)dt = 0, and

b⋁
a

( f ) = 8,

giving in (2.7), 1 ≤ 8B, thus B ≥
1
8 . □

Corollary 3. Let f be defined as in Theorem 4, and, additionally, if f (x) = f (a + b − x) , then we have⏐⏐⏐⏐b − a
4

[
2 f (x) + f

(
a + x

2

)
+ f

(
a + 2b − x

2

)]
−

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤ max

{⏐⏐⏐⏐x −
3a + b

4

⏐⏐⏐⏐ ,(a + b
2

− x
)

,
x − a

2

} b⋁
a

( f ). (2.8)



H. Budak, M.Z. Sarikaya / Transactions of A. Razmadze Mathematical Institute 171 (2017) 136–143 141

Corollary 4. If we choose x = a in Corollary 3, then we have the inequality⏐⏐⏐⏐3 f (a) + f (b)
4

(b − a) −

∫ b

a
f (t)dt

⏐⏐⏐⏐ ≤
1
2

(b − a)

b⋁
a

( f ).

The constant 1
2 is the best possible.

The sharpness of the constant can be proved similarly Corollaries 1 and 2, so it is omitted.

Corollary 5. Under the assumption of Theorem 4, suppose that f ∈ C1 [a, b]. Then we have⏐⏐⏐⏐b − a
4

[
f (x) + f (a + b − x) + f

(
a + x

2

)
+ f

(
a + 2b − x

2

)]
−

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤ max

{⏐⏐⏐⏐x −
3a + b

4

⏐⏐⏐⏐ ,(a + b
2

− x
)

,
x − a

2

} f ′


1

for all x ∈
[
a, a+b

2

]
. Here as subsequently ∥.∥1 is the L1-norm f ′


1 :=

∫ b

a
f ′(t)dt.

Corollary 6. Under the assumption of Theorem 4, let f : [a, b] → R be a Lipschitzian with the constant L > 0.
Then ⏐⏐⏐⏐b − a

4

[
f (x) + f (a + b − x) + f

(
a + x

2

)
+ f

(
a + 2b − x

2

)]
−

∫ b

a
f (t)dt

⏐⏐⏐⏐
≤ max

{⏐⏐⏐⏐x −
3a + b

4

⏐⏐⏐⏐ ,(a + b
2

− x
)

,
x − a

2

}
(b − a) L

for all x ∈
[
a, a+b

2

]
.

3. Application to quadrature formula

We now introduce the intermediate points ξi ∈

[
xi ,

xi +xi+1
2

]
(i = 0, 1, . . . , n − 1) in the division In : a = x0 <

x1 < · · · < xn = b. Let hi := xi+1 − xi and v(h) = max {hi : i = 0, 1, . . . , n − 1} and define the sum

A( f, In, ξ ) :=
1
4

n∑
i=0

hi

[
f (ξi ) + f (xi + xi+1 − ξi ) + f

(
xi + ξi

2

)
+ f

(
xi + 2xi+1 − ξi

2

)]
. (3.1)

Then the following theorem holds:

Theorem 5. Let f be as Theorem 4. Then∫ b

a
f (t)dt = A( f, In, ξ ) + R( f, In, ξ ) (3.2)

where A( f, In, ξ ) is defined as above and the remainder term R( f, In, ξ ) satisfies

|R( f, In, ξ )| ≤ max
i∈{0,1,...,n−1}

[
max

{⏐⏐⏐⏐ξi −
3xi + xi+1

4

⏐⏐⏐⏐ ,( xi + xi+1

2
− ξi

)
,
ξi − xi

2

}] b⋁
a

( f ). (3.3)

Proof. Applying Theorem 4 to the interval
[
xi , xi+1

]
(i = 0, 1, . . . , n − 1), we have⏐⏐⏐⏐hi

4

[
f (ξi ) + f (xi + xi+1 − ξi ) + f

(
xi + ξi

2

)
+ f

(
xi + 2xi+1 − ξi

2

)]
−

∫ xi+1

xi

f (t)dt
⏐⏐⏐⏐

≤ max
{⏐⏐⏐⏐ξi −

3xi + xi+1

4

⏐⏐⏐⏐ ,( xi + xi+1

2
− ξi

)
,
ξi − xi

2

} xi+1⋁
xi

( f ) (3.4)
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for all i ∈ {0, 1, . . . , n − 1}. Summing the inequality (3.4) over i from 0 to n − 1 and using the generalized triangle
inequality, we have

|R( f, In, ξ )| ≤

n∑
i=0

max
{⏐⏐⏐⏐ξi −

3xi + xi+1

4

⏐⏐⏐⏐ ,( xi + xi+1

2
− ξi

)
,
ξi − xi

2

} xi+1⋁
xi

( f )

≤ max
i∈{0,1,...,n−1}

[
max

{⏐⏐⏐⏐ξi −
3xi + xi+1

4

⏐⏐⏐⏐ ,( xi + xi+1

2
− ξi

)
,
ξi − xi

2

}] n∑
i=0

xi+1⋁
xi

( f )

= max
i∈{0,1,...,n−1}

[
max

{⏐⏐⏐⏐ξi −
3xi + xi+1

4

⏐⏐⏐⏐ ,( xi + xi+1

2
− ξi

)
,
ξi − xi

2

}] b⋁
a

( f )

which completes the proof. □

Remark 2. If we choose ξi = xi in Theorem 5, we get (1.4) with (1.5) and (1.6).

Corollary 7. If we choose ξi =
xi +xi+1

2 in Theorem 5, then we have∫ b

a
f (t)dt = A( f, In) + R( f, In)

where

A( f, In) :=
1
4

n∑
i=0

hi

[
2 f
(

xi + xi+1

2

)
+ f

(
3xi + xi+1

2

)
+ f

(
xi + 3xi+1

2

)]
and the remainder term R( f, In) satisfies

|R( f, In)| ≤
1
4
v(h)

b⋁
a

( f ).

Corollary 8. If we choose ξi =
3xi +xi+1

4 in Theorem 5, then we have∫ b

a
f (t)dt = A( f, In) + R( f, In)

where

A( f, In) :=
1
4

n∑
i=0

hi

[
f
(

3xi + xi+1

2

)
+ f

(
xi + 3xi+1

2

)
+ f

(
7xi + xi+1

8

)
+ f

(
xi + 7xi+1

8

)]
and the remainder term R( f, In) satisfies

|R( f, In)| ≤
1
8
v(h)

b⋁
a

( f ).

References

[1] A.M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10 (1938)
226–227.

[2] S.S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. 4 (1)
(2001) 59–66.

[3] S.S. Dragomir, On trapezoid quadrature formula and applications, Kragujevac J. Math. 23 (2001) 25–36.
[4] S.S. Dragomir, A companion of Ostrowski’s inequality for functions of bounded variation and applications, Int. J. Nonlinear Anal. Appl. 5 (1)

(2014) 89–97.
[5] M.W. Alomari, A generalization of weighted companion of Ostrowski integral inequality for mappings of bounded variation, RGMIA Res.

Rep. Collect. 14 (2011) Article 87, 11 pp.
[6] K.-L. Tseng, Improvements of the Ostrowski integral inequality for mappings of bounded variation II, Appl. Math. Comput. 218 (2012)

5841–5847.



H. Budak, M.Z. Sarikaya / Transactions of A. Razmadze Mathematical Institute 171 (2017) 136–143 143

[7] A. Qayyum, M. Shoaib, I. Faye, A companion of Ostrowski type integral inequality using a 5-step kernel with some applications, Filomat
(2017) in press.

[8] M.W. Alomari, M.A. Latif, Weighted companion for the Ostrowski and the generalized trapezoid inequalities for mappings of bounded
variation, RGMIA Res. Rep. Collect. 14 (2011) Article 92, 10 pp.

[9] M.W. Alomari, A generalization of dragomir’s generalization of Ostrowski integral inequality and applications in numerical integration,
Ukrainian Math. J. 6 (4) (2012).

[10] H. Budak, M.Z. Sarikaya, On generalization of Dragomir’s inequalities, RGMIA Res. Rep. Collect. 17 (2014) Article 155, 10 pp.
[11] H. Budak, M.Z. Sarikaya, New weighted Ostrowski type inequalities for mappings with first derivatives of bounded variation, Transylv. J.

Math. Mech. 8 (1) (2016) 21–27.
[12] H. Budak, M.Z. Sarikaya, A new generalization of Ostrowski type inequality for mappings of bounded variation, RGMIA Res. Rep. Collect.

18 (2015) Article 47, 9 pp.
[13] H. Budak, M.Z. Sarikaya, On generalization of weighted Ostrowski type inequalities for functions of bounded variation, RGMIA Res. Rep.

Collect. 18 (2015) Article 51, 11 pp.
[14] P. Cerone, W.S. Cheung, S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and

integrators of bounded variation, Comput. Math. Appl. 54 (2007) 183–191.
[15] P. Cerone, S.S. Dragomir, C.E.M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turkish J. Math. 24 (2000)

147–163.
[16] S.S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull. Aust. Math. Soc. 60 (1) (1999) 495–508.
[17] S.S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J. Math. 22 (2000)

13–19.
[18] S.S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation, Arch. Math. (Basel)

91 (5) (2008) 450–460.
[19] S.S. Dragomir, E. Momoniat, A three point quadrature rule for functions of bounded variation and applications, RGMIA Res. Rep. Collect.

14 (2011) Article 33, 16 pp.
[20] S.S. Dragomir, Some perturbed Ostrowski type inequalities for functions of bounded variation, RGMIA Res. Rep. Collect. 16 (2013) Art. 93

Preprint.
[21] W. Liu, Y. Sun, A refinement of the companion of Ostrowski inequality for functions of bounded variation and applications, 2012, arXiv:

1207.3861v1.
[22] Z. Liu, Some companion of an Ostrowski type inequality and application, JIPAM 10 (2) (2009) Article 52, 12 pp.
[23] K.-L. Tseng, G.-S. Yang, S.S. Dragomir, Generalizations of weighted trapezoidal inequality for mappings of bounded variation and their

applications, Math. Comput. Modelling 40 (2004) 77–84.
[24] K.-L. Tseng, Improvements of some inequalites of Ostrowski type and their applications, Taiwanese J. Math. 12 (9) (2008) 2427–2441.
[25] K.-L. Tseng, S.-R. Hwang, G.-S. Yang, Y.-M. Chou, Improvements of the Ostrowski integral inequality for mappings of bounded variation I,

Appl. Math. Comput. 217 (2010) 2348–2355.
[26] K.-L. Tseng, S.-R. Hwang, G.-S. Yang, Y.-M. Chou, Weighted Ostrowski integral inequality for mappings of bounded variation, Taiwanese J.

Math. 15 (2) (2011) 573–585.



Available online at www.sciencedirect.com

ScienceDirect

Transactions of A. Razmadze Mathematical Institute 171 (2017) 144–166
www.elsevier.com/locate/trmi

Original Article

Fractional integrals and solution of fractional kinetic equations
involving k-Mittag-Leffler function

Mehar Chanda, Jyotindra C. Prajapatib,∗, Ebenezer Bonyahc,d

a Department of Applied Sciences, Guru Kashi University, Bathinda-1513002, India
b Department of Mathematics, Marwadi University, Rajkot-Morbi Highway, Rajkot 360003, Gujarat, India

c Department of Mathematics and Statistics, Kumasi Technical University, Kumasi, Ghana
d Department of Mathematics, Vaal University of Technology, Vanderbijlpark, Gauteng, South Africa

Received 31 December 2016; received in revised form 16 March 2017; accepted 19 March 2017
Available online 18 April 2017

Abstract

In this paper, our main objective is to establish certain new fractional integral by applying the Saigo hypergeometric fractional
integral operators and by employing some integral transforms on the resulting formulas, we presented their image formulas
involving the product of the generalized k-Mittag-Leffler function. Furthermore, We develop a new and further generalized form
of the fractional kinetic equation involving the product of the generalized k-Mittag-Leffler function. The manifold generality of
the generalized k-Mittag-Leffler function is discussed in terms of the solution of the fractional kinetic equation and their graphical
interpretation is interpreted in the present paper. The results obtained here are quite general in nature and capable of yielding a very
large number of known and (presumably) new results.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: k-Pochhammer symbol; k-gamma function; Generalized k-Mittag-Leffler function; Laplace transform; Fractional kinetic equations;
MATLAB

1. Introduction and preliminaries

In 2006, Diaz and Pariguan [1] introduced the k-Pochhammer symbol and k-gamma function defined as follows:

(γ )n,k :=

⎧⎨⎩
Γk(γ + nk)

Γk(γ )
(k ∈ R; γ ∈ C \ {0})

γ (γ + k)...(γ + (n − 1)k) (n ∈ N; γ ∈ C),
(1.1)
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and the relation with the classical Euler’s gamma function as:

Γk(γ ) = k
γ
k −1Γ

(γ

k

)
(1.2)

where γ ∈ C, k ∈ R and n ∈ N.
When k = 1, (1.1) reduces to the classical Pochhammer symbol and Euler’s gamma function respectively.
Also let γ ∈ C, k, s ∈ R, then the following identity holds

Γs(γ ) =

( s
k

) γ
s −1

Γk

(
kγ

s

)
, (1.3)

in particular,

Γk(γ ) = k
γ
k −1Γ

(γ

k

)
, (1.4)

Further, let γ ∈ C, k, s ∈ R and γ ∈ C, then the following identity holds

(γ )nq,s =

( s
k

)nq
(

kγ

s

)
nq

, (1.5)

in particular,

(γ )nq,k = (k)nq
(γ

k

)
nq

, (1.6)

For more details of k-Pochhammer symbol, k-special function and fractional Fourier transform one can refer to the
papers by Romero et al. [2,3].

Let k ∈ R, α, β, γ ∈ C; ℜ(α) > 0, ℜ(β) > 0, ℜ(γ ) > 0 and q ∈ R+, then the generalized k-Mittag-Leffler
function, denoted by Eγ,q

k,α,β(z), is defined as

Eγ,q
k,α,β(z) =

∞∑
n=0

(γ )nq,k zn

Γk(nα + β)n!
(1.7)

where (γ )nq,k denotes the k-Pochhammer symbol given by Eq. (1.6) and Γk(γ ) is the k-gamma function given by
Eq. (1.4) (also see [4]).

Particular cases of Eγ,q
k,α,β(z)

(i) For q = 1, Eq. (1.7) yields k-Mittag-Leffler function (Dorrego and Cerutti [5]), defined as:

Eγ,1
k,α,β(z) =

∞∑
n=0

(γ )n,k zn

Γk(nα + β)n!
= Eγ

k,α,β(z) (1.8)

(ii) For k = 1, Eq. (1.7) yields Mittag-Leffler function, defined as (Shukla and Prajapati [6])

Eγ,q
1,α,β(z) =

∞∑
n=0

(γ )nq zn

Γ (nα + β)n!
= Eγ,q

α,β (z), (1.9)

(iii) For q = 1 and k = 1, Eq. (1.7) gives Mittag-Leffler function, defined as (Dorrego and Cerutti [5])

Eγ,1
1,α,β(z) =

∞∑
n=0

(γ )nzn

Γ (nα + β)n!
= Eγ

α,β(z) (1.10)

(iv) For q = 1, k = 1 and γ = 1, Eq. (1.7) gives Mittag-Leffler function (Wiman [?]), defined as

E1,1
1,α,β(z) =

∞∑
n=0

zn

Γ (nα + β)
= Eα,β(z) (1.11)

(v) For q = 1, k = 1, γ = 1 and β = 1, Eq. (1.7) gives Mittag-Leffler function (Mittag-Leffler [7]), defined as

E1,1
1,α,1(z) =

∞∑
n=0

zn

Γ (nα + 1)
= Eα(z). (1.12)
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The results given by Kiryakova [8], Miller and Ross [9], Srivastava et al., [10] can be referred for some basic
results on fractional calculus. The Fox–Wright function pΨq is defined as (see, for details, Srivastava and Karlsson
1985, [11])

pΨq [z] = pΨq

[
(a1, α1), . . . , (ap, αp);
(b1, β1), . . . , (bq , βq );z

]
= pΨq

[
(ai , αi )1,p;

(b j , β j )1,q;
z
]

=

∞∑
n=0

∏p
i=1 Γ (ai + αi n)∏q
j=1 Γ (b j + β j n)

zn

n!
,

(1.13)

where the coefficients α1, . . . , αp, β1, . . . , βq ∈ R+ such that

1 +

q∑
j=1

β j −

p∑
i=1

αi ≥ 0. (1.14)

2. Fractional integration

In this section, we will establish some fractional integral formulas for the generalized k-Mittag-Leffler function.
To do this, we need to recall the following pair of Saigo hypergeometric fractional integral operators.

For x > 0, λ, σ, ϑ ∈ C and ℜ(λ) > 0, we have(
I λ,σ,ϑ
0,x f (t)

)
(x) =

x−λ−σ

Γ (λ)

∫ x

0
(x − t)λ−1

2 F1

(
λ + σ, −ϑ; λ; 1 −

t
x

)
f (t) dt (2.1)

and (
J λ,σ,ϑ

x,∞ f (t)
)

(x) =
1

Γ (λ)

∫
∞

x
(t − x)λ−1t−λ−σ

2 F1

(
λ + σ, −ϑ; λ; 1 −

x
t

)
f (t) dt (2.2)

where the 2 F1(.), a special case of the generalized hypergeometric function, is the Gauss hypergeometric function.
The operator I λ,σ,ϑ

0,x (.) contains the Riemann–Liouville Rλ
0,x (.) fractional integral operators by means of the

following relationships:(
Rλ

0,x f (t)
)

(x) =

(
I λ,−λ,ϑ
0,x f (t)

)
(x) =

1
Γ (λ)

∫ x

0
(x − t)λ−1 f (t) dt (2.3)

(
W λ

x,∞ f (t)
)

(x) =
(
J λ,−λ,ϑ

x,∞ f (t)
)

(x) =
1

Γ (λ)

∫
∞

x
(t − x)λ−1 f (t) dt. (2.4)

It is noted that the operator (2.2) unifies the Erdêlyi–Kober fractional integral operators as follows:(
Eλ,ϑ

0,x f (t)
)

(x) =

(
I λ,0,ϑ
0,x f (t)

)
(x) =

x−λ−ϑ

Γ (λ)

∫ x

0
(x − t)λ−1tη f (t) dt (2.5)

(
K λ,ϑ

x,∞ f (t)
)

(x) =
(
J λ,0,ϑ

x,∞ f (t)
)

(x) =
xϑ

Γ (λ)

∫
∞

x
(t − x)λ−1t−λ−ϑ f (t) dt. (2.6)

The following lemmas proved in Kilbas and Sebastin (2008) [12] are useful to prove our main results.

Lemma 1 (Kilbas and Sebastian 2008). Let λ, σ, ϑ ∈ C be such that ℜ(λ) > 0, ℜ(ρ) > max[0, ℜ(σ − ϑ)], then(
I λ,σ,ϑ
0,x tρ−1

)
(x) =

Γ (ρ)Γ (ρ + ϑ − σ )
Γ (ρ − σ )Γ (ρ + λ + ϑ)

xρ−σ−1. (2.7)

Lemma 2 (Kilbas and Sebastian 2008). Let λ, σ, ϑ ∈ C be such that ℜ(λ) > 0, ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], then(
J λ,σ,ϑ

x,∞ tρ−1) (x) =
Γ (σ − ρ + 1)Γ (ϑ − ρ + 1)

Γ (1 − ρ)Γ (λ + σ + ϑ − ρ + 1)
xρ−σ−1. (2.8)

The main results are given in the following theorem.
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Theorem 1. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where i = 1, . . . , r),
such that ℜ(ρ) > max[0, ℜ(σ − ϑ)], then(

I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(t)

)
(x)

= xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki ) r+2
Ψr+2

[
(γ1/k1, q1) , . . . , (γr/kr , qr ) ,

(β1/k1, α1/k1) , . . . , (βr/kr , αr/kr ) ,

(ρ, r ), (ρ + ϑ − σ, r )
(ρ − σ, r ), (ρ + λ + ϑ, r )

⏐⏐⏐k(q1−α1/k1)
1 ...k(qr −αr /kr )

r xr
]

.

(2.9)

Proof. For convenience, we denote the left-hand side of the result (2.9) by I . Using (1.7), and then changing the
order of integration and summation, which is valid under the conditions of Theorem 1, then

I =

r∏
i=1

{
∞∑

n=0

(γi )nqi ,ki

Γki (nαi + βi )
1
n!

}(
I λ,σ,ϑ
0,x tnr+ρ−1

)
(x), (2.10)

applying the result (2.7), Eq. (2.10) reduces to

I =

r∏
i=1

{
∞∑

n=0

(γi )nqi ,ki

Γki (nαi + βi )
1
n!

}

×
Γ (ρ + nr )Γ (ρ + ϑ − σ + nr )

Γ (ρ − σ + nr )Γ (ρ + λ + ϑ + nr )
xρ+nr−σ−1,

(2.11)

after simplification, Eq. (2.11) reduces to

I = xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )

{
∞∑

n=0

Γ (γi/ki + qi n)
Γ (βi/ki + αi n/ki )

×
Γ (ρ + nr )Γ (ρ + ϑ − σ + nr )

Γ (ρ − σ + nr )Γ (ρ + λ + ϑ + nr )
1
n!

xnr k(qi −αi /ki )
i

}
,

(2.12)

interpreting the above equation with the help of (1.13), we have the required result. □

Theorem 2. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where i = 1, . . . , r),
such that ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], Then(

J λ,σ,ϑ
x,∞ tρ−1

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(1/t)

)
(x)

= xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )
r+2Ψr+2

[
(γ1/k1, q1) , . . . , (γr/kr , qr ) ,

(β1/k1, α1/k1, ) . . . , (βr/kr , αr/kr ) ,

(σ − ρ + 1, r ), (ϑ − ρ + 1, r )
(1 − ρ, r ), (λ + σ + ϑ − ρ + 1, r )

⏐⏐⏐⏐⏐k
(q1−α1/k1)
1 ...k(qr −αr /kr )

r

xr

]
.

(2.13)

Proof. Proof is parallel to Theorem 1. □

2.1. Special cases

k-Mittag-Leffler function is the generalized form of the Mittag-Leffler function. By assigning the suitable values
to the parameters, we have the following particular cases.

Setting σ = 0 in Theorems 1 and 2 and employing the relations (2.9) and (2.13) yield certain interesting results
asserted by the following corollaries.
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Corollary 1. Let λ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where i = 1, . . . , r),

such that ℜ(ρ) > ℜ(ϑ), then(
Eλ,ϑ

0,x tρ−1
r∏

i=1

Eγi ,qi
ki ,αi ,βi

(t)

)
(x)

= xρ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )
r+2Ψr+2

[
(γ1/k1, q1) , . . . ,

(β1/k1, α1/k1) , . . . ,

(γr/kr , qr ) , (ρ, r ), (ρ + ϑ, r )
(βr/kr , αr/kr ) , (ρ, r ), (ρ + λ + ϑ, r )

⏐⏐⏐k(q1−α1/k1)
1 ...k(qr −αr /kr )

r xr
]

.

(2.14)

Corollary 2. Let λ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where i = 1, . . . , r),

such that ℜ(ρ) < 1 + ℜ(ϑ), then(
K λ,ϑ

x,∞tρ−1
r∏

i=1

Eγi ,qi
ki ,αi ,βi

(1/t)

)
(x)

= xρ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )
r+2Ψr+2

[
(γ1/k1, q1) , . . . , (γr/kr , qr ) ,

(β1/k1, α1/k1) , . . . , (βr/kr , αr/kr ) ,

(1 − ρ, r ), (ϑ − ρ + 1, r )
(1 − ρ, r ), (λ + ϑ − ρ + 1, r )

⏐⏐⏐⏐⏐k
(q1−α1/k1)
1 ...k(qr −αr /kr )

r

xr

]
.

(2.15)

Further, if we replace σ with −λ in Theorems 1 and 2 reduced to the following form

Corollary 3. Let λ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where i = 1, . . . , r), such

that min{ℜ(λ), ℜ(ρ)} > 0, then(
Rλ

0,x tρ−1
r∏

i=1

Eγi ,qi
ki ,αi ,βi

(t)

)
(x)

= xρ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )
r+2Ψr+2

[
(γ1/k1, q1) , . . . ,

(β1/k1, α1/k1) , . . . ,

(γr/kr , qr ) , (ρ, r ), (ρ, r )
(βr/kr , αr/kr ) , (ρ, r ), (ρ + λ, r )

⏐⏐⏐k(q1−α1/k1)
1 ...k(qr −αr /kr )

r xr
]

.

(2.16)

Corollary 4. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where i = 1, . . . , r),

such that min{ℜ(λ), ℜ(ρ)} > 0, Then(
W λ

x,∞tρ−1
r∏

i=1

Eγi ,qi
ki ,αi ,βi

(1/t)

)
(x)

= xρ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )
r+2Ψr+2

[
(γ1/k1, q1) , . . . , (γr/kr , qr ) ,

(β1/k1, α1/k1) , . . . , (βr/kr , αr/kr ) ,

(1 − ρ, r ), (1 − ρ, r )
(1 − ρ, r ), (λ − ρ + 1, r )

⏐⏐⏐⏐⏐k
(q1−α1/k1)
1 ...k(qr −αr /kr )

r

xr

]
.

(2.17)

When qi = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eγi
ki ,αi ,βi

(.) (see Eq. (1.8)) then the

results in (2.9) and (2.13) reduced to the following form:
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Corollary 5. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 (where i = 1, . . . , r), such that

ℜ(ρ) > max[0, ℜ(σ − ϑ)], then(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi
ki ,αi ,βi

(t)

)
(x)

= xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )
r+2Ψr+2

[
(γ1/k1, 1) ,

(β1/k1, α1/k1) ,

..., (γr/kr , 1) , (ρ, r ), (ρ + ϑ − σ, r )
..., (βr/kr , αr/kr ) , (ρ − σ, r ), (ρ + λ + ϑ, r )

⏐⏐⏐k(1−α1/k1)
1 ...k(1−αr /kr )

r xr
]

.

(2.18)

Corollary 6. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 (where i = 1, . . . , r), such that

ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], then(
I λ,σ,ϑ

x,∞ tρ−1
r∏

i=1

Eγi
ki ,αi ,βi

(1/t)

)
(x)

= xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )
r+2Ψr+2

[
(γ1/k1, 1) , . . . , (γr/kr , 1) ,

(β1/k1, α1/k1) , . . . , (βr/kr , αr/kr ) ,

(σ − ρ + 1, r ), (ϑ − ρ + 1, r )
(1 − ρ, r ), (λ + σ + ϑ − ρ + 1, r )

⏐⏐⏐⏐⏐k
(1−α1/k1)
1 ...k(1−αr /kr )

r

xr

]
.

(2.19)

When ki = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eγi ,qi
αi ,βi

(.) (see Eq. (1.9)) then the results

in Eqs. (2.9) and (2.13) reduced to the following form:

Corollary 7. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where i = 1, . . . , r), such

that ℜ(ρ) > max[0, ℜ(σ − ϑ)], then(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi ,qi
αi ,βi

(t)

)
(x) = xρ−σ−1

r∏
i=1

1
Γ (γi )

× r+2Ψr+2

[
(γ1, q1) , . . . , (γr , qr ) , (ρ, r ), (ρ + ϑ − σ, r )

(β1, α1) , . . . , (βr , αr ) , (ρ − σ, r ), (ρ + λ + ϑ, r )

⏐⏐⏐⏐ xr
]

.

(2.20)

Corollary 8. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where i = 1, . . . , r), such

that ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], then(
I λ,σ,ϑ

x,∞ tρ−1
r∏

i=1

Eγi ,qi
αi ,βi

(1/t)

)
(x) = xρ−σ−1

r∏
i=1

1
Γ (γi )

× r+2Ψr+2

[
(γ1, q1) , . . . (γr , qr ) , (σ − ρ + 1, r ), (ϑ − ρ + 1, r )

(β1, α1) , . . . , (βr , αr ) , (1 − ρ, r ), (λ + σ + ϑ − ρ + 1, r )

⏐⏐⏐⏐ 1
xr

]
.

(2.21)

When ki = qi = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eγi
αi ,βi

(.) (see Eq. (1.10)) then

the results in Eqs. (2.9) and (2.13) reduced to the following form:

Corollary 9. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 (where i = 1, . . . , r), such that

ℜ(ρ) > max[0, ℜ(σ − ϑ)], then
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I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi
αi ,βi

(t)

)
(x) = xρ−σ−1

r∏
i=1

1
Γ (γi )

× r+2Ψr+2

[
(γ1, 1) , . . . , (γr , 1) , (ρ, r ), (ρ + ϑ − σ, r )

(β1, α1) , . . . , (βr , αr ) , (ρ − σ, r ), (ρ + λ + ϑ, r )

⏐⏐⏐⏐ xr
]

.

(2.22)

Corollary 10. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 (where i = 1, . . . , r), such that
ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], then(

I λ,σ,ϑ
x,∞ tρ−1

r∏
i=1

Eγi
αi ,βi

(1/t)

)
(x) = xρ−σ−1

r∏
i=1

1
Γ (γi )

× r+2Ψr+2

[
(γ1, 1) , . . . , (γr , 1) , (σ − ρ + 1, r ), (ϑ − ρ + 1, r )

(β1, α1) , . . . , (βr , αr ) , (1 − ρ, r ), (λ + σ + ϑ − ρ + 1, r )

⏐⏐⏐⏐ 1
xr

]
.

(2.23)

When ki = qi = γi = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eαi ,βi (.) (see Eq. (1.11))
then the results in Eqs. (2.9) and (2.13) reduced to the following form:

Corollary 11. Let λ, σ, ϑ, ρ, αi , βi ∈ C, min{ℜ(αi ), ℜ(βi )} > 0 (where i = 1, . . . , r), such that ℜ(ρ) >

max[0, ℜ(σ − ϑ)], Then(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eαi ,βi (t)

)
(x) = xρ−σ−1

× 3Ψr+2

[
(1, 1) , (ρ, r ), (ρ + ϑ − σ, r )

(β1, α1) , . . . , (βr , αr ) , (ρ − σ, r ), (ρ + λ + ϑ, r )

⏐⏐⏐⏐ xr
]

.

(2.24)

Corollary 12. Let λ, σ, ϑ, ρ, αi , βi ∈ C, min{ℜ(αi ), ℜ(βi )} > 0 (where i = 1, . . . , r), such that ℜ(ρ) <

1 + min[ℜ(σ ), ℜ(ϑ)], then(
I λ,σ,ϑ

x,∞ tρ−1
r∏

i=1

Eαi ,βi (1/t)

)
(x) = xρ−σ−1

× 3Ψr+2

[
(1, 1) , (σ − ρ + 1, r ), (ϑ − ρ + 1, r )

(β1, α1) , . . . , (βr , αr ) , (1 − ρ, r ), (λ + σ + ϑ − ρ + 1, r )

⏐⏐⏐⏐ 1
xr

]
.

(2.25)

When ki = qi = γi = βi = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eαi ,βi (.) (see
Eq. (1.12)) then the results in Eqs. (2.9) and (2.13) reduced to the following form:

Corollary 13. Let λ, σ, ϑ, ρ, αi ∈ C and ℜ(αi ) > 0 (where i = 1, . . . , r), such that ℜ(ρ) > max[0, ℜ(σ − ϑ)], then

(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eαi (t)

)
(x) = xρ−σ−1

× 3Ψr+2

[
(1, 1) , (ρ, r ), (ρ + ϑ − σ, r )

(1, α1) , . . . , (1, αr ) , (ρ − σ, r ), (ρ + λ + ϑ, r )

⏐⏐⏐⏐ xr
]

.

(2.26)

Corollary 14. Let λ, σ, ϑ, ρ, αi ∈ C and ℜ(αi ) > 0 (where i = 1, . . . , r), such that ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)],
then (

I λ,σ,ϑ
x,∞ tρ−1

r∏
i=1

Eαi (1/t)

)
(x) = xρ−σ−1

× 3Ψr+2

[
(1, 1) , (σ − ρ + 1, r ), (ϑ − ρ + 1, r )

(1, α1) , . . . , (1, αr ) , (1 − ρ, r ), (λ + σ + ϑ − ρ + 1, r )

⏐⏐⏐⏐ 1
xr

]
.

(2.27)
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If r = 1 and ki = k, αi = α, βi = β, γi = γ, qi = q , then the results in Eqs. (2.9) and (2.13) reduced to the
following form:

Corollary 15. Let λ, σ, ϑ, ρ, α, β, γ ∈ C, k ∈ R, min{ℜ(α), ℜ(β), ℜ(γ )} > 0 and q ∈ R+, such that ℜ(ρ) >

max[0, ℜ(σ − ϑ)], then(
I λ,σ,ϑ
0,x tρ−1 Eγ,q

k,α,β(t)
)

(x) = xρ−σ−1 k1−β/k

Γ (γ /k)

× 3Ψ3

[
(γ /k, q) , (ρ, 1), (ρ + ϑ − σ, 1)

(β/k, α/k) , (ρ − σ, 1), (ρ + λ + ϑ, 1)

⏐⏐⏐⏐ k(q−α/k)x
]

.

(2.28)

Corollary 16. Let λ, σ, ϑ, ρ, α, β, γ ∈ C, k ∈ R, min{ℜ(α), ℜ(β), ℜ(γ )} > 0 and q ∈ R+, such that ℜ(ρ) <

1 + min[ℜ(σ ), ℜ(ϑ)], then(
I λ,σ,ϑ

x,∞ tρ−1 Eγ,q
k,α,β(1/t)

)
(x) = xρ−σ−1 k1−β/k

Γ (γ /k)

× 3Ψ3

[
(γ /k, q) , (σ − ρ + 1, 1), (ϑ − ρ + 1, 1)

(β/k, α/k) , (1 − ρ, 1), (λ + σ + ϑ − ρ + 1, 1)

⏐⏐⏐⏐ k(q−α/k)

x

]
.

(2.29)

Remark 1. If we assign the values to parameters involving in the k-Mittag-Leffler function, then all the results in
Eqs. (2.28) and (2.29) reduced to the particular cases given in Eqs. (1.8)–(1.12).

3. Image formulas associated with integral transform

In this section, we establish certain theorems involving the results obtained in previous section associated with the
integral transforms like, Beta transform, Laplace transform and Whittaker transform.

3.1. Beta transform

The Beta transform of f (z) is defined as [13]:

B{ f (z) : a, b} =

∫ 1

0
za−1(1 − z)b−1 f (z)dz. (3.1)

Theorem 3. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(l), ℜ(m), ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where
i = 1, . . . , r), such that ℜ(ρ) > max[0, ℜ(σ − ϑ)], then

B

{(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(t)

)
(x) : l, m

}
= Γ (m)xρ−σ−1

r∏
i=1

k1−βi /ki
i

Γ (γi/ki )

× r+3Ψr+3

[
(γ1/k1, q1) , . . . , (γr/kr , qr ) , (ρ, r ),

(β1/k1, α1/k1) , . . . , (βr/kr , αr/kr ) , (ρ − σ, r ),
(ρ + ϑ − σ, r ), (l, r )

(ρ + λ + ϑ, r ), (l + m, r )

⏐⏐⏐k(q1−α1/k1)
1 ...k(qr −αr /kr )

r tr
]

.

(3.2)

Proof. For convenience, we denote the left-hand side of the result (3.2) by B. Using the definition of beta transform,
the LHS of (3.2) becomes:

B =

∫ 1

0
zl−1(1 − z)m−1

(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(t z)

)
(x)dz, (3.3)

further using (1.7) and then changing the order of integration and summation, which is valid under the conditions of
Theorem 1, then
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B =

r∏
i=1

∞∑
n=0

(γi )nqi ,ki

Γki (nαi + βi )
1
n!

(
I λ,σ,ϑ
0+

tnr+ρ−1
)

(x)
∫ 1

0
zl+nr−1(1 − z)m−1dz (3.4)

applying the result (2.7), after simplification Eq. (3.4) reduced to

B = xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )

∞∑
n=0

Γ (γi/ki + qi n)
Γ (βi/ki + αi n/ki )

Γ (ρ + nr )
Γ (ρ − σ + nr )

×
Γ (ρ + ϑ − σ + nr )
Γ (ρ + λ + ϑ + nr )

xnr kn(qi −αi /ki )
i

n!

∫ 1

0
zl+nr−1(1 − z)m−1dz,

(3.5)

applying the definition of beta transform, Eq. (3.5) reduced to

B = xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )

∞∑
n=0

Γ (γi/ki + qi n)
Γ (βi/ki + αi n/ki )

Γ (ρ + nr )
Γ (ρ − σ + nr )

×
Γ (ρ + ϑ − σ + nr )
Γ (ρ + λ + ϑ + nr )

xnr kn(qi −αi /ki )
i

n!

Γ (l + nr )Γ (m)
Γ (l + m + nr )

(3.6)

interpreting the above equation with the help of (1.13), we have the required result. □

Theorem 4. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(l), ℜ(m), ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+ (where
i = 1, . . . , r), such that ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], then

B

{(
J λ,σ,ϑ

x,∞ tρ−1
r∏

i=1

Eγi ,qi
ki ,αi ,βi

(z/t)

)
(x) : l, m

}
= Γ (m)xρ−σ−1

r∏
i=1

k1−βi /ki
i

Γ (γi/ki )

× 3+rΨ3+r

[
(γ1/k1, q1) , . . . , (γr/kr , qr ) , (σ − ρ + 1, r ),

(β1/k1, α1/k1) , . . . , (βr/kr , αr/kr ) , (1 − ρ, r ),
(ϑ − ρ + 1, r ), (l, r )

(λ + σ + ϑ − ρ + 1, r ), (l + m, r )

⏐⏐⏐⏐⏐k
(q1−α1/k1)
1 ...k(qr −αr /kr )

r

tr

]
.

(3.7)

Proof. The proof of this theorem is the same as that of Theorem 3. □

3.2. Laplace transform

The Laplace transform of f (z) is defined as [13]:

L{ f (z)} =

∫
∞

0
e−sz f (z)dz. (3.8)

Theorem 5. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, ℜ(αi ) > 0, ℜ(βi ) > 0, ℜ(γi ) > 0 and qi ∈ R+ (where
i = 1, . . . , r), such that ℜ(ρ) > max[0, ℜ(σ − ϑ)], then

L

{
zl−1

(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(t z)

)
(x)

}
=

xρ−σ−1

sl

r∏
i=1

k1−βi /ki
i

Γ (γi/ki )

× r+3Ψr+2

[
(γ1/k1, q1) , . . . , (γr/kr , qr ) , (ρ, r ),
(β1/k1, α1/k1) , . . . , (βr/kr , αr/kr ) ,

(ρ + ϑ − σ, r ), (l, r )
(ρ − σ, r ), (ρ + λ + ϑ, r )

⏐⏐⏐⏐k(q1−α1)/k1
1 ...k(qr −αr )/kr

r

(
t
s

)r ]
.

(3.9)

Proof. For convenience, we denote the left-hand side of the result (3.9) by L . Then applying the Laplace, we have:

L =

∫
∞

0
e−szzl−1

(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(t z)

)
(x)dz (3.10)
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further using (1.7) and then changing the order of integration and summation, which is valid under the conditions of
Theorem 1, then

L = xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )

∞∑
n=0

Γ (γi/ki + qi n)
Γ (βi/ki + αi n/ki )

Γ (ρ + nr )
Γ (ρ − σ + nr )

×
Γ (ρ + ϑ − σ + nr )
Γ (ρ + λ + ϑ + nr )

xnr kn(qi −αi /ki )
i

n!

∫
∞

0
e−szznr+l−1dz

= xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )

∞∑
n=0

Γ (γi/ki + qi n)
Γ (βi/ki + αi n/ki )

Γ (ρ + nr )
Γ (ρ − σ + nr )

×
Γ (ρ + ϑ − σ + nr )
Γ (ρ + λ + ϑ + nr )

Γ (nr + l)
snr+l

xnr kn(qi −αi /ki )
i

n!
,

(3.11)

interpreting the above equation with the help of (1.13), we have the required result. □

Theorem 6. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, ℜ(αi ) > 0, ℜ(βi ) > 0, ℜ(γi ) > 0 and qi ∈ R+ (where
i = 1, . . . , r), such that ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], then

L

{
zl−1

(
J λ,σ,ϑ

x,∞ tρ−1
r∏

i=1

Eγi ,qi
ki ,αi ,βi

(z/t)

)
(x)

}
=

xρ−σ−1

sl

r∏
i=1

k1−βi /ki
i

Γ (γi/ki )

× r+3Ψr+2

[
(γ1/k1, q1) , . . . , (γr/kr , qr ) , (σ − ρ + 1, r ),

(β1/k1, α1/k1) , . . . , (βr/kr , αr/kr ) ,

(ϑ − ρ + 1, r ), (l, r )
(1 − ρ, r ), (λ + σ + ϑ − ρ + 1, r )

⏐⏐⏐⏐⏐k
(q1−α1/k1)
1 ...k(qr −αr /kr )

r

(st)r

]
.

(3.12)

Proof. The proof of this theorem would run parallel as that of Theorem 5. □

3.3. Whittaker transform

Theorem 7. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0; ℜ(ξ ± ω) > −1
2 and qi ∈ R+

(where i = 1, . . . , r), such that ℜ(ρ) > max[0, ℜ(σ − ϑ)], then∫
∞

0
zξ−1e−δz/2Wτ,ω(ηz)

{(
I λ,σ,ϑ
0,x tρ−1

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(t z)

)
(x)

}
dz

=
xρ−σ−1

ηξ−1

r∏
i=1

k1−βi /ki
i

Γ (γi/ki )
r+4Ψr+3

[
(γ1/k1, q1) , . . . ,

(β1/k1, α1/k1) , . . . ,

(γr/kr , qr ) , (ρ, r ), (ρ + ϑ − σ, r ), (1/2 + ω + ξ, r ),
(βr/kr , αr/kr ) , (ρ − σ, r ), (ρ + λ + ϑ, r ),

(1/2 − ω + ξ, r )
(1/2 − τ + ξ, r )

⏐⏐⏐⏐k(q1−α1/k1)
1 ...k(qr −αr /kr )

r

(
x
η

)r ]
.

(3.13)

Proof. For convenience, we denote the left-hand side of the result (3.13) by W . Then using the result from (2.12),
after changing the order of integration and summation, we get:

W = xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )

∞∑
n=0

Γ (γi/ki + qi n)
Γ (βi/ki + αi n/ki )

×
Γ (ρ+nr )Γ (ρ+ϑ−σ+nr )

Γ (ρ−σ+nr )Γ (ρ+λ+ϑ+nr )

×
xnr k

n(qi −αi /ki )
i

n!

∫
∞

0 znr+ξ−1e−ηz/2Wτ,ω(ηz)dz,

(3.14)
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by substituting ηz = ς , (3.14) becomes:

W = xρ−σ−1
r∏

i=1

k1−βi /ki
i

Γ (γi/ki )

∞∑
n=0

Γ (γi/ki + qi n)
Γ (βi/ki + αi n/ki )

×
Γ (ρ + nr )Γ (ρ + ϑ − σ + nr )

Γ (ρ − σ + nr )Γ (ρ + λ + ϑ + nr )

×
xnr kn(qi −αi /ki )

i

n!

1
ηnr+ξ−1

∫
∞

0
ςnr+ξ−1e−ς/2Wτ,ω(ς )dς.

(3.15)

Now we use the following integral formula involving Whittaker function∫
∞

0
tν−1e−t/2Wτ,ω(t)dt =

Γ (1/2 + ω + ν)Γ (1/2 − ω + ν)

Γ (1/2 − τ + ν)
,

(
ℜ(ν ± ω) >

−1
2

)
. (3.16)

Then we have

W =
xρ−σ−1

ηξ−1

r∏
i=1

k1−βi /ki
i

Γ (γi/ki )

∞∑
n=0

Γ (γi/ki + qi n)
Γ (βi/ki + αi n/ki )

×
Γ (ρ + nr )Γ (ρ + ϑ − σ + nr )Γ (1/2 + ω + ξ + nr)

Γ (ρ − σ + nr )Γ (ρ + λ + ϑ + nr )

×
Γ (1/2 − ω + ξ + nr)

Γ (1/2 − τ + ξ + nr)

k(qi −αi /ki )
i

n!

(
x
η

)nr

,

(3.17)

interpreting the above equation with the help of (1.13), we have the required result. □

Theorem 8. Let λ, σ, ϑ, ρ, αi , βi , γi ∈ C, ki ∈ R, min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0; ℜ(ξ ± ω) > −1
2 and qi ∈ R+

(where i = 1, . . . , r), such that ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], Then∫
∞

0
zξ−1e−δz/2Wτ,ω(ηz)

{(
J λ,σ,ϑ

x,∞ tρ−1
r∏

i=1

Eγi ,qi
ki ,αi ,βi

(z/t)

)
(x)

}
dz

=
xρ−σ−1

ηξ−1

r∏
i=1

k1−βi /ki
i

Γ (γi/ki )
r+4Ψr+3

[
(γ1/k1, q1) , . . . ,

(β1/k1, α1/k1) , . . . ,

(γr/kr , qr ) , (σ − ρ + 1, r ), (ϑ − ρ + 1, r ), (1/2 + ω + ξ, r ),
(βr/kr , αr/kr ) , (1 − ρ, r ), (λ + σ + ϑ − ρ + 1, r ),

(1/2 − ω + ξ, r )
(1/2 − τ + ξ, r )

⏐⏐⏐⏐⏐k
(q1−α1/k1)
1 ...k(qr −αr /kr )

r

(xη)r

]
.

(3.18)

Proof. The proof of this theorem would run parallel as those of Theorem 7. □

4. Fractional kinetic equations

The importance of fractional differential equations in the field of applied science has gained more attention not only
in mathematics but also in physics, dynamical systems, control systems and engineering, to create the mathematical
model of many physical phenomena. Especially, the kinetic equations describe the continuity of motion of substance.
The extension and generalization of fractional kinetic equations involving many fractional operators were found in
[14–27].

In view of the effectiveness and a great importance of the kinetic equation in certain astrophysical problems the
authors develop a further generalized form of the fractional kinetic equation involving generalized k-Mittag-Leffler
function.

The fractional differential equation between rate of change of the reaction, the destruction rate and the production
rate was established by Haubold and Mathai [20] given as follows:

d N
dt

= −d(Nt ) + p(Nt ), (4.1)
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where N = N (t) the rate of reaction, d = d(N ) the rate of destruction, p = p(N ) the rate of production and Nt
denotes the function defined by Nt (t∗) = N (t − t∗), t∗ > 0.

The special case of (4.1) for spatial fluctuations and inhomogeneities in N (t) the quantities are neglected, that is
the equation

d N
dt

= −ci Ni (t), (4.2)

with the initial condition that Ni (t = 0) = N0 is the number density of the species i at time t = 0 and ci > 0. If we
remove the index i and integrate the standard kinetic equation(4.2), we have

N (t) − N0 = −c0 D−1
t N (t) (4.3)

where 0 D−1
t is the special case of the Riemann–Liouville integral operator 0 D−ν

t defined as

0 D−ν
t f (t) =

1
Γ (ν)

∫ t

0
(t − s)ν−1 f (s)ds, (t > 0, R(ν) > 0). (4.4)

The fractional generalization of the standard kinetic equation (4.3) is given by Haubold and Mathai [20] as follows:

N (t) − N0 = −cν
0 D−1

t N (t) (4.5)

and obtained the solution of (4.5) as follows:

N (t) = N0

∞∑
k=0

(−1)k

Γ (νk + 1)
(ct)νk

. (4.6)

Further, Saxena and Kalla [25] considered the following fractional kinetic equation:

N (t) − N0 f (t) = −cν
0 D−ν

t N (t), (ℜ(v) > 0), (4.7)

where N (t) denotes the number density of a given species at time t , N0 = N (0) is the number density of that species
at time t = 0, c is a constant and f ∈ L(0, ∞).

By applying the Laplace transform to (4.7) (see [21]),

L {N (t); p} = N0
F(p)

1 + cν p−ν
= N0

(
∞∑

n=0

(−cν)n p−νn

)
F(p),(

n ∈ N0,

⏐⏐⏐⏐ c
p

⏐⏐⏐⏐ < 1
) (4.8)

where the Laplace transform [28] is given by

F(p) = L {N (t); p} =

∫
∞

0
e−pt f (t)dt, (R(p) > 0). (4.9)

5. Solution of generalized fractional kinetic equations

In this section, we investigated the solutions of the generalized fractional kinetic equations by considering
generalized k-Mittag-Leffler function.

Remark 2. The solutions of the fractional kinetic equations in this section are obtained in terms of the generalized
Mittag-Leffler function Eα,β(x) (Mittag-Leffler [7]), which is defined as:

Eα,β(z) =

∞∑
n=0

zn

Γ (αn + β)
, ℜ(α) > 0, ℜ(β) > 0. (5.1)

Theorem 9. If a > 0, d > 0, ν > 0, ki ∈ R, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+, then the
solution of the equation

N (t) − N0

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(dν tν) = −aν
0 D−ν

t N (t) (5.2)
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is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nqi ,kiΓ (νn + 1)
Γki (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−aν tν). (5.3)

Proof. Laplace transform of Riemann–Liouville fractional integral operator is given by (Erdelyi et al. [29], Srivastava
and Saxena [30]):

L
{

0 D−ν
t f (t); p

}
= p−ν F(p) (5.4)

where F(p) is defined in (4.9). Now, applying Laplace transform on (5.2) gives,

L {N (t); p} = N0L

{
r∏

i=1

Eγi ,qi
ki ,αi ,βi

(dν tν); p

}
− aν L

{
0 D−ν

t N (t); p
}

(5.5)

i.e. N (p) = N0

(∫
∞

0
e−pt

r∏
i=1

∞∑
n=0

(γi )nqi ,ki

Γki (nαi + βi )
(dν tν)n

n!
dt

)
− aν p−ν N (p) (5.6)

interchanging the order of integration and summation in (5.6), we have

N (p) + aν p−ν N (p) = N0

r∏
i=1

∞∑
n=0

(γi )nqi ,ki

Γki (nαi + βi )
(dν)n

n!

∫
∞

0
e−pt tνndt (5.7)

= N0

r∏
i=1

∞∑
n=0

(γi )nqi ,ki

Γki (nαi + βi )
(dν)n

n!

Γ (νn + 1)
pνn+1 (5.8)

this leads to

N (p) = N0

r∏
i=1

∞∑
n=0

(γi )nqi ,ki

Γki (nαi + βi )
(dν)n

n!

×Γ (νn + 1)
{

p−(νn+1)∑∞

l=0

[
−
( p

a

)−ν
]l
}

.

(5.9)

Taking Laplace inverse of (5.9), and by using

L−1 {p−ν
; t
}

=
tν−1

Γ (ν)
, (R(ν) > 0) (5.10)

we have,

L−1
{N (p)} = N0

r∏
i=1

∞∑
n=0

(γi )nqi ,ki

Γki (nαi + βi )
(dν)n

n!

×Γ (νn + 1)L−1

{
∞∑

l=0

(−1)laνl p−[ν(n+l)+1]

} (5.11)

i.e. N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nqi ,ki

Γki (nαi + βi )
(dν)n

n!
Γ (νn + 1)

×

{
∞∑

l=0

(−1)laνl tν(n+l)

Γ (ν(n + l) + 1)

} (5.12)

= N0

r∏
i=1

∞∑
n=0

(γi )nqi ,ki

Γki (nαi + βi )
(dν tν)n

n!
Γ (νn + 1)

×

{
∞∑

l=0

(−1)l (aν tν)l

Γ (ν(n + l) + 1)

}
.

(5.13)
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Eq. (5.13) can be written as

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nqi ,kiΓ (νn + 1)
Γki (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−aν tν). □ (5.14)

Theorem 10. If d > 0, ν > 0, ki ∈ R, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+, then the solution
of the equation

N (t) − N0

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(dν tν) = −dν
0 D−ν

t N (t) (5.15)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nqi ,kiΓ (νn + 1)
Γki (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−dν tν). (5.16)

Theorem 11. If d > 0, ν > 0, ki ∈ R, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+, then the solution
of the equation

N (t) − N0

r∏
i=1

Eγi ,qi
ki ,αi ,βi

(t) = −dν
0 D−ν

t N (t) (5.17)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nqi ,kiΓ (n + 1)
Γki (nαi + βi )

(t)n

n!
Eν,n+1(−dν tν). (5.18)

5.1. Special cases

k-Mittag-Leffler function is the generalized form of the Mittag-Leffler function. By assigning the suitable values
to the parameters, we have the following particular cases.

When qi = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eγi
ki ,αi ,βi

(.) (see Eq. (1.8)) then the
results in (5.2), (5.15) and (5.17) and their solutions reduced to the following form:

Corollary 17. If a > 0, d > 0, ν > 0, ki ∈ R, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0, then the solution of the
equation

N (t) − N0

r∏
i=1

Eγi
ki ,αi ,βi

(dν tν) = −aν
0 D−ν

t N (t) (5.19)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )n,kiΓ (νn + 1)
Γki (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−aν tν). (5.20)

Corollary 18. If d > 0, ν > 0, ki ∈ R, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0, then the solution of the
equation

N (t) − N0

r∏
i=1

Eγi
ki ,αi ,βi

(dν tν) = −dν
0 D−ν

t N (t) (5.21)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )n,kiΓ (νn + 1)
Γki (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−dν tν). (5.22)
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Corollary 19. If d > 0, ν > 0, ki ∈ R, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0, then the solution of the
equation

N (t) − N0

r∏
i=1

Eγi
ki ,αi ,βi

(t) = −dν
0 D−ν

t N (t) (5.23)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )n,kiΓ (n + 1)
Γki (nαi + βi )

(t)n

n!
Eν,n+1(−dν tν). (5.24)

When ki = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eγi ,qi
αi ,βi

(.) (see Eq. (1.9)) then the results
in Eqs. (5.2), (5.15) and (5.17) and their solutions reduced to the following form:

Corollary 20. If a > 0, d > 0, ν > 0, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+, then the solution
of the equation

N (t) − N0

r∏
i=1

Eγi ,qi
αi ,βi

(dν tν) = −aν
0 D−ν

t N (t) (5.25)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nqiΓ (νn + 1)
Γ (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−aν tν). (5.26)

Corollary 21. If d > 0, ν > 0, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+, then the solution of the
equation

N (t) − N0

r∏
i=1

Eγi ,qi
αi ,βi

(dν tν) = −dν
0 D−ν

t N (t) (5.27)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nqiΓ (νn + 1)
Γ (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−dν tν). (5.28)

Corollary 22. If d > 0, ν > 0, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0 and qi ∈ R+, then the solution of the
equation

N (t) − N0

r∏
i=1

Eγi ,qi
αi ,βi

(t) = −dν
0 D−ν

t N (t) (5.29)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nqiΓ (n + 1)
Γ (nαi + βi )

(t)n

n!
Eν,n+1(−dν tν). (5.30)

When ki = qi = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eγi
αi ,βi

(.) (see Eq. (1.10)) then
the results in Eqs. (5.2), (5.15) and (5.17) and their solutions reduced to the following form:

Corollary 23. If a > 0, d > 0, ν > 0, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eγi
αi ,βi

(dν tν) = −aν
0 D−ν

t N (t) (5.31)
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is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nΓ (νn + 1)
Γ (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−aν tν). (5.32)

Corollary 24. If d > 0, ν > 0, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eγi
αi ,βi

(dν tν) = −dν
0 D−ν

t N (t) (5.33)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nΓ (νn + 1)
Γ (nαi + βi )

(dν tν)n

n!
Eν,νn+1(−dν tν). (5.34)

Corollary 25. If d > 0, ν > 0, αi , βi , γi ∈ C; min{ℜ(αi ), ℜ(βi ), ℜ(γi )} > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eγi
αi ,βi

(t) = −dν
0 D−ν

t N (t) (5.35)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(γi )nΓ (n + 1)
Γ (nαi + βi )

(t)n

n!
Eν,n+1(−dν tν). (5.36)

When ki = qi = γi = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eαi ,βi (.) (see Eq. (1.11))
then the results in Eqs. (5.2), (5.15) and (5.17) and their solutions reduced to the following form:

Corollary 26. If a > 0, d > 0, ν > 0, αi , βi ∈ C; min{ℜ(αi ), ℜ(βi )} > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eαi ,βi (d
ν tν) = −aν

0 D−ν
t N (t) (5.37)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

Γ (νn + 1)
Γ (nαi + βi )

(dν tν)n Eν,νn+1(−aν tν). (5.38)

Corollary 27. If d > 0, ν > 0, αi , βi ∈ C; min{ℜ(αi ), ℜ(βi )} > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eγi
αi ,βi

(dν tν) = −dν
0 D−ν

t N (t) (5.39)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

Γ (νn + 1)
Γ (nαi + βi )

(dν tν)n Eν,νn+1(−dν tν). (5.40)

Corollary 28. If d > 0, ν > 0, αi , βi ∈ C; min{ℜ(αi ), ℜ(βi )} > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eαi ,βi (t) = −dν
0 D−ν

t N (t) (5.41)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(t)n

Γ (nαi + βi )
Eν,n+1(−dν tν). (5.42)
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When ki = qi = γi = βi = 1 (where i = 1, . . . , r ), the k-Mittag-Leffler function reduced to Eαi ,βi (.) (see
Eq. (1.12)) then the results in Eqs. (5.2), (5.15) and (5.17) and their solutions reduced to the following form:

Corollary 29. If a > 0, d > 0, ν > 0, αi ∈ C; ℜ(αi ) > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eαi (d
ν tν) = −aν

0 D−ν
t N (t) (5.43)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

Γ (νn + 1)
Γ (nαi + 1)

(dν tν)n Eν,νn+1(−aν tν). (5.44)

Corollary 30. If d > 0, ν > 0, αi ∈ C; ℜ(αi ) > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eγi
αi

(dν tν) = −dν
0 D−ν

t N (t) (5.45)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

Γ (νn + 1)
Γ (nαi + 1)

(dν tν)n Eν,νn+1(−dν tν). (5.46)

Corollary 31. If d > 0, ν > 0, αi ∈ C; ℜ(αi ) > 0, then the solution of the equation

N (t) − N0

r∏
i=1

Eαi (t) = −dν
0 D−ν

t N (t) (5.47)

is given by the following formula

N (t) = N0

r∏
i=1

∞∑
n=0

(t)n

Γ (nαi + 1)
Eν,n+1(−dν tν). (5.48)

If r = 1 and ki = k, αi = α, βi = β, γi = γ, qi = q , (5.2), (5.15) and (5.17) and their solutions reduced to the
following form:

Corollary 32. If a > 0, d > 0, ν > 0, k ∈ R, α, β, γ ∈ C; min{ℜ(α), ℜ(β), ℜ(γ )} > 0 and q ∈ R+, then the
solution of the equation

N (t) − N0 Eγ,q
k,α,β(dν tν) = −aν

0 D−ν
t N (t) (5.49)

is given by the following formula

N (t) = N0

∞∑
n=0

(γ )nq,kΓ (νn + 1)
Γk(nα + β)

(dν tν)n

n!
Eν,νn+1(−aν tν). (5.50)

Corollary 33. If d > 0, ν > 0, k ∈ R, α, β, γ ∈ C; min{ℜ(α), ℜ(β), ℜ(γ )} > 0 and q ∈ R+, then the solution of
the equation

N (t) − N0 Eγ,q
k,α,β(dν tν) = −dν

0 D−ν
t N (t) (5.51)

is given by the following formula

N (t) = N0

∞∑
n=0

(γ )nq,kΓ (νn + 1)
Γk(nα + β)

(dν tν)n

n!
Eν,νn+1(−dν tν). (5.52)
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Table 1
Numerical solutions of KE containing 100 terms of KMLF.

t v = 2.0 v = 2.2 v = 2.4 v = 2.6 v = 2.8

0 6.516846 6.516846 6.516846 6.516846 6.516846
0.2 6.461213 6.484693 6.498794 6.50705 6.511758
0.4 6.29689 6.370156 6.421997 6.457636 6.481496
0.6 6.031509 6.163597 6.268155 6.348104 6.407487
0.8 5.677478 5.864749 6.028106 6.164575 6.274797
1 5.251521 5.480041 5.699526 5.898869 6.072628
1.2 4.77407 5.021969 5.286818 5.549145 5.795762
1.4 4.268521 4.508722 4.801438 5.121049 5.446635
1.6 3.760396 3.963786 4.262314 4.629152 5.03807
1.8 3.276435 3.415445 3.696246 4.098657 4.59685
2 2.843676 2.896159 3.138273 3.567422 4.168487
2.2 2.488539 2.44185 2.631986 3.088403 3.823734
2.4 2.235976 2.091115 2.229861 2.732748 3.667753
2.6 2.108714 1.884414 1.993663 2.593842 3.853343
2.8 2.126626 1.863299 1.995042 2.792817 4.600487
3 2.306273 2.069749 2.316491 3.486243 6.225768

Corollary 34. If d > 0, ν > 0, k ∈ R, α, β, γi ∈ C; min{ℜ(α), ℜ(β), ℜ(γ )} > 0 and q ∈ R+, then the solution of
the equation

N (t) − N0 Eγ,q
k,α,β(t) = −dν

0 D−ν
t N (t) (5.53)

is given by the following formula

N (t) = N0

∞∑
n=0

(γ )nq,kΓ (n + 1)
Γk(nα + β)

(t)n

n!
Eν,n+1(−dν tν). (5.54)

6. Numerical solutions of fractional kinetic equations

In this section, we establish database for numerical solutions of the kinetic equation (5.2) by employing Eq. (5.3) for
particular values of the parameters, which are given in Tables 1–3; their graphs are plotted in Figs. 1–3 and Mesh-plot
is also established in Figs. 4 and 5. For this purpose, we denote the solution of Eq. (5.2) for r = 2 (i.e. kinetic equation
involving the product of two k-Mittag-Leffler functions) as

N (t) = N (N0, α1, β1, α2, β2, γ1, γ2, q1, q2, d, a, ν, k1, k2, t)

and then we develop the program in MATLAB. Employing the program, we establish database, graphs and mesh-plot.
In our investigation, particular values to the parameters involving in the solution of the fractional kinetic equation

are selected as N0 = 2; α1 = β1 = 1; α2 = β2 = 2, γ1 = γ2 = q1 = q2 = 0.1; d = a = 1; ν = 2.0 : 0.2 : 2.8; k1 =

k2 = 2 for 0 ≤ t ≤ 3. Solutions of Kinetic equations are involving with the generalized Mittag-Leffler function,
which contain infinite number of terms, further solution of the fractional kinetic equation also contains the summation
of infinite terms with r times product, which makes the complexity for numerical solutions. For critical analysis of the
numerical solutions, we investigate by taking different range of terms occurring in the solution of fractional kinetic
equation in three stages as follows.

• At the first stage, we choose first 100 terms of k-Mittag-Leffler function and 50 terms of the summation of
Eq. (5.3), the Data-Base and graphs are established in Table 1 and Fig. 1 respectively. We found that N (t) ≥ 0
for all different values of the parameters for t ≥ 0 and N (t) → ∞ as t → ∞.

• At the first and the third stage, we choose first 500 and 1000 terms of k-Mittag-Leffler function and 50 terms of
the summation of Eq. (5.3), the Data-Base and graphs are established in Tables 2, 3 and Figs. 2, 3 respectively,
which can be easily observed from these tables and graphs that solution remains same for any interval of
t convergent values exist as we increase the number of terms in Mittag-Leffler function. Also the convergent
values decrease as we increase the number of terms, which can be easily observed from Tables 2, 3 and Figs. 2, 3.
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Table 2
Numerical solutions of KE containing 500 terms of KMLF.

t v = 2.0 v = 2.2 v = 2.4 v = 2.6 v = 2.8

0 6.516846 6.516846 6.516846 6.516846 6.516846
0.2 6.461213 6.484693 6.498794 6.50705 6.511758
0.4 6.29689 6.370156 6.421997 6.457636 6.481496
0.6 6.031509 6.163597 6.268155 6.348104 6.407487
0.8 5.677478 5.864749 6.028106 6.164575 6.274797
1 5.251521 5.480041 5.699526 5.898869 6.072628
1.2 4.77407 5.021969 5.286818 5.549145 5.795762
1.4 4.268521 4.508722 4.801438 5.121049 5.446635
1.6 3.760396 3.963786 4.262314 4.629152 5.03807
1.8 3.276435 3.415445 3.696246 NaN NaN
2 2.843676 NaN NaN NaN NaN
2.2 NaN NaN NaN NaN NaN
2.4 NaN NaN NaN NaN NaN
2.6 NaN NaN NaN NaN NaN
2.8 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN

Table 3
Numerical solutions of KE containing 1000 terms of KMLF.

t v = 2.0 v = 2.2 v = 2.4 v = 2.6 v = 2.8

0 6.516846 6.516846 6.516846 6.516846 6.516846
0.2 6.461213 6.484693 6.498794 6.50705 6.511758
0.4 6.29689 6.370156 6.421997 6.457636 6.481496
0.6 6.031509 6.163597 6.268155 6.348104 6.407487
0.8 5.677478 5.864749 6.028106 6.164575 6.274797
1 5.251521 5.480041 5.699526 5.898869 6.072628
1.2 4.77407 5.021969 5.286818 5.549145 5.795762
1.4 4.268521 NaN NaN NaN NaN
1.6 NaN NaN NaN NaN NaN
1.8 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
2.2 NaN NaN NaN NaN NaN
2.4 NaN NaN NaN NaN NaN
2.6 NaN NaN NaN NaN NaN
2.8 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN

In the above discussion, we find that N (t) ≥ 0 for all different values of the parameters for t ≥ 0 for different
number of terms occurring in the solutions of fractional kinetic equation. Mesh-Plot for first 100 and 500 terms of
k-Mittag-Leffler function and 50 terms of the summation of Eq. (5.3) is also established in Figs. 4 and 5, from which
we can easily interpret the behavior of the solution of fractional kinetic equation.

7. Concluding remarks

We can also present a large number of special cases of our main fractional integral formulas, images formulas and
solutions of the generalized fractional kinetic equations.

If we setting r = 1; α1 = α, β1 = β, γ1 = γ, k1 = k, q1 = q in Theorems 1 and 2. Here, we illustrate the
following formulas.

Corollary 35. Let λ, σ, ϑ, ρ, α, β, γ, b, c ∈ C, k ∈ R, ℜ(α) > 0, ℜ(β) > 0, ℜ(γ ) > 0 and q ∈ R+, such that
ℜ(ρ) > max[0, ℜ(σ − ϑ)], then
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Fig. 1. Graphical solutions of KE containing 100 terms of KMLF.

Fig. 2. Graphical solutions of KE containing 500 terms of KMLF.

(
I λ,σ,ϑ
0,x tρ−1 Eγ,q

k,α,β(t)
)

(x) = xρ−σ−1 k1−β/k

Γ (γ /k)

× 3Ψ3

[
(γ /k, q/k) , (ρ, 1), (ρ + ϑ − σ, 1)

(β/k, α/k) , (ρ − σ, 1), (ρ + λ + ϑ, 1)
⏐⏐k(q−α)/k x

]
.

(7.1)

Corollary 36. Let λ, σ, ϑ, ρ, α, β, γ, b, c ∈ C, k ∈ R, ℜ(α) > 0, ℜ(β) > 0, ℜ(γ ) > 0 and q ∈ R+, such that
ℜ(ρ) < 1 + min[ℜ(σ ), ℜ(ϑ)], then(

J λ,σ,ϑ
x,∞ tρ−1 Eγ,q

k,α,β(1/t)
)

(x) = xρ−σ−1 k1−β/k

Γ (γ /k)

× 3Ψ3

[
(γ /k, q/k) , (σ − ρ + 1, 1), (ϑ − ρ + 1, 1)

(β/k, α/k) , (1 − ρ, 1), (λ + σ + ϑ − ρ + 1, 1)

⏐⏐⏐⏐k(q−α)/k

x

]
.

(7.2)

The above two results in Eqs. (7.1) and (7.2) are involving pair of Saigo hypergeometric fractional integral
operators, using the relations given in Eqs. (2.3), (2.4), (2.5) and (2.6), these formulas in Eqs. (7.1) and (7.2) reduced
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Fig. 3. Graphical solutions of KE containing 1000 terms of KMLF.

Fig. 4. Mesh-plot of KE containing 100 terms of KMLF.

to the type of Riemann–Liouville and Erdêlyi-Kober fractional integrals involving k-Mittag-Leffler function. Further
by employing the particular cases to the k-Mittag-Leffler function we obtain more special cases of all the fractional
integrals in Section 2 and their images formulas in Section 3.

We may also emphasize that results derived in this paper are of general character and can specialize to give further
interesting and potentially useful formulas involving integral transform and fractional calculus. Also we give a new
fractional generalization of the standard kinetic equation and derived solution for the same. From the close relationship
of the generalized k-Mittag-Leffler function with many special functions, we can easily construct various known and
new fractional kinetic equations. Also from the numerical solutions established in Tables 1–3 and their graphical
interpretation in Figs. 1–5 for product of two k-Mittag-Leffler functions, we came to the conclusion that the solutions
of the fractional Kinetic equations are always positive (N (t) ≥ 0 for all values of the parameters). In our investigation,
we choose r = 2. The reader can choose any value of r for further more analysis of the solutions of fractional kinetic
equations.
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Fig. 5. Mesh-plot of KE containing 500 terms of KMLF.
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Abstract

It is well known that to each summable in the n-dimensional cube [−π, π]n function f of variables x1, . . . , xn there corresponds
one n-multiple trigonometric Fourier series S[ f ] with constant coefficients.

In the present paper, with the function f we associate n one-dimensional Fourier series S[ f ]1, . . . , S[ f ]n , with respect to
variables x1, . . . , xn , respectively, with nonconstant coefficients and announce the preliminary results. In particular, if a continuous
function f is differentiable at some point x = (x1, . . . , xn), then all one-dimensional Fourier series S[ f ]1, . . . , S[ f ]n converge at
x to the value f (x).

For illustration we consider the well known example of Ch. Fefferman’s function F(x, y) whose double trigonometric
Fourier series S[F] diverges everywhere in the sense of Prinsheim. Namely, we establish the simultaneous convergence of the
one-dimensional Fourier series S[F]1 and S[F]2 at almost all points (x, y) ∈ [−π, π]2 to the values F(x, y).
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: One-dimensional Fourier series; Nonconstant Fourier coefficients

1. Notions of one-dimensional fourier series of a function of many variables

Let some function f of variables x1, . . . , xn be defined and summable in the n-dimensional cube [−π, π]n and, in
addition, be 2π -periodic with respect to each variable.

By Fubini’s theorem we know that f is summable on [−π, π] as a function of one variable x1 for almost all
(x2, x3, . . . , xn) ∈ [−π, π]n−1. We denote by E1 the set of such (x2, x3, . . . , xn) and by X1 the point (x2, x3, . . . , xn),
i.e. X1

= (x2, x3, . . . , xn), X1
∈ E1.

Thus we have the function f (x1, X1) which is summable with respect to the variable x1 on [−π, π] for each
X1

∈ E1.

✩ The results of this paper were announced in the author’s report on one-dimensional Fourier Series of Several Variable Functions, Book of
Abstracts, VIIth International Joint Conference of the Georgian Mathematical Union and Georgian Mechanical Union Dedicated to the 125th
Birthday Anniversary of Academician N. Muskhelishvii, September 5–9, 2016, Batumi, Georgia, p. 118.
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Let us consider a Fourier series corresponds to the function f (x1, X1) with respect to the variable x1 on [−π, π]
and we denote it by S[ f ]1, i.e.

S[ f ]1 =
1
2

a0(X1) +

∞∑
k=1

ak(X1) cos kx1 + bk(X1) sin kx1,

where the coefficients a0(X1), ak(X1) and bk(X1) are defined by the Fourier formulas

a0(X1) =
1
π

∫ π

−π

f (t, X1)dt, ak(X1) =
1
π

∫ π

−π

f (t, X1) cos ktdt,

bk(X1) =
1
π

∫ π

−π

f (t, X1) sin ktdt, k = 1, 2, . . . .

(1)

In these relations, anyone of the variables x2, x3, . . . , xn may play the role of x1.
Therefore to each summable function f in the n-dimensional cube [−π, π]n there correspond one-dimensional

Fourier series S[ f ]1, . . . , S[ f ]n with nonconstant coefficients.
In what follows we will discuss only the series S[ f ]1.

2. Necessary and sufficient condition for the convergence of a one-dimensional fourier series of a function of
many variables

Let us consider the partial sum of the one-dimensional Fourier series S[ f ]1

Sm( f ; (x1, X1)) =
1
2

a0(X1) +

m∑
k=1

ak(X1) cos kx1 + bk(X1) sin kx1,

which, after substituting in it the coefficients (1), takes the form

Sm( f ; (x1, X1)) =
1
π

∫ π

−π

f (t, X1)Dm(t − x1)dt =
1
π

∫ π

−π

f (x1 + y1, X1)Dm(y1)dy1,

where Dm is the Dirichlet kernel, i.e.

Dm(t) =
sin(m +

1
2 )t

2 sin t
2

for t ̸= 2kπ

and

Dm(2kπ ) = m +
1
2

for k = 0, ±1, ±2, . . . .

Since the function f is summable with respect to the variable x1 on [−π, π] for any X1
∈ E1, the well known

necessary and sufficient condition for the Fourier series S[ϕ] of a function ϕ ∈ L[−π, π] to be convergent at some
point t ∈ [−π, π] to the value ϕ(t) (see [1], Ch. I, §37, equality (37.5); [2], p.55)

lim
m→∞

∫ δ

0
[ϕ(t + u) + ϕ(t − u) − 2ϕ(t)]

sin mu
u

du = 0 (2)

takes in our case the form

lim
m→∞

∫ δ

0
[ f (x1 + y1, X1) + f (x1 − y1, X1) − 2 f (x1, X1)]

sin my1

y1
dy1 = 0, X1

∈ E1.

Hence we can formulate

Proposition 2.1. For a one-dimensional Fourier series S[ f ]1 to converge at a point (x1, X1) to the value f (x1, X1)
for some x1 ∈ [−π, π] and X1

∈ E1 it is necessary and sufficient that the equality

lim
m→∞

∫ δ

0

f (x1 + y1, X1) + f (x1 − y1, X1) − 2 f (x1, X1)
y1

sin my1dy1 = 0 (3)

be fulfilled.
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3. Sufficient conditions for the convergence of a one-dimensional Fourier series of a function of many
variables

As far back as 1853 B. Riemann considered the problem of representation of functions by trigonometric series.
In connection with this problem Riemann introduced into consideration a function, say, ϕ with the property
([3], p. 245; [1], Ch. I, §66)

lim
h→0

ϕ(x0 + h) + ϕ(x0 − h) − 2ϕ(x0)
h

= 0 (4)

at a point x0.
Later, A. Zygmund called the function ϕ having the property (4) a smooth function at the point x0 ([4]; [2], p. 43).
It is obvious that a smooth function ϕ at a point x0 has the property ϕ(x0 + h) +ϕ(x0 − h) − 2ϕ(x0) → 0 as h → 0

which is called the symmetry of the function ϕ at x0.
It is the well-established fact that almost all points of symmetry of any function is the point of its continuity

([5], p. 266) and the converse statement is obvious.
Therefore almost all points of smoothness of any function is the point of its continuity. In addition, a smooth

function at separate points may be discontinuous, for example, a discontinuous odd function.
It should be said that if the function ϕ has the finite derivative ϕ′(x0) at some point x0, then ϕ is smooth at x0

([3], p. 43; [1], Ch.I, §66), but the converse statement is not true ([2], p. 48).
Note that if a 2π -periodic and summable function on [−π, π] is smooth at some point x0, in particular if ϕ has the

finite derivative ϕ′(x0), then the Fourier series S[ϕ] of the function ϕ converges at the point x0 to the value ϕ(x0) (see
the equality (2)).

Following Riemann, we introduce the following notion of smoothness of a function of many variables (the case
n = 2 is considered in [6]).

Definition 3.1. A function f of n variables x1, . . . , xn is called smooth at a point x = (x1, . . . , xn) if the equality

lim
h→0

f (x + h) + f (x − h) − 2 f (x)
|h|

= 0 (5)

is fulfilled, where h = (h1, . . . , hn) and |h| = |h1| + · · · + |hn|.

Proposition 3.2. If a function f is differentiable at some point x, then f is smooth at x.

Indeed, that this is so follows from the equality
f (x1 + h1, . . . , xn + hn) + f (x1 − h1, . . . , xn − hn) − 2 f (x1, . . . , xn)

|h1| + · · · + |hn|

=
f (x1 + h1, . . . , xn + hn) − f (x1, . . . , xn) − A1(h1) − · · · − An(hn)

|h1| + · · · + |hn|

+
f (x1 − h1, . . . , xn − hn) − f (x1, . . . , xn) − A1(−h1) − · · · − An(−hn)

|−h1| + · · · + |−hn|
.

The converse to Proposition 3.2 is not true (for the case n = 2 see [6]).

Proposition 3.3. If a function f is smooth at a point x, then it is smooth at x with respect to each variable x j ,
1 ≤ j ≤ n.

To verify that this is so it suffices to put (5) hi = 0 for all i ̸= j .

Proposition 3.4. If a function f has at a point x the finite partial derivative ∂ f
∂x j

with respect to the variable x j , then
f is smooth at x with respect to the same variable x j .

That this is so follows from the corresponding statement for functions of one variable.

Proposition 3.5. If a function f is smooth with respect to the variable x1 at the point (x1, X1) for some x1 ∈ [−π, π]
and X1

∈ E1, then the Fourier series S[ f ]1 converges at (x1, X1) to the value f (x1, X1).
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This assertion follows from the equality (3).
Propositions 3.3 and 3.5 give rise to

Theorem 3.6. If a continuous on [−π, π]n function f is smooth at a point x, in particular if f is differentiable at x,
then all one-dimensional Fourier series S[ f ]1, . . . , S[ f ]n converge at the point x to one and the same value f (x).

Indeed, the function f as a function of the variable x j is summable on [−π, π] for any point X j
=

(x1, . . . , x j−1, x j+1, . . . , xn) from [−π, π]n−1. By virtue of Propositions 3.3 and 3.5, the one-dimensional Fourier
series S[ f ] j converges at the point (x j , X j ) = (x1, . . . , xn) to the value f (x j , X j ) = f (x1, . . . , xn).

4. Almost everywhere convergence of one-dimensional Fourier series S[F]1 and S[F]2 for Ch. Fefferman’s
function F

It is well known that there exists an everywhere continuous function F(x, y) of two variables and a 2π -periodic
with respect to x and y double trigonometric Fourier series S[F] which diverges everywhere in the Prinsheim
sense [7].

The function F(x, y) as function of the variable x1 ∈ [−π, π] belongs to the class L2[−π, π] for each y ∈ [−π, π].
Therefore by L. Carleson’s theorem [8] we have

Proposition 4.1. A one-dimensional Fourier series S[F]1 converges to values F(x, y) for almost all x ∈ [−π, π]
and all y ∈ [−π, π].

Analogously, the following assertion is true.

Proposition 4.2. The one-dimensional Fourier series S[F]2 converges to the values F(x, y) for all x ∈ [−π, π] and
almost all y ∈ [−π, π].

Propositions 4.1 and 4.2 give rise to

Theorem 4.3. The one-dimensional Fourier series S[F]1 and S[F]2 simultaneously converges to the values F(x, y)
for almost all (x, y) ∈ [−π, π]2.

Finally, Propositions 4.1, 4.2 and Theorem 4.3 can be made stronger as follows.

Theorem 4.4. For any function f ∈ L2[−π, π]2 there exist measurable sets E1, E2 and E3 from the square [−π, π]2

with the properties |E1| = |E2| = |E3| = 4π2, at whose points the following equalities are fulfilled:
S[ f ]1(x, y) = f (x, y) for (x, y) ∈ E1,
S[ f ]2(x, y) = f (x, y) for (x, y) ∈ E2,
S[ f ]1(x, y) = f (x, y) = S[ f ]2(x, y) for (x, y) ∈ E3.
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Abstract

Positive homogeneous functions on R of a negative degree are characterized by a new counterpart of the Euler’s homogeneous
function theorem using quantum calculus and replacing the classical derivative operator by Jackson derivative. As application we
start by characterizing the harmonic functions associated to Jackson derivative. Then, the solution of the Cauchy problem associated
to the analogue of the Euler operator is given. Using this solution we study the associated ν-potential. Its Markovianity property
is treated.
c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Homogeneous functions; Euler’s theorem; Quantum calculus; Cauchy problem; Markovian semigroups

1. Introduction and preliminaries

The notion of a homogeneous function arises in connection with the spherical harmonic functions. The solid
harmonic also can be defined as homogeneous functions that obey Laplace’s equation. The Euler theorem is used
in proving that the Hamiltonian is equal to the total energy. In thermodynamics, extensive thermodynamic functions
are homogeneous functions. In this context, Euler’s theorem is applied in thermodynamics by taking Gibbs free
energy. Also, Euler’s theorem is of value in analytical mechanics and has been widely implemented as a theoretical
basis for the reversal of wide magnetic and gravity data sets in terms of single sources, see [1–3]. In mathematics,
a homogeneous function is a function f with multiplicative scaling behavior, i.e, if the argument is multiplied by a
factor α, then the result is multiplied by some power λ of this factor. Positive homogeneous functions are characterized
by Euler’s homogeneous function theorem which consists of: f is positive homogeneous of degree λ ∈ R if and only
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if
n∑

j=1

x j
∂

∂x j
f (x) = λ f (x).

The operator
∑n

j=1 x j
∂
∂x j

is called the Euler operator (see [4]). In microeconomics, they use homogeneous production
functions, including the function of Cobb–Douglas, developed in 1928, the degree of such homogeneous functions
can be negative which was interpreted as decreasing returns to scale. The concept of homogeneity in methods for
enforcement finds modeling physical phenomena and, in particular, for directly solving inverse problems for potential
fields, see [3], where the gravity field of a mass point has the potential V. The tests of homogeneity for this potential can
be implemented using equation of Euler’s theorem to study the homogeneity for the gravity potential V with a negative
degree of homogeneity (λ = −1), see [3]. Also, Gel’fand and Shilov [4] studied the homogeneous distributions of
negative integer degree λ on R.

At the last quarter of the XX century, q-calculus appeared as a connection between mathematics and physics (see
for more details [5–9]). It has a lot of applications in different basic hyper-geometric functions and other sciences as
quantum theory, mechanics and theory of relativity. We shall briefly recall some of the concepts, notations and known
results on q-calculus as given in [5–11]. Let q ∈ (0, 1). A q-number [n]q is defined by

[n]q := 1+ q ++ · · · + qn, n ∈ N.

Generally a q-complex number is given by [a]q is [a]q =
1−qa

1−q , a ∈ C. The factorial of a number [n]q is defined
by

[0]q ! = 1, [n]q ! = [n]q [n − 1]q ...[1]q , n ∈ N.

The q-derivative also referred to as Jackson derivative [5] is defined as follows

Dq f (x) =


f (x)− f (qx)

(1− q)x
, q ∈ (0, 1), x 6= 0

f ′(0), x = 0,
(1)

such that, limq−→1 Dq f (x) = d f (x)
dx , if f is differentiable at x . This derivative (2.1) verifies the following q-derivation

property

Dq( f.g)(x) = g(qx)Dq f (x)+ f (x)Dq g(x) = f (qx)Dq g(x)+ g(x)Dq f (x). (2)

And the high q-derivatives are D0
q f := f, Dn

q f := Dq(Dn−1
q f ), n ∈ N. Notice, that a continuous function on an

interval, which does not include 0 is continuous q-differentiable. The q-derivative operator Dq and the operator X
defined by X f (x) = x f (x) give a bounded representation of

aa∗ − qa∗a = 1

on H2(Bq , µq) which is the completion of the analytic functions on Bq = {z ∈ C : ‖z‖2 < 1
1−q } with respect to the

inner product defined by a measure µq on the complex plane that replaces the Lebesgue measure on the unit circle,
for more details see [12]. As q tends to 1, µq tends to the Gauss measure on the complex plane. This representation
generalizes the Bargmann representation of analytic functions on the complex plane. The operator Dq + X , viewed
as a non-commutative (or quantum) random variable, has a q-Gaussian distribution in the vacuum state. The operator
X Dq will be called the q-Euler operator. This operator has a q-Poisson distribution in the vacuum state. It is obvious
that X Dq is the q-deformation of the operator X d

dx verifying: as q tends to 1, X Dq tends to X d
dx . Now, if we replace

X d
dx by X Dq , what are the q-analogues of the Euler’s theorem?
In this paper we give a response to this above question as follows: positive homogeneous functions f on R of

a negative degree λ are characterized by a new counterpart of the Euler’s homogeneous function theorem using the
q-Euler operator, i.e, f is homogeneous of degree λ if and only if

∆E,q f (x) = [λ]q f (x),
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for q ∈ (0, 1) and x ∈ R+. As application we start by characterizing the q-harmonic functions. Then, the solution
of the Cauchy problem associated to the q-Euler operator is given. Using this solution we study the associated
ν-potential. Its Markovianity property is treated.

2. The q-analogues of the Euler theorem

Let f : R+ −→ R. We say that f is homogeneous of degree λ ∈ R, if for all x ∈ R and for all α > 0

f (αx) = αλ f (x).

Definition 2.1. For q ∈ (0, 1), we define the q-Euler operator by

∆E,q = X.Dq .

Proposition 2.1. Let f, g : R+ −→ R, then for q ∈ (0, 1), we have

∆E,q( f.g)(x) = g(x)∆E,q f (x)+ f (qx)∆E,q g(x). (3)

Proof. By definition, we have, for x 6= 0

∆E,q( f.g)(x) = x Dq( f.g)(x)

= x
f (x)g(x)− f (qx)g(qx)

(1− q)x

= x
f (x)− f (qx)

(1− q)x
g(x)+ x f (qx)

g(x)− g(qx)

(1− q)x

= x
(

Dq f
)
(x)g(x)+ x f (qx)

(
Dq g

)
(x)

= g(x)∆E,q f (x)+ f (qx)∆E,q g(x).

Now, for x = 0, we know that

Dq( f.g)(x)|x=0
= ( f.g)′(0) = f ′(0)g(0)+ g′(0) f (0).

Then, applying the multiplication operator x , we obtain

∆E,q( f.g)(0) = g(0)
(
∆E,q f

)
(0)+ f (q.0)

(
∆E,q g

)
(0),

which completes the proof. �

Theorem 2.2. If f is homogeneous of degree λ ∈ R, then we have

∆E,q f (x) = [λ]q f (x), q ∈ (0, 1).

Proof. Let f be a homogeneous function of degree λ ∈ R. Then for x 6= 0, we have

Dq( f )(x) =
f (x)− f (qx)

(1− q)x

=
f (x)− qλ f (x)

(1− q)x

=
(1− qλ)

(1− q)

f (x)

x

= [λ]q
f (x)

x
.
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Therefore, we get

∆E,q f (x) = [λ]q f (x).

Now, for x = 0 and λ ∈ R \ {0}, we have

(X.Dq f )(0) = 0 and f ′(0) = 0.

But, we know that f is homogeneous of degree λ then f (αx) = αλ f (x). In particular for x = 0, f (0) = αλ f (0) for
α > 0, which implies that f (0) = 0 for λ ∈ R∗. Then, we get

(X.Dq f )(0) = 0 = [λ]q f (0).

Now, for λ = 0 and x = 0

(X.Dq f )(0) = 0 = [0]q f (0).

Hence, for x ∈ R+ and λ ∈ R, we obtain

∆E,q f (x) = [λ]q f (x),

which gives the desired statement, which completes the proof. �

Theorem 2.3. Let q ∈ (0, 1), x ∈ R and λ < 0. If we have

∆E,q f (x) = [λ]q f (x).

Then, f is homogeneous of degree λ.

Proof. Let f : R+ −→ R such that ∆E,q f (x) = [λ]q f (x). For all x ∈ R+, define g : (0,∞) −→ R by

g(α) = f (αx)− αλ f (x).

Then, for α > 0, we get

Dq(g)(α) =
f (αx)− f (qαx)

(1− q)α
− [λ]qα

λ−1 f (x)

=
x

α

f (αx)− f (qαx)

(1− q)x
− [λ]qα

λ−1 f (x)

=
1
α

∆E,q f (αx)− [λ]qα
λ−1 f (x).

Then, we can obtain

αDq g(α) = ∆E,q f (αx)− [λ]qα
λ f (x)

= [λ]q
(

f (αx)− αλ f (x)
)

= [λ]q g(α).

Since α is arbitrary, g satisfies the following q-differential equation

Dq g(α)−
[λ]q

α
g(α) = 0. (4)

Eq. (4) is equivalent to

g(α)− g(qα)

(1− q)α
=
[λ]q

α
g(α).

Then, we get

g(α) = q−λg(qα).

By a simple iteration, we obtain

g(α) = q−λng(qnα).
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Then, for n −→∞, we get g(α) = 0, which is equivalent to

f (αx) = αλ f (x).

This completes the proof. �

Combining Theorem 2.2 with Theorem 2.3 above, we obtain the following theorem, which will be called
q-analogues of Euler’s Theorem:

Theorem 2.4. Let λ < 0. Then, f is homogeneous of degree λ if and only if

∆E,q f (x) = [λ]q f (x),

for q ∈ (0, 1) and x ∈ R+.

Remark 1. It is obvious from Theorem 2.4 that, as q tends to 1, we refind the classical Euler’s theorem for λ < 0.

3. Applications of the q-Euler operator

3.1. q-harmonic function

This subsection deals with the study of a link taken homogeneous function and a new notion of q-harmonic
functions.

Definition 3.1. f is called q-harmonic function if D2
q( f ) = 0.

Theorem 3.1. Let f be λ-homogeneous. Then f is q-harmonic if and only if λ = 0.

Proof. “⇒” Let f be λ-homogeneous and q-harmonic. Then from Theorem 2.2, we have

D2
q( f )(x) = 0

and from Theorem 2.2

X.Dq( f )(x) = [λ]q f (x). (5)

Then we get

(X.Dq)
2( f )(x) = [λ]2q f (x).

But we know that,

Dq X − q X Dq = 1.

Then,

Dq X = 1+ q X Dq

from which we get

X (1+ q X Dq)
2 Dq( f )(x) = [λ]2q f (x)

X.Dq( f )(x)+ q X2 D2
q f (x) = [λ]2q f (x).

Thus

[λ]q f (x) = [λ]2q f (x).

This gives

λ = 0.
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“⇐” Let f be 0-homogeneous. Then for λ = 0, we have f (αx) = f (x). Therefore, we get

Dq f (x) =
f (x)− f (q x)

(1− q)x

=
f (x)− f (x)

(1− q)x
= 0.

Then f is q-harmonic, which completes the proof. �

3.2. Cauchy problem associated to the q-Euler operator

Let f : R+ −→ R be homogeneous function of degree λ where 0 < λ ≤ 1. Consider, the following Cauchy
problem

∂

∂t
U (t, x) = ∆E,qU (t, x), x ∈ R+

U (0, x) = f (x).
(6)

Theorem 3.2. The Cauchy problem (6) admits a unique solution given by

U (t, x) = f (x)+
∞∑

n=1

n−1∑
k=0

(−1)k tn
[ f (qk x)− f (qk+1x)]

n(n − 1− k)!k!(1− q)n
. (7)

Proof. We start by verifying that

U (t, x) := f (x)+
∞∑

n=1

n−1∑
k=0

(−1)k tn
[ f (qk x)− f (qk+1x)]

n(n − 1− k)!k!(1− q)n

is a solution of the system (6). On the one hand, we have

∂U (t, x)

∂t
=

∞∑
n=1

n−1∑
k=0

(−1)k tn−1
[ f (qk x)− f (qk+1x)]

(n − 1− k)!k!(1− q)n
.

On the other hand, we have

∆E,qU (t, x) = x DqU (t, x)

=
U (t, x)−U (t, qx)

1− q

=
f (x)− f (qx)

1− q

+

∞∑
n=1

n−1∑
k=0

(−1)k tn
[ f (qk x)− f (qk+1x)]

n(n − 1− k)!k!(1− q)n+1

−

∞∑
n=1

n−1∑
k=0

(−1)k tn
[ f (qk+1x)− f (qk+2x)]

n(n − 1− k)!k!(1− q)n+1 .

By indices change in the right sums of the above equation, we obtain

∆E,qU (t, x) =
f (x)− f (qx)

1− q

+

∞∑
n=1

n−1∑
k=0

(−1)k tn
[ f (qk x)− f (qk+1x)]

n(n − 1− k)!k!(1− q)n+1
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+

∞∑
n=1

n∑
k=1

(−1)k tn
[ f (qk x)− f (qk+1x)]

n(n − k)!(k − 1)!(1− q)n+1

= x Dq f (x)+
∞∑

n=1

n∑
k=0

(−1)k tn
[ f (qk x)− f (qk+1x)]

(n − k)!k!(1− q)n+1

=

∞∑
n=0

n∑
k=0

(−1)k tn
[ f (qk x)− f (qk+1x)]

(n − k)!k!(1− q)n+1

=

∞∑
n=1

n−1∑
k=0

(−1)k tn−1
[ f (qk x)− f (qk+1x)]

(n − 1− k)!k!(1− q)n

=
∂U (t, x)

∂t
,

which shows that U (t, x) is a solution of (6). Let us show by recursion on n ∈ N? that

∆n
E,q f (x) =

1
(1− q)n

n−1∑
k=0

(
n−1
k

)
(−1)k

(
f (qk x)− f (qk+1x)

)
. (8)

We have for, n = 1

∆E,q f (x) := x Dq f (x) =
1

1− q

(
f (x)− f (qx)

)
, x ∈ R+.

Now, suppose that Eq. (7) is verified, then we get

∆n+1
E,q f (x) = ∆E,q(∆n

E,q f (x))

= x Dq(∆n
E,q f (x))

=
1

1− q

[
∆n

E,q f (x)−∆n
E,q f (qx)

]
=

1
(1− q)n

n−1∑
k=0

(
n−1
k

)
(−1)kqk x Dq f (qk x)

−
1

(1− q)n

n−1∑
k=0

(
n−1
k

)
(−1)kqk+1x Dq f (qk+1x).

By indices change in the right sums of the above equation, we obtain

∆n+1
E,q f (x) =

1
(1− q)n

n−1∑
k=0

(
n−1
k

)
(−1)kqk x Dq f (qk x)

+
1

(1− q)n

n∑
k=1

(
n−1
k−1

)
(−1)kqk x Dq f (qk x)

=
1

(1− q)n

(
x Dq f (x)+ (−1)nqn x Dq f (qn x)

)
+

1
(1− q)n

n−1∑
k=1

{(
n−1
k

)
+

(
n−1
k−1

)}
(−1)kqk x Dq f (qk x)

=
1

(1− q)n

(
x Dq f (x)+ (−1)nqn x Dq f (qn x)

)
+

1
(1− q)n

n−1∑
k=1

(
n
k

)
(−1)kqk x Dq f (qk x)
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=
1

(1− q)n

n∑
k=0

(
n
k

)
(−1)kqk x Dq f (qk x)

=
1

(1− q)n+1

n∑
k=0

(
n
k

)
(−1)k

(
f (qk x)− f (qk+1x)

)
. (9)

This shows Eq. (6) for all n ∈ N. Then, using Eq. (6) we get

Qt f (x) :=
∞∑

n=0

tk

n!
∆n

E,q f (x)

= f (x)+
∞∑

n=1

tk

n!
∆n

E,q f (x)

= f (x)+
∞∑

n=1

n−1∑
k=0

(−1)k tn
(

f (qk x)− f (qk+1x)
)

n(n − 1− k)!k!(1− q)n

= U (t, x). (10)

Finally, we show the uniqueness of the above solution. Let V (t, x) be another solution of Eq. (6), we set W (t, x) =
Q−t V (t, x). Then

∂W (t, x)

∂t
= −∆E,q W (t, x)+ Q−t (∆E,q V (t, x))

= −∆E,q W (t, x)+∆E,q Q−t V (t, x)

= 0

from which, we deduce that

W (t, x) = W (0, x) = V (0, x) = f (x).

This implies that

V (t, x) = Qt f (x) = U (t, x),

which completes the proof. �

3.3. ν–q-potential

Using the semigroup {Qt }t we come to the following.

Definition 3.2. For ν > 0, we define the ν–q-potential by:

Hν,q f (x) =
∫
∞

0
e−νt

(
Qt ( f )(x)− f (x)

)
dt.

Theorem 3.3. The ν–q-potential is the unique solution of the following Poisson equation:

(ν I −∆E,q) F =
1
ν

Dq .

Proof. By Definition 3.2 and Eq. (10) we have

Hν,q f (x) =
∫
∞

0
e−νt

∞∑
n=1

n−1∑
k=0

(−1)k tn
(

f (qk x)− f (qk+1x)
)

n (n − 1− k)!k!(1− q)n
dt

=

∞∑
n=1

n−1∑
k=0

(−1)k
(

f (qk x)− f (qk+1x)
)

n (n − 1− k)!k!(1− q)n

∫
∞

0
e−νt tndt.
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One can show easily that∫
∞

0
e−νt tndt =

n!

νn+1 .

Then,

Hν,q f (x) =
∞∑

n=1

n−1∑
k=0

(−1)k tn
(

f (qk x)− f (qk+1x)
)

(n − k)!k!(1− q)n

( (n − 1)!

νn+1

)
. (11)

On the other hand we have

X.Dq Qt f (x) = ∆E,q et∆E,q f (x).

=

∞∑
n=0

tn

n!
∆n+1

E,q f (x).

= ∆E,q f (x)+
∞∑

n=1

tn

n!
∆n+1

E,q f (x).

Using Eq. (9), we get

∆E,q Qt f (x) = ∆E,q f (x)+
∞∑

n=1

tn

n!

1

(1− q)n+1

n∑
k=0

(
n
k

)
(−1)k

(
f (qk x)− f (qk+1x)

)
from which we obtain

∆E,q(Qt f − f )(x) =
∞∑

n=1

n∑
k=0

tn(−1)k

k!(n − k)!(1− q)n+1

(
f (qk x)− f (qk+1x)

)
.

Then, from Definition 3.2, we get

∆E,q Hν,q f (x) =
∞∑

n=1

n∑
k=0

n!(−1)k

νn+1k!(n − k)!(1− q)n+1

(
f (qk x)− f (qk+1x)

)
. (12)

By the change indices (n − 1 = j) in the right sums of Eq. (11), we have

Hν,q f (x) =
∞∑
j=0

j∑
k=0

j !(−1)k

νn+2k!( j − k)!(1− q) j+1

(
f (qk x)− f (qk+1x)

)
.

Using Eq. (12) we obtain

Hν,q f (x) =
1

ν2(1− q)

(
f (x)− f (qx)

)
+

∞∑
j=0

j∑
k=0

j !(−1)k

νn+2k!( j − k)!(1− q) j+1

(
f (qk x)− f (qk+1x)

)
=

1

ν2(1− q)

(
f (x)− f (qx)+

1
ν

∆E,q Hν,q f (x)
)
,

which is equivalent to

ν Hν,q f (x)−∆E,q Hν,q f (x) =
1
ν

Dq f (x).

This implies that

(ν I −∆E,q)Hν,q =
1
ν

Dq ,

which completes the proof. �
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3.4. Markovianity property

Recall that from [13] {Pt }t≥0 is called a Markov semigroup if it satisfies

(a) P0 = I d
(b) Pt+s = Pt Ps for s, t ≥ 0
(c) Strong continuity : Pt f → f as t → 0 for all f .
(d) Pt f ≥ 0 whenever f ≥ 0
(e) Pt 1 = 1 for all t ≥ 0.

Note that conditions (d) and (e) imply Contraction Property: ‖Pt f ‖ ≤ ‖ f ‖ for all f and t .

Theorem 3.4. The family {Qt }t≥0 is Markov semigroup.

Proof. (a) It is obvious that Q0 = I d .
(b) Let s, t ≥ 0, then

Qt+s = e(s+t)∆E,q

= es∆E,q et∆E,q

= Qt Qs .

(c) Let t ≥ 0, then

‖Qt f − f ‖ ≤
∞∑

n=1

tn ‖∆E,q‖
n
‖ f ‖

n!

=

(
et‖∆E,q‖ − 1

)
‖ f ‖ → 0 as t → 0.

(d) Using Theorem 2.2, we get

∆E,q f (x) = [λ]q f (x).

Similarly using Theorem 2.2, we obtain

(∆E,q)
n f (x) = ([λ]q)

n f (x).

Then,

Qt f (x) =
∞∑

n=o

tn

n!
[λ]nq f (x) = et[λ]q f (x).

Hence, when f ≥ 0, we obtain

Qt f ≥ 0.

(e) Using Eq. (10), we get

Qt 1 = 1, for all t ≥ 0.

This completes the proof. �
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Abstract

The aim of this paper is to prove fixed point results under (ψ, φ)-weak contractive condition for continuous weak compatible
mappings in ordered b-metric spaces. The results proved herein generalize, modify and unify some recent results of the existing
literature. An application demonstrating the usability of our established results is also discussed besides furnishing an illustrative
example.
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NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and preliminaries

Alber and Guerre-Delabriere [1] established a novel fixed point result for weak contraction in Hilbert spaces.
Rhoudes [2] extended this result to metric spaces and also showed the generality of such results besides deducing
Banach contraction principle. In [3], Zhang and Song replaced the idea of φ-weak contraction with generalized φ-weak
contraction and obtained their fixed point results in complete metric spaces. Dutta and Choudhury [4] proved some
fixed point results in complete metric spaces under (ψ, φ)-weak contractive condition whereas Doric [5] extended
some fixed point results of [4,3] to generalized (ψ, φ)-weak contraction. Abbas and Doric [6] proved similar results
on fixed point in complete metric spaces involving four mappings while Murthy et al. [7] obtained fixed point results
in complete metric spaces under (ψ, φ)-generalized weak contractive condition.

The origin of existence results on fixed points in partially ordered metric spaces is often traced back to Ran and
Reurring [8]. Using generalized weak contraction, Radenovic and Kadelburg [9] established certain fixed point results
in partially ordered metric spaces. Radenovic et al. [10] and Salimi et al. [11] proved fixed point results besides

∗ Corresponding author.
E-mail addresses: noorjamalmphil791@gmail.com (N. Jamal), sarwarswati@gmail.com (M. Sarwar), mhimdad@yahoo.co.in (M. Imdad).
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.02.001
2346-8092/ c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



N. Jamal et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 182–194 183

discussing possible applications under cyclic contraction and cyclic α–ψ–φ-contraction respectively. In [12] Aghajani
and Arab also discussed coupled coincidence point results under generalized (ψ, φ, θ)-almost contractive condition
in ordered b-metric spaces. Furthermore, Roshan et al. [13] proved results on coincidence point for almost generalized
and generalized (ψ, φ)-weak contractions in partially ordered b-metric spaces. Aghajani et al. [14] utilized generalized
weak contraction to prove their results on fixed points involving four mappings in partially ordered b-metric spaces.
Huang et al. [15] established coincidence point results in partially ordered b-metric spaces without using a special
lemma as employed in [13].

The aim of this paper is to prove common fixed point results for pair of weak compatible mappings satisfying
generalized (ψ, φ)-weak contractive condition in partially ordered b-metric spaces.

Throughout this paper, R+ stands for the set of non-negative real numbers.

Definition 1.1 ([16]). Let P , Q : Y → Y be a pair of mappings on the partial order set Y . The pair (P, Q) is called
(a) weakly increasing if Pu � Q(Pu) and Qu � P(Qu), ∀ u ∈ Y ,
(b) partially weakly increasing if, ∀ u ∈ Y Pu � Q(Pu).

Definition 1.2 ([17]). Let P , Q, S : Y → Y be three mappings on the partial order set (Y,�) such that P(Y ) ⊆ S(Y )
and Q(Y ) ⊆ S(Y ). The pair (P, Q) is called

(i) weakly increasing with respect to S ⇔ ∀ u ∈ Y , Pu � Qw, ∀w ∈ S−1(Pu) and Qu � Pw for allw ∈ S−1(Qu),
(ii) partially weakly increasing with respect to S ⇔ Pu � Qw, ∀ w ∈ S−1(Pu).

Definition 1.3 ([18]). Let P , Q : Y → Y be a pair of mappings on a metric space (Y, d). The pair (P, Q) is said to
be compatible if and only if

lim
m→∞

d(P Qum, Q Pum) = 0,

whenever {um} is a sequence such that,

lim
m→∞

Pum = lim
m→∞

Qum = r with r ∈ Y.

Definition 1.4 ([19]). Let P , Q : Y → Y be a pair of mappings on metric space (Y, d). The pair (P, Q) is weakly
compatible when the pair (P, Q) commutes on the set of coincidence points (i.e., P Qu = Q Pu when Pu = Qu).

Definition 1.5 ([20]). Let d1 : Y × Y → R+ be a mapping, where Y is non-empty set. Then d1 is called a b-metric if
and only if (∀u, w and v ∈ Y and s ≥ 1) the following conditions are fulfilled:

(b1) d1(w, u) = 0 if and only if w = u;
(b2) d1(w, u) = d1(u, w);
(b3) d1(w, v) ≤ s

(
d1(w, u)+ d1(u, v)

)
.

The pair (Y, d1) is called a b-metric space, where d1 is termed as b-metric defined on a partial order set (Y,�).
Such a b-metric space is called a partially ordered b-metric space.

Definition 1.6 ([13]). A sequence {um} is called b-Cauchy in (Y, d1) if and only if

lim
m,n→∞

d1(um, un) = 0.

Definition 1.7 ([13]). A sequence {wm} is called b-convergent in a b-metric space (Y, d1) if and only if there isw ∈ Y
such that limm→∞ d(wm, w) = 0 (i.e., limm→∞wm = w).

Lemma 1.8 ([13]). Suppose that the sequences {um} and {vm} are b-convergent to u1 and v1 respectively in b-metric
space (Y, d1) with s ≥ 1. Then,

1

s2 d1(u, v) ≤ lim
m→∞

inf d1(um, vm) ≤ lim
m→∞

sup d1(um, vm) ≤ s2d1(u, v).
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In particular, limm→∞ d1(um, vm) = 0, for u = v. Also, ∀ w ∈ Y ,

1
s

d1(u, w) ≤ lim
m→∞

inf d1(um, w) ≤ lim
m→∞

sup d1(um, w) ≤ sd1(u, w).

2. Main results

In this section, employing the idea of generalized (ψ, φ)-weak contraction, some fixed point results for continuous
self-mappings defined on partially ordered b-metric spaces are established. The existing literature contains several
fixed point results in the setting of b-metric spaces, where in Lemma 1.8 is used in their proofs. In our present paper,
we do not employ Lemma 1.8.

Throughout this paper, we write (∀ u, w ∈ Y );

M(u, w) := max
{

d1(Su, Tw),
d1(Su, Pu)+ d1(Tw, Qw)

2
,

d1(Su, Qw)+ (Tw, Pu)

2s

}
,

and

N (u, w) := min
{

d1(Su, Tw),
d1(Su, Pu)+ d1(Tw, Qw)

2
,

d1(Su, Qw)+ (Tw, Pu)

2s

}
.

Now, we are equipped to prove our main result:

Theorem 2.1. Let P, Q, S, T : Y → Y be continuous self-mappings on a partially ordered complete b-metric space
(Y,�, d1) such that P(Y ) ⊂ T (Y ) and Q(Y ) ⊂ S(Y ). Suppose that the pairs (P, S) and (Q, T ) are compatible while
the pairs (P, Q) and (Q, P) are partially weakly increasing with respect to T and S respectively. Assume for altering
distance function ψ : [0,∞) → [0,∞) and lower semi continuous φ : [0,∞) 7→ [0,∞) which is discontinuous at
v = 0 and satisfies φ(v) > 0, ∀ v > 0, and φ(0) = 0, the following condition holds:

ψ(sd1(Pu, Qw)) ≤ ψ(M(u, w))− φ(N (u, w)), ∀ u, w ∈ Y. (2.1)

Then there exists a unique common fixed point of P, Q, T and S.

Proof. Take u0 ∈ Y . Since P(Y ) ⊂ T (Y ) and Q(Y ) ⊂ S(Y ), there exists a point u1 ∈ Y such that Pu0 = T u1,
where u2 ∈ Y such that Qu1 = Su2. In this way inductively, we are in the receipt of a sequence such that

w2m+1 = Pu2m = T u2m+1,

w2m+2 = Qu2m+1 = Su2m+2, f or m = 0, 1, 2, . . . .

As u1 ∈ T−1(Pu0) and u2 ∈ S−1(Qu1) and the pairs (P, Q) and (Q, P) are partially weakly increasing with respect
to T and S respectively, we have T u1 = Pu0 � Qu1 = Su2 � Pu2 = T u3. Repeating this process inductively, one
gets;

w2m+1 � w2m+2, ∀ m ∈ N ∪ {0}.

Now, we wish to prove that d1(wm, wm+1) −→ 0 as m −→ ∞, ∀ m ∈ N ∪ {0}. Write u = u2m and w = u2m+1.
Taking this into account in (2.1), we get the inequity

ψ(sd1(Pu2m, Qu2m+1)) = ψ(sd1(w2m+1, w2m+2)) ≤ ψ(M(u2m, u2m+1))− φ(N (u2m, u2m+1)), (2.2)

where

M(u2m, u2m+1) = max
{

d1(w2m, w2m+1),
d1(w2m, w2m+1)+ d1(w2m+2, w2m+1)

2
,

d1(w2m, w2m+2)+ d1(w2m+1, w2m+1)

2s

}
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and

N (u2m, u2m+1) = min
{

d1(w2m, w2m+1),
d1(w2m, w2m+1)+ d1(w2m+2, w2m+1)

2
,

d1(w2m, w2m+2)+ d1(w2m+1, w2m+1)

2s

}
.

Write, dk = d1(wk, wk+1). Suppose dk0 = 0 for some k0, thenwk0 = wk0+1 . In case k0 = 2m, we havew2m = w2m+1.
Now, we have

M(u2m, u2m+1) = max
{

0,
d1(w2m+1, w2m+2)+ 0

2
,

0+ d1(w2m, w2m+2)

2s

}
= max

{
0,

d1(w2m+2, w2m+1)

2
,

d1(w2m+2, w2m)

2s

}
=

d1
(
w2m+2, w2m+1

)
2

.

Due to triangle inequality we see that

d1(w2m+2, w2m) ≤ s(d1(w2m, w2m+1)+ d1(w2m+1, w2m+2)) = sd1(w2m+1, w2m+2).

⇒
d1(w2m, w2m+2)

s
≤ d1(w2m+1, w2m+2),

which together with Eq. (2.2) gives

ψ
(
sd1(w2m+1, w2m+2)

)
≤ ψ

(
d1(w2m+1, w2m+2)

2

)
.

Since ψ is non-decreasing, one can write

sd1(w2m+1, w2m+2) ≤
d1(w2m+1, w2m+2)

2
which is possible only when d1(w2m+1, w2m+2) = 0. Hence w2m+1 = w2m+2. Thus in all, w2m = w2m+1 = w2m+2.

Similarly, if k0 = 2m + 1, then w2m+1 = w2m+2, which gives w2m+2 = w2m+3. Consequently, the sequence {wk}

reduces to a constant sequence whenever k ≥ k0 so that

lim
m→∞

d1(wm, wm+1) = 0.

In case, w2m 6= w2m+1, then d1(w2m, w2m+1) > 0, for all m ∈ N ∪ {0}. Since

M(u2m, u2m+1) = max
{

d1(w2m, w2m+1),
d1(w2m, w2m+1)+ d1(w2m+1, w2m+2)

2
,

d1(w2m, w2m+2)

2s

}
,

using triangle inequality we find that

M(u2m, u2m+1) ≤ max
{

d1(w2m, w2m+1),
d1(w2m, w2m+1)+ d1(w2m+1, w2m+2)

2
,

s(d1(w2m, w2m+1)+ d1(w2m+1, w2m+2))

2s

}
= max

{
d1(w2m, w2m+1),

d1(w2m, w2m+1)+ d1(w2m+1, w2m+2)

2
,

(d1(w2m, w2m+1)+ d1(w2m+1, w2m+2))

2

}
. (2.3)

On the contrary, assume that d1(w2m, w2m+1) < d1(w2m+1, w2m+2). Then

M(u2m, u2m+1) ≤ d1(w2m+1, w2m+2) ≤ sd1(w2m+1, w2m+2), (2.4)

N (u2m, u2m+1) = min
{

d1(w2m, w2m+1),
d1(w2m, w2m+1)+ d1(w2m+1, w2m+2)

2
,

d1(w2m, w2m+2)+ d1(w2m+1, w2m+1)

2s

}
.
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Since w2m 6= w2m+1, so that N (u2m, u2m+1) > 0. Therefore, φ
(
N (u2m, u2m+1)

)
> 0. By using Eq. (2.2), we have

ψ
(
sd1(w2m+1, w2m+2)

)
≤ ψ

(
M(w2m, w2m+1)

)
.

As ψ is non-decreasing, we see that

sd1(w2m+1, w2m+2) ≤ M(u2m, u2m+1). (2.5)

From (2.4) and (2.5) we find that

M(u2m, u2m+1) = sd1(w2m+1, w2m+2). (2.6)

Using φ(N (u2m, u2m+1)) > 0 and taking Eqs. (2.6) and (2.2) into account, we can write that

ψ
(
sd1(w2m+1, w2m+2)

)
≤ ψ

(
M(u2m, u2m+1)

)
− φ

(
N (u2m, u2m+1)

)
,

< ψ
(
sd1(w2m+1, w2m+2)

)
which is a contradiction. Hence

d1(w2m+1, w2m+2) ≤ d1(w2m, w2m+1). (2.7)

It is clear from (2.7) that sequence of non-negative real numbers {d1(w2m, w2m+1)}, is monotonically decreasing,
therefore there exists a number r ≥ 0, such that;

lim
m→∞

d1(w2m, w2m+1) = r.

We assert that r = 0. Let us assume the contrary that r > 0, then

lim
m→∞

ψ
(
sd1(w2m+1, w2m+2)

)
≤ lim

m→∞
ψ
(
d1(w2m, w2m+1)

)
− lim

m→∞
φ
(
N (u2m, u2m+1)

)
.

⇒ ψ(sr) ≤ ψ(r)− lim
m→∞

φ
(
N (u2m, u2m+1)

)
.

In view of the lower semi continuity of φ, the second term on the right hand side of the preceding inequality is non
zero, therefore ψ(sr) < ψ(r) implies that sr < r , which is a contradiction to our supposition. Hence r = 0.

Thus,

lim
m→∞

d1(w2m, w2m+1) = 0.

Similarly, on putting u = u2m+1 and w = w2m+2 in (2.1), one gets;

lim
m→∞

d1(w2m+1, w2m+2) = 0.

Therefore in all, we conclude that;

lim
m→∞

d1(wm, wm+1) = 0, ∀ m ∈ N ∪ {0}. (2.8)

Now, we show that {wm} is a b-Cauchy sequence. To accomplish this, it is sufficient to show that {w2m}, is a
b-Cauchy. Let on contrary that {w2m}be not a b-Cauchy sequence. Suppose that for sequences {2m(t)} and {2n(t)}
with 2m(t) > 2n(t) > 2t,∀ t ∈ N, there exists ε > 0 such that,

d1(w2n(t), w2m(t)) ≥ ε. (2.9)

Moreover, suppose that corresponding to integer 2n(t), 2m(t) is the smallest integer such that condition (2.9) is
satisfied. Then, we have

d1(w2n(t), w2m(t)−1) < ε. (2.10)

By taking u = u2n(t)−1 and w = w2m(t)−1 in (2.1), we can have

ψ
(
sd1(w2n(t), w2m(t))

)
≤ ψ

(
M(u2n(t)−1, u2m(t)−1)

)
− φ

(
N (u2n(t)−1, u2m(t)−1)

)
, (2.11)
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where,

M(u2n(t)−1, u2m(t)−1) = max
{

d1(w2n(t)−1, w2m(t)−1),
d1(w2n(t)−1, w2n(t))+ d1(w2m(t)−1, w2m(t))

2
,

d1(w2n(t)−1, w2m(t))+ d1(w2m(t)−1, w2n(t))

2s

}
,

and

N (u2n(t)−1, u2m(t)−1) = min
{

d1(w2n(t)−1, w2m(t)−1),
d1(w2n(t)−1, w2n(t))+ d1(w2m(t)−1, w2m(t))

2
,

d1(w2n(t)−1, w2m(t))+ d1(w2m(t)−1, w2n(t))

2s

}
.

Using triangle inequality, one can write

d(w2n(t), w2m(t)) ≤ s(d1(w2n(t), w2m(t)−1)+ d1(w2m(t)−1, w2m(t))),

which by using (2.8), (2.10) and letting t →∞ in the preceding inequality we find that

d1(w2n(t), w2m(t)) ≤ sε. (2.12)

Similarly, using triangle inequality we have that

d1(w2n(t)−1, w2m(t)−1) ≤ s(d1(w2n(t)−1, w2n(t))+ d1(w2n(t), w2m(t)−1)).

Now using (2.8), (2.10) and taking t →∞, the preceding inequality yields:

d1(w2n(t)−1, w2m(t)−1) ≤ sε. (2.13)

Applying once more triangle inequality, we have

d1(w2n(t)−1, w2m(t)) ≤ s(d1(w2n(t)−1, w2m(t)−1)+ d1(w2m(t)−1, w2m(t))).

Applying (2.8), (2.13) and letting t →∞, the latter inequality yields

d1(w2n(t)−1, w2m(t)) ≤ s(sε) = s2ε. (2.14)

Since,

M(u2n(t)−1, u2m(t)−1) = max
{

d1(w2n(t)−1, w2m(t)−1),
d1(w2n(t)−1, w2n(t))+ d1(w2m(t)−1, w2m(t))

2
,

d1(w2n(t)−1, w2m(t))+ d1(w2m(t)−1, w2m(t))

2s

}
,

which together with (2.8), (2.13) and (2.14) gives:

lim
t→∞

M(u2n(t)−1, u2m(t)−1) ≤ sε. (2.15)

Similarly, one can also show that limt→∞ N (u2n(t)−1, u2m(t)−1) = 0.
Taking, t →∞ and using (2.9) and (2.15) in (2.11), we can have

ψ(sε) ≤ ψ(sε)− lim
t→∞

φ(N (u2n(t)−1, u2m(t)−1)),

which leads to contradiction due to lower semi continuity of φ and the fact that φ(v) = 0 at v = 0. Hence {wm} is a
b-Cauchy sequence.

Since (Y, d1) is complete b-metric space, there exists a ∈ Y such that the b-Cauchy sequence {wn} is b-convergent
to a. Consequently, the subsequences Pu2m → a, Qu2m+1 → a, T u2m+1 → a and Su2m → a, where a ∈ Y .

Next, we show that a is a coincidence point of P and S. Since

lim
m→∞

Pu2m = lim
m→∞

w2m+1 = a,
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and

lim
m→∞

Su2m+2 = lim
m→∞

w2m+2 = a,

so that limm→∞ d1(Pu2m, a) = 0 and limm→∞ d1(Su2m, a) = 0.
Since P and S are continuous mappings, we have

lim
m→∞

d1(S Pu2m, Sa) = lim
m→∞

d1(P Su2m, Pa) = 0. (2.16)

As the pair (P, S) is compatible, one can write

lim
m→∞

d1(S Pu2m, P Su2m) = 0. (2.17)

Using triangle inequality, we have

d1(Sa, Pa) ≤ s(d1(Sa, S Pu2m)+ d1(S Pw2m, Pa)).

Again, using triangle inequality on the second term of the right hand side, we have

d1(Sa, Pa) ≤ sd1(Sa, S Pu2m)+ s2(d1(S Pu2m, P Su2m)+ d1(P Su2m, Pa)).

By using (2.17), (2.16) and taking limit m →∞ in above inequality, we have

lim
m→∞

d1(Sa, Pa) ≤ 0.

Hence, d1(Sa, Pa) = 0 which implies that Pa = Sa. Thus, a is a coincidence point of P and S. Similarly we can
show that Qa = T a.

Further, we show that Pa = Sa = a. For this purpose, we set u = a and w = u2m+1 in (2.1) so that

ψ(sd1(Pa, Qu2m+1)) ≤ ψ(M(a, u2m+1))− φ(N (a, u2m+1)), (2.18)

where,

M(a, u2m+1) = max
{

d1(Sa, T u2m+1),
d1(Sa, Pa)+ d1(T u2m+1, Qu2m+1)

2
,

d1(Sa, Qu2m+1)+ (T u2m+1, Pa)

2s

}
,

and

N (a, u2m+1) = min
{

d1(Sa, T u2m+1),
d1(Sa, Pa)+ d1(T u2m+1, Qu2m+1)

2
,

d1(Sa, Qu2m+1)+ (T u2m+1, Pa)

2s

}
,

together with

lim
m→∞

M(a, u2m+1) = M(a, a) = d1(Sa, a). (2.19)

By taking the limit as m →∞on both the sides of (2.18) and using Eqs. (2.19), we get

ψ(sd1(Pa, a)) ≤ ψ(M(a, a))− lim
m→∞

φ(N (a, u2m+1)).

ψ(sd1(Sa, a)) ≤ ψ(d1(Sa, a))− lim
m→∞

φ(N (a, u2m+1)).

Since, φ is lower semi continuous, then one can write

ψ(sd1(Sa, a)) < ψ(d1(Sa, a)),

which is contradiction. Hence, d1(Sa, a) = 0⇒ Sa = a ⇒ Sa = Pa = a.
Similarly, we can show that T a = Qa = a. Hence, Sa = Pa = T a = Qa = a.
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Finally, we prove that a is a unique common fixed point of P, Q, S and T . Suppose z is another common fixed
point of P, Q, S and T . On setting u = a and w = z in the definitions of M and N , we have

M(u, w) = d(a, z),

and

N (u, w) =
d1(a, z)

2
.

Hence

ψ
(
sd1(a, z)

)
≤ ψ

(
d1(a, z)

)
− φ

(
d1(a, z)

2

)
.

It is possible only when d(a, z) = 0 ⇒ a = z. Hence a is unique common fixed point of P, Q, S and T . This
concludes the proof of this theorem. �

By setting, ψ(r) = r , in Theorem 2.1 one can get the following corollary:

Corollary 2.2. Let P, Q, S, T : Y → Y be continuous self-mappings on partially ordered complete b-metric space
(Y,�, d1) such that P(Y ) ⊂ T (Y ) and Q(Y ) ⊂ S(Y ). Suppose that the pairs (P, S) and (Q, T ) are compatible
while the pairs (P, Q) and (Q, P) are partially weakly increasing with respect to T and S respectively. Assume for
lower semi continuous φ : [0,∞) 7→ [0,∞) which is discontinuous at v = 0 and satisfies φ(v) > 0, ∀ v > 0, and
φ(0) = 0, the following condition holds:

sd1(Pu, Qw) ≤ M(u, w)− φ(N (u, w)), ∀ u, w ∈ Y. (2.20)

Then there exists a unique common fixed point of P, Q, T and S.

By setting S = T in Theorem 2.1, we have that

M(u, w) := max
{

d1(Su, Tw),
d1(Su, Pu)+ d1(Tw, Qw)

2
,

d1(Su, Qw)+ (Tw, Pu)

2s

}
,

and

N (u, w) := min
{

d1(Su, Tw),
d1(Su, Pu)+ d1(Tw, Qw)

2
,

d1(Su, Qw)+ (Tw, Pu)

2s

}
.

Thus, we can have the following theorem involving three mappings.

Theorem 2.3. Let P, Q and S : Y → Y be continuous self-mappings on partially ordered complete b-metric space
(Y,�, d1) such that P(Y ) ⊂ S(Y ) and Q(Y ) ⊂ S(Y ). Suppose that the pairs (P, S) and (Q, S) are compatible while
the pair (P, Q) is partially weakly increasing and (Q, P) is partially weakly increasing with respect to S. Assume
for altering distance function ψ : [0,∞) → [0,∞) and lower semi continuous φ : [0,∞) 7→ [0,∞), which is
discontinuous at v = 0 and satisfies φ(v) > 0, ∀ v > 0, and φ(0) = 0, the following condition holds:

ψ(sd1(Pu, Qw)) ≤ ψ(M(u, w))− φ(N (u, w)), ∀ u, w ∈ Y. (2.21)

Then there exists a unique common fixed point of P, Q and S.

By setting ψ(r) = r in Theorem 2.3 one can prove easily the following corollary.

Corollary 2.4. Let P, Q and S : Y → Y be continuous self-mappings on partially ordered complete b-metric space
(Y,�, d1) such that P(Y ) ⊂ S(Y ) and Q(Y ) ⊂ S(Y ). Suppose that the pairs (P, S) and (Q, S) are compatible while
the pair (P, Q) is partially weakly increasing and (Q, P) is partially weakly increasing with respect to S. Assume for
lower semi continuous φ : [0,∞) 7→ [0,∞), which is discontinuous at v = 0 and satisfies φ(v) > 0, ∀ v > 0, and
φ(0) = 0, the following condition holds:

sd1(Pu, Qw) ≤ M(u, w)− φ(N (u, w)), ∀ u, w ∈ Y. (2.22)

Then there exists a unique common fixed point of P, Q and S.



190 N. Jamal et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 182–194

By setting, S = T = I identity mapping in Theorem 2.1 we find that

M(u, w) := max
{

d1(u, w),
d1(u, Pu)+ d1(w, Qw)

2
,

d1(u, Qw)+ (w, Pu)

2s

}
,

and

N (u, w) := min
{

d1(u, w),
d1(u, Pu)+ d1(w, Qw)

2
,

d1(u, Qw)+ (w, Pu)

2s

}
,

the following theorem for two mappings can be easily obtained.

Theorem 2.5. Let P and Q : Y → Y be continuous self-mappings on partially ordered complete b-metric space
(Y,�, d1). Suppose that the pairs (P, Q) and (Q, P) are partially weakly increasing. Assume for altering distance
function ψ : [0,∞) → [0,∞) and lower semi continuous φ : [0,∞) 7→ [0,∞), which is discontinuous at v = 0
and satisfies φ(v) > 0, ∀ v > 0, and φ(0) = 0, the following condition holds:

ψ(sd1(Pu, Qw)) ≤ ψ(M(u, w))− φ(N (u, w)), ∀ u, w ∈ Y. (2.23)

Then there exists a unique common fixed point of P and Q.

By setting, ψ(r) = r in Theorem 2.5 one can get the following corollary.

Corollary 2.6. Let P and Q : Y → Y be continuous self-mappings on partially ordered complete b-metric space
(Y,�, d1). Suppose that the pairs (P, Q) and (Q, P) are partially weakly increasing. Assume for lower semi
continuous φ : [0,∞) 7→ [0,∞), which is discontinuous at v = 0 and satisfies φ(v) > 0, ∀ v > 0, and φ(0) = 0,
the following condition holds:

sd1(Pu, Qw) ≤ M(u, w)− φ(N (u, w)), ∀ u, w ∈ Y. (2.24)

Then there exists a unique common fixed point of P and Q.

By setting, P = Q in Theorem 2.5 then,

M(u, w) := max
{

d1(u, w),
d1(u, Pu)+ d1(w, Pw)

2
,

d1(u, Pw)+ (w, Pu)

2s

}
,

and

N (u, w) := min
{

d1(u, w),
d1(u, Pu)+ d1(w, Pw)

2
,

d1(u, Pw)+ (w, Pu)

2s

}
.

One can obtain the following unique fixed point theorem.

Theorem 2.7. Let P : Y → Y be continuous self mapping on partially ordered complete b-metric space (Y,�, d1)

with P(u) � P(P(u)). Assume for altering distance function ψ : [0,∞) → [0,∞) and lower semi continuous
φ : [0,∞) 7→ [0,∞), which is discontinuous at v = 0 and satisfies φ(v) > 0, ∀ v > 0, and φ(0) = 0, the following
condition holds:

ψ(sd1(Pu, Pw)) ≤ ψ(M(u, w))− φ(N (u, w)), ∀ u, w ∈ Y. (2.25)

Then, P has a unique common fixed point in Y .

By putting, ψ(r) = r , Theorem 2.7 yields the following corollary:

Corollary 2.8. Let P : Y → Y be continuous self mapping on partially ordered complete b-metric space (Y,�, d1)

with P(u) � P(P(u)). Assume for lower semi continuous φ : [0,∞) 7→ [0,∞), which is discontinuous at v = 0 and
satisfies φ(v) > 0, ∀ v > 0 and φ(0) = 0, the following condition holds:

sd1(Pu, Pw) ≤ M(u, w)− φ(N (u, w)), ∀ u, w ∈ Y. (2.26)

Then P has a unique common fixed point in Y .
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Example 2.9. Let us define partial ordering � on Y = [1, 2] as follows;

u � w⇔ w ≤ u,∀ u, w ∈ Y.

Let d1(u, w) = |u − w|2, ∀ u, w ∈ Y , then clearly d1 is a partially order b-metric on Y with partial ordering �.
Suppose P, Q, T and S are continuous mappings on Y = [1, 2] defined by:

P(u) =
u + 4

5
, Q(u) =

2u + 3
5

,

T (u) =
4u

5
+

1
5
, S(u) =

3u

5
+

2
5
.

Evidently,

P(Y ) =
[
1,

6
5

]
and S(Y ) =

[
1,

8
5

]
, P(Y ) ⊂ S(Y )

Q(Y ) =
[
1,

7
5

]
and T (Y ) =

[
1,

9
5

]
, Q(Y ) ⊂ T (Y ).

Define, ψ(v) = v and φ(v) =
{
v

5
, when v 6= 0;

0, when v = 0.
The compatibility of the pairs (P, S) and (Q, T ) is straightforward.

Indeed, with a sequence {um} in Y such that for some v ∈ Y ,

lim
m→∞

d1(v, Pum) = lim
m→∞

d1(v, Sum) = 0,

we have

lim
m→∞

∣∣∣um

5
+

4
5
− v

∣∣∣2 = lim
m→∞

∣∣∣3um

5
+

2
5
− v

∣∣∣2 = 0.

Since P and S are continuous, then one can write

lim
m→∞

|um − (5v − 4)|2 = lim
v→∞

∣∣∣um −
5v − 2

3

∣∣∣2 = 0.

But the limit is unique. Therefore, 5v − 4 = 5v−2
3 ⇐⇒ v = 1. From continuity of P and S we have

lim
m→∞

d1(P Sum, S Pum) = lim
m→∞

|P Sum − S Pum |
2
= 0

which shows the compatibility of the pair (P, S). In the same way the compatibility of the pair (Q, T ) can also be
shown.

Next, we show that pair (P, Q) is partially weakly increasing with respect to T . Let w ∈ T−1(Pu), for u, w ∈ Y .
Then

P(u) = T (w)⇒ P(u) =
4w
5
+

1
5
≥

2w
5
+

3
5
= Q(w),

P(u) ≥ Q(w) so that P(u) � Q(w).
Also, the pair (Q, P) is partially weakly increasing with respect to S. Consequently,

Q(u) = S(w)⇒ Q(u) =
3w + 2

5
≥
w + 4

5
= P(w).

Thus, Q(u) � P(w).
Now, we have to show that,

ψ(sd1(Pu, Qw)) ≤ ψ(M(u, w))− φ(N (u, w)), ∀ u, w ∈ Y,

where M(u, w) and N (u, w) are described earlier. Herein;

d1(Pu, Qw) =
∣∣∣2w

5
−

u

5
−

1
5

∣∣∣2, d1(Su, Pu) =
∣∣∣− 2u

5
+

2
5

∣∣∣2 d1(Tw, Qw) =
∣∣∣− 2w

5
+

2
5

∣∣∣2,
d1(Su, Qw) =

∣∣∣2w
5
−

3u

5
+

1
5

∣∣∣2, d1(Tw, Pu) =
∣∣∣u
5
−

4w
5
+

3
5

∣∣∣2, and d1(Su, Tw) =
∣∣∣4w

5
−

3u

5
−

1
5

∣∣∣2.
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Case (1): When u = w, then

M(u, w) =

∣∣∣− 2u
5 +

2
5

∣∣∣2 + ∣∣∣− 2w
5 +

2
5

∣∣∣2
2

,

and

N (u, w) = d1(Su, Tw) =
∣∣∣4w

5
−

3u

5
−

1
5

∣∣∣2.
Clearly it is satisfied the following contraction: condition,

ψ
(

s
∣∣∣2w

5
−

u

5
−

1
5

∣∣∣2) ≤ ψ(∣∣− 2u
5 +

2
5

∣∣2 + ∣∣− 2w
5 +

2
5

∣∣2
2

)
− φ

(∣∣∣4w
5
−

3u

5
−

1
5

∣∣∣2), for all u = w ∈ Y.

Case (2): For u 6= w, there arise two cases.

If
∣∣∣ 4w

5 −
3u
5 −

1
5

∣∣∣2 is maximum, then

∣∣∣− 2u
5 +

2
5

∣∣∣2+∣∣∣− 2w
5 +

2
5

∣∣∣2
2 is minimum. Therefore,

M(u, w) =
∣∣∣4w

5
−

3u

5
−

1
5

∣∣∣2,
and

N (u, w) =

∣∣∣− 2u
5 +

2
5

∣∣∣2 + ∣∣∣− 2w
5 +

2
5

∣∣∣2
2

.

Evidently, the following contraction is satisfied

ψ
(

s
∣∣∣2w

5
−

u

5
−

1
5

∣∣∣2) ≤ ψ(∣∣∣4w
5
−

3u

5
−

1
5

∣∣∣2)− φ( | − 2u
5 +

2
5 |

2
+ | −

2w
5 +

2
5 |

2

2

)
.

If

∣∣∣− 2u
5 +

2
5

∣∣∣2+∣∣∣− 2w
5 +

2
5

∣∣∣2
2 is maximum, then

∣∣∣ 4w
5 −

3u
5 −

1
5

∣∣∣2, is minimum. Therefore,

M(u, w) =

∣∣∣− 2u
5 +

2
5

∣∣∣2 + ∣∣∣− 2w
5 +

2
5

∣∣∣2
2

,

and

N (u, w) =
∣∣∣4w

5
−

3u

5
−

1
5

∣∣∣2.
Obviously one can write,

ψ
(

s
∣∣∣2w

5
−

u

5
−

1
5

∣∣∣2) ≤ ψ(∣∣− 2u
5 +

2
5

∣∣2 + ∣∣− 2w
5 +

2
5

∣∣2
2

)
− φ

(∣∣∣4w
5
−

3u

5
−

1
5

∣∣∣2).
Hence, all conditions of Theorem 2.1 are satisfied. Thus, 1 is the unique common fixed point of P , Q, S and T .

3. Application to the system of non-linear integral equations

Let us take the system of integral equations given below:
u(a) = F(a)+

∫ r

t
K1
(
a, v, u(v)

)
dv,

u(a) = G(a)+
∫ r

t
K2
(
a, v, u(v)

)
dv,

 (3.1)

where K1 and K2 : [t, r ] × [t, r ] × R→ R.
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Let P , Q : Y → Y , and F , G : [t, r ] → R be continuous mappings. By redefining the above system of integral
equation one has the following system,

P(u(a)) = F(a)+
∫ r

t
K1

(
a, v, u(v)

)
dv.

Q(u(a)) = G(a)+
∫ r

t
K2

(
a, v, u(v)

)
dv.

 (3.2)

For all u ∈ Y and a ∈ [t, r ].
Evidently, the existence of a solution of (3.1) that belongs to Y = C[t, r ] is equivalent to the existence of a common

fixed point of P and Q.
Define partial ordering on Y by u � w⇔ u(a) ≤ w(a). Also define a b-metric as (for all u, w ∈ Y )

d1(u(a), w(a)) = max
a∈[t, r ]

∣∣u(a)− w(a)∣∣p
.

Theorem 3.1. Suppose the conditions given below are satisfied:

(i) K1 and K2 : [t, r ] × [t, r ] × R→ R are continuous;
(ii) For all a, v ∈ [t, r ] and u ∈ Y we have

F(a)+ K1

(
a, v, u(v)

)
≤ G(F(a))+ K2

(
a, v,

∫ r

t
K1(v, a, u(a))da

)
and

G(a)+ K2

(
a, v, u(v)

)
≤ F(G(a))+ K1

(
a, v,

∫ r

t
K2(v, a, u(a))da

)
.

(iii) For all a, v ∈ [t, r ] and u, w ∈ Y with u � w we have∣∣K1(a, v, u(v))− K2(a, v, w(v))
∣∣p
≤ R(a, v)Ln(1+

∣∣u(v)− w(v)∣∣p
),

and R is continuous function satisfying the condition,

sup
a∈[t, r ]

∫ r

t
R
(
a, v

)
dv <

1(
3
)p(r − t

)p−1 ;

(iv) supa∈[t, r ] |F(a)− G(a)|p ≤

∣∣u(v)−w(v)∣∣p
−1(

3
)p , for all a, v ∈ [t, r ].

Then system (3.1) of non linear integral equation has a unique solution.

Proof. Clearly from condition (ii), the pairs (P, Q) and (Q, P) are partially weakly increasing. Let 1 ≤ p, q < ∞
with 1

p +
1
q = 1 from condition (iii) and (iv) for all a ∈ [t, r ] we have

3p
∣∣P(u(a))− Q(w(a))

∣∣p
≤ 3p

[∣∣∣F(a)+ ∫ r

t
K1(a, v, u(v))dv − G(a)−

∫ r

t
K2
(
a, v, w(v)

)
dv
∣∣∣p
]

≤ 3p

[∣∣∣F(a)− G(a)
∣∣∣p
+

(∫ r

t

∣∣∣(1)(K1(a, v, u(v))− K2(a, v, w(v))
)∣∣∣dv)p

]

≤ 3p

[∣∣∣F(a)− G(a)
∣∣∣p
+

((∫ r

t
1qds

) 1
q

)p((∫ r

t

∣∣K1(a, v, u(v))− K2(a, v, w(v))
∣∣pdv

) 1
p

)p]

≤ 3p
∣∣∣F(a)− G(a)

∣∣∣p
+ 3p(r − t)

p
q

∫ r

t
R(a, v)Ln

(
1+ |u(v)− w(v)|pdv

)
≤

∣∣∣u(v)− w(v)∣∣∣p
− 1+ 3p(r − t)p−1 sup

a∈[t, r ]

(
Ln(1+

∣∣u(v)− w(v)∣∣p
)
) ∫ r

t
R(a, v)dv
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≤ d1
(
u(v), w(v)

)
− 1+ Ln

(
1+ d1

(
u(v), w(v)

))
≤ M(u, w)− 1+ Ln

(
1+ M(u, w)

)
≤ M(u, w)− 1+ 1+ M(u, w)

≤ 2M(u, w)+ M(u, w)− N (u, w)

= 3M(u, w)− N (u, w).

Hence,

3sd1(P(u), Q(w)) ≤ 3M(u, w)− N (u, w).

Define ψ(z) = 3z and φ(z) = z, where s = 3P−1. Then

ψ
(

sd1(P(u), Q(w))
)
≤ ψ

(
M(u, w)

)
− φ

(
N (u, w)

)
.

Thus, by Theorem 2.5, system (3.2) has a unique solution. Consequently (3.1) has a unique solution in Y . �
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Abstract

The magneto hydrodynamic boundary layer flow with heat and mass transfer of Williamson nanofluid over a stretching sheet
with variable thickness and variable thermal conductivity under the radiation effect is examined. It is assumed that the sheet is
non-flat. The governing partial differential equations are reduced to nonlinear coupled ordinary differential equations by applying
the suitable similarity transformations. These nonlinear coupled ordinary differential equations, subject to the appropriate boundary
conditions, are then solved by using spectral quasi-linearisation method (SQLM). The effects of the physical parameters on the
flow, heat transfer and nanoparticle concentration characteristics of the problem are presented through graphs and are discussed in
detailed. Numerical values of skin friction co-efficient and Nusselt number with different parameters were computed and analysed.
c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: MHD; SQLM; Variable thermal conductivity; Variable thickness; Williamson fluid

1. Introduction

Nanofluid is a liquid filled with nanometre-sized particles with diameter less than 100 nm called nanoparticles.
These particles are made up of metals such as (Al, Cu), oxides (Al2O3), carbides (SiC), nitrides (AlN, SiN) or
nonmetals (Graphite, carbon nanotubes). Choi [1] experimentally verified that addition of small amount of these
particles in the base fluid results in the appreciable increase in the effective thermal conductivity of the base fluid.
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Nomenclature

A, b Constants
B Magnetic field (T )
C Nanoparticle volume fraction (kg m−3)

C f Skin friction coefficient
C p Specific heat at constant temperature(J kg−1 K)
DB Brownian diffusion (m2 s−1)

DT Thermophoretic diffusion coefficient (m2 s−1)

f Dimensionless stream function
I Identity tensor
k Thermal conductivity
κ∗ Mean absorption coefficient (m1)
M Magnetic parameter
Nbt Ratio of diffusivity
Nc Ratio of heat capacities
Pr Prandtl number
qr Radiative heat flux (W m−2)

R Radiation Parameter
Sc Schmidt number
S Cauchy stress tensor (N m−2)

Sh Local Sherwood number
Uw Velocity of the stretching sheet
u, v Velocity components in x and y directions (m s−1)

x, y Cartesian coordinates
α Wall thickness parameter
η Similarity independent variable
λ1 Williamson parameter
ε Thermal conductivity parameter
ν Kinematic viscosity (m2 s−1)

φ Dimensionless nanoparticle volume fraction
ψ Stream function
σ Electrical conductivity (Sm−1)

ρ Density (kg m−3)

(ρc) f Heat capacities of nanofluid
(ρc)p Effective heat capacity of the nanoparticle

Subscripts

∞ Ambient condition
w Conditions at the wall

Recently, researchers have used this concept of nanofluid as a route to enhance the performance of heat transfer rate in
liquids. Non-homogeneous equilibrium model proposed by Buongiorno [2] reveals that this abnormal increase in the
thermal conductivity occurs due to the presence of two main effects namely the Brownian motion and thermophoretic
diffusion of nanoparticles. Excellent reviews on the flows of nanofluids have been conducted by Daungthongsuk and
Wongwises [3], Wang and Mujumdar [4,5] and Kakac and Pramuanjaroenkij [6]. Boundary layer flow of nanofluid
over a flat plate has been analysed by Kuznetsov and Nield [7]. In another paper, Nield and Kuznetsov [8] addressed
the Cheng–Mincowcz problem for flow of nanofluid through a porous medium. Flow of nanofluid over a moving flat
plate with uniform free stream has been investigated by Bachok et al. [9]. Rashidi et al. [10] investigate magnetic field
effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. Recently, various attempts
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dealing with the boundary layer flow of nanofluid over stationary or moving surfaces have been made (see Khan and
Pop [11], Rana and Bhargava [12], Makinde and Aziz [13] and Mustafa et al. [14] etc.). Ramesh et al. [15] studied
MHD Stagnation Point Flow of Nanofluid Towards a Stretching Surface with the effects of variable thickness and
thermal radiation. Heat transfer of a steady, incompressible water based nanofluid flow over a stretching sheet in the
presence of magnetic field with thermal radiation and buoyancy effects are investigated by Rashidi et al. [16].

Numerous applications of boundary layer flow and heat transfer over a stretching sheet have been found in
engineering processes such as in the extraction of polymer sheets, wire drawing, paper production, and glass-fibre
production and thereby are considered significant. During the manufacturing process, a stretching sheet interacts
with the ambient fluid both thermally and mechanically. The study of boundary layer flow caused by a stretching
surface was initiated by Crane [17] who gave an exact similarity solution in closed form. Mahapatra and Gupta [18]
reconsidered the steady stagnation point flow towards a stretching sheet taking different stretching and stagnation
point velocities and observed two different kinds of boundary layer structure near the sheet. Mukhopadhyay [19]
has studied the effects of Casson fluid flow and heat transfer over a nonlinearly stretching surface. Mahmud et al.
[20] investigate the transient MHD laminar free convection flow of nanofluid past a vertical stretching surface. MHD
Boundary-Layer Viscoelastic Fluid Flow over Continuously Moving Stretching Surface by considering PST and PHF
case are studied by Rashidi et al. [21].

Williamson fluid is characteristic of a non-Newtonian fluid model with shear thinning property. This model was
proposed by Williamson [22] and later on used by several authors (Dapra and Scarpi [23]; Vasudev et al. [24]; Nadeem
and Akbar [25]; Nadeem and Hussain [26,27]) to investigate fluid flow by using Homotopy Analysis Method (OHAM)
to solve the governing system of equation for Williamson nanofluid flow. Very recently Gorla and Gireesha [28]
studied stagnation-point flow and heat transfer of a Williamson nanofluid on a linear stretching/shrinking sheet with
convective boundary condition. Most of the above mentioned studies investigated the boundary layer flow and heat
transfer analysis restricted for only flat stretching sheet. Study of flow and heat transfer of viscous fluids over stretching
sheet with a variable thickness (non-flatness) can be more relevant to the situation in practical applications. For the
first time Fang et al. [29] obtained an elegant analytical and numerical solution to the two-dimensional boundary layer
flow due to a non-flatness stretching sheet. Further this problem was extended by Subhashini et al. [30] by including
the energy equation and found that thermal boundary layer thicknesses for the first solution were thinner than those
of the second solution. Numerical solution for the flow of a Newtonian fluid over a stretching sheet with a power
law surface velocity, slip velocity and variable thickness was studied by Khader et al. [31]. Khader and Meghad [32]
studied numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a
porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. Some
recent studies on above model can be found in [33–36].

To the best of authors knowledge not much attention has been paid to investigate the flow and heat transfer
characteristic of Williamson nanofluid over a variable thickness stretching sheet. Hence the problem studied here is an
extension of the work done by Khader [31] wherein we have considered Williamson nanofluid over a stretching sheet
with variable thickness under the influence of magnetic field, thermal radiation with variable thermal conductivity.

2. Mathematical formulation

Consider a MHD two-dimensional steady laminar flow of Williamson nanofluid over a stretching sheet. The origin
is located at a slit through which the sheet is drawn through the fluid medium. The sheet is stretching with velocity
Uw = U0(x + b)m . The x-axis is along the stretching surface in the direction of the sheet motion and the y-axis is

perpendicular to it. Assume that the sheet is not flat, and its thickness varies as y = A(x + b)
1m
2 , where A is a very

small constant so that the sheet is sufficiently thin and m is the velocity power index, for m = 1 the problem reduces
to flat sheet. Magnetic field B is applied along the transverse direction of flow. The fluid is assumed to be slightly
conducting, so that the magnetic Reynolds number is much less than unity and hence the induced magnetic field is
negligible in comparison to the applied magnetic. The coordinate system and flow regime are illustrated in Fig. 1. For
Williamson fluid model Cauchy stress tensor S is defined in [23] as

S = −pI+ τ

τ =

(
µ∞ +

µ0 − µ∞

1− Γ γ̇

)
A1
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Fig. 1. Flow configuration and co-ordinate system.

where S is extra stress tensor, µ0 is limiting viscosity at zero shear rate and µ∞ is limiting viscosity at infinite shear
rate, Γ > 0 is a time constant, A1 is the first Rivlin–Erickson tensor and γ̇ is defined as follows:

γ̇ =

√
1
2
π

π = trace(A2
1).

Here we considered the case for which µ∞ = 0 and Γ γ̇ < 1. Thus τ can be written as

τ =

(
µ0

1− Γ γ̇

)
A1.

By using binomial expansion we get

τ = µ0 (1− Γ γ̇ ) A1.

The two dimensional boundary layer equations governing the flow are given by [26]

∂u

∂x
+
∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2 +
√

2νΓ
∂u

∂y

∂2u

∂y2 −
σ B2

ρ
u (2)

u
∂T

∂x
+ v

∂T

∂y
=

1
ρcp

∂

∂y

(
κ
∂T

∂y

)
−

1
ρcp

∂qr

∂y
+
(ρc)p

(ρc) f

[
DB

∂C

∂y

∂T

∂y
+

DT

T∞

(
∂T

∂y

)2
]

(3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2 +
DT

T∞

∂2T

∂y2 (4)

with the boundary conditions [26]

u = uw(x) = U0(x + b)m, v = 0, T = Tw, C = Cw at y = (x + b)
1−m

2 , (5a)

u = 0, T = T∞, C = C∞ at y→∞ (5b)

where u and v are the velocity components in the x and y directions, respectively. Further, ρ is the density, g is the
force of gravity, µ is the viscosity, ν is the kinematic viscosity, C p is the specific heat at constant pressure, B is the
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magnetic field. T and C are fluid temperature and nanoparticle fraction, respectively. Tw and T∞ are the temperature
of the fluid at the wall and ambient temperature when y → ∞. DB and DT are respectively the Brownian diffusion
coefficient and thermophoretic diffusion coefficient. τ = (ρc)p

(ρc) f
is the ratio between the effective heat capacity of the

nanoparticles material and heat capacity of the fluid. κ is the temperature dependent thermal conductivity. We consider
the temperature dependent thermal conductivity in the following form Chaim [37]

κ = κ∞

[
1+ ε

T − T∞
Tw − T∞

]
. (6)

The Rosseland approximation for radiation is

qr = −
4σ ∗

3k∗
∂T 4

∂y
, (7)

where σ ∗ and k∗ are the Stefan–Boltzmann constant and the mean absorption coefficient, respectively. It is assumed
that the temperature differences within the flow, such as the term T 4, may be expressed as a linear function of
temperature.We get the Taylor series expansion for T 4 at a free stream temperature T∞ after neglecting higher-order
terms as

T 4
= 4T 4

∞T − 3T 4
∞. (8)

Using (7) and (8), we obtain

∂qr

∂y
= −

16σ ∗T 3
∞

3k∗
∂2T

∂y2 . (9)

Introducing the following similarity transformations

η =

√
U0(m + 1)

2ν

(
y(x + b)

m−1
2 − A

)
, ψ =

√
2νU0

m + 1
(x + b)

m+1
2 f,

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞

Cw − C∞
.

(10)

Using the above similarity transformations, the governing equations Eqs. (1)–(4) are reduced to

f ′′′ + λ1 f ′′ f ′′′ + f f ′′ −
2m

m + 1
f ′2 − M f ′ = 0 (11)(

1+
4R

3

)(
(1+ εθ) θ ′′ + εθ ′2

)
+ Pr f θ ′ +

Nc

Le
θ ′φ′ +

Nc

LeNbt
θ ′

2
= 0 (12)

φ′′ + LePr f φ′ +
1

Nbt
θ ′′ = 0. (13)

Using Eq. (9), the boundary conditions become,

f ′ = 1, f = α
1− m

m + 1
, θ = 1, φ = 1 at η = 0 (14a)

f ′→ 0, θ → 0, φ→ 0 as η→∞ (14b)

where α = A
√

U0(m+1)
2ν is the wall thickness parameter, M =

2σ B2
0

U0ρ(m+1) is the magnetic field parameter,

Pr = ν
α

is Prandtl number, ε is the thermal conductivity parameter, R = 4σ ∗T 3
∞

k∞k∗ is the radiation parameter,

Nc = ρpcp
ρc (Cw − C∞)(nanoparticles heat capacity/nanofluid heat capacity), Nbt = DB T∞(Cw−C∞)

DT (Tw−T∞)
(Brownian diffu-

sivity/thermophoretic diffusivity), Le = α
DB

the Lewis number and λ1 = Γ
√

U 3
0 (x+b)3∗m−1(m+1)

ν
is Williamson fluid

parameter. Expressions for the local skin friction co-efficient C fx and local Nusselt number Nux Shx are defined as,

C fx =
τw

ρU 2
w

, Nux =
Xqw

k∞(Tw − T∞)
and Shx =

Xqm

k(Tw − T∞)
(15)
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where k is the thermal conductivity of the nanofluid, and qw and qm are the heat flux and mass flux, respectively given
by

qw = −k∞

(
∂T

∂y

)
y=0

, qm = −DB

(
∂C

∂y

)
y=0

. (16)

Applying similarity transformations (6) for skin friction coefficient, Nusselt number and Sherwood numbers are con-
verted to

Re1/2
x C fx =

√
(m + 1)

2

(
f ′′(0)+

λ

2
f ′′(0)2

)
,

Re−1/2
x Nux = −

√
(m + 1)

2

(
1+

4R

3

)
θ ′(0),

Re−1/2
x Shx = −

√
(m + 1)

2
φ′(0) (17)

where Rex = Uw(x)X/υ is local Reynolds number and X = x + b.

3. Method of solution

The nonlinear coupled ordinary differential equations (11)–(13) subject to the boundary conditions (14) have been
solved numerically using the spectral quasilinearization method (SQLM). This quasilinearization method (QLM) is
a generalisation of the Newton–Raphson method and was first proposed by Bellman and Kalaba [38] for solving
nonlinear boundary value problems. The quasilinearisation method is employed to linearise the equations before they
are solved iteratively using the Chebyshev spectral collocation method. Applying the quasilinearisation procedure on
Eqs. (11)–(14), the resultant equations are

α1,r f ′′′r+1 + α2,r f ′′r+1 + α3,1 f ′r+1 + α4,r fr+1 = R1, (18)

β1,r fr+1 + β2,rθ
′′

r+1 + β3,rθ
′

r+1 + β4,rθr+1 + β5,rφr+1 = R2, (19)

γ1,r fr+1 + γ2,rθ
′′

r+1 + γ3,rφ
′′

r+1 + γ4,rφ
′

r+1 = R3, (20)

and the boundary conditions are

fr+1 = α
1− m

1+ m
, f ′r+1 = 1, θr+1 = 1, φr+1 = 0, at η = 0,

f ′r+1 = 0, θr+1 = 0, φr+1 = 0, at η→∞
(21)

where

α1,r =
(
1+ λ1 f ′′r

)
, α2,r = fr + λ1 f ′′′r , α3,r = −M − 4

m

m + 1
f ′r , α4,r = f ′′r ,

β1,r = Prθ ′r , β2,r =

(
1+

4R

3

)
(1+ εθr ),

β3,r =

(
1+

4R

3

)
2εθ ′r +

Nc

Le
φ′r + 2

Nc

LeNbt
θ ′r + Pr fr , β4,r =

(
1+

4R

3

)
εθ ′′r ,

β5,r =
Nc

Le
θ ′r ,

γ1,r = Pr Leφ′r , γ2,r =
1

Nbt
, γ3,r = 1, γ4,r = LePr fr

R1 = λ1 f ′′r f ′′′r −
2m

m + 1
( f ′r )

2
+ fr f ′′r ,

R2 =

(
1+

4R

3

)
εθrθ

′′
r +

(
1+

4R

3

)
ε(θ ′r )

2
+ Pr frθ

′
r +

Nc

LeNbt
(θ ′r )

2
+

Nc

Le
θ ′rφ
′
r ,

R3 = LePr frφ
′
r .
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The above system (19)–(21) constitute a linear system of coupled differential equations with variable coefficients
and can be solved iteratively using any numerical method for r = 1, 2, 3, . . .. In this work, as we discussed below,
the Chebyshev spectral collocation method was used to solve the QLM scheme (19)–(21) (for more details, refer to
the works of Motsa et al. [39]). Before applying the spectral method, it is convenient to transform the domain in the η
direction is approximated to [0, L] where L is the edge of the boundary limit (large enough), use the transformation
of algebraic mapping η = (τ+1)L

2 to map the physical domain in to the computational domain [−1, 1]. This basic idea
of this method is approximating the unknown functions by the Chebyshev interpolating polynomials in such a way
that they are collocated at the Gauss–Lobatto points defined as

τi = cos
(
π i

N

)
, − 1 ≤ τ ≥ 1, i = 0, 1, 2, . . . , N (22)

where N is the number of collocation points. The derivative of fr+1 at the collocation points is represented as

∂ p fr+1

∂ηp =

(
2
L

)p N∑
k=0

D p
N ,k fr+1(τk) = DpF (23)

where D =
2
L D and D is the Chebyshev spectral differentiation matrix (for details [40]), F = [ f (τ0),

f (τ1), . . . f (τN )]. Similarly the derivatives of θ , and φ are given by θ p
= DpΘ and φ p

= DpΦ where p is the
order of derivative, and D is the matrix of order (N + 1) × (N + 1). Substituting (23)–(24) in Eqs. (19)–(21) we
obtain [

α1,r D3
+ α2,r D2

+ α3,r D+ α4,r

]
Fr+1 = R1, (24)[

β1,r D
]

Fr+1 +

[
β2,r D2

+ β3,r D+ β4,r

]
Θr+1 +

[
β5,r D

]
Φr+1 = R2, (25)[

γ 1,r
]

Fr+1 +

[
γ 2,r D2

]
Θr+1 +

[
γ 3,r D2

+ γ 4,r D
]
Φr+1 = R3. (26)

Applying spectral method on the boundary conditions gives

fr+1(τN ) = α
1− m

1+ m
,

N∑
k=0

DN ,k fr+1(τk) = 1, θr+1(τN ) = 1, φr+1(τN ) = 1, (27)

N∑
k=0

D0,k fr+1(τk) = 0, θr+1(τ0) = 0, φr+1(τ0) = 0. (28)

The above system of equations can be written in the matrix form asA11 A12 A13
A21 A22 A23
A31 A32 A33

Fr+1
Θr+1
Φr+1

 =
R1

R2
R3

 (29)

where

A11 = diag[α1,r ]D3
+ diag[α2,r ]D2

+ diag[α3,r ]D+ diag[α4,r ]I,

A12 = diag[α5,r ]D+ diag[α6,r ]I,

A13 = diag[α7,r ]I,

A21 = diag[β1,r ]D+ diag[β2,r ]I,

A22 = diag[β3,r ]D
2
+ diag[β4,r ]D+ diag[β5,r ]I,

A23 = diag[β6,r ]D,

A31 = diag[γ 1,r ]I,

A32 = diag[γ 2,r ]D
2,

A33 = diag[γ 3,r ]D
2
+ diag[γ 4,r ]D,
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Table 1
Computational time to compute f ′′(0) and −θ ′(0) when L = 20.

Iterations N f ′′(0) −θ ′(0) Time

10 60 −1.675061856704815 −0.391980686936591 0.063
50 60 −1.675061856721641 −0.391980686934517 0.205

500 60 −1.675061856703678 −0.391980686936421 1.566
100 5 −0.407168548592312 −0.430424821728138 0.069
100 10 −1.129453810591957 −0.428313095185532 0.086
100 15 −1.528592346289352 −0.396286877252487 0.102
100 20 −1.622932208457137 −0.392879499783479 0.118
100 30 −1.667391603629412 −0.392040943052731 0.148
100 60 −1.675061856697084 −0.391980686936577 0.357
100 100 −1.675081390323612 −0.391980647682374 0.767
100 200 −1.675081384571968 −0.391980647558285 3.018

Table 2
Comparison results for skinfriction − f ′′(0) for m values when α1 = 0.5, M = 0 and λ1 = 0.

m Fang [29] Khader[31] Present results

10 1.0603 1.0603 1.0603432
9 1.0589 1.0588 1.0589342
7 1.0550 1.0551 1.0550628
5 1.0486 1.0486 1.0486285
3 1.0359 1.0358 1.0358835
2 1.0234 1.0234 1.0234206
1 1.0000 1.0000 1.0000084
0.5 0.9799 0.9798 0.9799497
0 0.9576 0.9577 0.9576443

Table 3
Comparison results for −θ ′(0) when m = 0.5, α = 0.2, Pr = 1, ε = 0.1 and R = 0.375.

m α Pr ε R Khader [31] Present results

0.5 0.2 1 0.1 0.375 0.441 845 1 0.441838369

where α, β and γ are (N + 1)× (N + 1) diagonal matrices, I is a (N + 1)× (N + 1) unit matrix. The approximate
solutions for F, Θ and Φ are obtained by solving the matrix system (30). In this spectral method, a finite computational
domain of extent L = 20 was chosen in the η-direction. Through numerical computation, this value was found to give
accurate results for all the selected governing physical parameters used in the generation of results. Increasing the
value of η did not change the results to a significant extent. The number of collocation points used in the spectral
method discretisation was N = 70 in all cases. We remark that the SQLM algorithm is based on the computation
of the value of some quantity, say Fn+1

r+1 , at each time step. This is achieved by iterating using the quasilinearization
method using a known value at the previous time step, n as initial approximation. The iteration calculations are carried
out till the desired tolerance level 10−6 is attained, and the computational time is also given in the Table 1.

4. Results and discussion

Numerical solution for the effects of physical parameters on magneto hydrodynamic boundary layer flow
of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity are
investigated. The computational results obtained by the present method (spectral quasi-linearisation method) are
compared with the available results of Fang [29] and Khader [31] for some limiting conditions. The present results is
found to be in good agreement as shown in Tables 2 and 3. The effects of various physical parameters such as velocity
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(a) Velocity. (b) Temperature.

(c) Nanoparticle volumefraction.

Fig. 2. Effect of m on velocity, temperature and nanoparticle volumefraction profiles.

power index parameter m, Williamson parameter λ1, magnetic field parameter M , wall thickness parameter α, thermal
conductivity parameter ε, radiation parameter R, Prandtl number Pr , heat capacity parameter Nc, diffusion parameter
Nbt and Lewis number Le on velocity ( f ′), temperature (θ) and nanoparticle volume fraction (φ) profiles are shown
in Figs. 2–15.

Fig. 2 illustrates the effects of velocity power index parameter m on velocity, temperature and nanoparticle volume
fraction profiles respectively. It is noticed that increase in velocity power index parameter m increases the velocity,
temperature and nanoparticle volume fraction profiles. This implies that momentum boundary layer thickness and
thermal boundary layer thickness become smaller as m increases.

Figs. 3(a)–3(c) show the effects of Williamson parameter λ1 on velocity, temperature and nanoparticle volume
fraction profiles respectively. The effect of Williamson parameter λ1 reduces the velocity profiles while, increases the
temperature and nanoparticle volume fraction profiles.

From Fig. 4 it is observed that the influence of magnetic field parameter M is to reduce the velocity profiles as well
as thermal boundary layer thickness. It is also noticed that the temperature and nanoparticle volume fraction profiles
increase with the increase of M . This is due to when the value of M increases it exits fluid particles motion which will
diffuses quickly into the neighbouring fluid layers.

Fig. 5 describes the effect of wall thickness parameter α on velocity, temperature and nanoparticle volume fraction
profiles for the cases m > 1 and m < 1. It is noticed that the velocity near the plate decreases as the thickness
parameter α increases for m < 1 and reverse is true for m > 1. It is also noted that the increase in wall thickness
parameter α causes a reduction in thermal boundary layer near the plate for m < 1 while, the reverse phenomena is
noticed for m > 1. It is obvious from Fig. 5(c) that the nanoparticle volume fraction profiles reduce with increase in
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(a) Velocity. (b) Temperature.

(c) Nanoparticle volumefraction.

Fig. 3. Effect of λ1 on velocity, temperature and nanoparticle volumefraction profiles.

wall thickness parameter α for m < 1, and increase for m > 1. It is obvious that the boundary layer becomes thinner
for higher values of α for m < 1 while thicker for m > 1. This is due to induced mass transfer.

The effect of variable thermal conductivity parameter ε on temperature and nanoparticle volume fraction profiles
are shown in Figs. 6(a) and 6(b) respectively. It is noticed that effect of variable thermal conductivity parameter ε is
to enhance the temperature profiles significantly, while the reverse phenomena is observed for nanoparticle volume
fraction profiles. Therefore, the assumption of temperature dependent thermal conductivity suggests a reduction in

the magnitude of the transverse velocity by a quantity ∂
∂y

(
κ ∂T
∂y

)
in Eq. (3). The rate of cooling is much faster for the

coolant material having small thermal conductivity parameter.
Fig. 7 is drawn to examine the effects of radiation parameter R on temperature and nanoparticle volume fraction

profiles. It is noted that the temperature distribution enhance significantly with the increase of R because an increase
in the radiation parameter provides more heat to fluid that causes an enhancement in the temperature and thermal
boundary layer thickness. As the radiation parameter R increases the nanoparticle volume fraction profiles decrease
as seen in Fig. 7(b). In Figs. 8(a)–8(b) temperature and nanoparticle volume fraction profiles are evaluated at different
values of Prandtl number Pr . It is observed that as the Prandtl number increases both temperature and nanoparticle
volume fraction decrease. Since by definition of Pr , thus by increasing Prandtl number Pr thermal conductivity of
fluid decreases which decreases temperature profile. Additionally, an increase in Prandtl number Pr reduces thermal
boundary layer thickness. So heat rapidly transfers which causes a drop in fluid temperature.

The effect of Lewis number Le and diffusion parameter Nbt on temperature and nanoparticle volume fraction
profiles are plotted in Figs. 9 and 10. It is found that with increase in Le and Nbt decreases the temperature profiles.
It is also noted that the thermal boundary layer thickness decreases with increase in Le and Nbt . Nanoparticle volume
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(a) Velocity. (b) Temperature.

(c) Nanoparticle volumefraction.

Fig. 4. Effect of Magnetic parameter M on velocity, temperature and nanoparticle volumefraction profiles.

fraction profiles decreases with the increase in Le and Nbt significantly. Since Nbt is the ratio of Brownian diffusivity
to thermophoretic diffusivities, increase in Nbt means greater activity of nanofluid particles. Physically Le cannotbe
equal to zero since it is the ratio of thermal diffusivity to Brownian diffusion. It is observed that temperature profile
and thermal boundary layer decrease with increase in Nbt . When Brownian diffusivity is very large as compared to
thermophoretic diffusivity, temperature profiles show only very small variation.

Fig. 11 depicts the effects of Nc on temperature profiles. It is found that an increase in Nc enhances temperature
profiles and hence thicker the boundary layer thickness. If we look at the definition of Nc, it is the ratio of heat
capacity of nanoparticles and nanofluid. Usually the specific heat cp of nanoparticles is less than that of liquids. So
addition of solid particles will decrease the specific heat of base fluid, hence temperature profile decreases.

Table 4 shows that effects of skin friction co-efficient for different values of wall thickness parameter α,M, λ1 and
m. Increasing the wall thickness parameter leads to an increase in the local skin-friction coefficient α while decreases
with Williamson parameter λ1. Skin friction co-efficient increases with increased values of magnetic field parameter
M and velocity power index parameter m. Fig. 12 shows that local Nusselt number decreases by uplifting the magnetic
parameter M , velocity power index m, but−θ ′(0) increases with increase in wall thickness parameter. Fig. 13 explores
the variation of local Nusselt number for various values of υ and R, local nusselt number decreases with increase in
thermal conductivity parameter υ and radiation parameter R.

Impacts of Nc, Nbt and Le on local Nusselt number and local Sherwood number are shown in Figs. 14 and
15 respectively. Fig. 14 exhibits that as the values of Nc increase the local Nusselt number decreases. However it
enhances as the values of Nbt and Le. It is observed from Fig. 15 that heat capacity parameter Nc boosts the growth
of local Sherwood number, also same trend is observed with Nbt and Le.
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(a) Velocity. (b) Temperature.

(c) Nanoparticle volume fraction.

Fig. 5. Effect of α on velocity, temperature and nanoparticle volumefraction profiles.

(a) Temperature. (b) Nanoparticle volumefraction.

Fig. 6. Effect of ε on temperature and nanoparticle volumefraction profiles.

5. Conclusions

In the present study we investigated the influence of thermal radiation on MHD boundary layer flow of Williamson
nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. The governing equations
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(a) Temperature. (b) Nanoparticle volumefraction.

Fig. 7. Effect of R on temperature and nanoparticle volumefraction profiles.

(a) Temperature. (b) Nanoparticle volume fraction.

Fig. 8. Effect of Pr on temperature and nanoparticle volumefraction profiles.

(a) Temperature. (b) Nanoparticle volume fraction.

Fig. 9. Effect of Nbt on temperature and nanoparticle volumefraction profiles.

were transformed to the corresponding ordinary differential equations by using appropriate similarity transformations.
These ordinary differential equations were further solved numerically by spectral quasilinearization method. From the
numerical results obtained, some of the interesting conclusions are as follows:
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(a) Temperature. (b) Nanoparticle volume fraction.

Fig. 10. Effect of Le on temperature and nanoparticle volumefraction profiles.

Fig. 11. Temperature profiles for various values of Nc.

Fig. 12. Heat transfer co-efficient for various values of Lewis number M , m and α.

• Velocity profile decreases for increase in wall thickness parameter when m < 1, reverse trend can be seen for
m > 1.

• Increasing magnetic field parameter M decreases the velocity profiles whereas increase the temperature and
nanoparticle volume fraction profiles.
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Fig. 13. Heat transfer co-efficient for various values of R, α and ε.

Fig. 14. Heat transfer co-efficient for various values of Lewis number Le, Nbt and Nc.

Fig. 15. Mass transfer co-efficient for various values of Lewis number Le, Nbt and Nc.

• Increase in Williamson parameter λ1 decreases the velocity where as temperature and nanoparticle volume fraction
profiles increase.
• With the increase of radiation parameter R the nanoparticle volume fraction decreases in the boundary region and

the opposite effect is seen far away from the boundary sheet.
• The effect of variable thermal conductivity is to decrease the heat transfer co-efficient −θ ′(0),
• With the effect of Nbt , Nc and Le the co-efficient of sherwood number −φ′(0) is increase.
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Table 4
Skinfriction co-efficient for different values of M , m, α and λ1.

M m λ1 α −

(
f ′′(0)+ λ1

2 f ′′2
)

0 0.4 0.3 0.3 0.8760
0.5 1.0946
1 1.2661
1 0.2 1.2542

0.4 1.2661
0.6 1.2751
0.4 0 1.3796

0.3 1.3466
0.6 1.3095
0.3 0 1.2043

0.2 1.2452
0.4 1.2873
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Abstract

In this paper, we introduce and study some non-absolute type spaces l∞(u, λ,∆m
v ), c0(u, λ,∆

m
v ) and c(u, λ,∆m

v ), which are
BK-spaces. Moreover, we prove that these spaces are linearly isomorphic to the spaces l∞, c0 and c. We also make an effort
to establish some inclusion relations between these spaces. Furthermore, we find the Schauder basis for these spaces and also
determine the α-, β- and γ -duals of these spaces.
c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Sequence spaces; Difference sequence spaces; BK-spaces; α-, β- and γ - duals; Schauder basis

1. Introduction and preliminaries

Let w be the vector space of all real or complex sequences. Any vector subspace of w is called a sequence space.
We shall write c, c0 and l∞ for the sequence spaces of all convergent, null and bounded sequences. Moreover, we
write bs, cs, l1 and lp for the spaces of all bounded, convergent, absolutely and p-convergent series, respectively.
Let X be a sequence space. If X is a Banach Space and

τk : X → C, τk(x) = xk (k = 1, 2 . . .)

is a continuous for all k, X is called a BK-space.
The sequence spaces c, c0 and l∞ are BK-spaces with the norm given by

‖x‖∞ = sup
k
|xk | for all k ∈ N.

Also, we use the conventions that e = (1, 1, 1, . . .) and e(n) is the sequence whose only non-zero term is 1 in the nth
place for each n ∈ N.
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Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real numbers ank , where n, k ∈ N.
Then we say that A defines a matrix transformation from X into Y and we denote it by writing A : X → Y if for
every sequence x = (xk)

∞

k=0 ∈ X , the sequence Ax = {An(x)}∞n=0 and the A-transform of x is in Y , where

An(x) =
∞∑

k=0

ank xk (n ∈ N). (1)

By (X, Y ) we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X, Y ) if and only if the series on
the right-hand side of (1) converges for each n ∈ N and every x ∈ X , and we have Ax ∈ Y for all x ∈ X (see, [1]).
The matrix domain X A of an infinite matrix A in a sequence space X is defined by

X A = {x = (xk) ∈ w : Ax ∈ X}. (2)

The notion of difference sequence spaces was introduced by Kızmaz [2], who studied the difference sequence spaces
l∞(∆), c(∆) and c0(∆). The notion was further generalized by Et and Çolak [3] by introducing the spaces l∞(∆m),
c(∆m) and c0(∆m). Let m, n be non-negative integers, then for Z = l∞, c, c0 we have sequence spaces

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z},

where ∆m
n x = (∆m

n xk) = (∆m−1
n xk −∆m−1

n xk+1) and ∆0
n xk = xk for all k ∈ N, which is equivalent to the following

binomial representation

∆m
n xk =

m∑
v=0

(−1)v
(

m
v

)
xk+nv.

Taking n = 1, we get the spaces which were studied by Et and Çolak [3]. Taking m = n = 1, we get the spaces which
were introduced and studied by Kızmaz [2]. For more details about sequence spaces see, [4–7], etc.

We shall denote the collection of all finite subsets of N by F . The approach of constructing a new sequence space
by means of matrix domain of a particular limitation method has been studied by several authors. They introduced the
sequence spaces (l∞)Nq and cNq (see, [8]), (lp)C1 = X p and (l∞)C1 = X∞ (see, [9]), (l∞)Rt = r t

∞, (c)Rt = r t
c and

(c0)Rt = r t
0 (see, [10]), (lp)Rt = r t

p (see, [11]), (c0)Er = er
0 and (c)Er = er

c (see, [12]), (lp)Er = er
p and (l∞)Er = er

∞

(see, [13,14]), (c0)Ar = ar
0 and (c)Ar = ar

c (see, [15]), [c0(u, p)]Ar = ar
0(u, p) and [c(u, p)]Ar = ar

c (u, p) (see, [16]),
(lp)Ar = ar

p and (l∞)Ar = ar
∞ (see, [17]), (c0)C1 = ĉ0, (cC1) = ĉ (see, [18]), µG = Z(u, v, µ) (see [19]), where

Nq , C1 Rt and Er denotes the Nörland, Cesàro, Riesz and Euler means, respectively, Ar and C are respectively
defined in [19,20], µ = {c0, c, lp} and 1 ≤ p <∞. Also c0(u, p) and c(u, p) denote the sequence spaces generated
from the Maddox’s spaces c0(p) and c(p) by Basarir (see, [20]).

A sequence space X with a linear topology is called a K -space if each map pi : X → C defined by pi (x) = xi
is continuous for all i ∈ N. A K -space X is called an FK-space provided X is complete linear metric space. An
FK-space whose topology is normable is called a BK-space. In [21] Gaine and Sheikh introduced the sequence spaces
c0(∆λ

u) and c(∆λ
u) and derive some inclusion relations. Furthermore, they determine the α-, β- and γ -duals of these

spaces. In the last they have characterized some matrix classes concerning these spaces.
Mursaleen and Noman [22] introduced the sequence spaces lλ∞, cλ and cλ0 as a set of λ-bounded, λ-convergent and

λ-null sequences, respectively, that is

lλ∞ = {x ∈ w : sup
n→∞
|Λn(x)| <∞}

cλ = {x ∈ w : lim
n→∞

Λn(x) exists}

and

cλ0 = {x ∈ w : lim
n→∞

Λn(x) = 0}

where Λn(x) = 1
λn

n∑
k=0
(λk − λk−1)xk, k ∈ N.
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Mursaleen and Noman [23] introduced the sequence spaces cλ(∆) and cλ0(∆), respectively, that is

cλ(∆) = {x ∈ w : lim
n→∞

Λ̃n(x) exists}

and

cλ0(∆) = {x ∈ w : lim
n→∞

Λ̃n(x) = 0}

where Λ̃n(x) = 1
λn

n∑
k=0
(λk − λk−1)(xk − xk−1), k ∈ N.

The main purpose of this paper is to study some non-absolute type difference sequence spaces l∞(u, λ,∆m
v ),

c0(u, λ,∆m
v ) and c(u, λ,∆m

v ). We have proved that these spaces are BK-spaces and linearly isomorphic to the spaces
l∞, c0 and c respectively. Furthermore some inclusion relations between these spaces are established and finally we
have determined the α-, β- and γ -duals of these spaces.

2. Non-absolute type sequence spaces

In the present section we introduce and study the sequence spaces l∞(u, λ,∆m
v ), c0(u, λ,∆m

v ) and c(u, λ,∆m
v ) of

non-absolute type as follows:

l∞(u, λ,∆m
v ) = {x ∈ w : sup

n→∞
|Λ̂n(x)| <∞},

cλ(u, λ,∆m
v ) = {x ∈ w : lim

n→∞
Λ̂n(x) exists}

and

cλ0(u, λ,∆
m
v ) = {x ∈ w : lim

n→∞
Λ̂n(x) = 0},

where

Λ̂n(x) =
1
λn

n∑
k=0

(λk − λk−1)uk∆m
v xk, k,m ∈ N,

=
1
λn

n∑
k=0

(λk − λk−1)uk(∆m−1
v xk −∆m−1

v xk−1), k,m ∈ N.

Let λ = (λk)
∞

k=0 be a strictly increasing sequence of positive reals tending to infinity, that is,

0 < λ0 < λ1 < · · · · · ·

and λk → ∞ as k → ∞. Here in sequel, we use the convection that any term with a negative subscript is equal to
naught, e.g. λ−1 = 0 and x−1 = 0. We define the matrix Λ̂ = (λ̂nk) for all n, k ∈ N by

λ̂nk =


n∑

i=k

( m
i − k

)
(−1)i−k λi − λi−1

λn
uk, k ≤ n;

0, k > n,

Λ̂ = (λ̂nk) equality can be easily seen from

Λ̂n(x) =
1
λn

n∑
k=0

(λk − λk−1)uk∆m
v xk (3)

for all m, v ∈ N and every x = (xk) ∈ w. Then it leads together with (1) to the fact that

l∞(u, λ,∆m
v ) = (l∞)Λ̂, c0(u, λ,∆m

v ) = (c0)Λ̂ and c(u, λ,∆m
v ) = (c)Λ̂. (4)
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The matrix Λ̂ = (λ̂nk) is a triangle, that is λ̂nn 6= 0 and λ̂nk = 0(k > n) for all n, k ∈ N. Further for any sequence
x = (xk) we define the sequence y(λ) = {yk(λ)} as the Λ̂-transform of x , i.e. y(λ) = Λ̂(x) so we have that

y(λ) =
k∑

j=0

k∑
i= j

(−1)i− j
( m

i − j

)λi − λi−1

λk
u j x j (5)

for all k ∈ N. Then summation running from 0 to k − 1 is equal to zero when k = 0.

Theorem 1. The spaces l∞(u, λ,∆m
v ), c0(u, λ,∆m

v ) and c(u, λ,∆m
v ) are BK-spaces with the norm

‖x‖l∞(u,λ,∆m
v )
= ‖x‖c0(u,λ,∆m

v )
= ‖x‖c(u,λ,∆m

v )
= sup

n
|Λ̂n(x)|.

Proof. The proof is a routine verification, so is left as an easy exercise to readers (see, [24,25]). �

Remark 2. The absolute property does not hold on l∞(u, λ,∆m
v ), c0(u, λ,∆m

v ) and c(u, λ,∆m
v ) spaces. For instance,

if we take |x | = (|xk |) then we have ‖x‖l∞(u,λ,∆m
v )
6= ‖|x |‖l∞(u,λ,∆m

v )
, similarly other hold. Thus, the spaces

l∞(u, λ,∆m
v ), c0(u, λ,∆m

v ) and c(u, λ,∆m
v ) are BK-spaces of non-absolute type.

Theorem 3. The spaces l∞(u, λ,∆m
v ), c0(u, λ,∆m

v ) and c(u, λ,∆m
v ) of non-absolute type are linearly isomorphic

to the spaces l∞, c0 and c, respectively, that is l∞(u, λ,∆m
v )
∼= l∞, c0(u, λ,∆m

v )
∼= c0 and c(u, λ,∆m

v )
∼= c.

Proof. We only consider the case c0(u, λ,∆m
v )
∼= c0 and others will follow similarly. To prove the theorem, we must

show the existence of linear bijection between the spaces c0(u, λ,∆m
v ) and c0. For this we consider the transformation

T defined, with the notation (5), from c0(u, λ,∆m
v ) to c0 by x → y(λ) = T x . Then T x = y(λ) = Λ̂(x) ∈ c0 for

every x ∈ c0(u, λ,∆m
v ). The linearity of T is obvious. Further, it is trivial that x = 0 whenever T x = 0 and hence T

is injective. Next, let y = (yk) ∈ c0 and define the sequence x = {xk(λ)} by

xk(λ) =

k∑
j=0

(m + k − j − 1
k − j

) j∑
i= j−1

(−1) j−i λi

u j (λ j − λ j−1)
yi (6)

so we have

∆m
v xk =

k∑
i=k−1

(−1)k−i λi

uk(λk − λk−1)
yi .

Thus, for every k ∈ N, we have by (5) that

Λ̂n(x) =
1
λn

n∑
k=0

k∑
i=k−1

(−1)k−iλi yi

=
1
λn

n∑
k=0

(λk yk − λk−1 yk−1) = yn .

This shows that Λ̂(x) = y and since y ∈ c0, we obtain that Λ̂(x) ∈ c0. Thus, we deduce that x ∈ c0(u, λ,∆m
v ) and

T x = y. Hence, T is surjective. Further, we have for every x ∈ c0(u, λ,∆m
v ) that

‖T x‖c0 = ‖T x‖l∞ = ‖y(λ)‖l∞ = ‖Λ̂(x)‖l∞ = ‖x‖c0(u,λ,∆m
v )

which means that c0(u, λ,∆m
v ) and c0 are linearly isomorphic. �

Theorem 4. Suppose λ = (λn) is a strictly increasing sequence of positive real numbers tends to infinity and u = (uk)

be a sequence of strictly positive real numbers. Then the inclusion c0(u, λ,∆m
v ) ⊂ c(u, λ,∆m

v ) strictly holds.
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Proof. It is clear that the inclusion c0(u, λ,∆m
v ) ⊂ c(u, λ,∆m

v ) holds. Further to show strict, consider the sequence
x = (xk) defined by xk =

km

uk
, for all k ∈ N. Then we obtain that

Λ̂(x) =
1
λn

n∑
k=0

(λk − λk−1)uk∆m
v xk = m!

for n ∈ N and clearly Λ̂(x) ∈ c\c0. Thus the sequence x is in c(u, λ,∆m
v ) but not in c0(u, λ,∆m

v ). Hence the inclusion
c0(u, λ,∆m

v ) ⊂ c(u, λ,∆m
v ) is strict and this completes the proof. �

Theorem 5. Suppose λ = (λn) is a strictly increasing sequence of positive real numbers tends to infinity and u = (uk)

be a sequence of strictly positive real numbers. Then the inclusion c ⊂ c0(u, λ,∆m
v ) strictly holds.

Proof. Let x ∈ c. Then Λ̂(x) ∈ c0. This shows that x ∈ c0(u, λ,∆m
v ). Hence the inclusion holds. Now consider the

sequence y = (yk) defined by yk =
√

k + 1 for k ∈ N. It is trivial that y 6∈ c. On the other hand it can easily seen that
Λ̂(y) ∈ c0 and y ∈ c0(u, λ,∆m

v ). Consequently, the sequence y is in c0(u, λ,∆m
v ) but not in c. We therefore deduce

that the inclusion c ⊂ c0(u, λ,∆m
v ) is strict. This completes the proof. �

Theorem 6. Let λ = (λn) be a strictly increasing sequence of positive real numbers tends to infinity and u = (uk) be
a sequence of strictly positive real numbers. Then the inclusion c0(u, λ,∆m

v ) ⊂ c0(u, λ,∆m+1
v ) strictly holds.

Proof. Let x ∈ c0(u, λ,∆m
v ). Then we have∣∣∣∣∣ 1

λn

n∑
k=0

(λk − λk−1)uk∆m+1
v xk

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
λn

n∑
k=0

(λk − λk−1)uk∆m
v xk

∣∣∣∣∣+
∣∣∣∣∣ 1
λn

n∑
k=0

(λk − λk−1)uk∆m
v xk−1

∣∣∣∣∣
for k →∞ from the inequality above we conclude that x ∈ c0(u, λ,∆m+1

v ). To show strictness consider the sequence
x = (xk) defined by xk = km . Then it can be easily seen that x ∈ c0(u, λ,∆m+1

v ) and x 6∈ c0(u, λ,∆m
v ). �

Theorem 7. If λ = (λn) is a strictly increasing sequence of positive real numbers tends to infinity and u = (uk) be a
sequence of strictly positive real numbers, then the inclusion c(u, λ,∆m−1

v ) ⊂ c(u, λ,∆m
v ) strictly holds.

Proof. Let x ∈ c(u, λ,∆m−1
v ). Then we have

Λ̂(x) =
1
λn

n∑
k=0

(λk − λk−1)uk∆m−1
v xk → l (k →∞).

Furthermore, we obtain the inequality that x ∈ c(u, λ,∆m
v ). Hence the inclusion c(u, λ,∆m−1

v ) ⊂ c(u, λ,∆m
v ) holds

as ∣∣∣∣∣ 1
λn

n∑
k=0

(λk − λk−1)uk∆m
v xk

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
λn

n∑
k=0

(λk − λk−1)uk∆m−1
v xk − l

∣∣∣∣∣
+

∣∣∣∣∣ 1
λn

n∑
k=0

(λk − λk−1)uk∆m−1
v xk−1 − l

∣∣∣∣∣
→ 0. �

Theorem 8. Suppose λ = (λn) is a strictly increasing sequence of positive real numbers tends to infinity and u = (uk)

be a sequence of strictly positive real numbers. Then the inclusion l∞(u, λ,∆m−1
v ) ⊂ l∞(u, λ,∆m

v ) strictly holds.

Proof. Let x ∈ l∞(u, λ,∆m−1
v ). Then we have

Λ̂(x) =
1
λn

n∑
k=0

(λk − λk−1)uk∆m−1
v xk ≤ K ,
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for K > 0. We obtain the following inequality that x ∈ l∞(u, λ,∆m
v ). Hence the inclusion l∞(u, λ,∆m−1

v ) ⊂

l∞(u, λ,∆m
v ) holds as∣∣∣∣∣ 1

λn

n∑
k=0

(λk − λk−1)uk∆m
v xk

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
λn

n∑
k=0

(λk − λk−1)uk∆m−1
v xk

∣∣∣∣∣
+

∣∣∣∣∣ 1
λn

n∑
k=0

(λk − λk−1)uk∆m−1
v xk−1

∣∣∣∣∣.
To show strict, we consider x = (xk) defined by x = (km), then we obtain x ∈ l∞(u, λ,∆m

v ) but x 6∈
l∞(u, λ,∆m−1

v ). �

3. Basis and α-, β-, γ -duals of the spaces c(u, λ,∆m
v ) and c0(u, λ,∆m

v )

If the normed space X contains a sequence (bn) with the property that for every x ∈ X , there is a unique sequence
of scalars (αn) such that

lim
n
‖x − (α0b0 + α1b1 + · · · · · · + αnbn)‖ = 0

then (bn) is called a Schauder basis (or briefly basis) for X . The series
∑

k αkbk which has the sum x is then called
the expansion of x with respect to (bn) and is written as x =

∑
k αkbk .

Theorem 9. Define the sequence b(k)(u, λ,∆m
v ) = {b

(k)
n (u, λ,∆m

v )}
∞

k=0 for every fixed k,m ∈ N and by

b(k)(u, λ,∆m
v ) =



(
m + n − k − 1

n − k

)( λk

λk − λk−1

)
uk −

(
m + n − k − 2

n − k − 1

)( λk

λk+1 − λk

)
uk, n > k;( λk

λk − λk−1

)
uk, n = k;

0, n < k.

Then the sequence {b(k)n (u, λ,∆m
v )} is a basis for the space c0(u, λ,∆m

v ) and every x ∈ c0(u, λ,∆m
v ) has a unique

representation of the form

x =
∑

k

αk(λ)b
(k)(u, λ,∆m

v ),

where αk(λ) = Λ̂(x), for all k ∈ N.

Theorem 10. The sequence {b, b0(u, λ,∆m
v ), b(1)(u, λ,∆m

v ), . . . .....} is a basis for the space c(u, λ,∆m
v ) and every

x ∈ c(u, λ,∆m
v ) has a unique representation of the form

x = la +
∑

k

[αk(λ)− l]b(k)(u, λ,∆m
v );

where αk(λ) = Λ̂(x), for all k ∈ N. The sequence b = (bk) is defined by

b = (bk) =

k∑
j=0

(
m + k − j − 1

k − j

)
.

Corollary 11. The difference sequence spaces c(u, λ,∆m
v ) and c0(u, λ,∆m

v ) are separable.

To determine α-, β- and γ -duals of non-absolute type spaces c(u, λ,∆m
v ) and c0(u, λ,∆m

v ), we shall use the
following result:

For the sequence spaces X and Y , the set

M(X : Y ) = {a = (ak) ∈ w : ax = (ak xk) ∈ Y for all x = (xk) ∈ w} (7)
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is known as multiplier space of X and Y.With the notion of (7), α-, β- and γ -duals of the space X respectively denoted
by Xα, Xβ and Xγ and defined by

Xα = M(X, l1), Xβ = M(X, cs) and Xγ = M(X, bs).

We now state following lemmas which we shall use to prove further theorems.

Lemma 1. A ∈ (c0 : l1) = (c : l1) if and only if

sup
K∈F

∑
n

∣∣∣∑
k∈K

ank

∣∣∣ <∞.
Lemma 2. A ∈ (c0 : c) if and only if

lim
n

ank exists for each k ∈ N and (8)

sup
n

∑
k

|ank | <∞. (9)

Lemma 3. A ∈ (c : c) if and only if (8) and (9) hold, and

lim
n

∑
k

ank exists. (10)

Lemma 4. A ∈ (c0 : l∞) = (c : l∞) if and only if (9) holds.

Lemma 5. A ∈ (l∞ : c) if and only if and (8) holds and

lim
n→∞

∑
k

|ank | =
∑

k

|αk |.

Theorem 12. The α-dual of the spaces c(u, λ,∆m
v ) and c0(u, λ,∆m

v ) is the set

bλ1 =

{
a = (ak) ∈ w : sup

K∈F

∣∣∣∣∣∑
k∈K

bnk(u, λ,∆m
v )

∣∣∣∣∣ <∞
}
;

where the matrix Bλ = (bλnk) is defined via the sequence a = (ak) by

b(k)(u, λ,∆m
v ) =



((
m + n − k − 1

n − k

)( λk

λk − λk−1

)
−

(
m + n − k − 2

n − k − 1

)( λk

λk+1 − λk

))an

uk
, n > k;( λk

λk − λk−1

)an

uk
, n = k;

0, n < k.

Proof. We prove the theorem for the space c0(u, λ,∆m
v ). If a = (ak) ∈ w, then we have the equality

ak xk =

n∑
k=0

(m + n − k − 1
n − k

) k∑
j=k−1

(−1)k− j λ j

uk(λ j − λ j−1)
y j = Bλn (y); n ∈ N. (11)

Thus, we observe by (11) that ax = (ak xk) ∈ l1, whenever x = (xk) ∈ c0(u, λ,∆m
v ) or c(u, λ,∆m

v ) if and only if
Bλ(y) ∈ l1 whenever y = (yk) ∈ c0 or c. This means that the sequence a = (ak) is in the α-duals of the spaces
c(u, λ,∆m

v ) or c0(u, λ,∆m
v ) if and only if Bλ ∈ (c0 : l1) = (c : l1). We therefore obtain from Lemma 1 with Bλ

instead of A that a ∈ {c0(u, λ,∆m
v )}

α
= {c(u, λ,∆m

v )}
β if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

bnk(u, λ,∆m
v )

∣∣∣∣∣ <∞
which leads us to the consequences that {c0(u, λ,∆m

v )}
α
= {c(u, λ,∆m

v )}
β
= bλ1 . This completes the proof. �
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Theorem 13. The β-dual of the spaces c0(u, λ,∆m
v ) and c(u, λ,∆m

v ) that is {c0(u, λ,∆m
v )}

β
= bλ2 ∩ bλ3 ∩ bλ4 and

{c(u, λ,∆m
v )}

β
= bλ2 ∩ bλ3 ∩ bλ4 ∩ bλ5 , where

bλ2 =

{
a = (ak) ∈ w :

∞∑
j=k

(
m + n − j − 1

n − j

)
a j exists for each k ∈ N

}
,

bλ3 =

{
a = (ak) ∈ w : sup

n∈N

n−1∑
k=0

|ak(n)| <∞

}
,

bλ4 =

{
a = (ak) ∈ w : sup

k

∣∣∣ λk

λk − λk−1
u−1

k ak

∣∣∣ <∞} ,
bλ5 =

{
a = (ak) ∈ w : lim

n→∞

n∑
k=0

k∑
j=0

(
m + k − j − 1

k − j

)
ak exists

}

and ak(n) is defined as

ak(n) = λku−1
k

[
1

λk − λk−1

n∑
k=0

(
m + j − k − 1

j − k

)
a j −

1
λk+1 − λk

n∑
k=0

(
m + j − k − 2

j − k − 1

)
a j

]
yk

for k < n.

Proof. We have from (6)

n∑
k=0

ak xk =

k∑
j=0

[
k∑

j=0

(m + k − j − 1
k − j

) j∑
i= j−1

(−1) j−i λi

u j (λ j − λ j−1)
yi

]
ak

=

n−1∑
k=0

λk


n∑

j=k

(m + j − k − 1
j − k

)
a j

λk − λk−1
−

n∑
j=k+1

(m + j − k − 2
j − k − 1

)
a j

λk+1 − λk

 yk +
anλn

λn − λn−1
yn

=

n−1∑
k=0

ak(n)yk +
anλn

λn − λn−1
yn = (D

λ
n )(y); (n ∈ N)

where (Dλ
n ) = (d

λ
nk) is defined by

(dλnk) =


ak(n), n > k;( λn

λn − λn−1

)an

un
, n = k;

0, n < k.

Thus, we derive that ax = (ak xk) ∈ cs whenever x = (xk) ∈ c0(u, λ,∆m
v ) if and only if Dλy ∈ c whenever

y = (yk) ∈ c0. This means that a = (ak) ∈ {c0(u, λ,∆m
v )}

β if and only if Dλy ∈ (c0, c). Therefore by using
Lemma 2, we obtain

∞∑
j=k

(m + k − j − 1
k − j

)
a j exists for each k ∈ N,

sup
n∈N

n−1∑
k=0

|ak(n)| <∞

sup
n∈N

n−1∑
k=0

∣∣∣∣ λk

λk − λk−1
ak

∣∣∣∣ <∞.
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Hence, we conclude that {c0(u, λ,∆m
v )}

β
= bλ2 ∩ bλ3 ∩ bλ4 . Finally we ended this section with the following theorem

which determines the γ -duals of sequence spaces c(u, λ,∆m
v ), c0(u, λ,∆m

v ) and l∞(u, λ,∆m
v ). �

Theorem 14. {c0(u, λ,∆m
v )}

γ
= {c(u, λ,∆m

v )}
γ
= {l∞(u, λ,∆m

v )}
γ
= bλ3 ∩ bλ4 .
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Abstract

The aim of this paper is to introduce the new concept of ordered complete dislocated quasi G-metric space. The notion of
dominated mappings is applied to approximate the unique solution of non linear functional equations. In this paper, we find the
fixed point results for mappings satisfying the locally contractive conditions on a closed ball in an ordered complete dislocated
quasi G-metric space. Our results improve several well known classical results.
c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Fixed point; Banach mapping; Kannan mapping; Closed ball; Dominated mapping; Ordered complete dislocated quasi metric spaces

1. Introduction and preliminaries

Let T : X → X be a mapping. A point x ∈ X is called a fixed point of T if x = T x . Let x0 be an arbitrary chosen
point in X.Define a sequence {xn} in X by a simple iterative method given by xn+1 = T xn , where n ∈ {0, 1, 2, 3, . . .}.
Such a sequence is called a picard iterative sequence and its convergence plays a very important role in proving
existence of a fixed point of a mapping T . A self mapping T on a metric space X is said to be a Banach contraction
mapping if,

d(T x, T y) ≤ kd(x, y)

holds for all x, y ∈ X where 0 ≤ k < 1. Recently, many results appeared related to fixed point theorem in complete
metric spaces endowed with a partial ordering in literature. Ran and Reurings [1] proved an analogue of Banach’s fixed

∗ Corresponding author.
E-mail addresses: abdullahshoaib15@yahoo.com (A. Shoaib), marshadzia@yahoo.com (M. Arshad), tahir resham@yahoo.com (T. Rasham),

mujahid.abbas@up.ac.za (M. Abbas).
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.01.002
2346-8092/ c© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



222 A. Shoaib et al. / Transactions of A. Razmadze Mathematical Institute 171 (2017) 221–230

point theorem in metric space endowed with partial order and gave applications to matrix equations. Recently, Arshad
et al. [2] proved a result concerning the existence of fixed points of a mapping satisfying a contractive conditions
on closed ball in a complete dislocated metric space. For further results on closed ball we refer the reader to [3–7]
and references therein. Subsequently, Nieto et al. [8] extended the results of [1] for non decreasing mappings and
applied this results to obtain a unique solution for a 1st order ordinary differential equation with periodic boundary
conditions. On the other hand in 2005, Mustafa and Sims in [9] introduce the notion of a generalized metric space
as generalization of the usual metric space. Mustafa and others studied fixed point theorems for mappings satisfying
different contractive conditions for further useful results can be seen in [10–15]. Recently, Agarwal and Karapinar
introduced some coupled fixed point theorems in G metric space [16]. Azam and Nayyar proved fixed point theorems
for multivalued mappings in G-cone metric space see [17]. Further latest fixed point results on G metric space can be
seen in [18–20]. The dominated mapping [21] which satisfies the condition f x � x occurs very naturally in several
practical problems. For example x denotes the total quantity of food produced over a certain period of time and f (x)
gives the quantity of food consumed over the same period in a certain town, then we must have f x � x .

In this paper we have obtained fixed point theorems for a contractive dominated self-mapping in an ordered
complete dislocated quasi G-metric space on a closed ball to generalize, extend and improve some classical fixed
point results. We have used weaker contractive condition and weaker restrictions to obtain unique fixed point.

Definition 1. Let X be a nonempty set and let G : X × X × X → R+ be a function satisfying the following axioms:
(i) If G(x, y, z) = G(y, z, x) = G(z, x, y) = 0, then x = y = z,
(ii) G(x, y, z) ≤ G(x, a, a)+ G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).
Then the pair (X,G) is called the dislocated quasi G-metric space. It is clear that if
G(x, y, z) = G(y, z, x) = G(z, x, y) = 0 then from (i) x = y = z. But if x = y = z then G(x, y, z) may not be

0. It is observed that if G(x, y, z) = G(y, z, x) = G(z, x, y) for all x, y, z ∈ X , then (X,G) becomes a dislocated
G-metric space.

Example 2. If X = R+ ∪ {0} then G(x, y, z) = x +max{x, y, z} defines a dislocated quasi metric on X .

Definition 3. Let (X,G) be a G-metric space, and let {xn} be a sequence of points in X , a point x in X is said to be
the limit of the sequence {xn} if limm,n→∞ G(x, xn, xm) = 0, and one says that sequence {xn} is G-convergent to x .
Thus, if xn → x in a dislocated quasi G-metric space (X,G), then for any ∈> 0, there exists n,m ∈ N such that
G(x, xn, xm) <∈, for all n,m ≥ N .

Definition 4. Let (X,G) be a dislocated quasi G-metric space. A sequence {xn} is called G-Cauchy sequence if,
for each ∈> 0 there exists a positive integer n? ∈ N such that G(xn, xm,xl) <∈ for all n, l,m ≥ n?; i.e. if
G(xn, xm, xl)→ 0 as n,m, l →∞.

Definition 5. A dislocated quasi G-metric space (X,G) is said to be G-complete if every G-Cauchy sequence in
(X,G) is G-convergent in X.

Proposition 6. Let (X,G) be a dislocated quasi G-metric space, then the following are equivalent:

(1) {xn} is G convergent to x .
(2) G(xn, xn, x)→ 0 as n→∞.
(3) G(xn, x, x)→ 0 as n→∞.
(4) G(xn, xm, x)→ 0 as m n→∞.

Definition 7. Let (X,G) be a G-metric space then for x0 ∈ X , r > 0, the G-ball with centre x0 and radius r is,

B(x0, r) = {y ∈ X : G(x0, y, y) ≤ r}.

Definition 8 ([21]). Let (X,�) be a partial ordered set. Then x, y ∈ X are called comparable if x � y or y � x
holds.
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Definition 9 ([21]). Let (X,�) be a partially ordered set. A self mapping f on X is called dominated if f x � x for
each x in X.

Example 10 ([21]). Let X = [0, 1] be endowed with usual ordering and f : X → X be defined by f x = xn for
some n ∈ N . Since f x = xn

≤ x for all x ∈ X , therefore f is a dominated map.

2. Main results

Theorem 11. Let (X,�,G) be an ordered complete dislocated quasi G-metric space, S : X → X be a dominated
mapping and x0 be any arbitrary point in X. Suppose there exists k ∈ [0, 1) with,

G(Sx,Sy,Sz) ≤ kG(x, y, z), for all x, y and z ∈ Y = B(x0, r), (2.1)

and

G(x0,Sx0,Sx0) ≤ (1− k)r. (2.2)

If for a nonincreasing sequence {xn} → u implies that u � xn . Then there exists a point x? in B(x0,r) such that
x? = Sx? and G(x?, x?, x?) = 0. Moreover if for any three points x, y and z in B(x0, r) such that there exists a point
v ∈ B(x0,r) such that v � x, v � y and v � z, that is, every three of elements in B(x0, r) has a lower bound, then
the point x? is unique.

Proof. Consider a picard sequence xn+1 = Sxn with initial guess x0. As xn+1 = Sxn � xn for all n ∈ {0} ∪ N . Now
by inequality (2.2) we have

G(x0, x1,x1) ≤ r,

which implies that x1 ∈ B(x0, r). By rectangular inequality

G(x0, x2,x2) ≤ G(x0,x1,x1)+ G(x1,x2, x2)

then we get,

G(x0, x2,x2) ≤ G(x0, Sx0, Sx0)+ G(Sx0,Sx1,Sx1)

≤ (1− k)r + k(1− k)r

≤ (1− k2)r ≤ r

≤ r.

Thus, x2 ∈ B(x0, r). We suppose that x3, . . . , x j ∈ B(x0, r), for some j ∈ N . Now using (2.1) we get,

G(x j , x j+1,x j+1) = G(Sx j−1,Sx j , Sx j ) ≤ k[G(x j−1,x j , x j )]

≤ k2
[G(x j−2,x j−1,x j−1)]

...

≤ k j
[G(x0, x1, x1)]. (2.3)

By using inequalities (2.1) and (2.3) we have,

G(x0, x j+1, x j+1) ≤ G(x0, x1,x1)+ G(x1, x2, x2)+ · · · + G(x j , x j+1, x j+1)

≤ (1− k)r + rk(1− k)+ · · · + rk j (1− k)

= r(1− k)[1+ k + k2
+ · · · + k j

]

≤ r(1− k)
(1− k j+1)

(1− k)
≤ r.

Thus, x j+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N . Now inequality (2.3) can be written as,

G(xn, xn+1,xn+1) ≤ knG(x0, x1, x1). (2.4)
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Using inequality (2.4) we get,

G(xn, xn+i , xn+i ) ≤ G(xn, xn+1, xn+1)+ · · · + G(xn+i−1,xn+i , xn+i )

≤ kn

(
1− ki

)
(1− k)

G(x0, x1, x1)→ 0 as n→∞.

This proves that the sequence {xn} is a G-Cauchy sequence in (B(x0, r),G). Therefore there exists a point x? ∈
B(x0, r) with,

lim
n→∞

G(xn, x?, x?) = 0.

Similarly, it can be proved that

lim
n→∞

G(x?, x?, xn) = 0.

Therefore

lim
n→∞

G(xn, x?, x?) = lim
n→∞

G(x?, x?, xn) = 0. (2.5)

Now,

G(x?, Sx?, Sx?) ≤ G(x?, xn, xn)+ G(xn, Sx?, Sx?).

By assumption x? � xn � xn−1, therefore,

G(x?, Sx?, Sx?) ≤ G(x?, xn, xn)+ G(Sxn−1, Sx?, Sx?)

≤ G(x?, xn, xn)+ kG(xn−1,x
?, x?)

≤ lim
n→∞
[G(x?, xn, xn)+ kG(xn−1, x?, x?)]

≤ 0

⇒ G(x?, Sx?, Sx?) = 0.

Therefore, x? = Sx?. Similarly, G(Sx?, Sx?, x?) ≤ 0, and hence x? = Sx?. Now,

G(x?, x?, x?) = G(Sx?, Sx?, Sx?) ≤ kG(x?, x?, x?).

Since, k ∈ [0, 1), then G(x?, x?, x?) = 0.
Uniqueness: Let y? be another point in B(x0, r) such that y? = Sy?, if x? and y? are comparable then,

G(x?, x?, y?) = G(Sx?, Sx?, Sy?) ≤ kG(x?, x?, y?).

Therefore,

G(y?, x?, x?) ≤ 0.

This shows that x? = y?. Now if x? and y? are not comparable then there exists a point v ∈ B(x0,r) which is the
lower bound of both x? and y? that is v � x? and v � y?. Moreover by assumption x? � xn as xn → x?. Therefore
v � x? � xn � · · · � x0.

G(x0, Sv, Sv) ≤ G(x0, x1, x1)+ G(x1, Sv, Sv)

≤ G(x0, Sx0, Sx0)+ G(Sx0, Sv, Sv)

≤ (1− k)r + kG(x0, v, v)

≤ (1− k)r + kr (by (2.1) and (2.2)).

But, x0 and v ∈ B(x0, r)), then G(x0, Sv, Sv) ≤ r − rk + rk ≤ r ⇒ G(x0, Sv, Sv) ≤ r.
It follows that Sv ∈ B(x0, r). Now we will prove that Snv ∈ B(x0, r), by using mathematical induction. Let

S2v, S3v, . . . , S jv ∈ B(x0, r) for some j ∈ N . As S jv � S j−1v � · · · � v � x? � xn · · · � x0, then,

G(x j+1, S j+1v, S j+1v) = G(Sx j , S(S jv), S(S jv)).
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Thus by (2.1),

G(x j+1, S j+1v, S j+1v) ≤ kG(x j , S jv, S jv) ≤ · · · ≤ k j+1G(x0, v, v). (2.6)

Now,

G(x0, S j+1v, S j+1v) ≤ G(x0, x1, x1)+ · · · + G(x j,x j+1, x j+1)+ G(x j+1, S j+1v, S j+1v)

≤ G(x0, x1, x1)+ · · · + k j G(x0, x1, x1)+ k j+1G(x0, v, v)

≤ G(x0, x1, x1)[1+ k + k2
+ · · · + k j

] + rk j+1 by (2.6)

≤ (1− k)r
(1− k j+1)

(1− k)
+ rk j+1

= r

⇒ G(x0, S j+1v, S j+1v) ≤ r . It follows that S j+1v ∈ B(x0, r) and hence Snv ∈ B(xo, r) for all n. Now

G(x?, y?, y?) ≤ G(Sn x?, Sn−1v, Sn−1v)+ G(Sn−1v, Sn y?, Sn y?).

As Sn−1v � Sn−2v � · · · � v � x? and Sn−1v � y? for all n ∈ N as Sn x? = x? and
Sn y? = y? for all n ∈ N . Then by (2.1)

G(x?, y?, y?) ≤ kG(Sn−1x?, Sn−2v, Sn−2v)+ kG(Sn−2v, Sn−1 y?, Sn−1 y?)
...

G(x?, y?, y?) ≤ knG(x?, Sv, Sv)+ knG(Sv, y?, y?)→ 0 as n→∞

G(x?, y?, y?) ≤ 0, hence x? = y?.

Similarly,

G(y?, x?, x?) ≤ 0, hence y? = x?.

This proves the uniqueness of the fixed point. �

Theorem 12. Let (X,�,G) be an ordered complete dislocated quasi G-metric space S : X → R be a mapping and

x0 be an arbitrary point in X. Suppose there exists k ∈
[
0, 1

2

)
with

G(Sx, Sy, Sz) ≤ k(G(x, Sx, Sx)+ G(y, Sy, Sy)+ G(z, Sz, Sz)) (2.7)

for all comparable elements x, y, z ∈ B(x0,r) and

G(x0, Sx0, Sx0) ≤ (1− θ)r, (2.8)

where θ = k
1−2k . If for nonincreasing sequence {xn} → u implies that u � xn . Then there exists a point x? in B(x0, r)

such that x? = Sx? and G(x?, x?, x?) = 0. Moreover, if for any three points x, y, z ∈ B(xo, r), there exists a point v
in B(x0, r) such that v � x and v � y, v � z, where

G(x0, Sx0, Sx0)+ G(v, Sv, Sv)+ G(v, Sv, Sv) ≤ G(x0, v, v)+ G(Sx0, Sv, Sv)+ G(Sx0, Sv, Sv) (2.9)

then the point x? is unique.

Proof. Consider a picard sequence xn+1 = Sxn with initial guess x0. Then xn+1 = Sxn � xn for all n ∈ {0} ∪ N and
by using inequality (2.8), we have,

G(x0, Sx0, Sx0) ≤ (1− θ)r ≤ r.

Therefore, x1 ∈ B(x0, r). Let x1, . . . , x j ∈ B(x0, r) for some j ∈ N . Thus by using inequality (2.7) we have,

G(x j,x j+1, x j+1) = G(Sx j−1, Sx j , Sx j )

≤ k[G(x j−1,Sx j−1, Sx j−1)+ G(x j , Sx j , Sx j )+ G(x j , Sx j , Sx j )],
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which implies that,

G(x j , x j+1, x j+1) ≤ θG(x j−1, x j , x j ) ≤ θ
2G(x j−2, x j−1, x j−1)

...

≤ θ j G(x0, x1, x1)

then,

G(x j , x j+1, x j+1) ≤ θ
j G(x0, x1, x1). (2.10)

Now by using the inequality (2.8) and (2.10) we have,

G(x0, x j+1, x j+1) ≤ G(x0, x1, x1)+ G(x1, x2, x2)+ · · · + G(x j , x j+1, x j+1)

≤ (1− θ)r [1+ θ + θ2
+ · · · + θ j

]

≤ (1− θ)r
(1− θ j+1)

(1− θ)
≤ r,

which gives, x j+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N . It implies that inequality (2.10) can be written as,

G(xn, xn+1, xn+1) ≤ θ
nG(x0, x1, x1). (2.11)

Now by using inequality (2.11) we have,

G(xn, xn+i , xn+i ) ≤ G(xn, xn+1, xn+1)+ G(xn+1, xn+2, xn+2)+ · · · + G(xn+i−1, xn+i , xn+i )

G(xn, xn+i , xn+i ) ≤ θ
n (1− θ

i )

(1− θ)
G(x0, x1, x1)→ 0 as m, n→∞.

Notice that the sequence {xn} is G-Cauchy sequence in (B(x0, r),G). Therefore there exists a point x? ∈ B(x0, r)
with limn→∞ xn = x?. Also

lim
n→∞

G(xn, x?, x?) = lim
n→∞

G(x?, x?, xn) = 0. (2.12)

Now,

G(x?, Sx?, Sx?) ≤ G(x?, xn, xn)+ G(xn, Sx?, Sx?).

By assumption x? � xn � xn−1, therefore,

G(x?, Sx?, Sx?) ≤ lim
n→∞
[G(x?, xn, xn)+ k{G(xn−1, Sxn−1,Sxn−1)

+G(x?, Sx?, Sx?)+ G(x?, Sx?, Sx?)}].

Thus, (1− 2k)G(x?, Sx?, Sx?) ≤ 0⇒ G(x?, Sx?, Sx?) = 0. Similarly,

G(Sx?, Sx?, x?) ≤ 0,

and hence x? = Sx?. Now

G(x?, x?, x?) = G(Sx?, Sx?, Sx?)

≤ k[G(x?, Sx?, Sx?)+ G(x?, Sx?, Sx?)+ G(x?, Sx?, Sx?)]

which implies that,

(1− 3k)G(x?, x?, x?) ≤ 0.

This implies that,

G(x?, x?, x?) = 0. (2.13)

Uniqueness: Now we show that x? is unique. Let y? be another point in B(x0, r) such that y? = Sy?. By following
similar arguments as in inequality (2.12) we obtain,

G(y?, y?, y?) = 0. (2.14)
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Now if x? � y∗, then,

G(x?, y?, y?) = G(Sx?, Sy?, Sy?)

≤ k[G(x?, Sx?, Sx?)+ G(y?, Sy?, Sy?)+ G(y?, Sy?, Sy?)]

then, G(x?, y?, y?) = 0 by using (2.13) and (2.14). Similarly,

G(y?, y?, x?) = 0.

Hence, we have x? = y?. Now if x? and y? are not comparable then there exists a point v ∈ B(x0, r) which is a lower
bound of both x? and y?. Now we will prove that Snv ∈ B(x0, r). Moreover by assumptions v � x? � xn · · · � x0.
Now by using inequality (2.7), we have,

G(Sx0, Sv, Sv) ≤ k[G(x0, Sx0, Sx0)+ G(v, Sv, Sv)+ G(v, Sv, Sv)]

≤ k[G(x0, x1, x1)+ G(v, Sv, Sv)+ G(v, Sv, Sv)]

≤ k[G(x0, v, v)+ G(Sx0, Sv, Sv)+ G(Sx0, Sv, Sv)] by using (2.9).

Hence,

G(Sx0, Sv, Sv) ≤ k[G(x0, v, v)+ G(x1, Sv, Sv)+ G(x1, Sv, Sv)].

Thus,

G(x1, Sv, Sv) ≤ θG(x0, v, v). (2.15)

Now,

G(x0, Sv, Sv) ≤ G(x0, x1, x1)+ G(x1, Sv, Sv)

≤ G(x0, x1, x1)+ θG(x0, v, v), by using (2.15)

≤ (1− θ)r + θr(since G(x0, v, v) ≤ r).

Thus, G(x0, Sv, Sv) ≤ r , then it follows that Sv ∈ B(x0.r). Now we will prove that Snv ∈ B(x0, r). By using the
mathematical induction to apply inequality (2.7). Let S2v, . . . , S jv ∈ B(x0, r) for some j ∈ N . As

S jv � S j−1v � · · · � v � x? � xn � · · · � x0,

then,

G(S jv, S j+1v, S j+1v) = G(S(S j−1v), S(S jv), S(S jv))

≤ k[G(S j−1v, S jv, S jv)+ G(S jv, S j+1v, S j+1v)+ G(S jv, S j+1v, S j+1v)]

which implies that,

G(S jv, S j+1v, S j+1v) ≤ θG(S j−1v, S jv, S jv)

≤ θ2G(S j−2v, S j−1v, S j−1v)

...

≤ θ j G(v, Sv, Sv). (2.16)

Now,

G(x j+1, S jv, S j+1v) = G(Sx j , S(S jv), S(S jv))

≤ k{G(x j , Sx j , Sx j )+ G(S jv, S j+1v, S j+1v)+ G(S jv, S j+1v, S j+1v)}.

By (2.10) and (2.16), we get

G(x j+1,S
j+1v, S j+1v) ≤ k[θ j G(x0, x1, x1)+ θ

j G(v, Sv, Sv)+ θ j G(v, Sv, Sv)]

≤ kθ j
[G(x0, x1, x1)+ G(v, Sv, Sv)+ G(v, Sv, Sv)]

≤ kθ j
[G(x0, v, v)+ G(x1, Sv, Sv)+ G(x1, Sv, Sv)]
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G(x j+1,S
j+1v, S j+1v) ≤ kθ j

[G(x0, v, v)+ θG(x0, v, v)+ θG(x0, v, v)]

G(x j+1, S j+1v, S j+1v) = θ j+1G(x0, v, v). (2.17)

Now,

G(x0, S j+1v, S j+1v) ≤ G(x0, x1, x1)+ · · · + G(x j , x j+1, x j+1)+ G(x j+1, S j+1v, S j+1v)

≤ G(x0, x1, x1)+ θG(x0, x1, x1)+ · · · + θ
j+1G(x0, v, v)

G(x0, S j+1v, S j+1v) ≤ G(x0, x1, x1)[1+ θ + θ2
+ · · · + θ j

] + θ j+1r

G(x0, S j+1v, S j+1v) ≤ (1− θ)r
(1− θ j+1)

(1− θ)
+ θ j+1r = r.

It follows that S j+1v ∈ B(x0, r) and hence Snv ∈ B(x0, r). Now inequality (2.16) can be written as,

G(Snv, Sn+1v, Sn+1v) ≤ θnG(v, Sv, Sv)→ 0 as n→∞. (2.18)

Now,

G(x?, y?, y?) = G(Sx?, Sy?, Sy?) ≤ G(Sx?, Sn+1v, Sn+1v)+ G(Sn+1v, Sy?, Sy?)

G(x?, y?, y?) ≤ k[G(x?, Sx?, Sx?)+ G(Snv, Sn+1v, Sn+1v)

+G(Snv, Sn+1v, Sn+1v)+ k{G(Snv, Sn+1v, Sn+1v)+ 2G(y?, Sy?, Sy?)

G(x?, y?, y?) ≤ kG(x?, x?, x?)+ 3kG(Snv, Sn+1v, Sn+1v)+ 2kG(y?, y?, y?)

G(x?, y?, y?) ≤ 0 (by (2.13), (2.14) and (2.18)).

Similarly,

G(y?, x?, x?) = 0.

Thus, x? = y?. �

The following example exhibits the superiority of our Theorem 12. The mapping is contractive on the closed ball
instead on the whole space.

Example 13. Let X = R+ ∪ {0} be endowed with usual order and G : X × X × X → X be an ordered complete
dislocated quasi G-metric space defined by,

G(x, y, z) =
x

2
+ y + z.

Let S : X → X be defined by,

Sx =


x

8
if x ∈

[
0,

1
2

]
x −

1
2

if x ∈ [1,∞)

 .
Clearly, S is a dominated mappings. Then for x0 =

1
2 , r = 3

2 , θ =
3
8 , B(x0, r) = [0, 1

2 ] and for k = 3
10

(1− θ)r =
(

1−
3
8

)
3
2
=

15
16

and,

G(x0, Sx0, Sx0) = G

(
1
2
, S

1
2
, S

1
2

)
=

1
4
+

1
16
+

1
16
=

3
8

⇒ G(x0, Sx0, Sx0) ≤ (1− θ)r
3
8
≤

15
16
⇒ 48 ≤ 120.
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Also if x, y and z ∈ (1,∞). We assume that x < y and y < z, then

5x + 10y + 10z ≥
15
2

x +
15
2

y +
15
2

z +
7
2

5x + 10y + 10z − 5− 5−
5
2
≥

15
2

x +
15
2

y +
15
2

z − 9

10
[(

x

2
−

1
4

)
+

(
y −

1
2

)
+

(
z −

1
2

)]
≥ 3

[(
x

2
+ x + x − 1

)
+

(
y

2
+ y + y − 1

)
+

(
z

2
+ z + z − 1

)]
G(Sx, Sy, Sz) ≥ k

[(
x

2
+ x −

1
2
+ x −

1
2

)
+

(
y

2
+ y −

1
2
+ y −

1
2

)
+

(
z

2
+ z −

1
2
+ z −

1
2

)]
G(Sx, Sy, SZ ) ≥ k[G(x, Sx, Sx)+ G(y, Sy, Sy)+ G(z, Sz, Sz)].

So the contractive condition does not hold in X . Now if x, y and z ∈ B(x0, r) then

G(Sx, Sy, Sz) =
x

16
+

y

8
+

z

8
=

1
8

{ x

2
+ y + z

}
≤

3
10

{ x

2
+

y

2
+

z

2

}
≤

3
10

{( x

2
+

x

8
+

x

8

)
+

( y

2
+

y

8
+

y

8

)
+

( z

2
+

z

8
+

z

8

)}
G(Sx, Sy, Sz) ≤

3
10
{G(x, Sx, Sx)+ G(y, Sy, Sy)+ G(z, Sz, Sz)}

G(Sx, Sy, Sz) ≤ k{G(x, Sx, Sx)+ G(y, Sy, Sy)+ G(z, Sz, Sz)}.

Hence it satisfies all the requirements of Theorem 12.

Remark 14. In the above example, max{G(x, y, y),G(y, x, x)} = 5
2 (x + y), is not a metric space. So our results

cannot be obtained from metric fixed point results by adopting the technique given in [16,12,22].
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Abstract

Jackson’s type theorem on approximation of square integrable functions is proved for functions defined on homogeneous spaces
with a compact transitive transformation group actions. An example is proved which illustrates the theorem.
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1. Definition and notations

Let W be a homogeneous space, and G be a compact transitive transformation group of W with respect to l at∫
G dg = 1. Let a be a fixed point from W, and consider its stationary subgroup H = {h ∈ G : ha = a}. There exists

the following one-to-one correspondence ϕ between W and the quotient space G/H : if w ∈W and g ∈ G transforms
a to w ∈ W, then the corresponding element ϕ(w) ∈ G/H is the class gH ; conversely, the corresponding to a class
gH element in W is w = ϕ−1(gH) = ga. H is a closed subgroup of G and there exists a G-invariant Radon measure
µ on G/H , that is, a Radon measure µ such that µ(x E) = µ(E) for every x ∈ G, E ⊂ G/H . ([1], 2.49–2.53, 2.7).
µ is unique up to a constant factor, and if this factor is suitably chosen, then∫

G
f (g)dg =

∫
G/H

∫
H

f (gξ)dξdµ(gH) (1)

for any function f integrable on G with respect to the Haar measure.
A representation T is of class 1 with respect to H , if its carrier space L contains non-zero vectors invariant with

respect to all operators T h, h ∈ H and all these operators are unitary [2, p. 103]. In what follows, AH will stand for
a set of indices for which (Tl)l∈AH is the family of all pairwise nonequivalent irreducible representations of G which
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are of class 1 with respect to H . Below, we consider the case when the stationary group H is massive. This means
that, for any representation of the group G of class 1 with respect to H , the subspace of vectors in Ll , invariant for H ,
is one-dimensional ([2], p. 103). Let {el

i } be an orthonormal basis of Ll such that Tl(el
1) = el

1.

A measure dW on W can be introduced by a G-invariant Radon measure dG/H of the compact quotient space
G/H as follows: if the set ϕ(W ) ⊂ G/H corresponds to a set W ⊂ W, then their measures are equal to each other.
Every function f given on W with a transformation group G can be regarded as a function on G which is constant
on the left cosets with respect to the stationary subgroup H with respect to a point a ∈ W. Namely, if the class gH
corresponds to a w ∈W, then the function fa(g) = fa(gH) = f (w) defined on G corresponds to a function f (w).
We say that a defined on W function f (w) belongs to the space L2(W), if fa(ϕ(w)) ∈ L2(G/H) or fa(g) ∈ L2(G).
Conversely, if a function fa ∈ L2(G) is constant on the left cosets with respect to H , then its corresponding function
f (w) belongs to L2(W). L2(W) is a Hilbert space with respect to the usually norm. It is clear that an expansion of a
function f ∈ L2(W) on a homogeneous space W can be obtained by means of the Fourier expansion of fa ∈ L2(G),
which is invariant under left shifts by elements of the corresponding to a ∈W subgroup H .

Let us denote by L2
H (G) the subspace in L2(G) which is invariant under left shifts by elements of the massive

stationary subgroup H of a fixed a ∈W. Any function fa from L2
H (G) can be expanded into the Fourier series of the

form ([2], p. 105)

fa(g) =
∑

l∈AH

Yl( fa, g), where Yl( fa, g) =
dl∑

m=1

cl
m t l

m1(g). (2)

The integer dl in (2) is the dimension of the carrier space Ll of the representation Tl(g) and t l
m1(g), 1 ≤ m ≤ dl

are the matrix functions of the representation Tl . Together with fa(g), the matrix functions t l
m1(g) are also invariant

under left shifts by elements of the subgroup H ([2], p. 104). The coefficients cl
m , according to (1), are given by the

equalities

cl
m = dl

∫
G

fa(g)t l
m1(g)dg = dl

∫
G/H

∫
H

fa(gξ)t l
m1(gξ)dξdµ(gH)

= dlmesH
∫

G/H
fa(u)t l

m1(u)dµ(u) = dlmesH
∫

W
f (w)t l

m1(ϕ(w))dw, (3)

where mesH is Haar measure of subgroup H ⊂ G.

The index l in (2) becomes a countable number of values, for which cl
m 6= 0. List them as {l1, . . . , ln, . . .}.

Following [3], the symbol l < n is interpreted as l ∈ {l1, . . . , ln}, and l ≥ n denotes that l ∈ AH \ {l1, . . . , ln}.

Thus, if f ∈ L2(W) and H is a massive stationary subgroup of an element a ∈W in G, then f can be expanded
in the series of the form

f (w) =
∑

l∈AH

dl∑
m=1

cl
m t l

m1(ϕ(w)),

where the coefficients cl
m are defined by (3).

If

Sn( f, w) =
∑

l∈AH ,l≤n

dl∑
m=1

cl
m t l

m1(ϕ(w)), n ∈ N,

is the nth partial sum of this series, and Sn( fa, g)− nth partial sum of the series (2), then

f (w)− Sn( f, w) = fa(g)−
∑

l∈AH ; l≤n

Yl( fa, g). (4)
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It follows from this that the sum Sn( f, w) is the unique element of best approximation in L2(W) by means of sums∑
l∈AH ,l≤n

∑dl
m=1 al

m t l
m1(ϕ(w)), i.e.

En( f )2 := ‖ f − Sn( f )‖L2(W)

= inf ‖ f (w)−
∑

l∈AH ,l≤n

dl∑
m=1

al
m t l

m1(ϕ(w))‖L2(W), (5)

where inf is taken with respect to complex numbers al
m, 1 ≤ m ≤ dl .

Let {Un}, n ∈ N be a sequence of neighborhoods of unity e ∈ G, such that mesUn → 0 if n → ∞. For l ∈ AH ,
we denote by χl the character and by dl the dimension of the representation Tl of the group G.

Definition. Let f ∈ L2(W), a ∈W and χl be the character of the representation Tl which corresponds to the index
l from expansion (2). Let {Un}, n ∈ N, be a sequence of neighborhoods of unity e ∈ G, such that mesUn → 0
if n → ∞, and k be a fixed natural number. We say that {Un} satisfy the condition (k, n0, r, θ), if there exist some
positive numbers n0, r and θ such that for any natural number n ≥ n0 the inequality

(mesUn)
−1
∫

Un

|1− χl(g)/dl |
2kdg ≥ θ2, (6)

is true for all l ≥ rn.

Remark. Using Bernoulli’s inequality (1+ x)k ≥ 1+ kx for x ≥ −1, we obtain that

|1− χl(g)/dl |
2k
≥ (1− 2Re χl(g)/dl + |χl(g)|

2/d2
l )

k

≥ (1− 2kReχl(g))/dl + k|χl(g)|
2/d2

l .

Therefore, the condition (6) will be satisfied, if

{mes Un}
−1
∫

Un

(1− 2kRe χl(g)/dl + k|χl(g)|
2/d2

l )dg ≥ θ2.

For a function f ∈ L2(W), a natural number k ∈ N, and a neighborhood U of unity e ∈ G, we consider the following
quantity

ωk( f,U )2 := ωk( f,U )L2(W) :=

(
(mesU )−1

∫
U
‖∆k

u f ‖2L2(W)
du

)1/2

, (7)

where

∆u f (w) := f (w)−
∫

G
f (tut−1w)dt, ∆k

u f = ∆u(∆k−1
u f ) u ∈ G, k ∈ N.

Note, that for a function f ∗ ∈ L2(G) the quantity

∆u f ∗(g) := f ∗(g)−
∫

G
f ∗(tut−1g)dt

was considered in [3]. We call the quantity (7) as the kth average modulus of smoothness of a function f ∈ L2(W)

(according to the neighborhood U ). For a neighborhood Un, n ∈ N of unity e ∈ G, we will use the notation
ωk( f, n−1)2 := ωk( f,Un)2.

Let H ⊂ G be the stationary subgroup of a point a ∈W and let fa ∈ L2(G) be the corresponding function to the
f ∈ L2(W). If we recall that fa is constant on the left cosets with respect to H , then we obtain with the help of (1)
that

ωk( f, n−1)L2(W) :=

(
(mesUn)

−1mesH
∫

Un

‖∆k
u fa‖

2
L2(G)du

)1/2

.

Fix k ∈ N; it is easy to verify the following properties of kth average modulus of smoothness:
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(a) If for a sequence Un, n ∈ N of neighborhoods of e ∈ G we have mesUn → 0 as n→∞ then limωk( f, n−1)2 = 0
for each f ∈ L2(W);

(b)

ωk( f1 + f2, n−1)2 ≤ ωk( f1, n−1)2 + ωk( f2, n−1)2;

(c)

ωk+l( f, n−1)2 ≤ 2lωk( f, n−1)2.

We note that ωk( f, n−1)2 ≤ ω
′

k( f, n−1)2 := sup{‖∆k
u f ‖2, u ∈ Un}, where ω′k have the well-known properties

of modulus of smoothness (the properties (a), (b), (c) and the property ω′k( f, n−1)2 ≤ ω′k( f, (n + 1)−1)2 for
Un ⊂ Un+1 [3]).

2. Results

Theorem 1. Let W be a homogeneous space, G be a compact transitive transformation group of W with the
normalized Haar measure dg and f ∈ L2(W). Suppose that G contains a massive stationary subgroup of a fixed
point a ∈ W. Let En( f )2 (resp. ωk( f, n)2) are defined by (5) (resp. (7)) and for a sequence of neighborhoods {Un}

the condition (k, n0, r, θ) of Definition is fulfilled. Then, the following inequality holds

Ern( f )2 = ‖ f − Srn( f )‖L2(W) ≤ θ
−1ωk( f, n−1)L2(W), n ≥ n0.

Proof. Let H be the stationary subgroup of a ∈W and fa be the corresponding to f function according to the above
mentioned correspondence. Recall that fa is constant on the left cosets with respect to H . Then, according to (1), (4),
and Parseval’s equality, we obtain from (4) that

(mesH)‖ f − Sn( f )‖2L2(W)
= ‖ fa − Sn( fa)‖

2
L2(G) =

∑
l∈AH ;l≥n

d−1
l

dl∑
m=1

|cl
m |

2. (8)

It follows from the equality
∫

G t l
m1(tut−1g)dt = d−1

l χl(u)t l
m1(g) ([3], Lemma 3.1) that

(Y k
l (∆ fa))(g) = (1− χl(u)/dl)

k(Yl fa)(g), l ∈ AH . (9)

Consequently,

(∆k
u fa)(g) =

∑
l∈AH

d−1
l

dl∑
m=1

(1− χl(u)/dl)
kcl

m t l
m1(g).

Let neighborhoods Un and an integer r are chosen according to Definition. By application of Parseval’s equality, we
obtain from (9)

‖∆k
u fa(g)‖

2
L2(G) =

∑
l∈AH

d−1
l

dl∑
m=1

|1− χl(u)/dl |
2k
|cl

m |
2

≥

∑
l∈AH ,l≥rn

d−1
l

dl∑
m=1

|1− χl(u)/dl |
2k
|cl

m |
2.

Integrating this inequality on the neighborhood Un and applying the property (6) of Definition and (8), we get

(mesUn)
−1
∫

Un

‖∆k
u fa(g)‖

2
L2(G)du

≥

∑
l∈AH

(dlmesUn)
−1)

dl∑
m=1

∫
Un

|1− χl(u)/dl |
2k
|du|cl

m |
2

≥ θ2
∑

l∈AH ;l≥rn

d−1
l

dl∑
m=1

|cl
m |

2
= θ2
‖ fa − Srn( fa)‖

2
L2(G). (10)
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Because of the functions fa and t l
m are constant on the left cosets with respect to H , we have that ‖∆k

u fa‖
2
L2(G)

=

(mesH)‖∆k
u f ‖2

L2(W)
and ‖ fa − Srn( fa)‖

2
L2(G)

= (mesH)‖ f − Srn( f )‖2
L2(W)

. Therefore, Theorem 1 follows from
(10). �

For an illustration of Theorem 1, we consider the following example. Let W = S2 be the unit sphere in the
three dimensional space R3. S2 is the homogeneous space. The compact transitive transformation group G = SU (2)
operates on it ([2], p. 269). This group consists of unimodular unitary matrices of the second order, i.e. of matrices(

α β

−β α

)
,

where α and β are complex numbers such that |α|2+ |β|2 = 1. SU (2) operates on S2 in the following way. A matrix(
α β

−β α

)
∈ SU (2) takes the point (x, y, z) ∈ S2 to (x ′, y′, z′) ∈ S2 according to the following equation ([4], p. 32)(
z′ x ′ + iy′

x ′ − iy′ −z′

)
=

(
α β

−β α

)(
z x + iy

x − iy −z

)(
α −β

β α

)
.

The stationary subgroup, which corresponds to a fixed point a ∈ S2, is the subgroup of rotations around the axes
passing through this point. We will use the stationary subgroup H of the points (0, 0, 1). This group consists of the
diagonal matrices of the form(

ei t/2 0
0 e−i t/2

)
,

which corresponds to the rotations around the axes Oz by the angle t . Since the group SU (2) is compact, there exists
an invariant scalar product on the carrier space Ll of its finite dimensional representation Tl ([2], p. 278–279). If Ll
is the space of the 2lth order polynomials, then Tl(h)x l−k

= e−kt x l−k for all h ∈ H . It follows from this that this
subgroup H is massive. α and β may be represented by three real parameters, for example by ϕ, θ , and ψ , called Euler
angles. These parameters are connected with |α|, argα, and argβ by |α| = cos θ/2, Argα = (ϕ+φ)/2, and Argβ =
(ϕ − φ + π)/2. If 0 ≤ ϕ < 2π, 0 < θ < π , and −2π ≤ ψ < 2π , then the correspondence (α, β) → (ϕ, θ, ψ),
where αβ 6= 0, |α|2 + |β|2 = 1, is one-to-one. If αβ = 0, then for the uniqueness of the correspondence, we assume

that the matrix
(

1 0
0 1

)
corresponds to the triple (0, 0, 0), the matrix

(
0 i
i 0

)
to the triple (0, π, 0) and so on ([4], p. 28).

Thus, the parametrization ϕ, θ, ψ is determined almost everywhere on SU (2). The character χl(g), g ∈ G, of the
group SU (2) in the carrier space Ll is the sum

∑l
m=−l t l

mm(g), or, in terms of the Eulers angles, the sum ([2], p. 358)

χl(ϕ, θ, ψ) =

l∑
m=−l

e−im(ϕ+ψ)P l
mm(cos θ).

The form of functions P l
mm is given in [2] (p. 347). However, this formula is not convenient since the character there is

represented as a function of three variables. Every class of conjugate elements is given by one parameter t, −2π ≤ t ≤
2π , and t and −t define the same class. Therefore, we can assume that the characters are the functions of parameter t ,
varying from 0 to 2π . Moreover, cos t

2 = cos θ2 cos ϕ+ψ2 . It is proved in [2] (p. 359), that χl(g) = (sin t
2 )
−1 sin(l+ 1

2 )t .
According to the described correspondence, the image of [0, π/n] is some set Un ⊂ G, moreover e ∈ Un and Un → e,
if n→∞. It was proved in [2] (p. 362) that if the function f (g) is constant on classes of conjugate elements, i.e. de-
pends on t only: f (g) := F(t), then

∫
G f (g)dg = π−1

∫ 2π
0 F(t) sin2 t

2 dt . Thus, for the expression in (6), we obtain∫
Un

∣∣∣∣1− χl(g)

dl

∣∣∣∣2 dg = π−1
∫ π/n

0

∣∣∣∣1− sin(l + 1/2)t
dl sin t/2

∣∣∣∣2 sin2 t/2dt

= mesUn −
2
πdl

∫ π/n

0
sin(l + 1/2)t sin t/2dt +

1

πd2
l

∫ π/n

0
sin2(l + 1/2)dt

= mesUn − J1 + J2. (11)
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Now, we estimate J1 and J2.

J1 =
2
πdl

∫ π/n

0
sin(l + 1/2)t sin t/2dt

=
1
πdl

((
1
l
−

1
l + 1

)
sin

lπ

n
+

1
l + 1

(
sin

lπ

n
− sin

(l + 1)π
n

))
=

1
πdl

(
1

l(l + 1)
sin

lπ

n
−

2
l + 1

sin
π

2n
cos

(2l + 1)π
2n

)
≤

1
πdl

(
1

l(l + 1)
+

2
l + 1

sin
π

2n

)
≤

1
πdl(l + 1)

(
1
l
+
π

c
c () n

)
. (12)

J2 =
1

2πd2
l

∫ π/n

0
(1− cos(2l + 1)t)dt ≥

1

2πd2
l

(
π

n
−

1
2l + 1

)
. (13)

It follows from the Taylor well-known formula that

t3

6
cos

π

n
≤ t − sin t ≤

t3

6
, 0 ≤ t ≤

π

n
, n ≥ 2.

Therefore, we have for mesUn =
1
π

∫ π/n
0 sin2 t

2 dt that

12n3

π2 ≤ (mesUn)
−1
≤

12n3

π cos πn
, n ≥ 3. (14)

From (11)–(14), we obtain for l ≥ rn

(mesUn)
−1
∫

Un

∣∣∣∣1− χl(g)

dl

∣∣∣∣2 dg ≥ 1+
6n3

π3d2
l

(
π

n
−

1
2l + 1

)
−

12n3

π3dl(l + 1)

(
1
l
+
π

n

)
1

cos πn

> 1−
3n2

π2dl(l + 1)

(
4

cos πn
− 1

)
−

6n3

π3d3
l

−
12n3

π3dl(l + 1)l cos πn

≥ 1−
3

2π2r2

(
4

cos πn
− 1

)
−

3

4π3r3 −
6

π3r3 cos πn
, n ≥ 3, r ≥ 1.

Performing similar calculations, one can obtain in the considered example that it is possible to take the following
constants in Theorem 1 for n ≥ 6:

1. If r = 1, then θ−1
= 2.2226;

2. If r = 1.5, then θ−1
= 1.2108;

3. If r = 2, then θ−1
= 1.0966;

4. If r = 3, then θ−1
= 1.0371.

Due to above reasoning, we can formulate the following.

Theorem 2. Let S2 be the unit sphere in the three dimensional space R3, and f be a function, from L2(S2). Then,
for n ≥ 3, r ≥ 1, in (6) and in Theorem 1, we can take

θ = 1−
3

2π2r2

(
4

cos πn
− 1

)
−

3

4π3r3 −
6

π3r3 cos πn
, n ≥ 3, r ≥ 1.

Let f (w) be a function from L2(S2), and fa ∈ L2(SU (2)) be the corresponding function to f function, whose
Fourier expansion is written in the form fa(g) =

∑
∞

l=0
∑l

m=−l cl
m t l

m1(g), g ∈ SU (2). Then, the expansion for

f (w), w ∈ S2, coincides with the Fourier–Laplace series ([2], p. 367) and has the form f (w) =
∑
∞

l=0
∑l

m=−l
cl

meimϕPm
l (cos(θ)), where ϕ, θ, 0 ≤ ϕ ≤ 2π, 0 < θ < π , are the spherical coordinates of w, Pm

l (cos(θ)) are the
Legendre adjoint functions and

cl
m =

(2l + 1)(l − m)!

4π(l + m)!

∫ 2π

0

∫ π

0
f (ϕ, θ, 0)eimϕPm

l (cos(θ)) sin θdθdϕ.
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Abstract

Let Ω ∈ L2(Sn−1) be a homogeneous function of degree zero and b be a BMO or Lipschitz function. In this paper, we obtain
some boundedness of the parametrized Littlewood–Paley operators and their high-order commutators on Herz spaces with variable
exponent.
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λ function

1. Introduction

The theory of function spaces with variable exponent has been extensively studied by researchers since the work
of Kováčik and Rákosnı́k [1] appearing in 1991. In [2–5] and [6], the authors proved the boundedness of some integral
operators on variable L p spaces.

Given an open set E ⊂ Rn , and a measurable function p(·) : E −→ [1, ∞), L p(·)(E) denotes the set of measurable
functions f on E such that for some λ > 0,∫

E

(
| f (x)|

λ

)p(x)

dx < ∞.

This set becomes a Banach function space when equipped with the Luxemburg–Nakano norm

∥ f ∥L p(·)(E) = inf

{
λ > 0 :

∫
E

(
| f (x)|

λ

)p(x)

dx ≤ 1

}
.
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These spaces are referred to as variable L p spaces, since they generalized the standard L p spaces: if p(x) = p is
constant, then L p(·)(E) is isometrically isomorphic to L p(E).

The space L p(·)
loc (E) is defined by

L p(·)
loc (E) := { f : f ∈ L p(·)(F) for all compact subsets F ⊂ E}.

Define P(E) to be the set of p(·) : E −→ [1, ∞) such that

p−
= ess inf{p(x) : x ∈ E} > 1, p+

= ess sup{p(x) : x ∈ E} < ∞.

Denote p′(x) = p(x)/(p(x) − 1).
For f ∈ L1

loc(Rn), the Hardy–Littlewood maximal operator is defined by

M f (x) = sup
r>0

1
|Br (x)|

∫
Br (x)

| f (y)|dy,

where Br (x) = {y ∈ Rn
: |x − y| < r}. Let B(Rn) be the set of p(·) ∈ P(Rn) such that the Hardy–Littlewood maximal

operator M is bounded on L p(·)(Rn). In addition, we denote the Lebesgue measure and the characteristic function of
a measurable set A ⊂ Rn by |A| and χA, respectively.

In variable L p spaces there are some important lemmas as follows.

Lemma 1.1. If p(·) ∈ P(Rn) and satisfies

|p(x) − p(y)| ≤
C

− log(|x − y|)
, |x − y| ≤ 1/2 (1.1)

and

|p(x) − p(y)| ≤
C

log(|x | + e)
, |y| ≥ |x |, (1.2)

then p(·) ∈ B(Rn), that is the Hardy–Littlewood maximal operator M is bounded on L p(·)(Rn).

Lemma 1.2 ([1]). Let p(·) ∈ P(Rn). If f ∈ L p(·)(Rn) and g ∈ L p′(·)(Rn), then f g is integrable on Rn and∫
Rn

| f (x)g(x)|dx ≤ rp∥ f ∥L p(·)(Rn )∥g∥L p′(·)(Rn ),

where

rp = 1 + 1/p−
− 1/p+.

This inequality is called the generalized Hölder inequality with respect to the variable L p spaces.

Lemma 1.3 ([4]). Let q(·) ∈ B(Rn). Then there exists a positive constant C such that for all balls B in Rn and all
measurable subsets S ⊂ B,

∥χB∥Lq(·)(Rn )

∥χS∥Lq(·)(Rn )
≤ C

|B|

|S|
,

∥χS∥Lq(·)(Rn )

∥χB∥Lq(·)(Rn )
≤ C

(
|S|

|B|

)δ1

and
∥χS∥Lq′(·)(Rn )

∥χB∥Lq′(·)(Rn )
≤ C

(
|S|

|B|

)δ2

,

where δ1, δ2 are constants with 0 < δ1, δ2 < 1.
Throughout this paper δ1 and δ2 are the same as in Lemma 1.3.

Lemma 1.4 ([4]). Suppose q(·) ∈ B(Rn). Then there exists a constant C > 0 such that for all balls B in Rn ,

1
|B|

∥χB∥Lq(·)(Rn )∥χB∥Lq′(·)(Rn ) ≤ C.

Next we recall the definition of the Herz-type spaces with variable exponent. Let Bk = {x ∈ Rn
: |x | ≤ 2k

} and
Ak = Bk \ Bk−1 for k ∈ Z. Denote by Z+ and N the sets of all positive and non-negative integers, χk = χAk for k ∈ Z,
χ̃k = χk if k ∈ Z+ and χ̃0 = χB0 .
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Definition 1.1 ([4]). Let α ∈ R, 0 < p ≤ ∞ and q(·) ∈ P(Rn). The homogeneous Herz space with variable exponent
K̇ α,p

q(·) (Rn) is defined by

K̇ α,p
q(·) (Rn) = { f ∈ Lq(·)

loc (Rn
\ {0}) : ∥ f ∥K̇ α,p

q(·) (Rn ) < ∞},

where

∥ f ∥K̇ α,p
q(·) (Rn ) =

{
∞∑

k=−∞

2kαp
∥ f χk∥

p
Lq(·)(Rn )

}1/p

.

The non-homogeneous Herz space with variable exponent K α,p
q(·) (Rn) is defined by

K α,p
q(·) (Rn) = { f ∈ Lq(·)

loc (Rn) : ∥ f ∥K α,p
q(·) (Rn ) < ∞},

where

∥ f ∥K α,p
q(·) (Rn ) =

{
∞∑

k=0

2kαp
∥ f χ̃k∥

p
Lq(·)(Rn )

}1/p

.

Suppose that Sn−1 is the unit sphere of Rn(n ≥ 2) equipped with normalized Lebesgue measure. Let Ω ∈ L1(Rn),
be a homogeneous function of degree zero and∫

Sn−1
Ω (x ′)dσ (x ′) = 0, (1.3)

where x ′
= x/|x | for any x ̸= 0. The parametrized Littlewood–Paley area integral µ

ρ

Ω,S and g∗

λ function µ
∗,ρ

Ω,λ are
defined by

µ
ρ

Ω,S( f )(x) =

(∫∫
Γ (x)

⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

f (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

and

µ
∗,ρ

Ω,λ( f )(x) =

(∫∫
Rn+1

+

(
t

t + |x − y|

)λn⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

f (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

,

where Γ (x) = {(y, t) ∈ Rn+1
+ : |x − y| < t}, ρ > 0 and λ > 1.

For an integer m ≥ 1, let b be a locally integrable function on Rn , the commutators [bm, µ
ρ

Ω,S] and [bm, µ
∗,ρ

Ω,λ] are
defined by

[bm, µ
ρ

Ω,S]( f )(x) =

(∫∫
Γ (x)

⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

[b(y) − b(z)]m f (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

and

[bm, µ
∗,ρ

Ω,λ]( f )(x) =

(∫∫
Rn+1

+

(
t

t + |x − y|

)λn⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

[b(y) − b(z)]m f (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

.

In [7], the (L p(·)(Rn), L p(·)(Rn))-boundedness of the parametrized Littlewood–Paley operators and their commuta-
tors was given by Wang and Tao. Motivated by [8,9], we will study the boundedness for the parametrized Littlewood–
Paley operators and their commutators on the Herz space with variable exponent, where Ω ∈ L2(Sn−1).

2. Estimate for the parametrized Littlewood–Paley operator

In this section we will prove the boundedness of the parametrized Littlewood–Paley area integral µ
ρ

Ω,S and g∗

λ

function µ
∗,ρ

Ω,λ on Herz spaces with variable exponent.
Let Ω ∈ Ls(Sn−1) with s ≥ 1 be homogeneous of degree zero on Rn . The definition of the integral modulus ωs(δ)

of continuity of order s of Ω is defined by

ωs(δ) = sup
∥ρ∥≤δ

(∫
Sn−1

⏐⏐Ω (ρx ′) − Ω (ρx ′)
⏐⏐sdx ′

)1/s

and ρ is a rotation on Sn−1 and ∥ρ∥ = supx ′∈Sn−1 |ρx ′
− x ′

|.
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Theorem 2.1. Suppose that 0 < p ≤ ∞, q(·) ∈ B(Rn), ρ > n/2, λ > 2, Ω ∈ L2(Sn−1) satisfying (1.3) and the
following condition∫ 1

0

ω2(δ)
δ

(1 + |log δ|)σ dδ < ∞, for σ > 2. (2.1)

If −nδ1 < α < nδ2, then the parametrized Littlewood–Paley g∗

λ function µ
∗,ρ

Ω,λ is bounded on K̇ α,p
q(·) (Rn) and K α,p

q(·) (Rn).

Proof. We only prove the homogeneous case. The non-homogeneous case can be proved in the same way. We suppose
0 < p < ∞, since the proof of the case p = ∞ is easier. Let f ∈ K̇ α,p

q(·) (Rn). Denote f j = f χ j for each j ∈ Z, we
decompose f (x) =

∑
∞

j=−∞
f j (x). Then we have

∥µ
∗,ρ

Ω,λ( f )∥K̇ α,p
q(·) (Rn ) =

{
∞∑

k=−∞

2kαp
∥µ

∗,ρ

Ω,λ( f )χk∥
p
Lq(·)(Rn )

}1/p

≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k−2∑
j=−∞

∥µ
∗,ρ

Ω,λ( f j )χk∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

+ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k+1∑
j=k−1

∥µ
∗,ρ

Ω,λ( f j )χk∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

+ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ ∞∑
j=k+2

∥µ
∗,ρ

Ω,λ( f j )χk∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

=: C I1 + C I2 + C I3.

(2.2)

We first estimate I2, by the (Lq(·)(Rn), Lq(·)(Rn))-boundedness of the commutator µ
∗,ρ

Ω,λ we have

I2 ≤ C

{
∞∑

k=−∞

2kαp
∥ fk∥

p
Lq(·)(Rn )

}1/p

= C∥ f ∥K̇ α,p
q(·) (Rn ). (2.3)

Now we estimate I1. By the Minkowski inequality we have

|µ
∗,ρ

Ω,λ( f j )(x)| =

(∫∫
Rn+1

+

(
t

t + |x − y|

)λn⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

f j (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

=

(∫
∞

0

∫
Rn

(
t

t + |x − y|

)λn⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

f j (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

≤

∫
Rn

| f j (z)|

(∫
∞

0

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz

≤

∫
Rn

| f j (z)|

(∫
|x−z|

0

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz

+

∫
Rn

| f j (z)|

(∫
∞

|x−z|

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz.

(2.4)

Note that z ∈ A j and |y − z| < t , so we know that |y − z| ∼ |y|. Then for Ω ∈ L2(Sn−1), we have∫
|y−z|<t

|Ω (y − z)|2

|y − z|2n−2ρ
dy ≤

∫
|y|<t

|Ω (y)|2

|y|
2n−2ρ

dy

≤

∫ t

0
r2ρ−n−1dr

∫
Sn−1

|Ω (y′)|2dσ (y′)

≤ t2ρ−n
∥Ω∥

2
L2(Sn−1).

(2.5)
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For λ > 2, we take 0 < θ < (λ − 2)n. Since |x − z| ≤ |x − y| + |y − z| ≤ |x − y| + t , by (2.5) we have∫
|x−z|

0

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

≤

∫
|x−z|

0

∫
|y−z|<t

(
t

t + |x − y|

)λn−2n−θ 1
|x − z|2n+θ

|Ω (y − z)|2

|y − z|2n−2ρ

dydt
t2ρ−n−θ+1

≤
1

|x − z|2n+θ

∫
|x−z|

0

∫
|y−z|<t

|Ω (y − z)|2

|y − z|2n−2ρ

dydt
t2ρ−n−θ+1

≤

∥Ω∥
2
L2(Sn−1)

|x − z|2n+θ

∫
|x−z|

0
tθ−1dt

≤ C |x − z|−2n.

(2.6)

Similarly, noting that |y − z| ∼ |y|, by (2.5) we have∫
∞

|x−z|

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1 ≤

∫
∞

|x−z|

∫
|y−z|<t

|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

≤ ∥Ω∥
2
L2(Sn−1)

∫
∞

|x−z|
t−2n−1dt

≤ C |x − z|−2n.

(2.7)

Note that x ∈ Ak, z ∈ A j and j ≤ k − 2. By (2.5), (2.6) and the generalized Hölder inequality we have

|µ
∗,ρ

Ω,λ( f j )(x)| ≤ C
∫
Rn

| f j (z)|
|x − z|n

dz

≤ C2−kn
∥ f j∥Lq(·)(Rn )∥χ j∥Lq′(·)(Rn ).

(2.8)

By Lemmas 1.3 and 1.4 we have

∥µ
∗,ρ

Ω,λ( f j )χk∥Lq(·)(Rn ) ≤ C2−kn
∥ f j∥Lq(·)(Rn )∥χ j∥Lq′(·)(Rn )∥χk∥Lq(·)(Rn )

≤ C2−kn
∥ f j∥Lq(·)(Rn )

χB j


Lq′(·)(Rn )

∥χBk ∥Lq(·)(Rn )

≤ C∥ f j∥Lq(·)(Rn )

∥χB j ∥Lq′(·)(Rn )

∥χBk ∥Lq′(·)(Rn )
≤ C2( j−k)nδ2∥ f j∥Lq(·)(Rn ).

Thus we obtain

I1 ≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k−2∑
j=−∞

2( j−k)nδ2∥ f j∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

= C

⎧⎨⎩
∞∑

k=−∞

⎛⎝ k−2∑
j=−∞

2 jα2( j−k)(nδ2−α)
∥ f j∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

.

If 1 < p < ∞, take 1/p + 1/p′
= 1. Since nδ2 − α > 0, by the Hölder inequality we have

I1 ≤ C
{ ∞∑

k=−∞

( k−2∑
j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

2( j−k)(nδ2−α)p/2
)

×

( k−2∑
j=−∞

2( j−k)(nδ2−α)p′/2
)p/p′}1/p

≤ C

⎧⎨⎩
∞∑

k=−∞

⎛⎝ k−2∑
j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

2( j−k)(nδ2−α)p/2

⎞⎠⎫⎬⎭
1/p

= C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

⎛⎝ ∞∑
k= j+2

2( j−k)(nδ2−α)p/2

⎞⎠⎫⎬⎭
1/p
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≤ C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

⎫⎬⎭
1/p

= C∥ f ∥K̇ α,p
q(·) (Rn ). (2.9)

If 0 < p ≤ 1, then we have

I1 ≤ C

⎧⎨⎩
∞∑

k=−∞

k−2∑
j=−∞

2 jαp2( j−k)(nδ2−α)p
∥ f j∥

p
Lq(·)(Rn )

⎫⎬⎭
1/p

= C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

⎛⎝ ∞∑
k= j+2

2( j−k)(nδ2−α)p

⎞⎠⎫⎬⎭
1/p

≤ C∥ f ∥K̇ α,p
q(·) (Rn ).

(2.10)

Let us now estimate I3. Note that x ∈ Ak, y ∈ A j and j ≥ k + 2, so we have |y − z| ∼ |y|. By (2.3)–(2.6) and the
generalized Hölder inequality we have

|µ
∗,ρ

Ω,λ( f j )(x)| ≤ C
∫
Rn

| f j (z)|
|x − z|n

dz

≤ C2− jn
∥ f j∥Lq(·)(Rn )∥χ j∥Lq′(·)(Rn ).

(2.11)

By Lemmas 1.3 and 1.4 we have

∥µ
∗,ρ

Ω,λ( f j )χk∥Lq(·)(Rn ) ≤ C2− jn
∥ f j∥Lq(·)(Rn )∥χ j∥Lq′(·)(Rn )∥χk∥Lq(·)(Rn )

≤ C2− jn
∥ f j∥Lq(·)(Rn )

χB j


Lq′(·)(Rn )

∥χBk ∥Lq(·)(Rn )

≤ C∥ f j∥Lq(·)(Rn )
∥χBk ∥Lq(·)(Rn )

∥χB j ∥Lq(·)(Rn )

≤ C2(k− j)nδ1∥ f j∥Lq(·)(Rn ).

Thus we obtain

I3 ≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ ∞∑
j=k+2

2(k− j)nδ1∥ f j∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

= C

⎧⎨⎩
∞∑

k=−∞

⎛⎝ ∞∑
j=k+2

2 jα2(k− j)(nδ1+α)
∥ f j∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

.

If 1 < p < ∞, take 1/p + 1/p′
= 1. Since nδ1 + α > 0, by the Hölder inequality we have

I3 ≤ C
{ ∞∑

k=−∞

( ∞∑
j=k+2

2 jαp
∥ f j∥

p
Lq(·)(Rn )

2(k− j)(nδ1+α)p/2
)

×

( k−2∑
j=−∞

2(k− j)(nδ1+α)p′/2
)p/p′}1/p

≤ C

⎧⎨⎩
∞∑

k=−∞

⎛⎝ ∞∑
j=k+2

2 jαp
∥ f j∥

p
Lq(·)(Rn )

2(k− j)(nδ1+α)p/2

⎞⎠⎫⎬⎭
1/p

= C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

( j−2∑
k=−∞

2(k− j)(nδ1+α)p/2

)⎫⎬⎭
1/p

≤ C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

⎫⎬⎭
1/p

= C∥ f ∥K̇ α,p
q(·) (Rn ).

(2.12)
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If 0 < p ≤ 1, then we have

I3 ≤ C

⎧⎨⎩
∞∑

k=−∞

∞∑
j=k+2

2 jαp2(k− j)(nδ1+α)p
∥ f j∥

p
Lq(·)(Rn )

⎫⎬⎭
1/p

= C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

( j−2∑
k=−∞

2(k− j)(nδ1+α)p

)⎫⎬⎭
1/p

≤ C∥ f ∥K̇ α,p
q(·) (Rn ).

(2.13)

Therefore, by (2.2), (2.3), (2.9), (2.10), (2.12) and (2.13) we complete the proof of Theorem 2.1.
Since µ

ρ

Ω,S( f )(x) ≤ Cλµ
∗,ρ

Ω,λ( f )(x), we easily obtain the following theorem.

Theorem 2.2. Suppose that 0 < p ≤ ∞, q(·) ∈ B(Rn), ρ > n/2, Ω ∈ L2(Sn−1) satisfying (1.3) and (2.1). If
−nδ1 < α < nδ2, then the parametrized Littlewood–Paley area integral µ

ρ

Ω,S is bounded on K̇ α,p
q(·) (Rn) and K α,p

q(·) (Rn).

3. BMO estimate for the commutators of parametrized Littlewood–Paley operators

Let us first recall that the space BMO(Rn) consists of all locally integrable functions f such that

∥ f ∥∗ = sup
Q

1
|Q|

∫
Q
| f (x) − fQ |dx < ∞,

where fQ = |Q|
−1 ∫

Q f (y)dy, the supremum is taken over all cubes Q ⊂ Rn with sides parallel to the coordinate
axes and |Q| denotes the Lebesgue measure of Q.

Next, we will give the BMO estimate for the commutators [bm, µ
ρ

Ω,S] and [bm, µ
∗,ρ

Ω,λ] on Herz spaces with variable
exponent.

Theorem 3.1. Suppose that b ∈ BMO(Rn), m ∈ Z+, 0 < p ≤ ∞, q(·) ∈ B(Rn), ρ > n/2, λ > 2, Ω ∈ L2(Sn−1)
satisfying (1.3) and (2.1). If −nδ1 < α < nδ2, then [bm, µ

∗,ρ

Ω,λ] is bounded on K̇ α,p
q(·) (Rn) and K α,p

q(·) (Rn).

In the proof of Theorem 3.1, we also need the following lemma.

Lemma 3.2 ([5]). Let p(·) ∈ B(Rn), m be a positive integer and B be a ball in Rn . Then we have that for all
b ∈ BMO(Rn) and all j, i ∈ Z with j > i ,

1
C

∥b∥
m
∗

≤ sup
B

1
∥χB∥L p(·)(Rn )

∥(b − bB)mχB∥L p(·)(Rn ) ≤ C∥b∥
m
∗
,

∥(b − bBi )
mχB j ∥L p(·)(Rn ) ≤ C( j − i)m

∥b∥
m
∗
∥χB j ∥L p(·)(Rn ),

where Bi = {x ∈ Rn
: |x | ≤ 2i

} and B j = {x ∈ Rn
: |x | ≤ 2 j

}.

Proof of Theorem 3.1. Similar to Theorem 2.1, we only prove the homogeneous case and still suppose 0 < p < ∞.
Let f ∈ K̇ α,p

q(·) (Rn), and we write f (x) =
∑

∞

j=−∞
f χ j (x) =

∑
∞

j=−∞
f j (x). Then we have

∥[bm, µ
∗,ρ

Ω,λ]( f )∥K̇ α,p
q(·) (Rn ) =

{
∞∑

k=−∞

2kαp
∥[bm, µ

∗,ρ

Ω,λ]( f )χk∥
p
Lq(·)(Rn )

}1/p

≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k−2∑
j=−∞

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

+ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k+1∑
j=k−1

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p
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+ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ ∞∑
j=k+2

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

=: C J1 + C J2 + C J3. (3.1)

Noting that [bm, µ
∗,ρ

Ω,λ] is bounded on Lq(·)(Rn), so we have

J2 ≤ C

{
∞∑

k=−∞

2kαp
∥ fk∥

p
Lq(·)(Rn )

}1/p

= C∥ f ∥K̇ α,p
q(·) (Rn ). (3.2)

Now we estimate J1. By the Minkowski inequality we have

|[bm, µ
∗,ρ

Ω,λ]( f j )(x)|

=

(∫∫
Rn+1

+

(
t

t + |x − y|

)λn⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

[b(x) − b(z)]m f j (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

=

(∫
∞

0

∫
Rn

(
t

t + |x − y|

)λn⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

[b(x) − b(z)]m f j (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

≤

∫
Rn

|b(x) − b(z)|m | f j (z)|

(∫
∞

0

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz

≤

∫
Rn

|b(x) − b(z)|m | f j (z)|

(∫
|x−z|

0

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz

+

∫
Rn

|b(x) − b(z)|m | f j (z)|

(∫
∞

|x−z|

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz.

(3.3)

Note that x ∈ Ak, z ∈ A j and j ≤ k − 2. By (2.6), (2.7) and the generalized Hölder inequality we have

|[bm, µ
∗,ρ

Ω,λ]( f j )(x)| ≤ C
∫
Rn

| f j (z)|
|x − z|n

|b(x) − b(z)|mdz

≤ C

(
|b(x) − bB j |

m
∫

A j

| f j (z)|
|x − z|n

dz +

∫
A j

| f j (z)|
|x − z|n

|bB j − b(z)|mdz

)
≤ C2−kn

∥ f j∥Lq(·)(Rn )

(
|b(x) − bB j |

m
∥χ j∥Lq′(·)(Rn ) + ∥(bB j − b(·))χ j (·)∥Lq′(·)(Rn )

)
.

(3.4)

By Lemmas 1.3, 1.4 and 3.2 we have

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq(·)(Rn )

≤ C2−kn
∥ f j∥Lq(·)(Rn )

(
∥χ j∥Lq′(·)(Rn )∥(b(·) − bB j )

mχk(·)∥Lq(·)(Rn ) + ∥b∥
m
∗
∥χB j ∥Lq′(·)(Rn )∥χk∥Lq(·)(Rn )

)
≤ C2−kn

∥ f j∥Lq(·)(Rn )

(
(k − j)m

∥b∥
m
∗
∥χB j ∥Lq′(·)(Rn )∥χBk (·)∥Lq(·)(Rn ) + ∥b∥

m
∗
∥χB j ∥Lq′(·)(Rn )∥χBk ∥Lq(·)(Rn )

)
≤ C2−kn(k − j)m

∥b∥
m
∗
∥ f j∥Lq(·)(Rn )

χB j


Lq′(·)(Rn )

∥χBk ∥Lq(·)(Rn )

≤ C(k − j)m
∥b∥

m
∗
∥ f j∥Lq(·)(Rn )

∥χB j ∥Lq′(·)(Rn )

∥χBk ∥Lq′(·)(Rn )

≤ C2( j−k)nδ2 (k − j)m
∥b∥

m
∗
∥ f j∥Lq(·)(Rn ).
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Thus we obtain

J1 ≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k−2∑
j=−∞

2( j−k)nδ2 (k − j)m
∥b∥

m
∗
∥ f j∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

= C∥b∥
m
∗

⎧⎨⎩
∞∑

k=−∞

⎛⎝ k−2∑
j=−∞

2 jα2( j−k)(nδ2−α)(k − j)m
∥ f j∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

.

If 1 < p < ∞, take 1/p + 1/p′
= 1. Since nδ2 − α > 0, by the Hölder inequality we have

J1 ≤ C∥b∥
m
∗

{ ∞∑
k=−∞

( k−2∑
j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

2( j−k)(nδ2−α)p/2
)

×

( k−2∑
j=−∞

2( j−k)(nδ2−α)p′/2(k − j)mp′

)p/p′}1/p

≤ C∥b∥
m
∗

⎧⎨⎩
∞∑

k=−∞

⎛⎝ k−2∑
j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

2( j−k)(nδ2−α)p/2

⎞⎠⎫⎬⎭
1/p

= C∥b∥
m
∗

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

⎛⎝ ∞∑
k= j+2

2( j−k)(nδ2−α)p/2

⎞⎠⎫⎬⎭
1/p

≤ C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

⎫⎬⎭
1/p

= C∥ f ∥K̇ α,p
q(·) (Rn ).

(3.5)

If 0 < p ≤ 1, then we have

J1 ≤ C∥b∥
m
∗

⎧⎨⎩
∞∑

k=−∞

k−2∑
j=−∞

2 jαp2( j−k)(nδ2−α)p(k − j)mp
∥ f j∥

p
Lq(·)(Rn )

⎫⎬⎭
1/p

= C∥b∥
m
∗

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

⎛⎝ ∞∑
k= j+2

2( j−k)(nδ2−α)p(k − j)mp

⎞⎠⎫⎬⎭
1/p

≤ C∥ f ∥K̇ α,p
q(·) (Rn ).

(3.6)

Let us now estimate J3. Note that x ∈ Ak, y ∈ A j and j ≥ k + 2, so we have |y − z| ∼ |y|. Similar to (3.4), we
get

|[bm, µ
∗,ρ

Ω,λ]( f j )(x)| ≤ C2− jn
∥ f j∥Lq(·)(Rn )

(
|b(x) − bBk |

m
∥χ j∥Lq′(·)(Rn ) + ∥(bBk − b(·))χ j (·)∥Lq′(·)(Rn )

)
. (3.7)

By Lemmas 1.3, 1.4 and 3.2 we have

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq(·)(Rn )

≤ C2− jn
∥ f j∥Lq(·)(Rn )

(
∥b∥

m
∗
∥χ j∥Lq′(·)(Rn )∥χBk (·)∥Lq(·)(Rn ) + ∥(bBk − b(·))mχB j ∥Lq′(·)(Rn )∥χk∥Lq(·)(Rn )

)
≤ C2− jn

∥ f j∥Lq(·)(Rn )

(
∥b∥

m
∗
∥χB j ∥Lq′(·)(Rn )∥χBk (·)∥Lq(·)(Rn ) + ( j − k)m

∥b∥
m
∗
∥χB j ∥Lq′(·)(Rn )∥χBk ∥Lq(·)(Rn )

)
≤ C2− jn( j − k)m

∥b∥
m
∗
∥ f j∥Lq(·)(Rn )

χB j


Lq′(·)(Rn )

∥χBk ∥Lq(·)(Rn )

≤ C( j − k)m
∥b∥

m
∗
∥ f j∥Lq(·)(Rn )

∥χBk ∥Lq(·)(Rn )

∥χB j ∥Lq(·)(Rn )

≤ C2(k− j)nδ1 ( j − k)m
∥b∥

m
∗
∥ f j∥Lq(·)(Rn ).
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Thus we obtain

J3 ≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ ∞∑
j=k+2

2(k− j)nδ1 ( j − k)m
∥b∥

m
∗
∥ f j∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

= C∥b∥
m
∗

⎧⎨⎩
∞∑

k=−∞

⎛⎝ ∞∑
j=k+2

2 jα2(k− j)(nδ1+α)( j − k)m
∥ f j∥Lq(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

.

If 1 < p < ∞, take 1/p + 1/p′
= 1. Since nδ1 + α > 0, by the Hölder inequality we have

J3 ≤ C∥b∥
m
∗

{ ∞∑
k=−∞

( ∞∑
j=k+2

2 jαp
∥ f j∥

p
Lq(·)(Rn )

2(k− j)(nδ1+α)p/2
)

×

( ∞∑
j=k+2

2(k− j)(nδ1+α)p′/2( j − k)mp′

)p/p′}1/p

≤ C∥b∥
m
∗

⎧⎨⎩
∞∑

k=−∞

⎛⎝ ∞∑
j=k+2

2 jαp
∥ f j∥

p
Lq(·)(Rn )

2(k− j)(nδ1+α)p/2

⎞⎠⎫⎬⎭
1/p

= C∥b∥
m
∗

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

( j−2∑
k=−∞

2(k− j)(nδ1+α)p/2

)⎫⎬⎭
1/p

≤ C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

⎫⎬⎭
1/p

= C∥ f ∥K̇ α,p
q(·) (Rn ).

(3.8)

If 0 < p ≤ 1, then we have

J3 ≤ C∥b∥
m
∗

⎧⎨⎩
∞∑

k=−∞

∞∑
j=k+2

2 jαp2(k− j)(nδ1+α)p( j − k)mp
∥ f j∥

p
Lq(·)(Rn )

⎫⎬⎭
1/p

= C∥b∥
m
∗

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq(·)(Rn )

( j−2∑
k=−∞

2(k− j)(nδ1+α)p( j − k)mp

)⎫⎬⎭
1/p

≤ C∥ f ∥K̇ α,p
q(·) (Rn ).

(3.9)

Therefore, by (3.1), (3.2), (3.5), (3.6), (3.8), (3.9) we complete the proof of Theorem 3.1.

Since [bm, µ
ρ

Ω,S]( f )(x) ≤ Cλ[bm, µ
∗,ρ

Ω,λ]( f )(x), we easily obtain the following theorem.

Theorem 3.2. Suppose that b ∈ BMO(Rn), m ∈ Z+, 0 < p ≤ ∞, q(·) ∈ B(Rn), ρ > n/2, Ω ∈ L2(Sn−1)
satisfying (1.3) and (2.1). If −nδ1 < α < nδ2, then [bm, µΩ,S] is bounded on K̇ α,p

q(·) (Rn) and K α,p
q(·) (Rn).

4. Lipschitz estimate for the commutators of parametrized Littlewood–Paley operators

For 0 < β ≤ 1, the Lipschitz space Lipβ(Rn) is defined as

Lipβ(Rn) =

{
f : ∥ f ∥Lipβ

= sup
x,y∈Rn ;x ̸=y

| f (x) − f (y)|
|x − y|

β
< ∞

}
.

Next, we will give the Lipschitz estimate for the commutators [bm, µ
ρ

Ω,S] and [bm, µ
∗,ρ

Ω,λ] on Herz spaces with
variable exponent.

Theorem 4.1. Let m ∈ Z+, b ∈ Lipβ(Rn), 0 < p ≤ ∞, ρ > n/2, λ > 2, Ω ∈ L2(Sn−1) satisfy (1.3)
and q1(·), q2(·) ∈ P(Rn) be such that q+

1 < n
mβ

. If 0 < β < min{1, n/m}, −nδ1 + mβ < α < nδ2,
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q2(·)(n − mβ)/n ∈ B(Rn) and
1

q1(x)
−

1
q2(x)

=
mβ

n
,

then [bm, µ
∗,ρ

Ω,λ] is bounded from K̇ α,p
q1(·)(Rn)(or K α,p

q1(·)(Rn)) to K̇ α,p
q2(·)(Rn)(or K α,p

q2(·)(Rn)).

In the proof of Theorem 4.1, we also need the following lemma.

Lemma 4.1 ([2]). Let q1(·), q2(·) ∈ P(Rn) be such that q+

1 < n/ν and 1/q1(x) − 1/q2(x) = ν/n. If q2(·)(n − ν)/n ∈

B(Rn), then ∥Iν f ∥q2(·) ≤ C∥ f ∥q1(·), where Iν is the fractional integral operator with 0 < ν < n.

Proof of Theorem 4.1. Similar to Theorem 2.1, we only prove the homogeneous case and still suppose 0 < p < ∞.
Let f ∈ K̇ α,p

q1(·)(Rn), and we write f (x) =
∑

∞

j=−∞
f χ j (x) =

∑
∞

j=−∞
f j (x). Then we have

∥[bm, µ
∗,ρ

Ω,λ]( f )∥K̇ α,p
q2(·)(R

n ) =

{
∞∑

k=−∞

2kαp
∥[bm, µ

∗,ρ

Ω,λ]( f )χk∥
p
Lq2(·)(Rn )

}1/p

≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k−2∑
j=−∞

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq2(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

+ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k+1∑
j=k−1

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq2(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

+ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ ∞∑
j=k+2

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq2(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

=: CU1 + CU2 + CU3.

(4.1)

In [7], the authors proved that [bm, µ
∗,ρ

Ω,λ] is bounded from Lq1(·)(Rn) to Lq2(·)(Rn). So we have

U2 ≤ C

{
∞∑

k=−∞

2kαp
∥ fk∥

p
Lq1(·)(Rn )

}1/p

= C∥ f ∥K̇ α,p
q1(·)(R

n ). (4.2)

Now we estimate U1. By the Minkowski inequality we have

|[bm, µ
∗,ρ

Ω,λ]( f j )(x)|

=

(∫∫
Rn+1

+

(
t

t + |x − y|

)λn⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

[b(x) − b(z)]m f j (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

=

(∫
∞

0

∫
Rn

(
t

t + |x − y|

)λn⏐⏐⏐⏐ 1
tρ

∫
|y−z|<t

Ω (y − z)
|y − z|n−ρ

[b(x) − b(z)]m f j (z)dz
⏐⏐⏐⏐2 dydt

tn+1

)1/2

≤ C∥b∥
m
Lipβ

∫
Rn

|x − z|mβ
| f j (z)|

(∫
∞

0

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz

≤ C∥b∥
m
Lipβ

∫
Rn

|x − z|mβ
| f j (z)|

(∫
|x−z|

0

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz

+ C∥b∥
m
Lipβ

∫
Rn

|x − z|mβ
| f j (z)|

(∫
∞

|x−z|

∫
|y−z|<t

(
t

t + |x − y|

)λn
|Ω (y − z)|2

|y − z|2n−2ρ

dydt
tn+2ρ+1

)1/2

dz.

(4.3)

Note that x ∈ Ak, z ∈ A j and j ≤ k − 2. By (2.6), (2.7) and the generalized Hölder inequality we have

|[bm, µ
∗,ρ

Ω,λ]( f j )(x)| ≤ C∥b∥
m
Lipβ

∫
Rn

| f j (z)|
|x − z|n−mβ

dz

≤ C∥b∥
m
Lipβ

2−k(n−mβ)
∥ f j∥Lq1(·)(Rn )∥χ j∥Lq′

1(·)(Rn )
.

(4.4)
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Take ν = mβ, since

Imβ(χBk )(x) ≥

∫
Bk

dy
|x − y|

n−mβ
χBk (x) ≥ C2kmβχBk (x), (4.5)

by Lemmas 1.3, 1.4 and 4.1 we have

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq2(·)(Rn ) ≤ C2−k(n−mβ)
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn )∥χB j ∥Lq′
1(·)(Rn )

∥χBk ∥Lq2(·)(Rn )

≤ C2−kn
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn )∥χB j ∥Lq′
1(·)(Rn )

∥Imβ(χBk )∥Lq2(·)(Rn )

≤ C2−kn
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn )∥χB j ∥Lq′
1(·)(Rn )

∥χBk ∥Lq1(·)(Rn )

≤ C∥b∥
m
Lipβ

∥ f j∥Lq1(·)(Rn )

∥χB j ∥Lq′
1(·)(Rn )

∥χBk ∥Lq′
1(·)(Rn )

≤ C2( j−k)nδ2∥b∥
m
Lipβ

∥ f j∥Lq1(·)(Rn ).

Thus we obtain

U1 ≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ k−2∑
j=−∞

2( j−k)nδ2∥b∥
m
Lipβ

∥ f j∥Lq1(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

= C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

k=−∞

⎛⎝ k−2∑
j=−∞

2 jα2( j−k)(nδ2−α)
∥ f j∥Lq1(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

.

If 1 < p < ∞, take 1/p + 1/p′
= 1. Since nδ2 − α > 0, by the Hölder inequality we have

U1 ≤ C∥b∥
m
Lipβ

{ ∞∑
k=−∞

( k−2∑
j=−∞

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

2( j−k)(nδ2−α)p/2
)

×

( k−2∑
j=−∞

2( j−k)(nδ2−α)p′/2
)p/p′}1/p

≤ C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

k=−∞

⎛⎝ k−2∑
j=−∞

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

2( j−k)(nδ2−α)p/2

⎞⎠⎫⎬⎭
1/p

= C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

⎛⎝ ∞∑
k= j+2

2( j−k)(nδ2−α)p/2

⎞⎠⎫⎬⎭
1/p

≤ C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

⎫⎬⎭
1/p

= C∥ f ∥K̇ α,p
q1(·)(R

n ).

(4.6)

If 0 < p ≤ 1, then we have

U1 ≤ C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

k=−∞

k−2∑
j=−∞

2 jαp2( j−k)(nδ2−α)p
∥ f j∥

p
Lq1(·)(Rn )

⎫⎬⎭
1/p

= C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

⎛⎝ ∞∑
k= j+2

2( j−k)(nδ2−α)p

⎞⎠⎫⎬⎭
1/p

≤ C∥ f ∥K̇ α,p
q1(·)(R

n ).

(4.7)

Let us now estimate U3. Note that x ∈ Ak, y ∈ A j and j ≥ k + 2, so we have |y − z| ∼ |y|. Similar to (4.4), we
get

|[bm, µ
∗,ρ

Ω,λ]( f j )(x)| ≤ C∥b∥
m
Lipβ

2− j(n−mβ)
∥ f j∥Lq1(·)(Rn )∥χ j∥Lq′

1(·)(Rn )
. (4.8)
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By (4.5), Lemmas 1.3, 1.4 and 4.1 we have

∥[bm, µ
∗,ρ

Ω,λ]( f j )χk∥Lq2(·)(Rn ) ≤ C2− j(n−mβ)
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn )∥χB j ∥Lq′
1(·)(Rn )

∥χBk ∥Lq2(·)(Rn )

≤ C2− jn+( j−k)mβ
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn )∥χB j ∥Lq′
1(·)(Rn )

∥Imβ(χBk )∥Lq2(·)(Rn )

≤ C2− jn+( j−k)mβ
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn )∥χB j ∥Lq′
1(·)(Rn )

∥χBk ∥Lq1(·)(Rn )

≤ C2( j−k)mβ
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn )

∥χBk ∥Lq1(·)(Rn )

∥χB j ∥Lq1(·)(Rn )

≤ C2(k− j)(nδ1−mβ)
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn ).

Thus we obtain

U3 ≤ C

⎧⎨⎩
∞∑

k=−∞

2kαp

⎛⎝ ∞∑
j=k+2

2(k− j)(nδ1−mβ)
∥b∥

m
Lipβ

∥ f j∥Lq1(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

= C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

k=−∞

⎛⎝ ∞∑
j=k+2

2 jα2(k− j)(nδ1−mβ+α)( j − k)m
∥ f j∥Lq1(·)(Rn )

⎞⎠p⎫⎬⎭
1/p

.

If 1 < p < ∞, take 1/p + 1/p′
= 1. Since nδ1 − mβ + α > 0, by the Hölder inequality we have

U3 ≤ C∥b∥
m
Lipβ

{ ∞∑
k=−∞

( ∞∑
j=k+2

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

2(k− j)(nδ1−mβ+α)p/2
)

×

( ∞∑
j=k+2

2(k− j)(nδ1−mβ+α)p′/2( j − k)mp′

)p/p′}1/p

≤ C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

k=−∞

⎛⎝ ∞∑
j=k+2

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

2(k− j)(nδ1−mβ+α)p/2

⎞⎠⎫⎬⎭
1/p

= C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

( j−2∑
k=−∞

2(k− j)(nδ1−mβ+α)p/2

)⎫⎬⎭
1/p

≤ C

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

⎫⎬⎭
1/p

= C∥ f ∥K̇ α,p
q1(·)(R

n ).

(4.9)

If 0 < p ≤ 1, then we have

U3 ≤ C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

k=−∞

∞∑
j=k+2

2 jαp2(k− j)(nδ1−mβ+α)p
∥ f j∥

p
Lq1(·)(Rn )

⎫⎬⎭
1/p

= C∥b∥
m
Lipβ

⎧⎨⎩
∞∑

j=−∞

2 jαp
∥ f j∥

p
Lq1(·)(Rn )

( j−2∑
k=−∞

2(k− j)(nδ1−mβ+α)p

)⎫⎬⎭
1/p

≤ C∥ f ∥K̇ α,p
q1(·)(R

n ).

(4.10)

Therefore, by (4.1), (4.2), (4.6), (4.7), (4.9), (4.10) we complete the proof of Theorem 4.1.

Since [bm, µ
ρ

Ω,S]( f )(x) ≤ Cλ[bm, µ
∗,ρ

Ω,λ]( f )(x), we easily obtain the following theorem.
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Theorem 4.2. Let m ∈ Z+, b ∈ Lipβ(Rn), 0 < p ≤ ∞, ρ > n/2, Ω ∈ L2(Sn−1) satisfy (1.3) and q1(·), q2(·) ∈

P(Rn) be such that q+

1 < n
mβ

. If 0 < β < min{1, n/m}, −nδ1 + mβ < α < nδ2, q2(·)(n − mβ)/n ∈ B(Rn) and

1
q1(x)

−
1

q2(x)
=

mβ

n
,

then [bm, µ
ρ

Ω,S] is bounded from K̇ α,p
q1(·)(Rn)(or K α,p

q1(·)(Rn)) to K̇ α,p
q2(·)(Rn)(or K α,p

q2(·)(Rn)).
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