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Abstract

There are obtained necessary and sufficient conditions for the well-posedness of the Cauchy problem for the systems of linear
ordinary differential equations, analogous to the sufficient condition by Z. Opial for the problem one. Moreover, there are given the
efficient sufficient conditions for the problem one.
c© 2016 Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Linear systems of ordinary differential equations; The Cauchy problem; Well-posedness; The Opial type condition; Necessary and
sufficient conditions; Efficient sufficient conditions

1. Statement of the problem and basic notation

Let P0 ∈ Lloc(I,Rn×n), q0 ∈ Lloc(I,Rn) and t0 ∈ I , where I is an arbitrary interval from R non-degenerated in
the point. Let x0 be a unique solution of the Cauchy problem

dx

dt
= P0(t) x + q0(t), (1.1)

x(t0) = c0, (1.2)

where c0 ∈ Rn is a constant vector.
Consider sequences of matrix- and vector-functions Pk ∈ Lloc(I,Rn×n) (k = 1, 2, . . .) and qk ∈ Lloc(I,Rn) (k =

1, 2, . . .), respectively; sequence of points tk (k = 1, 2, . . .) and sequence of constant vectors ck ∈ Rn

(k = 1, 2, . . .).

∗ Correspondence to: A. Razmadze Mathematical Institute I, Javakhishvili Tbilisi State University, 6 Tamarashvili st., Tbilisi 0177, Georgia.
E-mail address: ashord@rmi.ge.
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In [1–8] (see, also the references therein), the sufficient conditions are given such that a sequence of unique
solutions xk (k = 1, 2, . . .) of the Cauchy problems

dx

dt
= Pk(t) x + qk(t), (1.1k)

x(tk) = ck (1.2k)

(k = 1, 2, . . .) satisfy the condition

lim
k→+∞

xk(t) = x0(t) uniformly on I. (1.3)

In the present paper necessary and sufficient conditions are established for the sequence of the Cauchy problems
(1.1k), (1.2k) (k = 1, 2, . . .) to have the above-mentioned property. The obtained criterion are based on the concept
by Z. Opial, concerning to the sufficient condition considered in [8], and it differs from analogous one given in [1].

The Opial type sufficient conditions are investigated in [5] for the well-posedness problem of the Cauchy problem
for linear functional-differential equations.

In the paper the use will be made of the following notation and definitions.
R =] −∞,+∞[; [a, b] and ]a, b[(a, b ∈ R) are, respectively, closed and open intervals.
I is an arbitrary, non-degenerated in the point, finite or infinite interval from R.
Rn×m is the space of all real n × m matrices X = (xi j )

n,m
i, j=1 with the norm

‖X‖ = max
j=1,...,m

n∑
i=1

|xi j |.

On×m is the zero n × m-matrix.
Rn
= Rn×1 is the space of all real column n-vectors x = (xi )

n
i=1; on is the zero n-vector.

Rn×n is the space of all real quadratic n × n-matrices X = (xi j )
n
i, j=1;

In is the identity n × n-matrix; diag(λ1, . . . , λn) is the diagonal matrix with diagonal elements λ1, . . . , λn ; δi j is
the Kronecker symbol, i.e. δi i = 1 and δi j = 0 for i 6= j (i, j = 1, . . .);

If X ∈ Rn×n , then X−1 and det(X) are, respectively, the matrix inverse to X and the determinant of X ;
diagX = diag(x11, . . . , xnn) is the diagonal matrix corresponding to X .

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its component is such.
We say that the matrix-function X ∈ Lloc(I,Rn×n) satisfies the Lappo-Danilevskiı̆ condition if for every τ ∈ I the

following condition holds

X (t)
∫ t

τ

X (τ ) dτ =
∫ t

τ

X (τ )dτ · X (t) for a. a. t ∈ I.

b
V
a
(X) is the sum total variation of the components xi j (i = 1, . . . , n; j = 1, . . . ,m) of the matrix-function

X : [a, b] → Rn×m ;
a
V
b
(X) = −

b
V
a
(X);

V
I
(X) = lima→α+,b→β−

b
V
a
(X), where α = inf I and β = sup I .

C(I ;Rm×n) is a space of continuous and bounded matrix-functions X : I → Rm×n with the norm

‖X‖c = sup{‖X (t)‖ : t ∈ I };

C(I ; D), where D ⊂ Rm×n , is the set of continuous and bounded matrix-functions X : I → D;
Cloc(I ; D) is the set of continuous matrix-functions X : I → D;
C̃(I ; D) is the set of absolutely continuous matrix-functions X : I → D;
C̃loc(I ; D) is the set of matrix-functions X : I → D which are absolutely continuous on the every closed interval

[a, b] from I .
L(I ; D), where D ⊂ Rm×n , is the set of matrix-functions X : I → D whose components are Lebesgue-integrable;
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Lloc(I ; D) is the set of matrix-functions X : I → D whose components are Lebesgue-integrable on the every
closed interval [a, b] from I .

We introduce the operators. If G ∈ L(I ;Rl×n), X ∈ L(I ;Rn×m), Y ∈ L(I ;Rn×n), and H ∈ C̃(I ;Rn×n) is
nonsingular, then

Bc(G, X)(t) =
∫ t

α

G(τ ) X (τ )dτ for t ∈ I,

Ic(H, Y )(t) =
∫ t

α

(H ′(τ )+ H(τ ) Y (τ )) H−1(τ )dτ for t ∈ I.

The vector-function x : I → Rn is said to be a solution of the system (1.1) if it belongs to C̃loc(I ;Rn) and satisfies
the equality x ′(t) = P0(t)x(t)+ q0(t) at almost all t ∈ I .

Under a solution of the Cauchy problem (1.1), (1.2) we understand a solution of system (1.1) satisfying condition
(1.2).

We will assume that Pk = (pkil)
n
i,l=1 and qk = (qkl)

n
l=1(k = 0, 1, . . .).

Along with systems (1.1) and (1.1k) we consider the corresponding homogeneous systems

dx

dt
= P0(t) x (1.10)

and

dx

dt
= Pk(t) x (1.1k0)

(k = 1, 2, . . .).

2. Formulation of the main results

Definition 2.1. We say that the sequence (Pk, qk; tk) (k = 1, 2, . . .) belongs to the set S(P0, q0; t0) if for every
c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . .) satisfying the condition

lim
k→+∞

ck = c0, (2.1)

condition (1.3) holds, where xk is the unique solution of problem (1.1k), (1.2k) for every natural k.

Theorem 2.1. Let P0 ∈ L(I,Rn×n), q0 ∈ L(I,Rn) and tk ∈ I (k = 0, 1, . . .) be such that

lim
k→+∞

tk = t0. (2.2)

Then

((Pk, qk; tk))
+∞

k=1 ∈ S(P0, q0; t0) (2.3)

if and only if there exists a sequence of matrix-functions Hk ∈ C̃(I ;Rn×n) (k = 0, 1, . . .) such that

inf
{
| det(H0(t))| : t ∈ I

}
> 0, (2.4)

and the conditions

lim
k→+∞

Hk(t) = H0(t), (2.5)

lim
k→+∞

{∥∥∥Ic(Hk, Pk)(τ )

∣∣∣t
tk
− Ic(H0, P0)(τ )

∣∣∣t
t0

∥∥∥ × (1+
∣∣∣ t
V
tk
(Ic(Hk, Pk))

∣∣∣)} = 0 (2.6)

and

lim
k→+∞

{∥∥∥Bc(Hk, qk)(τ )

∣∣∣t
tk
− Bc(H0, q0)(τ )

∣∣∣t
t0

∥∥∥ × (1+
∣∣∣ t
V
tk
(Ic(Hk, Pk))

∣∣∣)} = 0 (2.7)

hold uniformly on I .
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Theorem 2.2. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that conditions
(2.1) and (2.2) hold, and the conditions

lim
k→+∞

{∥∥∥∥ ∫ t

tk
Pk(τ )dτ −

∫ t

t0
P0(τ )dτ

∥∥∥∥(1+

∣∣∣∣ ∫ t

tk
‖Pk(τ )‖dτ

∣∣∣∣)} = 0 (2.8)

and

lim
k→+∞

{∥∥∥∥ ∫ t

tk
qk(τ )dτ −

∫ t

t0
q0(τ )dτ

∥∥∥∥(1+

∣∣∣∣ ∫ t

tk
‖Pk(τ )‖dτ

∣∣∣∣)} = 0 (2.9)

are fulfilled uniformly on I . Then condition (1.3) holds.

Theorem 2.3. Let x∗0 be a unique solution of the Cauchy problem

dx

dt
= P∗0 (t) x + q∗0 (t), (2.10)

x(t0) = c∗0, (2.11)

where P∗0 ∈ L(I,Rn×n), q∗0 ∈ L(I,Rn), c∗0 ∈ Rn , t0 ∈ I . Let, moreover, Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn), ck ∈ Rn

and tk ∈ I (k = 1, 2, . . .) be such that conditions (2.2),

inf{| det(Hk(t))| : t ∈ Itk } > 0 for every sufficiently large k, (2.12)

and

lim
k→+∞

c∗k = c∗0 (2.13)

hold, and conditions (2.6) and

lim
k→+∞

{∥∥∥∥∫ t

tk
q∗k (τ )dτ −

∫ t

t0
q∗0 (τ )dτ

∥∥∥∥(1+

∣∣∣∣ t
V
tk
(Ic(Hk, Pk))

∣∣∣∣)} = 0 (2.14)

are fulfilled uniformly on I , where Hk ∈ C̃(I ;Rn×n), hk ∈ C̃(I ;Rn) (k = 1, 2, . . .),

q∗k (t) = Hk(t) qk(t)+ h′k(t)− (H
′

k(t)+ Hk(t) Pk(t)) H−1
k (t) hk(t) for t ∈ I (k = 1, 2, . . .)

and

c∗k = Hk(tk) ck + hk(tk) (k = 1, 2, . . .).

Then

lim
k→+∞

(Hk(t) xk(t)+ hk(t)) = x∗0 (t) uniformly on I. (2.15)

Remark 2.1. In Theorem 2.3, the vector function x∗k (t) = Hk(t) xk(t)+ hk(t) is a solution of problem

dx

dt
= P∗k (t) x + q∗k (t), (2.10k)

x(tk) = c∗k (2.11k)

for every natural k.

Corollary 2.1. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that conditions
(2.2), (2.4) and

lim
k→+∞

(ck − ϕk(tk)) = c0 (2.16)
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hold, and conditions (2.5), (2.6) and

lim
k→+∞

{∥∥∥∥ ∫ t

tk
Hk(τ )

(
qk(τ )− ϕ

′

k(τ )+ Pk(τ ) ϕk(τ )
)
dτ −

∫ t

t0
H0(τ ) q0(τ )dτ

∥∥∥∥
×

(
1+

∣∣∣∣ t
V
tk
(Ic(Hk, Pk))

∣∣∣∣)} = 0

are fulfilled uniformly on I , where Hk ∈ C̃(I ;Rn×n) and ϕk ∈ C̃(I ;Rn) (k = 0, 1, . . .). Then

lim
k→+∞

(xk(t)− ϕk(t)) = x0(t) uniformly on I. (2.17)

Below, we give some sufficient conditions guaranteeing inclusion (2.3). To this connection we give a theorem
different from Theorem 2.1 concerning the necessary and sufficient condition for inclusion (2.3), as well, and
corresponding propositions.

Theorem 2.1′. Let P0 ∈ L(I,Rn×n), q0 ∈ L(I,Rn), t0 ∈ I , and tk ∈ I (k = 1, 2, . . .) be such that condition
(2.2) hold. Then inclusion (2.3) holds if and only if there exists a sequence of matrix-functions Hk ∈ C̃(I ;Rn×n)

(k = 0, 1, . . .) such that conditions (2.4) and

lim
k→+∞

sup
∫

I
‖H ′k(τ )+ Hk(τ ) Pk(τ )‖dτ < +∞ (2.18)

hold, and conditions (2.5),

lim
k→+∞

∫ t

tk
Hk(τ ) Pk(τ )dτ =

∫ t

t0
H0(τ ) P0(τ )dτ (2.19)

and

lim
k→+∞

∫ t

tk
Hk(τ ) qk(τ )dτ =

∫ t

t0
H0(τ ) q0(τ )dτ (2.20)

are fulfilled uniformly on I .

Remark 2.2. Due to (2.4), (2.5), there exists a positive number r such that

sup
{∣∣∣∣ t

V
tk
(Ic(Hk, Pk))

∣∣∣∣ : t ∈ I

}
≤ r

∫
I
‖H ′k(τ )+ Hk(τ ) Pk(τ )‖dτ (k = 0, 1, . . .).

In addition, in view of Lemma 3.2 (see below), by conditions (2.18) and (2.19) we get

lim
k→+∞

(Ic(Hk, Pk)(t)− Ic(Hk, Pk)(tk)) = Ic(H0, P0)(t)− Ic(H0, P0)(t0)

uniformly on I . Therefore, thanks to this, (2.18) and (2.20), conditions (2.6) and (2.7) are fulfilled uniformly on I

Theorem 2.2′. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that conditions
(2.1), (2.2) and

lim
k→+∞

sup
∫

I
‖Pk(τ )‖dτ < +∞ (2.21)

hold, and the conditions

lim
k→+∞

∫ t

tk
Pk(τ )dτ =

∫ t

t0
P0(τ )dτ (2.22)

and

lim
k→+∞

∫ t

tk
qk(τ )dτ =

∫ t

t0
q0(τ )dτ (2.23)

are fulfilled uniformly on I . Then condition (1.3) holds.
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Theorem 2.3′. Let x∗0 be a unique solution of the Cauchy problem (2.10), (2.11), where P∗0 ∈ L(I,Rn×n), q∗0 ∈
L(I,Rn), c∗0 ∈ Rn , t0 ∈ I . Let, moreover, Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn), ck ∈ Rn and tk ∈ I (k = 1, 2, . . .) be
such that conditions (2.2), (2.12), (2.18) and

lim
k→+∞

(Hk(tk) ck + hk(tk)) = c∗0 (2.24)

hold, and the conditions

lim
k→+∞

(Ic(Hk, Pk)(t)− Ic(Hk, Pk)(tk)) = Ic(H0, P∗0 )(t)− Ic(H0, P∗0 )(t0), (2.25)

and

lim
k→+∞

∫ t

tk
q∗k (τ )dτ =

∫ t

t0
q∗0 (τ )dτ (2.26)

are fulfilled uniformly on I , where Hk ∈ C̃(I ;Rn×n), hk ∈ C̃(I ;Rn)(k = 1, 2, . . .), and the vector-functions
q∗k (k = 1, 2, . . .) are defined as in Theorem 2.3. Then condition (1.3) holds.

Corollary 2.1′. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that conditions
(2.2), (2.4), (2.16) and (2.18) hold, and conditions (2.5), (2.19) and

lim
k→+∞

∫ t

tk
Hk(τ )

(
qk(τ )− ϕ

′

k(τ )+ Pk(τ ) ϕk(τ )
)
dτ =

∫ t

t0
H0(τ ) q0(τ )dτ

are fulfilled uniformly on I , where Hk ∈ C̃(I ;Rn×n) and ϕk ∈ C̃(I ;Rn)(k = 0, 1, . . .). Then condition (2.17) holds.

Corollary 2.2. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn) and tk ∈ I (k = 0, 1, . . .) be such that conditions (2.2),
(2.4) and (2.18) hold, and conditions (2.5), (2.22), (2.23),

lim
k→+∞

∫ t

tk
H ′k(τ )

(∫ τ

tk
Pk(s)ds

)
dτ =

∫ t

t0
P∗(τ )dτ (2.27)

and

lim
k→+∞

∫ t

tk
H ′k(τ )

(∫ τ

tk
qk(s)ds

)
dτ =

∫ t

t0
q∗(τ )dτ (2.28)

are fulfilled uniformly on I , where H0(t) = In , Hk ∈ C̃(I ;Rn×n)(k = 1, 2, . . .), P∗ ∈ L(I,Rn×n), q∗ ∈ L(I,Rn).
Then

((Pk, qk; tk))
+∞

k=1 ∈ S(P0 − P∗, q0 − q∗; t0).

Corollary 2.3. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn) and tk ∈ I (k = 0, 1, . . .) be such that condition (2.2) holds and
let there exist a natural number m and matrix-functions P0l ∈ L(I ;Rn×n)(l = 1, . . . ,m − 1) such that

lim
k→+∞

sup
∫

I
‖H ′k m−1(t)+ Hk m−1(t) Pk(t)‖dt < +∞, (2.29)

and the conditions

lim
k→+∞

Hk m−1(t) = In, (2.30)

lim
k→+∞

∫ t

tk
Hk m−1(τ ) Pk(τ )dτ =

∫ t

t0
P0(τ )dτ, (2.31)

lim
k→+∞

∫ t

tk
Hk m−1(τ ) qk(τ )dτ =

∫ t

t0
q0(τ )dτ (2.32)
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hold uniformly on I , where

Hk0(t) = In, Hk j+1(t) =

(
In −

∫ t

tk
(Pk j+1(τ )− P0l(τ ))dτ

)
Hk j (t),

Pk j+1(t) = H ′k j (t)+ Hk j (t) Pk(t), qk j+1(t) = Hk j (t) qk(t)

for t ∈ I ( j = 0, . . . ,m − 1; k = 0, 1, . . .).

Then inclusion (2.3) holds.

If m = 1, then Corollary 2.3 coincides to Theorem 2.2′.
If m = 2, then Corollary 2.3 has the following form.

Corollary 2.3′. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn), ck ∈ Rn and tk ∈ I (k = 0, 1, . . .) be such that condition
(2.2) holds and let there exist a matrix-function P01 ∈ L(I ;Rn×n) such that

lim
k→+∞

sup
∫

I

∥∥∥∥P01(t)−
∫ t

tk
(Pk(τ )− P01(τ ))dτ · Pk(t)

∥∥∥∥dt < +∞,

and the conditions

lim
k→+∞

∫ t

tk
Pk(τ )dτ =

∫ t

t0
P01(τ )dτ,

lim
k→+∞

∫ t

tk

(
(Pk(τ )− P01(τ ))

∫ τ

tk
Pk(s)ds

)
dτ =

∫ t

t0
(P0(τ )− P01(τ ))dτ

and

lim
k→+∞

{∫ t

tk
qk(τ )dτ +

∫ t

tk

(
(Pk(τ )− P01(τ ))

∫ τ

tk
qk(s)ds

)
dτ

}
=

∫ t

t0
q0(τ )dτ

are fulfilled uniformly on I . Then inclusion (2.3) holds.

Corollary 2.4. Let P0 ∈ L(I,Rn×n), q0 ∈ L(I,Rn), t0 ∈ I , and tk ∈ I (k = 1, 2, . . .) be such that condition
(2.2) holds. Then inclusion (2.3) holds if and only if there exists a sequence of matrix-functions Qk ∈ L(I ;Rn×n)(k =
0, 1, . . .) such that the condition

lim
k→+∞

sup
∫

I
‖Pk(τ )− Qk(τ )‖dτ < +∞ (2.33)

holds, and the conditions

lim
k→+∞

Z−1
k (t) = Z−1

0 (t), (2.34)

lim
k→+∞

∫ t

tk
Z−1

k (τ ) Pk(τ )dτ =
∫ t

t0
Z−1

0 (τ ) P0(τ )dτ (2.35)

and

lim
k→+∞

∫ t

tk
Z−1

k (τ ) qk(τ )dτ =
∫ t

t0
Z−1

0 (τ ) q0(τ )dτ (2.36)

are fulfilled uniformly on I , where Zk(Zk(tk) = In) is a fundamental matrices of the homogeneous problems

dx

dt
= Qk(t)x (2.37)

for every k ∈ {0, 1, . . .}.
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Corollary 2.5. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn) and tk ∈ I (k = 0, 1, . . .) be such that condition (2.2) holds
and let there exist a sequence of matrix-functions Qk ∈ L(I ;Rn×n) (k = 0, 1, . . .), satisfying the Lappo-Danilevskiı̆
condition, such that condition (2.33) holds, and the conditions

lim
k→+∞

∫ t

tk
Qk(τ )dτ =

∫ t

t0
Q0(τ )dτ,

lim
k→+∞

∫ t

tk
exp

(
−

∫ τ

tk
Qk(s)ds

)
Pk(τ )dτ =

∫ t

t0
exp

(
−

∫ τ

t0
Q0(s)ds

)
P0(τ )dτ (2.38)

and

lim
k→+∞

∫ t

tk
exp

(
−

∫ τ

tk
Qk(s)ds

)
qk(τ )dτ =

∫ t

t0
exp

(
−

∫ τ

t0
Q0(s)ds

)
q0(τ )dτ (2.39)

are fulfilled uniformly on I . Then inclusion (2.3) holds.

Corollary 2.6. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn) and tk ∈ I (k = 0, 1, . . .) be such that condition (2.2) holds, the
matrix functions Pk(k = 0, 1, . . .) satisfy the Lappo-Danilevskiı̆ condition, and the conditions

lim
k→+∞

∫ t

tk
Pk(τ )dτ =

∫ t

t0
P0(τ )dτ, (2.40)

and

lim
k→+∞

∫ t

tk
exp

(
−

∫ τ

tk
Pk(s)ds

)
qk(τ )dτ =

∫ t

t0
exp

(
−

∫ τ

t0
P0(s)ds

)
q0(τ )dτ (2.41)

are fulfilled uniformly on I . Then inclusion (2.3) holds.

Corollary 2.7. Let Pk ∈ L(I,Rn×n), qk ∈ L(I,Rn) and tk ∈ I (k = 0, 1, . . .) be such that conditions (2.2) and

lim
k→+∞

sup
n∑

i,l=1; i 6=l

∫
I
‖pkil(τ )‖dτ < +∞

hold, and the conditions

lim
k→+∞

∫ t

tk
pkii (τ )dτ =

∫ t

t0
p0i i (τ )dτ (i = 1, . . . , n)

lim
k→+∞

∫ t

tk
z−1

kii (τ )pkil(τ )dτ =
∫ t

t0
z−1

0i i (τ )p0il(τ )dτ (i 6= l; i, l = 1, . . . , n)

and

lim
k→+∞

∫ t

tk
z−1

kii (τ )qki (τ )dτ =
∫ t

t0
z−1

0i i (τ )q0i (τ )dτ (i = 1, . . . , n)

are fulfilled uniformly on I , where

zkii (t) = exp
(∫ t

tk
pkii (s)ds

)
for t ∈ I (i = 1, . . . , n; k = 1, 2, . . .).

Then inclusion (2.3) holds.

Remark 2.3. In Theorems 2.1′–2.3′ and Corollaries 2.1′, 2.2–2.7, we can assume H0(t) = In , without loss of
generality. It is evident that

Ic(H0, Y )(t)− Ic(H0, Y )(s) =
∫ t

s
Y (τ )dτ for Y ∈ L(I ;Rn×n) and s, t ∈ I,

in this case.
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Remark 2.4. In Theorem 2.2′, condition (2.21) is essential and it cannot be removed. In connection with this we give
the example from [4].

Example 2.1. Let I = [0, 2π ], n = 1, ck = c0 = 0, P0(t) = q0(t) = 0, Pk(t) = k cos2 k2t , qk(t) = −k sin k2t ,
t0 = tk = 0(k = 1, 2, . . .). Then

x0(t) ≡ 0, xk(t) ≡ −k
∫ t

0
exp

( sin k2t

k
−

sin k2τ

k

)
sin k2τdτ (k = 1, 2, . . .)

and

lim
k→+∞

xk(t) = x0(t)+
t

2
uniformly on [0, 2π ].

It is evident that, in the case, all conditions of Theorem 2.2′ are valid except of (2.21). On the other hand, the case
coordinates to Corollary 2.2 because its conditions hold and the function x∗0 (t) = t/2 is a solution of problem (2.10),
(2.11), where P∗0 (t) = 0, q∗0 (t) = t/2, and

Hk(t) = exp
(
−

sin k2t

k

)
(k = 1, 2, . . .).

Example 2.2. Let I = [0, 2π ], n = 2, t0 = tk = 0 (k = 1, 2, . . .),

c0 =

(
1
0

)
, ck =

(
1

1/k

)
(k = 1, 2, . . .);

P0(t) =

(
0 0
−1/2 0

)
, Pk(t) =

(
k cos k2t 0
−k sin k2t 0

)
(k = 1, 2, . . .);

q0(t) = qk(t) =

(
0
0

)
(k = 1, 2, . . .).

Then

x0(t) ≡

(
1
−t/2

)
, xk(t) ≡

(
x1k(t)
x2k(t)

)
(k = 1, 2, . . .),

where

x1k(t) ≡ exp
( sin k2t

k

)
, x2k(t) ≡

1
k
− k

∫ t

0
exp

( sin k2τ

k

)
sin k2τdτ (k = 1, 2, . . .).

It is not difficult to verify that condition (1.3) is fulfilled uniformly on I . Note that, in the case, condition (2.21) is
not hold. But, all conditions of Theorem 2.1′ hold if we assume Hk(t) = Yk(t)(k = 0, 1, . . .) therein, where Y0 and
Yk(k = 1, 2, . . .), Y0(0) = Yk(0) = I2, are is the fundamental matrix of the systems (1.10) and (1.1k0) (k = 1, 2, . . .),
respectively.

Remark 2.5. As compared with Theorem 2.1′ and Theorem 2.2′, it is not assumed, in Theorem 2.1′, that the equalities
(2.22) and (2.23) hold uniformly on I . Below we will give an example of a sequence of initial value problems for which
inclusion (2.3) holds but condition (2.22) is not fulfilled uniformly on I .

Example 2.3. Let I = [0, π], n = 2, t0 = tk = 0 (k = 1, 2, . . .),

c0 = ck =

(
0
0

)
(k = 1, 2, . . .);
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P0(t) =

(
0 0
0 0

)
, Pk(t) =

(
0 pk1(t)
0 pk2(t)

)
(k = 1, 2, . . .);

q0(t) = qk(t) =

(
0
0

)
(k = 1, 2, . . .);

pk1(t) =

{
(
√

k + 4√k) sin kt for t ∈ Ik ,
√

k sin kt for t ∈ [0, 2π ] \ Ik (k = 1, 2, . . .);

pk2(t) =

{
−α′k(t) (1− αk(t))

−1 for t ∈ Ik ,
0 for t ∈ [0, 2π ] \ Ik (k = 1, 2, . . .);

βk(t) =
∫ t

0
(1− αk(τ )) pk1(τ ) dτ (k = 1, 2, . . .);

αk(t) =

{
4π−1(

4√k + 1)−1 sin kt for t ∈ Ik ,
0 for t ∈ [0, 2π ] \ Ik (k = 1, 2, . . .);

where

Ik =

k−1⋃
m=0

]2mk−1π, (2m + 1)k−1π [ (k = 1, 2, . . .).

Let, moreover, Y0 and Yk(k = 1, 2, . . .), Y0(0) = Yk(0) = I2, be the fundamental matrix of the systems (1.10) and
(1.1k0) (k = 1, 2, . . .), respectively. It can easily be shown that

Y0(t) ≡ I2, Yk(t) ≡

(
1 βk(t)
0 1− αk(t)

)
(k = 1, 2, . . .)

and

lim
k→+∞

Yk(t) = Y0(t) uniformly on [0, 2π ],

since

lim
k→+∞

‖αk‖c = lim
k→+∞

‖βk‖c = 0.

Note that

lim
k→+∞

∫ 2π

0
pk1(t) dt = 2 lim

k→+∞

4√k = +∞

and

lim
k→+∞

sup
∫ 2π

0
|pk2(t)| dt = +∞.

Therefore, condition (2.22) is not fulfilled uniformly on I .
On the other hand, if we assume that H0(t) = In and Hk(t) = Y−1

k (t)(k = 1, 2, . . .), then all conditions of
Theorem 2.1′ hold.

3. Auxiliary propositions

We will use the following simple lemma.

Lemma 3.1. Let h ∈ C̃loc(I ;Rn), and H ∈ C̃loc(I ;Rn×n) be a nonsingular matrix-function. Then the mapping

x → y = H x + h

establishes a one-to-one corresponding between the solution between the solutions x and y of systems

dx

dt
= P(t) x + q(t)
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and
dy

dt
= P∗(t) y + q∗(t)

respectively, where the matrix- and vector-functions P∗ and q∗ are defined, respectively, by

P∗(t) ≡ (H
′(t)+ H(t)P(t)) H−1(t), q∗(t) = H(t) q(t)+ h′(t)− P∗(t) h(t).

Lemma 3.2. Let αk, βk ∈ L(I ;R) (k = 0, 1, . . .) be such that

lim
k→+∞

‖βk − β0‖s = 0, lim
k→+∞

sup
∫

I
|αk(t)|dt < +∞,

and the condition

lim
k→+∞

∫ t

a
αk(τ )dτ =

∫ t

a
α0(τ )dτ

hold uniformly on I , where a ∈ I is some fixed point. Then

lim
k→+∞

∫ t

a
βk(τ )αk(τ )dτ =

∫ t

a
β0(τ )α0(τ )dτ

uniformly on I , as well.

The proof of the lemma one can find in [3,6].

4. Proof of the main results

Proof of Theorem 2.2. Let zk(t) = xk(t)− x0(t) for t ∈ I (k = 1, 2, . . .}.
It is not difficult to check that

zk(t) = zk(tk)+
∫ t

tk
P0(s) zk(s)ds +

∫ t

tk
P̄k(s) xk(s)ds +

∫ t

tk
q̄k(s)ds for t ∈ I (k = 1, 2, . . .),

where

P̄k(t) = Pk(t)− P0(t), q̄k(t) = qk(t)− q0(t) (k = 1, 2, . . .).

Using the integration-by-parts formula we conclude∫ t

tk
P̄k(s) xk(s)ds =

∫ t

tk
P̄k(s)ds · xk(t)−

∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
x ′k(s)ds

=

∫ t

tk
P̄k(s)ds · xk(t)−

∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
(Pk(s) xk(s)+ qk(s))ds for t ∈ I (k = 1, 2, . . .).

Therefore,

zk(t) = zk(tk)+ Jk(t)+Qk(t)+
∫ t

tk
P0(s) zk(s)ds for t ∈ I (k = 1, 2, . . .) (4.1)

where

Jk(t) =
∫ t

tk
P̄k(s)ds · xk(t)−

∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
Pk(s) xk(s)ds (k = 1, 2, . . .),

and

Qk(t) =
∫ t

τ

q̄k(s)ds −
∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
qk(s)ds (k = 1, 2, . . .).

Due to (4.1) we get

‖zk(t)‖ ≤ ‖zk(tk)‖ + ‖Jk(t)‖ + ‖Qk(t)‖ +

∣∣∣∣ ∫ t

tk
‖P0(s)‖ ‖zk(s)‖ds

∣∣∣∣ for t ∈ I (k = 1, 2, . . .). (4.2)
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Let

αk = sup
t∈I

∥∥∥∥ ∫ t

tk
P̄k(s)ds

∥∥∥∥, βk = sup
t∈I

∥∥∥∥ ∫ t

tk
q̄k(s)ds

∥∥∥∥
and

γk = sup
t∈I

∣∣∣∣ ∫ t

tk
‖Pk(s)‖ds

∣∣∣∣ (k = 1, 2, . . .).

Then by (2.8) and (2.9) we have

lim
k→+∞

αk(1+ γk) = lim
k→+∞

βk(1+ γk) = 0. (4.3)

It is evident that

‖Jk(t)‖ ≤ εk‖xk‖c for t ∈ I (k = 1, 2, . . .) (4.4)

where εk = αk(1+ γk)(k = 1, 2, . . .).
Further, we have∥∥∥∥ ∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
q0(s)ds

∥∥∥∥ ≤ r0αk for t ∈ I (k = 1, 2, . . .)

and, in addition, using the integration-by-parts formulae we get∥∥∥∥ ∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
q̄k(s)ds

∥∥∥∥ ≤ αkβk + βk(γk + r1) for t ∈ I (k = 1, 2, . . .),

where

r0 =

∫
I
‖q0(t)‖dt, r1 =

∫
I
‖P0(t)‖dt.

Due to the last two estimates, thanks to the inequalities∥∥∥∥ ∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
qk(s)ds

∥∥∥∥ ≤ ∥∥∥∥ ∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
q̄k(s)ds

∥∥∥∥
+

∥∥∥∥ ∫ t

tk

(∫ s

tk
P̄k(τ )dτ

)
q0(s)ds

∥∥∥∥ for t ∈ I (k = 1, 2, . . .),

we conclude

‖Qk(t)‖ ≤ δk for t ∈ I (k = 1, 2, . . .), (4.5)

where δk = αk(βk + r0)+ βk(γk + r1).
From (4.2), by (4.4) and (4.5) we find

‖zk(t)‖ ≤ ‖zk(tk)‖ + εk‖xk‖c + δk +

∣∣∣∣ ∫ t

tk
‖P0(s)‖ ‖zk(s)‖ds

∣∣∣∣ for t ∈ I (k = 1, 2, . . .).

Hence, according to the Gronwall inequality (see [4])

‖zk‖c ≤ (‖zk(tk)‖ + εk‖xk‖c + δk
)

exp(r1) (k = 1, 2, . . .). (4.6)

In virtue of (4.3) we have

lim
k→+∞

εk = 0. (4.7)

Therefore, there exists a natural k0 such that

εk <
1
2

exp(−r1) for k > k0.
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From this and (4.6) it follows

‖xk‖c ≤ ‖x0‖c + ‖zk‖c ≤ ‖x0‖c +
(
‖zk(tk)‖ + εk‖xk‖c + δk

)
exp(r1) (k > k1).

So, the sequence ‖xk‖c(k = 1, 2, . . .) is bounded. In addition, in view of conditions (2.8) and (2.9) we have

lim
k→+∞

δk = 0, (4.8)

and using (2.1) we conclude

lim
k→+∞

zk(tk) = lim
k→+∞

(xk(tk)− x0(tk)) = lim
k→+∞

ck − x0(t0) = 0.

Therefore, by this, (4.7) and (4.8), it follows from (4.6)

lim
k→+∞

‖zk‖c = 0,

since the sequence ‖xk‖c(k = 1, 2, . . .) is bounded. �

Proof of Theorem 2.3. According to Theorem 2.2 the mapping x → Hk x+hk establishes a one-to-one corresponding
between the solution xk of problem (1.1k), (1.2k) and the solution x∗k of the Cauchy problem (2.10k), (2.11k) and, in
addition, x∗k (t) ≡ Hk(t) xk(t)+ hk(t) for every natural k.

Conditions (2.12)–(2.14) guarantee the fulfillment of the conditions of Theorem 2.2 for the Cauchy problem (2.10),
(2.11) and sequence of the Cauchy problems (2.10k), (2.11k) (k = 1, 2, . . .). Therefore, according to Theorem 2.2

lim
k→+∞

x∗k (t) = x∗0 (t) uniformly on I.

So, condition (2.15) holds. �

Proof of Corollary 2.1. Verifying the conditions of Theorem 2.3. From (2.4) and (2.5) it follows that condition (2.12)
holds, and the condition

lim
k→+∞

H−1
k (t) = H−1

0 (t) uniformly on I. (4.9)

Put

hk(t) = −Hk(t) ϕk(t) for t ∈ I (k = 1, 2, . . .).

Due to (2.2) and (2.5) we get

lim
k→+∞

Hk(tk) = H0(t0).

By this and (2.16) condition (2.13) is fulfilled for c∗0 = H0(t0) c0.
Let q∗k (k = 1, 2, . . .) are the vector-functions given in Theorem 2.3. It is not difficult to verify that

q∗k (t) ≡ qk(t)− ϕ
′

k(t)+ Pk(t) ϕk(t) (k = 1, 2, . . .)

in the case. Further, by (2.6) and (2.1) condition (2.14) holds uniformly on I for the functions q∗k (k = 1, 2, . . .) given
above, q∗0 (t) = H0(t) q0(t) and c∗k = Hk(tk) (ck − ϕk(t))(k = 1, 2, . . .). In view of Lemma 3.1, the vector-function
x∗0 (t) = H0(t) x0(t) is the unique solution of problem (2.10), (2.11). By Theorem 2.3 we have

lim
k→+∞

(Hk(t) xk(t)− Hk(t) ϕk(t)) = x∗0 (t) uniformly on I.

Therefore, by (2.5) and (4.9), condition (2.17) holds. �

Proof of Theorem 2.1. Sufficiency follows from Corollary 2.1 if we assume ϕk(t) = on(k = 1, 2, . . .) therein.
Let us show necessity. Let ck ∈ Rn(k = 0, 1, . . .) be an arbitrary sequence of constant vectors satisfying (2.1) and

let e j = (δi j )
n
i=1δi i = 1 and δi j = 0 if i 6= j (i, j = 1, . . . , n).

Let xk be a unique solution of problem (1.1k), (1.2k) for every natural k.
For any k ∈ {0, 1, . . .} and j ∈ {1, . . . , n} let us denote

yk j (t) = xk(t)− xk j (t),
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where xk j is a unique solution of the system (1.1k) under the Cauchy condition

x(tk) = ck − e j .

Moreover, let Yk(t) be matrix-function whose columns are yk1(t), . . . , ykn(t).
It can be easily shown that Y0 and Yk(k = 1, 2, . . .) satisfy, respectively, of homogeneous systems (1.10) and

(1.1k0) (k = 1, 2, . . .) and

yk j (tk) = e j (k = 0, 1, . . .) (4.10)

for every j ∈ {1, . . . , n}. If for some natural k and α j ∈ R( j = 1, . . . , n)

n∑
j=1

α j yk j (t) ≡ on,

then using (4.10) we have

n∑
j=1

α j e j = on

and, therefore,

α1 = · · · = αn = 0,

i.e., Y0 and Yk(k = 1, 2, . . .) are the fundamental matrices, respectively, of homogeneous systems (1.10) and (1.1k0)

(k = 1, 2, . . .).
Thanks to Corollary 2.1 we have

lim
k→+∞

Yk(t) = Y0(t) uniformly on I

and, consequently,

lim
k→+∞

Y−1
k (t) = Y−1

0 (t) uniformly on I, (4.11)

as well.
We may assume without loss of generality that

Yk(tk) = In (k = 0, 1, . . .).

We put

Hk(t) = Y−1
k (t) for t ∈ I (k = 0, 1, . . .)

and verify conditions (2.4)–(2.7) of the theorem.
Condition (2.4) is evident, and condition (2.5) coincides to (4.11).
Using the equality

(Y−1
k (t))′ = −Y−1

k (t) Pk(t) for t ∈ I (k = 0, 1, . . .), (4.12)

we show

Ic(Hk, Ak)(t)− Ic(Hk, Ak)(tk) =
∫ t

tk

(
(Y−1

k (t))′ + Y−1
k (t) Pk(t)

)
dτ = On×n for t ∈ I (k = 0, 1, . . .).

Thus condition (2.6) is evident.
On the other hand, using integration-by-parts formulae we find

Bc(Hk, qk)(t)− Bc(Hk, qk)(tk) =
∫ t

tk
Y−1

k (τ )qk(τ )dτ =
∫ t

tk
Y−1

k (τ )
(
x ′k(τ )− Pk(τ ) xk(τ )

)
dτ

= Y−1
k (t) xk(t)− Y−1

k (tk) xk(tk) = Y−1
k (t) xk(t)− ck for t ∈ I (k = 0, 1, . . .).
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Hence,∫ t

tk
Y−1

k (τ ) qk(τ )dτ −
∫ t

t0
Y−1

k (τ ) q0(τ )dτ = (Y
−1
k (t) xk(t)− Y−1

0 (t) x0(t))

− (ck − c0) for t ∈ I (k = 1, 2, . . .). (4.13)

By this, (2.1), (4.11) and (4.13), if we take account that due to necessity of theorem condition (1.3) holds uniformly
on I , we conclude that condition (2.7) holds uniformly on I , as well. �

Proof of Theorem 2.2′. It is evident that doe to conditions (2.21), (2.22) and (2.23) conditions (2.8) and (2.9) are
valid. So, the theorem follows from Theorem 2.2. �

Proof of Theorem 2.3′. In the case, condition (2.24) is equivalent to condition (2.13). Moreover, due to conditions
(2.18), (2.25) and (2.26) conditions (2.6) and (2.14) are fulfilled uniformly on I . So, the theorem follows from
Theorem 2.3. �

Proof of Corollary 2.1′. From (2.4) and (2.5) it follows that conditions (2.12) and (4.9) are valid. By (4.9) there exists
a positive number is r such that

‖H−1
k (t)‖ ≤ r for t ∈ I (k = 0, 1, . . .).

Therefore, due to Remark 2.2 and (2.18) we get

sup
{∣∣∣∣ t

V
tk
(Ic(Hk, Pk))

∣∣∣∣ : t ∈ I

}
≤ rr0 < +∞ (k = 0, 1, . . .),

where r0 is the right hand of inequality (2.18). So, thanks to this, the uniform fulfillment on I of conditions (2.19) and
(2.20), guarantees, respectively, the same property for conditions (2.6) and (2.7). Hence, the corollary follows from
Corollary 2.1. �

Proof of Theorem 2.1′. Sufficiency follows from Corollary 2.1′ if we assume ϕk(t) = on (k = 1, 2, . . .) therein. The
proof of the necessity is the same as in the proof of Theorem 2.1. We only note that by condition (2.5) and equality
(4.12) condition (2.18) is valid, and condition (2.19) is fulfilled uniformly on I . Moreover, according to Remark 2.2,
it is evident that the sufficiency immediately follows from Theorem 2.1. �

Proof of Corollary 2.2. In virtue of the integration-by-parts formula, conditions (2.5), (2.22), (2.23), (2.27) and (2.28)
yield that the conditions

lim
k→+∞

∫ t

tk
Hk(τ ) Pk(τ )dτ =

∫ t

t0
(P0(τ )− P∗(τ ))dτ

and

lim
k→+∞

∫ t

tk
Hk(τ ) qk(τ )dτ =

∫ t

t0
(q0(τ )− q∗(τ ))dτ

are fulfilled uniformly on I . Corollary 2.2 follows from Theorem 2.1′. �

Proof of Corollary 2.3. Let

Ckl(t) = In −

∫ t

tk
(Pkl(τ )− P0l(τ ))dτ (l = 1, . . . ,m; k = 1, 2, . . .).

Thanks to (2.30), without loss of generality we can assume that the matrix-functions Hkl and Ckl(l = 1, . . . ,m) are
nonsingular for every natural k.

Based on the definitions of the operators Bc ad Ic, it is not difficult to verify the equality

Bc(Ck j , Hk j−1 Pk)(τ )
∣∣t
tk
≡ Bc(Hk j , Pk)(τ )

∣∣t
tk
,

Bc(Ck j , Hk j−1 fk)(τ )
∣∣t
tk
≡ Bc(Hk j , fk)(τ )

∣∣t
tk
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and

Ic(Ck j , (H
′

k j−1 + Hk j−1 Pk)H
−1
k j−1)(τ )

∣∣t
tk
≡ Ic(Hk j , Pk)(τ )

∣∣t
tk

( j = 1, . . . ,m; k = 1, 2, . . .).

In addition, by conditions (2.29)–(2.32) conditions (2.4) and (2.18) hold, and conditions (2.5) and (2.19) and (2.20)
are fulfilled uniformly on I , where H0(t) = In and Hk(t) = Hkm−1(t)(k = 1, 2, . . .). So, the corollary follows from
Theorem 2.1′. �

Proof of Corollary 2.4. Let us show the sufficiency. Let Hk(t) = Z−1
k (t)(k = 0, 1, . . .) in Theorem 2.1′. Thanks to

(2.34), there exists a positive number r such that

‖Z−1
k (t)‖ ≤ r for t ∈ I (k = 0, 1, . . .).

Using this estimate and the equality

(Z−1
k (t))′ = −Z−1

k (t) Qk(t) for t ∈ I (k = 0, 1, . . .),

by the integration-by-parts formulae we have∥∥∥∥Z−1
k (t)− Z−1

k (s)+
∫ t

s
Z−1

k (τ )Pk(τ )dτ

∥∥∥∥ = ∥∥∥∥ ∫ t

s
Z−1

k (τ )(Pk(τ )− Qk(τ ))dτ

∥∥∥∥
≤ r

∫ t

s
‖Pk(τ )− Qk(τ )‖dτ for s < t (k = 0, 1, . . .).

Therefore,∫
I
‖H ′k(τ )+ Hk(τ )Pk(τ )‖dτ ≤ r

∫
I
‖Pk(τ )− Qk(τ )‖dτ (k = 0, 1, . . .)

and due to (2.33) estimate (2.18) holds. Moreover, conditions (2.19) and (2.20) coincide to conditions (2.35) and
(2.36), respectively. So, the sufficiently follows from Theorem 2.1′.

Let us show the necessity. Let Qk(t) = Pk(t)(k = 0, 1, . . .). Then Zk(t) ≡ Yk(t)(k = 0, 1, . . .), where Y0 and Yk
(k = 1, 2, . . .) are fundamental matrices, respectively, of the homogeneous systems (1.10) and (1.1k0). Analogously,
as in the proof of Theorem 2.1, conditions (2.34) and equality (4.13) are valid. In addition, condition (2.35) coincides
to condition (2.19), and condition (2.36) follows from equality (4.13). �

Proof of Corollary 2.5. The corollary immediately follows from Corollary 2.4 if we note the fundamental matrix of
Zk(t)(Zk(tk) = In) of system (2.37), in the case, has the form

Zk(t) ≡ exp
(∫ t

tk
Qk(τ )dτ

)
(k = 0, 1, . . .). �

Proof of Corollary 2.6. The corollary follows from Corollary 2.5 if we assume that therein Qk(t) = Pk(t) (k =
0, 1, . . .) and, in addition, we note that condition (2.38) is equivalent to condition (2.40), and condition (2.39) coincides
to (2.41). �

Proof of Corollary 2.7. The corollary follows from Corollary 2.4 if we assume therein that Qk(t) = diag(Pk(t))(k =
0, 1, . . .). �
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Abstract

In this paper we introduced and studied the maximal function (G-maximal function) and the Riesz potential (G-Riesz potential)
generated by Gegenbauer differential operator

Gλ =

(
x2
− 1

) 1
2−λ d

dx

(
x2
− 1

)λ+ 1
2 d

dx
.

The L p,λ boundedness of the G-maximal operator is obtained. Hardy–Littlewood–Sobolev theorem of G-Riesz potential on L p,λ
spaces is established.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: G-Riesz potential; G-maximal function; G-BMO space

0. Introduction

The Hardy–Littlewood maximal function is an important tool of harmonic analysis. It was first introduced by
Hardy and Littlewood in 1930 (see [1]) for 2π -periodical functions, and later it was extended to the Euclidean
spaces, some weighted measure spaces (see [2–4]), symmetric spaces (see [5,6]), various Lie groups [7], for the
Jacobi-type hypergroups [8,9], for Chebli–Trimeche hypergroups [10], for the one-dimensional Bessel–Kingman
hypergroups [11–13], for the n-dimensional Bessel–Kingman hypergroups (n ≥ 1) [14–18], and for Laguerre
hypergroup [19–22]. The structure of the paper is as follows. In Section 1 we present some definitions, notation and
auxiliary results. In Section 2 the L p,λ boundedness of the G-maximal operator is proved. In Section 3 we introduce
definition of G-Riesz potential. In Section 4 it is proved for the Sobolev type theorem.
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1. Definitions, notation and auxiliary results

Let H(x, r) = (x − r, x + r) ∩ [0,∞), r ∈ (0,∞), x ∈ [0,∞). For all measurable sets E ⊂ [0,∞),
µE ≡ |E |λ =

∫
E sh2λ tdt . For 1 ≤ p ≤ ∞ let L p([0,∞),G) ≡ L p,λ[0,∞) be the space of functions measurable

on [0,∞) with the finite norm

‖ f ‖L p,λ =

(∫
∞

0
| f (ch t)|psh2λ tdt

) 1
p

, 1 ≤ p <∞,

‖ f ‖∞,λ = ess sup
t∈[0,∞)

| f (ch t)|, p = ∞.

Analogy by [9] we define Gegenbauer maximal functions as follows:

MG f (ch x) = sup
r>0

1
|H(0, r)|λ

∫ r

0
Aλch t | f (ch x)| dµλ (t) ,

Mµ f (ch x) = sup
r>0

1
|H (x, r)|λ

∫
H(x,r)

| f (ch t)| dµλ (t) , dµλ(t) = sh2λ tdt,

|H(0, r)|λ =
∫ r

0
sh2λ tdt, |H(x, r)|λ =

∫
H(x,r)

sh2λ tdt, 0 < λ <
1
2
,

where

H(x, r) =

{
(0, x + r), x < r,
(x − r, x + r), x > r.

Here (see [22])

Aλch t f (ch x) =
Γ (λ+ 1

2 )

Γ ( 1
2 )Γ (λ)

∫ π

0
f (ch xch t − sh xsh t cos ϕ)(sin ϕ)2λ−1dϕ

denote the generalized shift operator, associated with the Gegenbauer differential operator

G =
(

x2
− 1

)1/2−λ d

dx

(
x2
− 1

)λ+1/2 d

dx
, x ∈ (1, ∞).

Further we will need some auxiliary assertions.

Lemma 1.1. For 0 < λ < 1/2 the following correlations are true:

|H(0, r)|λ ∼


(

sh
r

2

)2λ+1
, 0 < r < 2,(

ch
r

2

)4λ
, 2 ≤ r <∞,

where c denotes a positive constant.

Here f ∼ g denotes that c1,λg ≤ f ≤ c2,λg for some positive constants c1,λ and c2,λ depending on λ.

Proof. Let first 0 < r < 2, then

|H(0, r)|λ =
∫ r

0
sh2λ tdt =

∫ r

0
(sh t)2λ−1d(ch t) =

∫ r

0
(ch2 t − 1)λ−

1
2 d(ch t)

=

∫ ch r

1
(t − 1)λ−

1
2 (t + 1)λ−

1
2 dt ≥ (ch r + 1)λ−

1
2

∫ ch r

1
(t − 1)λ−

1
2 dt

≥ (ch1+ 1)λ−
1
2
(t − 1)λ+

1
2

λ+ 1
2

∣∣∣ch r
1 =

2(ch r − 1)λ+
1
2

(2λ+ 1)(1+ ch1)
1
2−λ

=
2λ+

3
2

(2λ+ 1)(1+ ch1)
1
2−λ

(
sh

r

2

)2λ+1
. (1.1)
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On the other hand,

|H(0, r)|λ =
∫ r

0
sh2λ tdt =

∫ ch r

1
(t − 1)λ−

1
2 (t + 1)λ−

1
2 dt ≤ 2λ−

1
2

∫ ch r

1
(t − 1)λ−

1
2 dt

=
2λ+

1
2

2λ+ 1
(t − 1)λ+

1
2

∣∣∣ch r
1 =

2λ+
1
2

2λ+ 1
(ch r − 1)λ+

1
2 =

22λ+1

2λ+ 1

(
sh

r

2

)2λ+1
.

Let now 2 ≤ r <∞. Then

|H(0, r)|λ =
∫ r

0
sh2λ tdt =

∫ r

0
(sh t)2λ−1d(ch t) =

∫ r

0
(ch2 t − 1)λ−

1
2 d(ch t)

=

∫ ch r

1

(t − 1)λ−
1
2

(t + 1)
1
2−λ

dt ≥ (ch r + 1)λ−
1
2

∫ ch r

1
(t − 1)λ−

1
2 dt

= (ch r + 1)λ−
1
2
(t − 1)λ+

1
2

λ+ 1
2

∣∣∣∣∣
ch r

1

=
2

2λ+ 1
(ch r − 1)λ+

1
2

(ch r + 1)
1
2−λ

=
2

2λ+ 1

(
2sh2 r

2

)λ+ 1
2(

2ch2 r
2

) 1
2−λ
=

22λ+1

(2λ+ 1)22λ+1

(
2sh r

2

)2λ+1(
ch r

2

)1−2λ

≥
22λ+1

(2λ+ 1)22λ+1

(
ch

r

2

)4λ
⇔

(
2sh

r

2

)2λ+1

≥

(
ch

r

2

)2λ+1
⇔ 2sh

r

2
≥ ch

r

2
⇔ 2

er/2
− e−r/2

2

≥
er/2
+ e−r/2

2
⇔ 2(er

− 1) ≥ er
+ 1⇔ 2er

≥ 3,

that takes place for r ≥ 2.
Thus,

|H(0, r)|λ ≥
22λ+1

(2λ+ 1)22λ+1

(
ch

r

2

)4λ
.

Let us obtain an upper bound for |H(0, r)|λ .

|H(0, r)|λ =
∫ r

0
sh2λ tdt =

∫ r

0

(
2sh

t

2
ch

t

2

)2λ

dt

= 22λ+1
∫ r

0

(
sh

t

2

)2λ (
ch

t

2

)2λ−1

d

(
sh

t

2

)
≤ 22λ+1

∫ r

0

(
sh

t

2

)4λ−1

d

(
sh

t

2

)

=
22λ+1

4λ

(
sh

t

2

)4λ
∣∣∣∣∣
r

0

=
4λ

2λ

(
sh

r

2

)4λ
≤

4λ

2λ

(
ch

r

2

)4λ
. (1.2)

Combining (1.1)–(1.2), we obtain assertion of Lemma 1.1. �

Lemma 1.2. Let 0 < λ < 1/2 and x ∈ [0,∞), r ∈ (0,∞). Then the following estimates are reasonable for
0 < r < 2

|H(x, r)|λ ≤ cλ


(

sh
r

2

)2λ+1
, 0 ≤ x < r,

sh
r

2
ch2λ x, r ≤ x <∞.

(a)

For 2 ≤ r <∞.

|H(x, r)|λ ≤ cλ

{
ch2λ r, 0 ≤ x < r,

ch2λ xch2λ r, r ≤ x <∞.
(b)
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Here and further cλ, cα,λ, cα,λ,p will denote some constants, depending only on subscribed indexes and generally
speaking different in different formulas.

Proof. First we consider the case 0 < r < 1 and x ∈ [0,∞) .
Let 0 ≤ t ≤ 2, Then we have

t ≤ sh t ≤ e · t. (1.3)

We prove left-hand part of this estimate. We consider the function f (t) = sh t − t . Since, f ′ (t) = ch t − 1 ≥ 0,
then f (t) increases on [0,∞), and that takes the smallest value for t = 0, f (0) = 0, consequently f (t) ≥ 0 is
equivalent to sh t ≥ t .

We prove right-hand part of estimate (1.3).

et
− e−t

2
≤ e · t ⇔ e2t

− 1 ≤ 2 · e1+t
· t ⇔ e2t

≤ 2 · e1+t
· t + 1.

We consider the function f (t) = 2 · e1+t
· t + 1− e2t .

f ′ (t) = 2 · e1+t
+ 2 · e1+t

· t − 2e2t
= 2et (e + t · e − et)

≥ e (t + 1)− et
≥ 0 as, t ≤ 2.

Thus, the estimate (1.3) is proved.
Hence it follows that for 0 ≤ x < r < 2

|H(x, r)|λ =
∫ x+r

0
sh2λ tdt ≤ e2λ

∫ 2r

0
t2λdt =

(2e)2λ

2λ+ 1
· r2λ+1

≤ cλ
(

sh
r

2

)2λ+1
. (1.4)

For r ≤ x < 2

|H(x, r)|λ =
∫ x+r

x−r
sh2λ tdt ≤ e2λ

∫ x+r

x−r
t2λdt ≤ 2e2λ

· r · (x + r)2λ ≤ 2e2λ
· r · (2x)2λ ≤ cλ sh

r

2
ch2λ x .

Let now 0 < r < 2 ≤ x <∞, then we have

|H(x, r)|λ =
∫ x+r

x−r
sh2λ tdt ≤ 2r · sh2λ(x + r) = 2r(sh xch r + ch xsh r)2λ

≤ 2r(sh xch 1+ ch xsh 1)2λ ≤ 2r(2ch xch 1)2λ ≤ cλ sh
r

2
ch2λ x . (1.5)

Now we consider the case, 2 ≤ r <∞, x ∈ [0,∞) .
Let 0 ≤ x < 2 ≤ r . As in the proof of the estimate (1.2), we obtain

|H(x, r)|λ =
∫ x+r

0
sh2λ tdt =

4λ

2λ
sh4λ t

2

∣∣x+r
0 =

4λ

2λ
sh4λ x + r

2

=
4λ

2λ

(
sh

x

2
ch

r

2
+ ch

x

2
sh

r

2

)4λ
≤ cλ

(
sh

1
2

ch
r

2
+ ch

1
2

sh
r

2

)4λ

≤ cλch4λ r

2
. (1.6)

Let now 2 ≤ r ≤ x <∞, then

|H(x, r)|λ =
∫ x+r

x−r
sh2λ tdt ≤

4λ

2λ
sh4λ t

2

∣∣∣∣x+r

x−r
=

4λ

2λ

(
sh4λ x + r

2
− sh4λ x − r

2

)
≤

4λ

2λ
sh4λ x + r

2
≤ cλch4λ x

2
ch4λ r

2
≤ cλch2λ xch2λ r. (1.7)

From (1.6) and (1.7) it follows that at 2 ≤ r <∞ and 0 ≤ x <∞

|H(x, r)|λ ≤ cλch2λ r, 0 ≤ x < r, (1.8)

|H(x, r)|λ ≤ ch2λ xch2λ r, r ≤ x <∞. (1.9)

Assertion of Lemma 1.2 follows from (1.4)–(1.5), (1.8) and (1.9). �
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2. L p,λ-boundedness of the G-maximal operator

Theorem 2.1. For 0 ≤ x <∞ and 0 < r <∞ the following inequality is valid

MG f (ch x) ≤ cλMµ f (ch x),

where cλ is a positive constant.

Proof. Consider the integral

I (x, r) =
∫ r

0
Aλch t | f (ch x)| sh2λ tdt

=
Γ (λ+ 1

2 )

Γ ( 1
2 )Γ (λ)

∫ r

0

{∫ π

0
| f (ch x · ch t − sh x · sh t cos ϕ)| (sin ϕ)2λ−1dϕ

}
sh2λ tdt.

Making the substitution
z = ch x · ch t − sh x · sh t cos ϕ, we get that

cos ϕ =
ch x · ch t − z

sh x · sh t
, ϕ =

mboxarccos
ch x · ch t − z

sh x · sh t
,

dϕ =
dz√

1− ( ch x ·ch t−z
sh x ·sh t )

2sh x · sh t

= (sh2 x · sh2 t − ch2 x · ch2 t + 2 · z · ch x · ch t − z2)−
1
2 dz.

Since,

sh2 x · sh2 t − ch2 x · ch2 t = (ch2 x − 1)sh2 t − ch2 x · ch2 t = ch2 x · sh2 t − sh2 t − ch2 x · ch2 t

= −sh2 t + ch2 x(sh2 t − ch2 t) = −sh2 t − ch2 x,

that

dϕ = (2z · ch x · ch t − sh2 t − ch2 x − z2)−
1
2 dz

and

(sin ϕ)2λ−1
= (2z · ch x · ch t − sh2 t − ch2 x − z2)λ−

1
2 (sh x · sh t)1−2λ.

Then I (x, r) makes a list of form

I (x, r) =
Γ (λ+ 1

2 )

Γ ( 1
2 )Γ (λ)

×

∫ r

0

{∫ ch (x+t)

ch (x−t)
| f (z)| (2z · ch x · ch t − sh2 t − ch2 x − z2)λ−1(sh x)1−2λdz

}
sh tdt. (2.1)

Transform expansion

2z · ch x · ch t − sh2 t − ch2 x − z2

= 2z · ch x · ch t − sh2 t (ch2 x − sh2 x)− ch2 x − z2

= 2z · ch x · ch t − sh2 t · ch2 t + sh2 t · sh2 x − ch2 x − z2

= 2z · ch x · ch t + sh2 t · sh2 x − (ch2 t − 1)ch2 x − ch2 x − z2

= 2z · ch x · ch t + sh2 x · (ch2 t − 1)− ch2 t · ch2 x − z2(ch2 x − sh2 x)

= 2z · ch x · ch t + sh2 x · ch2 t − sh2 x − ch2 t · ch2 x − z2
· ch2 x − z2

· sh2 x
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= 2z · ch x · ch t − sh2 x − ch2 t − z2ch2 x − z2sh2 x = (z2
− 1)sh2 x − (ch t − z · ch x)2

=

(
z2
− 1

)
sh2 x

[
1−

(
ch t − z · ch x
√

z2 − 1 · sh x

)2
]
. (2.2)

Taking into account (2.1) and (2.2) we get

I (x, r) =
Γ (λ+ 1

2 )

Γ ( 1
2 )Γ (λ)

∫ r

0


∫ ch (x+t)

ch (x−t)
| f (z)| (z2

− 1)λ−1

[
1−

(
ch t − z · ch x
√

z2 − 1 · sh x

)2
]λ−1

dz

 sh t

sh x
dt. (2.3)

Note that

sh t

sh x
= (z2

− 1)
1
2
∂

∂t

(
ch t − z · ch x
√

z2 − 1 · sh x

)
,

rewrite (2.3) of form

I (x, r) =
Γ (λ+ 1

2 )

Γ ( 1
2 )Γ (λ)

∫ r

0

{∫ ch (x+t)

ch (x−t)
| f (z)| (z2

− 1)λ−
1
2

×

[
1−

(
ch t − z · ch x
√

z2 − 1 · sh x

)2
]λ−1

∂

∂t

(
ch t − z · ch x
√

z2 − 1 · sh x

) dzdt. (2.4)

Since ch (x − t) ≤ z ≤ ch (x + t), then we obtain{
ch (x − r) ≤ z ≤ ch x
x − arcchz ≤ t ≤ r

and
{

ch x ≤ z ≤ ch (x + r)
arcchz − x ≤ t ≤ r.

That is why changing the order of integration in (2.4), we get

I (x, r) =
Γ (λ+ 1

2 )

Γ (λ)Γ ( 1
2 )

(∫ ch x

ch (x−r)
dz
∫ r

x−arcchz
dt +

∫ ch (x+r)

ch x
dz
∫ r

arcchz−x
dt

)
. (2.5)

Consider the integral

A(x, z, r) ≡ A(x, r) =
∫ r

x−arcchz

[
1−

(
ch t − z · ch x
√

z2 − 1 · sh x

)2
]λ−1

∂

∂t

(
ch t − z · ch x
√

z2 − 1 · sh x

)
dt.

Putting u = ch t−z·ch x√
z2−1·sh x

, we get

A(x, z, r) ≡ A(x, r) =
∫ ch r−z·ch x√

z2−1·sh x

−1
(1− u2)λ−1du. (2.6)

On the even power of ch t

B(x, r) =
∫ r

arcchz−x

[
1−

(
ch t − z · ch x
√

z2 − 1 · sh x

)2
]λ−1

∂

∂t

(
ch t − z · ch x
√

z2 − 1 · sh x

)
dt

=

∫ ch r−z·ch x√
z2−1·sh x

−1
(1− u2)λ−1du. (2.7)

Taking into account (2.6) and (2.7) in (2.5), we have

I (x, r) =
Γ (λ+ 1

2 )

Γ ( 1
2 )Γ (λ)

∫ ch (x+r)

ch (x−r)
| f (z)| (z2

− 1)λ−
1
2

∫ ch r−z·ch x√
z2−1·sh x

−1
(1− u2)λ−1dudz. (2.8)
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Since ch (x − r) ≤ z ≤ ch (x + r), then

ch r − z · ch x
√

z2 − 1 · sh x
≥

ch r − ch x · ch (x + r)

sh x · sh(x + r)
=

2ch r − 2ch x · ch (x + r)

2sh x · sh(x + r)

=
2ch r − ch(2x + r)− ch r

ch(2x + r)− ch r
=

ch r − ch(2x + r)

ch(2x + r)− ch r
= −1. (2.9)

On the other hand for ch (x − r) ≤ z ≤ ch (x + r),

ch r − z · ch x
√

z2 − 1 · sh x
≤

ch r − ch x · ch (x − r)

sh x |sh(x − r)|
=

2ch r − 2ch x · ch (x − r)

2sh x · sh(r − x)

=
2ch r − ch(2x − r)− ch r

ch r − ch(2x − r)
=

ch r − ch(2x − r)

ch r − ch(2x − r)
= 1. (2.10)

From (2.9) and (2.10) it follows that for ch (x − r) ≤ z ≤ ch (x + r), and 0 < x < r < 2

−1 ≤
ch r − z · ch x
√

z2 − 1 · sh x
≤ 1. (2.11)

From (2.11) it follows that for 0 < x < r < 2

A(x, r) =
∫ ch r−z·ch x√

z2−1·sh x

−1
(1− u2)λ−1du ≤

∫ 1

−1
(1− u2)λ−1du =

Γ ( 1
2 )Γ (λ)

Γ (λ+ 1
2 )
. (2.12)

But taking into account (2.12) and (2.8), we obtain that for 0 < x < r < 2

I (x, r) ≤
∫ ch (x+r)

ch (x−r)
| f (z)| (z2

− 1)λ−
1
2 dz =

∫ x+r

x−r
| f (ch t)| sh2λ tdt. (2.13)

Now let 2 ≤ r ≤ x <∞ and ch (x − r) ≤ z ≤ ch (x + r).
Then we have

ch r − z · ch x
√

z2 − 1 · sh x
≤

ch x − z · ch x
√

z2 − 1sh x
=
(1− z)ch x
√

z2 − 1sh x
= −

√
z − 1ch x
√

z + 1sh x
≤ 0.

From (2.9) it follows that

max(1− u)λ−1
≤ max
−1≤u≤0

(1− u)λ−1
= max(2λ−1, 1) = 1,

−1 ≤ u ≤
ch r − z · ch x
√

z2 − 1 · sh x
.

Taking into account this circumstance, for the integral A(x, r) we obtain of (2.6)

A(x, r) =
∫ ch r−z·ch x√

z2−1·sh x

−1

(
1− u2

)λ−1
du

≤

∫ ch r−z·ch x√
z2−1·sh x

−1
(1+ u)λ−1 du =

1
λ
(1+ u)λ

∣∣∣∣ ch r−z·ch x√
z2−1·sh x

−1
=

1
λ

(
1+

ch r − z · ch x
√

z2 − 1 · sh x

)λ

=
1
λ

(
1−

z · ch x − ch r
√

z2 − 1 · sh x

)λ
≤

1
λ

[
1−

(
z · ch x − ch r
√

z2 − 1 · sh x

)2
]λ
. (2.14)

We find extremum of the function

f (z) = 1−
(

z · ch x − ch r
√

z2 − 1 · sh x

)2

.
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f ′(z) = −2
(

z · ch x − ch r
√

z2 − 1 · sh x

)
×
(z2
− 1)sh x · ch x − z2sh x · ch x + z · ch r · sh x

(z2 − 1)
3
2 sh2 x

= −2
(

z · ch x − ch r
√

z2 − 1 · sh x

)
z · ch r · sh x − ch x · sh x

(z2 − 1)
3
2 sh2 x

=
2(z · ch x − ch r)(ch x − z · ch r)

(z2 − 1)2sh2 x
.

Since ch (x − r) ≤ z ≤ ch (x + r), then the function f (z) for z = ch x/ch r has a maximum

fmax

(
ch x

ch r

)
= 1−

(
ch2 x − ch2 r

√
ch2 x − ch2 r · sh x

)2

= 1−
ch2 x − ch2 r

sh2 x
=

ch2 r − 1

sh2 x
=

(
sh r

sh x

)2

.

From (2.14) we have

A(x, r) ≤
1
λ

(
sh r

sh x

)2λ

. (2.15)

According to definition of maximal function we have

MG f (chx) ≤ MG,1 f (chx)+ MG,2 f (chx),

where

MG,1 f (chx) = sup
0<r<2

1
|H(0, r)|λ

∫ r

0
| f (cht)|dµλ(t),

MG,2 f (chx) = sup
2≤r<∞

1
|H(0, r)|λ

∫ r

0
| f (cht)|dµλ(t).

Let 0 < r < 2, then taking into account Lemmas 1.1 and 1.2 (a), for (2.13) with 0 ≤ x < r < 2 we get

MG,1 f (ch x) = sup
0<r<2

1
|H(0, r)|λ

∫ r

0
Aλch t | f (ch x)| dµλ(t)

= sup
0<r<2

|H(x, r)|λ
|H(0, r)|λ

·
1

|H(x, r)|λ

∫ x+r

|x−r |
| f (ch t)| sh2λ tdt

≤ cλ sup
0<r<2

1
|H(x, r)|λ

∫
H(x,r)

| f (ch t)| dµ(t) = cλMµ f (ch x). (2.16)

For r < 2 ≤ x <∞ from Lemmas 1.1, 1.2(a), (2.15) and (2.8) we obtain

MG,1 f (ch x) ≤ sup
0<r<2

A(x, r) |H(x, r)|λ
|H(0, r)|λ |H(x, r)|λ

∫ x+r

x−r
| f (ch t)| sh2λ tdt

≤ cλ sup
0<r<2

sh r
2 ch2λ x · sh2λ r

|H(x, r)|λ
(
sh r

2

)2λ+1 sh2λ x

∫ x+r

x−r
| f (ch t)| dµ(t)

≤ cλ

(
ch x

sh x

)2λ

sup
0<r<2

ch2λ r

2
·

1
|H(x, r)|λ

∫ x+r

x−r
| f (ch t)| dµ(t)

≤ cλ

(
ex
+ e−x

ex − e−x

)2λ

ch2λ 1
2

sup
0<r<2

1
|H(x, r)|λ

∫
H(x,r)

| f (ch t)| dµ(t)

≤ cλ · 4λ · e · Mµ f (ch x), (2.17)

as e2x
+1

e2x−1
≤ 2⇔ e2x

+ 1 ≤ 2e2x
− 2⇔ e2x

≥ 3 at x ≥ 1.
From (2.16) and (2.17) it follows that

MG,1 f (ch x) ≤ cλMµ f (ch x), 0 < r < 2, 0 ≤ x <∞. (2.18)

Now we consider the case 2 ≤ r <∞.
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Point that for ch (x − r) ≤ z ≤ ch (x + r) and x > r the function f (z) = ch r−zch x√
z2−1sh x

has maximum equal

−

√
ch2 x−ch2 r

sh x .
In fact

f ′(z) = −

√
z2 − 1sh xch x + z√

z2−1
sh x(ch r − zch x)

(z2 − 1)sh2 x

= −
(z2
− 1)sh xch x + zsh xch r − z2sh xch x

(z2 − 1)
3
2 sh2 x

=
ch x − zch r

(z2 − 1)
3
2 sh x

= 0 ⇔ z =
ch x

ch r
.

In this point the function f (z) has a maximum:

fmax(z) = f

(
ch x

ch r

)
=

ch2 r − ch2 x
√

ch2 x − ch2 r · sh x
= −

√
ch2 x − ch2 r

sh x

= −
ch x

sh x

√
1−

(
ch r

ch x

)2

∼ −
sh x

ch x
, (2.19)

as

lim
x→∞

sh x

ch x
= lim

x→∞

ex
− e−x

ex + e−x = 1.

From (2.15) and (2.19) we obtain

A(x, r) ≤
∫ ch r−zch x√

z2−1 sh x

−1
(1+ u)λ−1du ≤

∫
−

√
ch2 x−ch2z

sh x

−1
(1+ u)λ−1du

∼

∫
−

sh x
ch x

−1
(1+ u)λ−1du =

1
λ

(
1−

sh x

ch x

)λ
≤

1
λ

(
1−

sh2 x

ch2 x

)λ
=

1
λ
(ch x)−2λ , x →∞. (2.20)

Now, taking into account Lemmas 1.1 and 1.2(b), also inequalities (2.12) and (2.20), for 2 ≤ r <∞ we get

A(x, r)
|H(x, r)|λ
|H(0, r)|λ

≤ cλ


ch2λ r

ch4λ r
2
,

ch2λ xch2λ r

ch2λ xch4λ r
2

≤ cλ. (2.21)

Applying (2.21) we easily obtain

MG,2 f (ch x) = sup
r≥2

1
|H(0, r)|λ

∫ r

0
Aλch t | f (ch x)| dµλ(t)

= sup
r≥2

|H(x, r)|λ
|H(0, r)|λ

·
A(x, r)
|H(x, r)|λ

∫ x+r

|x−r |
| f (ch t)| sh2λ tdt

≤ cλ
1

|H(x, r)|λ

∫
H(x,r)

| f (ch t)| dµλ(t) = cλMµ f (ch x). (2.22)

Combining (2.18) and (2.22), we get

MG f (ch x) ≤ cλMµ f (ch x).

Thus Theorem 2.1 is proved. �

Further we need the following lemma, which is a version of Vitali’s covering lemma.

Lemma ([23], Sawano). Suppose we have a family of n intervals {H(x j , r j )} j∈{1, ... ,n}. Then we can take a subfamily
{H(x j , r j )} j∈A such that
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(1) {H(x j , r j )} j∈A is disjoint.

(2)
⋃

j∈{1,...,n} H(x j , r j ) ⊂
⋃

j∈A H(x j , 3r j ),

where A = { j1, . . . jp} and j1, . . . jp ∈ {1, . . . n}.
The following theorem is valid.

Theorem 2.2. (a) If f ∈ L1,λ [0,∞), then for all α > 0

|{x : MG f (ch x) > α}|λ ≤
cλ
α

∫
∞

0
| f (ch t)| sh2λ tdt =

cλ
α
‖ f ‖L1,λ[0,∞)

holds, where cλ > 0 depends only on λ.
(b) If f ∈ L p,λ [0,∞), 1 < p ≤ ∞, then MG f (ch x) ∈ L p,λ [0,∞) and ‖MG f ‖L p,λ[0,∞) ≤ cp,λ ‖ f ‖L p,λ[0,∞) .

Corollary 2.1. If f ∈ L p,λ [0,∞), 1 ≤ p ≤ ∞, then

lim
r→0

1
|H(0, r)|λ

∫
H(0,r)

Aλch t f (ch x)sh2λ tdt = f (ch x)

for a. e. x ∈ [0,∞) .

Proof of Theorem 2.2. We define Eα = {t : Mµ f (ch t) > α}. We introduce the function h(α) which is equal to the
measure of the set Eα , i.e.

h(α) = |Eα|λ =
∣∣{t : Mµ f (ch t) > α}

∣∣
λ
.

By the definition of function Mµ f it follows that, for all x j ∈ Eα there exists an interval H(x j , r j ) ⊂ Eα with
centered x j such that∫

2H(x j , r j )

| f (ch t)| sh2λ tdt ≥
∫
{t∈H(x j , r j ):| f (ch t)|>α}

| f (ch t)| sh2λtdt

> α

∫
{t∈H(x j , r j ):| f (ch t)|>α}

sh2λtdt ≥ α
∣∣H(x j , r j )

∣∣
λ
. (2.23)

Further, since

H(x, r) =

{
(0, x + r) if x < r
(x − r, x + r) if x > r,

then for x j < 3r j we have

∣∣H(x j , 3r j )
∣∣
λ
=

∫ x j+3r j

0
sh2λ tdt >

∫ x j+r j

0
sh2λ tdt =

∣∣H(x j , r j )
∣∣
λ
. (2.24)

Let x j > 3r j , then

∣∣H(x j , 3r j )
∣∣
λ
=

∫ x j+3r j

x j−3r j

sh2λ tdt >
∫ x j+r j

x j−r j

sh2λ tdt. (2.25)

From (2.24) and (2.25) we find that for all r j > 0, j ∈ {1, . . . , n}∣∣H(x j , 3r j )
∣∣
λ
≥
∣∣H(x j , r j )

∣∣
λ
. (2.26)
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By the previous lemma which was proved by Sawano, there exists a set A ⊂ {1, . . . n} such that
⋃

j=1, ... n
H(x j , r j ) ⊂

⋃
l∈A H(xl , 3rl) and the intervals H(xl , 3rl) are disjoint, moreover by (2.26)∣∣∣∣∣ ⋃

j=1, ... n

H(x j , r j )

∣∣∣∣∣
λ

≤

n∑
j=1

∣∣H(x j , r j )
∣∣
λ
≤

∑
l∈A

|H(xl , 3rl)|λ .

From this and (2.23) we have

n∑
j=1

∣∣H(x j , r j )
∣∣
λ
≤

1
α

∑
l∈A

∫
H(xl ,3rl )

| f (ch t)| sh2λ tdt. (2.27)

We show that Eα = {t ∈ [0, ∞) : Mµ f (ch t) > α} is an open set. For this we need double-sided estimates for
the |H (x, r) |λ.

At first we consider case 0 < x < r . Then H (x, r) = (0, x + r) .
Let 0 < x + r < 2, then we have

|H (x, r) |λ =
∫ x+r

0
sh2λ tdt = 22λ+1

∫ x+r

0

(
sh t

2

)2λ d
(
sh t

2

)(
ch t

2

)1−2λ

≥
22λ+1(

ch x+r
2

)1−2λ

∫ x+r

0

(
sh

t

2

)2λ

d

(
sh

t

2

)
=

22λ−1

2λ+ 1

(
sh x+r

2

)2λ+1(
ch x+r

2

)1−2λ

≥
22λ+1

(2λ+ 1) ch 1

(
sh

x + r

2

)2λ+1

≥
1

(2λ+ 1) ch 1
(x + r)2λ+1 . (2.28)

On the other hand, since ch t
2 ≥ 1 for t ≥ 0, then

|H (x, r) |λ ≤ 22λ+1
∫ x+r

0

(
sh

t

2

)2λ

d

(
sh

t

2

)
=

22λ+1

2λ+ 1

(
sh

x + r

2

)2λ+1

≤
e2λ+1

2λ+ 1
(x + r)2λ+1 . (2.29)

At the end we use the inequality (1.3).
Now let 2 ≤ x + r <∞. Then

|H (x, r) |λ =
∫ x+r

0
sh 2λtdt ≥

∫ x+r

x+r
2

sh2λ td (sh t)

ch t
≥

1
2

∫ x+r

x+r
2

(sh t)2λ−1 d (sh t)

=
1

4λ

(
sh2λ (x + r)− sh2λ x + r

2

)
≥

1
4λ

(
sh2λ (x + r)−

1
4λ

sh2λ (x + r)

)
=

1
4λ

(
1−

1
4λ

)
sh2λ (x + r) =

4λ − 1
4λ · 4λ

(
2sh

x + r

2
ch

x + r

2

)2λ

≥
4λ − 1

4λ

(
sh

x + r

2

)4λ

. (2.30)

On the other hand

|H (x, r) |λ =
∫ x+r

0
sh 2λtdt = 22λ+1

∫ x+r

0

(
sh t

2

)2λ d
(
sh t

2

)(
ch t

2

)1−2λ

≤ 22λ+1
∫ x+r

0

(
sh

t

2

)4λ−1

d

(
sh

t

2

)
=

22λ+1

λ

(
sh

x + r

2

)4λ

. (2.31)

Combining (2.28)–(2.31) we obtain for 0 < x < r and 0 < x + r < 2

1

(2λ+ 1) ch 1
(x + r)2λ+1

≤ |H (x, r) |λ ≤
e2λ+1

2λ+ 1
(x + r)2λ+1 , (2.32)
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and for 0 < x < r and 2 ≤ x + r <∞

4λ − 1
4λ

(
sh

x + r

2

)4λ

≤ |H (x, r) |λ ≤
22λ−1

λ

(
sh

x + r

2

)4λ

. (2.33)

Now we consider the case r ≤ x <∞.
Then H (x, r) = (x − r, x + r) .
Let 0 < x + r < 2. Then we have

|H (x, r) |λ =
∫ x+r

x−r
sh2λ tdt ≥

∫ x+r

x+r
2

sh2λ tdt ≥
x + r

2

(
sh

x + r

2

)2λ

≥
1

22λ+1 (x + r)2λ+1 . (2.34)

At the end we use the inequality (1.3).
On the other hand according to (2.29) we have

|H (x, r) |λ =
∫ x+r

x−r
sh2λ tdt ≤

∫ x+r

0
sh2λ tdt ≤

1
4 (2λ+ 1)

(x + r)2λ+1 .

It remains to consider the case 2 ≤ x + r <∞.
For inequality (2.30) we have

|H (x, r) |λ =
∫ x+r

x−r
sh2λ tdt ≥

∫ x+r

x+r
2

sh2λ tdt ≥
4λ − 1

4λ

(
sh

x + r

2

)4λ

.

On the other hand

|H (x, r) |λ =
∫ x+r

x−r
sh2λ tdt = 22λ+1

∫ x+2

x−r

(
sh t

2

)2λ d
(
sh t

2

)(
ch t

2

)1−2λ

≤ 22λ+1
∫ x+r

x−r

(
sh

t

2

)4λ−1 (
sh

t

2

)
=

22λ−1

λ

((
sh

x + r

2

)4λ

−

(
sh

x − r

r

)4λ
)

≤
22λ−1

λ

(
sh

x + r

2

)4λ

. (2.35)

Combining (2.32)–(2.35) we obtain for r ≤ x <∞ and 0 < x + r < 2

1
(2λ+ 1)ch1

(x + r)2λ+1
≤ |H (x, r) |λ ≤

e2λ+1

2λ+ 1
(x + r)2λ+1 , (2.36)

and for 2 ≤ x + r <∞

4λ − 1
4λ

(
sh

x + r

2

)4λ

≤ |H (x, r) |λ ≤
22λ−1

λ

(
sh

x + r

2

)4λ

. (2.37)

Now from (2.32) and (2.36) for 0 < x + r < 2 we have

1

(2λ+ 1) ch 1
(x + r)2λ+1

≤ |H (x, r) |λ ≤
e2λ+1

2λ+ 1
(x + r)2λ+1 . (2.38)

But from (2.33) and (2.35) for 2 ≤ x + r <∞

4λ − 1
4λ

(
sh

x + r

2

)4λ

≤ |H (x, r) |λ ≤
22λ−1

λ

(
sh

x + r

2

)4λ

. (2.39)
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Now we will prove that the set Eα is open. By the definition of the maximal operator there exists r > 0 such that
for some u > α∫

H(x, r)
| f (ch t) |sh2λ tdt = u |H (x, r) |λ.

We consider the case 0 < x + r < 2. There exists δ1 > 0 such that

u

α
> e2λ+1 (ch 1)

(
r + δ1

r

)2λ+1

. (2.40)

Let |x − y| < δ1, then H (x, r) ⊂ H (y, r + δ1). If z ∈ H (x, r), then |z − y| ≤ |z − x | + |x − y| ≤ r + δ1, from
this it follows that z ∈ H (y, r + δ1) .

Then∫
H(y, r+δ1)

| f (ch t) |sh2λ tdt ≥
∫

H(y, r)
| f (ch t) |sh2λ tdt = u|H (y, r) |λ. (2.41)

Now by (2.36), we have

|H (y, r + δ1) |λ ≤
e2λ+1

2λ+ 1
(y + r + δ1)

2λ+1

≤
e2λ+1

2λ+ 1
(y + r)2λ+1

(
r + δ1

r

)2λ+1

≤ e2λ+1 (ch 1)
(

r + δ1

r

)2λ+1

|H (y, r) |λ.

From this it follows that

|H (y, r) |λ ≥

(
r + δ1

r

)−(2λ+1) (
e2λ+1ch 1

)−1
|H (y, r + δ1) |λ. (2.42)

From (2.41) and (2.42) it follows that

1
|H (y, r + δ1) |λ

∫
H(y, r+δ1)

∣∣∣ f
(

e2λ+1ch t
) ∣∣∣sh2λ tdt ≥ (ch 1)−1

(
r + δ1

r

)−(2λ+1)

u > α,

if

u

α
> e2λ+1 (ch 1)

(
r + δ1

r

)2λ+1

.

In the case 0 < x + r < 2 we obtain that ∃δ1 > 0 by condition (2.40) such that for ∀t ∈ H (y, δ1) the inequality
Mµ f (ch t) > α holds, from this it follows that H (y, δ1) ⊂ Eα , that is the set Eα is open.

It remains consider the case 2 ≤ x + r <∞. There exists δ2 > 0 such that

u

α
≥

22λ+1
· 34λ

4λ − 1

(
ch (r + 1)

r + δ2

r

)4λ

>
22λ+1

· 34λ

4λ − 1

(
r + δ2

r

)4λ

. (2.43)

From (2.39) we have

|H (y, r + δ2) |λ ≤
22λ−1

λ

(
sh

y + r + δ2

2

)4λ

≤
22λ−1

λ

[
sh

(
y + r

2
+

r + δ2

2

)]4λ

≤
22λ−1

λ

[
sh

(
y + r

2
+ (r + 1)

r + δ2

2

)]4λ

=
22λ−1

λ

(
sh

y + r

2
ch (r + 1)

r + δ2

2
+ ch

y + r

2
sh (r + 1)

r + δ2

2

)4λ

≤
34λ
· 22λ−1

λ

(
sh

y + r

2

)4λ (
ch (r + 1)

r + δ2

2

)4λ

. (2.44)
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At the end we use the inequality ch t ≤ 2sh t at t ≥ 1. From (2.44) and (2.39) we have

|H (y, r + δ2) |λ ≤
22λ+1

· 34λ

4λ − 1

(
ch (r + 1)

r + δ2

2

)4λ

|H (y, r) |λ.

From this it follows that

|H (y, r) |λ ≥
4λ − 1

22λ+1 · 34λ

(
ch (r + 1)

r + δ2

2

)−4λ

|H (y, r + δ2) |λ.

Now from (2.41) we have

1
|H (y, r + δ2) |λ

∫
H(y, r+δ)

| f (ch t)|sh2λ tdt ≥
4λ − 1

22λ+1 · 34λ

(
ch (r + 1)

r + δ2

r

)−4λ

u > α,

if (2.43) is true.
In the case 2 ≤ x + r <∞ we prove that ∃δ2 > 0 by condition (2.43) such that for ∀t ∈ H (y, δ2) the inequality

Mµ f (ch t) > α holds, from this it follows that H (y, δ2) ⊂ Eα , that is the set Eα is open.
As above it follows that ∃δ > 0, where δ = min{δ1, δ2} such that for ∀t ∈ H (y, δ) the inequality Mµ f (ch t) > α

holds, from this it follows that H (y, δ) ⊂ Eα , that is the set Eα is open.
Since [0, ∞) is separable, so with the help of the Lindelöf (see [24]) covering theorem Eα ⊂

⋃
j∈N H(x j , r j ).

Then, letting n tends to infinity in (2.27), we obtain

|Eα|λ ≤
1
α

∫
∞

0
| f (ch t)| sh2λ tdt,

and this is the assertion (a) of theorem.
Further, since by Theorem 2.1 MG f (ch x) ≤ cλMµ f (ch x), then

Fα = {x : MG f (ch x) > α} ⊂ Eα =

{
x : Mµ f (ch x) >

α

cλ

}
;

consequently

|Fα|λ ≤

∣∣∣∣{x : Mµ f (ch x) >
α

cλ

}∣∣∣∣
λ

≤
cλ
α
‖ f ‖p, λ,

and this is the assertion (a) of theorem.
We will prove the approval (b). Suppose

f1(ch x) =

 f (ch x), if | f (ch x)| ≥
α

2
,

0, if 0 ≤ | f (ch x)| <
α

2
.

(2.45)

Then we have

| f (ch x)| ≤ | f1(ch x)| +
α

2
and Mµ f (ch x) ≤ Mµ f1(ch x)+

α

2
,

so {x : Mµ f (ch x) > α} ⊂ {x : Mµ f1(ch x) > α
2 } and at last

|Eα|λ =
∣∣{x : Mµ f (ch x) > α}

∣∣
λ
≤

2
α
‖ f1‖1, λ,

from here and (2.45) it follows that

|Eα|λ =
∣∣{x : Mµ f (ch x) > α}

∣∣
λ
≤

2
α

∫
{x :| f (ch x)|> α

2 }

| f (ch x)| sh2λ xdx . (2.46)

Suppose that the function f (ch x) is defined on [0, ∞). We consider for each α > 0 the set Eα such that | f | > α;

Eα = {x : | f (ch x)| > α}.

Let h(α) be the measure of the set Eα , i.e.

h(α) = |Eα|λ = |{x : | f (ch x)| > α}|λ .
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The function h(α) is called the distribution of the function | f (ch x)|. Every quantity, depended only on ëxtent” f ,
can be expressed over of distribution of function h(α) (see [25], p. 15). For example if f ∈ L p, λ, then by Fubini’s
theorem we obtain∫

∞

0
| f (ch t)|p sh2λ tdt = p

∫
∞

0

(∫
| f (ch t)|

0
α p−1dα

)
sh2λ tdt

= p
∫
∞

0
α p−1

(∫
{t∈[0,∞):| f (ch t)|>α}

sh2λ tdt

)
= p

∫
∞

0
α p−1
|{t ∈ [0, ∞) : | f (ch t)| > α}|λdα = p

∫
∞

0
α p−1h(α)dα. (2.47)

Now, if Mµ f ∈ L1, λ, then by (2.46) and (2.47) applying Fubini’s theorem, we will have

‖Mµ f ‖p
p, λ = p

∫
∞

0
α p−1

∣∣∣{x : Mµ f (ch x) > α}

∣∣∣
λ
dα

≤ p
∫
∞

0
α p−1

(
2
α

∫
{x :| f (ch x)|> α

2 }

| f (ch x)| sh2λ xdx

)
dα

= 2p
∫
∞

0
| f (ch x)|

(∫ 2| f (ch x)|

0
α p−2dα

)
sh2λ xdx

=
2p

p − 1

∫
∞

0
| f (ch x)|

(
α p−1

∣∣∣2| f (ch x)|

0

)
sh2λ xdx

=
p · 2p

p − 1

∫
∞

0
| f (ch x)|p sh2λ xdx = cp‖ f ‖p

p, λ,

from this it follows that

‖Mµ f ‖p, λ ≤ cp‖ f ‖p, λ, 1 < p <∞. (2.48)

The assertion (b) follows from Theorem 2.1 and inequality (2.48):

‖MG f ‖p, λ ≤ cλ‖Mµ f ‖p, λ ≤ cp, λ‖ f ‖p, λ.

In the case p = ∞ last inequality is obtained evidently.
Thus Theorem 2.2 is proved. �

Proof of Corollary 2.1. At first let us show that for any function f ∈ L p,λ[0,∞), 1 ≤ p ≤ ∞,, representation
ch t 7→ Aλch t f from R into L p,λ continuous, that is

‖Aλch t f − f ‖L p,λ → 0 at t → 0. (2.49)

Let f (x) be a continuous function defined for [a, b] ⊂ [0,∞). Consider the function

y(t, x, ϕ) = ch tch x − sh tsh x cos ϕ.

Hence we have

|y(t, x, ϕ)− y(0, x, ϕ)| = |ch tch x − sh tsh x cos ϕ − ch x |

= |(ch t − 1)ch x − sh tsh x cos ϕ − ch x | ≤ 2sh2 t

2
ch x + 2sh

t

2
ch

t

2
sh x

≤ 2sh
t

2

(
sh

t

2
ch x + ch

t

2
sh x

)
= 2sh

t

2
sh

(
t

2
+ x

)
≤ 2sh

t

2
sh

(
t

2
+ b

)
→ 0 t → 0. (2.50)
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On the strength of uniform continuity of the function f (x) on segment [a, b] for any ε > 0 one may choose the
number δ > 0, such that

| f [y(t, x, ϕ)] − f [y(0, x, ϕ)]| < ε, if |y(t, x, ϕ)− y(0, x, ϕ)| < δ, (that follows from (2.50)).

Then we have∣∣Aλch t f (ch x)− f (ch x)
∣∣

≤

Γ
(
λ+ 1

2

)
Γ
(

1
2

)
Γ (λ)

∫ π

0
| f [y(t, x, ϕ)] − f [y(0, x, ϕ)]|(sin ϕ)2λ−1dϕ < ε.

It follows, that

‖Aλch t f − f ‖∞,λ = sup
x∈[a,b]

|Aλch t f (ch x)− f (ch x)| < ε.

And for 1 ≤ p <∞

‖Aλch t f − f ‖L p,λ[a,b] =

(∫ b

a
|Aλch t f (ch x)− f (ch x)|psh2λxdx

) 1
p

< ε

(∫ b

a
sh2λ xdx

) 1
p

< cp,λε.

Thus for any continuous function defined on the segment [a, b] ⊂ [0,∞) and for any number ε > 0 the following
inequality is valid:

‖Aλch t f − f ‖L p,λ[a,b] < ε 1 ≤ p ≤ ∞. (2.51)

It is known the set of all continuous functions with compact support in [0,∞) is dense in L p,λ[0,∞) (see [26],
Theorem 4.2). Therefore for any number ε > 0 there exists a continuous function with compact support in [0,∞),
such that

‖ f − fε‖L p,λ[0,∞) < ε. (2.52)

We denote gε = f − fε. Then gε ∈ L p,λ[0,∞) and

‖gε‖L p,λ[0,∞) < ε. (2.53)

Thus, if f ∈ L p,λ[0,∞), then for any number ε > 0 there exists a continuous function fε with the compact
support and function gε ∈ L p,λ[0,∞) with condition ‖gε‖L p,λ[0,∞) < ε, such that f = fε + gε.

Hence we have Aλch t f (ch x) = Aλch t fε(ch x)+ Aλch t gε(ch x)− f (ch x)+ fε(ch x)− fε(ch x), from which it
follows that

Aλch t f − f ‖L p,λ[0,∞) ≤ ‖Aλch t fε − fε‖L p,λ[0,∞) + ‖ f − fε‖L p,λ[0,∞) + ‖Aλch t gε‖L p,λ[0,∞).

Now, taking into account that (see [22], Lemma 2)

‖Aλch t gε‖L p,λ[0,∞) ≤ ‖gε‖L p,λ[0,∞), t ∈ [0,∞), 1 ≤ p ≤ ∞

and also the inequalities (2.51)–(2.53), we get

‖Aλch t f − f ‖L p,λ[0,∞) ≤ 3ε,

from which (2.49) follows.
By the locality of the problem, one can account that f ∈ L1,λ[0,∞). In general case one can multiply f by

characteristic function of interval H(0, r) = [0, r) and obtain required convergence almost everywhere interior to this
interval and by tending r to infinity one could obtain it on the whole interval [0,∞).

Suppose for any r > 0 and for any x ∈ [0,∞)

fr (ch x) =
1

|H(0, r)|λ

∫
H(0,r)

Aλch t f (ch x)sh2λ tdt.
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Let r0 > 0, H = H(0, r0). According to the generalized Minkowski generalized inequality and discount (2.49),
we obtain

fr − f ‖L1,λ(H) =

∣∣∣ 1
|H(0, r)|λ

∫
H(0,r)

(
Aλch t f (ch x)− f (ch x)

)
sh2λ tdt

∣∣∣
L1,λ(H)

≤
1

|H(0, r)|λ

∫
H(0,r)

‖Aλch t f − f ‖L1,λ(H)sh2λ tdt

≤ sup
|t |≤r0

‖Aλch t f − f ‖L1,λ(H)→ 0, at ro →+0.

It means that there is a sequence rk such that rk →+0, (k →∞) and

lim
k→∞

frk (ch x) = f (ch x)

almost everywhere at x ∈ [0,∞).
Now, let us prove that limr→+0 fr (ch x) exists almost everywhere. For this purpose for any x ∈ [0,∞)we consider

Ω f (ch x) =
∣∣∣ lim
r→+0

fr (ch x)− lim
r→+0

fr (ch x)
∣∣∣

the oscillation of fr at the point x as r →+0.
If g is a continuous function with compact support on [0,∞), then gr is convergent to g and consequently Ωg ≡ 0.
Further, if g ∈ L1,λ[0,∞), then according to the statement of Theorem 2.2 we get

|{x ∈ [0,∞) : MG g(ch x) > ε}|λ ≤
c

ε
‖g‖L1,λ[0,∞), g ∈ L1,λ[0,∞).

On the other hand it is obvious that Ωg(ch x) ≤ 2MG g(ch x). Thus

|{x ∈ [0,∞) : Ωg(ch x) > ε}|λ ≤
2c

ε
‖g‖L1,λ[0,∞), g ∈ L1,λ[0,∞).

By the same way as it was proved above, any function f ∈ L p,λ[0,∞) can be written in form f = h + g, where
h is continuous function and has a compact support on [0,∞), and g ∈ L p,λ[0,∞), moreover ‖g‖L p,λ[0,∞) < ε, for
any ε > 0. But Ω ≤ Ωh + Ωg Ωh ≡ 0, however is continuous by h. Therefore it follows that

|{x ∈ [0,∞) : Ωg(ch x) > ε}|λ ≤
c

ε
‖g‖L1,λ[0,∞).

Taking in inequality ‖g‖L1,λ[0,∞) < ε the number ε arbitrary small, we get Ω f = 0 almost everywhere on [0,∞).
Consequently, limr→0 fr (ch x) exists almost everywhere on [0,∞), which was required to prove. �

Remark 2.1. Theorem 2.2 was proved earlier by W.C. Connett and A.L. Schwartz [8] for the Jacobi-type hypergroups.

Remark 2.2. If f ∈ L1,λ[0,∞), then (see [27], Theorem 2.1)

lim
r→0

1(
sh r

2

)2λ+1

∫ r

0

∣∣Aλch t f (ch x)− f (ch x)
∣∣ sh2λ tdt = 0,

almost everywhere for x ∈ [0,∞).

This implies that for any ε > 0 one can find δ > 0, such that for all r < δ the following inequality is just:

1(
sh r

2

)2λ+1

∫ r

0

∣∣Aλch t f (ch x)− f (ch x)
∣∣ sh2λ tdt < ε.

Then from Lemma 1.1, we obtain∣∣∣∣ 1
|H(0, r)|λ

∫
H(0,r)

[
Aλch t f (ch x)− f (ch x)

]
sh2λ tdt

∣∣∣∣
≤

1(
sh r

2

)2λ+1

∫ r

0

∣∣Aλch t f (ch x)− f (ch x)
∣∣ sh2λ tdt < ε,

for all r < δ, which means that Corollary 2.1 is valid under assumption f ∈ L1, λ [0, ∞).
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3. G-Riesz potential

In this section the concept of Riesz–Gegenbauer potential associated with the Gegenbauer differential operator G
is introduced and its integral representation is found. For the functions f, g ∈ L1,λ [1,∞) in [9], the Gegenbauer
transformation is defined as follows:

FP : f (t) 7→ f̂P (γ ) =

∫
∞

1
f (t) Pλγ (t)

(
t2
− 1

)λ− 1
2

dt, (3.1)

FQ : f (t) 7→ f̂Q (γ ) =

∫
∞

1
f (t) Qλ

γ (t)
(

t2
− 1

)λ− 1
2

dt,

where the functions Pλγ (x) and Qλ
γ (x) are eigenfunctions of operator G.

The inverse of the Gegenbauer transformations is defined by the formulas

F−1
P : f̂P (α) 7→ f (x) = c∗λ

∫
∞

1
f̂P (γ ) Qλ

γ (x)
(
γ 2
− 1

)λ− 1
2

dγ, (3.2)

F−1
Q : f̂Q (α) 7→ f (x) = c∗λ

∫
∞

1
f̂Q (γ ) Pλγ (x)

(
γ 2
− 1

)λ− 1
2

dγ, (3.3)

where c∗λ =
2

3
2−λ
√
πΓ (λ+1)Γ

(
1
2−γ

)
Γ
(

3+2λ
4

)(
Γ
(
λ+ 1

2

)
Γ
(

5−2λ
4

)
cosπλ

)−1

2 F1

(
1, 1

2−λ;
5−2λ

4 ;
1
2

)
−2 F1

(
1, 1

2−λ;
5−2λ

4 ;
1−2λ

2

) , and 2 F1 (α; β; γ ; x) is Gauss function.

For f ∈ D(R+) the transformations (3.1)–(3.3) are defined, where D(R+) is the set of infinitely differentiable
even functions on R+ = [0, ∞) with compact supports.

Preliminary we prove the following lemma.

Lemma 3.1. Let f, g ∈ L1,λ [1,∞) ∩ L2,λ [1,∞). Then the following equality is true:∫
∞

1
f (x) Aλt g (x)

(
x2
− 1

)λ− 1
2

dx = c∗λ

∫
∞

1
f̂P (γ )

(
Âλt g

)
P
(γ )

(
γ 2
− 1

)λ− 1
2

dγ. (3.4)

Proof. From (3.4) we have∫
∞

1
f (x) Aλt g (x)

(
x2
− 1

)λ− 1
2

dx

= c∗λ

∫
∞

1
Aλt g (x)

(
x2
− 1

)λ− 1
2

dx
∫
∞

1
f̂P (γ ) Qλ

γ (x)
(
γ 2
− 1

)λ− 1
2

dγ. (3.5)

Since (see the proof of Lemma 8 in [22])∫
∞

1
f̂P (γ ) Qλ

γ (x)
(
γ 2
− 1

)λ− 1
2

dγ . ‖ f ‖L2,λ
,

then taking into account the inequality (see [22], Lemma 1.2)∥∥Aλt g
∥∥

L1,λ
≤ ‖g‖L1,λ

,

we obtain∣∣∣∣∫ ∞
1

Aλt g (x)
(

x2
− 1

)λ− 1
2

dx
∫
∞

1
f̂P (γ ) Qλ

γ (x)
(
γ 2
− 1

)λ− 1
2

dγ

∣∣∣∣
. ‖ f ‖L2,λ

∫
∞

1

∣∣Aλt g (x)
∣∣ (x2

− 1
)λ− 1

2
dx = ‖ f ‖L2,λ

∥∥Aλt g
∥∥

L1,λ
≤ ‖ f ‖L2,λ

‖g‖L1,λ
.

By the Fubini theorem we have

c∗λ

∫
∞

1
Aλt g (x)

(
x2
− 1

)λ− 1
2

dx
∫
∞

1
f̂P (γ ) Qλ

γ (x)
(
γ 2
− 1

)λ− 1
2

dγ
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= c∗λ

∫
∞

1
Aλt g (x) Qλ

γ (x)
(

x2
− 1

)λ− 1
2

dx
∫
∞

1
f̂P (γ )

(
γ 2
− 1

)λ− 1
2

dγ

= c∗λ

∫
∞

1

(
Âλt g

)
Q
(γ ) f̂P (γ )

(
γ 2
− 1

)λ− 1
2

dγ. (3.6)

Taking into account (3.5) in (3.6), we obtain (3.4).
Thus Lemma 3.1 is proved. �

Definition 3.1. For 0 < α < 2λ + 1 Riesz–Gegenbauer potential (G-Riesz potential) I αG f (ch x) is defined by the
equality

I αG f (ch x) = G
−
α
2

λ f (ch x) . (3.7)

Such (see [28], p. 1933)

GλPλγ (ch x) = γ (γ + 2λ) Pλγ (ch x) ,

then taking into account selfadjoint of operator G (see [21], Lemma 4), we obtain for (3.5)(
Ĝλ f

)
P (γ ) =

∫
∞

1
Pλγ (ch x)Gλ f (ch x) sh2λ xdx

=

∫
∞

0
f (ch x)

(
GλPλγ (ch x)

)
sh2λ xdx

= γ (γ + 2λ)
∫
∞

λ

f (ch x) Pλγ (ch x) sh2λxdx = γ (γ + 2λ) f̂P (γ ) .

Obviously, by induction we have(
Ĝk
λ f
)

P
(γ ) = (γ (γ + 2λ))k f̂ p (λ) , k = 1, 2, . . . .

This formula is naturally spread for the fractional indexes in the following form:(̂
G
−
α
2

λ f

)
P
(γ ) := (γ (γ + 2λ))−

α
2 f̂P (λ) . (3.8)

But then for (3.7) and (3.8) we have(
Î αG f

)
p
(γ ) = (γ (γ + 2λ))−

α
2 f̂ p (λ) . (3.9)

Lemma 3.2. Let hr (ch x) be the kernel associated with Gλ and 0 < α < 2λ+ 1. Then

I αG f (ch t) =
1

Γ (α2 )

∫
∞

0

(∫
∞

0
r
α
2−1hr (ch x) dr

)
Aλch t f (ch x) sh2λxdx . (3.10)

Proof. Let(
ĥr

)
Q
(γ ) = e−γ (γ+2λ)r ,

then from (3.3) it follows, that

hr (ch x) =
∫
∞

1
e−γ (γ+2λ)r Pλγ (ch x)

(
γ 2
− 1

)λ− 1
2

dγ.

By Lemma 3.1∫
∞

0
hr (ch x) Aλch x f (ch x) sh2λ xdx = c∗λ

∫
∞

1
e−γ (γ+2λ)r

(
Âλch t f

)
P
(γ )

(
γ 2
− 1

)λ− 1
2

dγ.
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Thus we have∫
∞

0

∫
∞

0
r
α
2−1hr (ch x) Aλch t f (ch x) sh2λ xdxdr

= c∗λ

∫
∞

1

(∫
∞

0
r
α
2−1e−γ (γ+2λ)r dr

)(
Âλch t f

)
P
(γ )

(
γ 2
− 1

)λ− 1
2

dγ[
γ (γ + 2λ) r = t, dr =

dt

γ (γ + 2λ)

]
= c∗λ

∫
∞

1

(∫
∞

0
e−t t

α
2−1dt

)
(γ (γ + 2λ))−

α
2

(
Âλch t f

)
P
(γ )

(
γ 2
− 1

)λ− 1
2

dγ

= c∗λΓ
(α

2

) ∫ ∞
1

(γ (γ + 2λ))−
α
2

(
Âλch t f

)
P
(γ )

(
γ 2
− 1

)λ− 1
2

dγ.

Taking into account that (see [22], Lemma 1.2)(
Âλch t f

)
P
(γ ) = f̂P (γ ) Qλ

γ (ch t)

for (3.9) and (3.2) we obtain∫
∞

0

∫
∞

0
r
α
2−1hr (ch x) Aλch t f (ch x) sh2λ xdxdr

= c∗λΓ
(α

2

) ∫ ∞
1

(γ (γ + 2λ))−
α
2 f̂P (γ ) Qλ

γ (ch t)
(
γ 2
− 1

)λ− α2
dγ

= Γ
(α

2

) ∫ ∞
0

(
Î αG f

)
P
(γ ) Qλ

γ (ch t)
(
γ 2
− 1

)λ− 1
2

dλ = Γ
(α

2

)
I αG f (ch t) ,

from this and for (3.2) it follows, that

I αG f (ch t) =
1

Γ
(
α
2

) ∫ ∞
0

(∫
∞

0
r
α
2−1hr (ch x) dr

)
Aλch t f (ch x) sh2λ xdx .

Thus Lemma 3.2 is proved. �

Corollary 3.1. The following equality is true∣∣I αG f (ch t)
∣∣ . ∫ ∞

0

∣∣Aλch t f (ch x)
∣∣ (sh x)α−2λ−1 sh2λ xdx . (3.11)

In fact from formula (see [28], p. 1933)

Pλγ (ch x) =
Γ (γ + 2λ) cosπλ

Γ (γ )Γ (γ + λ+ 1)
(2ch x)−γ−2λ

×2 F1

(
γ

2
+ λ,

γ

2
+ λ+

1
2
; γ + λ+ 1;

1

ch2 x

)
we have∣∣∣Pαγ (ch x)

∣∣∣ . (ch x)−γ−2λ .

The function of Gauss 2 F1 (α, β; γ ; x) is convergent by appointed importance of parameters on the interval [0,∞)
(see [29], p. 1054).

Taking into account the last inequality, we estimate from above hr (ch x)

|hr (ch x)| .
∫
∞

1
e−γ (γ+2λ)r (ch x)−γ−2λ

(
γ 2
− 1

)λ− 1
2

dγ

.
∫
∞

0
e−(γ+1)(γ+1+2λ)rγ λ−

1
2 (ch x)−γ−2λ−1dγ
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. e−r (ch x)−2λ−1
∫
∞

0
γ λ−

1
2 (ch x)−γ dγ

[
1

ch x
≤

e

ex+1

]
. e−r (ch x)−2λ−1

∫
∞

0
e−(x+1)γ γ λ−

1
2 dγ [(x + 1) γ = u]

. e−r (ch x)−2λ−1
∫
∞

0
e−uuλ−

1
2 du = Γ

(
λ+

1
2

)
e−r (ch x)−2λ−1 .

Hence we have∫
∞

0
r
α
2−1hr (ch x) dr . (ch x)−2λ−1

∫
∞

0
r
α
2−1e−r dr

= Γ
(α

2

)
(ch x)−2λ−1

≤ Γ
(α

2

)
(ch x)α−2λ−1

≤ Γ
(α

2

)
(sh x)α−2λ−1 .

Taking into account this inequality on (3.10), we obtain our approval.

4. The Hardy–Littlewood–Sobolev theorem for G-Riesz potential

We consider the G-fractional integral

=
α
G f (ch x) =

∫
∞

0
Aλch t (sh x)α−2λ−1 f (ch t)sh2λ tdt, 0 < α < 2λ+ 1.

We denote by W L p, λ [0, ∞) the weak L p, λ space of measurable functions f for which

‖ f ‖W L p, λ[0,∞) = sup
t>0

t |{x ∈ [0, ∞) : | f (ch x)| > t}|
1
p .

The next examples show that for p ≥ 2λ+1
α

the integral =αG does not exist for f ∈ L p, λ [0, ∞) .

Example 1. Let x ∈ [0, ∞) , 0 < α < 2λ+ 1,
f (x) = 1

shα xln2(sh x)
χ(

0, 1
2

) (x) . For p = 2λ+1
α

f ∈ L p, λ [0, ∞] and =αG f (x) = +∞.

In fact

‖ f ‖L p, λ =

∫ 1
2

0

sh2λ xdx

(sh x)αp (ln2sh x
)p ≤

∫ 1
2

0

ch xdx

sh x
(
ln2sh x

)p

= −

∫ 1
2

0
(−lnsh x)−2p d (−lnsh x) = −

1
1− 2p

(−lnsh x)1−2p

∣∣∣∣∣
1
2

0

=
1

2p − 1

∣∣∣∣lnsh
1
2

∣∣∣∣1−2p

.

On the other hand

=
α
G f (x) =

∫
∞

0
(sh t)α−2λ−1 Ach t f (x) sh2λ tdt

=

∫
∞

0
Ach t (sh x)α−2λ−1 f (t) sh2λ tdt

=

∫
∞

0

Ach t (sh x)α−2λ−1 sh2λ tdt

shα tln2 (sh t)
.



E.J. Ibrahimov, A. Akbulut / Transactions of A. Razmadze Mathematical Institute 170 (2016) 166–199 187

Since

Ach t (sh x)α−2λ−1
= Ach t

(
ch2 x − 1

) α−2λ−1
2

=

Γ
(
λ+ 1

2

)
Γ (λ)Γ

(
1
2

) ∫ π

0

(
(ch xch t − sh xsh t cos ϕ)2 − 1

) α−2λ−1
2

(sin ϕ)2λ−1 dϕ

(as ch (x − t) ≤ ch xch t − sh xsh t cos ϕ ≤ ch (x + t))

≥

Γ
(
λ+ 1

2

)
Γ (λ)Γ 1

2

∫ π

0

(
ch2 (x + t)− 1

) α−2λ−1
2

(sin ϕ)2λ−1 dϕ ≥ (sh (x + t))α−2λ−1

= (sh xch t + ch xsh t)α−2λ−1
≥ (2ch xch t)α−2λ−1 ,

then for any fixed x ∈ [0,∞)

=
α
G f (x) ≥ (2ch x)α−2λ−1

∫ 1
2

0

sh2λ tdt

(ch t)2λ+1−α shα tln2 (sh t)

≥
4α−2λ−1(
ch 1

2

)2λ+1 (ch x)α−2λ−1
∫ 1

2

0

chα tsh2λ tdt

shα tln2 (sh t)

≥ cα,λ (ch x)α−2λ−1
∫ 1

2

0

sh2λ tdt

ln2 (sh t)

≥ cα, λ (ch x)α−2λ−1
∫ 1

2

0

sh2λ tdt

sh2 t
≥ cα, λ (ch x)α−2λ−1

∫ 1
2

0
t2λ−2dt = +∞.

At the end we use the inequality (1.3).

Example 2. Let x ∈ [0, ∞), 0 < α < 2λ+ 1,
f (x) = 1

shα x χ(2,∞) (x). For p > 2λ+1
α

f ∈ L p, λ [0, ∞) and
=
α
G f (x) = +∞.

In fact

‖ f ‖L p, λ =

∫
∞

2

sh2λ xdx

(sh x)αp ≤

∫
∞

2

ch xsh2λ xdx

(sh x)αp

=

∫
∞

2

sh2λ xd (sh x)

(sh x)αp =
(sh x)2λ+1−αp

2λ+ 1− αp

∣∣∣∣∣
∞

2

=
(sh 2)2λ+1−αp

αp − 2λ− 1
.

On other hand for any fixed x ∈ [0, ∞)

=
α
G f (x) ≥ (2ch x)α−2λ−1

∫
∞

2

sh2λ tdt

(ch t)2λ+1−α shα t

(as, 1
2 ch t < sh t < ch t, t ≥ 2)

≥ 22α−4λ−2 (ch x)α−2λ−1
∫
∞

2

dt

sh t
≥ 4α−2λ−2 (ch x)α−2λ−1

∫
∞

2

dt

ch t

= 22α−4λ−2 (ch x)α−2λ−1
∫
∞

2

et dt

e2t + 1
= 22α−4λ−1 (ch x)α−2λ−1 arctget

∣∣∣∣∞
2
= +∞.

For the G-Riesz potential the following Hardy–Littlewood–Sobolev theorem is valid.
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Theorem 4.1. Let 1− 2λ < α < 1+ 2λ, 1 ≤ p < 2λ+1
α

and 1
p −

1
q =

α
2λ+1 .

(a) If f ∈ L p,λ [0,∞), then the integral =αG f is convergent absolutely for almost every x ∈ [0,∞) .
(b) If 1 < p < 2λ+1

α
, f ∈ L p,λ [0,∞), then =αG f ∈ Lq,λ [0,∞) and

‖I αG f ‖Lq,λ[0,∞) .
∥∥=αG f

∥∥
Lq,λ[0,∞) . ‖ f ‖L p,λ[0,∞) ,

(c) If f ∈ L1,λ [0,∞), 1
q = 1− α

2λ+1 , then

‖I αG f ‖W Lq, λ[0,∞) . ‖=
α
G f ‖W Lq, λ[0,∞) . ‖ f ‖L1, λ [0, ∞) . (4.1)

Proof. Let f ∈ L p,λ [0,∞), 1 ≤ p < 2λ+1
α

, f1(ch x) = f (ch x)χ(0,1)(x),

f2(ch x) = f (ch x)− f1(ch x), χ(0,1)(x) =

{
1, x ∈ (0, 1) ,
0, x ∈ (1,∞) .

Then

=
α
G f (ch x) = =αG f1(ch x)+ =αG f2(ch x) = =1(ch x)+ =2(ch x).

We estimate above the =1(ch x).

|=1(ch x)| ≤
∫ 1

0
(sh x)α−2λ−1 Aλch t | f (ch x)| sh2λ tdt

=

∫
∞

0
(sh x)α−2λ−1χ(0,1)(t)A

λ
ch t | f (ch x)| sh2λ tdt.

By Young inequality (see [22], Lemma 4) we have

‖=1 (ch) (·)‖L p,λ[0,∞) ≤ ‖ f (ch)(·)‖L p,λ[0,∞) ·

∥∥∥|·|α−2λ−1 χ(0,1)

∥∥∥
L1,λ[0,∞)

. (4.2)

Here∥∥∥|·|α−2λ−1 χ(0,1)

∥∥∥
L1,λ
=

∫ 1

0
(sh t)α−2λ−1sh2λ tdt

≤

∫ 1

0
(sh t)α−1ch tdt =

∫ 1

0
(sh t)α−1d(sh t) =

1
α

shα1.

From (4.1) and (4.2) it follows, that =1(ch x) for almost every x ∈ [0,∞) is convergent absolutely.
By using the Hölder inequality

|=2 (ch x)| ≤
∫
∞

1
(sh t)α−2λ−1 Aλch t | f (ch x)| sh2λ tdt

≤
∥∥Aλch t f

∥∥
L p,λ
·

(∫
∞

1
(sh t)(α−2λ−1)q sh2λ tdt

) 1
q

≤ ‖ f ‖L p,λ

(∫
∞

1
(sh t)(α−2λ−1)q+2λ ch tdt

) 1
q

= ‖ f ‖L p,λ

(∫
∞

1
(sh t)(α−2λ−1)q+2λ d(sh t)

) 1
q

=

(
(sh1)(α−2λ−1)q+2λ+1

(2λ+ 1− α) q − 2λ− 1

) 1
q

· ‖ f ‖L p,λ
= cα,λ,p ‖ f ‖L p,λ

,

from this it follows the absolutely convergence of =2(ch x) for almost every x ∈ [0,∞) .
Thus, for all f ∈ L p,λ [0,∞), 1 ≤ p < 2λ+1

α
, G-Riesz potential =αG f (ch x) is convergent absolutely for almost

every x ∈ [0,∞) .
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(b) We have

=
α
G f (ch x) =

(∫ r

0
+

∫
∞

r

)
Aλch t f (ch x)(sh t)α−2λ−1sh2λ tdt = A1(x, r)+ A2(x, r). (4.3)

We consider A1(x, r). Let 0 < r < 2.

|A1(x, r)| ≤
∫ r

0

∣∣Aλch t f (ch x)
∣∣ (sh t)2λ(sh t)α−2λ−1dt

≤

∞∑
k=0

∫ r
2k

r
2k+1

Aλch t | f (ch x)| sh2λ tdt

(sh t)2λ+1−α

≤

∞∑
k=0

(
sh

r

2k+1

)α (
sh

r

2k+1

)−2λ−1
∫ r

2k

0
Aλch t | f (ch x)| sh2λ tdt

. MG,1 f (ch x)
∞∑

k=1

(
1
2k sh

r

2

)α
.
(

sh
r

2

)α
MG,1 f (ch x)

∞∑
k=1

1
2kα

.
(

sh
r

2

)α
MG,1 f (ch x), (4.4)

as sh t
a ≤

1
a sh t for a ≥ 1.

We consider A2(x, r). By Hölder inequality

|A2(x, r)| ≤

(∫
∞

r

∣∣Aλch t f (ch x)
∣∣p

sh2λ tdt

) 1
p
(∫
∞

r
(sh t)(α−2λ−1)qsh2λ tdt

) 1
q

≤
∥∥Aλch t f

∥∥
L p,λ

(∫
∞

r/2
(sh t)(α−2λ−1)q+2λch tdt

) 1
q

≤ ‖ f ‖L p,λ

( (
sh r

2

)(α−2λ−1)q+2λ+1

(2λ+ 1− α) q − 2λ− 1

) 1
q

< ‖ f ‖L p,λ

(
sh

r

2

)α−2λ−1+ 2λ+1
q

= ‖ f ‖L p,λ

(
sh

r

2

)α−2λ−1+(2λ+1)
(

1
p−

α
2λ+1

)

= ‖ f ‖L p,λ

(
sh

r

2

)(2λ+1)
(

1
p−1

)
= ‖ f ‖L p,λ

(
sh

r

2

)− 2λ+1
q
. (4.5)

Taking into account (4.4) and (4.5) in (4.3), we obtain

∣∣=αG f (ch x)
∣∣ ≤ ((sh

r

2

)α
MG,1 f (ch x)+

(
sh

r

2

)− 2λ+1
q
‖ f ‖L p,λ

)
. (4.6)

Minimum of the right-hand side of the inequality (4.6) reaches to

sh
r

2
=

(
2λ+ 1
αq

·
‖ f ‖L p,λ

MG,1 f (ch x)

) p
2λ+1

.

Then from (4.6) we have

∣∣=αG f (ch x)
∣∣ ≤ {( ‖ f ‖L p,λ

MG,1 f (ch x)

) αp
2λ+1

MG,1 f (ch x)+

(
‖ f ‖L p,λ

MG,1 f (ch x)

)− p
q

‖ f ‖L p,λ

}

=
(
MG,1 f (ch x)

) p
q ‖ f ‖

1− p
q

L p,λ
,

for the condition 1
p −

1
q =

α
2λ+1 ⇒ 1− p

q =
αp

2λ+1 .
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From this we have∫
∞

0

∣∣=αG f (ch t)
∣∣q sh2λ tdt ≤

∥∥MG,1 f (ch(·))
∥∥p

L p,λ
· ‖ f ‖q−p

L p,λ
≤ ‖ f ‖q−p

L p,λ
· ‖ f ‖p

L p,λ
= ‖ f ‖qL p,λ

,

from this it follows that for 0 < r < 2

‖I αG‖Lq, λ .
∥∥=αG f

∥∥
Lq,λ
. ‖ f ‖L p,λ

. (4.7)

Now let 2 ≤ r <∞. Then from (4.3) and by Lemma 1.1 we have

|A1 (x, r)| ≤
∫ r

0

Aλch t | f (ch x) |sh2λ tdt

(sh t)2λ+1−α =

∞∑
k=0

∫ r
2k

r
2k+1

Aλch t | f (ch t)| sh2λ tdt

(sh t)2λ+1−α

≤

∞∑
k=0

(
sh

r

2k+1

)α+2λ−1 (
sh

r

2k+1

)−4λ
∫ r

2k

0
Aλch t | f (ch x) |sh2λ tdt

.
∞∑

k=0

(
sh

r

2k+1

)α+2λ−1 (
ch

r

2k+1

)−4λ
∫ r

2k

0
Aλch t | f (ch x)| sh2λ tdt

. MG,2 f (ch x)
(

sh
r

2

)α+2λ−1 ∞∑
k=1

1

2(α+2λ−1)k
.
(

sh
r

2

)α+2λ−1
MG,2 f (ch x) . (4.8)

Taking into account Hölder inequality from (4.3) we obtain

|A1 (x, r)| ≤ ‖ f ‖L p, λ

(∫
∞

r
(sh t)(α−2λ−1)q sh2λ tdt

) 1
q

. ‖ f ‖L p, λ

(∫
∞

r

(
sh t

2

)(α−2λ−1)q(
ch t

2

)(2λ+1−α)q

sh2λ t
2 d
(
sh t

2

)(
ch t

2

)1−2λ

) 1
q

. ‖ f ‖L p, λ

(∫
∞

r

(
sh

t

2

)(α−2λ−1)q (
sh

t

2

)4λ−1

d

(
sh

t

2

)) 1
r

. ‖ f ‖L p, λ

(
sh

r

2

)α−2λ−1+ 4λ
q
. (4.9)

Now from (4.3), (4.8) and (4.9) we have

|=
α
G f (ch x) | .

((
sh

r

2

)α+2λ−1
MG,2 f (ch x)+

(
sh

r

2

)α−2λ−1+ 4λ
q
‖ f ‖L p, λ

)
. (4.10)

Minimum of the right-hand side of the inequality (4.10) reaches to

sh
r

2
=

(
(2λ+ 1− α) q − 4λ

(α + 2λ− 1) q

‖ f ‖L p, λ

MG,2 f (ch x)

) p
4λ

.

Then from (4.10) we have

|=
α
G f (ch x)| .


(
‖ f ‖L p, λ

MG,2 f (ch x)

) (α+2λ−1)p
4λ

MG,2 f (ch x)+

(
‖ f ‖L p, λ

MG,2 f (ch x)

) (α+2λ−1)p−4λ
4λ

‖ f ‖L p, λ


=
(
MG,2 f (ch x)

) (1+2λ−α)p+4λ
4λ ‖ f ‖

(α+2λ−1)p
4λ

L p, λ
.

From this we obtain∫
∞

0
|=
α
G f (ch x)|qsh2λ xdx ≤ ‖MG f ‖

(1−2λ−α)q
4λ +q

‖ f ‖
(α+2λ−1)p

4λ
L p, λ

. ‖ f ‖
q+ (1−2λ−α)q

4λ
L p, λ

‖ f ‖
(α+2λ−1)q

4λ
L p, λ

= ‖ f ‖qL p, λ
.
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From this it follows that for 2 ≤ r <∞

‖I αG f ‖Lq,λ . ‖F
α
G f ‖Lq,λ . ‖ f ‖L p,λ .

Combining last inequality and (4.7) we obtain the approval (b).
c Let f ∈ L1,λ [0,∞) and 0 < r < 2. By (4.3) we get∣∣{x : |=αG f (ch x)| > 2β

}∣∣
λ
≤ |{x : |A1(x, r)| > β}|λ + |{x : |A2(x, r)| > β}|λ .

From inequality (4.4) and Theorem 2.2 we have

β |{x ∈ [0,∞) : |A1(x, r) | > β}|λ = β

∫
{x∈[0,∞) :|A1(x,r) |>β}

sh2λ xdx

≤ β

∫
{x∈[0,∞):cα,λ(shα r

2 )MG f (ch x)>β}
sh2λ xdx

= β

∣∣∣∣{x ∈ [0,∞) : MG f (ch x) >
β

shα r
2

}∣∣∣∣
λ

≤ β ·
cλ
β

shα
r

2

∫
∞

0
| f (ch x)| sh2λ xdx = cλshα

r

2
‖ f ‖L1,λ

,

and also

|A2(x, r)| ≤
∫
∞

r

∣∣Aλch t f (ch x)
∣∣ (sh t)α−2λ−1sh2λ tdt

≤

∫
∞

r

∣∣Aλch t f (ch x)
∣∣ sh2λ tdt

(sh t)2λ+1−α ≤

∫
∞

r

∣∣Aλch t f (ch x)
∣∣ sh2λ tdt(

sh t
2

)2λ+1−α

≤

(
sh

r

2

)α−2λ−1
∫
∞

r

∣∣Aλch t f (ch x)
∣∣ sh2λ tdt ≤

(
sh

r

2

)− 2λ+1
q
‖ f ‖L1,λ

.

Suppose
(
sh r

2

)− 2λ+1
q ‖ f ‖L1,λ

= β, we obtain |A2(x, r)| ≤ β and consequently |{x ∈ [0,∞) : |A2(x, r)| > β}|λ =

0.
Finally we get∣∣{x ∈ [0,∞) :

∣∣=αG f (ch x)
∣∣ > β

}∣∣
λ
≤ cα,λ ·

1
β

shα
r

2
‖ f ‖L1,λ

≤ cλ
(

sh
r

2

)α+ 2λ+1
q
= cλ

(
sh

r

2

)2λ+1
= cλ

(
1
β
‖ f ‖L1,λ

)q

.

From this and (3.11) for 0 < r < 2 it follows (4.1). Now we consider the case 2 ≤ r < ∞. From the inequality
(4.8) and Theorem 2.2 we have

|{x ∈ [0, ∞) : |A1 (x, r) > β|}|λ = β

∫
{x∈[0,∞):A1(x, r)>β}

sh2λ xdx

≤ β

∫
{x∈[0,∞):(sh r

2 )
α+2λ−1 MG f (ch x)>β}

= β

∣∣∣∣∣
{

x ∈ [0, ∞) : MG f (ch x) >
β(

sh r
2

)α+2λ−1

}∣∣∣∣∣
λ

≤ cλ · β ·
1
β

(
sh

r

2

)α+2λ−1
∫
∞

0
| f (ch x) |sh2λ xdx

= cλ
(

sh
r

2

)α+2λ−1
‖ f ‖L1, λ .
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On the other hand

|A2 (x, r)| ≤
∫
∞

r

|Ach t f (ch x) sh2λ tdt |

(sh t)2λ+1−α ≤

∫
∞

r

Ach t | f (ch x) |sh2λ tdt

(sh t)2λ+1−α

≤

∫
∞

r

Ach t | f (ch x) |sh2λ tdt(
sh t

2

) (α+2λ−1)(2λ+1)
α q

≤

(
sh

r

2

)− (α+2λ−1)(2λ+1)
α q

‖ f ‖L1, λ ,

since

2λ+ 1− α >
(α + 2λ− 1) (2λ+ 1)

α q
=
(α + 2λ− 1) (2λ+ 1) (2λ+ 1− α)

α (2λ+ 1)

=
(α + 2λ− 1) (2λ+ 1− α)

α
⇔ α > α + 2λ− 1⇔ λ <

1
2
.

Putting
(
sh r

2

) (α+2λ−1)(2λ+1)
α q ‖ f ‖L1,λ = β, we obtain |A2 (x, r) | ≤ β and consequently

|{x ∈ [0, ∞) : |A2 (x, r) | > β}|λ = 0.

Now by Theorem 2.2 we have

|{x ∈ [0, ∞) : |=αG f (ch x) | > 2β}|λ ≤ cλ
1
β

(
sh

r

2

)α+2λ−1
‖ f ‖L1,λ

≤ cλ
(

sh
r

2

)α+2λ−1+ (α+2λ−1)(2λ+1)
α q

‖ f ‖L1, λ

= cλ
(

sh
r

2

) (α+2λ−1)(2λ+1)
α

‖ f ‖L1, λ ≤ cλ

(
1
β
‖ f ‖L1, λ

)q

.

From this and (3.11) for 2 ≤ r <∞ it follows (4.10).
Thus, f 7→ =αG f is weak type (1, q) and Theorem 4.1 is proved. �

Definition 4.1 ([14]). We denote by B M OG [0, ∞) the BMO-Gegenbauer space (G-BMO space) as the set of
functions locally integrable on [0, ∞), with finite norm

‖ f ‖B M OG = sup
x, r∈(0,∞)

1
|H(0, r)|λ

∫
H(0, r)

∣∣Aλch t f (ch x)− fH(0, r)(ch x)
∣∣ sh2λ tdt,

where

fH(0, r)(ch x) =
1

|H(0, r)|λ

∫
H(0,r)

Aλch t | f (ch x)| sh2λ tdt.

As an analogue of [14] we introduce modified fractional Riesz–Gegenbauer integral (G-Riesz integral) by

=̃
α
G f (ch x) =

∫
∞

0
(Ach t (sh x)α−2λ−1

− (sh t)α−2λ−1χ
( 1

4 ,∞)
(ch t)) f (ch t)sh2λ tdt

and modified Riesz–Gegenbauer potential (G-Riesz potential) by

Ĩ αG f (ch x) =
1

Γ (α2 )

∫
∞

0

(∫
∞

0
r
α
2−1hr (ch t) dr

)
× (Ach t (sh x)α−2λ−1

− (sh t)α−2λ−1χ
( 1

4 ,∞)
(ch t)) f (ch t)sh2λ tdt,

where χ( 1
4 ,∞

) (ch t) is a characteristic of function of the interval
(

1
4 , ∞

)
. Also in the proof of inequality (3.11) we

obtain that

| Ĩ αG f (ch x) | .
∫
∞

0

∣∣∣∣Ach t (sh x)α−2λ−1
− (sh t)α−2λ−1 χ( 1

4 ,∞
) (ch t)

∣∣∣∣ | f (ch t) |sh2λ tdt,
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from this we have

‖ Ĩ αG f ‖B M OG . ‖=̃
α
G f ‖B M OG . (4.11)

The following theorem is valid.

Theorem 4.2. Let 1− 2λ < α < 2λ+ 1, pα = 2λ+ 1 and f ∈ L p,λ [0,∞).
Then =̃αG f ∈ B M OG [0,∞) and the inequality∥∥=̃αG f

∥∥
B M OG

. ‖ f ‖L p,λ

is valid.

Proof. Suppose that

f1 (ch x) = f (ch x) χ(0,r/4) (ch x) , f2 (ch x) = f (ch x)− f1 (ch x) ,

where χ(0,r/4) (ch x) is the characteristic function of the interval
(
0, r

4

)
, that is,

χ(0,r/4) (ch x) =

1, 0 < x <
r

4
0, x >

r

4
.

Then

=̃
α
G f (ch x) = =̃αG f1 (ch x)+ =̃αG f2 (ch x) = F1 (ch x)+ F2 (ch x) ,

where

F1 (ch x) =
∫ r/4

0

(
Aλch t (sh x)α−2λ−1

− (sh t)α−2λ−1 χ( 1
4 ,∞

) (ch t)

)
f (ch t) sh2λ tdt

and

F2 (ch x) =
∫
∞

r/4

(
Aλch t (sh x)α−2λ−1

− (sh t)α−2λ−1 χ( 1
4 ,∞

) (ch t)

)
f (ch t) sh2λ tdt.

Since the function f1 (ch x) has compact support, then the number

a1 = −

∫
(0,r/4)/

(
0,min

{
1
4 ,

r
4

}) (sh t)α−2λ−1 f (ch t) sh2λ tdt

is finite. We can write

F1(ch x)− a1 =

∫ r/4

0
Aλch t (sh x)α−2λ−1 f (ch x)sh2λ tdt

−

∫
(0,r/4)/

(
0,min

{
1
4 ,

r
4

})(sh t)α−2λ−1 f (ch t) sh2λ tdt

+

∫
(0,r/4)

(
0,min

{
1
4 ,

r
4

}) (sh t)α−2λ−1 f (ch t) sh2λ tdt

=

∫ r/4

0
Aλch t (sh x)α−2λ−1 f (ch t) sh2λ tdt

=

∫
∞

0
Aλch t (sh x)α−2λ−1 f1 (ch t) sh2λ tdt. (4.12)

Consider the integral

Aλch t f1 (ch x) = cλ

∫ π

0
f (ch xch t − sh xsh t cos ϕ)

×χ(0,r/4) (ch xch t − sh xsh t cos ϕ) (sin ϕ)2λ−1 dϕ.
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So far as, ch (x − t) ≤ ch xch t − sh xsh t cos ϕ ≤ ch (x + t), then for |x − t | > r
4

χ(0,r/4) (ch xch t − sh xsh t cos ϕ) = 0,

and then

Aλch t f1 (ch x) = cλ

∫
{ϕ∈[0,π ],|x−t |≤r/4}

f (ch xch t − sh xsh t cos ϕ) (sin ϕ)2λ−1 dϕ

= Aλch t f (ch x) .

Then for (4.12) we have

|F1 (ch x)− a1| ≤

∫
{t∈[0,∞);|x−t |≤r/4}

(sh t)α−2λ−1 Aλch t | f (ch x)| sh2λ tdt. (4.13)

We consider the estimation (4.13).
Let

(
x − r

4 , x + r
4

)
∩ [0,∞) =

(
0, x + r

4

)
, then 0 ≤ x ≤ r/4 and we have from (4.13) and (4.14)

|F1 (ch x)− a1| ≤

∫ x+r/4

0
(sh t)α−2λ−1 Aλch t | f (ch x)| sh2λ tdt

≤

∫ r

0
(sh t)α−2λ−1 Aλch t | f (ch x)| sh2λ tdt ≤

(
sh

r

2

)α
MG,1 f (ch x) . (4.14)

Let now
(
x − r

4 , x + r
4

)
∩ [0,∞) =

(
x − r

4 , x + r
4

)
, then x > r

4 . Consider the case r
4 ≤ x ≤ 3r

4 . Then

|F1 (ch x)− a1| ≤

∫ x+r/4

x−r/4
(sh t)α−2λ−1 Aλch t | f (ch x)| sh2λ tdt

≤

∫ r

0
(sh t)α−2λ−1 Aλch t | f (ch x)| sh2λ tdt ≤

(
sh

r

2

)α
MG,1 f (ch x) . (4.15)

Finally, let 3r
4 ≤ x <∞, then by Hölder inequality, we have

|F1 (ch x)− a1| =

∫ x+ r
4

x− r
4

(sh t)α−2λ−1 Aλch t | f (ch x)| sh2λ tdt

≤
∥∥Aλch t f

∥∥
L p,λ

(∫ x+ r
4

x− r
4

(sh t)(α−2λ−1)q sh2λ tdt

) 1
q

≤ ‖ f ‖L p,λ

(
sh
(

x −
r

4

))α−2λ−1
(∫ x+ r

4

x− r
4

(
2sh

t

2
ch

t

2

)2λ

dt

) 1
q

≤ cλ,p ‖ f ‖L p,λ

(
sh
(

x −
r

4

))α−2λ−1
(∫ x+ r

4

x− r
4

(
sh

t

2

)2λ (
ch

t

2

)2λ−1

d

(
sh

t

2

)) 1
q

≤ cλ,p ‖ f ‖L p,λ

(
sh
(

x −
r

4

))α−2λ−1
(∫ x+ r

4

x− r
4

sh2λ t

2
d

(
sh

t

2

)) 1
q

≤ cλ,p ‖ f ‖L p,λ

(
sh
(

x −
r

4

))α−2λ−1 (
sh
( x

2
+

r

8

)) 2λ+1
q

≤ cλ,p ‖ f ‖L p,λ

(
sh
( x

2
+

r

8

))α−2λ−1+(2λ+1)
(

1− α
2λ+1

)
= cλ,p ‖ f ‖L p,λ

. (4.16)

Combining (4.14)–(4.16), we obtain that for 0 < r < 2

|F1 (ch x)− a1| ≤ cα,λ
(

sh
r

2

)α
MG,1 f (ch x)+ cλ,p ‖ f ‖L p,λ

.
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From this it follows that

sup
0<r<2

1
|H (0, r)|λ

∫ r

0

∣∣Aλch t (F1 (ch x)− a1)
∣∣ sh2λ tdt

≤ sup
0<r<2

1
|H (0, r)|λ

∫ r

0
Aλch t |F1 (ch x)− a1| sh2λ tdt

≤ sup
0<r<2

(
sh

r

2

)α−2λ−1
∫ r

0
Aλch t

∣∣MG,1 f (ch x)
∣∣ sh2λ tdt + cλ,p

‖ f ‖L p,λ

|H (0, r)|λ

∫ r

0
sh2λ tdt

≤ sup
0<r<2

(
sh

r

2

)α−2λ−1
(∫ r

0
sh2λ tdt

) 1
q ∥∥Aλch t

∣∣MG,1 f (·)
∣∣∥∥

L p,λ
+ cλ,p ‖ f ‖L p,λ

≤ sup
0<r<2

(
sh

r

2

)α−2λ−1 (
sh

r

2

) 2λ+1
q ∥∥MG,1 f

∥∥
L p,λ
+ cλ,p ‖ f ‖L p,λ

. ‖ f ‖L p,λ
. (4.17)

We consider the case 2 ≤ r <∞. Let 0 ≤ x ≤ 3r
4 .

Then

|F1 (ch x)− a1| ≤

∫ r

0
(sh t)α−2λ−1 Ach t | f (ch x) |sh2λ tdt ≤

∞∑
k=0

∫ r
2k

r
2k+1

Ach t | f (ch x) sh2λtdt |

(sh t)2λ+1−α

≤

∞∑
k=0

(
sh

r

2k+1

)α+2λ−1 (
sh

r

2k+1

)−4λ
∫ r

2k

0
Ach t | f (ch x) |sh2λtdt

.
(

sh
r

2

)α+2λ−1
MG,2 f (ch x) . (4.18)

Using (4.18), and by Lemma 1.1 we obtain

sup
r≥2

1
|H (0, r) |λ

∫ r

0
|Ach t f (ch x) |sh2λ tdt

≤ ‖MG,2 f ‖L p, λ sup
r≥2

(
sh

r

2

)α−2λ−1
(∫ r

0
sh2λ tdt

) 1
q

+ ‖ f ‖L p, λ

. ‖ f ‖L p, λ sup
r≥2

(
sh

r

2

)α−2λ−1 (
ch

r

2

) 4λ
q
+ ‖ f ‖L p, λ . ‖ f ‖L p, λ ≤ ‖ f ‖L p, λ

. ‖ f ‖L p, λ sup
r≥2

(
ch

r

2

)α−2λ−1+ 4λ
q
‖ f ‖L p, λ . ‖ f ‖L p, λ , (4.19)

since α − 2λ− 1+ 4λ
q = α − 2λ− 1+ 4λ

(
1− 1

2λ+1

)
= α + 2λ− 1− 4λα

2λ+1 =
α−2λ
1+2λα + 2λ− 1 < 0⇔ 1−2λ

1+2λα <

1− 2λ⇔ 0 < α < 2λ+ 1.
Combining (4.17) and (4.19) we obtain that

sup
r>0

1
|H (0, r) |λ

∫ r

0
|Ach t (F1 (ch x)− a1) |sh2λ tdt . ‖ f ‖L p, λ . (4.20)

Suppose a2 =
∫(

0,max
{

1
4 ,

r
4

})
/(0, r

4 )
(sh t)α−2λ−1 f (ch t) sh2λ tdt.

We estimate above the difference

|F2 (ch x)− a2| =

∣∣∣∣∣
∫
∞

r
4

(
Aλch t (sh x)α−2λ−1

− (sh t)α−2λ−1 χ( 1
4 ,1
) (ch t)

)
f (ch t) sh2λ tdt

−

∫
(0,max

{
1
4 ,

r
4

}
)/(0, r

4 )
(sh t)α−2λ−1 f (ch t) sh2λ td t |
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=

∣∣∣∣∣
∫
∞

r
4

(
Aλch t (sh x)α−2λ−1

− (sh t)α−2λ−1
)

f (ch t) sh2λ tdt

∣∣∣∣∣
≤

∫
∞

r
4

| f (ch t)| B (x, t) sh2λ tdt = τ (x, r) . (4.21)

We consider expansion

B (x, t) =
∣∣∣Aλch t (sh x)α−2λ−1

− (sh t)α−2λ−1
∣∣∣

= cλ

∣∣∣∣∫ π

0

(
(ch xch t − sh xsh t cos ϕ)2 − 1

) α−2λ−1
2
− ((sh t)α−2λ−1) (sin ϕ)2λ−1 dϕ

∣∣∣∣
≤ cλ

∫ π

0

∣∣∣(max (sh (x + t) , |sh (x − t)|))α−2λ−1
− (sh t)α−2λ−1

∣∣∣ (sin ϕ)2λ−1 dϕ.

We estimate above the expression B(x, t). It is easy to notice that

B(x, t) .
∣∣∣max ({sh (x + t), |sh (x − t)|})α−2λ−1

− (sh t)α−2λ−1
∣∣∣ ≡ V (x, t).

I. If 0 < t < x − t <∞, then 0 < t < x
2 < x + t .

From this it follows, that

(sh t)α−2λ−1 > (sh (x + t))α−2λ−1 . (4.22)

II. If 0 < x − t < t <∞, then x
2 < t < x < x + t , and in this case the inequality (4.22) is just.

III. If 0 < t − x <∞, then x < t < x + t <∞.
Again the inequality (4.22) takes place.
IV. If 0 < x + t <∞, since t < x + t , then (4.22) is valid.
Combining all these cases, we obtain that

V (x, t) = (sh t)α−2λ−1
− (sh (x + t))α−2λ−1 .

Applying the Lagrange formula to segment [t, x + t], we obtain

V (x, t) ≡ Vξ (x, t) =
(2λ+ 1− α) xch ξ

(sh ξ)2λ+2−α , t < ξ < t + x .

From this we have

νξ (x, t) . x (sh t)α−2λ−2 ξ < 1, (4.23)

νξ (x, t) . x (sh t)α−2λ−1 ξ ≥ 1,

At first we consider the case ξ < 1.
Applying the Hölder inequality and also (4.22) and (4.23), from (4.21) for x ≤ r we obtain

τ (x, r) =
∫
∞

r/4
| f (ch t)| B (x, t) sh2λ tdt . ‖ f ‖L p,λ

x

(∫
∞

r/4

sh2λ tdt

(sh t)(2λ+2−α)q

) 1
q

. ‖ f ‖L p,λ
r

(∫
∞

r/4
(sh t)(α−2λ−2)q+2λ dsh t

) 1
q

= ‖ f ‖L p.λ

r

sh r
4
. ‖ f ‖L p,λ

. (4.24)

By the hypothesis of theorem α − 2λ − 2 + (2λ+ 1) /q = α − 2λ − 2 + (2λ+ 1)
(

1− α
2λ+1

)
= α − 2λ − 2 +

2λ+ 1− α = −1.
Now we consider the case ξ ≥ 1.
Let 0 < x ≤ 8. Taking into account (4.22) and acting as above for x ≤ r we obtain

τ (x, r) =
∫
∞

r/4
| f (ch t)| B (x, t) sh2λ tdt . ‖ f ‖L p,λ

x

(∫
∞

r/4

sh2λ tdt

(sh t)(2λ+1−α)q

) 1
q
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. ‖ f ‖L p,λ
x

(∫
∞

x/4

(
sh2λ t

2

) (
ch t

2

)2λ−1 d(sh t
2 )(

2sh t
2 ch t

2

)(2λ+1−α)q

) 1
q

. ‖ f ‖L p,λ
x

(∫
∞

x/4

(
sh t

2

)4λ−1 d(sh t
2 )(

sh t
2

)(2λ+1−α)q

) 1
q

= ‖ f ‖ x

(∫
∞

x/4

(
sh

t

2

)(α−2λ−1)q+4λ−1

d

(
sh

t

2

)) 1
q

. ‖ f ‖L p,λ
x
(

sh
x

8

)α−2λ−1+4λ/q
= ‖ f ‖L p,λ

x
(

sh
x

8

)α−2λ−1+4λ
(

1− α
2λ+1

)

= ‖ f ‖L p,λ
x

(
sh

t

8

) 1−2λ
1+2λα+2λ−1

. ‖ f ‖L p,λ

(
sh

x

8

) 1−2λ
1+2λα+2λ

. ‖ f ‖L p,λ
. (4.25)

Let now 8 < x <∞. Then as above, we obtain

τ (x, r) . ‖ f ‖L p,λ
x

(∫
∞

x/4

sh2λ tdt

(sh t)(2λ+1−α)q

) 1
q

. ‖ f ‖L p,λ
x
(

sh
x

8

) 1−2λ
1+2λα+2λ−1

= ‖ f ‖L p,λ

x(
sh x

8

)1−2λ− 1−2λ
1+2λα

= ‖ f ‖L p,λ

x(
2sh x

16 ch x
16

)1−2λ− 1−2λ
1+2λα

= ‖ f ‖L p,λ

x(
2sh x

2n

)2(1−2λ− 1−2λ
1+2λ x

) . · · · . ‖ f ‖L p,λ

x(
2nsh x

2n+3

)2n
(

1−2λ− 1−2λ
1+2λ x

)

. ‖ f ‖L p,λ

x( x
8

)2n
(

1−2λ− 1−2λ
1+2λα

) .‖ f ‖L p,λ

8( x
8

)2n
(

1−2λ− 1−2λ
1+2λα

)
−1
.‖ f ‖L p,λ

. (4.26)

For the sufficiently large n = n0

2n0

(
1− 2λ−

1− 2λ
1+ 2λ

α

)
− 1 ≥ 0⇔

1− 2λ
1+ 2λ

α ≤ 1− 2λ−
1

2n0

1− 2λ
1+ 2λ

α < 1− 2λ⇔ α < 2λ+ 1.

Combining the estimates (4.24)–(4.26), on (4.21) for 0 < x ≤ r we obtain

|F2 (ch x)− a2| . ‖ f ‖L p,λ
.

Hence we have∣∣Aλch t F2 (ch x)− a2
∣∣ ≤ Aλch t |F2 (ch x)− a2| . ‖ f ‖L p,λ

. (4.27)

From (4.27) it follows, that

sup
r>0

1
|H (0, r)|λ

∫ r

0

∣∣Aλch t F2 (ch x − a2)
∣∣ sh2λ tdt

≤ sup
r>0

1
|H (0, r)|λ

∫ r

0
Aλch t |F2 (ch x)− a2| sh2λ tdt

. ‖ f ‖L p, λ
sup
r>0

1
|H (0, r)|λ

∫ r

0
sh2λtdt . ‖ f ‖L p,λ

. (4.28)

Denote a f = a1 + a2 =
∫(

0,max
{

1
4 ,

r
4

}) (sh t)α−2λ−1 f (ch t) sh2λ tdt .
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Finally from (4.20) and (4.28) we obtain

sup
r>0

1
|H (0, r)|λ

∫ r

0

∣∣∣Aλch t =̃
α
G f (ch x)− a f

∣∣∣ sh2λ tdt

= sup
r>0

1
|H (0, r)|λ

∫ r

0

∣∣Aλch t F1 (ch x)− a1 + Aλch t F2 (ch x)− a2
∣∣ sh2λ tdt

≤ sup
r>0

1
|H (0, r)|λ

∫ r

0

∣∣Aλch t F1 (ch x)− a1
∣∣ sh2λ tdt

+ sup
r>0

1
|H (0, r)|λ

∫ r

0

∣∣Aλch t F2 (ch x)− a2
∣∣ sh2λ tdt . ‖ f ‖L p,λ

,

from this it follows that∥∥∥=̃αG f
∥∥∥

B M OG [0,∞)
≤ 2 sup

x,r>0

1
|H (0, r)|λ

∫ r

0

∣∣∣Aλch t =̃
α
G f (ch x)− a f

∣∣∣ sh2λ tdt . ‖ f ‖L p,λ
.

Theorem 4.2 is proved. �

Corollary 4.1. Let αp = 2λ+1, 1−2λ < α < 2λ+1, f ∈ L p,λ [0,∞). If the integral =αG f is absolutely convergent,
then =αG f ∈ B M OG [0,∞) and the inequality∥∥=αG f

∥∥
B M OG [0,∞) . ‖ f ‖L p,λ[0,∞)

is valid.
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Abstract

It is shown that, for any nonzero σ -finite translation invariant (translation quasi-invariant) measure µ on the real line R, the
cardinality of the family of all translation invariant (translation quasi-invariant) measures on R extending µ is greater than or equal
to 2ω1 , where ω1 denotes the first uncountable cardinal number. Some related results are also considered.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Let E be a base (ground) set and let G be a group of transformations of E . The pair (E,G) is usually called a
space equipped with a transformation group.

A measure µ defined on some G-invariant σ -algebra of subsets of E is called quasi-invariant with respect to G
(briefly, G-quasi-invariant) if, for any µ-measurable set X and for any transformation g from G, the relation

µ(X) = 0 ⇔ µ(g(X)) = 0

holds true. Moreover, if the equality µ(g(X)) = µ(X) is valid for any µ-measurable X and for any g from G, then µ
is called an invariant measure with respect to G (briefly, G-invariant measure).

According to these definitions, the triplet of the form (E,G, µ) determines the structure of an invariant (quasi-
invariant) measure on E .

Suppose that µ is a nonzero σ -finite G-invariant (G-quasi-invariant) measure on E . It is known that if a group G
is uncountable and acts freely in E , then there always exist subsets of E nonmeasurable with respect to µ (see [1]; cf.
also [2]). So the domain of µ differs from the family of all subsets of E , i.e., dom(µ) 6= P(E). In this connection, the
natural question arises whether there exists a G-invariant (G-quasi-invariant) measure µ′ on E strongly extending µ.
This question was studied for various types of spaces (E,G, µ). Undoubtedly, the most interesting case for classical
Real Analysis is when E coincides with the n-dimensional Euclidean space Rn , a group G is a subgroup of the group
of all isometric transformations of Rn , and µ is a G-invariant extension of the standard n-dimensional Lebesgue
measure λn on Rn (see, for instance, [3–8]).
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Another important case is when E = Γ , where Γ is an uncountable σ -compact locally compact topological group,
Γ coincides with the group of all left (right) translations of Γ , and µ is a G-invariant extension of the left (right) Haar
measure on Γ (cf. [9,5,10,11]).

A more general form of the above question is as follows. For a given space (E,G, µ), denote by MG(µ) the family
of all measures on E extending µ and invariant (quasi-invariant) with respect to G. It is natural to try to evaluate the
cardinality of MG(µ) in terms of card(E) and card(G). In the present paper, we will be dealing with this problem
for the case when E coincides with the real line R and G is the group of all translations of R. Notice that the method
applied in our further considerations is primarily taken from [6].

Below, we will use the following standard notation:

X4Y = the symmetric difference of two sets X and Y ;
ω = the least infinite cardinal (ordinal) number;
ω1 = the least uncountable cardinal (ordinal) number;
c = the cardinality of the continuum.

Let µ be a measure defined on some σ -algebra of subsets of E (here µ is not assumed to be invariant or quasi-
invariant under a nontrivial group of transformations of E). The Hilbert space of all square µ-integrable real-valued
functions on E is usually denoted by the symbol L2(µ). If L2(µ) is a separable Hilbert space, then µ is called a
separable measure. Otherwise, µ is called a nonseparable measure.

Treating the real line R as a vector space over the field Q of all rational numbers and keeping in mind the existence
of a Hamel basis in R, it is not difficult to show that the additive group (R,+) admits a representation in the form

R = G + H (G ∩ H = {0}),

where G and H are some two subgroups of (R,+) and

card(G) = ω1, card(H) ≤ c.

We denote by I the σ -ideal generated by all those subsets X of R which are representable in the form X = Y + H ,
where Y ⊂ G and card(Y ) ≤ ω.

It can readily be seen that I is a translation invariant σ -ideal of sets in R.
We begin with the following auxiliary statement.

Lemma 1. There exists a partition {Xξ : ξ < ω1} of R satisfying these two relations:

(1) for any ordinal ξ < ω1, the set Xξ belongs to the σ -ideal I ;
(2) for each subset Ξ of ω1 and for any r ∈ R, the relation

(∪{Xξ : ξ ∈ Ξ })4(r + ∪{Xξ : ξ ∈ Ξ }) ∈ I
holds true, i.e., the set ∪{Xξ : ξ ∈ Ξ } is I -almost translation invariant in R.

The proof of this lemma is given in [6].
By combining Lemma 1 with the well-known (ω×ω1)-matrix of Ulam (see, e.g., [12]), the next auxiliary statement

can be deduced.

Lemma 2. Let {Xξ : ξ < ω1} be a partition of R described in Lemma 1 and let µ be a nonzero σ -finite translation
invariant (translation quasi-invariant) measure on R.

There exists a disjoint family {Ξ j : j ∈ J } of subsets of ω1 such that:

(1) card(J ) = ω1;
(2) for each index j ∈ J , the set Z j = ∪{Xξ : ξ ∈ Ξ j } is nonmeasurable with respect to µ (where {Xξ : ξ < ω1} is

a partition of R described in Lemma 1);
(3) µ∗(∪{Z j : j ∈ J }) = 0 (where the symbol µ∗ denotes the inner measure associated with µ).

Notice that the proof of Lemma 2 is similar to the argument presented in [6] (cf. also [7]).

Lemma 3. Let µ be a σ -finite translation invariant (translation quasi-invariant) measure on R. There exists a measure
µ′ on R such that:
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(1) µ′ is translation invariant (translation quasi-invariant);
(2) µ′ extends µ;
(3) I ⊂ dom(µ′).

Proof. If X is any set belonging to I , then the equality µ∗(X) = 0 is satisfied, because in R there are uncountably
many pairwise disjoint translates of X . So we may apply Marczewski’s standard method to µ and I for extending µ.
Namely, introduce the σ -algebra S ′ of all those subsets Z of R which admit a representation

Z = (Y ∪ X ′) \ X ′′ (Y ∈ dom(µ), X ′ ∈ I, X ′′ ∈ I)

and define on S ′ the functional µ′ by the formula

µ′(Z) = µ(Y ) (Z ∈ S ′).

It is not hard to verify that the definition of µ′ is correct (i.e., the value µ′(Z) does not depend on a representation of
Z in the above-mentioned form), and µ′ satisfies the relations. (1), (2), and (3) of Lemma 3. �

The preceding lemmas enable us to establish the following statement.

Theorem 1. Let µ be a nonzero σ -finite translation invariant (translation quasi-invariant) measure on R. Then the
inequality card(MR(µ)) ≥ 2ω1 holds true. In particular, there are measures on R strictly extending µ and invariant
(quasi-invariant) under the group of all translations of R.

Proof. Taking into account Lemma 3, we may assume without loss of generality that the measure µ is complete and
I ⊂ dom(µ).

Let {Z j : j ∈ J } be the disjoint family of subsets of R described in Lemma 2. This family has the following
properties:

(a) card(J ) = ω1 and the sets Z j ( j ∈ J ) are pairwise disjoint;
(b) every set Z j ( j ∈ J ) is nonmeasurable with respect to µ;
(c) for each set J0 ⊂ J and for every r ∈ R, the equality

µ((∪{Z j : j ∈ J0})4(r + ∪{Z j : j ∈ J0})) = 0

is valid;
(d) µ∗(∪{Z j : j ∈ J }) = 0.

Further, take a subset J1 of J and associate to this J1 the set

Z(J1) = ∪{Z j : j ∈ J1}.

By virtue of (c) and (d), we get the relations:
(e) for every r ∈ R, the set Z(J1) is µ-almost translation invariant, i.e.,

µ(Z(J1)4(r + Z(J1))) = 0;

(f) µ∗(Z(J1)) = 0.

Consequently, applying Marczewski’s method of extending invariant and quasi-invariant measures (cf. the proof
of Lemma 3), we obtain the measure µJ1 on R which extends µ, is invariant (quasi-invariant) under the group of all
translations of R, and satisfies the equality µJ1(Z(J1)) = 0.

Now, let us establish that if J1 and J2 are any two distinct subsets of J , then the associated measures µJ1 and µJ2

differ from each other. Indeed, if J1 6= J2, then either J1 \ J2 6= ∅ or J2 \ J1 6= ∅. We may suppose that J1 \ J2 6= ∅,
so there is an index j ∈ J1 \ J2. According to the definition of µJ1 , the set Z j turns out to be of µJ1 -measure zero. On
the other hand, the same set Z j cannot be of µJ2 -measure zero. To see this circumstance, suppose to the contrary that
µJ2(Z j ) = 0. Then, keeping in mind the construction of µJ2 , we must have

Z j = (T ∪ T ′) \ T ′′,

where

µ(T ) = 0, T ′ ⊂ Z(J2), T ′′ ⊂ Z(J2).
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However, it can easily be verified that the above relations imply the inclusion Z j ⊂ T and the equality µ(Z j ) = 0. In
particular, we obtain that Z j is a µ-measurable set, which contradicts (b).

Thus, we have an injective mapping from the power set P(ω1) into the family of all those measures on R which
extend µ and are translation invariant (translation quasi-invariant). The existence of such a mapping trivially yields
the desired inequality card(MR(µ)) ≥ 2ω1 , and the proof of Theorem 1 is finished. �

Remark 1. Consider the n-dimensional Euclidean space Rn , where n ≥ 1. Since there exists an isomorphism between
the additive groups (R,+) and (Rn,+), the direct analogue of Theorem 1 is valid for the space Rn (and, more
generally, for any uncountable vector space over the field Q of all rational numbers).

Remark 2. As an immediate consequence of Theorem 1, we get the relation

card(MR(µ)) ≥ 2ω1 ≥ 2ω = c.

This relation is a statement of ZFC set theory. Assuming the Continuum Hypothesis (CH), we directly come to the
much stronger inequality

card(MR(µ)) ≥ 2c.

We do not know whether the latter inequality can be proved within the framework of ZFC theory.

Let the symbol λ (= λ1) denote the standard Lebesgue measure on the real line R. Kakutani and Oxtoby
demonstrated in 1950 that there exist nonseparable measures on R belonging to the class MR(λ) (see [13]). Obviously,
all those measures are strict extensions of λ. A radically different approach to the problem of the existence of
nonseparable measures belonging to MR(λ) was given in the work by Kodaira and Kakutani (see again [13]).

The method of Kakutani and Oxtoby allows one to conclude that there exist at least 22c
nonseparable measures

on R, all of which extend λ and are translation invariant. Thus, for the concrete measure λ on R, the inequality of
Theorem 1 can be essentially strengthened and, in fact, we have the following equality:

card(MR(λ)) = 22c
.

In this context, the natural question arises whether the analogous equality

card(MR(µ)) = 22c

is valid for any nonzero σ -finite translation invariant (translation quasi-invariant) measure µ on R. We do not know
the answer to this question. Nevertheless, assuming the Continuum Hypothesis (CH), for a sufficiently wide class of
measures µ on R it can be proved that the last equality holds true, too.

Let (E,G, µ) be a space equipped with a σ -finite G-invariant (G-quasi-invariant) measure µ. Recall that µ is
metrically transitive (or ergodic) if, for any µ-measurable set X with µ(X) > 0, there exists a countable family
{gk : k < ω} of transformations from G such that

µ(E \ ∪{gk(X) : k < ω}) = 0.

It is well known that metrically transitive (ergodic) measures play an important role in many topics of mathematical
analysis and probability theory.

Lemma 4. Let (E,G) be a space equipped with a transformation group satisfying these two conditions:

(1) card(E) = ω1;
(2) the group G acts freely and transitively in E.

If µ is a nonzero σ -finite ergodic G-invariant (G-quasi-invariant) measure on E, then there exists a partition
{Xξ : ξ < ω1} of E such that:

(i) every set Xξ (ξ < ω1) is µ-thick in E, i.e., µ∗(E \ Xξ ) = 0;
(ii) for any set Ξ ⊂ ω1 and for each transformation g ∈ G, the inequality

card((∪{Xξ : ξ ∈ Ξ })4(g(∪{Xξ : ξ ∈ Ξ }))) ≤ ω

is valid.
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The proof of Lemma 4 is presented in [10].
Starting with the previous lemma and applying some modified version of the method of Kakutani and Oxtoby, we

get the following statement.

Theorem 2. Assume CH and let (E,G) be a space equipped with a transformation group, satisfying the
conditions (1) and (2) of Lemma 4.

Then, for every nonzero σ -finite ergodic G-invariant (G-quasi-invariant) measure µ on E, the class MG(µ)

contains at least 22c
nonseparable measures.

As has already been mentioned, the proof of Theorem 2 is based on Lemma 4 and on the argument of Kakutani
and Oxtoby [13] (cf. also [10]).

Remark 3. Marczewski’s method of extending σ -finite invariant (quasi-invariant) measures does not substantially
change the structure of an initial measure. On the other hand, the method of Kakutani and Oxtoby allows one to
obtain nonseparable translation invariant extensions of λ on R, starting with the separable measure λ (however, those
extensions are not ergodic). Further modifications of this method were applied to the Haar measure on an uncountable
σ -compact locally compact Polish topological group (see, for instance, [9]). Notice that various properties of invariant
and quasi-invariant measures given on algebraic-topological structures are thoroughly discussed in [14].

Theorem 3. Assume CH and let (E,G) be again a space equipped with a transformation group, satisfying the
conditions (1) and (2) of Lemma 4.

Then, for every nonzero σ -finite ergodic G-invariant (G-quasi-invariant) measure µ on E, the class MG(µ)

contains 22c
ergodic measures.

The proof of Theorem 3 follows the method presented in [7] for a concrete space (E,G, µ). Namely, in [7] the
role of (E,G, µ) is played by the triplet (Rn, Dn, λn), where n ≥ 1 and Dn denotes the group of all isometric
transformations of Rn . Under CH, the argument given in [7] for (Rn, Dn, λn) works also for a space (E,G, µ) of
Theorem 3.

Remark 4. Both Theorems 2 and 3 show that, supposing CH, the cardinality of the class MG(µ) is equal to the
cardinality of the class of all measures on E (where a space (E,G) satisfies (1) and (2) of Lemma 4 and µ is a
nonzero σ -finite ergodic G-invariant or G-quasi-invariant measure on E).
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Abstract

For nonzero invariant (quasi-invariant) σ -finite measures on an uncountable group (G, ·), the behaviour of small sets with
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Let G be an arbitrary group and µ be a nonzero σ -finite G-invariant (more generally, G-quasi-invariant) measure
defined on some σ -algebra of subsets of G. We recall that the symbol I (µ) denotes the σ -ideal of subsets of G,
generated by the family of all µ-measure zero sets. Members of I (µ) are usually called negligible sets with respect to
the given measure µ. Quite often, they are also called small sets with respect to µ.

Let us introduce one important notion concerning the general theory of small (negligible) sets.
Let G be an arbitrary group and let Y ⊂ G. We say that Y is G-absolutely negligible in G if, for any σ -finite

G-invariant (G-quasi-invariant) measure µ on G, there exists a G-quasi-invariant measure µ̂ on G extending µ and
such that µ̂(Y ) = 0.

For more detailed information about the above-mentioned notion see [1–5].
Notice that it is natural to introduce the notion of a small set not only with respect to a given invariant (quasi-

invariant) measure but also with respect to a given class of invariant (quasi-invariant) measures (see, for example,
[1,5,6]).

The following statement gives a purely geometrical characterization of absolutely negligible sets and plays an
essential role the process of studying various properties of these sets.

Lemma 1. Let (G, ·) be an arbitrary uncountable group and let Y be a subset of G. Then the following two relations
are equivalent:
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(1) Y is a G-absolutely negligible set in G;
(2) for each countable family {gi : i ∈ I } of elements from G, there exists a countable family {h j : j ∈ J } of elements

from G, such that

∩ j∈J (h j · (∪i∈I (gi · Y ))) = ∅.

For the proof of this lemma, see e.g. [1] or [4].
By applying a Hamel basis of the real line R, W. Sierpinski has established the following statement.

Proposition. Let λ be the standard Lebesgue measure on R. Then there exist two sets X ⊂ R and Y ⊂ R satisfying
the relations

X ∈ I (λ), Y ∈ I (λ), X + Y 6∈ dom(λ).

For more details, see [6]. Some generalization of this result for uncountable vector spaces over the field Q of all
rational numbers and for quasi-invariant extensions of measures on such spaces can be found in [7]. Similar properties
of algebraic sums of subsets of the real line R are also discussed in [4,8].

It is reasonable to ask whether similar statements hold in more general situations when no topology is considered
on given group. Namely, it is natural to pose the following question:

Let (G, ·) be an uncountable group equipped with a nonzero σ -finite G-invariant (G-quasi-invariant) measure µ.
Do there exist two sets X ∈ I (µ) and Y ∈ I (µ) such that X · Y does not belong to dom(µ).

For an arbitrary uncountable commutative group (G,+) and for a nonzero σ -finite complete G-invariant (G-quasi-
invariant) measure µ we have a direct analogue of the second part of above-mentioned proposition by Sierpinski. In
particular, the following statement is valid.

Theorem 1. Let (G,+) be an uncountable commutative group and let µ be a nonzero σ -finite G-invariant measure
on G. There exists a G-invariant complete measure µ̂ on G extending µ and such that, for some two sets X ∈ I (µ̂)
and Y ∈ I (µ̂), the relation

X + Y 6∈ dom(µ̂)

is satisfied.

The proof of Theorem 1 can be found, for instance in [3].
It seems to be interesting to generalize the above result (i.e. Theorem 1) to a wider class of uncountable groups

(G, ·) (not necessarily commutative). From this point of view the following statement can be formulated.

Theorem 2. Let (G, ·) be an uncountable solvable group and let µ be a nonzero σ -finite G-invariant measure on G.
There exists a G-invariant complete measure µ̂ on G extending µ and such that, for some two sets X ∈ I (µ̂) and
Y ∈ I (µ̂), the relation

X + Y 6∈ dom(µ̂)

is satisfied.

In connection with Theorem 2, let us remark that its proof is obtained by using the method of surjective
homomorphisms (see [4,5] for a detailed description this method).

Finally notice that an analogous problem for arbitrary noncommutative groups is still open.
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Abstract

The present paper deals with a solution of the Riemann–Hilbert problem in the class of Cauchy type integrals with densities of
certain new nonstandard Banach function spaces. The solvability conditions are explored and the solutions (if any) are constructed
explicitly.
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1. Introduction

The grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbordone in [1], where they studied the in-
tegrability problem of the Jacobian under minimal hypotheses. Later on, the more general Lebesgue grand spaces
L p),θ (1 < p < ∞, θ > 0) appeared in the paper of L. Greco, T. Iwaniec and S. Sbordone [2] in which they studied
the existence and uniqueness of solutions to the inhomogeneous n-harmonic equation div A(x,∇u) = µ. The neces-
sity to investigate these spaces has emerged from their rather essential role in various fields, in particular, in nonlinear
partial differential equations. It turns our that the spaces L p),θ are intended to establish the existence and uniqueness,
as well as the regularity for various PDEs.

The boundedness in weighted grand Lebesgue spaces of fundamental integral operators in linear and nonlinear
harmonic analysis is established in [3–6] (see also [7, Ch. 14] and [8, Ch. 2]).

It should be emphasized that the first author has established the necessary and sufficient conditions for the curve
and the weight simultaneously ensuring the boundedness of the operator generated by the Cauchy singular integral
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defined on the rectifiable curve. The Dirichlet and Riemann boundary value problems in the framework of grand
Lebesgue spaces are solved in [9] (see also [8, Ch. 4]).

In the present work, we present the solution of the Riemann–Hilbert problem

Re[λ(t)φ+(t)] = b(t) (1)

in the class K p),θ (D), i.e., a set of the Cauchy type integrals

φ(z) =
1

2π i

∫
Γ

ϕ(t)

t − z
dt, z ∈ D,

where D is a simply-connected bounded domain with the boundary Γ and ϕ ∈ L p),θ (Γ ), (1 < p <∞, θ > 0).
The definition of the grand Lebesgue spaces and the conditions for the boundary Γ and for the functions λ(t) and

b(t) are given in the next section.

2. Preliminaries

Let Γ be a simple rectifiable curve. Suppose that ω is a weight function prescribed on Γ . The weighted grand
Lebesgue space L p),θ

ω (Γ ) (1 < p <∞, θ > 0) is defined by the norm

‖ f ‖
L p),θ
ω (Γ )

= sup
0<ε<p−1

(
εθ
∫
Γ
| f (t)|p−εω(t)|dt |

) 1
p−ε

.

L p),θ
ω (Γ ) is a Banach function space.

Let now D be a simply-connected bounded domain with the boundary Γ and let z = z(w) be conformal mapping
of a circle U = {w : |w| < 1} onto D. By w = w(z) we denote its inverse mapping. Assume γ = {τ : |τ | = 1}.

Here we introduce certain classes of analytic functions.
For 1 < p <∞, θ > 0 we put:

K p),θ (D) =

{
φ : φ(z) = (KΓϕ)(z) =

1
2π i

∫
Γ

ϕ(t)dt

t − z
, ϕ ∈ L p),θ (Γ ), z ∈ D

}
,

K̃ p),θ (C \ Γ ) =
{
φ : φ(z) = (KΓϕ)(z)+ Q(z), ϕ ∈ L p),θ (Γ ), z ∈ C \ Γ Q is a polynomial

}
,

K p),θ
ω (U ) =

{
F : F(w) =

1
2π i

∫
γ

f (τ )

τ − w
dτ, f ∈ L p),θ

ω (γ ), w ∈ U

}
and

K̃ p),θ
ω (C \ γ )

=

{
F : F(w) =

1
2π i

∫
γ

f (τ )dτ

τ − w
+ q(w), f ∈ L p),θ

ω (γ ), w ∈ C \ γ, q is a polynomial of w
}
.

First of all, we adduce our assumptions for the curve Γ .
In what follows, it will be assumed that

1/z′(w) ∈ U
δ>0

H δ(U ), and z′(τ ) ∈ Ap(γ )

where H δ denotes a class of analytic Hardy class functions and Ap(γ ) is a class of weighted Muckenhoupt functions,
i.e., a set of weight functions ω defined on γ for which

sup
(

1
|l|

∫
l
ω(τ)|dτ |

)(
1
|l|

∫
l
ω1−p′(τ )|dτ |

)p−1

< +∞,

where the least upper bound is taken over all arcs l of the unit circumference γ .
As for the coefficients and the right-hand side of (1), it is required that: λ(t) ∈ C(Γ ), λ(t) 6= 0 the real function

b ∈ L p),θ , a(t) = λ(t)/λ(t), and the index ~ = indΓ a(t) = 1
2π [arg a(t)]Γ .



210 V. Kokilashvili et al. / Transactions of A. Razmadze Mathematical Institute 170 (2016) 208–211

3. The statement of the problem and its reduction to the case of a unit disk

Let all the assumptions formulated in the previous section for the curve Γ , coefficients λ(t) and the right-hand side
b(t) be fulfilled.

We have to define the function φ(z) ∈ K p),θ (D) for which for almost all t ∈ Γ the equality (1) is fulfilled, where
φ+ are angular boundary values of the function φ(z), when z tends along a nontangential path to t .

Find now the function

F(w) = φ(z(w)),

where φ is a solution of problem (1), and z = z(w) is conformal mapping of the unit circle onto D. Then F(w) will,
obviously, be a solution of the problem

Re[λ(z(τ ))F+(τ )] = b(z(τ )), τ ∈ γ. (2)

The following theorem is valid.

Theorem 1. If φ ∈ K p),θ (D) is a solution of problem (1), then F will be a solution of problem (2) of the class
K p),θ
|z′| (U ).

Conversely, if F ∈ K p),θ
|z′| (U ) is a solution of problem (2), then the function φ(z) = F(w(z)) is a solution of

problem (1) of the class K p),θ (D).

4. Reduction of problem (2) to the Riemann problem with an additional requirement on the solution

Following N. Muskhelishvili’s method ([10, Ch. 2]), we put

Ω(w) =

{
F(w), |w| < 1

F
( 1
w

)
, |w| > 1.

(3)

The function Ω belongs to the class K̃ p),θ (C \ γ ) and is a solution of the Riemann problem

Ω+(τ ) = a(τ )Ω−(τ )+ b̃(τ ), (4)

where a(τ ) = λ(z(τ )) \ λ(z(τ )), b̃(τ ) = 2b(z(τ )) \ λ(z(τ )).
Owing to the specific construction of the function Ω , it is necessary to require that

Ω(w) = Ω∗(w), |w| 6= 1 (5)

where Ω∗(w) = Ω
(

1
w

)
, |w| 6= 1.

Theorem 2. If F(w) ∈ K p),θ (U ) is a solution of problem (2), then the function Ω(w) prescribed by the equal-
ity (3) belongs to the class K̃ p),θ

|z′| (C \ γ ) and satisfies the conditions (4) and (5).
Conversely, if Ω(w) satisfies the conditions (4) and (5), then the function φ(z) = Ω(w(z)) is a solution of

problem (1) of the class K p),θ (D).

5. Solution of the Riemann–Hilbert problem

Having solved problems (4), (5), we state that the following basic result is valid.

Theorem 3. Let all the assumptions formulated in Section 2 be fulfilled, then:
(i) if ~ ≥ 0, problem (1) is solvable, and its general solution is given by the equality

φ(z) = Ω(w(z)) = X (w(z))

[
1

2π i

∫
γ

b(z(τ ))

X+(z(τ ))λ(z(τ ))

dτ

τ − w(z)
+

1
2π i

∫
γ

b(z(τ ))

X+(z(τ ))λ(z(τ ))

dτ

τ − 1
w(z)

]
+ X (w(z))Q~(w(z)),
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where

X (w) =

{
X0(w), |w| < 1
(w − w0)

−~X0(w), |w| > 1,

X0(w) = exp
(

1
2π i

∫
γ

ln a(τ )(τ − w0)
−~

τ − w
dτ

)
, w0 ∈ U

and Q~(x) is an arbitrary polynomial of the type Q~(w) =
∑~

k=0 akw
k whose coefficients satisfy the conditions

ak = a~−k, k = 0, 1, . . . , ~;

(ii) if ~ < 0, then for problem (1) to be solvable, it is necessary and sufficient that the conditions∫
Γ

b(t)

X+(w(t))λ(t)
[w(t)]kw′(t)dt = 0, k = 0, 1, . . . , |~| − 1

be fulfilled, and if these conditions are fulfilled, then the solution is unique and

φ(z) = X (w(z))

[
1

2π i

∫
γ

b(z(τ ))

X+(z(τ ))λ(z(τ ))

dτ

τ − w(z)
+

1
2π i

∫
γ

b(z(τ ))

X+(z(τ ))λ(z(τ ))

dτ

τ − 1
w(z)

]
.
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Abstract

This paper studies the mapping properties of the integral operator generated by that singular integral which arises in the theory
of I. Vekua generalized analytic functions. Boundedness problems are explored in weighted grand Lebesgue spaces.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The theory of generalized analytic functions was developed by L. Bers and I. Vekua. We refer to their books [1–3].
Generalized analytic functions of the class Ur,2(A, B; E), r > 2, in the sense of I. Vekua, are regular solutions of the
equation

∂zΦ(z)+ A(z)Φ(z)+ B(z)Φ(z) = 0, (1)

where ∂z =
1
2 (

∂
∂x + i ∂

∂y ), A(z), B(z) ∈ Lr,2(E), r > 2. Here E denotes the plane. The set of functions f defined on

E is called the class Lr,2(E) if

f (z) ∈ Lr (U ), f0(z) = z2 f
(1

z

)
∈ Lr (U ), U = {z : |z| < 1}.

Let Γ be a simple, rectifiable curve of the complex plane.
Let f ∈ L1(Γ ). It is known [3,4] that the integral

Φ(z) =
1

2π i

∫
Γ

Ω1(z, τ ) f (τ ) dτ − Ω2(z, τ ) f (τ ) dτ , (2)
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University, 6 Tamarashvili st., Tbilisi 0177, Georgia.
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where Ω1 and Ω2 are the so-called basic normalized kernels of the class Ur,2(A, B; E), is a regular solution of (1)
(see [2,3] for details). The integral (2) is called the generalized Cauchy type integral. The corresponding generalized
singular integral is introduced as

S̃Γ f (t) =
1

2π i

∫
Γ

Ω1(t, τ ) f (τ ) dτ − Ω2(t, τ ) f (τ ) dτ . (3)

The kernels Ω1 and Ω2 have the following structures

Ω1(z, τ ) =
1

t − z
+

m1(z, t)

|t − z|α
and Ω2(z, τ ) =

m2(z, t)

|t − z|α
, (4)

where the functions m1(z, t) and m2(z, t) are continuous and bounded.
In [4] for the case of L p the following statement was proved.

Proposition A. Let Γ be a Carleson curve. The operator S̃Γ is bounded in L p(Γ ) if

p >
r

r − 2
. (5)

In [5] it was established more general result for variable exponent Lebesgue space L p(t) which even in the case of
constant p is stronger than the existing result of Proposition A because it was admitted the whole range 1 < p < ∞
avoiding restriction (5). In the same paper [5] it was also proved the boundedness of the operator S̃Γ in weighted
variable exponent Lebesgue spaces with a certain class of weights including power type weights.

This paper deals with the boundedness of S̃Γ in weighted grand Lebesgue spaces. All possible cases of weighted
grand Lebesgue spaces are discussed, namely the case when in the definition of the norm a weight generates absolutely
continuous measure and the other case, when a weight plays a role of multiplier. It is known (see, e.g., [6]) that these
two spaces are not reducible to each other unlike the classical weighted Lebesgue spaces.

Let us define the aforementioned two weighted grand Lebesgue spaces.
Let 1 < p <∞, θ > 0. Let w be a weight function defined on the rectifiable curve Γ of the complex plane, i.e. w

be a.e. positive and integrable function on Γ . We define the weighted grand Lebesgue space L p),θ
w (Γ ) as follows:

L p),θ
w (Γ ) =

{
f : ‖ f ‖

L p),θ
w (Γ )

<∞
}
,

where

‖ f ‖
L p),θ
w (Γ )

= sup
0<ε<p−1

(
εθ
∫
Γ
| f (t)|p−εw(t) |dt |

) 1
p−ε

.

Now, we define another type weighted grand Lebesgue space L p),θ
w (Γ ) by the norm

‖ f ‖L p),θ
w (Γ )

= sup
0<ε<p−1

(
εθ
∫
Γ
| f (t)w(t)|p−ε |dt |

) 1
p−ε

.

Both these spaces are non-reflexive, non-separable Banach spaces. It should be noted that in unweighted case when
θ = 1 the spaces L p) were introduced by T. Iwaniec and C. Sbordone [7]. More general space L p),θ , θ > 0, was
introduced by L. Greco, T. Iwaniec and C. Sbordone [8].

Let Γ be a simple finite rectifiable curve Γ = {t ∈ C : t = t (s), 0 ≤ s ≤ t} with arc-length measure ν(t) = s. In
the sequel we use the notation

D(t, r) = Γ ∩ B(t, r), B(t, r) =
{
τ ∈ C : |τ − t | < r

}
, t ∈ Γ , r > 0.

Γ is called Carleson if

νD(t, r) ≤ c0r

with c0 > 0 not depending on t and r .
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We need also the definition of the Muckenhoupt A p(Γ ) class of weights suited to the curves.
By the definition w ∈ A p(Γ ) if

sup
r>0
t∈Γ

(
1
r

∫
D(t,r)

w(t) d|t |

)(
1
r

∫
D(t,r)

(w(t))1−p′ d|t |

)p−1

<∞.

The main results of this paper read as follows:

Theorem 1. Let 1 < p <∞, θ > 0. Assume that w ∈ A p(Γ ). Then the operator S̃Γ is bounded in L p),θ
w (Γ ).

Theorem 2. Let 1 < p <∞, θ > 0. If w p
∈ A p(Γ ), then the operator S̃Γ is bounded in L p),θ

w (Γ ).
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Abstract

For the general functional differential equation

u(n)(t)+ F(u)(t) = 0,

where F : C(R+; R)→ L loc(R+; R) is a continuous operator, the sufficient conditions in order to have Property A (Property B)
are established. As a particular case, we consider the ordinary differential equation with a deviating argument

u(n)(t)+ p(t)
∣∣u(σ (t))∣∣µ(t) sign u(σ (t)) = 0, (0.1)

where p ∈ L loc(R+; R), σ ∈ C(R+; R+), µ ∈ C(R+; (0,+∞)) and limt→+∞ σ(t) = +∞. Eq. (0.1) is called almost linear if
limt→+∞ µ(t) = 1. For Eq. (0.1), the sufficient conditions are obtained for the solutions to be oscillatory. These criteria cover the
well-known results for the linear differential equation (µ(t) ≡ 1).
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Property A; Property B; Oscillation

1. Introduction

We study oscillatory properties of solutions of a functional differential equation

u(n)(t)+ F(u)(t) = 0, (1.1)

where F : C(R+; R) → L loc(R+; R) is a continuous mapping. Let τ ∈ C(R+; R+), limt→+∞ τ(t) = +∞. We
denote by V (τ ) the set of continuous mappings F satisfying the following condition: F(x)(t) = F(y)(t) holds for
any t ∈ R+ and x, y ∈ C(R+; R) provided x(s) = y(s) for s ≥ τ(t). For any t0 ∈ R+, we denote by Ht0,τ the set
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of all functions u ∈ C(R+; R) satisfying u(t) 6= 0 for t ≥ t∗, where t∗ = min{t0, τ∗(t0)}, τ∗(t) = inf{τ(s) : s ≥ t}.
Throughout the work, whenever the notations V (τ ) and Ht0,τ occur, it will be understood, unless otherwise specified,
that the function τ satisfies the conditions stated above.

It will always be assumed that either the condition

F(u)(t) u(t) ≥ 0 for t ≥ t0, u ∈ Ht0,τ , (1.2)

or the condition

F(u)(t) u(t) ≤ 0 for t ≥ t0, u ∈ Ht0,τ (1.3)

is fulfilled.
A function u : [t0,+∞) → R is said to be a proper solution of Eq. (1.1), if it is locally absolutely continuous

along with its derivatives up to the order n − 1 inclusive, sup{|u(s)| : s ∈ [t,+∞)} > 0 for t ≥ t0 and there exists a
function u ∈ C(R+; R) such that u(t) ≡ u(t) on [t0,+∞) and the equality

u (n)(t)+ F(u)(t) = 0

holds for t ∈ [t0,+∞). A proper solution u : [t0,+∞)→ R of Eq. (1.1) is said to be oscillatory if it has a sequence
of zeros tending to +∞. Otherwise, the solution u is said to be nonoscillatory.

Definition 1.1. We say that Eq. (1.1) has Property A if any of its proper solutions is oscillatory, when n is even, and
is either oscillatory or satisfies∣∣u(i)(t)∣∣ ↓ 0 as t ↑ +∞ (i = 0, . . . , n − 1), (1.4)

when n is odd.

Definition 1.2. We say that Eq. (1.1) has Property B if any of its proper solutions is either oscillatory or satisfies either
(1.4) or∣∣u(i)(t)∣∣ ↑ +∞ as t ↑ +∞ (i = 0, . . . , n − 1), (1.5)

when n is even, and is either oscillatory or satisfies (1.5), when n is odd.

A. Kneser was the first who showed that the condition

lim inf
t→+∞

tn/2 p(t) > 0

is sufficient for the equation

u(n)(t)+ p(t) u(t) = 0 (1.6)

to have Property A [1]. This result was essentially generalized by Kondratev [2]. His method was based on a
comparison theorem which enables one to obtain optimal results for establishing oscillatory properties of solutions of
Eq. (1.6). The following comparison theorem was proved. If the inequality

p(t) ≥ q(t) ≥ 0 for t ≥ 0

holds and the equation

u(n)(t)+ q(t) u(t) = 0 (1.7)

has Property A, then Eq. (1.6) has also Property A.
T. Chanturia [3] showed that in the case of Property B, if

p(t) ≤ q(t) ≤ 0 for t ∈ R+

and Eq. (1.7) has Property B, then Eq. (1.6) has also Property B.
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This comparison theorem implies that if p(t) ≥ 0 (p(t) ≤ 0) and

lim inf
t→+∞

tn
∣∣p(t)∣∣ > Mn (M∗n ), (1.8)

then Eq. (1.6) has Property A (B), where

Mn = max
{
−λ(λ− 1) · · · (λ− n + 1) : λ ∈ [0, n − 1]

}(
M∗n = max

{
λ(λ− 1) · · · (λ− n + 1) : λ ∈ [0, n − 1]

})
.

(1.9)

It should be noted that inequality (1.8) cannot be replaced by a constrict one.
The sufficient integral conditions for Eq. (1.6) to have Property A or Property B were given in [4–6]. Later, T.

Chanturia [7] proved the integral comparison theorems which are integral generalizations of the above-mentioned
comparison theorems. Using these theorems, he succeeded in improving condition (1.8). Namely, he showed that if
p(t) ≥ 0 (p(t) ≤ 0) and the inequality

lim inf
t→+∞

t
∫
+∞

t
sn−2 p(s)ds > Mn

(
lim inf
t→+∞

t2
∫
+∞

t
sn−3

∣∣p(s)∣∣ds >
M∗n
2

)
is fulfilled, then Eq. (1.6) has Property A (B), where Mn (M∗n ) is given by (1.9). R. Koplatadze [8,9] proved two types
of integral comparison theorems for differential equations with deviating arguments. The theorem of the first type
enables one not only to generalize the above-mentioned results for equations with deviated arguments, but also to
improve Chanturia’s result concerning Property B even in the case of Eq. (1.6).

The ordinary differential equation with deviating argument

u(n)(t)+ p(t)
∣∣u(σ (t))∣∣µ(t) sign u(σ (t)) = 0 (1.10)

is a particular case of Eq. (1.1), where p ∈ L loc(R+; R), σ ∈ C(R+; R), µ ∈ C(R+; (0,+∞)) and limt→+∞ σ(t) =
+∞. In case limt→+∞ µ(t) = 1, we call the differential equation (1.10) almost linear, while if lim inft→+∞ µ(t) 6= 1,
or lim supt→+∞ µ(t) 6= 1, then we call Eq. (1.10) the essentially nonlinear generalized Emden–Fowler type
differential equation.

In the present paper we study both cases of Properties A and B, when the operator F has an almost linear minorant.
It turned out that even in the case of Property A (Property B) there arises the possibility to improve the results obtained
in [10–13]. The method used in this paper enables one to get such statements for a quite general equation which, when
specialized to the well studied equations, provide us with qualitatively new results.

2. Some auxiliary lemmas

In the sequel, C̃n−1
loc ([t0,+∞)) will denote the set of all functions u : [t0,+∞) → R, absolutely continuous on

any finite subinterval of [t0,+∞), along with their derivatives of order up to and including n − 1.

Lemma 2.1. Let u ∈ C̃n−1
loc ([t0,+∞)), u(t) > 0, u(n)(t) ≤ 0 (u(n)(t) ≥ 0) for t ≥ t0 and u(n) 6≡ 0 in any

neighborhood of +∞. Then there exist t1 ≥ t0 and ` ∈ {0, . . . , n} such that `+ n odd (`+ n even) and

u(i)(t) > 0 for t ≥ t1 (i = 0, . . . , `− 1),
(−1)`+i u(i)(t) ≥ 0 for t ≥ t1 (i = `, . . . , n).

(2.1`)

Note. In (2.1`), if ` = 0, there takes place the second inequality, but if ` = n, there takes place the first one.

Lemma 2.2. Let t0 ∈ (0,+∞), u ∈ C̃loc([t0,+∞)), u(n)(t) ≤ 0, (u(n)(t) ≥ 0) and (2.1`) be fulfilled for some
` ∈ {1, . . . , n − 1} with `+ n odd (`+ n even). Then∫

+∞

t0
tn−`−1

∣∣u(n)(t)∣∣dt < +∞, (2.2)
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+∞

t0
s−2

∫ s

t0
ξn−`

∣∣u(n)(ξ)∣∣dξ ds < +∞, (2.3)

lim
t→+∞

1
t

∫ t

t0
sn−`

∣∣u(n)(s)∣∣ds = 0, (2.4)

u(i)(t) ≥ u(i)(t0)+
1

(`− i − 1)! (n − `− 1)!

∫ t

t0
(t − s)`−i−1

∫
+∞

s
(ξ − s)n−`−1

∣∣u(n)(ξ)∣∣dξ ds

for t ≥ t0, (i = 0, . . . , `− 1). (2.5i)

If, moreover,∫
+∞

t0
tn−`

∣∣u(n)(t)∣∣dt = +∞, (2.6)

then there exists t1 ≥ t0 such that

u(t) ≥
t`−1

`!
u(`−1)(t) for t ≥ t1, (2.7)

lim
t→+∞

(
u(`−1)(t)− t u(`)(t)

)
= +∞, (2.8)

u(i)(t)

t`−i ↓,
u(i)(t)

t`−i−1 ↑ (i = 0, . . . , `− 1) as t ↑ +∞. (2.9i)

Proof. For the proof of validity of conditions (2.2), (2.5i), (2.7), (2.8), (2.9i) see [10]. Let ε > 0. According to (2.2),
choose t∗ > t0 such that∫

+∞

t∗
sn−`−1

∣∣u(n)(s)∣∣ds < ε.

Therefore

lim sup
t→+∞

1
t

∫ t

t∗
sn−`

∣∣u(n)(s)∣∣ds = lim sup
t→+∞

1
t

∫ t

t0
sn−`

∣∣u(n)(s)∣∣ds ≤
∫
+∞

t∗
sn−`−1

∣∣u(n)(s)∣∣ds < ε.

Taking into account that ε is arbitrary, from the latter inequality we deduce the validity of condition (2.4). If we take
into account (2.1`) and (2.6), then from the equality

n−1∑
j=`−1

(−1) j t j−`+1u( j)(t)

( j − `+ 1)!
=

n−1∑
j=`−1

(−1) j t j−`+1
0 u( j)(t0)

( j − `+ 1)!
+
(−1)n−1

(n − `)!

∫ t

t0
sn−`u(n)(s)ds

we can see that there exists t2 ≥ t1 such that

1
(n − `)!

∫ t

t2
sn−`

∣∣u(n)(s)∣∣ds ≤ u(`−1)(t)− t u(`)(t) for t ≥ t2.

According to (2.9`−1), we have

1
(n − `)!

∫
+∞

t2
s−2

∫ s

t2
ξn−`

∣∣u(n)(ξ)∣∣dξ ds ≤ −
∫
+∞

t2

(
u(`−1)(s)

s

)′
ds < +∞.

Hence (2.3) is fulfilled. �

Lemma 2.3 ([11]). Let n ≥ 2, ` ∈ {1, . . . , n − 1}, u0 ∈ C̃n−1
loc ([t0,+∞)). Then

u(`)i (t) = (−1)i t i u`+i
0 (t) (i = 1, . . . , n − `), (2.10)

where

ui (t) = (`+ i − 1)ui−1(t)− t u′i−1(t) (i = 1, . . . , n − `). (2.11)
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Lemma 2.4. Let t0 ∈ (0,+∞), u ∈ C̃loc([t0,+∞)), u(n)(t) ≤ 0 (u(n)(t) ≥ 0) and for any ` ∈ {1, . . . , n − 1}, where
`+ n odd (`+ n even), conditions (2.1`) and (2.6) be fulfilled. Then there exists t1 > t0 such that

u(t) ≥
t`

(`− 1)! (n − `− 1)!

∫
+∞

t
s−n(s − t)n−`−1

∫ s

t1
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds for t ≥ t1. (2.12)

Proof. By (2.1`) and (2.50), we have

u(t) ≥
1

(`− 1)! (n − `− 1)!

∫ t

t0
(t − s)`−1

∫
+∞

s
(ξ − s)n−`−1

∣∣u(n)(ξ)∣∣dξ ds for t ≥ t0. (2.13)

Denote

u0(t) =
t`

(`− 1)! (n − `− 1)!

∫
+∞

t
s−n(s − t)n−`−1

∫ s

t0
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds. (2.14)

According to (2.3), it is obvious that the integral on the right-hand side of (2.14) exists and equalities (2.11) are
fulfilled, where

ui (t) =
t`+i

(`− 1)! (n − `− i − 1)!

∫
+∞

t
s−n(s − t)n−`−i−1

∫ s

t0
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds (2.15)

(i = 1, . . . , n − `− 1),

un−`(t) =
1

(`− 1)!

∫ t

t0
(t − s)`−1sn−`

∣∣u(n)(s)∣∣ds. (2.16)

Therefore, by virtue of Lemma 2.3, we have

(−1)n+`u(n)0 (t) =
∣∣u(n)(t)∣∣ for t ≥ t0, (2.17)

where n + ` odd (n + ` even) if u(n)(t) ≤ 0 (u(n)(t) ≥ 0). Therefore, according to (2.17)

u(n)0 (t) ≤ 0 if `+ n odd (2.18)

and

u(n)0 (t) ≥ 0 if `+ n even. (2.19)

By (2.14) and (2.18) ((2.14) and (2.19)), there exists `′ ∈ {0, . . . , n − 1} such that `′ + n odd (`′ + n even) and the
conditions

u(i)0 (t) > 0 (i = 0, . . . , `′ − 1), (−1)i+`
′

u(i)0 (t) > 0 (i = `′, . . . , n − 1) for t ≥ t0 (2.20`′)

are fulfilled.
Let us now show that there exists t1 > t0 such that the inequality

t`−1
≤ u0(t) ≤ t` for t ≥ t1 (2.21)

is fulfilled. According to (2.3) and (2.14), the validity of the right inequality in (2.21) is obvious. By virtue of (2.6),
there exists t1 > t0 such that∫ t1

t0
sn−`

∣∣u(n)(s)∣∣ds = c > (`− 1)! (n − `− 1)! 2n−1.

Therefore from (2.14), we obtain

u0(t) ≥
t`

(`− 1)! (n − `− 1)!

∫
+∞

2t
(s − t)n−`−1s−n−1+`

∫ t1

t0

(
1−

ξ

s

)`−1
ξn−`

∣∣u(n)(ξ)∣∣dξ ds

≥
t`

2`−1(`− 1)! (n − `− 1)!

∫ t1

t0
ξn−`

∣∣u(n)(ξ)∣∣dξ ∫ +∞
2t

(s − t)n−`−1s−n−1+`ds
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≥
c t`

2`−1(`− 1)! (n − `− 1)!

∫
+∞

2t

(
1−

t

s

)n−`−1
s−2ds

≥
c t`

(`− 1)! (n − `− 1)! 2n−2

∫
+∞

2t
s−2ds ≥ t`−1 for t ≥ t1.

The latter inequality implies the existence of t1 such that inequality (2.21) is fulfilled. Therefore, according to (2.1`)
and (2.20`′), since `+ `′ even, it follows that ` = `′.

Now show that

lim
t→+∞

t i u(`+i)
0 (t) = 0 (i = 0, . . . , n − `− 1). (2.22)

Indeed, using (2.15), we have

u(`)i (t) =
1

(`− 1)! (n − `− i − 1)!

∑̀
j=0

c j
` (t

`+i )(`− j)

×

(∫
+∞

t
s−n(s − t)n−`−i−1

∫ s

t0
(s − t)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds

)( j)

. (2.23)

Let j ≤ n − `− i − 1. Then according to (2.3), we obtain

ρ j i (t) = (t
`+i )(`− j)

∣∣∣∣(∫ +∞
t

s−n(s − t)n−`−i−1
∫ s

t0
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds

)( j)∣∣∣∣
≤ (`+ i)! (n − `− i − 1)! t i+ j

∫
+∞

t
s−n(s − t)n−`−i− j−1

∫ s

t0
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds

≤ (`+ i)! (n − `− i − 1)! t i+ j
∫
+∞

t
s−i− j−2

∫ s

t0
ξn−`

∣∣u(n)(ξ)∣∣dξ ds

≤ (`+ i)! (n − `− i − 1)!
∫
+∞

t
s−2

∫ s

t0
ξn−`

∣∣u(n)(ξ)∣∣dξ ds → 0

for t →+∞ ( j = 0, . . . , n − `− i − 1). (2.24)

Analogously, we can prove that

ρ j i (t)→ 0 for t →+∞ ( j = n − `− i, . . . , `). (2.25)

According to (2.23), (2.24), (2.10) and (2.25), it is obvious that conditions (2.22) are fulfilled. Therefore, by (2.16) we
have

u(`)0 (t) =
1

(n − `− 1)!

∫
+∞

t
(s − t)n−`−1

∣∣u(n)(s)∣∣ds for t ≥ t0.

From the above equality, we obtain

u0(t) =
`−1∑
i=0

(t − t0)i

i !
u(i)0 (t0)

+
1

(`− 1)! (n − `− 1)!

∫ t

t0
(t − s)`−1

∫
+∞

s
(ξ − s)n−`−1

∣∣u(n)(ξ)∣∣dξ ds for t ≥ t0.

Hence, if we take into account (2.13) and (2.14), we obtain

u(t) ≥
t`

(`− 1)! (n − `− 1)!

∫
+∞

t
s−n(s − t)n−`−1

∫ s

t0
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds − ct`−1

for t ≥ t0, (2.26)

where c =
∑`−1

i=0
u(i)0 (t0)
`!

.
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By virtue of (2.6), we choose t2 > t0 such that∫ t2

t0
sn−`

∣∣u(n)(s)∣∣ds > 2n−1(`− 1)! (n − `− 1)! c.

Hence from (2.26) follows

u(t) ≥
t`

(`− 1)! (n − `− 1)!

∫
+∞

t
s−n(s − t)n−`−1

(∫ t2

t0
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ
+

∫ s

t2
(s − ξ)`−1ξn−2

∣∣u(n)(ξ)∣∣dξ)ds − ct`−1

≥
t`

(`− 1)! (n − `− 1)!

∫
+∞

t
s−n(s − t)n−`−1

∫ s

t2
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds

+
t`

2n−2(`− 1)! (n − `− 1)!

∫ t2

t0
ξn−`

∣∣u(n)(ξ)∣∣dξ · ∫ +∞
2t

s−nds − ct`−1

>
t`

(`− 1)! (n − `− 1)!

∫
+∞

t
s−n(s − t)n−`−1

∫ s

t1
(s − ξ)`−1ξn−`

∣∣u(n)(ξ)∣∣dξ ds for t ≥ 2t2,

which proves the validity of inequality (2.12) with t1 = 2t2. �

Lemma 2.5 ([11]). Let t0 ∈ R+, ϕ;ψ ∈ C([t0,+∞), (0,+∞)),

lim inf
t→+∞

ϕ(t) = 0, ψ(t) ↑ +∞ for t ↑ +∞, lim
t→+∞

ψ(t) ϕ̃(t) = +∞,

where ϕ̃(t) = min{ϕ(s) : s ∈ [t0, t]}. Then there exists a sequence of points {tk} such that tk ↑ +∞, as k ↑ +∞,

ϕ̃(tk) ψ(tk) ≤ ϕ̃(s) ψ(s) for s ≥ tk, ϕ̃(tk) = ϕ(tk) (k = 1, 2, . . .).

Remark 2.1. Lemma 2.5 concerns some properties of nonmonotone positive functions. A lemma of different type
likewise concerning some properties of nonmonotone functions can be found in [10, Lemma 7.7]. Everywhere below
we assume that the inequality

∣∣F(u)(t)∣∣ ≥ m∑
i=1

∫ σi (t)

τi (t)

∣∣u(s)∣∣µi (s)dsri (s, t) for t ≥ t0, u ∈ Ht0,τ , (2.27)

holds, where

µi ∈ C(R+; (0,+∞)), τi ; σi ∈ C(R+; R+), τi (t) ≤ σi (t) for t ∈ R+,
lim

t→+∞
τi (t) = +∞ (i = 1, . . . ,m), (2.28)

ri : R+ × R+→ R+ are measurable in t and nondecreasing in s functions (i = 1, . . . ,m).

3. Necessary conditions of the existence of monotone solutions

In Section 3, the necessary conditions will be established for the existence of a solution of type (2.1`). Mainly we
apply the method used in [11] which still made it possible to improve some results in the case of Properties A and B.

Throughout the work, the use will be made of the following notation:
Let t0 ∈ R+, ` ∈ {1, . . . , n − 1}. By U`,t0 we denote the set of proper solutions of Eq. (1.1) satisfying condition

(2.1`);

Λ`,u =
{
λ|λ ∈ [`− 1, `], lim inf

t→+∞

u(t)

tλ
= 0

}
, u ∈ U`,t0; (3.1)

σ∗(t) = max
{

max
(
s, σ1(s), . . . , σm(s)

)
: 0 ≤ s ≤ t

}
; (3.2)
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h1ε(λ) =

{
0 for λ = `,
ε for λ ∈ [`− 1, `),

h2ε(λ) =

{
0 for λ = `− 1,
ε for λ ∈ (`− 1, `],

hελ = h1ε(λ)+ h2ε(λ). (3.3)

Remark 3.1. We usually do not distinguish between the notations for a constant and the function which is identically
equal to that constant.

Remark 3.2. In the definition of the set Λ`,u we assume that if there is no λ ∈ [` − 1, `] such that lim inft→+∞ t−λ

u(t) = 0, then Λ`,u = ∅.

Theorem 3.1. Let F ∈ V (τ ), the conditions (1.2) ((1.3)), (2.27), (2.28) be fulfilled, ` ∈ {1, . . . , n − 1}, where `+ n
is odd and (`+ n is even),∫

+∞

0
tn−`

m∑
i=1

∫ σi (t)

τi (t)
s(`−1)µi (s)dsri (s, t)dt = +∞, (3.4`)∫

+∞

0
tn−`−1

m∑
i=1

∫ σi (t)

τi (t)
s`µi (s)dsri (s, t)dt = +∞, (3.5`)

and

lim inf
t→+∞

µi (t) > 0 (i = 1, . . . ,m). (3.6)

Moreover, let U`,t0 6= ∅ for some t0 ∈ R+. Then there exists λ0 ∈ [`− 1, `] such that

lim sup
ε→0+

(
lim inf
t→+∞

g`(t, λ0, ε)
)
≤ (`− 1)! (n − `− 1)!, (3.7`)

where

g`(t, λ, ε) = t`−λ+h2ε(λ)

∫
+∞

t
s−n(s − t)n−`−1(σ∗(s))

−hε(λ)
∫ s

0
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ,ε)
1 dξ1ri (ξ1, ξ)dξ ds, (3.8)

µ∗(t, λ, ε) = (λ+ h1ε(λ))µ(t)+ (λ− h2ε(λ))(µi (t)− µ(t)), (3.9)

µ(t) = min{1, µ1(t), . . . , µm(t)}, (3.10)

h1ε, h2ε,, hε are given by (3.3).

Proof. Let t0 ∈ R+ and U`,t0 6= ∅. By the definition of the set U`,t0 , Eq. (1.1) has a proper solution u ∈ U`,t0
satisfying condition (2.1`). According to (1.2) ((1.3)), (2.1`), (2.27) and (3.4`), it is clear that condition (2.6) holds.
Thus by Lemma 2.4, (2.27) and (3.4`), there exists t∗ > t0 such that

u(t) ≥
t`

(`− 1)! (n − `− 1)!

∫
+∞

t
s−n(s − t)n−`−1

∫ s

t∗
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (t)

τi (t)

∣∣u(ξ1)
∣∣µi (ξ1)dξ1ri (ξ1, ξ)dξ ds for t ≥ t∗ (3.11)

and

lim
t→+∞

u(t)

t`−1 = +∞, lim
t→+∞

u(t)

t`
= 0. (3.12)

In view (3.1) and (3.12), we have ` ∈ Λ`,u , ` − 1 6∈ Λ`,u and λ0 ∈ [` − 1, `], where λ0 = inf Λ`,u . Therefore,
Λ`,u ⊂ [`− 1, `] and for sufficiently small ε > 0, by (3.3), we have

lim inf
t→+∞

u(t)

tλ0+h1ε(λ0)
= 0 and lim

t→+∞

u(t)

tλ0−h2ε(λ0)
= +∞. (3.13)



R. Koplatadze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 215–242 223

Denote

ϕ(t) =

(
u(t)

tλ0+h1ε(λ0)

)µ(t)
(3.14)

and

ϕ̃(t) = min
{
ϕ(s) : t∗ ≤ s ≤ t

}
, (3.15)

where µ is defined by (3.10).
By the first condition of (3.13) and (3.6), it is obvious that

lim
t→+∞

ϕ̃(t) = 0. (3.16)

Let us show that

lim
t→+∞

thε(λ0) ϕ̃(t) = +∞, (3.17)

where hε is defined by (3.3). Indeed, for any t > t∗, by (3.14)–(3.16), there exists st ∈ [t∗, t] such that st → +∞ for
t →+∞ and

ϕ̃(t) =

(
u(st )

sλ0+h1ε(λ0)
t

)µ(st )

.

From this equality, since ϕ̃(t) ↓ 0 for t ↑ +∞, by (3.3) and the second condition of (3.13), we have

thε(λ0)ϕ̃(t) ≥ shε(λ0)
t

u(st )

sλ0+h1ε(λ0)
t

=
u(st )

sλ0−h2ε(λ0)
t

→+∞ for t →+∞,

that is, (3.17) holds. Using (3.2) and (3.15), from (3.11), we have

u(σ∗(t)) ≥
σ `∗ (t)

(`− 1)! (n − `− 1)!

∫
+∞

σ∗(t)
s−n(s − σ∗(t))n−`−1

∫ s

t∗
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

∣∣u(ξ1)
∣∣µi (ξ1)dξ1ri (ξ1, ξ)dξ ds

≥
σ `∗ (t)

(`− 1)! (n − `− 1)!

∫
+∞

σ∗(t)
s−n(s − σ∗(t))n−`−1

∫ s

t∗
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

(
u(ξ)

ξ
λ0−h2ε(λ0)
1

)µ(ξ1)

ξ
(λ0−h2ε(λ0))µi (ξ)
1 dξ1ri (ξ1, ξ)dξ ds

=
σ `∗ (t)

(`− 1)! (n − `− 1)!

∫
+∞

σ∗(t)
s−n(s − σ∗(t))n−`−1

∫ s

t∗
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

(
u(ξ1)

ξ
λ0+h1ε(λ0)
1

)µ(ξ1)

ξ
(λ0+h1ε(λ0))µ(ξ1)
1

× ξ
(λ0−h2ε(λ0))(µi (ξ1)−µ(ξ1))
1 dξ1ri (ξ1, ξ)dξ ds

≥
σ `∗ (t)

(`− 1)! (n − `− 1)!

∫
+∞

σ∗(t)
s−n(s − σ∗(t))n−`−1

ϕ̃(σ∗(s))
∫ s

t∗
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ0,ε)
1 dξ1ri (ξ1, ξ)dξ ds, (3.18)

where σ∗, µ∗ and µ are defined by (3.2), (3.9) and (3.10), the functions ϕ and ϕ̃ are defined by (3.14) and (3.15). In
view of (3.6), (3.12) and the second condition of (3.13), it is obvious that the functions

ϕ(t) =

(
u(t)

tλ0−h1ε(λ0)

)µ(t)
and ψ(t) = thε(λ0)
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satisfy the conditions of Lemma 2.5. Therefore there exists the sequence {tk}
+∞

k=1 such that tk ↑ +∞ for k ↑ +∞ and

ϕ̃(σ∗(s)) (σ∗(s))
hε(λ0) ≥ ϕ̃

(
σ∗(tk) (σ∗(tk))

)hε(λ0) for s ≥ tk, (3.19)

ϕ̃(σ∗(tk)) = ϕ(σ∗(tk)) =

(
u(σ∗(tk))

σ
λ0+h1ε(λ0)
∗ (tk)

)µ(σ∗(tk ))
(k = 1, 2, . . .). (3.20)

According to (3.19) and (3.20), from (3.18), we get

u(σ∗(tk)) ≥
σ `∗ (tk)(σ∗(tk))

hε(λ0) · ϕ̃(σ∗(tk))

(`− 1)! (n − `− 1)!

∫
+∞

σ∗(tk )
s−n(s − σ∗(tk))n−`−1

(σ∗(s))
−hε(λ0)

×

∫ s

t∗
(s − ξ)`−1ξn−`

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ0,ε)
1 dξ1ri (ξ1, ξ)dξ ds (k = 1, 2, . . .),

where σ∗, µ∗ and µ are given by (3.2), (3.9) and (3.10).
From this latter inequality, we have(

u(σ∗(tk))

σ
λ0+h1ε(λ0)
∗ (tk)

)1−µ(σ∗(tk ))

≥
(σ∗(tk))`+hε(λ0)−λ0−h1ε(λ0)

(`− 1)! (n − `− 1)!

∫
+∞

σ∗(tk )
s−n(s − σ∗(tk))n−`−1

(σ∗(s))
−hε(λ0)

×

∫ s

t∗
(s − ξ)`−1ξn−`

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ0,ε)
1 dξ1ri (ξ1, ξ)dξ ds. (3.21)

Since u(σ∗(tk ))

σ
λ0+h1ε(λ0)
∗ (tk )

→ 0 for k →+∞ and µ(σ∗(tk)) ≤ 1, for sufficiently large k, we have

(
u(σ∗(tk))

σ
λ0+h1ε(λ0)
∗ (tk)

)1−µ(σ∗(tk ))

≤ 1.

Therefore, from (3.21), we get

lim sup
t→+∞

(
σ∗(tk)

)`−λ0+h1ε(λ0)
∫
+∞

σ∗(tk )
s−n(s − σ∗(tk))n−`−1

(σ∗(s))
−hε(λ0)

∫ s

t∗
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ0,ε)
1 dξ1ri (ξ1, ξ)dξ ds ≤ (`− 1)! (n − `− 1)!

Thus

lim inf
t→+∞

t`−λ0+h2ε(λ0)

∫
+∞

t
s−n(s − t)n−`−1(σ∗(s))

−hε(λ0)

∫ s

t∗
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ0,ε)
1 dξ1ri (ξ1, ξ)dξ ds ≤ (`− 1)! (n − `− 1)!.

From the latter inequality, it is clear that

lim inf
t→+∞

t`−λ0+h2ε(λ0)

∫
+∞

t
s−n(s − t)(n−`−1)(σ∗(s))

−hε(λ0)

∫ s

0
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ0,ε)
1 dξ1ri (ξ1, ξ)dξ ds ≤ (`− 1)! (n − `− 1)!.

Taking the upper limit, as ε→ 0+, we obtain (3.7`). �

Corollary 3.1. Let the condition of Theorem 3.1 be fulfilled and

lim sup
t→+∞

σi (t)

t
< +∞ (i = 1, . . . ,m). (3.22)
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Moreover, for some t0 ∈ R+, U`,t0 6= ∅, then there exists λ0 ∈ [`− 1, `] such that

lim sup
ε→0+

(
lim inf
t→+∞

g`1(t, λ0, ε)
)
≤ (`− 1)! (n − `− 1)!, (3.23`)

where

g`1(t, λ, ε) = t`−λ0+h2ε(λ)

∫
+∞

t
s−n−hε(λ)(s − t)h−`−1

∫ s

t0
(s − ξ)`−1ξn−`

×

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ,ε)
1 dξ1ri (ξ1, ξ)dξ ds, (3.24)

µ∗ is given by (3.8)–(3.10).

Proof. In view of Theorem 3.1, to prove Corollary 3.1, it suffices to show that inequality (3.7`) implies (3.23`), where
the functions g` and g`1 are given by (3.8) and (3.24), respectively. Indeed, according to (3.22), there exists c > 0
such that σ∗(t) ≤ ct for t ≥ t1 > 0 and

g`1(t, λ0, ε) ≤ chε(λ0)g`(t, λ0, ε) for t ≥ t1.

Since limε→0+ hε(λ0) = 0, we get (3.23`). �

4. Sufficient conditions of nonexistence of monotone solutions

Theorem 4.1. Let F ∈ V (τ ), conditions (1.2) ((1.3)), (2.27), (2.28) and (3.4`), (3.5`), (3.6) be fulfilled, ` ∈
{1, . . . , n − 1} with `+ n odd (`+ n even) for any λ ∈ [`− 1, `],

lim sup
ε→0+

(
lim inf
t→+∞

g`(t, λ, ε)
)
> (`− 1)! (n − `− 1)!. (4.1`)

Then for any t0 ∈ R+, U`,t0 = ∅, where the function g` is defined by (3.8)–(3.10).

Proof. Assume the contrary. Let there exist t0 ∈ R+ and ` ∈ {1, . . . , n − 1} with ` + n odd, if (1.2) holds (` + n
even if (1.3) holds), such that U`,t0 6= ∅ (for the definition of the set U`,t0 see Section 3). Thus Eq. (1.1) has a proper
solution u : [t0,+∞)→ (0,+∞) satisfying condition (2.1`). Since the conditions of Theorem 3.1 are fulfilled, there
exists λ0 ∈ [`− 1, `] such that condition (3.7`) holds, which contradicts condition (4.1`). The obtained contradiction
proves the validity of the theorem. �

Using Corollary 3.1, we can analogously prove

Corollary 4.1. Let F ∈ V (τ ), conditions (1.2) ((1.3)), (2.27), (2.28), (3.22) and (3.4`), (3.5`), (3.6) be fulfilled,
` ∈ {1, . . . , n − 1} with `+ n odd (`+ n even) and for any λ ∈ [`− 1, `],

lim sup
ε→0+

(
lim inf
t→+∞

g`1(t, λ, ε)
)
> (`− 1)! (n − `− 1)!. (4.2`)

Then for any t0 ∈ R+, U`,t0 = ∅, where g`1 is defined by (3.24).

Corollary 4.2. Let F ∈ V (τ ), conditions (1.2) ((1.3)), (2.27), (2.28), (3.22) and (3.4`), (3.5`), (3.6) be fulfilled,
` ∈ {1, . . . , n − 1} with `+ n odd (`+ n even), and for any λ ∈ [`− 1, `], there exist δ > 1 such that

lim inf
ε→0+

(
lim inf
t→+∞

t`−λ−1−h1ε(λ)

∫ t

0
sn−`

m∑
i=1

∫ σi (s)

τi (s)
ξµ∗(ξ,λ,ε)dξ ri (ξ, s)dξ ds

)
> δ

n−1∏
i=0;i 6=`−1

|λ− i |. (4.3`)

Then for any t0 ∈ R+, U`,t0 = ∅, where µ∗ is defined by (3.9) and (3.10).
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Proof. In view of Corollary 4.1, to prove Corollary 4.2, it suffices to show that inequality (4.3`) implies (4.2`). By
(4.3`), there exist ε0 > 0 and δ1 ∈ (1, δ], t1 > t0 such that

t`−1−λ−h1ε(λ)

∫ t

0
sn−`

m∑
i=1

∫ σi (s)

τi (s)
ξµ∗(ξ,λ,ε)dξ ri (ξ, s)dξ ds

> δ1

n−1∏
i=0;i 6=`−1

|λ− i | for t ≥ t1, 0 < ε ≤ ε0. (4.4)

Consider the case ` = 1. According to (3.24) and (4.4), we get

g`1(t, λ, ε) ≥ δ1

n−1∏
i=1

|λ− i |t1−λ+h2ε(λ)

∫
+∞

t
s−n−hε(λ)+λ+h1ε(λ)(s − t)n−2ds

= δ1

n−1∏
i=1

|λ− i |
(n − 2)!

n−1∏
i=1
|λ− i − h2ε(λ)|

.

Since δ1 > 1 and h2ε(λ)→ 0 for ε→ 0+, from the last inequality we get (4.2`), which in the case ` = 1 proves the
validity of our corollary. Assume now that ` ∈ {2, . . . , n − 1}. According to (3.24), we have

g`1(t, λ, ε) = t`−λ−h2ε(λ)

∫
+∞

t
s−n−hε(λ)(s − t)n−`−1

∫ s

0
(s − ξ)`−1d

∫ ξ

0
ξn−`

1

×

m∑
i=1

∫ σi (ξ1)

τi (ξ1)

ξ
µ∗(ξ2,λ,ε)
2 dξ2 ri (ξ2, ξ1)dξ1 ds

= (`− 1)t`−λ−h2ε(λ)

∫
+∞

t
s−n−hε(λ)(s − t)n−`−1

∫ s

0
(s − ξ)`−2

∫ ξ

0
ξn−`

1

×

m∑
i=1

∫ σi (ξ1)

τi (ξ1)

ξ
µ∗(ξ2,λ,ε)
2 dξ2 ri (ξ2, ξ1)dξ1 ds,

where µ∗ is given by (3.9) and (3.10). By (4.4), this last inequality yields

g`1(t, λ, ε) ≥ δ1(`− 1)
n−1∏

i=0;i 6=`−1

|λ− i |t`−λ−h1ε(λ)t`−λ−h2ε(λ)

∫
+∞

t
s−n−hε(λ)(s − t)n−`−1

×

∫ s

0
(s − ξ)`−2ξ1+λ+h1ε(λ)−`dξ ds for t ≥ t1. (4.5)

On the other hand,∫ s

0
(s − ξ)`−2ξ1+λ+h1ε(λ)−`dξ =

(`− 2)! sλ+h1ε(λ)

`−2∏
i=1
|λ− i − h1ε(λ)|

.

Therefore, from (4.5), we have

g`1(t, λ, ε) ≥

δ1(`− 1)
n−1∏

i=0;i 6=`−1
|λ− i |

n−2∏
i=0
|λ− h1ε − i |

tλ−`+h2ε(λ)

∫
+∞

t
s−n−h2ε(λ)+λ(s − t)n−`−1ds

=
δ1(`− 1)! (n − `− 1)!

`−2∏
i=1
|λ− h1ε − i |

n−1∏
i=`
|λ− i − h2ε(λ)|

n−1∏
i=0;i 6=`−1

|λ− i |.

Since δ1 > 1 and h jε(λ)→ 0 for ε→ 0+ ( j = 1, 2), the last inequality results in (4.2`). �
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Corollary 4.3. Let F ∈ V (τ ), conditions (1.2) ((1.3)), (2.27), (2.28) and (3.4`), (3.5`), (3.6) be fulfilled, ` ∈
{1, . . . , n − 1} with `+ n odd (`+ n even), and for any λ ∈ [`− 1, `] there exist δ > 1 such that

lim inf
ε→0+

(
lim inf
t→+∞

1
t

∫ t

0
sn−λ−h1ε(λ)

m∑
i=1

∫ σi (s)

τi (s)
ξµ∗(ξ,λ,ε)dξ ri (ξ, s)dξ ds

)
> δ

n−1∏
i=0

|λ− i |. (4.6`)

Then for any t0 ∈ R+, U`,t0 = ∅, where µ∗ is given by (3.9) and (3.10).

Proof. To prove the corollary, it suffices to show that condition (4.6`) implies the validity of (4.3`). By (4.6`), there
exist t1 > t0, δ1 ∈ (1, δ] and ε0 > 0 such that

1
t

∫ t

0
sn−λ−h1ε(λ)

m∑
i=1

∫ σi (s)

τi (s)
ξµ∗(ξ,λ,ε)dξ ri (ξ, s)ds > δ1

n−1∏
i=0

|λ− i | for t ≥ t1, 0 < ε ≤ ε0. (4.7)

Thus

t`−1−λ−h1ε(λ)

∫ t

0
sn−`

m∑
i=1

∫ σi (s)

τi (s)
ξµ∗(ξ,λ,ε)dξ ri (ξ, s)ds

= t`−1−λ−h1ε(λ)

∫ t

0
sλ−`+h1ε(λ)d

∫ s

0
ξn−λ−h1ε(λ)

m∑
i=1

∫ σi (ξ)

τi (ξ)

ξ
µ∗(ξ1,λ,ε)
1 dξ1 ri (ξ1, ξ)dξ

= t−1
∫ t

0
sn−λ−h1ε(λ)

m∑
i=1

∫ σi (s)

τi (s)
ξµ∗(ξ1,λ,ε)dξ1 ri (ξ1, ξ)ds + (`− λ− h1ε(λ))t

`−1−λ−h1ε(λ)

×

∫ t

0
sλ−`−1+h1ε(λ)

∫ s

0
ξn−λ−h1ε(λ)

m∑
i=1

∫ σi (s)

τi (s)
ξ
µ∗(ξ1,λ,ε)
1 dξ1 ri (ξ1, ξ)dξ ds,

where µ∗ is defined by (3.9) and (3.10). According to (4.7), from the last equality we get

t`−1−λ−h1ε(λ)

∫ t

0
sn−`

m∑
i=1

∫ σi (s)

τi (s)
ξµ∗(ξ,λ,ε) dξ ri (ξ, s)ds > δ1

n−1∏
i=0

|λ− i |
(
1+ (`− λ− h1ε(λ)

)
× t`−1−λ+h1ε(λ)

∫ t

0
sλ−`+h1ε(λ)ds

)
= δ1

n−1∏
i=0

|λ− i |

(
1+

`− λ− h1ε(λ)

λ+ 1− `+ h1ε(λ)

)
.

Therefore

lim inf
t→+∞

t`−1−λ−h1ε(λ)

∫ t

0
sn−`

m∑
i=1

∫ σi (s)

τi (s)
ξµ∗(ξ,λ,ε) dξ ri (ξ, s)ds >

δ1

λ+ 1− `+ h1ε(λ)

n−1∏
i=0

|λ− i |.

Hence condition (4.3`) holds. This proves our corollary. �

Remark 4.1. It is obvious that if the conditions of Theorem 4.1 and Corollaries 4.1–4.3 are fulfilled, then the
differential inequality

u(n)(t) sign u(t)+
m∑

i=1

∫ σi (t)

τi (t)
|u(s)|µi (s)ds ri (s, t) ≤ 0,

(
u(n)(t) sign u(t)−

m∑
i=1

∫ σi (t)

τi (t)
|u(s)|µi (s)ds ri (s, t) ≥ 0

)
has no solution of type (2.1`), where ` ∈ {1, . . . , n − 1} with `+ n odd (`+ n even).

5. Functional differential equations with Property A

Relying on the results obtained in Sections 4–6, we establish sufficient conditions for Eq. (1.1) to have Property A
(Property B).
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Theorem 5.1. Let F ∈ V (τ ), conditions (1.2), (2.27), (2.28), (3.6) and

lim sup
t→+∞

µi (t) < +∞ (i = 1, . . . ,m) (5.1)

for odd n be fulfilled, and for any ` ∈ {1, . . . , n − 1} with ` + n odd and for any λ ∈ [` − 1, `] conditions (3.4`),
(3.5`), (3.6) and (4.1`) hold. If, moreover, (3.50) holds when n is odd, then Eq. (1.1) has Property A.

Proof. Let Eq. (1.1) have a proper nonoscillatory solution u : [t0,+∞)→ (0,+∞) (the case u(t) < 0 is similar). By
(1.1), (1.2) and Lemma 2.1, there exist ` ∈ {0, . . . , n− 1} such that `+ n is odd and condition (2.1`) holds. Since for
any ` ∈ {1, . . . , n−1}with `+n is odd condition (4.1`) holds, according to Theorem 4.1, we have ` 6∈ {1, . . . , n−1}.

Therefore n is odd and ` = 0. We claim that (1.4) holds. If this is not the case, then there exist c > 0 and t1 > t0
such that according to (5.1), (u(t))µi (t) ≥ c for t ≥ t1 (i = 1, . . . ,m). Then according to (2.10) and (2.26), we have

n−1∑
i=1

(n − i − 1)
∣∣u(i)(t1)∣∣ ≥ c

∫ t

t1
sn−1

m∑
i=1

(
ri (σi (s)), (s)− ri (τi (s), s)

)
ds for t ≥ t1.

The latter inequality contradicts condition (3.50). This proves that Eq. (1.1) has Property A. �

Using Corollary 4.1, we can prove analogously Corollary 5.1.

Corollary 5.1. Let F ∈ V (τ ), conditions (1.2), (2.27), (3.6), (3.22) and (5.1) be fulfilled and for any ` ∈ {1, . . . , n−1}
with `+ n odd and λ ∈ [`− 1, `] conditions (3.4`), (3.5`), (3.6) and (3.50) hold when n is odd. Then for Eq. (1.1) to
have Property A, it is sufficient that one of the following three conditions (1) (4.2`); (2) (4.3`); (3) (4.6`) hold.

Corollary 5.2. Suppose F ∈ V (τ ), (1.2) holds and for any t0 ∈ R+,

|F(u)(t)| ≥
m∑

i=1

pi (t)
∫ βi t

αi t
sγi |u(s)|1+

di
ln s ds for t ≥ t0. u ∈ Ht0,τ , (5.2)

where 0 < αi < βi , pi ∈ L loc(R+; R+), γi ∈ (−1,+∞), di ∈ R (i = 1, . . . ,m). Let, moreover, for any
` ∈ {1, . . . , n − 1} and λ ∈ [`− 1, `] with `+ n odd and for some δ > 1

lim inf
ε→0+

(
lim inf
t→+∞

t`−1−λ−h1ε(λ)

∫ t

0
sn−`+1+λ+h1ε(λ)

m∑
i=1

eλdi (β
1+γi+λ+h1ε(λ)

i − α
1+γi+λ+h1ε(λ)

i )sγi pi (s)

1+ γi + λ+ h1ε(λ)

)
ds

≥ δ

n−1∏
i=0;i 6=`−1

|λ− i |. (5.3`)

Then Eq. (1.1) has Property A, where h1ε is defined by the first condition of (3.3).

Proof. By Corollary 4.2, according to (5.2), (5.3`), we can easily show that all conditions of Corollary (5.1) are

fulfilled, where τi (t) = αi t , σi (t) = βi t , ri (s, t) = pi (t) s1+γi

1+γi
, µi (t) = 1 + di

ln t (i = 1, . . . ,m), which proves the
validity of the corollary. �

Corollary 5.3. Suppose F ∈ V (τ ), (1.2), (5.2) are fulfilled and for any ` ∈ {1, . . . , n − 1} with ` + n odd and for
some δ > 1,

lim inf
ε→0+

(
lim inf
t→+∞

1
t

∫ t

0
sn+1

m∑
i=1

eλdi (β
1+γi+λ+h1ε(λ)
i − α

1+γi+λ+h1ε(λ)
i )sγi pi (s)

1+ γi + λ+ h1ε(λ)

)
ds ≥ δ

n−1∏
i=0

|λ− i |. (5.4`)

Then Eq. (1.1) has Property A, where h1ε is defined by the first condition of (3.3).

Proof. By Corollary 4.3, according to (1.2), (5.2) and (5.4`), all conditions of Corollary 5.2 are fulfilled, which proves

the validity of our corollary, τi (t) = αi t , σi (t) = βi (t), ri (s, t) = pi (t)s1+γi

1+γi
. �
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Using the arithmetic mean–geometric mean inequality, from Corollary 5.3, we get

Corollary 5.4. Let F ∈ V (τ ), (1.2), (5.2) be fulfilled and

lim inf
t→+∞

1
t

∫ t

0
sn+1+ γ

m

( m∏
i=1

pi (s)
) 1

m
ds

>
1
m

max


−λ(λ− 1) · · · (λ− n + 1)e−λd

( m∏
i=1
(1+ γi + λ)

) 1
m

( m∏
i=1
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [0, n − 1]

 . (5.5`)

Then Eq. (1.1) has Property A, where

d =
m∑

i=1

di , γ =

m∑
i=1

γi .

Corollary 5.5. Suppose 0 < αi < βi , ci ∈ (0,+∞), γi ∈ (−1,+∞). Then for the equation

u(n)(t)+
m∑

i=1

ci

t1+n+γi

∫ βi t

αi t
sγi |u(s)|1+

di
ln s sign u(s)ds = 0, t ≥ a (5.6)

to have Property A, it is necessary and sufficient that for any ` ∈ {1, . . . , n − 1} with `+ n odd,

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ci e
λdi
β

1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi

)−1

: λ ∈ [`− 1, `]
}
< 1. (5.7)

Proof. According to (5.6) and (5.7), the sufficiency follows from Corollary 5.5. Show the necessity. Let (5.7) be
violated. Then there exists λ0 ∈ [`− 1, `], where ` ∈ {1, . . . , n − 1}, `+ n is odd such that

−λ(λ− 1) · · · (λ− n + 1) =
m∑

i=1

ci e
λ0di

β
1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi
.

If we take into account that ` + n is odd, it is obvious from the latter equality that u(t) = tλ0 is a solution of type
(2.1`) of Eq. (5.6), which proves the necessity. �

6. The functional differential equation with Property B

Theorem 6.1. Let F ∈ V (τ ), the conditions (1.3), (2.27), (2.28), (3.6), (5.1) be fulfilled and for any ` ∈ {1, . . . , n−1}
with `+ n even and λ ∈ [`− 1, `] the conditions (3.4`), (3.5`), (3.6) and (4.1`) hold. If, moreover, (3.50) hold when
n is even, then equation (1.1) has Property B, where g` is defined by (3.8).

Proof. Suppose Eq. (1.1) has a proper nonoscillatory solution u : [t0,+∞) → (0,+∞). By (1.1), (1.3) and
Lemma 2.1, there exists ` ∈ {0, . . . , n} such that ` + n is even and condition (2.1`) holds. Since for any
` ∈ {1, . . . , n − 2} with ` + n even condition (4.1`) holds, according to Theorem 4.1, we have ` 6∈ {1, . . . , n − 2}.
Since ` + n is even, either ` = n or n is even, and ` = 0. In the latter case, as is shown in the proof of Theorem 5.1,
using (3.50) and (5.1), we can easily show that (1.4) holds. On the other hand, if ` = n, then by (2.1n), there exist
c > 0 and t1 > t0 such that u(t) ≥ ctn−1 for t ≥ t1. Therefore, by (2.1n), (2.27), (3.4n) and (5.1), Eq. (1.1) yields

u(n−1)(t) ≥ u(n−1)(t∗)+ c0

∫ t

t∗

m∑
i=1

∫ σi (ξ)

τi (ξ)

s(n−1−µi (s))dsri (s1, s)dξ →+∞ as t →+∞,

where c0 > 0 and t∗ > t1 is a sufficiently large number. Thus if n is even and ` = 0, then there takes place condition
(1.4), but if ` = n, then there takes place condition (1.5). This means that Eq. (1.1) has Property B and the theorem is
complete. �
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Using Corollaries 4.1–4.3, similarly to Corollaries 5.1–5.5, one can prove Corollaries 6.1–6.3.

Corollary 6.1. Let F ∈ V (τ ), conditions (1.3), (2.27), (3.6), (3.22), (5.1) be fulfilled and for any ` ∈

{1, . . . , n − 1} with ` + n even and λ ∈ [` − 1, `] conditions (3.4`), (3.5`), (3.6) and (3.50) hold when n is
even for some δ > 1. Then for Eq. (1.1) to have Property B, it is sufficient that one of the following three
conditions (1) (4.2`); (2) (4.3`); (3) (4.6`) hold.

Corollary 6.2. Suppose F ∈ V (τ ), conditions (1.3), (5.2) hold and for any ` ∈ {1, . . . , n − 1} with ` + n even and
λ ∈ [`− 1, `] conditions (5.3`) or (5.4`) are fulfilled. Then Eq. (1.1) has Property B, where h1ε is defined by the first
condition of (3.3).

Corollary 6.3. Let F ∈ V (τ ), conditions (1.3), (5.2) be fulfilled and

lim inf
t→+∞

1
t

∫ t

0
s1+n+ γ

m

( m∏
i=1

pi (s)
) 1

m
ds

>
1
m

max
{λ(λ− 1) · · · (λ− n + 1)e−λd

( m∏
i=1
(1+ γi + λ)

) 1
m

( m∏
i=1
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [0, n − 1]
}
.

Then Eq. (1.1) has Property B, where d =
∑m

i=1 di , γ =
∑m

i=1 γi .

Corollary 6.4. Suppose 0 < αi < βi , ci ∈ (−∞, 0), γi ∈ (−1,+∞). Then for Eq. (5.6) to have Property B, it is
necessary and sufficient that for any ` ∈ {1, . . . , n − 2} with `+ n even

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

|ci |e
λdi
(β

1+γi+λ

i − α
1+γi+λ

i )

1+ λ+ γi

)−1

: λ ∈ [`− 1, `]
}
< 1.

7. The differential equation with a deviating argument with Property A

Throughout this section, it is assumed that instead of (2.27) the inequality

∣∣F(u)(t)∣∣ ≥ m∑
i=1

pi (t)
∣∣u(δi (t))

∣∣µi (δi (t)) for t ≥ t0, u ∈ Ht0,τ (7.1)

holds with t0 ∈ R+ sufficiently large. Here we assume that

δi ∈ C(R+; R+), lim
t→+∞

δi (t) = +∞, (7.2)

pi ∈ L loc(R+; R+), µi ∈ C(R+; (0,+∞)), lim inf
t→+∞

µi (t) > 0 (i = 1, . . . ,m). (7.3)

Theorem 7.1. Let F ∈ V (τ ), conditions (1.2), (5.1), (7.1)–(7.3) be fulfilled and for any ` ∈ {1, . . . , n− 1} with `+ n
odd and λ ∈ [`− 1, `]∫

+∞

0
tn−`

m∑
i=1

pi (t)(δi (t))
(`−1)µi (δi (t))dt = +∞, (7.4`)

∫
+∞

0
tn−`−1

m∑
i=1

pi (t)(δi (t))
`µi (δi (t))dt = +∞ (7.5`)

and

lim sup
ε→0+

(
lim inf
t→+∞

gδ`(t, λ, ε)
)
> (`− 1)! (n − `− 1)!. (7.6`)
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Then Eq. (1.1) has Property A, where

gδ`(t, λ, ε) = t`−λ+h2ε(λ)

∫
+∞

t
s−n(s − t)n−`−1(δ∗(s))

−hε(λ)
∫ s

0
(s − ξ)`−1ξn−`

×

m∑
i=1

pi (ξ)(δi (ξ))
µ∗(δ(ξ),λ,ε)dξ ds, (7.7`)

µ∗ is given by (3.9) and (3.10) and

δ∗(t) = max
{
max{s, δ1(s), . . . , δm(s)} : 0 ≤ s ≤ t

}
. (7.8)

Proof. In view of (7.1), inequality (2.27) clearly holds with

τi (t) = δi (t)− 1, σi (t) = δi (t), ri (s, t) = pi (t) e(s − δi (t)), (7.9)

where

e(t) =

{
0 for t ∈ (−∞, 0),
1 for t ∈ [0,+∞).

(7.10)

Therefore, taking into account (1.2) and (7.1)–(7.3), (7.4`)–(7.7`), (7.8)–(7.10), we ascertain that the conditions of
Theorem 5.1 are fulfilled, which proves the validity of the theorem. �

Using Corollaries 5.1–5.3, we can analogously prove Corollaries 7.1–7.4 and 7.6.

Corollary 7.1. Let F ∈ V (τ ), conditions (1.2), (7.1)–(7.3) be fulfilled,

lim sup
t→+∞

δi (t)

t
<∞ (i = 1, . . . ,m) (7.11)

and for any ` ∈ {1, . . . , n − 1} with `+ n odd and λ ∈ [`− 1, `] conditions (7.4`), (7.5`) and

lim sup
ε→0+

(
lim inf
t→∞

gδ`1(t, ε, λ)
)
> (`− 1)! (n − `− 1)! (7.12`)

hold, where

gδ`1(t, ε, λ) = t`−λ+h2ε(λ)

∫
+∞

t
s−n−hε(λ)(s − t)n−`−1

∫ s

t∗
(s − ξ)`−1ξn−`

m∑
i=1

(
δi (ξ)

)µ∗(δi (ξ),λ)dξ ds, (7.13)

µ∗ is defined by (3.9) and (3.10).

Corollary 7.2. Let F ∈ V (τ ), conditions (1.2), (5.1), (3.6), (7.1)–(7.3), (7.4`), (7.5`) and (7.11) be fulfilled and for
any ` ∈ {1, . . . , n − 1} with `+ n odd and λ ∈ [`− 1, `] there exist γ > 1 such that

lim inf
ε→0+

(
lim inf
t→∞

t`−λ−1−h1ε(λ)

∫ t

0
sn−`

m∑
i=1

pi (s)(δi (s))
µ∗(s,λ,ε)ds

)
> γ

n−1∏
i=0;i 6=`−1

|λ− i |. (7.14`)

Then Eq. (1.1) has Property A, where µ∗ is given by (3.9) and (3.10).

Corollary 7.3. Let F ∈ V (τ ), conditions (1.2), (7.1)–(7.3), (7.4`), (7.5`) and (7.11), be fulfilled and for any
` ∈ {1, . . . , n − 1} with `+ n odd and λ ∈ [`− 1, `] there exist γ > 1 such that

lim inf
ε→0+

(
lim inf
t→∞

1
t

∫ t

0
sn−λ−h1ε(λ)

m∑
i=1

sn−`
m∑

i=1

pi (s)(δi (s))
µ∗(s,λ,ε)ds

)
> γ

n−1∏
i=0

|λ− i |. (7.15`)

Then Eq. (1.1) has Property A, where µ∗ is given by (3.9) and (3.10).
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Corollary 7.4. Let F ∈ V (τ ), condition (1.2) holds and∣∣F(u)(t)∣∣ ≥ m∑
i=1

pi (t)
∣∣u(αi t)

∣∣1+ di
lnαi t for t ≥ t0, u ∈ Ht0,τ , (7.16)

where

pi ∈ L loc(R+; R+), αi ∈ (0,+∞), di ∈ R (i = 1, . . . ,m). (7.17)

Moreover, for any ` ∈ {1, . . . , n − 1} with `+ n odd and λ ∈ [`− 1, `] there exist γ > 1 such that

lim inf
ε→0

(
lim inf
t→∞

1
t

∫ t

0
sn

m∑
i=1

pi (s)α
((λ))
i eλdi ds

)
> γ

n−1∏
i=0

|λ− i |. (7.18)

Then Eq. (1.1) has Property A.

Proof. By (7.16)–(7.18), it is obvious that the conditions of Corollary 7.3 hold, which proves the corollary. �

Using arithmetic mean–geometric mean inequality, from Corollary 7.4, we get

Corollary 7.5. Let F ∈ V (τ ), conditions (1.2), (7.16), (7.17) be fulfilled and

lim inf
t→∞

1
t

∫ t

0
sn
( m∏

i=0

pi (s)
) 1

m
ds >

1
m

max
{
−

( m∏
i=0

αi e
αi
)− λ

m
λ(λ− 1) · · · (λ− n + 1) : λ ∈ [0, n − 1]

}
.

Then Eq. (1.1) has Property A.

Corollary 7.6. Let ci , αi ∈ (0,+∞), di ∈ R (i = 1, . . . ,m). Then the equation

u(n)(t)+
m∑

i=1

ci

tn

∣∣u(αi t)
∣∣1+ di

lnαi t sign u(αi (t)) = 0 (7.19)

has Property A if and only if

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ciα
λ
i eλdi

)−1‘
: λ ∈ [0, n − 1]

}
< 1.

8. Differential equations with a deviating argument with Property B

Theorem 8.1. Let F ∈ V (τ ), conditions (1.3), (7.1)–(7.3) be fulfilled and for any ` ∈ {1, . . . , n} with ` + n
even (7.4`), (5.5`), (7.6`) hold. Moreover, if (7.50) holds when n even, then Eq. (1.1) has Property B.

Proof. In view of (7.1), inequality (2.27) holds with the functions µi , τi , σi and ri (i = 1, . . . ,m) defined by (7.9)
and (7.10). Therefore, it is obvious that the conditions of Theorem 6.1 are fulfilled, which proves the validity of the
theorem. �

Taking into account Corollaries 6.1–6.4, we can quite similarly prove Corollaries 8.1–8.3.

Corollary 8.1. Let F ∈ V (τ ), conditions (1.3), (3.6), (5.1), (7.1)–(7.3) and (7.11) be fulfilled and for any ` ∈
{1, . . . , n − 2} with ` + n even (7.4`), (7.5`) and (7.41) hold when n is even. Then for Eq. (1.1) to have Property B,
it is sufficient that one of the following three conditions (1) (7.12`); (2) (7.14`); (3) (7.15`) hold.

Corollary 8.2. Let F ∈ V (τ ), conditions (1.3), (7.16) and (7.17) be fulfilled and

lim inf
t→∞

1
t

∫ t

0
sn
( m∏

i=0

pi (s)
) 1

m
ds >

1
m

max
{
−

( m∏
i=1

αi e
λdi
)− λ

m
λ(λ− 1) · · · (λ− n + 1) : λ ∈ [0, n − 1]

}
.

Then Eq. (1.1) has Property B.
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Corollary 8.3. Let ci ∈ (−∞, 0), αi ∈ (0,+∞), di ∈ R (i = 1, . . . ,m). Then Eq. (7.19) has Property B if and only
if

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

|ci |α
λ
i eλdi

)−1
: λ ∈ [0, n − 1]

}
< 1.

9. Some auxiliary lemmas for the volterra type differential inequalities

Consider the following differential inequalities:

u(n)(t) sign u(t)+
m∑

i=1

∫ σi (t)

τi (t)
|u(s)|µi (s)ds ri (s, t) ≤ 0 for t ≥ t0, (9.1)

and

u(n)(t) sign u(t)−
m∑

i=1

∫ σi (t)

τi (t)
|u(s)|µi (s)ds ri (s, t) ≥ 0 for t ≥ t0, (9.2)

where t0 ∈ R+, the functions ri , τi , σi and µi (i = 1, . . . ,m) satisfy condition (2.28). Furthermore, everywhere below
in this section, we assume that one of the following conditions

σi (t) ≤ t, µi (t) ≤ 1 for t ≥ t0 (i = 1, . . . ,m), (9.3)

or

τi (t) ≥ t, µi (t) ≥ 1 for t ≥ t0 (i = 1, . . . ,m) (9.4)

is fulfilled.

Lemma 9.1 ([12]). Let condition (9.3) be fulfilled. Then for the differential inequality (9.1) to have Property A it is
necessary and sufficient that it has no solution of type (2.1n−1).

Lemma 9.2 ([12]). Let conditions (9.4) be fulfilled and∫
+∞

0
tn−1

m∑
i=1

(
ri
(
σi (t), t

)
− ri

(
τi (t), t

))
dt = +∞, (9.5)

when n is odd. Then for the differential inequality (9.1) to have Property A, it is necessary and sufficient that it has no
solution of type (2.11) when n is even and of type (2.12) and (2.1n−1) when n is odd.

Lemma 9.3 ([13]). Let condition (9.3) be fulfilled and∫
+∞

0

m∑
i=1

∫ σi (t)

τi (t)
s(n−1)µi (s)dsri (s, t)dt = +∞. (9.6)

Then for differential inequality (9.2) to have Property B, it is necessary and sufficient that it has no solution satisfying
(2.1n−2) when n is even and of type (2.11) and (2.1n−2) when n is odd.

Lemma 9.4 ([13]). Let conditions (9.4) and (9.5) be fulfilled. Then for differential inequality (9.2) to have Property B,
it is necessary and sufficient that it has no solution satisfying (2.12) when n is even and satisfying (2.11) when n is
odd.

10. Functional differential equations with a volterra type minorant having Property A

Theorem 10.1. Let F ∈ V (τ ), conditions (1.2), (2.27), (2.28), (3.6), (9.3) and (9.6) be fulfilled and (5.1) holds when
n is odd. Then condition (4.1−1) is sufficient for Eq. (1.1) to have Property A.



234 R. Koplatadze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 215–242

Proof. First of all, we note that (9.3) and (9.6) imply the validity of the conditions∫
+∞

0
tn−k−1

m∑
i=1

∫ σi (t)

τi (t)
skµi (s)ds ri (s, t)dt = +∞ (k = 0, . . . , n − 1). (10.1k)

Suppose now that Eq. (1.1) does not have Property A. Then by Lemma 2.1, Eq. (1.1) has a nonoscillatory solution
u : [t0,+∞)→ R+ satisfying condition (2.1`), where ` ∈ {o, . . . , n − 1} with `+ n odd. If n is odd and ` = 0, then
according to (9.70) and (5.1), condition (1.4) is fulfilled. Consequently, since Eq. (1.1) does not have Property A, we
have ` ∈ {1, . . . , n − 1} with ` + n odd. According to (1.2) and (2.27), for sufficiently large t , u is a proper solution
of type (2.1`) of the differential inequality (9.1). By Lemma 9.1, inequality (9.1) is a solution of type (2.1n−1). On
the other hand, since the conditions of Theorem 4.1 with ` = n − 1 are fulfilled, according to Remark 4.1, inequality
(9.1) has no solution of type (2.1n−1). The obtained contradiction proves the validity of the theorem. �

Theorem 10.2. Let F ∈ V (τ ), conditions (1.2), (2.27), (2.28), (3.6), (9.3) and (9.6) be fulfilled and (5.1) holds when
n is odd. Then for Eq. (1.1) to have Property A, it is sufficient that one of the following three conditions (1) (3.22) and
(4.2n−1); (2) (3.22) and (4.3n−1); (3) (3.22) and (4.5n−1) holds.

Proof. The proof is analogous to that of Theorem 10.1 with the use of Corollaries 4.1–4.3. �

Corollary 10.1. Let F ∈ V (τ ), conditions (1.2), (5.2) be fulfilled, where 0 < αi < βi ≤ 1, di ∈ (−∞, 0] and
γi ∈ (−1,+∞) (i = 1, . . . ,m). Then the condition

lim inf
t→∞

1
t

∫ t

0
s1+n+ γ

m

( m∏
i=0

pi (s)
) 1

m
ds

>
1
m

max


−λ(λ− 1) · · · (λ− n + 1)

( m∏
i=0
(1+ γi (λ))

) 1
m · e−λd

( m∏
i=0
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [n − 2, n − 1]


is sufficient for Eq. (1.1) to have Property A, where d =

∑m
i=1 di , γ =

∑m
i=1 γi .

Corollary 10.2. Let 0 < αi < βi ≤ 1, ci ∈ (0,+∞), di ∈ (−∞, 0], γi ∈ (−1,+∞] (i = 1, . . . ,m). Then the
condition

max
{
−λ(λ− 1) · · · (λ− n + 1)

(
ci e

λdi
β

1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi

)−1

: λ ∈ [n − 2, n − 1]
}
< 1

is necessary and sufficient for Eq. (5.6) to have Property A.

If we take into account Remark 4.1 and Lemma 9.1, then the validity of Corollaries 10.1 and 10.2 follows from
Corollaries 6.3 and 6.4.

Theorem 10.3. Let F ∈ V (τ ), conditions (1.2), (2.27), (2.28), (3.6), (9.4) and (9.70) be fulfilled and (5.1) holds when
n is odd. Then for Eq. (1.1) to have Property A, it is sufficient that (4.11) holds when n is even and conditions (4.12)

and (4.1n−1) hold when n is odd.

Proof. The proof of Theorem 10.3 is analogous to that of Theorem 10.1, and Lemma 9.1 is used instead of
Lemma 9.2. �

Analogously, we can prove

Theorem 10.4. Let F ∈ V (τ ), conditions (1.2), (2.27), (2.28), (3.6), (9.4) and (9.70) be fulfilled and (5.1) holds when
n is odd. Then for Eq. (1.1) to have Property A, it is sufficient that for even n (for odd n) the conditions (1) (3.22) and
(4.21) ((3.22), (4.22) and (4.2n−1)); (2) (3.22) and (4.32) ((3.22), (4.32) and (4.3n−1)); (3) (3.22) and (4.52) ((3.22),
(4.52) and (4.5n−1)) holds.
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Corollary 10.3. Let F ∈ V (τ ), conditions (1.2), (5.2) be fulfilled, where 1 ≤ αi < β1, di ∈ [0,+∞), γi ∈ (−1,+∞)
(i = 1, . . . ,m). Then for Eq. (1.1) to have Property A, it is sufficient that the condition

lim inf
t→∞

1
t

∫ t

0
s1+n+ γ

m

( m∏
i=0

pi (s)
) 1

m
ds

>
1
m

max


−λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1
(1+ γi + λ)

) 1
m · e−λd

( m∏
i=1
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [0, 1]


holds when n is even and the condition

lim inf
t→∞

1
t

∫ t

0
s1+n+ γ

m

( m∏
i=1

pi (s)
) 1

m
ds

>
1
m

max


−λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1
(1+ γi (λ))

) 1
m · e−λd

( m∏
i=1
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [1, 2] ∪ [n − 2, n − 1]


holds when n is odd; here, d =

∑m
i=1 di , γ =

∑m
i=1 γi .

Corollary 10.4. Let 1 ≤ αi < βi , ci ∈ [0,+∞), di ∈ [0,+∞), γi ∈ (−1,+∞) (i = 1, . . . ,m). Then for Eq. (5.6) to
have Property A, it is necessary and sufficient that

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ci e
λdi
β

1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi

)−1

: λ ∈ [0, 1]
}
< 1

when n is even and

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ci e
λdi
β

1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi

)−1

: λ ∈ [1, 2] ∪ [n − 2, n − 1]
}
< 1

when n is odd.

If we take into account Remark 4.1 and Lemma 9.2, the validity of Corollaries 10.3 and 10.4 follows from
Corollaries 5.4 and 5.5.

11. Functional differential equations with a volterra type minorant having Property B

Theorem 11.1. Let F ∈ V (τ ), conditions (1.3) and (2.27), (2.28) and (3.6), (9.3) and (9.6) be fulfilled and (5.1) holds
when n is even. Then for Eq. (1.1) to have Property B, it is sufficient that the condition (4.1n−2) holds when n is even
and conditions (4.11) and (4.1n−2) hold when n is odd.

Proof. (9.3) and (9.7n−1) imply the validity of (10.1k) for any k ∈ {0, . . . , n − 1}. Suppose now that Eq. (1.1) does
not have Property B. Then by Lemma 2.1, Eq. (1.1) has a nonoscillatory solution u : [t0,+∞) → R satisfying
condition (2.1`), where ` ∈ {0, . . . , n} and `+ n is even. If n is even and ` = 0, then according to (10.10), condition
(1.4) holds. If ` = n, then according to (9.6), it can be shown that (1.5) holds. Consequently, since Eq. (1.1) does not
have Property B, we have ` ∈ {1, . . . , n − 2} and ` + n is even. By (1.3) and (2.27), u is a proper solution of type
(2.1`) of the differential inequality (9.2). By Lemma 9.3, inequality (9.2) has a solution of type (2.1n−2), ((2.11) or
(2.1n−1)) when n is even (n is odd). On the other hand, since the conditions of Theorem 4.1 with ` = n−2 (` = 1 and
` = n− 2) when n is even (n is odd) are fulfilled, according to Remark 4.1, inequality (9.2) for even n (for odd n) has
no solution of type (2.1n−2) ((2.11) or (2.1n−2)). The obtained contradiction proves the validity of the theorem. �
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Theorem 11.2. Let F ∈ V (τ ), conditions (1.3), (2.27), (2.28), (3.6), (9.3) and (9.6) be fulfilled and (5.1) hold when
n is even. Then for Eq. (1.1) to have Property B, it is sufficient that for even n (for odd n) one of the following
three conditions (1) (3.22) and (4.2n−2) ((3.22), (4.21) and (4.2n−2)); (2) (3.22) and (4.3n−2) ((3.22), (4.31) and
(4.3n−2)); (3) (3.22) and (4.5n−2) ((3.22), (4.51) and (4.5n−2)) hold.

Proof. The proof is analogous to that of Theorem 11.1 with the use of Corollaries 4.1–4.3. �

Corollary 11.1. Let F ∈ V (τ ), conditions (1.3), (5.2) be fulfilled, where 0 < αi < βi ≤ 1, di ∈ [0,+∞),
γi ∈ (−1,+∞) (i = 1, . . . ,m). Then for Eq. (1.1) to have Property B, it is sufficient that the condition

lim inf
t→∞

1
t

∫ t

0
s1+n+ γ

m

( m∏
i=1

pi (s)
) 1

m
ds

>
1
m

max


λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1
(1+ γi + λ)

) 1
m · e−λd

( m∏
i=1
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [n − 3, n − 2]


holds when n is even and the condition

lim inf
t→∞

1
t

∫ t

0
s1+n+ γ

m

( m∏
i=1

pi (s)
) 1

m
ds

>
1
m

max


λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1
(1+ γi + λ)

) 1
m · e−λd

( m∏
i=1
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [0, 1] ∪ [n − 3, n − 2]


holds when n is odd, where d =

∑m
i=1 di , γ =

∑m
i=1 γi .

Corollary 11.2. Let 0 < αi < βi ≤ 1, ci ∈ [−∞, 0), di ∈ [−∞, 0) and γi ∈ (−1,+∞) (i = 1, . . . ,m). Then for
Eq. (5.6) to have Property B, it is necessary and sufficient that

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

|ci |e
λdi
β

1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi

)−1

: λ ∈ [n − 3, n − 2]
}
< 1,

when n is even and

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

|ci |e
λdi
β

1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi

)−1

: λ ∈ [0, 1] ∪ [n − 3, n − 2]
}
< 1,

when n is odd.

If we take into account Remark 4.1 and Lemma 9.3, the validity of Corollaries 11.3 and 11.2 follows from
Corollaries 6.3 and 6.4.

Theorem 11.3. Let F ∈ V (τ ), conditions (1.3), (2.27), (2.28), (3.6), (3.22), (9.4) and (9.5) be fulfilled and (5.1) hold
when n is even. Then for Eq. (1.1) to have Property B, it is sufficient that condition (4.12) holds when n is even and
condition (4.11) holds when n is odd.

Proof. The proof is analogous to that of Theorem 11.1 and Lemma 9.3 is used instead of Lemma 9.4. �

Theorem 11.4. Let F ∈ V (τ ), conditions (1.3), (2.27), (2.28), (3.6), (9.4) and (9.70) be fulfilled and (5.1) hold when
n is even. Then for Eq. (1.1) to have Property B, it is sufficient that for even n (for odd n) one of the following
three conditions (1) (3.22) and (4.22) ((3.22) and (4.21)); (2) (3.22) and (4.32) ((3.22) and (4.31)); (3) (3.22) and
(4.52) ((3.22) and (4.51)) hold.
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Corollary 11.3. Let F ∈ V (τ ), conditions (1.3), (5.2) be fulfilled, where 1 ≤ αi < βi , di ∈ [0,+∞), γi ∈ R
γi ∈ (−1,+∞) (i = 1, . . . ,m). Then for Eq. (1.1) to have Property B, it is sufficient that

lim inf
t→∞

1
t

∫ t

0
s1+n+ γ

m

( m∏
i=1

pi (s)
) 1

m
ds

>
1
m

max


λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1
(1+ γi + λ)

) 1
m · e−λd

( m∏
i=1
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [1, 2]


holds when n is even and

lim inf
t→∞

1
t

∫ t

0
s1+n+ γ

m

( m∏
i=1

pi (s)
) 1

m
ds

>
1
m

max


λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1
(1+ γi + λ)

) 1
m · e−λd

( m∏
i=1
(β

1+γi+λ

i − α
1+γi+λ

i )
) 1

m

: λ ∈ [0, 1]


when n is odd, where d =

∑m
i=1 di , γ =

∑m
i=1 γi .

Corollary 11.4. Let 1 ≤ αi < βi ≤ 1, ci ∈ [−∞, 0), di ∈ [0,+∞) and γi ∈ (−1,+∞) (i = 1, . . . ,m). Then for
Eq. (5.6) to have Property B, it is necessary and sufficient that

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

|ci |e
λdi
β

1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi

)−1

: λ ∈ [1, 2]
}
< 1

when n is even and

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

|ci |e
λdi
β

1+γi+λ

i − α
1+γi+λ

i

1+ λ+ γi

)−1

: λ ∈ [0, 1]
}
< 1

when n is odd.

If we take into account Remark 4.1 and Lemma 9.4, the validity of Corollaries 11.3 and 11.4 follows from
Corollaries 6.3 and 6.4.

12. Functional differential equations with a delay argument type minorant

Theorem 12.1. Let F ∈ V (τ ), conditions (1.2), (7.1), (7.2), (7.3), (7.4n−1) and

δi (t) ≤ t, µi (t) ≤ 1 for t ≥ t0 (i = 1, . . . ,m) (12.1)

be fulfilled and (5.1) hold when n is odd. If, moreover, for any λ ∈ [n − 2, n − 1], condition (7.6n−1) is fulfilled, then
Eq. (1.1) has Property A, where ρδn−1 is defined by (7.7n−1).

Proof. By (7.1), it is obvious that inequality (2.27) holds, where the functions τi , σi and ri (i = 1, . . . ,m) are
defined by (7.9) and (7.10). Therefore, according to (1.2), (7.1), (7.2), (7.3), (7.4n−1), (5.1), (12.1) and (7.6n−1),
every conditions of Theorem 10.1 are fulfilled, which proves the validity of the theorem. �

Taking into account Theorem 10.2, the next theorem can be proved similarly.

Theorem 12.2. Let F ∈ V (τ ), conditions (1.2), (7.1), (7.2), (7.3), (7.4n−1) and (12.1) be fulfilled and (5.1) hold when
n odd. Then for Eq. (1.1) to have Property B, it is sufficient that one of the following three conditions (1) (7.131);
(2) (7.151); (3) (7.161) holds.
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Corollary 12.1. Let F ∈ V (τ ), conditions (1.2), (7.10), (7.17) hold and 0 < αi ≤ 1, di ∈ (−∞, 0] (i = 1, . . . ,m)
be fulfilled and

lim inf
t→∞

1
t

∫ t

0
sn
( m∏

i=1

pi (s)
) 1

m
ds >

1
m

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1

αi edi
)−λ

m
: λ ∈ [n − 2, n − 1]

}
.

Then Eq. (1.1) has Property A.

Corollary 12.2. Let 0 < αi ≤ 1, ci ∈ (0,+∞), di ∈ (−∞, 0] and γi ∈ (−1,+∞) (i = 1, . . . ,m). Then for
Eq. (7.19) to have Property A, it is necessary and sufficient that

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ciα
λ
i eλdi

)−1
λ ∈ [n − 2, n − 1]

}
< 1.

If we take into account Remark 4.1 and Lemma 9.1, the validity of Corollaries 12.1 and 12.2 follows from
Corollaries 5.4 and 5.5.

Theorem 12.3. Let F ∈ V (τ ), conditions (1.3), (7.1), (7.2), (7.3), (7.4n−1) and (12.1) be fulfilled and (5.1) holds
when n is even. If, moreover, when n is even (n is odd), for any λ ∈ [n − 2, n − 1], condition (7.6n−2) (for any
λ ∈ [0, 1], condition (7.61) and for any λ ∈ [n − 3, n − 2], condition (7.6n−2)) hold, then Eq. (1.1) has Property B.

Proof. By (7.1), inequality (2.27) holds, where the functions τi , σi and ri (i = 1, . . . ,m) are defined by (7.10), (7.11).
Therefore, according to (1.3), (7.1), (7.2), (7.3), (7.4n−1), (12.1) and (7.6n−2) ((7.61) and (7.6n−2)), for even n (for
odd n), all conditions of Theorem 11.1 are fulfilled, which proves the validity of the theorem. �

Taking into account Theorem 11.2, the next theorem can be proved similarly.

Theorem 12.4. Let F ∈ V (τ ), conditions (1.3), (7.1), (7.2), (7.3), (7.4n−1) and (12.1) be fulfilled and (5.1) hold when
n is even. Then for Eq. (1.1) to have Property B, it is sufficient that for even n (for odd n) one of the following three
conditions (1) (7.13n−2) ((7.131) and (7.13n−2)); (2) (7.15n−2) ((7.151) and (7.15n−2)); (3) (7.16n−2) ((7.161) and
(7.16n−2)) hold.

Corollary 12.3. Let F ∈ V (τ ), conditions (1.3), (7.16), (7.17) hold and 0 < αi ≤ 1, di ∈ (−∞, 0] (i = 1, . . . ,m)
be fulfilled and

lim inf
t→∞

1
t

∫ t

0
sn
( m∏

i=1

pi (s)
) 1

m
ds >

1
m

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1

αi e
di
)− λ

m
: λ ∈ [n − 3, n − 2]

}
,

for even n and

lim inf
t→∞

1
t

∫ t

0
sn
( m∏

i=1

pi (s)
) 1

m
ds

>
1
m

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1

αi e
di
)− 1

m
: λ ∈ [0, 1] ∪ [n − 3, n − 2]

}
for odd n. Then Eq. (1.1) has Property B.

Corollary 12.4. Let 0 < αi ≤ 1, ci ∈ [−∞, 0), di ∈ [−∞, 0] (i = 1, . . . ,m). Then Eq. (7.19) has Property B if and
only if

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

|ci |α
λ
i eλdi

)−1
: λ ∈ [n − 3, n − 2]

}
< 1,

when n is even and

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

|ci |α
λ
i eλdi

)−1
: λ ∈ [0, 1] ∪ [n − 3, n − 2]

}
< 1,

when n is odd.
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If we take into account Remark 4.1 and Lemma 9.3, the validity of Corollaries 13.3 and 12.4 follows from
Corollaries 8.2 and 8.3.

13. Functional differential equations with an advanced argument type minorant

Theorem 13.1. Let F ∈ V (τ ), conditions (1.2), (7.1), (7.2), (7.3), (7.41) and

δi (t) ≥ t, µi (t) ≥ 1 for t ≥ t0 (i = 1, . . . ,m) (13.1)

be fulfilled and for even n (5.1) hold. Then for Eq. (1.1) to have Property A, it is sufficient that for even n (for odd n)
for any λ ∈ [0, 1] (for any λ ∈ [1, 2] and λ ∈ [n − 2, n − 12]), conditions (7.61) (conditions (7.62) and (7.6n−1))
hold.

Proof. By (7.1), it is obvious that inequality (2.26) holds, where

τi (t) = δi (t), and σi (t) = δi (t)+ 1, ri (s, t) = pi (t) e(s − δi (t)) (i = 1, . . . ,m) (13.2)

where the function e is defined by (7.11). Therefore, according to (1.2), (7.1), (7.2), (7.3), (7.41), (13.1), (13.2)
and (7.61) ((7.62) and (7.6n−1)), every conditions of Theorem 10.3 are fulfilled, which proves the validity of the
theorem. �

Taking into account Theorem 10.4, the next theorem can be proved similarly.

Theorem 13.2. Let F ∈ V (τ ), conditions (1.2), (7.1), (7.2), (7.3), (7.41) and (13.1) be fulfilled and (5.1) hold when
n is odd. Then for Eq. (1.1) to have Property A, it is sufficient that for even n (for odd n), one of the following
three conditions (1) (3.22) and (7.131) ((3.22), (7.132) and (7.13n−1)); (2) (3.22) and (7.151) ((3.22), (7.152) and
(7.15n−1)); (3) (3.22) and (7.161) ((3.22), (7.162) and (7.16n−1)) hold.

Corollary 13.1. Let F ∈ V (τ ), conditions (1.2), (7.17), (7.18) and αi ≥ 1, di ∈ [0,+∞) (i = 1, . . . ,m) be fulfilled
and

lim inf
t→∞

1
t

∫ t

1
sn
( m∏

i=1

pi (s)
) 1

m
ds >

1
m

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1

αi e
λdi
)− λ

m
: λ ∈ [0, 1]

}
,

for even n and

lim inf
t→∞

1
t

∫ t

1
sn
( m∏

i=1

pi (s)
) 1

m
ds

>
1
m

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1

αi e
λdi
)− λ

m
: λ ∈ [1, 2] ∪ [n − 2, n − 1]

}
,

for odd n. Then Eq. (1.1) has Property A.

Corollary 13.2. Let αi ≥ 1, ci ∈ [0,+∞), di ∈ [0,+∞) (i = 1, . . . ,m). Then Eq. (7.19) has Property A if and only
if

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ciα
λ
i eλdi

)−1
: λ ∈ [0, 1]

}
< 1,

when n is even and

max
{
−λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ciα
λ
i eλdi

)−1
: λ ∈ [1, 2] ∪ [n − 2, n − 1]

}
< 1,

when n is odd.

Theorem 13.3. Let F ∈ V (τ ), conditions (1.3), (7.1), (7.2), (7.3), (7.41) and (13.1) be fulfilled and (5.1) hold when
n is even. Then for Eq. (1.1) to have Property B, it is sufficient that the condition (7.62) holds for any λ ∈ [1, 2], when
n is even, and the condition (7.61) holds for any λ ∈ [0, 1], when n is odd.



240 R. Koplatadze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 215–242

Proof. According to (7.1), it is obvious that inequality (2.26) holds, where τi , σi and ri (i = 1, . . . ,m) are defined
by (13.2). Therefore, according to (1.3), (13.1), (7.1), (7.2), (7.3), (7.41), (7.62) and (7.61), every conditions of
Theorem 10.4 are fulfilled, which proves the validity of the theorem. �

According to Theorem 11.4, the next theorem can be proved similarly.

Theorem 13.4. Let F ∈ V (τ ), conditions (1.3), (7.1), (7.2), (7.3), (7.41) and (13.1) be fulfilled and (5.1) hold when
n is even. Then for Eq. (1.1) to have Property B, it is sufficient that for even n (for odd n) and for any λ ∈ [1, 2]
(for any λ ∈ [0, 1]), one of the following three conditions (1) (3.21) and (7.132) ((3.21) and (7.131)); (2) (3.21) and
(7.152) ((3.21) and (7.151)); (3) (3.21) and (7.162) ((3.21) and (7.161)) hold.

Corollary 13.3. Let F ∈ V (τ ), conditions (1.3), (7.17), (7.18) hold and αi ≥ 1, di ∈ [0,+∞) (i = 1, . . . ,m) be
fulfilled and

lim inf
t→∞

1
t

∫ t

0
sn
( m∏

i=1

pi (s)
) 1

m
ds >

1
m

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1

αi e
λdi
)− λ

m
: λ ∈ [1, 2]

}
,

when n is even and

lim inf
t→∞

1
t

∫ t

0
sn
( m∏

i=1

pi (s)
) 1

m
ds >

1
m

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∏
i=1

αi e
λdi
)− λ

m
: λ ∈ [0, 1]

}
,

when n is odd. Then Eq. (1.1) has Property B.

Corollary 13.4. Let αi ≥ 1, ci ∈ [−∞, 0), di ∈ [0,+∞) (i = 1, . . . ,m). Then Eq. (7.19) has Property B if and only
if

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ciα
λ
i eλdi

)−1
: λ ∈ [1, 2]

}
< 1,

when n is even and

max
{
λ(λ− 1) · · · (λ− n + 1)

( m∑
i=1

ciα
λ
i eλdi

)−1
: λ ∈ [0, 1]

}
< 1,

when n is odd.

14. Ordinary differential equations with Property A (Property B)

Here we give the sufficient conditions for the equation

u(n)(t)+ p(t)
∣∣u(t)∣∣1+ d

ln t sign u(t) = 0, t ≥ a > 1 (14.1)

to have Property A (Property B), where p ∈ L loc(R+; R) and d ∈ R.
The results of this section are the consequences of the previous ones, but we present them because in this case the

conditions have a quite simple form.

Theorem 14.1. Let p ∈ L loc(R+; R+) and

lim inf
t→∞

1
t

∫ t

0
sn p(s)ds > max

{
−λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [0, n − 1]
}
.

Then Eq. (14.1) has Property A.

Theorem 14.2. Let p ∈ L loc(R+; R+), d ∈ (−∞, 0] and

lim inf
t→∞

1
t

∫ t

0
sn p(s)ds > max

{
−λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [n − 2, n − 1]
}
.

Then Eq. (14.1) has Property A.
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Remark 14.1. For d = 0, the above theorem results in Koplatadze’s theorem [8] which is an integral generalization
of Kondratev’s result [2].

Theorem 14.3. Let p ∈ L loc(R+; R+), d ∈ [0,+∞) and

lim inf
t→∞

1
t

∫ t

0
sn p(s)ds > max

{
−λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [0, 1]
}
,

when n is even and

lim inf
t→∞

1
t

∫ t

0
sn p(s)ds > max

{
−λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [1, 2] ∪ [n − 2, n − 1]
}
,

when n is odd. Then Eq. (14.1) has Property A.

Theorem 14.4. Let p ∈ L loc(R+; R−) and

lim inf
t→∞

1
t

∫ t

0
sn
|p(s)|ds > max

{
λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [0, n − 1]
}
.

Then Eq. (14.1) has Property B.

Remark 14.2. For d = 0, the above theorem results in Koplatadze’s theorem [9].

Theorem 14.5. Let p ∈ L loc(R+; R−), d ∈ (−∞, 0] and

lim inf
t→∞

1
t

∫ t

0
sn
|p(s)|ds > max

{
λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [n − 3, n − 2]
}
,

when n is even and

lim inf
t→∞

1
t

∫ t

0
sn
|p(s)|ds > max

{
λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [0, 1] ∪ [n − 3, n − 2]
}
,

when n is odd. Then Eq. (14.1) has Property B.

Theorem 14.6. Let p ∈ L loc(R+; R−), d ∈ (0,+∞) and

lim inf
t→∞

1
t

∫ t

0
sn
|p(s)|ds > max

{
λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [1, 2]
}
,

when n is even and

lim inf
t→∞

1
t

∫ t

0
sn
|p(s)|ds > max

{
λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [0, 1]
}
,

when n is odd. Then Eq. (14.1) has Property B.

Theorem 14.7. Let c ∈ (0,+∞), (c ∈ (−∞, 0)), d ∈ R. Then for the equation

u(n)(t)+
c

tn

∣∣u(t)∣∣1+ d
ln t sign u(t) = 0, t ≥ a > 1

to have Property A (B), it is necessary and sufficient that

c > max
{
−λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [0, n − 1]
}

(
|c| > max

{
λ(λ− 1) · · · (λ− n + 1)e−λd

: λ ∈ [0, n − 1]
})
.
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Remark 14.3. To show the difference and similarity between linear and almost linear differential equations we will
consider a simple example. Consider the equation

u(n)(t)+
Mn

tn u(t) = 0
(

u(n)(t)−
M∗n
tn u(t) = 0

)
t ≥ a > 1, (14.2)

where

Mm = max
{
−λ(λ− 1) · · · (λ− n + 1) : λ ∈ [0, n − 1]

}
,

M∗m = max
{
λ(λ− 1) · · · (λ− n + 1) : λ ∈ [0, n − 1]

}
.

It is obvious that Eq. (14.2) does not have Property A (Property B), but for any d > 0, the equation

u(n)(t)+
Mn

tn

∣∣u(t)∣∣1+ d
ln t sign u(t) = 0

(
u(n)(t)−

M∗n
tn

∣∣u(t)∣∣1+ d
ln t sign u(t) = 0

)
t ≥ a > 1

has Property A (Property B).
On the other hand, for any d > 0, there exists ε = ε(d) > 0 such that the equation

u(n)(t)+
Mn + ε

tn u(t) = 0
(

u(n)(t)−
M∗n + ε

tn u(t) = 0
)

t ≥ a > 1

has Property A (Property B) and the equation

u(n)(t)+
Mn

tn

∣∣u(t)∣∣1− d
ln t sign u(t) = 0

(
u(n)(t)−

M∗n
tn

∣∣u(t)∣∣1− d
ln t sign u(t) = 0

)
t ≥ a > 1

does not have Property A (Property B).
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Abstract

In this research paper, numerical study of unsteady magnetohydrodynamic natural convective heat and mass transfer of a
viscous, rotating fluid, electrically conducting and incompressible fluid flow past an impulsively moving vertical plate embedded
in porous medium in the presence of ramped temperature, thermal radiation, hall current, thermal diffusion and diffusion thermo
is investigated. The fundamental governing dimensionless coupled boundary layer partial differential equations are solved by an
efficient Element Free Galerkin Method (EFGM). Computations were performed for a wide range of some important governing
flow parameters viz., Hall current, rotation, thermal diffusion (Soret) and diffusion thermo (Dufour). The effects of these flow
parameters on primary and secondary velocity, temperature and concentration fields for externally heating and cooling of the plate
are shown graphically. Finally, the effects of these flow parameters on the rate of heat, mass transfer and shear stress coefficients at
the wall are prepared through tabular forms for heating and cooling of the plate. Also, these are all discussed for ramped temperature
and isothermal plates. We have shown that some results are in good agreement with earlier reported studies.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Heat transfer; MHD; Hall current; Rotation; Element Free Galerkin Method

1. Introduction

The Hall effect is the making of a voltage difference across an electrical conductor, transverse to an electric
current in the conductor and an electromagnetic field is perpendicular to the current. It is found by Edwin Hall [1].
The problems on magnetohydrodynamics viscous fluids with hall current has importance in engineering applications

∗ Corresponding author.
E-mail address: jithendergurejala@gmail.com (G. Jithender Reddy).
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.
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Nomenclature

List of Variables:

B0 Uniform applied magnetic field (T)
x ′, y′, z′ Co-ordinate system (m)
x, y, z Dimensionless coordinates (m)
u′ Fluid velocity along the x ′-axis (m s−1)

w′ Fluid velocity along the z′-axis (m s−1)

u Non-dimensional fluid velocity along the x ′-axis (m)
w Non-dimensional fluid velocity along the z′-axis (m)
t0 Characteristic time (s)
Nu Nusselt number or rate of heat transfer coefficient
Sh Sherwood number or rate of mass transfer coefficient
cp Specific heat at constant pressure (J kg−1K)
Gr Grashof number for heat transfer
Gm Grashof number for mass transfer
ḡ Acceleration due to gravity, 9.81 (m/s2)

g Acceleration due to gravity in magnitude (m/s2)

K1 Permeability parameter (K d−2)

kT Thermal diffusion ratio
Tm Mean fluid temperature (K)
Cs Concentration susceptibility (m mol−1)

k∗ Mean absorption coefficient (m−1)

B̄ Magnetic induction vector
M2 Magnetic parameter
Pr Prandtl number
p Fluid pressure (N m−2)

qr Radiative flux (kg/s3)

m Hall current parameter
N Radiation parameter
Sr Soret number
C ′ Species concentration (kg m−3)

C ′∞ Species concentration of the fluid far away from the plate (kg m−3)

C ′w Species concentration at the plate (kg m−3)

Dm Molecular mass diffusivity (m2 s−1)

DT Molecular diffusivity (m2 s−1)

E Electric field (S m−1)

Dr Dufour number
Sc Schmidt Number
T ′w Temperature at the plate (K)
T ′∞ Temperature of the fluid far away from the plate (K)
t ′ Time (s)
T ′ Fluid temperature (K)
U0 Plate velocity (m s−1)

T Non-dimensional temperature (K)
C Non-dimensional species concentration (kg m−3)

Greek symbols:

ρ Fluid density (kg m−3)
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κ Thermal conductivity (W m−1 K−1)

σ Electrical conductivity (S m−1)

ν Kinematic viscosity (m2 s−1)

β ′ Coefficient of volume expansion for heat transfer (K−1)

Ω Rotation parameter (degrees)
Ω ′ Uniform angular velocity (degrees)
β∗ Coefficient of volume expansion for mass transfer (m3 kg−1)

τx Skin-friction in x ′-direction (Pa)
τz Skin-friction in z′-direction (Pa)
σ ∗ Stefan–Boltzmann constant (W m−2 K−4)

Superscript

/ Dimensionless properties

Subscripts

w Wall conditions
∞ Free stream conditions
p Plate

such as MHD generators and MHD accelerators, laboratory plasmas, the rotating flow of fluids in the presence
of magnetic field occurring in geophysical and cosmical fluid dynamics, the solar physics involved in the sunspot
development, solar cycle and structure of rotating magnetic stars. The effect of Hall current with rotating system on
MHD convection flows have been carried out by many researchers due to application of such studies as in the problems
of MHD generators and Hall accelerators. Ajay Kumar Singh et al. [2], Mbeledogu and Ogulu [3], Abuga et al. [4],
Jain and Singh [5] have studied rotation/Hall effects on various problems. Ahmed and Dutta [6] discussed transient
mass transfer flow past an impulsively started infinite vertical plate in ramped plate velocity and ramped temperature.
Seth et al. [7] studied the effects of hall current and rotation on natural convection radiative heat and mass transfer
MHD flow past a moving vertical plate for ramped and isothermal plate only in case of externally cooling of the
plate by Laplace transform technique with the absence of thermal diffusion and diffusion thermo. Chamkha et al. [8]
investigated the influence of hall current on unsteady MHD free convective heat and mass transfer on a vertical porous
plate with thermal radiation and chemical reaction. Sivaiah and Srinivasa Raju [9] studied the effects of Hall current
and Heat source on MHD heat and mass transfer free convective flow in the presence of viscous dissipation by applying
finite element technique. Siva Reddy and Srinivasa Raju [10] studied the effect of viscous dissipation on transient free
convection flow past an infinite vertical plate through porous medium in the presence of magnetic field using finite
element technique. Anand Rao et al. [11] demonstrated transient flow past an impulsively started infinite flat porous
plate in a rotating fluid in the presence of magnetic field with Hall current using finite element technique. Anand Rao
et al. [12] investigated the combined effects of heat and mass transfer on unsteady MHD flow past a vertical oscillatory
plate suction velocity using finite element method. The combined effects of heat and mass transfer on unsteady MHD
natural convective flow past an infinite vertical plate enclosed by porous medium in presence of thermal radiation
and Hall Current was investigated by Ramana Murthy et al. [13]. Jithender Reddy et al. [14]. Anand Rao [15] and
Srinivasa Raju et al. [16] studied MHD free convection fluid flow problems with various physical conditions using
Finite Element Technique. Sheikholeslami et al. [17] investigated the effect of space dependent magnetic field on free
convection Fe3O4–water nanofluid through control volume based finite element technique. Sheikholeslami et al. [18]
employed control volume-based finite element technique to simulate Fe3O4–water nanofluid mixed convection heat
transfer in a lid-driven semi annulus in the presence of a non-uniform magnetic field. Rashidi et al. [19] investigated the
numerical study of magnetic field impact on mixed convection heat transfer of nanofluid in a channel with sinusoidal
walls. Rashidi et al. [20] studied the combined heat and mass transfer of magnetohydrodynamic (MHD) convective
and slip flow due to a rotating disk with influence of viscous dissipation and Ohmic heating by using the combination
of the DTM and the Padé approximants.
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The heat and mass transfer simultaneously affect each other and these will cause the cross-diffusion effect. The
heat transfer caused by concentration (mass) gradient is called the diffusion-thermo (Dufour effect). On the other hand
mass transfer caused by the temperature gradient is called thermal-diffusion (Soret) effect. Alam and Rahman et al.
[21] investigated the Dufour (thermal-diffusion) and Soret (diffusion-thermo) effects on mixed convection flow past
a vertical porous flat plate with the presence of variable suction. El-Arabawy et al. [22] investigated the Soret and
Dufour effect on heat and mass transfer by natural convection from vertical surface embedded in a fluid-saturated
porous media considered with variable surface temperature and constant concentration. Kafoussias et al. [23] studied
thermal-diffusion and diffusion-thermo effects on mixed natural-forced convective and mass transfer boundary layer
flow with the temperature dependent viscosity. Nabil et al. [24] studied thermal diffusion and diffusion thermo effects
on the viscous fluid flow with heat and mass transfer through porous medium on a shrinking sheet. Srinivas et al. [25]
found thermal diffusion and diffusion thermo effects on MHD viscous fluid flow between expanding rotating porous
disks with viscous dissipation. Srinivasacharya et al. [26–28], Ram Reddy et al. [29] and Jithender Reddy et al. [30]
studied Soret and Dufour effects on MHD free convection problems with varied physical parameters. Ahmed et al. [31]
studied the effect of Soret (thermal diffusion) on unsteady free convective flow of an electrically conducting fluid over
an infinite vertical oscillating plate embedded in a porous medium in the presence of a uniform transverse magnetic
field. Srinivasa Raju [32] studied the combined effects of thermal-diffusion and diffusion-thermo on unsteady free
convection fluid flow past an infinite vertical porous plate in the presence of magnetic field and chemical reaction
using finite element technique. Srinivasa Raju et al. [33] found the numerical results for the effects of thermal radiation
and heat source on an unsteady free convective flow past an infinite vertical plate with transverse magnetic field in
the presence of thermal-diffusion and diffusion-thermo. Srinivasa Raju et al. [34] studied application of finite element
method to unsteady MHD free convection flow past a vertically inclined porous plate including thermal diffusion
and diffusion thermo effects. The influence of viscous dissipation on free convective flow past a semi-infinite vertical
plate in the presence of Soret and Magnetic field was studied by Siva Reddy Sheri et al. [35]. Abdelraheem et al. [36]
studied double-diffusive free convective flow over a vertical stretching surface embedded in a porous medium in the
presence of a homogeneous first-order chemical reaction, radiation and Soret and Dufour effects. A numerical model
was developed by Ahmed and Sibanda [37] for the effects of variable viscosity, and Soret and Dufour numbers on
MHD mixed convective flow, heat and mass transfer from an exponentially stretching vertical surface embedded in a
porous medium.

In this paper, we studied the hall current and rotation effects on MHD free convection flow past a moving vertical
plate with the presence of thermal diffusion and diffusion thermo for isothermal and ramped temperature in both cases
externally heating and cooling of the plate. The governing partial differential equations are solved by Element Free
Galerkin Method and shown the present results are in good agreement with the results of Seth et al. [7].

2. Mathematical modeling

Consider an unsteady MHD natural convection flow with heat and mass transfer of an optically thick radiating,
incompressible and electrically conducting viscous fluid past an infinite vertical plate is embedded in a uniform porous
medium with a rotating system taking Hall current into account. Consider x ′-axis is along the plate in upward direction
and y′-axis is normal to plane of the plate in the fluid. A uniform transverse magnetic field B0 is applied in a direction
which is parallel to y′-axis. The fluid and plate rotate with uniform angular velocity Ω ′ about the y′-axis. Initially
i.e. at time t ′ ≤ 0, both the fluid and plate are in rest and these are maintained at a uniform temperature T ′∞. Also
species concentration is at the surface of the plate as well as at every point within the fluid and it is maintained at
uniform concentration C ′∞. At time t ′ > 0, plate starts moving in x ′-direction with uniform velocity U0 in its own
plane. The temperature of the plate is raised or lowered to T ′∞+(T

′
w−T ′∞)t

′/t0 when 0 < t ′ ≤ t0, and it is maintained
at uniform temperature T ′w when t ′ > t0.

Also, at time t ′ > 0, species concentration is at the surface of the plate, it is raised to uniform species concentration
C ′w and it is maintained thereafter. Geometry of the problem is shown in Fig. 1. Since plate is an infinite extent in
x ′ and z′ directions and it is electrically non-conducting, all physical quantities except pressure depends on y′ and t ′

only. Also, no applied or polarized voltages are assumed to exist, so that the effect of polarization of fluid is negligible.
The induced magnetic field generated by fluid motion is negligible in comparison to the applied one. This assumption
is justified because magnetic Reynolds number is very small for liquid metals and partially ionized fluids which are
commonly used in industrial applications (Cramer and Pai [38]). Keeping in view of these assumptions and under the
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Fig. 1. Geometry of the problem.

Boussinesq’s approximation, the governing equations are given by (Seth et al. [7])

∂u′

∂t ′
+ 2Ω ′w′ = ν

∂2u′

∂y′2
−

σ B2
o

ρ
(
1+ m2

) (u′ + mw′
)
−
νu′

K1
+ gβ ′

(
T ′ − T ′∞

)
+ gβ∗

(
C ′ − C ′∞

)
(1)

∂w′

∂t ′
− 2Ω ′u′ = ν

∂2w′

∂y′2
−

σ B2
o

ρ
(
1+ m2

) (mu′ − w′
)
−
νw′

K1
(2)

∂T ′

∂t ′
=

κ

ρcp

∂2T ′

∂y′2
−

1
ρcp

∂qr

∂y′
+

DmkT

cscp

∂2C ′

∂y′2
(3)

∂C ′

∂t ′
= D

∂2C ′

∂y′2
+

DmkT

Tm

∂2T ′

∂y′2
. (4)

The boundary conditions for the primary and secondary velocity, temperature and concentration fields are (Seth
et al. [7])

∀t ′ ≤ 0 : u′ = w′ = 0, T ′ = T ′∞, C ′ = C ′∞ for y′ ≥ 0 (5)

∀t ′ > 0 : u′ = U0, w
′
= 0, C ′ = C ′w at y′ = 0 (6)

T ′ = T ′∞ + (T
′
w − T ′∞)t

′/t0 at y′ = 0 for 0 < t ′ ≤ t0 (7)

∀t ′ > t0 : T
′
= T ′w at y′ = 0 (8)

∀t ′ > 0 : u′ = 0, w′ = 0, T ′→ T ′∞, C ′→ C ′∞ at y′→∞. (9)

The radiative heat flux term by using the Rosseland approximation (Sparrow and Cess [39]) is given by

q ′r = −
4σ ∗

3k∗

(
∂T ′4

∂y′

)
y=0

. (10)
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It should be noted that by using the Rosseland approximation, present analysis is limited to optically thick fluids. If
temperature differences within the flow are sufficiently very small then Eq. (10) can be linearized by expanding T ′

into the Taylor series about T ′∞ which after neglecting higher order terms take the form

T ′4 ∼= 4T ′3∞ − 3T ′4∞. (11)

Substituting Eqs. (10) and (11), into Eq. (3), we obtain

∂T ′

∂t ′
=

κ

ρcp

∂2T ′

∂y′2
+

1
ρcp

16σ ∗T ′3∞
3k∗

∂2T ′

∂y′2
+

DmkT

cscp

∂2C ′

∂y′2
. (12)

Introducing the following non-dimensional quantities into the Eqs. (1), (2), (4), (12) and (5)–(9)

u =
u′

U0
, w =

w′

U0
, y =

y′U0

ν
, t =

t ′U 2
0

ν
, T =

T ′ − T ′∞
T ′w − T ′∞

, C =
C ′ − C ′∞
C ′w − C ′∞

,

M2
=
σ B2

0ν

ρU 2
0

, Ω =
νΩ ′

U 2
0

, K1 =
K ′1U 2

0

ν2 , Gr =
gβν(T ′w − T ′∞)

U 3
0

,

Gm = gβ∗ν
C ′w − C ′∞

U 3
0

, Pr =
νρcp

κ
, N =

16σ ∗T ′3∞
3κk∗

, Sc =
ν

D
,

Sr =
DmkT (T ′w − T ′∞)

νTm(C ′w − C ′∞)
, Dr =

DmkT (C ′w − C ′∞)

νcscp(T ′w − T ′∞)

then the resultant non-dimensional equations are

∂u

∂t
+ 2Ωw =

∂2u

∂y2 − M∗ (u + mw)−
u

K1
+ GrT + GmC (13)

∂w

∂t
− 2Ωu =

∂2w

∂y2 + M∗ (mu − w)−
w

K1
(14)

∂T

∂t
= R

∂2T

∂y2 + Dr
∂2C

∂y2 (15)

∂C

∂t
=

1
Sc

∂2C

∂y2 + Sr
∂2T

∂y2 (16)

where M∗ = M2

1+m2 , R = 1+N
Pr .

The non-dimensional initial and boundary conditions are

∀t ≤ 0 : u = w = 0, T = 0,C = 0 for y ≥ 0 (17)

∀t > 0 : u = 1, w = 0, C = 1 at y = 0 (18)

∀0 < t ≤ 1 : T = t at y = 0 (19)

∀t > 1 : T = 1 at y = 0 (20)

∀t > 0 : u → 0, w→ 0, T → 0, C → 0 at y →∞. (21)

3. Numerical solution by Element Free Galerkin Method (EFGM)

Element Free Galerkin Method (EFGM) is one of the computational method developed by Belytschko et al. [40].
This method is applicable to arbitrary shapes, and it requires only nodal data which is applied to elasticity and heat
conduction problems. This method shares essential characteristics with many other numerical methods such as Kernal
particle method (Liu et al. [41]), Finite point method (Onate et al. [42]) and Hp-clouds (Duarte and Oden et al. [43]).
Previously, the review of these numerical methods was reported by Belytschko et al. [44]. Recently, several authors
applied this EFGM in their research problems. In spite of that, Rajesh Sharma and Bhargava [45] found the numerical
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solutions of unsteady MHD convection heat and mass transfer past a semi-infinite vertical porous moving plate using
EFGM. Ryszard [46] applied an EFGM to water wave propagation problems. Very recently, Singh and Bhargava [47]
studied the characteristics of heat transfer flow of a phase transition in melting problem using FEM and EFGM, and the
results are shown closer to each other. Rajesh Sharma [48] found the numerical simulation of MHD Hiemenz flow of
a micropolar fluid on non linear stretching sheet embedded in porous Medium using EFGM. Srinivasa Raju et al. [49]
found the numerical and analytical solutions of unsteady MHD free convection on exponential accelerated vertical
plate with heat absorption using Element Free Galerkin Method and Laplace Transform Technique respectively. Also
they have shown the numerical solutions by FEM are in good agreement with the analytical solutions by LTT.

3.1. Review of Element Free Galerkin Method

The Element Free Galerkin Method (EFGM) requires moving least square (MLS) interpolation functions to
approximate an unknown function, which is made up of three components: a weight function associated with each
node, a basis function and a set of coefficients that depends on position. The weight function is non-zero over a
small neighborhood at a particular node, called support of the node. Using MLS approximation, the unknown velocity
component u is approximated over the domain [0,∞] as

u (x) ∼= uh (x) =
m∑

j=1

p j (x) a j (x) = pT (x) a (x) (22)

where m is the number of terms in the basis, p j (x) the monomial basis function, a j (x) the non-constant coefficients
and pT (x) = [1x]. The coefficients a j (x) are determined by minimizing the functional J (x) given by

J (x) =
m∑

i=1

w (x − xi )

{
m∑

j=1

p j (xi ) a j (x)− ui

}2

(23)

where w (x − xi ) is a weight function which is non-zero over a small domain, called domain of influence, n is the
number of nodes in the domain of influence. The minimization of J (x) w.r.t a (x) leads to the following set of
equation

a (x) = C−1 (x) D (x)U T (24)

where C and D are given as

C =
n∑

i=1

w (x − xi ) p (xi ) pT (xi ) (25)

D (x) = [w (x − x1) p (x1) , w (x − x2) p (x2) , w (x − x3) p (x3) , . . . , w (x − xn) p (xn)] (26)

U T
= [U1,U2,U3, . . . ,Un] . (27)

Substituting Eq. (24) in Eq. (22), the MLS approximants are obtained as

u (x) ∼= uh (x) =
n∑

i=1

Φi (x) ui = Φ (x) u. (28)

Similarly θ (x) , φ (x) can be approximated by

θ (x) ∼= θh (x) =
n∑

i=1

Φi (x) θi = Φ (x) θ (29)

φ (x) ∼= φh (x) =
n∑

i=1

Φi (x) φi = Φ (x) φ (30)
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where the shape function Φi (x) is defined by

Φi (x) =
n∑

j=1

p j (x)
(

C−1 (x) D (x)
)

j i
= pT C−1 Di . (31)

3.2. Choice of weight function

The weight function is non-zero over a small neighborhood of xi , called the domain of the influence of node i .
The choice of weight function w (x − xi ) affects the resulting approximation in EFGM and other mesh less methods.
Singh et al. [50] studied these weight functions and found that cubicspline weight function gives more accurate results
as compared to others. Therefore, in the present work, a cubicspline weight function (Singh et al. [50]) has been used.

3.3. Cubic spline weight function

w (r − ri ) = w (r) =


2
3
− 4r2

+ 4r3 for r ≤
1
2

4
3
− 4r + 4r2

−
4
3

r3 for
1
2
≤ r ≤ 1

0 for r > 1

 (32)

where ri =
‖x−xi‖

dml
, dml are the size of domain of influence which are calculated as dml = dmaxCi , where dmax is

a scaling parameter, and Ci is the distance to the nearest neighbors. The size of the domain of influence (dml) at
particular node i is only controlled by scaling parameter (dmax) since the distance between nearest neighbors for an
evaluation point remains unchanged for a given nodal data distribution. The minimum value of dmax should be greater
than 1 so that n > m, and the maximum value of dmax should be such that it preserves the local character of MLS
approximation. It has been shown in Singh [51] that 1 < dmax < 1.5 is the optimum range of scaling parameter for
heat transfer problem. Therefore dmax has been fixed as 1.01.

The weighted integral forms of Eqs. (13)–(16) can be written as∫ ymax

0
w1

[
∂2u

∂y2 −

(
∂u

∂t

)
− Nu − M∗mw − 2Ωw + GrT + GmC

]
dy = 0 (33)∫ ymax

0
w2

[
∂2w

∂y2 −

(
∂w

∂t

)
− Nw +

(
M∗
)
(m) (u)+ 2Ωu

]
dy = 0 (34)∫ ymax

0
w3

[
R
∂2T

∂y2 −

(
∂T

∂t

)
+ (Dr)

(
∂2C

∂y2

)]
dy = 0 (35)∫ ymax

0
w4

[(
1
Sc

)
∂2C

∂y2 −

(
∂C

∂t

)
+ (Sr)

(
∂2T

∂y2

)]
dy = 0 (36)

where N = M∗ + 1
K1

and w1, w2, w3, w4 are arbitrary test functions and may be viewed as the variations in u, w, T
and C , respectively. After reducing the order of integration and non-linearity, the following system of equations are
obtained:∫ ymax

0

[(
∂w1

∂y

)(
∂u

∂y

)
+ (w1)

(
∂u

∂t

)
+ N (w1) u + M∗m (w1) w + 2Ω (w1) w + (Gr) (w1) T

− (Gm) (w1)C] dy −

[
(w1)

(
∂u

∂y

)]ymax

0
= 0 (37)∫ ymax

0

[(
∂w2

∂y

)(
∂w

∂y

)
+ (w2)

(
∂w

∂t

)
+ N (w2) w − M∗m (w2) u − 2Ω (w2) w

]
dy

−

[
(w2)

(
∂w

∂y

)]ymax

0
= 0 (38)
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0

[
R

(
∂w3

∂y

)(
∂T

∂y

)
+ (w3)

(
∂T

∂t

)
+ (Dr) (w3)

(
∂w3

∂y

)(
∂C

∂y

)]
dy

−

[
R (w3)

(
∂T

∂y

)
+ (Dr) (w3)

(
∂C

∂y

)]ymax

0
= 0 (39)∫ ymax

0

(
1
Sc

)[(
∂w4

∂y

)(
∂C

∂y

)
+ (w4)

(
∂C

∂t

)
+ (Sr) (w4)

(
∂w4

∂y

)(
∂T

∂y

)]
dy

−

[
(w4)

(
1

SC

)(
∂C

∂y

)
+ (Sr) (w4)

(
∂T

∂y

)]ymax

0
= 0. (40)

Using the essential boundary conditions on w1, w2, w3, w4 as homogeneous, Eqs. (37)–(40) become∫ ymax

0

[(
∂w1

∂y

)(
∂u

∂y

)
+ (w1)

(
∂u

∂t

)
+ N

(
w1

)
u + M∗m (w1) w

+ 2Ω (w1) w − (Gr) (w1) T − (Gm) (w1)C

]
dy = 0 (41)

∫ ymax

0

[(
∂w2

∂y

)(
∂w

∂y

)
+ (w2)

(
∂w

∂t

)
+ N (w2) w − M∗m (w2) u − 2Ω (w2) w

]
dy = 0 (42)

∫ ymax

0

[
R

(
∂w3

∂y

)(
∂T

∂y

)
+ (w3)

(
∂T

∂t

)
+ (Dr) (w3)

(
∂w3

∂y

)(
∂C

∂y

)]
dy = 0 (43)

∫ ymax

0

(
1
Sc

)[(
∂w4

∂y

)(
∂C

∂y

)
+ (w4)

(
∂C

∂t

)
+ (Sr) (w4)

(
∂w4

∂y

)(
∂T

∂y

)]
dy = 0. (44)

3.4. Essential boundary conditions

Due to lack of Kronecker delta property in EFGM, the shape function Φi possesses some difficulty in the imposition
of essential boundary conditions. To remove this problem, different numerical techniques have been proposed to
enforce the essential boundary condition in EFGM such as Lagrange multiplier technique, modified variational
principle approach and penalty approach. The penalty method Zhu and Atluri [52] is applied which is discussed
as follows:

Penalty Method (PM):∫ ymax

0

[(
∂w1

∂y

)(
∂u

∂y

)
+ (w1)

(
∂u

∂t

)
+ N (w1) u + M∗m (w1) w + 2Ω (w1) w − (Gr) (w1) T

− (Gm) (w1)C

]
dy − α (w1) (u − uo)|y=0 − α (w1) (u − u∞)|y→∞ = 0 (45)

∫ ymax

0

[(
∂w2

∂y

)(
∂w

∂y

)
+ (w2)

(
∂w

∂t

)
+ N (w2) w − M∗m (w2) u − 2Ω (w2) u

]
dy

− α (w2) (w − wo)|y=0 − α (w2) (w − w∞)|y→∞ = 0 (46)∫ ymax

0

[
R

(
∂w3

∂y

)(
∂T

∂y

)
+ (w3)

(
∂T

∂t

)
+ (Dr) (w3)

(
∂w3

∂y

)(
∂C

∂y

)]
dy

− α (w3) (T − To)|y=0 − α (w3) (T − T∞)|y→∞

− α (Dr) (w3) (C − Co)|y=0 − α (Dr) (w3) (C − C∞)|y→∞ = 0 (47)
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0

(
1

SC

)[(
∂w4

∂y

)(
∂C

∂y

)
+ (w4)

(
∂C

∂t

)
+ (Sr) (w4)

(
∂w4

∂y

)(
∂T

∂y

)]
dy

− α
α

Sc
(w4) (C − Co)

∣∣∣
y=0
− α

α

Sc
(w4) (C − C∞)

∣∣∣
y→∞

−α (Sr) (w4) (T − To)|y=0 − α (Sr) (w4) (T − T∞)|y→∞ = 0 (48)

where
uo = 1, wo = 0, To = t at 0 < t ≤ 1,
To = 1 at t > 1
Co = 1, u∞ = 1, w∞ = 0, T∞ = 0, C∞ = 0

}
and w1 = w2 = w3 = w4 = Φi (i = 1, 2, . . . , n).

Thus, Eqs. (45)–(48) can be written as:

[K ]
{
h̄
}
+
[
M̄
] {
˙̄h
}
= {F} (49)

where [K ] =

[
K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

]
,
[
M̄
]
=

[
Mooo
oMoo
ooMo
oooM

]
,
{
h̄
}
=

[
{u}
{w}

{T }
{C}

]
,
{
˙̄h
}
=

[
{u̇}
{ẇ}{
Ṫ
}{

Ċ
}
]

, {F} =

[{
F1
}{

F2
}{

F3
}{

F4
}
]

,

(K11)i j =

∫ ymax

0

[(
ΦT

i
′
) (

Φ′j
)]

dy + N
∫ ymax

0

[(
ΦT

i

) (
Φ j
)]

dy

−

[
α
(
ΦT

i

) (
Φ j
)]

y=0
−

[
α
(
ΦT

i

) (
Φ j
)]

y→∞
,

(K12)i j =
(
M∗m + 2Ω

) ∫ ymax

0

[(
ΦT

i

) (
Φ j
)]

dy, (K13)i j = − (Gr)
∫ ymax

0

(
ΦT

i

) (
Φ j
)

dy,

(K14)i j = − (Gm)
∫ ymax

0

(
ΦT

i

) (
Φ j
)

dy, (M)i j =

∫ ymax

0

(
ΦT

i

) (
Φ j
)

dy, ∀i = j, (M)i j = 0,∀i 6= j

(K21)i j =
(
M∗m + 2Ω

) ∫ ymax

0

[(
ΦT

i

) (
Φ j
)]

dy,

(K22)i j =

∫ ymax

0

[(
ΦT

i
′
) (

Φ′j
)]

dy + N
∫ ymax

0

[(
ΦT

i

) (
Φ j
)]

dy −
[
α
(
ΦT

i

) (
Φ j
)]

y=0

−

[
α
(
ΦT

i

) (
φ j
)]

y→∞
,

(K23)i j = (K24)i j , (K31)i j = 0 = (K32)i j ,

(K33)i j = −R
∫ ymax

0

[(
ΦT

i
′
) (

Φ′j
)]

dy +
[

Rα
(
ΦT

i

) (
Φ j
)]

y=0
−

[
Rα

(
ΦT

i

) (
Φ j
)]

y→∞
,

(K34)i j = (Dr)
∫ ymax

0

[(
ΦT

i
′
) (

Φ′j
)]

dy −
[
α (Dr)

(
ΦT

i

) (
Φ j
)]

y=0
−

[
α (Dr)

(
ΦT

i

) (
Φ j
)]

y→∞
,

(K41)i j = 0 = (K42)i j ,

(K43)i j = (Sr)
∫ ymax

0

[(
ΦT

i
′
) (

Φ′j
)]

dy −
[
α (Sr)

(
ΦT

i

) (
Φ j
)]

y=0
−

[
α (Sr)

(
ΦT

i

) (
Φ j
)]

y→∞
,

(K44)i j =
1
Sc

∫ ymax

0

[(
ΦT

i
′
) (

Φ′j
)]

dy −
[ α

Sc

(
ΦT

i

) (
Φ j
)]

y=0
−

[ α
Sc

(
ΦT

i

) (
Φ j
)]

y→∞
,

(F1)i = uoαΦ′j + u∞αΦ′j , (F2)i = woαΦ′j + w∞αΦ
′

j ,

(F3)i = ToαΦ′j + T∞αΦ′j at 0 < t ≤ 1, (F3)i = ToαΦ′j + T∞αΦ′j at t > 1,

(F4)i = CoαΦ′j + C∞αΦ′j ,

Using unconditionally stable Crank–Nicholson scheme (Smith [53]), Eq. (49) at (s + 1)th level can be written as[
K̂
]

s+1

{
h
}

s+1 =

[
K̂
]

s

{
h
}

s +

{
F̂
}

s,s+1
(50)
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Table 1
The numerical values of u, w, T and C for variation of mesh sizes.

Mesh size h = 0.1 Mesh size h = 0.2 Mesh size h = 0.3
u w T C u w T C u w T C

Time
t = 0.1

1.000000 0.000000 0.500000 1.000000 1.000000 0.000000 0.500000 1.000000 1.000000 0.000000 0.500000 1.000000
0.205745 0.364936 0.329594 0.472351 0.205628 0.364842 0.329485 0.472215 0.205631 0.364853 0.329494 0.472224
0.081102 0.102188 0.184112 0.158479 0.081852 0.102752 0.184256 0.158542 0.081851 0.102765 0.184264 0.158551
0.026275 0.024006 0.084624 0.037798 0.026138 0.024158 0.084745 0.037813 0.026145 0.024161 0.084759 0.037824
0.007119 0.004851 0.032037 0.006504 0.007015 0.004784 0.032183 0.006519 0.007019 0.004794 0.032194 0.006521
0.001639 0.000846 0.010157 0.000824 0.001631 0.000850 0.010161 0.000891 0.001642 0.000859 0.010174 0.000912
0.000324 0.000128 0.002747 7.86E−05 0.000324 0.000126 0.002747 7.86E−05 0.000324 0.000125 0.002758 7.86E−05
5.54E−05 1.69E−05 0.000644 5.76E−06 5.54E−05 1.69E−05 0.000644 5.76E−06 5.54E−05 1.69E−05 0.000654 5.76E−06
8.29E−06 1.97E−06 0.000132 3.3E−07 8.29E−06 1.97E−06 0.000132 3.3E−07 8.29E−06 1.97E−06 0.000132 3.3E−07
1.09E−06 2E−07 2.38E−05 2E−08 1.09E−06 2E−07 2.38E−05 2E−08 1.09E−06 2E−07 2.38E−05 2E−08

where[
K̂
]

s+1
=
[
M
]
+

∆t [K ]s+1

2
,
[

K̂
]

s
=
[
M
]
−

∆t [K ]s

2
and

[
F̂
]

s,s+1
=

∆t

2

(
{F}s+1 + {F}s

)
. (51)

For computational purposes, the coordinate y is varied from 0 to ymax = 10, where ymax represents infinity i.e. external
to the momentum, energy and concentration boundary layers. The whole domain is divided into 101 nodes. One point
Gauss quadrature formula has been used to calculate the integral values. As the systems of equations are non-linear,
an iterative scheme is employed to solve the matrix system. This system is linearized by incorporating known function
u, which is solved using Gauss elimination method maintaining an accuracy of 0.0000005. The code of the algorithm
has been executed in MATLAB running on a PC. Excellent convergence was achieved for all the results.

3.5. Study of grid independence

In general, to study the grid independency/dependency, the mesh size should be varied in order to check the solution
at different mesh (grid) sizes and get a range at which there is no variation in the solution. We have shown the numerical
values of Primary velocity (u), Secondary velocity (w), temperature (T ) and concentration (C) for different values
of mesh (grid) size at time t = 1.0 in Table 1. From this table, we observed that there is no variation in the values
of Primary velocity (u), Secondary velocity (w), temperature (T ) and concentration (C) for different values of mesh
(grid) size at time t = 0.1. Hence, we conclude that the results are independent of mesh (grid) size.

4. Skin-friction, rate of heat and mass transfer coefficients

The skin-friction due to primary velocity at the wall along x ′-axis in dimensionless form is given by τx =

[
∂u
∂y

]
y=0

.

The skin-friction due to secondary velocity at the wall along z′-axis in dimensionless form is given by τz =[
∂u
∂z

]
z=0

.
Rate of heat transfer (Nusselt number) due to temperature profiles in dimensionless form is given by

Nu = −
[
∂T
∂y

]
y=0

.

And rate of mass transfer (Sherwood number) due to concentration profiles in dimensionless form is given by

Sh = −
[
∂C
∂y

]
y=0

.

5. Code validation

5.1. Comparison with analytical solutions

Comparison of τx and τz with Seth et al. [7] is shown by the superscript star in Table 2. Ω is replaced by K 2 in Seth
et al. [7] with varied values of Hall current and rotation parameters and in the absence of Soret and Dufour number.
The present results are in good agreement with the results of Seth et al. [7] for both ramped temperature and isothermal
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Table 2
The skin-friction due to primary and secondary velocity with the effect of Hall current and rotation in case of cooling of the plate.

m Ω τx (Present results) τ∗x (Seth et al. [7]) τz (Present results) τ∗z (Seth et al. [7])
Ramped Isothermal Ramped Isothermal Ramped Isothermal Ramped Isothermal

0.5 5 2.87095 2.29039 2.87124 2.29044 2.35013 2.60663 2.35018 2.60816
1 5 2.49089 1.92395 2.49195 1.92406 2.85873 3.19315 2.85995 3.19048
1.5 5 2.13521 1.56012 2.13659 1.56425 3.40649 3.40037 3.06904 3.45031
0.5 3 2.61221 1.97075 2.61086 1.97001 1.86393 2.09214 1.86439 2.09575
0.5 7 3.14353 2.61096 3.14162 2.61276 2.77062 3.05629 2.77199 3.04199

Fig. 2. Comparison of present results with existed experimental results of temperature distribution with an influence of Pr = 0.71.

plate in case of externally cooling of the plate. Although it is possible to obtain the exact solution using the Laplace
Transform Technique (LTT), it seems to be a laborious process. The present method, EFGM is more economical and
flexible in the computational point of view. Therefore, this method is superior than the LTT and other appropriate
methods.

5.2. Comparison with experimental results

An experimental investigation of turbulent and laminar natural convection in air on a vertical plate is described
by Warner and Arpaci [54]. But this study did not explore the experimental results with the presence of Hall current,
rotation, radiation, thermal diffusion and diffusion thermo parameters. We compared the present results with the results
of Warner and Arpaci [54] in the absence of these parameters. Fig. 2 shows the comparison of present results with
existing experimental results of temperature distribution with an influence of Pr = 0.71 (Air). It is evident that the
present numerical solutions are in good agreement with experimental results of Warner and Arpaci [54] in the absence
of radiation and diffusion thermo parameters. These types of models are useful for validation purpose in view of lab
experimental results.

6. Results and discussions

The effects of hall current and rotation on an unsteady radiative MHD free convective heat and mass transfer of
an optically thick radiating, incompressible, electrically conducting and viscous fluid past an impulsively moving
vertical porous plate with ramped temperature and isothermal were studied taking into account the thermal diffusion
and diffusion thermo, and solved by Element Free Galerkin Method. Computations are performed for a wide range of
some important governing flow physical parameters viz., Hall current (m), Rotation (Ω), Soret (Sr) and Dufour (Dr).

The effects of these flow physical parameters on the primary and secondary velocity, temperature and concentration
fields for ramped temperature and isothermal plates in case of both externally cooling (Gr > 0) and heating (Gr < 0)
of the plate are illustrated graphically. We have shown some results are in good agreement with the results of Seth
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Fig. 3. Magnetic field effect M2 on primary velocity profiles.

Fig. 4. Magnetic field effect M2 on secondary velocity profiles.

et al. [7]. Some physical parameters are fixed at real constants with Gr = 6, Gm = 5, Gr = −6, Gm = −5, M2
= 0.5,

m = 0.5, Ω = 5, N = 5, Pr = 0.71, Dr = 1, Sc = 0.6 and Sr = 1, unless specifically indicated on the appropriate
graphs and tables. Figs. 3–12 display the effects of material parameters such as m,Ω, Sr and Dr on the primary and
secondary velocity field for both externally cooling (Gr > 0) and heating (Gr < 0) of the plate. Figs. 13–15 display
the effects of material parameters such as N , Pr , and Dr on the temperature profiles and Figs. 16 and 17 display the
effects of material parameters such as Sr and Sc on the concentration field.

6.1. Primary and secondary velocity profiles

Figs. 3 and 4 show the effect of Magnetic parameter on the primary and secondary velocity for both ramped
temperature and isothermal plate. The primary and secondary velocity decreases with the increase in the magnetic
parameter in entire positive quadrant for both ramped and isothermal temperature with externally cooling of the
plate while the effect is opposite in case of externally heating of the plate. Velocity profile decreases with increasing
Magnetic parameter due to the fact that applied transverse magnetic field produces a drag in the form of Lorentz
force thereby decreasing the magnitude of velocity. Figs. 5 and 6 show the effect of Hall current on the primary and
secondary velocity for both ramped temperature and isothermal plate. The primary velocity and secondary velocity
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Fig. 5. Hall effect m on primary velocity profiles.

Fig. 6. Hall effect m on secondary velocity profiles.

increases in the entire region with an increase of hall current for ramped temperature and isothermal plates in case of
cooling of the plate and the opposite effect in case of externally heating of the plate.

Figs. 7 and 8 show the effect of rotation on the primary and secondary velocity profiles for both ramped temperature
and isothermal plate. The primary velocity exponentially decreases in the entire region where as the secondary
velocity increases near to the plate and decreases away from the plate with increase of rotational parameter for
ramped temperature and isothermal plate in case of cooling of the plate, the opposite effect in case of heating of
the plate. Figs. 9 and 10 show the effect of Soret number on primary velocity and secondary velocity for both ramped
temperature and isothermal plate. The primary and secondary velocity distribution exponentially increases in the entire
region as an increase of Soret number for both ramped temperature and isothermal plate in case of cooling of the plate,
and the opposite effect in case of heating of the plate. Figs. 11 and 12 show the effect of Dufour number on primary
and secondary velocity distribution for both ramped temperature and isothermal plate. The primary and secondary
velocity of the fluid exponentially increases in the entire region with an increase of Dufour number for both ramped
temperature and isothermal plate in case of cooling of the plate, and the opposite effect in case of externally heating
of the plate.
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Fig. 7. Rotation effect Ω on primary velocity profiles.

Fig. 8. Rotation effect Ω on secondary velocity profiles.

Tables 3–5 show variation of skin friction coefficient with the various values of Hall current, rotation parameter,
Dufour and Soret number. The local skin friction coefficient due to primary velocity decreases with the increase in
Hall current, Dufour and Soret number and decreases with increasing of rotation parameter. The local skin friction
coefficient due to secondary velocity decreases with increasing of Dufour and Soret number while decreases with
increasing of Hall current and rotation parameter for both ramped temperature and isothermal plate in case of cooling
of the plate and the opposite effect in case of heating of the plate, it is observed from Tables 3–5.

6.2. Temperature profiles

Figs. 13(a), 13(b) show the effect of thermal radiation on temperature profiles with the absence and presence of
Dufour number. The temperature increases in the entire boundary region with an increase of thermal radiation in the
absence and presence of Dufour number for ramped temperature and isothermal plate. Figs. 14(a), Fig. 14(b) show the
effect of Prandtl number on temperature profiles with the absence and presence of Dufour number. The temperature
decreases in the entire boundary region with an increase of Prandtl number with the absence and presence of Dufour
number for ramped temperature and isothermal plate. Fig. 15 shows the effect of Dufour number on temperature
profiles, the temperature increases in the entire boundary region with an increase of Dufour number for both ramped



258 G. Jithender Reddy et al. / Transactions of A. Razmadze Mathematical Institute 170 (2016) 243–265

Fig. 9. Soret effect Sr on primary velocity profiles.

Fig. 10. Soret effect Sr on secondary velocity profiles.

Table 3
The skin-friction due to primary and secondary velocity with the effect of Dufour and Soret number in case of cooling and heating of the plate.

Dr Sr τx (cooling) τz (cooling) τx (heating) τz (heating)
Ramped Isothermal Ramped Isothermal Ramped Isothermal Ramped Isothermal

1 0 2.91033 2.35922 2.35311 2.63045 5.87581 6.42691 0.84429 0.56695
2 0 2.88051 2.32939 2.38692 2.66426 5.90564 6.45675 0.81048 0.53313
3 0 2.85066 2.29955 2.42074 2.69807 5.93547 6.48658 0.77667 0.49932
0 1 2.91676 2.36565 2.33259 2.62323 5.85768 6.42005 0.86481 0.57417
0 2 2.90506 2.34225 2.34589 2.64983 5.86938 6.44389 0.85151 0.54758
0 3 2.36565 2.31885 2.35918 2.67642 5.88109 6.46733 0.83822 0.52098

temperature and isothermal plate. Table 4 shows the variation of Nusselt number. The rate of heat transfer decreases
with increase of thermal radiation and Dufour number and the opposite effect is observed for an increase of Prandtl
number.
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Fig. 11. Dufour effect Dr on primary velocity profiles.

Fig. 12. Dufour effect Dr on secondary velocity profiles.

Table 4
The skin friction due to primary and secondary velocity with the effect of hall current and rotation in
case of heating of the plate.

m Ω −τx (heating) τz (heating)
Ramped Isothermal Ramped Isothermal

0.5 5 −.5.8459 −6.39708 −0.8781 −0.60077
1 5 −5.6173 −6.17274 −0.1574 −0.80637
1.5 5 −5.3605 −5.93414 −1.2705 −0.87509
0.5 3 −5.7324 −6.33896 −1.6526 −0.41375
0.5 7 −6.0063 −6.50614 −1.0776 −0.77461

6.3. Concentration profiles

Fig. 16 shows the effect of Soret number on concentration field, the concentration profile increases in the entire
region with an increase of Soret number. Figs. 17(a), 17(b) show the effect of Schmidt number on the concentration
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Fig. 13(a). Radiation effect N on temperature profiles with absence of Dufour.

Fig. 13(b). Radiation effect N on temperature profiles with presence of Dufour.

Table 5
Rate of heat transfer near to the plate with the effect of radiation parameter, Prandtl
number and Dufour number.

N Pr Dr Nu
Ramped Isothermal

0.2 0.71 0 0.17778 0.35556
0.5 0.71 0 0.16048 0.32096
0.2 0.71 1 0.83946 0.66168
0.5 0.71 1 0.67066 0.51018
5.0 0.71 0 0.12510 0.25021
5 7 0 0.24875 0.49752
5 0.71 1 0.04488 0.16999
5 7 1 0.61451 0.36577
5 0.71 2 0.19577 0.07068
5 0.71 3 0.35621 0.23110
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Fig. 14(a). Prandtl number Pr on temperature profiles with absence of Dufour.

Fig. 14(b). Prandtl number Pr on temperature profiles with presence of Dufour.

profiles with the absence and presence of Soret number. The concentration linearly decreases for small values of
Schmidt number and exponentially decreases for large values of Schmidt number in the entire boundary region in the
absence of Soret number whereas exponentially decreases with increase of Schmidt number in the presence of Soret
number. Table 6 shows that the rate of mass transfer increases with increasing of Schmidt number with the absence
and presence of Soret number while decreases with an increase of Soret number.

7. Conclusions

The following conclusions are drawn from the above study, for both ramped temperature and isothermal plate.

1. The primary velocity increases with increasing of Sr and Dr, while decreases with increasing of M2, m and Ω in
case of cooling of the plate and opposite effects in case of heating of the plate.

2. The secondary velocity increases as increasing of m, Sr and Dr while decreases with increasing of M2 and Ω in
case of cooling of the plate and opposite effects in case of heating of the plate.

3. The temperature increases with increasing of N and the opposite effect for Pr while temperature increases with
increasing of Dr.
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Fig. 15. Dufour effect Dr on temperature profiles.

Fig. 16. Soret effect Sr on concentration profiles.

Table 6
Rate of mass transfer near to the plate with the effect of
Schmidt number and Soret number.

Sc Sr Sh

0.22 0 0.49284
0.60 0 0.79023
0.22 1 0.25744
0.60 1 0.35794
0.22 2 0.20701
0.22 3 0.13156

4. Concentration profile decreases with increasing of Sc while increases with increasing of Sr.

5. Primary skin-friction coefficient increases with an increase of Sr and Dr while decreases with an increase of m and
Ω in case of cooling of the plate and opposite effect for heating of the plate.
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Fig. 17(a). Schmidt number Sc on concentration profiles with absence of Soret.

Fig. 17(b). Schmidt number Sc on concentration profiles with presence of Soret.

6. Secondary skin-friction coefficient increases with the increase of m,Ω ,Dr and Sr in case of cooling of the plate
and opposite effect in case of heating of the plate.

7. Heat transfer coefficient increases with increasing of Pr while decreases with increasing of N and Dr.

8. Mass transfer coefficient increases with increasing of Sc while decreases with increasing of Sr.

9. In case of cooling of the plate, the results of primary and secondary velocities and its skin-frictions are in good
agreement with the results of Seth et al. [7] with the absence of Soret and Dufour.
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Abstract

The paper deals with a boundary value problem for the nonlinear integro-differential equation u′′′′−m
(∫ l

0 u′2 dx
)

u′′ = f (x, u),

m(z) ≥ α > 0, 0 ≤ z < ∞, modelling the static state of the Kirchhoff beam. The problem is reduced to an integral equation
which is solved using the Picard iteration method. The convergence of the iteration process is established and the error estimate is
obtained.
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NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Statement of the problem

Let us consider the nonlinear beam equation

u′′′′(x)− m

(∫ l

0
u′2(x) dx

)
u′′(x) = f (x, u), 0 < x < l, (1)

with the conditions

u(0) = u(l) = 0, u′′(0) = u′′(l) = 0. (2)

Here u = u(x) is the displacement function of length l of the beam subjected to the action of a force given by the
function f (x, u), the function m(z),

m(z) ≥ α > 0, 0 ≤ z <∞, (3)

describes the type of a relation between stress and strain. Namely, if the function m(z) is linear, this means that this
relation is consistent with Hooke’s linear law, while otherwise we deal with material nonlinearities.
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Eq. (1) is the stationary problem associated with the equation

ut t + uxxxx − m

(∫ l

0
u2

x dx

)
uxx = f (x, t, u),

m(z) ≥ const > 0,

which for the case where m(z) = m0+m1z,m0,m1 > 0, and f (x, t, u) = 0, was proposed by Woinowsky-Krieger [1]
as a model of deflection of an extensible dynamic beam with hinged ends. The nonlinear term

∫ l
0 u2

x dx was for the first
time used by Kirchhoff [2] who generalized D’Alembert’s classical linear model. Therefore (1) is frequently called a
Kirchhoff type equation for a static beam.

The topic of solvability of equations of type (1) is studied in [3–6], while the problem of construction of numerical
algorithms and estimation of their accuracy is investigated in [7,4,8–10].

In the present paper, in order to obtain an approximate solution of the problem (1), (2), an approach is used, which
differs from those applied in the above-mentioned references. It consists in reducing the problem (1), (2) by means of
Green’s function to a nonlinear integral equation, to solve for which we use the iteration method. The condition for
the convergence of the method is established and its accuracy is estimated.

The Green’s function method with a further iteration procedure has been applied by us previously also to a nonlinear
problem for the axially symmetric Timoshenko plate [11].

2. Assumptions

Let us assume that besides (3) the function m(z) also satisfies the condition∣∣m(z2)− m(z1)
∣∣ ≤ l1|z2 − z1|, 0 ≤ z1, z2 <∞, l1 = const > 0. (4)

As to the function f (x, u), we assume that f (x, u) ∈ L2((0, l);R) and, additionally, that the inequalities

| f (x, u)| ≤ σ1 + σ2|u|, | f (x, u2)− f (x, u1)| ≤ l2|u2 − u1|,

0 < x < l, u, u1, u2 ∈ R,
σi = const, i = 1, 2, σ1 > 0, σ2 ≥ 0, l2 = const > 0,

(5)

are fulfilled.
We impose one more restriction on the beam length l and the parameters α and σ2 from the conditions (3) and (5)

in the form

ω = α +
2

l2 − σ2
l2

2
> 0. (6)

Let us assume that there exists a solution of the problem (1), (2) and u(x) ∈ W 2,2
0 (0, l) [12].

3. The method

Applying the Green’s function of the problem u′′′′(x) − au′′(x) = f (x), 0 < x < l, u(0) = u(l) = 0, u′′(0) =
u′′(l) = 0, a = const > 0, and performing some transformations, from the problem (1), (2) we come to the nonlinear
integral equation

u(x) =
∫ l

0
G(x, ξ) f (ξ, u(ξ)) dξ +

1
τ
ϕ(x), (7)

where

G(x, ξ) =
1

τ
√
τ sinh

(√
τ l
) {sinh

(√
τ (x − l)

)
sinh

(√
τ ξ
)
, 0 < ξ ≤ x < l,

sinh
(√
τ (ξ − l)

)
sinh

(√
τ x
)
, 0 < x ≤ ξ < l,

τ = m

(∫ l

0
u′2(x) dx

)
,
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ϕ(x) =
1
l

(
(l − x)

∫ x

0
ξ f (ξ, u(ξ)) dξ + x

∫ l

x
(l − ξ) f (ξ, u(ξ)) dξ

)
.

Eq. (7) is solved by the method of the Picard iterations. After choosing a function u0(x), 0 ≤ x ≤ l, which together
with its second derivative vanishes for x = 0 and x = l, we find subsequent approximations by the formula

uk+1(x) =
∫ l

0
Gk(x, ξ) f (ξ, uk(ξ)) dξ +

1
τk
ϕk(x), 0 < x < l, k = 0, 1, . . . , (8)

where

Gk(x, ξ) =
1

τk
√
τk sinh

(√
τk l
) × {sinh

(√
τk (x − l)

)
sinh

(√
τk ξ

)
, 0 < ξ ≤ x < l,

sinh
(√
τk (ξ − l)

)
sinh

(√
τk x

)
, 0 < x ≤ ξ < l,

τk = m

(∫ l

0
u′2k (x) dx

)
,

ϕk(x) =
1
l

(
(l − x)

∫ x

0
ξ f (ξ, uk(ξ))dξ + x

∫ l

x
(l − ξ) f (ξ, uk(ξ))dξ

)
, k = 0, 1, . . . ,

and uk(x) is the kth approximation of the solution of Eq. (7).

4. The system for the method error

Our aim is to estimate the error of the method, by which we understand the difference between the approximate
and the exact solution

δuk(x) = uk(x)− u(x), k = 0, 1, . . . . (9)

For this, it is advisable to use not formula (8), but the system of equalities

u′′′′k+1(x)− m

(∫ l

0
u′2k (x) dx

)
u′′k+1(x) = f (x, uk(x)), 0 < x < l, (10)

uk(0) = uk(l) = 0, u′′k (0) = u′′k (l) = 0, k = 0, 1, . . . , (11)

which follows from formula (8).
If we subtract the respective equalities in (1) and (2) from (10) and (11), then we get

δu′′′′k (x)−
1
2

((
m

(∫ l

0
u′ 2k−1(x) dx

)
+ m

(∫ l

0
u′2(x) dx

))
δu′′k (x)

+

(
m

(∫ l

0
u′ 2k−1(x) dx

)
− m

(∫ l

0
u′2(x) dx

))(
u′′k (x)+ u′′(x)

))
= f (x, uk−1(x))− f (x, u(x)), (12)

δuk(0) = δuk(l) = 0, δu′′k (0) = δu
′′

k (l) = 0, k = 1, 2, . . . . (13)

The system (12) and conditions (13) are the starting point of the estimation of the method error. But preliminarily, we
have to derive several a priori estimates. Let us denote the norms in W 2,2

0 (0, l) as

‖u(x)‖p =

(∫ l

0

(d pu

dx p (x)
)2

dx

) 1
2

, p = 0, 1, 2, ‖u(x)‖ = ‖u(x)‖0.

The symbol (·, ·) is understood as a scalar product in L2(0, l).

5. Auxiliary inequalities

Let us derive some estimates.
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Lemma 1. The inequalities
√

2
l
‖u(x)‖ ≤ ‖u(x)‖1 ≤

l
√

2
‖u(x)‖2 (14)

are valid for u(x) ∈ W 2,2
0 (0, l).

Proof. Using the equality u(x) =
∫ x

0 u′(ξ) dξ we obtain

|u(x)| ≤

(∫ x

0
dξ

) 1
2
(∫ x

0
u′2(ξ) dξ

) 1
2

≤ x
1
2 ‖u(x)‖1,

which implies the left inequality of (14). Applying the latter inequality and taking into account that

‖u(x)‖21 = u(x)u′(x)
∣∣l
0 −

(
u(x), u′′(x)

)
= −

(
u(x), u′′(x)

)
≤ ‖u(x)‖ ‖u(x)‖2,

we complete the proof. �

Lemma 2. The inequality

‖ f (x, u(x))‖ < σ1l
1
2 + σ2

l
√

2
‖u(x)‖1 (15)

is fulfilled for u(x) ∈ W 2,2
0 (0, l).

Proof. By (5) we write

‖ f (x, u(x))‖ ≤ σ1

(∫ l

0
dx

) 1
2

+ σ2‖u(x)‖.

Recall also (14). The result is (15). �

Lemma 3. For the solution of the problem (1), (2) we have the inequality

‖u(x)‖1 ≤ c1, (16)

where

c1 =
1
ω
σ1l

( l

2

) 1
2
. (17)

Proof. We multiply Eq. (1) by u(x) and integrate the resulting equality with respect to x from 0 to l. Using (2), we
get

‖u(x)‖22 + m(‖u(x)‖21)‖u(x)‖
2
1 = ( f (x, u(x)), u(x)) .

By (14) and (3) we obtain(
α +

2

l2

)
‖u(x)‖21 ≤

l
√

2
‖ f (x, u(x))‖ ‖u(x)‖1.

Therefore by (15)(
α +

2

l2 −
1
2
σ2l2

)
‖u(x)‖1 ≤ σ1l

(
l

2

) 1
2

.

From this relation and (6) follows (16). �

Lemma 4. Approximations of the iteration method (8) satisfy the inequality

‖uk(x)‖1 ≤ c2, k = 1, 2, . . . , (18)
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where

c2 =

c1, if σ2 = 0,

c1 + a−1 max(0, ‖u0(x)‖1 − c1), a = 1+
2ω

σ2l2 , if σ2 6= 0.
(19)

Proof. Replace k by the index k − 1 in Eq. (10), multiply the resulting relation by uk(x) and integrate over x from 0
to l. Taking (11) into account, we get

‖uk(x)‖
2
2 + m

(
‖uk−1(x)‖

2
1

)
‖uk(x)‖

2
1 = ( f (x, uk−1(x)), uk(x)) , k = 1, 2, . . . .

Applying (3) and (14), we have(
α +

2

l2

)
‖uk(x)‖

2
1 ≤

l
√

2
‖ f (x, uk−1(x))‖ ‖uk(x)‖1,

which implies(
α +

2

l2

)
‖uk(x)‖1 ≤

l
√

2
‖ f (x, uk−1(x))‖.

Hence, using (15), we conclude that

‖uk(x)‖1 ≤
1

α + 2
l2

l
( l

2

) l
2
(
σ1 + σ2

( l

2

) l
2
‖uk−1(x)‖1

)
.

Therefore by (17), (6) and (19) we get (18) for the case σ2 = 0. In the event σ2 6= 0, again using (17), (6) and (19)
we obtain the inequality

‖uk(x)‖1 ≤ c1(1− a−k)+ a−k
‖u0(x)‖1 = c1 + a−k(‖u0(x)‖1 − c1),

which implies (18). �

6. Convergence of the method

Multiplying (12) by δuk(x), integrating the resulting equality with respect to x from 0 to l and using (13), we come
to the relation

‖δuk(x)‖
2
2 +

1
2

((
m
(
‖uk−1(x)‖

2
1

)
+ m

(
‖u(x)‖21

))
‖δuk(x)‖

2
1

+

(
m
(
‖uk−1(x)‖

2
1

)
− m

(
‖u(x)‖21

))(
u′k(x)+ u′(x), δu′k(x)

))
= ( f (x, uk−1(x))− f (x, u(x)), δuk(x)) .

Using (3)–(5) and (14) we obtain

‖δuk(x)‖
2
2 + α‖δuk(x)‖

2
1

≤
1
2

l1
1∏

p=0

∣∣∣(u′k−p(x)+ u′(x), δu′k−p(x)
)∣∣∣+ l2‖δuk−1(x)‖ ‖δuk(x)‖

≤
1
2

l1
1∏

p=0

(
‖uk−p(x)‖1 + ‖u(x)‖1

)
‖δuk−p(x)‖1 +

1
2

l2l2
1∏

p=0

‖δuk−p(x)‖1.
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By (16) and (18) we get

‖δuk(x)‖1 ≤
1
2

(
α +

2

l2

)−1 (
l1

1∏
p=0

(
‖uk−p(x)‖1 + ‖u(x)‖1

)
+ l2l2

)
‖δuk−1(x)‖1 ≤ q‖δuk−1(x)‖1,

where

q =
1
2

(
α +

2

l2

)−1 (
l1(c1 + c2)

2
+ l2l2

)
.

Taking (9), (14), (17) and (19) into consideration, we come to the following result.

Theorem. Let the assumptions (3)–(6) and besides

‖u0(x)‖1 ≤
1
ω
σ1l

( l

2

) 1
2
,

q =
l2

α + 2
l2

(
ll1
(σ1

ω

)2
+

l2
2

)
< 1

be fulfilled.
Then the approximations of the iteration method (8) converge to the exact solution of the problem (1), (2) and for

the error the following estimate

‖uk(x)− u(x)‖p ≤

( l
√

2

)1−p
qk
‖u0(x)− u(x)‖1, k = 1, 2, . . . , p = 0, 1,

is true.
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Let us consider a vector fiber space Lm(Vn) whose local coordinates of the point are transformed by the law [1]

x i = x i (xk); yα = Aαβ(x)y
β
;

det

∥∥∥∥ ∂x i

∂xk

∥∥∥∥ 6= 0; det
∥∥Aαβ

∥∥ 6= 0; i, j, k = 1, . . . , n; α, β, γ = 1, . . . ,m. (1)

1. Lifts of the vector and tensor fields

Since the local coordinates (x i , yα) of a point of vector fibration Lm(Vn) are transformed by formulas (1), we
obtain that the first differential group Lm(n,m, R) of the vector fibration Lm(Vn) is defined by the matrices of the
type

L A
B =

∥∥∥∥∂ L A

∂ L B

∥∥∥∥ =
∥∥∥∥∥∥∥∥
∂ x i

∂x j

∂ x i

∂xα
∂ x α

∂x i

∂ x α

∂xβ

∥∥∥∥∥∥∥∥ =
∥∥∥∥∥ x i

j 0
Aαβk yβ Aαβ

∥∥∥∥∥ .
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The matrix, inverse to the above one, is of the form

∗

L =
∥∥∥∥ ∂L A

∂ L B

∥∥∥∥ =
∥∥∥∥∥∥∥∥
∂x i

∂ x k

∂x i

∂ x α

∂xα

∂ x i

∂xα

∂ x β

∥∥∥∥∥∥∥∥ =
∥∥∥∥∥

∗
x i

j 0
∗

A α
βk Aβγ yγ

∗

A α
β

∥∥∥∥∥ .
Obviously, the first differential group GL(n,m, R) has always two subgroups GL(n, R) and GL(m, R). This

implies that with the vector fiber space Lm(Vn) are always connected to five sets of fields of differential geometric
objects:

(1) A set of differential geometric objects J(Vn) (with respect to the group GL(n, R)), whose components are the
functions of the point of the base Vn.

(2) A set of differential geometric objects J(Lm(Vn)) (with respect to the group GL(n, R)), whose components
are the functions of the point of vector fibration Lm(V n).

(3) A set of differential geometric objects
∗

J(Vn) (with respect to the group GL(m, R)), whose components are the
functions of the point of the base Vn.

(4) A set of differential geometric objects
∗

J(Lm(Vn)) (with respect to the group GL(m, R)), whose components
are the functions of the point of vector fibration Lm(Vn).

(5) A set of differential geometric objects J̌ Lm(Vn) (with respect to the group GL(n,m, R)), whose components
are the functions of the point of vector fibration Lm(Vn). In the capacity of subsets, these sets have differential
geometric objects of the first order. Moreover, among the above-mentioned differential geometric objects we
distinguish five graded algebras

J(Vn) =
∞∑

p,q=0

J
p
q (Vn), J(Lm(Vn)) =

∞∑
p,q=0

J
p
q (Lm(Vn)),

∗

J(Vn) =
∞∑

p,q=0

∗

J
p
q (Vn),

∗

J(Lm(Vn)) =
∞∑

p,q=0

∗

J
p
q (Lm(Vn)), J̌(Lm(Vn)) =

∞∑
p,q=0

ˇJ
p
q (Lm(Vn)).

Note that for the tangent vector fibrations, certain graded algebras coincide.
If T ∈ J1

1(Lm(Vn)), then the law of transformation of that tensor components has the form

L D
B T A

D = L A
C T C

B , A, B,C = 1, 2, . . . , n + m. (2)

To the tensor T there corresponds the matrix∥∥T A
B

∥∥ = ∥∥∥∥T i
j T i

α

T αi T αβ

∥∥∥∥ .
Obviously, by virtue of (1), we can write formulas (2) as follows:

x p
j T i

p = x i
p T p

j − Aαβ j yβ T i
α, Aβα T i

β = x i
p T p

α ,

Aγβ T αγ = Aαγ p yγ T p
β + Aαγ T γβ , xk

i T αk + Aβγ i yγ T αβ = Aαγ k yγ T k
i + Aαβ T βi .

Thus we can see that the tensor T A
B has a number of subobjects among which there are the tensor T i

α (as an
element of the algebra J1

1(Lm(V n))) and the linear homogeneous subobjects (T i
j , T i

α), (T
i
α, T αβ ). A set of all tensors

T ∈ J1
1(Lm(Vn)), for which the values T i

α are equal to zero, form a new subalgebra of the algebra J1
1(Lm(Vn)) which

we call a triangular subalgebra and denote it by
∗

J1
1(Lm(Vn)). Then to the tensors T ∈

∗

J1
1(Lm(Vn)) there correspond

the matrices of the form∥∥T A
B

∥∥ = ∥∥∥∥T i
j 0

T αi T αβ

∥∥∥∥ ,
and the values T i

j and T αβ form tensors.
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Analogously, if T ∈ J1
2(Lm(Vn)), we have

T A
BC =

∗

L D
B

∗

L E
C L A

P T P
DE .

Hence, owing to (1), we obtain

T i
jk =

∗

xq
j

∗

x p
k x i

l T l
qp + xq

j x i
p

∗

Aαγ k Aγδ yδ T p
qα +

∗

x p
k x i

q

∗

Aαγ j Aγδ yδ T q
αp + x i

p

∗

Aαγ j Aγδ yδ
∗

Aβσk Aσε yε T p
αβ ,

T i
jα =

∗

xk
j

∗

Aβα x i
p T p

kβ + x i
p

∗

Aγα

∗

Aβγ j Aσδ yδ T p
βσ , T i

αβ =

∗

Aγα
∗

Aδβ x i
k T k

γ δ,

T i
α j =

∗

Aβα
∗

x p
j x i

k T k
βp +

∗

Aβα x i
k

∗

Aγδ j Aδσ yσ T k
βγ , T αβγ =

∗

Aδβ
∗

Aσγ Aαε T εδσ +
∗

Aδβ
∗

Aσγ Aαεi yε T i
δσ ,

T αβi =

∗

Aγβ
∗

x p
i Aασk yσ T k

γ p +

∗

Aγβ
∗

x p
i Aαε T εγ p +

∗

Aγβ

∗

Aδpi yσ Ap
σ Aαε T εγ δ +

∗

Aγβ

∗

Aδσ i Aσp y p Aαεk yε T k
γ δ,

T αiβ =
∗

xk
i

∗

Aγβ Aασ p yσ T p
kγ +

∗

xk
i

∗

Aγβ Aαδ T δkγ +
∗

Aγβ

∗

Aδσ i Aσε yε Aαpp T p
δγ +

∗

Aγβ Aασ
∗

Aδεi Aεp y p T σδγ ,

T αi j =

∗

xk
i

∗

x p
j Aαβq yβ T q

kp +

∗

xk
i

∗

x p
j Aαβ T βkp +

∗

xk
i

∗

Aβγ j Aγδ yδ Aαεp yε T p
kβ +

∗

xk
i Aαγ

∗

Aβδ j Aδσ yσ T γkβ

+

∗

x p
j

∗

Aβγ i Aγδ yδ Aαεq yε T q
βp +

∗

x p
j Aαγ

∗

Aβδi Aδσ yσ T γβp +

∗

Aβδi Aδσ yσ
∗

Aγε j Aεp y p Aαωk yω T k
βγ

+ Aαδ

∗

Aβpi Ap
σ yσ

∗

Aγε j Aεω yω T δβγ .

It is not difficult to see that the tensor T P
DE has a number of linear and homogeneous subobjects among which there

are the tensor T i
αβ and the following linear homogeneous subobjects

(T i
jα, T i

αβ), (T
i
α j , T i

αβ), (T
i
αβ , T αβγ ), (T

i
jk, T i

jα, T i
α j , T i

αβ), (T
i
αk, T i

αβ , T αβi , T αβγ ), (T
i
kα, T i

αβ , T αkβ , T αβγ ).

If components of the tensor T i
αβ are equal to zero, then the values, respectively, T i

jα, T i
α j , T αβγ form tensors (as

elements of the algebra J1
2(Lm(Vn))).

If the {ei , eα}-frame of the tangent space Tn+m at the point z = (x, y) ∈ Lm(Vn), then the vectors Ei = ei −Γ α
i eα

determine an invariant equipment of the tangent space. The first differential group GL(n,m, R) has always two
differential subgroups GL(n, R) and GL(m, R). This implies that on the fiber space Lm(Vn) there exist tensor algebras
with respect to the tensor products of the groups GL(n, R), GL(m, R), GL(n,m, R). If on Lm(Vn) is assigned
an object of linear connectedness, then every GL(n,m, R)-vector field is uniquely expanded into two vector fields
with respect to the groups GL(n, R) and GL(m, R). Obviously, to an arbitrary field defined on the base Vn of the
space Lm(Vn) there always corresponds the GL(n,m, R)-vector field defined on the whole fiber space. Analogous
correspondence takes also place between tensors of another valencies.

Let ξ A be the GL(n,m, R)-vector field defined on Lm(Vn), i.e.,

dξ A
+ ξ B ωA

B = ξ
A
k ω

k
+ ξ A

α θ̃
α, A, B,C = 1, 2, . . . , n + m.

Then

ξ = ξ A eA = ξ
i ei + ξ

α eα = ξ
i Ei + (ξ

α
+ Γ α

k ξ
k)eα.

Definition. The vector field ξ i is called a horizontal projection of the GL(n,m, R)-vector field, and the vector field
ξα + Γ α

k ξ
k is called a vertical projection of the same GL(n,m, R)-vector field.

Upon expansion of the vector field GL(n,m, R), we have ξ = ξ1 ⊕ ξ2. These vectors in the {Ei , eα}-frame have
the following coordinates:

ξ1 = ξ
i
1 Ei , ξ2 = ξ

α
2 eα,
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that is,

ξ i
1 = ξ

i , ξα1 = 0, ξ i
2 = 0, ξα2 = ξ

α
+ Γ α

k ξ
k,

and in the {ei , eα}-frame, the coordinates

ξ i
1 = ξ

i , ξα1 = −Γ α
k ξ

k, ξ i
2 = 0, ξα2 = ξ

α
+ Γ α

k ξ
k,

that is,

ξ1 = ξ
i
1 ei − ξ

k
1 Γ α

k eα, ξ2 = ξ
α
2 eα.

If in the base of the space Lm(Vn) the GL(n, R)-vector field ηi is defined, then to that field there always uniquely
corresponds the GL(n,m, R)-vector field defined on Lm(Vn). Such a correspondence is assigned as follows:

ξ i
= ηi , ξα = −ηk Γ α

k . (3)

Definition. The vector field ξ A defined by equalities (3) is called a Γ -lift of the vector field ηi .

If T A
B is the GL(n,m, R)× GL(n,m, R)-tensor field, then

T (ξ) = T A
B ξ

B eA (4)

is an element of the space Tn+m . Since

T (ξ) = T1(ξ)⊕ T2(ξ),

therefore

T (ξ) = T1(ξ1)⊕ T1(ξ2)⊕ T2(ξ1)⊕ T2(ξ2). (5)

Let

T1(ξ1) = ai
j ξ

j
1 Ei , T1(ξ2) = bi

β Ei , T2(ξ1) = cαj ξ
j

1 eα, T2(ξ2) = dαβ ξ
β

2 eα,

or

T1(ξ1) = ai
j ξ

j ei − ai
j ξ

j Γ α
i eα, T1(ξ2) = bi

β(ξ
β
+ ξ k Γ β

k )ei − bi
β(ξ

β
+ ξ k Γ β

k )Γ
α
i eα,

T2(ξ1) = cαj ξ
j eα, T2(ξ2) = dαβ (ξ

β
+ ξ k Γ β

k )eα.

Since these expansions take place for any vector field ξ A, therefore, owing to equalities (4) and (5), we find that

T i
j = ai

j + bi
α Γ α

j , T i
α = bi

α, T αβ = dαβ − bi
β Γ α

i , T αj = cαj − ai
j Γ α

i − bi
β Γ β

j Γ α
i + dαβ Γ β

j . (6)

Obviously, the values ai
j , bi

α , cαj , dαβ appearing in the above formulas, are the tensors. Thus, formulas (6) can be
interpreted as a fully definite correspondence definable by the object of linear connectedness Γ α

i .

Definition. The GL(n,m, R)-tensor field T A
B defined by equality (6) is called a Γ -lift of an ordered quadruple of

GL(n, R), GL(m, R), GL(n,m, R)-tensor fields ai
j , bi

α , cαj , dαβ , defined on Lm(Vn).

2. Internal tensor structures

Definition. The space Lm(Vn) on which is defined the tensor field T A
B satisfying the conditions

T A
C T C

B = λ δ
A
B , (7)

will be called a fiber space with a tensor structure.
If λ = 0, then the tensor structure will be called an almost dual structure, if λ = −1, it will be called an almost

complex structure, and if λ = 1, it will be an almost binary structure [2].
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We will focus our attention not on arbitrary tensor structures, but only on those which are generated by an object
of linear connectedness and by certain vector fields. Such tensor structures will be called in the sequel internal tensor
structures.

Differential equations of the tensor T A
B have the form

∇ T A
B = ∇C T A

B ω
C
≡ ∇i T A

B ω
i
+∇α T A

B θ̃
α. (8)

Let

ai
j = a δi

j , bi
α = b ξ i ηα, cαj = c ξα η j , dαβ = d δαβ ,

where a, b, c, d are arbitrary scalars, ηα, η j are the GL(m, R), GL(n, R)-covector fields, and ξ i , ξα are the GL(n, R),
GL(m, R)-vector fields. It is assumed that

ξ i ηi = 1, ξα ηα = 1.

The lift of that quadruple of tensor fields has the form

T i
j = a δi

j + b ξ i ηα Γ α
j , T i

α = b ξ i ηα , T αβ = d δαβ − b ξ i ηβ Γ α
i ,

T αj = c ξα η j − a Γ α
j − b ξ k ηβ Γ β

j Γ α
k + d Γ α

j .
(9)

Written explicitly, the system of square equations (7) has the form

T i
k T k

j + T i
α T αj = λ δ

i
j , T i

k T k
α + T i

β T βα = 0, T αk T k
j + T αβ T βj = 0, T αk T k

β + T αγ T γβ = λ δ
α
β

whence it follows by virtue of (9) that the values are connected by the following relations:

(a2
− λ)δi

j + bc ξ iη j + b(a + d)ξ i ηγ Γ γ

j = 0, b(a + d)ξ i ηα = 0,

(d2
− λ)δαβ + bc ξα ηβ − b(a + d)ξ i ηβΓ α

i = 0,

(d2
− a2)Γ α

j + c(a + d)ξα η j − b(a + d)ξ i ηβ Γ α
i Γ β

j + bc ξα ηγ Γ γ

j − bc ξ k η j Γ α
k = 0,

that is,

a2
+ bc − λ = 0, d2

+ bc − λ = 0, b(a + d)− 0,

(d2
− a2)Γ α

j + c(a + d)ξα η j + bc ξα ηγ Γ γ

j − bc ξ k η j Γ α
k = 0.

We will seek only for those solutions which depend on a maximal number of parameters. If b = 0, d + a = 0, we
obtain

d = −a, a2
= λ.

In the other case, if b 6= 0, we obtain

d + a = 0, c
(
ξα ηγ Γ γ

j − ξ
k η j Γ α

k

)
= 0.

This implies that d = −a, c = 0, a2
= λ.

We have proved that there exist two two-parametric families of internal tensor structures (a, b, c are arbitrary
parameters):∥∥∥∥ a δi

j 0
c ξα η j − 2a Γ α

j −a δαβ

∥∥∥∥ , (10)∥∥∥∥∥ a δi
j + b ξ i ηα Γ α

j b ξ i ηα

−2a Γ α
j − b ξ k ηβ Γ β

j Γ α
k −a δαβ − b ξ i ηβ Γ α

i

∥∥∥∥∥ . (11)

It should be, however, noted that each of families consists of different, in the main, tensor structures, since the first
family of tensor structures consists of elements of the triangular algebra J̌ Lm(Vn), and the second one consists of
elements of the algebra J(Lm(Vn)).
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Thus, we have proved the following theorems.

Theorem 1. If in the base Vn of space Lm(Vn) with linear connectedness Γ α
i (x, y) there are the GL(m, R)-vector

field ξα(x) and the GL(n, R)-covector field ηi (x), then the tangent bundle of space Lm(Vn) has two one-parametric
bundles of tensor structures which have no almost complex structures, but have only dual tensor structures and also
structures of almost product.

Theorem 2. If in the space Lm(Vn) with linear connectedness Γ α
i (x, y) there are the GL(m, R)-vector field ξα(x, y)

and the GL(n, R)-covector field ηi (x, y), then the tangent bundle of space Lm(Vn) has two one-parametric bundles
of tensor structures which have no almost complex structures, but have only dual tensor structures and also structures
of almost product.

Theorem 3. If in the base Vn of space Lm(Vn) with linear connectedness Γ α
i (x, y) there are the GL(n, R)-vector

field ξ i (x) and the GL(m, R)-covector field ηα(x), then the tangent bundle of space Lm(Vn) has two one-parametric
bundles of tensor structures which have no almost complex structures, but have only dual tensor structures and also
structures of almost product.

Theorem 4. If in the space Lm(Vn) with linear connectedness Γ α
i (x, y) there are the GL(n, R)-vector field ξ i (x, y)

and the GL(m, R)-covector field ηα(x, y), then the tangent bundle of space Lm(Vn) has two one-parametric bundles
of tensor structures which have no almost complex structures, but have only dual tensor structures and also structures
of almost product.

3. The Nijenhuis tensor

If the tensor field T A
B is defined by equations ∇T A

B = ∇C T A
B ω

C , then continuing these equations, we obtain

∇
(
∇C T A

B

)
− T A

D ω
D
C B + T D

B ωA
DC = ∇D ∇C T A

B ω
D, (12)

where

∇[D ∇C] T
A

B = 0.

Rolling up Eq. (12) with T C
E , we get

∇
(
T C

E ∇C T A
B

)
− T C

E T A
D ω

D
C B + T C

E T D
B ωA

DC = 0.

This implies that

∇
(
T C

B ∇C T A
E

)
− T A

D T C
B ω

D
C E + T D

E T C
B ω

A
DC = 0,

and composing the difference, we obtain

∇
(
T C

E ∇C T A
B − T C

B ∇C T A
E

)
− T C

E T A
D ω

D
C B + T A

D T C
B ω

D
C E = 0.

Rolling up Eq. (12) with T E
A , we find (after the change of indices) that

∇
(
T A

C ∇E T C
B

)
− T C

D T A
C ωD

E B + T D
B T A

C ωC
DE = 0,

∇
(
T A

C ∇B T C
E

)
− T C

D T A
C ωD

E B + T D
E T A

C ωC
DB = 0.

The last two equalities yield

∇
(
T C

E ∇C T A
B − T C

B ∇C T A
E − T A

C ∇E T C
B + T A

C ∇B T C
E

)
= 0,

and hence we obtain that the values

N A
E B = T C

E ∇C T A
B − T C

B ∇C T A
E − T A

C ∇E T C
B + T A

C ∇B T C
E

form the tensor and we call it the Nijenhuis tensor.
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Let us consider the Nijenhuis tensor N A
E B of the internal tensor structure defined by formula (10).

Since the first part of Eq. (8) has the form∇i T A
B ω

i
+∇α T A

B θ̃
α , therefore, according to formula (11) and equalities

T i
j = a δi

j , T i
α = 0, T αj = c ξα η j − 2a Γ α

j , T αβ = −a δαβ ,

∇k T i
j = 0, ∇α T i

j = 0, ∇k T i
α = 0, ∇β T i

α = 0, ∇k T αβ = 0, ∇γ T αβ = 0,

∇k T αk = c∇k(ξ
α ηi )− 2a ∇k Γ α

i , ∇β T αi = c∇β(ξ
α ηi )− 2a ∇β Γ α

i ,

we obtain

N i
jk = N i

jα = N i
α j = N i

αβ = Nα
βi = Nα

iβ = Nα
βγ = 0,

Nα
i j = 4a2 Rαi j + 2ac

(
D j (ξ

α ηi )− Di (ξ
α η j )

)
+ c2 ξγ η j ∇γ (ξ

α ηi )− c2 ξγ ηi ∇γ (ξ
α η),

where Rαi j is the curvature tensor of connectedness Γ α
i , and D j is a nonholonomic covariant product of the first

kind [3].
Thus we have the following theorems.

Theorem 5. If on the base Vn of space Lm(Vn) there are dual tensor structures and structures of almost product
defined by formula (10), then these structures are integrable, if and only if linear connectedness Γ α

i is plane Rαi j = 0,
and the vector field ξα and covector field ηi are co-constant (the covariant derivative of the first kind is equal to zero).

Theorem 6. If on the space Lm(Vn) there are dual tensor structures and structures of almost product defined by
formula (10), then these structures are integrable, if and only if linear connectedness Γ α

i is plane Rαi j = 0, and the
vector field ξα and covector field ηi are co-constant (the covariant derivative of the first kind is equal to zero).

Consider the Nijenhuis tensor N A
E B of the internal tensor structure defined by formula (11). In this case we obtain

N i
jk = 4ab ξ iηα Rαjk + b2 ξ p ηβ Γ β

j Γ γ

k Dp(ξ
i ηγ )− b2 ξ p ηβ Γ γ

j Γ β
k Dp(ξ

i ηγ )

+ b2 ξ i ηα ξ
p ηβ Γ β

j Rαpk − b2 ξ i ηβ ηα ξ
p Γ β

k Rαpj ,

N i
jα = b2 ξ p ηα ξ

i ηγ Rγpj + b2 ξ p ηβ Γ β
j Dp(ξ

i ηα)− b2 ξ p ηα Γ β
j Dp(ξ

i ηβ),

N i
αβ = b2 ξ p ηα Dp(ξ

i ηβ)− b2 ξ p ηβ Dp(ξ
i ηα),

Nα
βγ = b2 ξ p ηγ Γ α

i Dp(ξ
i ηβ)− b2 ξ p ηβ Γ α

i Dp(ξ
i ηγ )+ 2ab Γ α

p∇β(ξ
p ηγ )− 2ab Γ α

p∇γ (ξ
p ηβ),

Nα
βi = 4ab ξ pηβ Rαpi + b2 ξ k ηγ ξ

p ηβ Γ β
j Rγpi + b2 ξ p ηγ Γ γ

i Γ α
k Dp(ξ

k ηβ)− b2 ξ p ηβ Γ γ

i Γ α
k Dp(ξ

k ηγ )

+ 2ab Γ α
p Γ δ

i ∇β(ξ
p ηδ)− 2ab Γ α

p Γ δ
i ∇δ(ξ

p ηβ),

Nα
i j = 4a2 Rαi j − 2ab Γ γ

i Γ α
p R p

iγ + 2ab Γ γ

j Γ α
p R p

iγ + b2 ξ k ηγ ξ
p ηδ

(
Γ γ

i Γ δ
j − Γ γ

j Γ δ
i

)
Rαpk

+ b2 ξ p ηγ
(
Γ γ

i Γ δ
j − Γ γ

j Γ δ
i

)
Dp(ξ

k ηδ)+ b2 ξ k ηγ ξ
p ηδ Γ α

k

(
Γ γ

i Rδpj − Γ γ

j Rδpi

)
.

This results in the following theorems.

Theorem 7. If in the base Vn of space Lm(Vn) there are dual tensor structures and structures of almost product
defined by formula (11), then these structures are integrable, if and only if linear connectedness Γ α

i is plane Rαi j = 0,

and the vector field ξ i and covector field ηα are co-constant (the covariant derivative of the first kind is equal to zero).

Theorem 8. If on the space Lm(Vn) there are dual tensor structures and structures of almost product defined by
formula (11), then these structures are integrable, if and only if linear connectedness Γ α

i is plane Rαi j = 0, and the

vector field ξ i and covector field ηα are co-constant (the covariant derivative of the first kind is equal to zero).

Theorem 9. If in the base Vn of space Lm(Vn) there are dual tensor structures and structures of almost product
defined by formula (11), then these structures are not fully integrable, but the subobjects {N i

αβ}, {N
i
αβ , Nα

βγ } of the

Nijenhuis tensor vanish, when the vector field ξ i (x) and covector field ηα(x) are co-constant (the covariant derivative
of the first kind is equal to zero).
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Theorem 10. If in the space Lm(Vn) there are dual tensor structures and structures of almost product defined by
formula (11), then these structures are not fully integrable, but the subobject {N i

αβ} of the Nijenhuis tensor vanishes,

when the vector field ξ i (x, y) and covector field ηα(x, y) are co-constant (the covariant derivative of the first kind is
equal to zero).

Theorem 11. If on the space Lm(Vn) there are dual tensor structures and structures of almost product defined by
formula (11), then these structures are not fully integrable, but the subobjects {N i

αβ}, {N
i
jα, N i

αβ}, {N
i
jk, N i

jα, N i
αβ},

{N i
αβ , Nα

i j , N i
jk, N i

jα, Nα
βγ , Nα

βi } of the Nijenhuis tensor vanish, when linear connectedness Γ α
i is plane Rαi j = 0, and

the vector field ξ i (x, y) and covector field ηα(x, y) are co-constant (the covariant derivative of the firs kind is equal
to zero).

4. F-structures

The tensor structure T A
B is called F-structure if

T A
B T B

C T C
D + λ T A

D = 0 (λ = ±1).

Written explicitly, this system has the form

T i
k T k

p T p
j + T i

γ T γk T k
j + T i

k T k
γ T γj + T i

γ T γβ T βj + λ T i
j = 0,

T αk T k
p T p

j + T αk T k
γ T γj + T αγ T γk T k

j + T αγ T γβ T βj + λ T αj = 0,

T i
k T k

p T p
α + T i

k T k
γ T γα + T i

γ T γp T p
α + T i

γ T γβ T βα + λ T i
α = 0,

T αk T k
p T p

β + T αk T k
γ T γβ + T αγ T γp T p

β + T αγ T γδ T δβ + λ T αβ = 0.

From the above system and from equality (9) follows

b(a2
+ ad + bc + d2

+ λ)ξ i ηβ = 0,

(a3
+ λ a)δi

j + (a
2b + b2c + bd2

+ abd + ηb)ξ i ηα Γ α
j + (2abc + bcd)ξ i η j = 0,

(d3
+ λ d)δαβ − (a

2b + b2c + bd2
+ abd + ηb)ξ i ηβ Γ α

i + (abc + 2bcd)ξα ηβ = 0,

(d − a)(a2
+ ad + d2

+ λ)Γ α
j − bc(d + 2a)ξ i η j Γ α

i − b(a2
+ ad + bc + d2

+ λ)ξ i ηγ Γ α
i Γ α

j

+ (a2c + bc2
+ cd2

+ acd + λc)ξα η j = 0,

or

b(a2
+ ad + bc + d2

+ λ) = 0, a3
+ 2abc + bcd + λa = 0, d3

+ 2bcd + abc + λd = 0,

(d − a)(a2
+ ad + d2

+ λ)Γ α
j + c(a2

+ ad + bc + d2
+ λ)ξαη j

+ bc(2d + a)ξαηγΓ
γ

j − bc(d + 2a)ξ iη jΓ α
i = 0.

The second and third equalities result in

(d − a)(a2
+ ad + d2

+ bc + λ) = 0.

If b = 0, d = a, a2
+ ad + d2

+ bc + λ 6= 0, we obtain c = 0 and a2
+ λ = 0. Analogous results are obtained in

the other cases, i.e., the real F-structures exist, if and only if λ = −1.
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Abstract

We consider the nonstationary flow of an incompressible viscous conducting fluid in the plane pipe of infinite length in the
presence of a transverse magnetic field. Using the Laplace transformation we obtain the expressions for the fluid flow velocity
and the electric and magnetic field intensities when the conductivity values of the fluid and pipe walls are arbitrary. Solutions are
expressed in terms of complex integrals which are calculated for the particular case of ideally conducting walls.
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, nonstationary flows of a conducting incompressible fluid have been considered in a number of
works. A class of exact solutions of magnetohydrodynamic equations for laminar flows has been considered in
the papers [1–3]. The theoretical statement of nonstationary problems and their solvability were investigated by
Ladyzhenskaya and Solonnikov in [4]. In the papers [5–7], an exact solution was obtained for a nonstationary flow of
a fluid which is produced by the ideally conducting parallel walls in the presence of a transverse magnetic field. The
impulsive motion and oscillations of the plate in a conducting fluid in the presence of a magnetic field are studied in
the works [8–12].

2. Main part

In the present paper, an exact solution is obtained for the particular case of a nonstationary flow of a conducting
incompressible viscous fluid between the conducting parallel walls of infinite length. An analogous problem was the
subject of Regirer’s paper, but the induced fields outside the fluid are ignored there.
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Let a stationary fluid, whose conductivity is σ , viscosity coefficient is η, density is ρ and magnetic permeability
is µ, occupy an infinitely long plane pipe with parallel walls, the distance between which is 2L . The pipe walls
are assumed to be infinitely thick and characterized by the conductivity σ ∗, magnetic permeability µ and dielectric
permeability ε. There exists a transverse magnetic field B0 = µH0.

At the initial moment of time t = 0, the constant pressure changes suddenly along the pipe and, as a result, the
fluid begin to move. The origin of the Cartesian system (right) is chosen between the pipe walls, the x-axis coincides
with the fluid motion direction, while the y-axis is directed normally to the walls, i.e. in parallel to the direction of the
magnetic field.

To prevent the appearance of electric bulk charges, it is assumed that the conducting walls are grounded at
z→±∞.

Let the values L , U0, L
U0

, ρU 2
0 , H0, µH0U0, H0

L (U0 is some typical velocity) denote respectively the radius of the

vector Er , fluid velocity EV , time t , pressure ρ, magnetic field intensity EH , electric field intensity EE and current density
Ej .

Then the equations of the problem will be written in the non-dimensional form [13–15] as follows: in the domain
adjacent to the fluid

rot EH = Ej (1)

div EH = 0 (2)

rot EE = −
∂ EH

∂t
, (3)

div EE = 0 (4)

Ej = Rm( EE + EV × EH) (5)

∂ EV

∂t
+ ( EV ∇) EV = −∇ρ + S(rot EH × EH)+

1
R

∆ EV (6)

div EV = 0, (7)

in the domain near the pipe walls

rot EH∗ = Ej∗ + β2 ∂
EE∗

∂t
, (8)

div EH∗ = 0, (9)

rot EE∗ = −
∂ EH∗

∂t
, (10)

div EE∗ = 0, (11)

Ej∗ = R∗m EE
∗, (12)

where

S =
B2

0

µρU 2
0

=
M2

R Rm
, M2

=
B2

0 L2σ

η
, β2

= εµU 2
0 ,

R =
U0Lρ

µ
, Rm = σµU0L , R∗m = σ

∗µU0L ,


are non-dimensional parameters.

As it is usually done in magnetohydrodynamics, we neglect the displacement current in the fluid.
In the considered problem

EV = EV [U (y, t), 0, 0], EH = EH [Hx (y, t), 1, 0], EE = EE[0, 0, Ex (y, t)],
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Ej = Ej[0, 0, jx (y, t)], p = p(x, y, t),

and

∂p

∂x
= const = −P.

Hence Eqs. (1)–(7) reduce to a system

∂Hx

∂t
=
∂U

∂y
+

1
Rm

∂2 Hx

∂y2 ,

∂U

∂t
= P + S

∂Hx

∂y
+

1
R

∂2U

∂y2 ,

∂p

∂y
= −SHx

∂Hx

∂y
, (13)

jz = −
∂Hx

∂y
= Rm(Ez +U ), (14)

∂Ez

∂y
= −

∂Hx

∂t
,

while Eqs. (8)–(12) take the form

−
∂H∗x
∂y
= R∗m E∗z + β

2 ∂E∗z
∂t

,

∂E∗z
∂y
= −

∂H∗x
∂t

.

By virtue of the above assumptions, for t = 0 the initial conditions are written as

U = Hx = Ez = jz = 0, p = −Px + p0,

H∗x = E∗z = j∗z = 0.

}
(15)

The boundary conditions imply that the fluid velocity on the pipe walls is zero, while the intensities of the magnetic
and electric fields are continuous, i.e. for t > 0,

y = +1, U = 0, Hx = H∗x , Ez = E∗z , (16)

and

y = −1, U = 0, Hx = H∗x , Ez = E∗z . (17)

The fields in the upper wall domain remain constant for y → +∞, and in the lower wall domain they remain
constant for y →−∞.

If we know the intensity of the induced magnetic field Hx (y, t), then the pressure p(x, y, t) is defined from
Eq. (13), and the current density jx (y, t) from the relation (14). Therefore in the sequel we will limit our consideration
to finding the unknowns U , Hx and Ez .

Applying the Laplace transformation [16] for the zero initial conditions (15), for the images of the sought functions
Ũ , H̃x and Ẽz we obtain the equations

pH̃x =
dŨ

dy
+

1
Rm
·

d2 H̃x

dy2 , (18)

pŨ = S
d H̃x

dy
+

1
R

d2Ũ

dy2 +
P

p
, (19)
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−
d H̃x

dy
= Rm(Ẽz + Ũ ), (20)

d Ẽz

dy
= −pH̃x , (21)

where p is the transformation parameter.
From the relations (18) and (19) we find

d4Ũ

dy4 − [M
2
+ (R + Rm)p]

d2Ũ

dy2 + R Rm p2Ũ = R Rm P, (22)

d4 H̃x

dy4 − [M
2
+ (R + Rm)p]

d2 H̃x

dy2 + R Rm p2 H̃x = 0. (23)

Solutions of Eqs. (22) and (23) have the form

Ũ = C1chmy + C2shmy + C3chmy + C4shny +
P

p2 , (24)

H̃x = C5chmy + C6shmy + C7chny + C8shny, (25)

where m and n are the roots of the characteristic equations

λ4
− [M2

+ (R + Rm)p]λ
2
+ R Rm p2

= 0,

m =
1
2

[√
M2 +

(√
R +
√

Rm
)2 p +

√
M2 +

(√
R −
√

Rm
)2 p

]
,

n =
1
2

[√
M2 +

(√
R +
√

Rm
)2 p −

√
M2 +

(√
R −
√

Rm
)2 p

]
.

Now from (21) we find the electric field intensity

Ẽx = −p
[
C5

shmy

m
+ C6

chmy

m
+ C7

shny

n
+ C8

chny

n

]
−

P

p2 . (26)

The integration constant is defined by Ohm’s law (20).
Substituting the solutions (24)–(26) in the initial equations (18)–(20) and assuming that they are identically

satisfied, we obtain two systems of equations that connect the integration constants

C1

(m2

R
− p

)
+ C6mS = 0,

C2

(m2

R
− p

)
+ C5mS = 0,

C3

(n2

R
− p

)
+ C8nS = 0,

C4

(n2

R
− p

)
+ C7nS = 0.


and

C6

(m2

R
− p

)
+ C1m = 0,

C5

(m2

R
− p

)
+ C2m = 0,

C8

(n2

R
− p

)
+ C3n = 0,

C7

(n2

R
− p

)
+ C4n = 0.


(27)

From the structure of the differential equations (18)–(19) we see that only one of the obtained algebraic systems is
independent.

For the final definition of the values Ũ , H̃x and Ẽz in the fluid domain it is necessary to define the images of the
electric and magnetic field intensities in the pipe walls.

For the upper wall domain the transformed equations have the form

−
d H̃∗x
dy
= (R∗m + β

2 p)Ẽ∗z , (28)
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d Ẽ∗z
dy
= −p

x
H x . (29)

From the system (28)–(29) we obtain the differential equations

d2 H̃∗x
dy2 = (R

∗
m + β

2 p)pH̃∗x , (30)

d2 Ẽ∗z
dy2 = (R

∗
m + β

2 p)pẼ∗z . (31)

Solutions of Eqs. (30) and (31), which satisfy the initial relations (28) and (29), boundary conditions (16) and
remain bounded for y →+∞, have the form

H̃∗x = H̃∗x
∣∣
y=1e

√
p
√

R∗m+β2 p(1−y)

Ẽ∗z = Ẽ∗z
∣∣
y=1e

√
p
√

R∗m+β2 p(1−y),

where the values of the functions on the wall y for y = +1 are related by

Ẽ∗z
∣∣
y=1 = −

√
p√

R∗m + β2 p
H̃∗x
∣∣
y=1.

For the lower wall boundary we analogously find

H̃∗x = H̃∗x
∣∣
y=−1e

√
p
√

R∗m+β2 p(1+y)

Ẽ∗z = Ẽ∗z
∣∣
y=−1e

√
p
√

R∗m+β2 p(1+y)

and also

Ẽ∗z
∣∣
y=−1 = −

√
p√

R∗m + β2 p
H̃∗x
∣∣
y=−1. (32)

Using now the boundary conditions (16) and (17), the first equation of the system (27) and the relations (31) and
(32), we define the integration constants in the solutions (24)–(26) and finally obtain the expressions of the images of
Ũ , H̃x and Ẽz for the fluid domain

Ũ =
Pu(p, y)

pD(p)
, H̃x =

Ph(p, y)

pD(p)
, Ẽz = −

Pg(p, y)

p, D(p)

where

u(p, y) =
1
p
{D(p)+ (Schn − F(p))chmy − (Schm − G(p))chny},

h(p, y) =
1
p

{
(Schn − F(p))

(
p −

m2

R

) shmy

mS
− (Schm − G(p))

(
p −

n2

R

) shny

nS

}
,

g(p, y) =
1
p

{
D(p)+ p

[
(Schn − F(p))

(
p −

m2

R

)chmy

m2S
− (Schm − G(p))

(
p −

n2

R

)chny

n2S

]}
,

D(p) = F(p)chm − G(p)chn

F(p) =
(

p −
n2

R

)( √
pshn√

R∗m + β2 p
+ p

chn

n

)
1
n
,

G(p) =
(

p −
m2

R

)( √
pshm√

R∗m + β2 p
+ p

chm

m

)
1
m
.
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The fluid velocity and the induced magnetic and electric field intensities are found by means of the Riemann–Mellin
formula

U =
P

2π i

∫ ω+i∞

ω−i∞

u(p, y)ept

pD(p)
dp,

Hx =
P

2π i

∫ ω+i∞

ω−i∞

h(p, y)ept

pD(p)
dp,

Ez = −
P

2π i

∫ ω+i∞

ω−i∞

g(p, y)ept

pD(p)
dp.

(33)

In the particular case of the ideally conducting walls (σ ∗ = ∞, R∗m = ∞), we manage to calculate the integrals
(33) in the general form by using the residue theorem. Indeed, in that case

F(p) =
(

p −
n2

R

) Pchn

n2 , G(p) =
(

p −
m2

R

) Pchm

m2 ,

D(p) =
1

2R Rm
(m + n)(m − n)[ch(m + n)+ ch(m − n)]

=
1

2R Rm

√
M2 + (

√
R +
√

Rm)2 p
√

M2 + (
√

R −
√

Rm)2 p

×

√
M2 + (

√
R +
√

Rm)2 p + ch
√

M2 + (
√

R −
√

Rm)2 p

i.e. the meromorphic functions Ũ , H̃x and Ẽz have simple poles at the points

p = 0,

p′k =
(2k + 1)2π2

2R Rm

−(R + Rm)+

√
(R − Rm)2 −

4R Rm M2

(2K + 1)2
π2

 ,
p′′k =

(2k + 1)2π2

2R Rm

−(R + Rm)−

√
(R − Rm)2 −

4R Rm M2

(2K + 1)2
π2

 ,
while the points p = − M2

(
√

R+
√

Rm )2
and p = − M2

(
√

R−
√

Rm )2
are the removable singular points.

Then, by the residue theorem

U = UCT + P
∞∑

k=0

[
u(pk, y)ep′k t

p′k(
d D
dp )p′k

+
u(pk, y)ep′k t

p′′k (
d D
dp )p′′k

]
, (34)

Hx = Hx CT + P
∞∑

k=0

[
h(pk, y)ep′k t

p′k(
d D
dp )p′k

+
u(pk, y)ep′k t

p′′k (
d D
dp )p′′k

]
, (35)

Ez = −P
∞∑

k=0

[
g(pk, y)ep′k t

p′k(
d D
dp )p′k

+
g(pk, y)ep′k t

p′′k (
d D
dp )p′′k

]
, (36)

where UCT and Hx CT corresponding to the stationary regimes and calculated as residues for p = 0 are defined by
the formulas

UCT =
P(chM − chMy)

S RmchM
, Hx CT =

P(shM − yMchM)

SMchM
. (37)

To conclude, it is of interest to note that for the definite ratios of the parameters, the first nonstationary members in
the solutions (34)–(36) are damping oscillations, while in ordinary hydrodynamics the transient regime is always of
purely aperiodic character.
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Abstract

We consider the Bitsadze–Samarskii type nonlocal boundary value problem for Poisson equation in a unit square, which is
solved by a difference scheme of second-order accuracy. Using this approximate solution, we correct the right-hand side of the
difference scheme. It is shown that the solution of the corrected scheme converges at the rate O(|h|s) in the discrete L2-norm
provided that the solution of the original problem belongs to the Sobolev space with exponent s ∈ [2, 4].
c© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Finite difference method is a significant tool in the numerical solution of problems posed for differential equations.
In order to minimize the amount of calculations it is desirable for the difference scheme to be sufficiently good on
coarse meshes, i.e. to have high order accuracy. In the present work, for improving the accuracy of the approximate
solution, we study two-stage finite difference method. We consider Bitsadze–Samarskii type nonlocal boundary value
problem for Poisson’s equation.

At the first stage we solve the difference scheme ∆hŨ = ϕ, which has the second order of approximation. Using
the solution Ũ the right-hand side of the difference scheme is corrected, ∆hU = ϕ + RŨ , and solved again on the
same mesh.

This approach for some boundary value problems posed for Poisson and Laplace equations has been studied in
Volkov’s papers (see, e.g. [1–3]), where the input data were chosen so as to ensure that the exact solution belongs to
the Hölder class C6,λ(Ω̄).
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For establishing the convergence we use the methodology of obtaining the compatible estimates of convergence
rate of difference schemes. This methodology develops from the works of Samarskii, Lazarov and Makarov (see,
e.g., [4–6]), and later in the works of other authors (see, e.g., [7,8]). For the elliptic problems such estimates have the
form

‖U − u‖W k
2 (ω)
≤ c|h|s−k

‖u‖W s
2 (Ω)

, s > k ≥ 0,

where u is the solution of original problem, U is the approximate solution, k and s are integer and real numbers,
respectively, W k

2 (ω) and W s
2 (Ω) are the Sobolev norms on the set of functions with discrete and continuous arguments.

Here and below c denotes a positive generic constant, independent of h and u.
It is proved that the solution U of the corrected difference scheme converges at rate O(hs) in the discrete L2-norm,

when the exact solution belongs to the Sobolev space W s
2 , s ∈ [2, 4].

The generalization of the Bitsadze–Samarskii problem [9] was investigated by many authors (see, e.g., [10–13]).
In [11] for a Poisson equation it is considered a difference scheme, which converges by the rate O(h2) in the

discrete W 2
2 -norm to the exact solution from the class C4(Ω̄).

In [13] difference scheme is considered for a second order elliptic equation with variable coefficients and the
compatible estimate of convergence rate in discrete W 1

2 -norm is obtained.
Results, analogous to those given in the present work, are obtained in [14] for the Dirichlet problem posed for an

elliptic equation, and also in [15] for the mixed problem with third kind conditions.
One of the methods for obtaining compact high order approximations is the Mehrstellen method (“Mehrstellenver-

fahren”), defined by Collatz (see [16]). Instead of approximating only the left hand side of the differential equation, he
proposes to take several points of the right hand side as well. In the case of two-dimensional problem, the differential
operator is approximated on a 9-point stencil with the fourth order accuracy.

The advantage of the Mehrstellen schemes over ordinary (second order) accuracy schemes on a coarse grid is
obvious.

The advantage of our method is:
(a) It needs to approximate the differential operator on minimally acceptable stencil (5-point stencil for a two-

dimensional problem). Therefore, the condition number of this operator is better as compared with the Mehrstellen
schemes, which is notable on a fine grid.

(b) It is a two-stage method, nevertheless it requires matrix inversion only once (on the second stage we change
only the right-hand side of the equation, while the operator is kept unchanged).

(c) The method of correction is handy even in the case when construction of high precision schemes is impossible.

2. Statement of the problem and some auxiliary estimate

As usual, by symbol W s
2 (Ω), s ≥ 0 we denote the Sobolev space. For integer s the norm in W s

2 (Ω) is given by
formula

‖u‖2W s
2 (Ω)
=

s∑
j=0

|u|2
W j

2 (Ω)
, |u|2

W j
2 (Ω)
=

∑
|ν|= j

‖Dνu‖2L2(Ω)
,

where Dν
= ∂ |ν|/

(
∂xν1

1 ∂xν2
2

)
, ν = (ν1, ν2) is multi-index with non-negative integer components, |ν| = ν1 + ν2.

If s = s̄ + ε, where s̄ is an integer part of s and 0 < ε < 1, then

‖u‖2W s
2 (Ω)
= ‖u‖2

W s̄
2 (Ω)
+ |u|2W s

2 (Ω)
,

where

|u|W s
2 (Ω)
=

∑
|ν|=s̄

∫
Ω

∫
Ω

|Dνu(x)− Dνu(y)|2

|x − y|2+2ε dx dy.

Particularly, for s = 0 we have W 0
2 = L2.
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Let Ω̄ = {(x1, x2) : 0 ≤ xα ≤ 1, α = 1, 2} be a unit square with a boundary Γ ; Γ0 = Γ \ {(1, x2) : 0 < x2 < 1};
ξk be fixed points from interval (0; 1), 0 < ξ1 < ξ2 < · · · ξm < 1. Denote ξ0 = 0, ξm+1 = 1.

Consider the problem

∆u = f (x), x ∈ Ω , u
∣∣
Γ0
= 0, u(1, x2) =

m∑
k=1

αku(ξk, x2), 0 < x2 < 1 (1)

where the coefficients αk are real numbers satisfying conditions

~ :=

m∑
k=1

|αk |
√
ξk < 1.

It was shown in [12] that, for f (x) ∈ L2(Ω , ρ), there exists a unique strong solution of problem (1) in the weighted
Sobolev space W 2

2 (Ω , ρ). Throughout the following, we assume that the function f (x) provides the unique solvability
of problem (1) in the W s

2 (Ω), 2 ≤ s ≤ 4.
Consider the following grid domains in Ω̄ :

ω̄k = {xk = ikh : ik = 0, 1, . . . , n, h = 1/n}, ωk = ω̄k ∩ (0, 1),

ω+k = ω̄α ∩ (0, 1], k = 1, 2, ω = ω1 × ω2, ω̄ = ω̄1 × ω̄2, γ0 = Γ0 ∩ ω̄.

We assume that the points ξk coincide with grid nodes

ξk = nkh, k = 1, 2, . . . ,m,

where nk are nonnegative integers 0 < n1 < n2 < · · · < nm < n. We suppose also that

h/2 ≤ 1− ξm − ν, ν = const > 0.

For grid functions we define difference quotients in xk directions as follows

Vxk =
(
V (+1k ) − V

)
/h, Vx̄k =

(
V − V (−1k )

)
/h

where

V = V (x), V (±11) = V (x1 ± h, x2), V (±12) = V (x1, x2 ± h).

For functions, defined on Ω , we need the following averaging operators:

T1u(x) :=
1

h2

∫ x1+h1

x1−h1

(h1 − |x1 − t1|)u(t1, x2) dt1.

Analogously is defined operator T2. Note that these operators commute and

Tk
∂2u

∂x2
k

= u x̄k xk , k = 1, 2.

Define the following weight functions

r(x1) = 1− x1, ρ(x1) = 1− x1 −

m∑
k=1

~σkχ(ξk − x1),

where

σk =
|αk |
√
ξk
, χ(t) =

{
t, if t ≥ 0,
0, if t < 0.

Let

r̄ =
(
r + r (−11)

)
/2, ρ =

(
ρ + ρ(−11)

)
/2.
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Notice that the following inequality

(1− ~2)r(x1) ≤ ρ(x1) ≤ r(x1) (2)

holds.
Indeed, the right-hand side inequality is obvious. The left-hand side inequality can be verified as follows:

ρ(x1) = 1− x1 − ~

m∑
k= j+1

σk(ξk − x1) ≥

(
1− ~

m∑
k= j+1

σkξk

)
(1− x1)

≥ (1− ~2)(1− x1), x1 ∈ (ξ j , ξ j+1).

Remark. Introduction of auxiliary (equivalent to r ) weight function ρ gives possibility to state the positive
definiteness of the difference scheme operator.

Let H = H(ω) be the set of grid functions defined on ω with the inner product and norm

(U, V )r =
∑
x∈ω

h2r(x1)U (x)V (x), ‖V ‖r = ‖V ‖L2(ω,r) = (V, V )1/2r .

Moreover, let

(U, V ) =
∑
x∈ω

h2U (x)V (x), ‖V ‖ = (V, V )1/2.

Inner product and norm, involving ρ in index will make similar to the expression with index r sense.
Denote by H̊ = H̊(ω̄) the set of grid functions V (x), given on ω̄ and satisfying conditions

V (x) = 0, x ∈ γ0, V (1, x2) =

m∑
k=1

αk V (ξk, x2), x2 ∈ ω2. (3)

Lemma 1. For each function, defined on mesh ω̄, which equals zero on x1 = 0 and satisfies the nonlocal condition
from (3), the following inequalities

−

∑
ω1

hρYx̄1x1 Y ≥
∑
ω+1

hρ̄Y 2
x̄1
, (4)

∑
ω1

hrY 2
≤ 4

∑
ω+1

hr̄(Yx̄1)
2 (5)

hold.

Proof. After simple computations, we obtain

−

∑
ω1

hρYx̄1x1 Y =
∑
ω+1

hρ̄Y 2
x̄1
−

1
2

Y 2(1, x2)−
1
2

∑
ω1

hY 2ρx̄1x1 .

Taking into account∑
ω1

hY 2ρx̄1x1 = −

∑
ω1

hY 2
m∑

k=1

~σk
1
h
δ(x1, ξk) = −

m∑
k=1

Y 2(ξk, x2)σk~,

where δ(·, ·) is the Kronecker delta, and

Y 2(1, x2) ≤
( m∑

k=1

4
√
α2

k ξk
4
√
α2

k/ξk |Y (ξk, x2)|
)2
≤ ~

m∑
k=1

|αk |
√
ξk

Y 2(ξk, x2), (6)

we obtain (4).



G. Berikelashvili, B. Midodashvili / Transactions of A. Razmadze Mathematical Institute 170 (2016) 287–296 291

One can show that∑
ω+1

hr̄2(Y 2)x̄1 =

∑
ω1

hrY 2
+

h2

8
Y 2(1, x2). (7)

On the other hand,∑
ω+1

hr̄2(Y 2)x̄1 =

∑
ω+1

hr̄2Yx̄1(Y + Y (−11))

≤

(∑
ω+1

hr̄(Yx̄1)
2
)1/2(∑

ω+1

hr̄
(
Y + Y (−11)

)2)1/2

≤
ε

2

∑
ω+1

hr̄(Yx̄1)
2
+

1
2ε

∑
ω+1

hr̄(Y + Y (−11))2.

Whence, choosing ε = 4 we obtain∑
ω+1

hr̄2(Y 2)x̄1 ≤ 2
∑
ω+1

hr̄(Yx̄1)
2
+

1
8

∑
ω+1

hr̄(Y + Y (−11))2

= 2
∑
ω+1

hr̄(Yx̄1)
2
+

h2

8
Y 2(1, x2)+

1
2

∑
ω1

hrY 2. (8)

(7), (8) prove the inequality (5). Lemma 1 is proved. �

3. Difference scheme, correction procedure, and main result

At the first stage, we approximate problem (1) by the difference scheme

Ũx1x1 + Ũx2x2 = ϕ(x), x ∈ ω, Ũ ∈
◦

H , (9)

where ϕ = T1T2 f is the average of function f .
Define the operators

A := A1 + A2, AkY := −
◦

Y x̄1x1 , k = 1, 2, x ∈ ω,

where

Y ∈ H,
◦

Y∈
◦

H and Y (x) =
◦

Y (x) for x ∈ ω.

The difference scheme (9) can be rewritten in the form of operator equation

−AŨ = ϕ(x), x ∈ ω, Ũ ∈ H. (10)

Operator A maps H onto H . Indeed, it suffices to show that operator A1 on near-boundary point (1 − h, x2) has the
form

A1Y (1− h, x2) = −Y̊x̄1x1(1− h, x2)

= −
(
Y̊ (1, x2)− 2Y̊ (1− h, x2)+ Y̊ (1− 2h, x2)

)
/h2

= −

( m∑
k=1

αkY (ξk, x2)− 2Y (1− h, x2)+ Y (1− 2h, x2)

)
/h2.

According to the estimates (2), (4) and (5) we obtain the inequality

(A1Y, Y )ρ ≥ c‖Y‖2ρ, Y ∈ H.
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In addition, it is well known that A2 is a self-adjoint and positive definite operator, A2 = A∗2, (A2Y, Y )ρ ≥ c‖Y‖2ρ .
Therefore, the operator A is positive definite on the space H ,

(AY, Y )ρ ≥ ‖Y‖
2
ρ,

and hence the scheme (10) (i.e. (9)) is uniquely solvable.
At the second stage, we use the earlier-found solution of the difference scheme (10), define the correction term

RŨ :=
h2

6
Ũx̄1x1 x̄2x2

and solve the difference scheme

−AU = ϕ −RŨ , x ∈ ω, U ∈ H (11)

on the same grid.
The following assertion is the main result of the present paper.

Theorem 1. Let the solution of problem (1) belong to the space W s
2 (Ω), s ≥ 2. Then the convergence rate of the

corrected difference scheme (11) in the discrete L2-norm is defined by the estimate

‖U − u‖L2(ω,r) ≤ chs
‖u‖W s

2 (Ω)
, 2 ≤ s ≤ 4.

4. A priori error estimates. Proof of Theorem 1

Let

ζ3−k = Tku − u, η3−k = Tku − u −
h2

12
u x̄k xk , k = 1, 2.

By Z̃ = Ũ −u and Z = U −u we denote the errors in the solution of the schemes (10) and (11) respectively. First,
notice that these functions represent solutions of the following problems:

−AZ̃ = (ζ1)x̄1x1 + (ζ2)x̄2x2 , x ∈ ω, Z̃ ∈ H (12)

and

−AZ = (η1)x̄1x1 + (η2)x̄2x2 − (h
2/6)Z̃ x̄1x1 x̄2x2 , x ∈ ω, Z ∈ H. (13)

Indeed, we have

−AZ = −AU + Au = ϕ −RŨ + Au = −R Z̃ + T1T2 f −Ru + Au,

whence using the relation

T1T2∆u = (T2u)x̄1x1 + (T1u)x̄2x2

and the expressions for the operators Au and Ru, we obtain (13). Eq. (12) is obtained analogously.

Lemma 2. For the solutions of problems (12), (13) there hold the following a priori estimates

‖Z̃ x̄1x1‖ρ ≤ c
(
‖(ζ1)x̄1x1‖ + ‖(ζ2)x̄2x2‖

)
, (14)

‖Z‖ρ ≤ c
(
‖η1‖ + ‖η2‖ + h2

‖Z̃ x̄1x1‖ρ

)
. (15)

Proof. From (12) it follows(
Z̃ x̄1x1 , Z̃ x̄1x1

)
ρ
+
(
Z̃ x̄2x2 , Z̃ x̄1x1

)
ρ
= −

(
(ζ1)x̄1x1 + (ζ2)x̄2x2 , Z̃ x̄1x1

)
ρ
. (16)
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Summing up by parts, we get(
Z̃ x̄2x2 , Z̃ x̄1x1

)
ρ
=

∑
ω+

h2ρ̄(Z̃ x̄1 x̄2)
2
−

∑
ω+2

h

2
(Z̃ x̄2(1, x2))

2
−

1
2

∑
ω1×ω

+

2

h2ρx̄1x1(Z̃ x̄2)
2

=

∑
ω+

h2ρ̄(Z̃ x̄1 x̄2)
2
−

∑
ω+2

h

2

[
(Z̃ x̄2(1, x2))

2
−

m∑
k=1

~|αk |
√
ξk
(Z̃ x̄2(ξk, x2))

2

]
.

Using analogous to the estimate (6), written for Z̃ x̄2 , we obtain(
Z̃ x̄2x2 , Z̃ x̄1x1

)
ρ
≥

∑
ω+

h2ρ̄(Z̃ x̄1 x̄2)
2
≥ 0.

Therefore, from (16) we obtain the validity of (14).
Now, represent the solution of the problem (13) in the form of sum

Z = Z (1) + Z (2),

where Z (k), k = 1, 2, are the solutions of the following problems

−AZ (1) = (η1)x̄1x1 , x ∈ ω, Z (1) ∈ H, (17)

−AZ (2) = (η2)x̄2x2 −
h2

6
Z̃ x̄1x1 x̄2x2 , x ∈ ω, Z (2) ∈ H. (18)

From (17) we have

Z (1) + A−1
1 A2 Z (1) = −η1,

‖Z (1)‖2ρ +
(

A−1
1 A2 Z (1), Z (1)

)
ρ
= −

(
η1, Z (1)

)
ρ
.

The operator A2 is self-adjoint and positive definite, therefore, there exists quadratic root A1/2
2 , which is self-adjoint

and commutable with A−1
1 . Thus(

A−1
1 A2 Z (1), Z (1)

)
ρ
=
(

A−1
1 (A1/2

2 Z (1)), (A1/2
2 Z (1))

)
ρ
≥ 0

and

‖Z (1)‖ρ ≤ ‖η1‖. (19)

From (18) it follows

A−1
2 A1 Z (2) + Z (2) = −η2 + (h

2/6)Z̃ x̄1x1 ,

and since(
A−1

2 A1 Z (2), Z (2)
)
ρ
=
(

A1(A
−1/2
2 Z (2)), (A−1/2

2 Z (2))
)
ρ
≥ 0,

we obtain

‖Z (2)‖ρ ≤ ‖η2‖ + (h
2/6)‖Z̃ x̄1x1‖ρ . (20)

(19) and (20) prove (15). �

To determine the rate of convergence of the two-stage finite difference method with the help of Lemma 2, it is
sufficient to estimate the terms on the right-hand sides of (18), (19). For that purpose we use the following lemma.

Lemma 3. Assume that the linear functional l(u) is bounded in W s
2 (E), where s = s̄ + ε, s̄ is an integer, 0 < ε ≤ 1,

and l(P) = 0 for every polynomial P of degree ≤ s̄ in two variables. Then, there exists a constant c, independent of
u, such that |l(u)| ≤ c|u|W s

2 (E)
.
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Table 1
Experimental order of convergence in L2(ω, r)-norm.

h ‖Ũh − u‖r ‖Uh − u‖r Ord(Ũ ) Ord(U )

1/8 2.53376e−03 3.39828e−05
1.9949 3.9896

1/16 6.35699e−04 2.13925e−06
1.9987 3.9974

1/32 1.59065e−04 1.33943e−07
1.9997 3.9994

1/64 3.977507e−05 8.37520e−09
1.9999 3.9998

1/128 9.94431e−06 5.23507e−10

This lemma is a particular case of the Dupont–Scott approximation theorem [17] and represents a generalization
of the Bramble–Hilbert lemma [18].

Quantities (ζk)x̄k xk , as a linear functionals with respect to u, vanish on the third order polynomials and are bounded
in W s

2 (Ω), s ≥ 2. Using the well known methodology (see, e.g., [6, Ch. 4, §1]), based on Lemma 3, for them we
obtain the estimates

‖(ζk)x̄k xk‖ ≤ chs−2
‖u‖W s

2 (Ω)
, k = 1, 2, (21)

‖ηk‖ ≤ chs
‖u‖W s

2 (Ω)
, k = 1, 2. (22)

Due to Lemma 2

‖Z‖ρ ≤ c
(
‖η1‖ + ‖η2‖ + h2

‖(ζ1)x̄1x1‖ + h2
‖(ζ2)x̄2x2‖

)
,

which together with the estimates (21), (22) accomplishes the proof of Theorem 1.

5. Numerical experiments

Now, we present some numerical results to demonstrate the convergence order of the proposed method. The
experimental order of convergence in the discrete L2(ω, r) and L2(ω) norms is computed by formulas

Ord(Y ) = log2
‖Yh − u‖r
‖Yh/2 − u‖r

, Ord(Y ) = log2
‖Yh − u‖

‖Yh/2 − u‖
,

where u is the exact solution of original problem, while Yh denotes the solution of the difference scheme on the grid
with step h.

Below, in the examples the symbols Ũ , U denote solutions of the difference schemes (10), (11), respectively.
The results of calculations are given by Tables 1, 2.
Consider the following problem

∆u = f, x ∈ (0, 1)2, u
∣∣
Γ0
= 0, u(1, x2) = u(0.5, x2), 0 < x2 < 1, (23)

where

f (x) = −
13π2

9
sin
(2πx1

3

)
sin(πx2).

The exact solution u(x) = sin( 2πx1
3 ) sin(πx2) of the problem (23) belongs to the space W 4

2 , therefore, theoretical
convergence rate of the difference scheme equals 4.

The right-hand side of the scheme is calculated by the formula

ϕ(x) = T1T2 f = −
13π2

9
λ2

1λ
2
2 sin

(2π ih

3

)
sin(π jh),

λ1 =
3
πh

sin
(πh

3

)
, λ2 =

2
πh

sin
(πh

2

)
.
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Table 2
Experimental order of convergence in L2(ω)-norm.

h ‖Ũh − u‖ ‖Uh − u‖ Ord(Ũ ) Ord(U )

1/8 4.15297e−03 5.56995e−05
1.9654 3.9601

1/16 1.06347e−03 3.57879e−06
1.9844 3.9831

1/32 2.68761e−04 2.26315e−07
1.9926 3.9923

1/64 6.75360e−05 1.42207e−08
1.9964 3.9963

1/128 1.69262e−06 8.91061e−10

6. Conclusion

For solution of the Bitsadze–Samarskii type nonlocal problem posed in unit square for Poisson equation it is used
a finite-difference scheme. Using the solution, obtained by the method with second order accuracy, we correct the
right-hand side of the scheme and solve it again on the same grid. It is proved that if the solution of original problem
belongs to the Sobolev space with fractional exponent s ∈ [2; 4], then the corrected scheme converges with the rate
O(|h|s). The theoretical results are supported by numerical experiments. The obtained results can be extended to the
nonlocal problem posed for general elliptic equations, and also to three-dimensional case.
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