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Introduction

Shape Theory is an important and rich branch of Geometric Topology. Its methods

can be successfully applied to the study of problems of Topology as well as other

branches of Mathematics. Shape theory is meaningful extension of homotopy theory

of spaces having homotopy type of ANR-spaces, polyhedras and simplicial complexes

to the categories of more general spaces.

The shape theories that satisfy the main results of classical shape theory play

essential role in modern topology. Their quantity and importance are systematically

growing in the process of the research of the various problems of topology (Homology

theory, Homotopy theory, Retracts theory, Shape Theory, Dynamical Systems, C∗-

algebra and others).

At the begining shape theory was constructed by K.Borsuk ( [Bo2]- [Bo4]]) for

the category of compact metric spaces. S.Mardešić and J.Segal extended Borsuk’s

shape theory to the category of compact Hausdorff spaces ( [M-S1]- [M-S3]]). After

that R.H.Fox spread Borsuk’s theory on the category of metrizable spaces [Fo]. The

another generalization of shape theory was described by B.J.Ball and R.B.Sher in [Ba-

Sh], where they constructed proper shape theory for the category of locally compact

separable spaces and proper maps. Besides, B.J.Ball investigated the proper shape

theory for the category of locally compact metrizable spaces and proper maps [Ba]. The

proper shape theory for the category of locally compact paracompact spaces and proper
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maps was developed by V.Baladze [B7]. Shape classifications of paracompact and p-

paracompact spaces was described by A.Šostak [Š] and S. Mardešić and A.Šostak [M-

Š]. Shape theory for the category of arbitrary topological spaces was developed by

K.Morita [Mor] and S.Mardešić [M1].

The categorical aspects of shape theory were studied by J.M. Cordier and T.Porter

[Co-P]

The shape type extensions of uniform homotopy theory of absolute neighbourhood

uniform retracts, equivariant homotopy theory of equivariant absolute neighbourhood

retracts and n-homotopy theory of absolute neighbourhood retracts were constructed

and investigated by several authors.

Uniform shape theory for the category of uniform spaces introduced by Agaronian

and Smirnov [A-S], V.Baladze ( [B8], [B9], [B11]), V.Baladze and L. Turmanidze ( [B-

Tu1], [B-Tu2]), D. Doičinov ( [Do1]- [Do3]), Nguen Anh Kiet [Ki], T.Miyata ( [Mi1]-

[Mi2]), T. Miyata and J. Segal [Mi-S], T.Miyata and T. Watanabe [Mi-W], Nguen To

Nhu [Nh].

The origins of equivariant shape theory of spaces with action topological group can

be traced back to papers by S. A. Antonyan, R. Jimenez and S. de Neymet [An-J-

N],S.A. Antonian and S.Mardešić [An-M], Z. Čerin [Č3], P.S. Gevorgian ( [G1]- [G3])

and Yu.M.Smirnov ( [Sm1]- [Sm3]). In the solution of problems of equivariant shape

theory important role plaid the methods and results of papers ( [An1]- [An4], [An-J-

N], [An-M]).

The n-shape theory was constructed by A.Chigogidze ( [Ch1], [Ch2]) for the cate-

gory of compact metric spaces. His results have been expanded on the category locally

compact separable spaces and proper maps by Y. Akaike ( [Ak1], [Ak2]), Y.Akaike and

K.Sakai [Ak-Sa] and K. Sakai [Sa]. The n-shape theory for the category of arbitrary

compact Hausdorff spaces was investigated by R. Jimenez and L.R.Rubin [Ji-R].
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There are several approaches to the fiber shape theory for spaces over a fixed space

B and continuous maps. The fiber shape theory is extension of fiber of homotopy

theory of ANRB0-spaces ( [Dol2], [Y2]) and ANR-maps ( [U], [N-S]).

Fiber shape theory for the category of compact metric spaces over fixed space B0

and fiberpreserving maps where introduced by H.Kato ( [K1]- [K4]) and M.Clap and

L.Montejano [Cl-Mo]. In papers ( [Y1]- [Y4]) T. Yagasaki considered and investigated

fiber shape theory of category metric spaces over B0 and fiber preserving maps.Fiber

shape theories for arbitrary spaces over B0, maps of metric spaces and maps of topo-

logical spaces developed in papers V.Baladze ( [B2]- [B6], [B11]), Z.Čerin [Č2] and D.

A. Edwards and P. T. Mc. Auley [E-A].

Together with the classical shape theory and its variants there exists an important

branch of modern geometric topology, so called strong shape theory, which besides

the applications in topology (general topology, algebraic topology, geometric topol-

ogy) ([M3],[Md]), has also applications in other branches of mathematics (dynamical

systems, C∗-algebras)([H], [D]).

Strong shape theory for different categories of spaces was investigated by several

authors. For the category of compact metric spaces equivalent strong shape theories

were introduced by F.W.Bauer [Bau], A. Calder and H.M.Hastings [Ca-H], F.W.Cathey

[C1], J.Dydak and J.Segal [Dy-S], D.A.Edwards and H.M.Hastings [E-H], Y.Kodama

and J.Ono [Ko-O], Yu.T.Lisica [L4] and J.B.Quigly [Q].

Strong shape theory for the category of general topological spaces and arbitrary

categories was constructed by M. Batanin [Bat], F.W. Bauer [Bau], J.Dydak and

S.Nowak ( [Dy-N1], [Dy-N2]), Yu.T.Lisica [L3], Yu.T.Lisica and S.Mardešić [L-M],

Z.Miminoshvili [Mim] and L. Stramaccia [St]. In the papers are solved several seri-

ous problems of Topology [M3].

For the present period of the shape theory development it is characteristic to design
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and research different versions of strong shape theory.

Strong shape theory based on the notion of equivariant homotopy constructed by

V.Baladze [B1] for metric G-spaces and A.Bykov and M.Texis for compact metric G-

spaces [By-Te2].

Strong shape theory based on the notion of n-homotopy was developed by Y.Iwamoto

and K.Sakai [I-Sa].

Fiberwise topology is a new direction of topology developed on the basis of General

Topology, Algebraic Topology and Geometric Topology. Fiberwise topology occupies

a central place in topology today. It’s methods were played important role in the solu-

tions some problems of Differential Geometry, Lie Groups and Dynamical Systems, so

establishment of new properties and characteristics of fiber spaces has more important

significance.

The aspects of Algebraic topology and Homotopy topology for fiberwise topology

were studied by James [J2] and James and Crabb [Cr-J]. The investigation of fiberwise

topology in the view of general topology was developed by F.Cammaroto, B.Pasymkov,

D.Buhagiar and T.Miwa ( [Bu-Miw-Pa], [Ca-Pa]).

The problem of construction of strong shape theory for fiberwise topology is one of

interesting problems. As the strong shape theory arises from homotopy theory, so fiber

strong shape theory arises from fiberwise homotopy theory. To develop of the fiber

strong shape theory is natural. It is hoped that this may stimulate further research of

fiberwise topology, in particular, of fiberwise homotopy theory.

The main goal of the dissertation work is to develop the strong shape theory of

fiber topology, the investigation of the problem of construction of fiber strong shape

classification for compact metric spaces and general topological spaces, the search of

necessary and sufficient conditions the fulfillment of which will imply that the shape

morphisms will be fiber strong shape equivalences. The aim of the thesis is also to
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transfer main focus on the geometric interpretation of fiber strong shape theory.

We begin with a short description of results of the thesis by chapters. The disser-

tation work consists of Introduction, three Chapters and Bibliography.

Introduction shortly describes the history of strong shape theory and the results

obtained in dissertation work. Chapter 1 provides a survey of fiberwise topology,

begining with basis theory and proceeding to a selection and specialized topics of

fiberwise homotopy theory and fiberwise retracts theory. Chapter1 also include the

fiber Borsuk’s pairs, strong shape deformation maps and fibrant spaces. In chapter 2

are defined fiber cotelescopes, constructed fiber strong shape category and established

the characterizations of fiber strong shape equivalences of compact metrizable spaces.

In Chapter 3 studied fiber strong ANRB0-expansion and investigated the fiber strong

shape theory for arbitrary spaces. At the end of dissertation is given the bibliography

of used references.

Now we give a short survey of obtained results.

In the section 1.1 of Chapter 1 are obtained some results concerning the character-

izations of Borsuk’s pairs over B0 used in other sections of work.

The properties of fiberwise Borsuk’s pairs are described in the following proposi-

tions.

Theorem 1.1.1. A map i : (A, πA)→ (X, πX) over B0 is a cofibration over B0 if

and only if the map j : (Cyl(i), πCyl(i))→ (X × I, πX×I) over B0 is retractible.

Corollary 1.1.2. A closed pair (X,A) of space X over B0 and its closed subspace

A is a Borsuk pair over B0 if and only if the subspace (X × {0})∪ (A× I) ⊂ X × I is

a retract over B0 of X × I.

Corollary 1.1.3. For each closed Borsuk’s pair (X,A) over B0 and for every

space Y over B0 the pair (X × Y,A× Y ) over B0 is a closed Borsuk’s pair over B0.
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Corollary 1.1.4. If (X,A) is a Borsuk’s pair over B0 and A is a closed subspace of

locally compact Hausdorff space X then for each space Y over B0 the map i∗ : Y X → Y A

is a cofibration over B0.

Theorem 1.1.5. A pair (X,A) of space (X, πX) over B0 and its closed subspace

(A, πX|A) is a Borsuk pair over B0 if and only if there exist a map ψ : X → I and a

fiber homotopy G : (X × I, πX×I) → (X, πX) with respect A such that A = ψ−1(0),

G(x, 0) = x and G(x, t) ∈ A when ψ(x) < t.

Theorem 1.1.6. Let (X,A) be a Borsuk pair over B0. Then (X × I, (X ×{0})∪

(A× I) ∪X × {1}) is the Borsuk pair over B0.

Theorem 1.1.7. Let (X,A) be a Borsuk pair over B0. Then each deformation

retraction r : (X, πX)→ (A, πX|A) over B0 is a strong deformation retraction over B0.

Theorem 1.1.8. A closed pair (X,A) of spaces over B0 is a Borsuk pair over

B0 if and only if Ã = (X × {0}) ∪ (A× I) is a strong deformation retract over B0 of

(X × I, πX×I).

Corollary 1.1.9. Let (X,A) be a closed Borsuk pair over B0. Then the subspace

(A, πA) is a strong deformation retraction over B0 of (X, πX) if and only if the inclusion

i : (A, πA)→ (X, πX) is a fiber homotopy equivalence.

In section 1.2 of Chapter 1 are given definitions and various concepts associated to

fiber SSDR-maps and fibrant spaces and established their properties.

All spaces in Section 1.2 are metrizable. Here the basic definition is the following

Definition 1.2.1. Let (X, πX) ∈ ob(MB0) and let A be a closed subspace of X.

The subspace (A, πX|A) over B0 is called a shape strong deformation retract over B0 of

(X, πX) if there exists an embedding α : (X, πX) ↪→ (Y, πY ) ∈ ARB0 over B0 satisfying

the following condition:

for any pair of neighbourhoods U and V of α(X) and α(A) respectively in (Y, πY ),
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there is a homotopy H : (X × I, πX×I) → (U, πY |U)relA over B0 such that H(x, 0) =

α(x) and H(x, 1) ∈ V for each x ∈ X.

This definition involves that if an embedding α : (X, πX) → (M,πM) over B0

satisfies the conditions of definition 1.2.1, then these conditions hold for any closed

embedding β : (X, πX)→ (Z, πZ) ∈ ARB0 .

A closed embedding i : (A, πA) → (X, πX) over B0 is called SSDRB0-map if i

embeds (A, πA) in (X, πX) as a shape strong deformation retract over B0 of (X, πX).

The notion of SSDRB0-map generalizes the notion of SDRB0-map.

One of main results of section 2.1 of Chapter 1 is the following

Theorem 1.2.2. Let (X, πX) ∈MB0 and A be a closed subspace of X. Then the

following conditions are equivalent:

a) i : (A, πX|A) ↪→ (X, πX) is an SSDR-map over B0;

b) for any map f : (A, πX|A) → (Y, πY ) ∈ ANRB0 over B0, there is an extension

f̃ : (X, πX) → (Y, πY ) over B0 such that f̃ · i = f and any two such extensions over

B0 are fiber homotopic with respect iA;

c) for any commutative diagram

A E

B0

X B,

f

i

πX|A πE

p

F

πX πB
F̃

where p : (E, πE) → (B, πB) is a fibration over B0 and (E, πE) and (B, πB) are

ANRB0-spaces, there exists a map F̃ : (X, πX) → (E, πE) over B0 such that F̃ · i = f



CONTENTS 8

and p · F̃ = F .

d) for any commutative diagram of maps over B0

A PK
B0

B0

X PL
B0

f

i

πX|A πPK

j∗

F

πX πPL
H

there exists a filler H : (X, πX) → (PK , πPK ) over B0 provided P ∈ ANRB0 and L is

a subcomplex of a finite CW-complex K with an inclusion map j : L ↪→ K.

This result is plaining assertional role in whole work.

In Chapter 1 also introduced definition and investigation of fibrant spaces over B0.

Definition 1.2.3. A space (Y, πY ) over B0 is called a fibrant space over B0 if

for every SSDR-map i : (A, πX|A) → (X, πX) over B0 and every map f : (A, πX|A) →

(Y, πY ) over B0, there is a map F : (X, πX)→ (Y, πY ) over B0 such that F · i = f , i.e.

the following diagram commutes :

A X

B0

Y

i

f

πX|A πX

F

πY

The class of fibrant spaces over B0 is sufficiently large. It contains the class of

absolute neighbourhood retracts over B0 (Theorem 1.2.4).
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Apart from this result here is proved that, if (Y, πY ) is a fibrant space over B0 and

K is a compact metric space, then (Y K
B0
, πY KB0

) also is a fibrant space over B0(Theorem

1.2.3).

The result of Chapter 1 are summarized in the propositions which systematically

are used in next parts of work.

Theorem 1.2.6. Let Y = ((Yn, πYn), pn,n+1, N
+) be an inverse system of fibrant

spaces over B0 and fibrations over B0. Then the fiber limit space Y = lim←−Y is a fibrant

space over B0 and the natural projections pn : (Y, πY ) → (Yn, πYn) are fibrations over

B0.

Theorem 1.2.7. Let f : (X, πX)→ (Y, πY ) be a map over B0. If (X, πX), (Y, πY ) ∈

ANRB0 , then coCylB0
(f) ∈ ANRB0 .

Theorem 1.2.8. Let f : (X, πX) → (Y, πY ) be a map over B0 of fibrant spaces

over B0. Then the coCylB0
(f) over B0 is a fibrant space over B0.

The section 2.1 of Chapter 2 are begined to study of fiber cotelescope coTel(X) of

inverse sequence X = {(Xn, πXn , q
n+1
n , N+) over B0.

The detailed descriptions of constructions given here allows us to prove the follow-

ing main

Theorem 2.1.1. Let X = ((Xn, πXn), qn+1
n , N+) be an inverse sequence consisting

of fibrant spaces over B0 and maps over B0. Then the cotelescope coTelB0(X) is a

fibrant space over B0. If all (Xn, πXn) members of the inverse system X are ANRB0-

spaces, then coTelB0(X) is a fibrant space over B0 too.

There exists the unique natural embedding iq : (X, πX)→ (coTelB0(X), πcoTelB0
(X))

over B0 such that q̃n · iq = in · qn for each n ≥ 0.

In order to define the fiber strong shape classification in dissertation work are of-

fered the notion of fiber resolution, which is a special case of the definition of resolution
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over B0 given in [B4] by V.Baladze.

Definition 2.1.2. An inverse sequence X = ((Xn, πXn), qn+1
n , N+) is called reso-

lution over B0 of compact space (X, πX) over B0 if

a)(X, πX) = lim←−X;

b)the family q = {qn : (X, πX)→ (Xn, πXn)}n∈N+ satisfies the following condition:

for each n ∈ N+ and open neighbourhood U of qn(X) in (X,πXn) there exists m ≥ n

such that qmn (Xm) ⊆ U .

If all the (Xn, πXn) ∈ ANRB0 , then q is called an ANRB0-resolution over B0.

One of the crucial point of the methods developed in Chapter 2 is the theorem of

existence of fiber resolution.

Theorem. 2.1.3. For each compact metrizable space (X, πX) over B0 there exists

an ANRB0-resolution q : (X, πX)→ X over B0.

From this results follows that for every fiber resolution of compact metric space

(X, πX) over B0 there corresponds an fiber fibrant estension of (X, πX), namely the

fiber cotelescope of this fiber resolution. The following result plays essential role in

constructions given in work.

Theorem 2.1.4. Let (X, πX) be a compact metrizable space over B0. If q :

(X, πX) → X = ((Xn, πXn), qn+1
n , N+) is a resolution over B0 of (X, πX), then there

exists an infinite strong deformation

D : coTelB0(X)× [0,∞)→ coTelB0(X)

of coTelB0(X) over B0 onto iq(X). In particular, the map iq : (X, πX)→ coTelB0(X)

is an SSDR-map over B0.

The effect of Theorem 2.1.1, Theorem 2.1.3 and Theorem 2.1.4 is given by the

following result. Let X̃ = coTelB0(X).
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Theorem 2.1.5. For each compact metrizable space (X, πX) over B0 there is a

fibrant extension iX : (X, πX) → (X̃, πX̃) over B0. In particular, if q : (X, πX) →

X = ((Xn, πXn), qn+1
n , N+) is an ANRB0-resolution over B0, then the embedding iq :

(X, πX)→ (coTelB0(X), πcoTelB0
(X)) is a fibrant extension over B0.

The results obtained in dissertation work yield that the fiber strong shape theory

is coarser than the fiber homotopy theory, but is finer that the fiber shape theory.

The main aim of Chapter 2 is the construction of fiber strong shape theory for com-

pact metrizable spaces over a fixed base space B0, using the fiber versions of cotelescop

and fibrant space.

The fiber strong shape category here constructed is the full image of functor reflec-

tor from the fiber homotopy category H(CMB0) of compact metrizable spaces over B0

in the fiber homotopy category H(FB0) of fiber fibrant spaces.

The Theorems 2.1.1, 2.1.3, 2.1.4 and 2.1.5 and rountine diagram-choicing, as in the

analogous situation in category theory, yield the following

Theorem 2.1.6. Let iX : (X, πX) → (X̃, πX̃) be a fibrant extension over B0 of

space (X, πX) ∈ CMB0 . Then the morphism [iX ]B0 : (X, πX) → (X̃, πX̃) of category

H(CMB0) is an H(FB0)-reflection.

The family {iX : (X, πX) → (X̃, πX̃)}(X,πX)∈ob(H(CMB0
)) induces the H(FB0)-

reflector

R : H(CMB0)→ H(FB0)

that is a functor given by formula

R((X, πX)) = (X̃, πX̃), (X, πX) ∈ ob(H(CMB0))

and satisfying the condition:

for each map f : (X, πX) → (Y, πY ) over B0 of compact metrizable spaces the
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diagram

X X̃

Y Ỹ

B0

[iX ]B0

[f ]B0

πX

[iY ]B0

πY

R(f)

πX̃

πỸ

is commutative.For the map f over B0 there exists a unique up to fiber homotopy map

f̃ : (X̃, πX̃)→ (Ỹ , πỸ ) over B0 such that the following diagram commutes

X X̃

Y Ỹ .

B0

iX

f

πX

iY

πY

f̃

πX̃

πỸ

In this case the pair (iX , iY ) : f → f̃ is called a fibrant extension over B0 of map f .

Definition 2.1.7. The fiber strong shape category SSHB0 of compact metrizable

spaces over B0 is full image of the reflector R : H(CMB0)→ H(FB0).

There is a commutative diagram

H(CMB0) H(FB0)

SSHB0 .

R

SSB0 JR
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Note that, for each

(X, πX), (Y, πY ) ∈ ob(H(CMB0))

ob(SSHB0) = ob(H(CMB0))

MorSSHB0
((X, πX), (Y, πY )) = [(X̃, πX̃), (Ỹ , πỸ )]B0

,

SSB0((X, πX)) = (X, πX)

and for a fibrant extension (iX , iY ) : f → f̃ : (X̃, πX̃) → (Ỹ , πỸ ) over B0 of each map

f : (X, πX)→ (Y, πY ) over B0

SSB0([f ]B0
) = R([f ]B0

) = [f̃ ]B0
.

According to J.Dydak and S.Novak [Dy-N1] in section 2.2 of Chapter 2 defined

fiber strong shape equivalence.

Definition 2.2.1. A map f : (X, πX) → (Y, πY ) over B0 is a fiber shape equiva-

lence if for each ANRB0-space (P, πP ) induces a bijection f ∗ : [Y, P ]B0 → [X,P ]B0 . A

fiber shape equivalence f is called a fiber strong shape equivalence if for any two maps

g, h : (Y, πY )→ (P, πP ) ∈ ANRB0 over B0 and a fiber homotopy H : (X × I, πX×I)→

(P, πP ) over B0 joining g f and h f , H is fiber homotopic rel X×{0, 1} to H ′ (f×1I),

where H ′ : (Y × I, πY×I)→ (P, πP ) is a fiber homotopy between g and h.

The notion of fiber double mapping cylinder is very useful and simple geometric

object. It is a comfortable tool for investigation of fiber strong shape theory.

The double mapping cylinder dCylB0
(f) over B0 of map f : (X, πX)→ (Y, πY ) over

B0 is the subspace X × I ∪ CylB0
(f)× {0, 1} of space CylB0

(f)× I over B0.

Using the notion of fiber double mapping cylinder are given the characterizations
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of fiber strong shape morphisms. Here are found necessary and sufficient conditions

under which a map over B0 is a fiber strong shape equivalence. Using the properties

of fiber function spaces here are proved the following results.

One of main results is the following

Theorem 2.2.3. Let f : (X, πX) → (Y, πY ) be a map over B0. The following

conditions are equivalent:

1). f is a fiber strong shape equivalences;

2). for a given space (Z, πZ) over B0 containing (X, πX) as a closed subspace over

B0, every map g : (Z, πZ)→ (P, πP ) ∈ ANRB0 over B0 extends to (Z∪CylB0
(f), πZ∪CylB0

(f))

and every map

H : (Z × I ∪ dCylB0
(f), πZ×I∪dCylB0

(f))→ (P, πP ) ∈ ANRB0

over B0 extends to ((Z ∪ CylB0
(f))× I, π(Z∪CylB0

(f))×I);

3). if (X, πX) is a closed subspace of (Z, πZ), then the fiber inclusions

i : (Z, πZ)→ (Z ∪ CylB0
(f), πZ∪CylB0

(f))

and

j : (Z × I ∪ dCylB0
(f), πZ×I∪dCylB0

(f))→ ((Z ∪ CylB0
(f))× I, π(Z∪CylB0

(f))×I)

are fiber shape equivalences;

4). if (X, πX) is a closed subspace of (Z, πZ), then the fiber inclusion

i : (Z, πZ)→ (Z ∪ CylB0
(f), πZ∪CylB0

(f))
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is a fiber strong shape equivalence;

5). if (X, πX) is a closed subspace of (Z, πZ), then the fiber inclusion

i : (Z, πZ)→ (Z ∪ CylB0
(f), πZ∪CylB0

(f))

is a fiber shape equivalence;

6). the fiber inclusions

k : (X, πX)→ (CylB0
(f), πCylB0

(f))

and

l : (dCylB0
(f), πdCylB0

(f))→ (CylB0
(f)× I, πCylB0

(f)×I)

are fiber shape equivalences;

7). every map g : (X, πX)→ (P, πP ) ∈ ANRB0 over B0 extends to (CylB0
(f), πCylB0

(f))

and every map H : (dCylB0
(f), πdCylB0

(f)) → (P, πP ) ∈ ANRB0 over B0 extends to

(CylB0
(f)× I, πCylB0

(f)×I).

The consequences of theorem 2.2.3 are the following propositions.

Corollary 2.2.4. Let (X, πX) be a space over B0 and A ⊂ X. The fiber inclusion

i : (A, πX|A) → (X, πX) is a fiber strong shape equivalence if and only if i and j :

(X × {0} ∪ A × I ∪ X × {1}, πX×{0}∪A×I∪X×{1}) → (X × I, πX×I) are fiber shape

equivalences.

Corollary 2.2.5. Let f : (X, πX) → (Y, πY ) be a fiber homotopy equivalence.

Then f is a fiber strong shape equivalence.

Corollary 2.2.6. If g : (X, πX) → (Y, πY ) is fiber homotopic to a fiber strong

shape equivalence f : (X, πX)→ (Y, πY ), then g is a fiber strong shape equivalence.

Theorem 2.2.7. Let f : (X, πX) → (Y, πY ) and g : (Y, πY ) → (Z, πZ) be fiber
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strong shape equivalences. Then the composition g f : (X, πX) → (Z, πZ) is a fiber

strong shape equivalence.

Theorem 2.2.8. Let f : (X, πX) → (Y, πY ) and g : (Y, πY ) → (Z, πZ) be maps

over B0 such that g f is a fiber strong shape equivalence. If one of f and g is a fiber

strong equivalence, then both f and g are fiber strong shape equivalences.

Corollary 2.2.9. Let f : (X, πX)→ (Y, πY ) be a fiber shape equivalence. If (X, πX)

has the fiber homotopy type of an ANRB0, then f is a fiber strong shape equivalence.

The next theorem show that in terms of fiber double cylinders it is possible to

describe fiber strong shape isomorphisms of category SSHB0 .

Theorem 2.2.10. A closed fiber embedding i : (A, πX|A) → (X, πX) is a fiber

strong shape equivalence if and only if i is a SSDR-map over B0.

Theorem 2.2.11. Let f : (X, πX)→ (Y, πY ) be a map over B0 of compact metriz-

able spaces over B0 and (iX , iY ) : f → f̃ a fibrant extension over B0 of f . Then f is a

fiber strong shape equivalence if and only if f̃ is a fiber homotopy equivalence.

Corollary 2.2.12. A mapf over B0 of compact metrizable spaces over B0 is a

fiber strong shape equivalence in the sense of Definition 2.2.1 if and only if SSB0([f]Bo
)

is an isomorphism of the category SSHB0.

In the Chapter 3 is constructed and developed a fiber strong shape theory for

arbitrary spaces over fixed metrizable space B0. The approach given here is based

on the method of Mardešić-Lisica and instead of resolutions, introduced by Mardešić,

their fiber preserving analogues are used. The fiber strong shape theory yields the

classification of spaces over B0 which is coarser than the classification of spaces over

B0 induced by fiber homotopy theory, but is finer than the classification of spaces over

B0 given by usual fiber shape theory.

The construction of fiber strong shape category uses the notion of fiber strong

ANRB0-expansion of space over B0. Fiber strong expansions of spaces over B0 are mor-
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phisms of category pro−TopB0
from spaces over B0 to inverse systems of spaces over

B0, which satisfy a stronger version of fiber homotopy conditions of ANRB0-expansion

defined by V.Baladze ( [B4], [B10]).

In the section 3.1 it is proved that fiber resolutions of spaces over B0 induce fiber

strong expansions of spaces over B0. In order to construct the fiber strong shape

category SSHB0 is used this result.

The essential role in section 3.1 play the following notions and results.

Let U = {Uα}α∈A be a covering of a space (Y, πY ) over B0. We say that the

fiber preserving maps f, g : (X, πX) → (Y, πY ) are U-near, if for every x ∈ X there

exists a Uα ∈ U such that, f(x), g(x) ∈ Uα. We say that a fiber preserving homotopy

H : (X × I, πX×I) → (Y, πY ) which connects f and g, is a U-homotopy if for every

x ∈ X there exists a Uα ∈ U such that H(x, t) ⊆ Uα for all t ∈ I.

Proposition 3.1.1 (Comp. [B5],Proposition 7) Let (Y, πY ) be an ANRB0-space.Then

every open covering U of (Y, πY ) admits an open covering V of (Y, πY ) such that,

whenever any two f.p. maps f, g : (X, πX)→ (Y, πY ) from an arbitrary space (X, πX)

over B0 into the space (Y, πY ) over B0 are V-near, then there exists f.p. U-homotopy

H : (X× I, πX×I)→ (Y, πY ) which connects f and g. Moreover, if for a subset A ⊆ X,

f|A = g|A, then H is f.p. homotopy relA.

Definition 3.1.4. (V.Baladze, see [B4]- [B6], [B10]) Let (X, πX) be a topological

space over B0, X = ((Xα, πXα), pαα′ ,A ) an inverse system in TopB0
and p = (pα) :

(X, πX) → X a morphism of pro − TopB0
. We call p an expansion over B0 of the

space (X, πX) over B0 provided it has the following properties:

EB01). For every ANRB0-space (P, πP ) over B0 and f.p. map f : (X, πX)→ (P, πP )

there is an index α ∈ A and a f. p. map h : (Xα, πXα)→ (P, πP ) such that h pα '
B0

f .

EB02). If f, f
′

: (Xα, πXα) → (P, πP ) are f. p. maps, (P, πP ) ∈ ANRB0 and

f pα '
B0

f
′
pα, then there is an index α

′ ≥ α such that f pαα′ '
B0

f
′
pαα′ .
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Definition 3.1.5. A morphism p : (X, πX) → ((Xα, πXα), pαα′ ,A ) is called a

strong expansion over B0 provided it satisfies condition EB01) and the following condi-

tion:

SEB02). Let (P, πP ) be an ANRB0-space, let f0, f1 : (Xα, πXα)→ (P, πP ), α ∈ A be

f.p. maps and let S : (X × I, πX×I)→ (P, πP ) be a f.p. homotopy such that

S(x, 0) = f0pα(x), x ∈ X,

and

S(x, 1) = f1pα(x), x ∈ X.

Then there exists a α
′ ≥ α and a f.p. homotopy H : (Xα′ × I, πXα′×I) → (P, πP ),

such that

H(x, 0) = f0pαα′ (z), z ∈ Xα′ ,

H(x, 1) = f1pαα′ (z), z ∈ Xα′ ,

H(pα′ × 1I)'
B0

S(rel(X × ∂I)).

Every strong expansion over B0 is an expansion over B0.

If all (Xα, πXα) ∈ ANRB0 , then p is called an ANRB0-expansion and strong ANRB0-

expansion, respectively.

The main results of section 3.1 is the following theorem.

Theorem 3.1.6. Let (X, πX) be a topological space over B0. Then every resolution

p : (X, πX)→ X over B0 induces a strong ANRB0-expansion over B0.

Corollary 3.1.7 Every ANRB0-resolution over B0 induces ANRB0-expansion over

B0.

Corollary 3.1.8 Every space (X, πX) over B0 admits a cofinite strong ANRB0-
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expansion over B0.

In the proof of Theorem Theorem 3.1.6 are used the following lemmas.

Lemma 3.1.9. Let (X, πX) be a topological space over metrizamble space B0, let

(P, πP ), (P
′
, πP ′ ) be ANRB0-spaces, let f : (X, πX) → (P

′
, πP ′ ), h0, h1 : (P

′
, πP ′ ) →

(P, πP ) be f.p. maps and let S : (X × I, πX×I)→ (P, πP ) be a f.p. homotopy such that

S(x, 0) = h0f(x), x ∈ X,

S(x, 1) = h1f(x), x ∈ X.

Then there exists an ANRB0-space (P
′′
, πP ′′ ), f.p. maps f

′
: (X, πX) → (P

′′
, πP ′′ ),

h : (P
′′
, πP ′′ ) → (P

′
, πP ′ ) and a f.p. homotopy K : (P

′′ × I, πP ′′×I) → (P, πP ) such

that

hf
′
= f,

K(z, 0) = h0h(z), z ∈ P ′′

K(z, 1) = h1h(z), z ∈ P ′′

K(f
′ × 1I) = S.

Lemma 3.1.10. Let p : (X, πX)→ X be a resolution over B0 and let α, (P, πP ), f0, f1

and (F, πF ) be as in SEB02). Then for every open covering U of (P, πP ), there exist a

α
′ ≥ α and a f.p. homotopy H : (Xα′ × I, πXα′×I)→ (P, πP ) such that

H(y, 0) = f0 pαα′ (y), y ∈ Xα′

H(y, 1) = f1 pαα′ (y), y ∈ Xα′

(S,H(1× pα′ )) ≤ U.
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In the section 3.2 of Chapter 3 is constructed fiber coherent prohomotopy category

CPHTopB0 . The fiber coherent prohomotopy category CPHTopB0
has as objects

inverse systems X = ((Xα, πXα), pαα′ ,A ) of topological spaces over B0 and f.p. maps

over directed cofinite index sets. The morphisms are f.p. coherent homotopy classes

[f ] : X→ Y of f.p. coherent maps f : X→ Y of such systems. Composition is defined

by composing representatives, which are special f.p. coherent maps.

There exist the functors C : pro−TopB0
→ CPHTopB0

and E : CPHTopB0
→

pro−HTopB0
. The composition E◦C : pro−TopB0

→ pro−HTopB0
is the functor

induced by the f.p. homotopy functor H : TopB0
→ HTopB0

.

The objects of fiber strong shape category SSHB0 are all topological spaces over

B0. The morphisms of category SSHB0 are defined by the following way.

Let p : (X, πX)→ X and q : (Y, πY )→ Y be an ANRB0-resolutions of (X, πX) and

(Y, πY ), respectively. Let [f ] : X → Y be a some morphism of category CPHTopB0
.

Let p
′
: (X, πX)→ X

′
, q
′
: (Y, πY )→ Y

′
,[f
′
] : X

′ → Y
′

be another triple of fiber reso-

lutions of spaces (X, πX) and (Y, πY ) over B0 and morphism of category CPHTopB0
.

The triples (p,q, [f ]) and (p
′
,q
′
, [f

′
]) are called equivalent if [f

′
] [i] = [j] [f ], where

[i] : X→ X
′

and [j] : Y → Y
′

are isomorphisms of category CPHTopB0
.

The fiber strong shape morphisms F : (X, πX)→ (Y, πY ) are the equivalence classes

of triples (p,q, [f ]) with respect to the defined equivalence relation.

By symbol sshB0((X, πX)) is denoted the equivalence class of topological space

(X, πX) and call the fiber strong shape of (X, πX).

In the sections 3.2 are constructed a fiber strong shape functor SSB0 : HTopB0
→

SSHB0 and a functor S : SSHB0 → SHB0 into V.Baladze fiber shape category [B4].

One of main results of this section is the following.

Theorem 3.2.5 There exists the following commutative diagram
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SHB0

HTopB0

SSHB0 ,

SB0

S

SSB0

where SB0 is V.Baladze fiber shape functor [B4].

Corollary 3.2.6. Let (X, πX) and (Y, πY ) be topological spaces over B0. If

sshB0((X, πX)) = sshB0((Y, πY )), then shB0((X, πX)) = shB0((Y, πY )).



Chapter 1

Fiber Strong Shape Deformation

Retractions and Fibrant Spaces

Chapter 1 provides a survey of fiberwise topology, begining with basis theory and pro-

ceeding to a selection and specialized topics of fiberwise homotopy theory and fiberwise

retracts theory. Chapter 1 also include investigation of fiber Borsuk’s pairs, strong

shape deformation maps and fibrant spaces.

1.0 On Fiberwise Topological Preliminaries and Aux-

iliary Facts

In this section we introduce the basic notations and results which we use in the next.

Let R : K −→ L be a functor. The full image of functor R is a category fimR

and a factorization of R

K L

fimR,

R

E
J

22
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where E is the identity on objects of category K and J is fully faithful.

Let L is a full subcategory of P. Then an element τ : X → Y of set MorP(X, Y )

with Y ∈ ob(L ) is called L -reflection of X if the function τ# : L (Y, L)→P(X,L) is

bijective for each L ∈ ob(L ). Let K ⊆P be a subcategory of P and let {τX : X →

RX}X∈ob(K ) be a family of L -reflections, where R is a function mapping objects of K

to objects of L . It is clear that the function R extends to a functor R : K → L . By

definition, for each element f : A→ X of MorK (A,X), Rf is a morphism Rf : RA→

RX for which (Rf) · τA = τX · f . Defined functor is called a reflection or reflector of

K in L .

For a given fixed object B0 of category K by KB0 denote the following category.

The objects of KB0 are pairs (X, πX) consisting of object X ∈ ob(K ) and morphism

πX : X → B from MorK (X, Y ), called the projection.

The morphisms of KB0 are morphisms f : X → Y of K with property πX = πY ·f .

These morphisms are called morphisms over B0.

We will denote by Top, M and CM the categories of topological spaces, metrizable

spaces and compact metrizamble spaces, respectively. Consequently, for fixed objects

B0 of given categories there exist the categories TopB0
, MB0 and CMB0 . In this

categories the notion of fiber homotopy is defined.

For each object (X, πX) of some category of spaces over B0 the pair (X×Z, πX×Z),

where Z is a space and πX×Z is the projection given by formula

πX×Z(x, z) = πX(x), (x, z) ∈ X × Z,

is the space over B0. Note that the natural projection pX : X × Z → X is the map

over B0.

Let Y Z be the function space with compact-open topology. Consider the subspace
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Y Z
B0

of the space Y Z :

Y Z
B0

= {f ∈ Y Z : πY · f = const}.

Let πY ZB0
: Y Z

B0
→ B0 be a map given by

πY ZB0
(f) = πY (f(z)), z ∈ Z.

Consequently, the pair (Y Z
B0
, πY ZB0

) is a space over B0.

By exponential law there exists a homeomorphism map over B0

E : (Y, πY )(X×Z,πX×Z) → (Y Z
B0
, πY ZB0

)(X,πX)

given by formula

(E(H)(x))(z) = H(x, z), H : (X × Z, πX×Z)→ (Y, πY ), x ∈ X, z ∈ Z.

Let f, g : (X, πX) → (Y, πY ) be maps over B0 and I = [0, 1]. A fiber homotopy

from f to g is called a map H : (X × I, πX×I) → (Y, πY ) over B0 such that H0 = f

and H1 = g.

A fiber homotopy H from f to g, H : f '
B0

g, we also call a homotopy over B0. The

fiber homotopy class of fiber map f is denoted by [f ]B0 . We write [X, Y ]B0 for the set

of all fiber homotopy classes. By H(TopB0
), H(MB0) and H(CMB0) we denote the

fiber homotopy categories of categories TopB0
, MB0 and CMB0 , respectively.

By exponential law a homotopy H : (X × I, πX×I) → (Y, πY ) over B0 induces a

map E(H) : (X, πX) → (Y I
B0
, πY IB0

) over B0, where Y I
B0

= {f : I → Y |πY · f = const}

and πY IB0
is a map defined by formula

πY IB0
(f) = πY (f(t)), t ∈ I, f ∈ Y I

B0
.
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Now we give definitions of some maps which are used in the next.

By ω0 : Y I
B0
→ (Y, πY ) and ω1 : Y I

B0
→ (Y, πY ) we denote maps given by formulas

ω0(ϕ) = ϕ(0), ϕ ∈ Y I
B0
,

ω1(ϕ) = ϕ(1), ϕ ∈ Y I
B0
,

respectively.

For each t ∈ I there exist the embedding maps σt : (X, πX)→ (X × I, πX×I) over

B0 given by formula

σt(x) = (x, t), x ∈ X.

Let j : L → K be a map. By j∗ : PK
B0
→ PL

B0
we denote a map over B0 given by

formula

j∗(u) = u · j, u ∈ PK
B0
.

There exists a fiber homotopy functor H : TopB0
→ H(TopB0

) given by formulas

H(f) = [f ]B0 , f ∈ MorTopB0
(X, Y )

and

H((X, πX)) = (X, πX), (X, πX) ∈ ob(TopB0
).

Let A ⊂ X and πA = πX|A . A map r : (X, πX) → (A, πA), over B0 is a fibrewize

retraction over B0, if r · i = 1A and, in addition, i · r 'B0 1A, then r is called a fibrewise

deformation retraction, or deformation retraction over B0.

A subspace A of metrizable space X over B0 is called a fibrewize neighborhood

retract of X if there exist an open neighborhood U of A in X and a fibrewize retraction

r : U → A.
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A deformation retraction r : (X, πX)→ (A, πA) over B0 is called a strong deforma-

tion retraction over B0, or SDRB0-map over B0, if i · r'
B0

1XrelA.

Note that for each fiber homotopy equivalence f : (X, πX)→ (Y, πY ) the subspace

(X, πX) ⊂ (Cyl(f), πCyl(f)) over B0 is a strong deformation retract over B0 of Cyl(f).

Let A be a closed subset of a space (X, πX) ∈MB0 over B0. We say that the map

D : (X × [0,+∞), πX×[0,+∞)) → (X, πX) over B0 is an infinite strong deformation of

(X, πX) onto (A, πX|A) if D(x, 0) = x for all x ∈ X, D(a, t) = a for all a ∈ A, t ∈

[0,+∞) and for any open neighbourhood U of A in X there exists a λ ∈ [0,+∞) such

that D(X × [λ,∞)) ⊆ U .

We also use the following notions. Let B0 be a fixed metrizable space. A space

(Y, πY ) ∈ ob(MB0) is an absolute retract over B0, (Y, πY ) ∈ ARB0 (an absolute neigh-

bourhood retract over B0, (Y, πY ) ∈ ANRB0), if (Y, πY ) has the following property: for

any closed embedding i : (Y, πY )→ (X, πX) ∈ ob(MB0) over B0 there exists a fiberwise

retraction r : (X, πX)→ (i(Y ), πX|i(Y )
) (an open neighbourhood U of i(Y ) in X and a

fiberwise retraction r : (U, πX|U)→ (i(Y ), πX|i(Y ))).

The space (Y, πY ) ∈ ob(MB0) is an absolute extensor over B0, Y ∈ AEB0 (an

absolute neighbourhood extensor over B0, (Y, πY ) ∈ ANEB0), if it has the following

property: for any space (X, πX) ∈ ob(MB0) over B0 and any closed subspace A ⊆ X,

every map f : (A, πX|A)→ (Y, πY ) over B0 has an extension f̃ : (X, πX)→ (Y, πY ) over

B0 (f̃ : (U, πX|U)→ (Y, πY ), where U is an open neighbourhood of A in X).

The next results are routine generalizations of the results of the retracts theory.

A metrizable space over B0 is an A(N)RB0
-space if and only if it is an A(N)EB0

-

space [Y2].

For every metric space (X, πB0) over B0 there exist fibrepreserving closed embedding

into ANRB0-space (M,πM) with weight w(M) 6 max(w(X), w(B0),ℵ0) [B4].
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The space Y Z
B0

of maps ϕ : Z → Y from compact metrizable space Z into ANRB0-

space Y , with compact-open topology and property πY ·ϕ = const is ANRB0-space [B4].

Let (Y, πY ) ∈ ANRB0 and A ⊂ X be a closed subspace of (X, πX) ∈ ob(MB0). Let

f : (X, πX) → (Y, πY ) be a map over B0, and let H : (A × I, πX×I|A×I ) → (Y, πY ) be

a homotopy over B0 of map f|A. Then there exists an extension of H̃ to a homotopy

over B0 of f itself [Y2].

Apart from this result in [Y2] the following proposition is shown:

Let f, g : (X, πX)→ (Y, πY ) ∈ ANRB0 be maps over B0 from metric space over B0

and let H : (A× I, πA×I)→ (Y, πY ) be a homotopy over B0 between restrictions on a

closed subspace A of X of maps f and g. Then there exist an open neighborhood U of

A in X and a homotopy H̃ : (U × I, πX×I|U×I)→ (Y, πY ) over B0 between restrictions

f|U and g|U such that H̃|A×I = H.

A map i : (A, πA) → (X, πX) over B0 is called a cofibration over B0 if for each

commutative diagram

A Y I
B0

X Y ,

B0

F

i

πA

f̄

πX

ω0

πY IB0

πY
F̄

where all maps are maps over B0 and ω0 ·F = f̄ · i, there exists a map F̄ : (X : πX)→

(Y I
B0
, πY IB0

) over B0 such that F = F̄ · i and ω0 · F̄ = f̄ .

The map p : (E, πE) → (B, πB) over B0 is called a fibration over B0 if for each

commutative diagram
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X E

X × I B,

B0

f̄

σ0

πX

F

πX×I

p

πE

πB
F̄

where all maps are maps over B0 and p · f̄ = F · σ0, there exists a map F̄ : (X ×

I, πX×I)→ (E, πE) over B0 such that F = p · F̄ and F̄ · σ0 = f̄ .

The cylinder CylB0
(f) of a map f : (X, πX)→ (Y, πY ) over B0 is the pair consisting

of cylinder Cyl(f) of map f : X → Y and projection πCyl(f) : Cyl(f) → B given by

formulas

πCyl(f)([x, t]) = πX(x), [x, t] ∈ Cyl(f),

πCyl(f)(y) = πY (y), y ∈ Y ⊂ Cyl(f).

There exists a commutative diagram

X X × I

Y Cyl(f)

B0

σ1

f

πX

(σ1)f

πY

f#

πX×I

πCylB0
(f)
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where σ1, (σ1)f and f# are maps given by formulas

σ1(x) = (x, 1), x ∈ X,

(σ1)f (y) = [y], y ∈ Y,

f#((x, t)) = [x, t], (x, t) ∈ X × I.

Let j : (Cyl(f), πCyl(f))→ (Y × I, πY×I) be a map over B0 defined by formulas

j[(x, t)] = (f(x), t), (x, t) ∈ X × I,

j(y) = (y, 0), y ∈ Y.

It is easy to see that the map i : (X, πX)→ (Cyl(f), πCyl(f)) over B0 is a cofibration over

B0 and the retraction map r : (Cyl(f), πCyl(f))→ (Y, πY ) over B0 given by formulas

r([x, t]) = [x, 1], [x, t] ∈ Cyl(f),

r(y) = y, y ∈ Y ⊂ Cyl(f).

is a fiber homotopy equivalence.

A map f : (X, πX)→ (Y, πY ) over B0 is a cofibration over B0 if and only if the map

j over B0 is a retractionable map, i.e. there exists a retraction r : (X × I, πX×I) →

(Cyl(f), πCyl(f)) over B0.

The cocylinder over B0 of map f : (X, πX)→ (Y, πY ) over B0, denoted by coCylB0
(f),

is the subspace of cocylinder coCyl(f) consisting of pairs (u, x), where u ∈ Y I
B0

, x ∈ X

and u(1) = f(x), i.e. πY · u = const. The subspace coCylB0
(f) is a space over B0 with

the projection πcoCylB0
(f) : coCylB0

(f)→ B0 given by formula

πcoCylB0
(f)(u, x) = πY (f(x)), (u, x) ∈ coCylB0

(f).
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There exists a commutative diagram

coCylB0
(f) X

B0

Y I
B0

Y,

ω#
1

fω1

πcoCylB0
(f) πX

f

πY IB0

ω1

πY

where ω#
1 , fω1 and ω1 are maps given by formulas

ω#
1 (u, x) = x, (u, x) ∈ coCylB0

(f),

fω1(u, x) = u, (u, x) ∈ coCylB0
(f),

ω1(u) = u(1), u ∈ Y I
B0
.

Let p : coCylB0
(f)→ Y be a map defined as follows:

p(u, x) = u(0), (u, x) ∈ coCylB0
(f).

It is clear that p is a map over B0. Observe that p = ω0 · fω1 . Note that the map

p : (coCylB0
(f), πcoCylB0

(f))→ (Y, πY ) is a fibration over B0.

Let 0y : I → Y be the constant path in point y ∈ Y . The pair (0f(x), x) belongs to

coCylB0
(f) because 0f(x)(1) = f(x).

Let i : X → coCylB0
(f) be a map defined by formula

i(x) = (0f(x), x), x ∈ X.
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Now we define a map r : coCylB0
(f)→ X by formula

r(u, x) = x, (u, x) ∈ coCylB0
(f).

Then r · i = 1X and i · r '
B0

1X . Hence, X is embeddable in coCylB0
(f) and it is

strong deformation retract over B0 of coCylB0
(f). Thus, i is a homotopy equivalence

over B0 and there exists a factorization

(X, πX) (Y, πY )

coCylB0
(f),

f

i p

i.e. f = p · i. Indeed,

f(x) = 0f(x)(0) = p(0f(x), x) = (p · i)(x).

The map r : (coCylB0
(f), πcoCylB0

(f)) → (X, πX) over B0 is a shrinkable fibration

over B0 with respect to i : (X, πX) → (coCylB0
(f), πcoCylB0

(f)), if r · i = 1X and

i · r '
B0

1coCylB0
(f)reli(X).

It is easy to see that if in the pull-back diagram of maps over B0

E ′ E

B0

B′ B

f ′

q′ i′

πE′ πE

q i

πB′

f

πB
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q is a shrinkable fibration over B0 with respect to i : (B, πB) → (E, πE), then q′

is also a shrinkable fibration over B0 with respect to a uniquely defined embedding

i′ : (B′, πB′)→ (E ′, πE′) over B0 such that f ′ · i′ = i · f .

1.1 On fiber Borsuk pairs

A pair (X,A) consisting of a space (X, πX) over B0 and subspace A ⊂ X is a pair of

Borsuk over B0 or fiber Borsuk pair, if the inclusion i : (A, πX|A) → (X, πX) over B0

is a cofibration over B0. Note that a closed pair (X,A) is a pair of Borsuk over B0, if

X × 0 ∪ A× I is a retract over B0 of X × I.

First we prove some propositions about cofibrations over B0 and Borsuk’s pairs

over B0.

Theorem 1.1.1. A map i : (A, πA)→ (X, πX) over B0 is a cofibration over B0 if and

only if the map j : (Cyl(i), πCyl(i))→ (X × I, πX×I) over B0 is fiberwise retractible.

Proof. Let F : (A × I, πA×I) → (Y, πY ) be a homotopy over B0 and let f0 = F · σ0.

Consider an extension map f̄ : (X, πX) → (Y, πY ) over B0 of f0. The maps F and f̄

over B0 induce a map g : CylB0
(i)→ Y over B0 such that

g([a, t]) = F (a, t), [(a, t)] ∈ CylB0
(i),

g(x) = f̄(x), x ∈ CylB0
(f).

The pair (F, f̄) is cone over (σ0, i). It is clear that g is a morphism of the cone

(i#, (σ0)i) into the cone (F, f̄). Consequently, if there is a retraction r : (X×I, πX×I)→

(CylB0
(i), πCylB0

(i)) over B0, then the composition F̄ = g · r : (X × I, πX×I)→ (Y, πY )
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is a homotopy over B0 of map f over B0 because F̄ · j = g and, hence,

F̄ (x, 0) = (F̄ · j)(x) = g(x) = f̄(x), x ∈ X.

Note that

F̄ ((i(a), t)) = (F̄ · j)([(a, t)]) = g[(a, t)] = F ((a, t))

for each pair (a, t) ∈ (A× I, πA×I).

Thus, if the map j over B0 is retractible, then the map i over B0 is a cofibration.

Now conversely assume that the map i : (A, πA)→ (X, πX) over B0 is a cofibration

over B0. Then there exists a retraction r : (X × I, πX×I) → (CylB0
(i), πCylB0

(i)) over

B0 such that

r((x, 0)) = x, (x, 0) ∈ X × I,

r(i(a), t) = [(a, t)], a ∈ A, t ∈ I.

Thus, r is a retraction of j.

Corollary 1.1.2. A closed pair (X,A) of space X over B0 and its closed subspace A

is a Borsuk pair if and only if the subspace (X × {0}) ∪ (A × I) ⊂ X × I is a retract

over B0 of X × I.

Corollary 1.1.3. For each closed Borsuk’s pair (X,A) over B0 and for every space Y

over B0 the pair (X × Y,A× Y ) over B0 is a closed Borsuk’s pair over B0.

Corollary 1.1.4. If (X,A) is a Borsuk’s pair over B0 and A is a closed subspace of

locally compact Hausdorff space X then for each space Y over B0 the map i∗ : Y X → Y A

is a cofibration over B0.

Theorem 1.1.5. A pair (X,A) of space (X, πX) over B0 and its closed subspace

(A, πX|A) is a Borsuk pair over B0 if and only if there exist a map ψ : X → I and
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a fiber homotopy G : (X × I, πX×I) → (X, πX) with respect A such that A = ψ−1(0),

G(x, 0) = x and G(x, t) ∈ A when ψ(x) < t.

Proof. Let (X,A) be a Borsuk pair over B0. By Corollary 1.1.2 there exists a retraction

r : X × I → Ã = (X × {0}) ∪ (A× I) over Bo. Let r((x, t)) = (r̄(x, t), ρ(x, t)), where

r̄(x, t) ∈ X is first coordinate of r(x, t) and ρ(x, t) ∈ I is the projection in I of point

r(x, t).

Let ψ : X → I be a function given by

ψ(x) = max{t− ρ(x, t)|x ∈ X}.

Note that A = ψ−1(0). Besides, if ψ(x) < t, then ρ(x, t) > 0 and consequently,

r̄(x, t) ∈ A.

Let G = r̄ : (X × I, πX×I) → (X, πX). It is clear that G(x, 0) = r̄(x, 0) = x,

G(x, t) ∈ A for ψ(x) < t and

πX(x) = πX×I(x, t) = πÃ(r̄(x, t), ρ(x, t)) = πX(r̄(x, t)),

i.e. r̄ is a map over B0.

Now assume that hold the conditions of theorem. Then the map r : (X×I, πX×I)→

(X, πX) given by

r(x, t) =


(G(x, t), 0), t ≤ ψ(x)

(G(x, t), t− ψ(x)), t ≥ ψ(x).

is a retraction over B0. Consequently, (X,A) is a Borsuk pair over B0.

Theorem 1.1.6. Let (X,A) be a Borsuk pair over B0. Then (X× I, (X×{0})∪ (A×

I) ∪X × {1}) is the Borsuk pair over B0.
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Proof. For simplicity by XA denote the set (X×{0})∪(A×I)∪X×{1}). By Theorem

1.1.5 there exist a function ϕ : X → I and a fiber homotopy gt : U → XrelA from

U = X \ ϕ−1(0) to X such that ϕ−1(0) = A, g0(x) = x and g1(x) ∈ A for each x ∈ U .

The function ψ : X × I → I defined by

ψ(x, t) = 2 min(2ϕ(x), τ, 1− τ), (x, τ) ∈ X × I

has property ψ−1(0) = XA.

Let V = X× I \ψ−1(1) be a set consisting of points (x, τ) ∈ X× I for which τ 6= 1
2

or ψ(x) = 1
4
.

The maps ht : V → V × I given by formulas

ht(x, τ) =



(x, τ(1− t)), 2τ ≤ ϕ(x);

(g(x, ( 2t
ϕ(x)
− 1)t), τ(1− t)), ϕ(x) ≤ 2τ ≤ min(2ϕ(x), 1);

(g(x, t), (τ − 2ϕ(x))t+ τ), ϕ(x) ≤ τ ≤ min(2ϕ(x), 1
2
);

(g(x, t), τ), 2ϕ(x) ≤ τ ≤ 1− 2ϕ(x);

(g(x, t), τ + (2ϕ(x) + τ − 1)t), max(1− 2ϕ(x), 1
2
) ≤ τ ≤ 1− ϕ(x);

(g(x, (2(1−τ)
ϕ(x)

− 1)t), τ + t− τt), max(2(1− ϕ(x)), 1) ≤ 2τ ≤ 2− ϕ(x);

(x, τ + t− τt), 2− ϕ(x) ≤ 2τ

have properties

h0(x, τ) = (x, τ), h1(x, τ) ∈ XA, (x, τ) ∈ X × I

and

ht(x, τ) = (x, τ), (x, τ) ∈ XA.

Thus, the pair (X × I, (X × {0}) ∪ (A × I) ∪ (X × {1})) is the Borsuk pair over
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B0.

Theorem 1.1.7. Let (X,A) be a Borsuk pair over B0. Then each deformation retrac-

tion r : (X, πX)→ (A, πX|A) over B0 is a strong deformation retraction over B0.

Proof. Let F : (X × I, πX×I)→ (X, πX) be a fiber homotopy between i · r : (X, πX)→

(X, πX) and 1X : (X, πX) → (X, πX). By Theorem 1.1.6 the pair (X × I,XA) is the

Borsuk pair over B0.

Hence, there exists a fiber homotopy given by

Fτ (x, t) =


F ((i · r)(x), τ), t = 0,

F (x, t+ (1− t)τ), x ∈ A, t ∈ I,

x, t = 1.

Note that F0(x, t) = F (x, t) and F1 : X × I → XrelA is a fiber homotopy between

1X and i · r.

Theorem 1.1.8. A closed pair (X,A) of spaces over B0 is a Borsuk pair over B0 if and

only if Ã = (X×{0})∪(A×I) is a strong deformation retract over B0 of (X×I, πX×I).

Proof. Let (Ã, πÃ) be a strong deformation retract over B0 of (X × I, πX×I). By

Corollary 1.1.2 the pair (X,A) is a Borsuk pair over B0.

Consequently, as the product (X × I, πX×I) is deformable in X × {0} and hence,

in Ã, by Corollary 1.1.2 there exists a retraction r : (X × I, πX×I) → (Ã, πÃ) over

B0. This retraction is deformation retraction over B0. By Theorem 1.1.7 r is a strong

deformation retraction over B0. Let r(x, t) = (r̄(x, t), ρ(x, t)), where x ∈ X, t ∈ I and

r̄(x, t) ∈ X, ρ(x, t) ∈ I.
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The deformation gτ : X × I → X × I defined by formula

gτ (x, t) = (r̄(x, (1− τ)t), (1− τ)ρ(x, t) + τt), x ∈ X, t ∈ I

is deformation over B0 and it satisfies the following conditions:

g0 = i · r,

g1 = 1X ,

gτ (x, t) = (x, t), (x, t) ∈ Ã.

Corollary 1.1.9. Let (X,A) be a closed Borsuk pair over B0. Then the subspace

(A, πA) is a strong deformation retraction over B0 of (X, πX) if and only if the inclusion

i : (A, πA)→ (X, πX) is a fiber homotopy equivalence.

1.2 On Fiber SSDR-maps and Fibrant Spaces

In this section we give the definition and discuss various concepts which are associated

to SSDR-maps over B0. The following provides a shape version of SDR-map over B0.

All spaces in Section 1.2 are metrizable.

Here the basic definition is the following

Definition 1.2.1. Let (X, πX) ∈ ob(MB0) and let A be a closed subspace of X. The

subspace (A, πX|A) over B0 is called a shape strong deformation retract over B0 of

(X, πX) if there exists an embedding α : (X, πX) ↪→ (Y, πY ) ∈ ARB0 over B0 satisfying

the following condition:

for any pair of neighbourhoods U and V of α(X) and α(A) respectively in (Y, πY ),
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there is a homotopy H : (X × I, πX×I) → (U, πY |U)relA over B0 such that H(x, 0) =

α(x) and H(x, 1) ∈ V for each x ∈ X.

It is clear that if an embedding α : (X, πX) → (M,πM) over B0 satisfies the

conditions of definition 1.2.1, then these conditions hold for any closed embedding

β : (X, πX)→ (Z, πZ) ∈ ARB0 .

A closed embedding i : (A, πA) → (X, πX) over B0 is called SSDRB0-map if i

embeds (A, πA) in (X, πX) as a shape strong deformation retract over B0 of (X, πX).

Note that the notion of SSDRB0-map generalizes the notion of SDRB0-map.

We get the following theorem which is a fiber version of Theorem 1.2 of ( [C1], [C2]).

Theorem 1.2.2. Let (X, πX) ∈ MB0 and A be a closed subspace of X. Then the

following conditions are equivalent:

a) i : (A, πX|A) ↪→ (X, πX) is an SSDR-map over B0;

b) for any map f : (A, πX|A) → (Y, πY ) ∈ ANRB0 over B0, there is an extension

f̃ : (X, πX)→ (Y, πY ) over B0 such that f̃ · i = f and any two such extensions over B0

are fiber homotopic with respect iA;

c) for any commutative diagram

A E

B0

X B,

f

i

πX|A πE

p

F

πX πB
F̃

where p : (E, πE)→ (B, πB) is a fibration over B0 and (E, πE) and (B, πB) are ANRB0-

spaces, there exists a map F̃ : (X, πX) → (E, πE) over B0 such that F̃ · i = f and
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p · F̃ = F .

d) for any commutative diagram of maps over B0

A PK
B0

B0

X PL
B0

f

i

πX|A πPK

j∗

F

πX πPL
H

there exists a filler H : (X, πX)→ (PK , πPK ) over B0 provided P ∈ ANRB0 and L is a

subcomplex of a finite CW-complex K with an inclusion map j : L ↪→ K.

Proof. We check up the following implications a)⇒b)⇒c)⇒d)⇒a).

a)⇒b). As in the proof of Proposition 2 of [B4] we can show that (X, πX) is a

closed subspace of AEB0-space for metric spaces (M,πM) over B0 with weight w(M) ≤

max(w(X), w(B0),ℵ0). Here M = B ×K, where K is a convex hull of X in a normed

vector space L. Since (Y, πY ) is ANEB0-space there exist an open neighbourhood V of

A in M and extension f̂ : (V.πM |A)→ (Y, πY ) over B0 of map f : (A, πX|A)→ (Y, πY ).

By condition a) there exists a homotopy H : (X × I, πX×I) → (M,πM) over B0 such

that

H(x, 0) = x, x ∈ X,

H(x, 1) ∈ V, x ∈ X,

H(a, t) = a, a ∈ A, t ∈ I.
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Let f̃ : (X, πX)→ (Y, πY ) be a map given by the following formula

f̃ = f̂(H(x, 1)), x ∈X.

Note that

(πY · f̃)(x) = πY (f̃(x)) = πY (f̂(H(x, 1))) = (πY · f̂)(H(x, 1)) =

= πM |A(H(x, 1)) = πM(H(x, 1)) = πX×I(x, 1) = πX(x).

Thus, πY · f̃ = πX and hence, f̃ is a map over B0. Now show that any two such

type extensions are fiber homotopic with respect A. Let f̃1, f̃2 : (X, πX)→ (Y, πY ) be

extensions over B0 of map f . Consider a subspace N = X × {0} ∪A× I ∪X × {1} of

space (M × I, πM×I). Define a map F : N → Y over B0 by

F (x, 0) = f̃1(x), x ∈ X,

F (x, 1) = f̃2(x), x ∈ X,

F (x, a) = f(a), a ∈ A, t ∈ I.

It is clear that (see Proposition 1.1 of [Y2]) M×I = (B×K)×I ≈ B×(K×I) ∈ AEB0 ,

because K × I ∈ AE(M). There exists an extension F̄ : (W,πM×I|W ) → (Y, πY ) over

B0 of map F : (N, πM×I|N) → (Y, πY ) over B0 on some open neighbourhood W of N

in M × I.

Let U be an open neighbourhood of X in M such that U×{0} ⊂ W and U×{1} ⊂

W . Besides, consider an open neighbourhood V of A in M such that V × I ⊂ W . By

condition a) it follows the existence of homotopy D : (X × I, πX×I) → (U, πM |U) over
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B0 with properties

D(x, 0) = x, x ∈ X,

D(x, 1) ∈ V, x ∈ X,

D(a, t) = a, a ∈ A, t ∈ I.

Let F ′(x, t) = F̄ (D(x, t), 0), F ′′(x, t) = F̄ (D(x, t), 1) and H(x, t) = F̄ (D(x, 1), t).

Note that F ′, F ′′ and H induce the fiber homotopies:

F ′ : f̃1 'B0 h1relA,

F ′′ : f̃2 'B0 h2relA,

H : h1 'B0 h2relA.

Therefore, f̃1 'B0 f̃2relA.

b)⇒c). By condition b) for a space (E, πE) ∈ ANEB0 over B0 there is a map

F̄ : (X, πX) → (E, πE) over B0 such that F̄ · i = f . Note that F · i = p · f = p · F̄ · i.

From condition b) also follows the existence of homotopy H : F 'B0 p · F̄ reli(A) over

B0. Thus there is a fiber homotopy H̃ : (X × I, πX×I)→ (E, πE) such that p · H̃ = H.

The fiber homotopy H̃ induces a map F̃ : (X, πX) → (E, πE) over B0 with properties

F̃ · i = f and p · F̃ = F .

c)⇒d).By proposition 9 of [B4] the space PK
B0

and PL
B0

are ANRB0 -spaces. Also

note that j∗ : PK
B0
→ PL

B0
is a fibration over B0. Hence, there exists a filler H :

(X, πX)→ (PK
B0
, πPKB0

) over B0.

d)⇒a). Let (X, πX) be a closed subspace over B0 of ARB0-space (M,πM) . Let

i : (A, πX|A)→ (X, πX) be the inclusion over B0 of closed set A of X given by i(a) = a

for each a ∈ A.
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Consider open neighbourhoods U and V of X and of A, respectively, in M such

that V ⊆ U . Note that (U, πM |U),(V, πM |V ) ∈ ANRB0 . Let P = V , K = {∗}, L = ∅

and let f : (A, πX|A)→ (V, πM |V ) be the inclusion map over B0. By condition d) there

exists a map r : (X, πX) → (V, πM |V ) over B0 such that r · i = f . Now assume that

P = U , K = I and L = {0, 1}. Consider a commutative diagram

A U I
B0

B0

X U ×B0 U,

f

i

πX|A πUIB0

π

F

πX πU×B0
U

where

π(ω) = (ω(0), ω(1)), ω ∈ U I
B0
,

f(a)(t) = a, a ∈ A, t ∈ I,

F (x) = (x, r(x)), x ∈ X.

It is clear that πX|A = πUIB0
· f , πUIB0

= πU×B0
U · π and πX = πU×B0

U · F . Also note

that U ×B0 U and UB0 are ANRB0-spaces.

By condition d) there exists a map H : (X, πX) → (U I
B0
, πUIB0

) over B0 such that

H · i = f and π ·H = F .

Let D : (X × I, πX×I)→ (U, πM |U) be a map over B0 given by formula

D(x, t) = H(x, t), (x, t) ∈ X × I.
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The map D satisfies the conditions of the definition of SSDR-map over B0.

Now we need to introduce definition and investigation of fibrant spaces over B0.

Definition 1.2.3. A space (Y, πY ) over B0 is called a fibrant space over B0 if for every

SSDR-map i : (A, πX|A) → (X, πX) over B0 and every map f : (A, πX|A) → (Y, πY )

over B0, there is a map F : (X, πX) → (Y, πY ) over B0 such that F · i = f , i.e. the

following diagram commutes :

A X

B0

Y

i

f

πX|A πX

F

πY

We have the following proposition.

Theorem 1.2.4. If Y is an ANRB0-space, then Y is a fibrant space over B0.

Proof. Let i : (A, πX|A) → (X, πX) be a SSDRB0-map and (Y, πY ) ∈ ANRB0 . By im-

plication a⇒b) for each map f : (A, πX|A)→ (Y, πY ) over B0 there exists an extension

f̃ : (X, πX)→ (Y, πY ) over B0 with property f̃ · i = f . Thus Y is an fibrant space over

B0.

Theorem 1.2.5. If (Y, πY ) is a fibrant space over B0 and Z is a compact space, then

(Y Z
B0
, πY ZB0

) also is a fibrant space over B0.

Proof. Let (X, πX) be a metric space over B0, A a closed subset of X, i : (A, πX|A)→

(X, πX) a SSDRB0-map and f : (A, πX|A) → (Y Z
B0
, πY ZB0

) a map over B0. The map

F : (A× Z, πA×Z)→ (Y, πY ) given by formula

F (a, z) = (f(a))(z), (a, z) ∈ (A× Z, πA×Z)
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is a map over B0. Indeed, for every (a, z) ∈ A× Z we have

(πY · F ) = πY (F (a, z)) = πY (f(a)(z)) = πY ZB0
(f(a)) =

= πX|A(a) = πA×Z(a, z).

Observe that if i : (A, πX|A) → (X, πX) is a SSDR-map over B0, then i × 1Z :

(A × Z, πA×Z) → (X × Z, πX×Z) is a SSDR-map over B0. Indeed, we can assume the

pair (X × Z, πX×Z), where πX×Z((x, z)) = πX(x), is embeddable in some ARB0-space

(M × N, πM×N) such that (X, πX) and Z are embeddable in (M,πM) ∈ ARB0 and

N ∈ AR, respectively. Let W and Q be open neighbourhoods of X × Z and A× Z in

an ARB0-space M ×N , respectively. There exist open neighbourhoods U and V of X

and A respectively in M such that U×Z ⊂ W and V ×Z ⊂ Q. Since i is a SSDR-map

over B0 there exists a homotopy H : (X, πX)× I → (U, πM |U) over B0 with properties

H(x, 0) = i(x) and H(x, 1) ∈ V .

Let H̃ : (X × Z × I, πX×Z×I)→ (U × Z, πU×Z) be a map given by formula

H̃(x, z, t) = (H(x, t), z), (x, z) ∈ X × Z, t ∈ I.

Note that H̃ is a map over B0 satisfying the following conditions

H̃(x, z, 0) = (H(x, 0), z) = (i(x), z) = (i× 1Z)(x, z)

and

H̃(x, z, 1) = (H(x, 1), z) ∈ V × Z ⊂ Q.

Since (Y, πY ) is an fibrant space over B0 there is a map F̄ : (X×Z, πX×Z)→ (Y, πY )
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over B0 such that F̄ · (i× 1Z) = f̃ , where f̃ : (A× Z, πA×Z)→ (Y, πY ) be a map over

B0 given by formula

f̃(a, z) = (f(a))(z), (a, z) ∈ A× Z.

Let F̃ : (X, πX)→ (Y Z
B0
, πY ZB0

) be a map given by

(F̃ (x))(z) = F̄ (x, z), x ∈ X, z ∈ Z.

It is clear that F̃ · i = f .

Theorem 1.2.6. Let Y = ((Yn, πYn), pn,n+1, N
+) be an inverse system of fibrant spaces

over B0 and fibrations over B0. Then the fiber limit space Y = lim←−Y is a fibrant space

over B0 and the natural projections pn : (Y, πY )→ (Yn, πYn) are fibrations over B0.

Proof. Let (yn) ∈ Y = lim←−Y. It is clear that for each n < n+ 1

πn(yn) = (πn · pn,n+1)(yn+1) = πn+1(yn+1).

Assume that

πY ((yn)) = πn(yn), (yn) ∈ Y.

Note that πYn · pn = πY . Consequently, (Y, πY ) is a space over B0 and pn : Y → Yn is

a map over B0.

Let fn = pn · f, n ∈ N . It is clear that there exists a map F1 : X → Y1 over B0

such that F1 · i = p1 · f . For the commutative diagram
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A Y Y2

B0

X Y1

f

i

p2

p1,2

F1

f2

πA
πY

πY2

πX πY1F2

there is a map F2 : (X, πX)→ (Y2, πY2) over B0 with properties F2 ·i = f2 and p1,2 ·F2 =

F1. Inductively we can construct the sequence {Fn}n∈N+ of maps Fn : X → Yn over

B0 for which pn,n+1 · Fn+1 = Fn and Fn · i = fn.

Let F = ∆
n∈N+

Fn : X →
∏

n∈N+

Yn be the diagonal product over B0 of maps Fn :

(X, πX) → (Yn, πYn), n ∈ N+. The map F induces a map over B0 which we again

denote by F : (X, πX)→ (Y, πY ). It is clear that F · i = f .

Now show that p1 : (Y, πY )→ (Y1, πY1) is fibration over B0. Consider the diagram

A Y

Y2

X × I Y1

B0

f

σ0

p2

p1
H1

2

H1
1

p1,2

πA
πY

πX×I
πY1

There exists a map H1
1 : (X × I, πX×I) → (Y2, πY2) over B0 such that H1

1 · σ0 =

p1 · f = p1,2 · (p2 · f). Hence, we can choose a map H1
2 : (X × I, πX×I)→ (Y2, πY2) over

B0 for which H1
2 · σ0 = p2 · f and p1,2 ·H1

2 = H1
1 . Thus, inductively we can construct a
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sequence H1
1 , H

1
2 , · · ·H1

n, · · · of maps H1
n : (X × I, πX×I)→ (Yn, πYn) over B0 such that

H1
n = pn,n+1 ·H1

n+1, n ∈ N+. Let H1 : (X × I, πX×I)→ (Y, πY ) be a map given by

H1 = ∆
n∈N

H1
n : (X × I, πX×I)→ (Y, πY ).

Finally, we observe that H1 · σ0 = f and p1 ·H1 = H1
1 .

Analogously, we can prove that p2, p3, · · · maps over B0 are fibration over B0.

Theorem 1.2.7. Let f : (X, πX) → (Y, πY ) be a map over B0. If (X, πX), (Y, πY ) ∈

ANRB0, then coCylB0
(f) ∈ ANRB0.

Proof. Let (Z, πZ) ∈ ob(MB0) and A be a closed subspace of Z and let g : (A, πZ|A)→

coCylB0
(f) be a map over B0. For the composition g2 = ω#

1 · g : (A, πZ|A) → (X, πX)

there exist a neighbourhood U of A in Z and an extension g̃2 : (U, πZ|U) → (X, πX)

over B0 of map ω#
1 · g over B0. Note that

f · g̃2(a) = f(g̃2(a)) = f(g2(a)) = f · ω#
1 · g(a) = ω1 · fω1 · g(a) = (fω1 · g(a))(1).

The composition fω1 · g : (A, πZ|A)→ (Y I
B0
, πY IB0

) induces the map H : A× I → Y

over B0 given by

H(a, t) = ((fω1 · g)(a))(t), (a, t) ∈ A× I.

It is clear that for each a ∈ A and t ∈ I

H(a, 1) = ((fω1 · g)(a))(1) = (ω1 · fω1 · g)(a) = (f · ω#
1 · g)(a) =

= f · ((ω#
1 · g)(a)) = f(g̃2(a)) = (f · g̃2)(a) = (f · g̃2|A)(a).
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Let G :
(
(U × {0}) ∪ A× I, πU×{0}∪A×I

)
→ (Y, πY ) be a map defined by formula

G(u, 1) = fg̃2(u), u ∈ U,

G(a, t) = H(a, t), (a, t) ∈ A× I.

There exists an extension G̃ : (U × I, πU×I)→ (Y, πY ) over B0 such that

G̃|U×{1} = f · g̃2

and

G̃|A×I = H.

The map G̃ induces a map g̃1 : (U, πZ|U )→ (Y I
B0
, πY IB0

) for which

(g̃1(u))(t) = G̃(u, t), u ∈ U, t ∈ I.

Let g̃ = g̃1∆g̃2 : (U, πZ|U )→ (coCylB0
(f), πcoCylB0

(f)).

Also note that for each pair ĝ(u) = (g̃1(u), g̃2(u)) holds the condition

g̃1(u)(1) = G̃(u, 1) = fg̃2(u), u ∈ U,

i.e. g̃(u) ∈ coCylB0
(f). Besides,

g̃(a) = (g̃1(a), g̃2(a)) = (g̃1(a), g2(a)) = (g̃1(a), ω#
1 g(a)), a ∈ A.

Note that g̃1(a) is a map g̃1(a) : I → Y such that

g̃1(a)(t) = G̃(a, t) = H(a, t) = ((fω1 · g)(a))(t),
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i.e. g̃1(a) = fω1 · g(a).

Hence, for each a ∈ A we have

g̃(a) = (g̃1(a), g̃2) = (fω1 · g(a), ω#
1 · g(a)) = g(a).

Theorem 1.2.8. Let f : (X, πX) → (Y, πY ) be a map over B0 of fibrant spaces over

B0. Then the coCylB0
(f) over B0 is a fibrant space over B0.

Proof. Let g : (A, πZ|A) → (coCylB0
(f), πcoCylB0

(f)) be a map over B0 from a closed

subspace (A, πZ|A of (Z, πZ) ∈ ob(MB0) to the (coCylB0
(f), πcoCylB0

(f). There exists an

extension g̃2 : (Z, πZ) → (X, πX) over B0 of map g2 = ω#
1 · g : (A, πZ|A) → (X, πX)

over B0. Note that from the equivalence a)⇔b) of Theorem 1.2.2 it follows that the

inclusion (X×{0}∪A× I, πX×{0}∪A×I)→ (X× I, πX×I) over B0 is an SSDR-map over

B0.

Let

G : (Z × {0} ∪ A× I, πZ×{0}∪A×I)→ (Y, πY )

be a map given by formulas

G(z, 1) = fg̃2(z), z ∈ X

and

G(a, t) = H(a, t), (a, t) ∈ A× I,

where H : (A× I, πA×I)→ (Y, πY ) is a map over B0 given by H(a, t) = ((fω1 ·g)(a))(t).

As in the proof of Proposition 1.2.7 we can check up that there exists map g̃1 :
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(Z, πZ)→ (Y I , πY IB0
) over B0 such that

g̃1(z)(1) = fg̃2(z), z ∈ Z.

Let g̃ = g̃1∆g̃2 : (Z, πZ)→ (coCylB0
(f), πcoCylB0

(f)). It is clear that g̃|A = g.

Thus, the pair (coCylB0
(f), πcoCylB0

(f)) is a fibrant space over B0.



Chapter 2

Fiber Strong Shape Classifications

of Compact Metrizable Spaces

In chapter 2 are defined and studied fiber cotelescopes and ANRB0-resolutions, proved

the theorem of existence of ANRB0-resolution, constructed fiber strong shape cate-

gory of compact metrizable spaces and established the characterizations of fiber strong

shape equivalences based on the notion of the double mapping cylinder over B0.The

constructed fiber strong shape category is the full image of functor reflector from the

fiber homotopy category of compact metrizable spaces over B0 in the fiber homotopy

category of fiber fibrant spaces.

2.1 On Fiber Strong Shape Category of Compact

Metrizable Spaces

First we consider cotelescopes of inverse sequences over B0. Let X = {(Xn, πXn), qn+1
n , N+}

be an inverse sequence over B0. For each bonding map qn+1
n : (Xn+1, πXn+1) →

(Xn, πXn) over B0 consider the cocylinder Xn,n+1 = coCylB0
(qn+1
n ) over B0 of map

51
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qn+1
n : (Xn+1, πXn+1) → (Xn, πXn) over B0, fibration pn = ω1 · fω1 : Xn,n+1 → Xn over

B0 and the shrinkable fibration rn+1 = ω#
1 : Xn,n+1 → Xn+1 over B0 with respect to

the SDRB0-map in+1 : Xn+1 → Xn,n+1.

The cotelescope over B0 of the inverse sequence X, denoted by coTelB0(X), is

defined as the inverse limit of the diagram T (X)

(
X0,1, πX0,1

) (
X1,2, πX1,2

) (
Xn−1,n, πXn−1,n

)

B0 B0 B0· · · · · ·

· · · ←(X0, πX0) (X1, πX1) (X2, πX2) (Xn−1, πn−1) (Xn, πXn)

p0 r1 p1 r2 pn−1 rn

q1
0 q2

1
qnn−1

By definition of cotelescope over B0, coTelB0(X) = lim←−T (X) is a space over B0 of points

(x0, ω0, x1, ω1, x2, ω2, · · · ) ∈
∞∏
i=0

(
Xi ×B0 X

I
i

)
for which

ω0(0) = x0, ω0(1) = q1
0(x1), ω1(1) = q2

1(x2), · · · .

Let Tn(X) be a finite subdiagram consisting of first n numbers of diagram T (X)

and
(
X0,n, πX0,n

)
= lim←−Tn(X). Now consider the following diagram
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(X0,n, πX0,n)

(X0,n−1, πX0,n−1) (X1,n, πX1,n)

(X1,n−1, πX1,n−1) (X2,n, πX2,n)

...
(X0,2, πX0,2)

· · ·(X1,2, πX1,2)(X0,1, πX0,1) · · · (Xn−1,n, πXn−1,n)

· · ·(X2, πX2)(X1, πX1)(X0, πX0) (Xn−1, πXn−1) (Xn, πXn)

p0,n−1 r1,n

r1,n−1 p1,n r2,n

p01 r12

p0 r1 p1 r2 pn−1 rn

Note that in this diagram p1, p2, ..., pn are fibrations over B0. Hence, the maps

pn,m also are fibrations over B0 and rn,m maps are shrinkable fibrations with respect

to maps in,m since each rn is a shrinkable fibration with respect to in. Changing rn

by in, rn,m by in,m and putting (X̃0, πX̃0
) = (X0, πX0), q̃

1
0 = p0, ĩ0 = 1X0 , ĩ1 = i1,

(X̃n, πX̃n) = (X0,n, πX0,n), q̃nn−1 = p0,n−1, ĩn = i1,n · · · · · in−1,n · in for n > 1 we obtain

the following inverse system X̃ = ((X̃n, πX̃n), q̃n+1
n , N+) and commutative diagram

(X̃0, πX̃0
) (X̃1, πX̃1

) (X̃2, πX̃2
) · · · (X̃n, πX̃n) (X̃n+1, πX̃n+1

)

(X0, πX0) (X1, πX1) (X2, πX2) · · · (Xn, πXn) (Xn+1, πXn+1)

q̃1
0 q̃2

1 q̃n+1
n

q1
0 q2

1 qn+1
n

1X̃0
= ĩ0 ĩ1 ĩ2 ĩn ĩn+1

Note that coTelB0(X) = lim←− X̃, q̃n+1
n : (X̃n+1, πX̃n+1

) → (X̃, πX̃) is a fibration over

B0 and ĩn : (Xn, πXn) → (X̃n, πX̃n) is SDRB0-map over B0 for each n > 0. Also note

that if all (Xn, πXn) are ANRB0-spaces (fibrant spaces over B0), then all (X̃n, πX̃n) are

ANRB0-spaces (fibrant spaces over B0). In particular, we have obtained the following

theorem.
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Theorem 2.1.1. Let X = ((Xn, πXn), qn+1
n , N+) be an inverse sequence consisting of

fibrant spaces over B0 and maps over B0. Then the cotelescope coTelB0(X) is a fibrant

space over B0. If all (Xn, πXn) members of the inverse system Xare ANRB0-spaces,

then coTelB0(X) is a fibrant space over B0 too.

Let X = lim←−X and q = {qn}n∈N+ , where qn : X → Xn are the natural projections

over B0. Then SSDR-maps ĩn over B0 from the above given diagram induce the unique

natural embedding iq : (X, πX)→ (coTelB0(X), πcoTelB0
(X)) over B0 such that q̃n · iq =

in · qn for each n ≥ 0.

Definition 2.1.2. An inverse sequence X = ((Xn, πXn), qn+1
n , N+) is called resolution

over B0 of compact space (X, πX) over B0 if

a)(X, πX) = lim←−X;

b)the family q = {qn : (X, πX)→ (Xn, πXn)}n∈N+ satisfies the following condition:

for each n ∈ N+ and open neighbourhood U of qn(X) in (X,πXn) there exists m ≥ n

such that qmn (Xm) ⊆ U .

If all the (Xn, πXn) ∈ ANRB0 , then q is called an ANRB0-resolution over B0.

Note that this definition of resolution over B0 is a special case of the definition of

resolution over B0 given in [B4].

Now prove the theorem of existence of resolution over B0 of compact metrizable

spaces over B0.

Theorem 2.1.3. For each compact metrizable space (X, πX) over B0 there exists an

ANRB0-resolution q : (X, πX)→ X over B0.

Proof. We can assume that (X, πX) is a closed subspace of some ARB0-space (M,πM).

Indeed, there exists a closed embedding j = i 4 πX : (X, πX) → (M,πM) = (N ×

B0, πN×B0), where i : X → N is an closed inclusion of X into AR-space N . Let
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Xn be the union
⋃
x∈X

B(x, 1
n
), where B(x, 1

n
) is the open ball in M with center x and

radious ε = 1
n
. For any neighbourhood U of X in M and x ∈ X there exists εx such that

B(x, εx) ⊂ U . There exists a finite set {x1, x2, ..., xk} ⊂ X such that X ⊆
k⋃
i=1

B(xi, εxi).

Let ε = 1
n
≤ min{εx1 , εx2 , ..., εxk}. It is clear that Xn =

⋃
x∈X

B(x, 1
n
) has the property

Xn ⊆ U . Note that obtained family of neighbourhoods of X in M form an inverse

sequence X = (Xn, q
n+1
n , N+) of ANRB0-spaces, where qn+1

n is the inclusion of Xn+1

into Xn. Since X =
∞⋂
n=1

Xn, we can conclude (X, πX) = lim←−X.

Therefore, the family q = {qn}n∈N+ of inclusions qn : (X, πX)→ (Xn, πXn) over B0

form a resolution q : (X, πX)→ X over B0 of space (X, πX) over B0.

Theorem 2.1.4. Let (X, πX) be a compact metrizable space over B0. If q : (X, πX)→

X = ((Xn, πXn), qn+1
n , N+) is a resolution over B0 of (X, πX), then there exists an

infinite strong deformation

D : coTelB0(X)× [0,∞)→ coTelB0(X)

of coTelB0(X) over B0 onto iq(X). In particular, the map iq : (X, πX) → coTelB0(X)

is an SSDR-map over B0.

Proof. Let X̃ = coTelB0(X). The projections q̃i : (X̃, πX̃) → (X̃i, πX̃i) over B0 are

fibrations over B0 and they have fiber homotopy lifting property.

Hence, there are deformations D̃n : (X̃ × I, πX̃×I)→ (X̃n, πX̃n) over B0 of X̃ onto

Fn = q̃−1
n in(Xn). The family {Fn} is a decreasing family of closed subsets of X̃, i.e. for

each n ≥ 0

X̃ = F0 ⊃ F1 ⊃ ... ⊃ Fn ⊃ Fn+1 ⊃ iq(X).

Since q is a resolution over B0, then for each neighborhood Ũ of iq(X) in (X̃, πX̃) there

exists an index m such that Fm ⊂ Ũ . There are an index n and neighborhood Ṽ of

qn(iq(X)) in (X̃n, πX̃n) such that q̃−1
n (Ṽ ) ⊂ Ũ . Let V = ĩ−1

n (Ũ) and qn(X) ⊂ V ⊂ Xn.
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There is an index m ≥ n for which qmn (Xm) ⊂ V and q̃mn (im(Xm)) ⊂ Ṽ . Note that

Fm = q̃−1
m (̃im(Xm)) ⊆ q̃−1

n (q̃mn (̃im(Xm))) ⊆ q̃−1
n (Ṽ ) ⊂ Ũ .

The strong deformations Di over B0 induce the required infinite deformation D :

coTelB0(X)× [0,+∞)→ coTelB0(X) over B0.

The next theorem follows directly from Theorems 2.1.1, 2.1.3 and 2.1.4.

Theorem 2.1.5. For each compact metrizable space (X, πX) over B0 there is a fi-

brant extension iX : (X, πX) → (X̃, πX̃) over B0. In particular, if q : (X, πX) →

X = ((Xn, πXn), qn+1
n , N+) is an ANRB0-resolution over B0, then the embedding iq :

(X, πX)→ (coTelB0(X), πcoTelB0
(X)) is a fibrant extension over B0.

The purpose of this section is to construct of fiber strong shape theory for compact

metrizable spaces over a fixed base space B0, using the fiber versions of cotelescop and

fibrant space.

The constructed fiber strong shape category is the full image of functor reflector

from the fiber homotopy category of compact metrizable spaces over B0 in the fiber

homotopy category of fiber fibrant spaces.

The obtained classification of spaces over B0 demonstrates the advantage of fiber

strong shape theory over fiber shape theory. Now define the fiber strong shape category

SSHB0 for compact metrizable spaces over B0 in a quite usual way as the full image

of some functor-reflector. Here we consider the reflector of the fiber homotopy cate-

gory H(CMB0) of compact metrizable spaces over B0 in the fiber homotopy category

H(FB0) of fibrant spaces over B0.

Let (X, πX) ∈ ob(CMB0) and iX : (X, πX) → (X̃, πX̃) be a fibrant extension over

B0. For each map f : (X, πX)→ (Y, πY ) over B0, where (Y, πY ) is a fibrant space over

B0, there exists a map f̃ : (X̃, πX̃)→ (Y, πY ) over B0 such that the following diagram
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X X̃

B0

Y

iX

f

πX πX̃

f̃πY

commutes, i.e. f = f̃ · iX . From Theorem 1.1.2 follows that if f '
B0

f ′ : (X̃, πX̃) →

(Y, πY ) and f̃ ′ · iX = f ′, then f̃ '
B0

f̃ ′. Hence, the map

[iX ]#B0
: [X̃, Y ]B0 → [X, Y ]B0

given by formula

[iX ]#B0
([f̃ ]B0) = [f̃ · iX ]B0

is bijective. Thus, we have the following.

Theorem 2.1.6. Let iX : (X, πX) → (X̃, πX̃) be a fibrant extension over B0 of

space (X, πX) ∈ CMB0. Then the morphism [iX ]B0 : (X, πX) → (X̃, πX̃) of category

H(CMB0) is an H(FB0)-reflection.

It is clear that the family {iX : (X, πX) → (X̃, πX̃)}(X,πX)∈ob(H(CMB0
)) induces the

H(FB0)-reflector

R : H(CMB0)→ H(FB0)

that is a functor given by formula

R((X, πX)) = (X̃, πX̃), (X, πX) ∈ ob(H(CMB0))

and satisfying the condition:

for each map f : (X, πX) → (Y, πY ) over B0 of compact metrizable spaces the
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diagram

X X̃

Y Ỹ

B0

[iX ]B0

[f ]B0

πX

[iY ]B0

πY

R(f)

πX̃

πỸ

is commutative. Indeed, for the map there exists a unique up to fiber homotopy map

f̃ : (X̃, πX̃)→ (Ỹ , πỸ ) such that the following diagram commutes

X X̃

Y Ỹ .

B0

iX

f

πX

iY

πY

f̃

πX̃

πỸ

In this case the pair (iX , iY ) : f → f̃ is called a fibrant extension over B0 of map f .

Definition 2.1.7. The fiber strong shape category SSHB0 of compact metrizable

spaces over B0 is full image of the reflector R : H(CMB0)→ H(FB0).

Note that

ob(SSHB0) = ob(H(CMB0))

and

MorSSHB0
((X, πX), (Y, πY ) = [(X̃, πX̃), (Ỹ , πỸ )]B0 , (X, πX), (Y, πY ) ∈ ob(HCMB0)).
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Besides,

SSB0((X, πX)) = (X, πX)

for each (X, πX) ∈ ob(HCMB0)) and

SSB0([f ]B0) = R([f ]B0) = [f̃ ]B0

for a fibrant extension (iX , iY ) : f → f̃ : (X̃, πX̃) → (Ỹ , πỸ ) over B0 of map f :

(X, πX)→ (Y, πY ) over B0.

There is a commutative diagram

H(CMB0) H(FB0)

SSHB0 .

R

SSB0 JR

2.2 On Fiber Strong Shape Equivalences of Com-

pact Metrizable Spaces

The double mapping cylinder dCylB0
(f) over B0 of map f : (X, πX)→ (Y, πY ) over B0

is the subspace X × I ∪ CylB0
(f)× {0, 1} of space CylB0

(f)× I over B0.

By J. Dydak and S.Nowak in ( [Dy-N1], [Dy-N2]) were defined a strong shape

equivalence. We give the definition of fiber version of strong shape equivalence.

Definition 2.2.1. A map f : (X, πX) → (Y, πY ) over B0 is a shape equivalence if

for each ANRB0-space (P, πP ) induces a bijection f ∗ : [Y, P ]B0 → [X,P ]B0 . A fiber

shape equivalence f is called a fiber strong shape equivalence if for any two maps g, h :

(Y, πY )→ (P, πP ) ∈ ANRB0 over B0 and a fiber homotopy H : (X×I, πX×I)→ (P, πP )

over B0 joining g f and h g, H is fiber homotopic rel X × {0, 1} to H
′
(f × 1I), where

H
′
: (Y × I, πY×I)→ (P, πP ) is a fiber homotopy between g and h.
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Theorem 2.2.2. Let f : (X, πX) → (Y, πY ) be a fiber shape equivalence and let g :

(∂In × Y, π∂In×Y ) → (P, πP ) ∈ ANRB0 be a map over B0 such that the composition

g (1In × f) : (In ×X, πIn×X)→ (P, πP ) has an extension onto (In ×X, πIn×X). Then

g has an extension onto (In ×X, πIn×X).

Proof. The map g : (∂In × Y, π∂In×Y )→ (P, πP ) induce the map over B0 from (Y, πY )

into (P ∂In , πP∂In ) which we also denoted by g : (Y, πY )→ (P ∂In , πP∂In ).

Let h : (X, πX)→ (P ∂In , πP∂In ) be a fiber extension of g f . By condition of theorem

f is a fiber shape equivalence. Hence, there exists a map h′ : (Y, πY ) → (P ∂In , πP∂In )

over B0 such that h′ f '
B0

h. By h′ again denote map h′ : (Y n×I, πY n×I)→ (P, πP ) over

B0 induced by h′. From the relation h′ f '
B0

h and the equality h = g f it follows that

h′f '
B0

g ·f. Hence, h′|∂In×Y 'B0

g. Since the pair (In×Y, ∂In×Y ) has the fiber homotopy

extension property g extends onto In × Y .

Theorem 2.2.3. Let f : (X, πX)→ (Y, πY ) be a map over B0. The following conditions

are equivalent:

1). f is a fiber strong shape equivalence;

2). for a given space (Z, πZ) over B0 containing (X, πX) as a closed subspace over

B0, every map g : (Z, πZ)→ (P, πP ) ∈ ANRB0 over B0 extends to (Z∪CylB0
(f), πZ∪CylB0

(f))

and every map

H : (Z × I ∪ dCylB0
(f), πZ×I∪dCylB0

(f))→ (P, πP ) ∈ ANRB0

over B0 extends to ((Z ∪ CylB0
(f))× I, π(Z∪CylB0

(f))×I);

3). if (X, πX) is a closed subspace of (Z, πZ), then the fiber inclusions

i : (Z, πZ)→ (Z ∪ CylB0
(f), πZ∪CylB0

(f))



2.2. On Fiber Strong Shape Equivalences of Compact Metrizable Spaces 61

and

j : (Z × I ∪ dCylB0
(f), πZ×I∪dCylB0

(f))→ ((Z ∪ CylB0
(f))× I, π(Z∪CylB0

(f))×I)

are fiber shape equivalence;

4). if (X, πX) is a closed subspace of (Z, πZ), then the fiber inclusion

i : (Z, πZ)→ (Z ∪ CylB0
(f), πZ∪CylB0

(f))

is a fiber strong shape equivalences;

5). if (X, πX) is a closed subspace of (Z, πZ), then the fiber inclusion

i : (Z, πZ)→ (Z ∪ CylB0
(f), πZ∪CylB0

(f))

is a fiber shape equivalence;

6). the fiber inclusions

k : (X, πX)→ (CylB0
(f), πCylB0

(f))

and

l : (dCylB0
(f), πdCylB0

(f))→ (CylB0
(f)× I, πCylB0

(f)×I)

are fiber shape equivalences;

7). every map g : (X, πX)→ (P, πP ) ∈ ANRB0 over B0 extends to (CylB0
(f), πCylB0

(f))

and every map H : (dCylB0
(f), πdCylB0

(f)) → (P, πP ) ∈ ANRB0 over B0 extends to

(CylB0
(f)× I, πCylB0

(f)×I).

Proof. 1)⇒2). Let g : (Z, πZ) → (P, πP ) ∈ ANRB0 be a map over B0. Consider the

fiberpreserving restriction g|X : (X, πX) → (P, πP ). This map has a fiber extension
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g′ : (CylB0
(f), πCylB0

(f)) → (P, πP ). The maps g′ and g induce a map g′′ : (Z ∪

CylB0
(f), πZ∪CylB0

(f))→ (P, πP ) over B0 which is fiber extension of g.

Let q : (dCylB0
(1X), πdCylB0

(1X))→ (dCylB0
(f), πdCylB0

(f)) be the fiber natural pro-

jection and let f ′ : (dCylB0
(1X), πdCylB0

(1X))→ (dCylB0
(1Y ), πdCylB0

(1Y )) be a map over

B0 induced by f . Note that

H q '
B0

H ′ f ′ relX × {1} × {0, 1},

where H ′ : H|Y×{1}×{0} '
B0

H|Y×{1}×{1} is a homotopy over B0.Consequently, the map H

has a fiber extension onto (Z ∪ CylB0
(f)× I).

2)⇒3). Note that i∗ : [Z ∪ CylB0
(f), P ]B0 → [Z, P ]B0 is the surjection for each

P ∈ ANRB0 . Prove that i∗ is an injective map.

Let g, h : (Z ∪ CylB0
(f), πZ∪CylB0

(f)) → (P, πP ) be maps over B0 with some fiber

homotopy

H : g|Z '
B0

h|Z .

There exists a map G : (Z × I ∪ dCylB0
(f), πZ×I∪dCylB0

(f))→ (P, πP ) over B0 such

that

G|CylB0
(f)×{0} = g,

and

G|CylB0
(f)×{1} = h.

Let G′ : (CylB0
(f) × I, πCylB0

(f)×I) → (P, πP ) be a fiber extension of G. Then

G′ : g '
B0

h. Now show that j∗ : [(Z∪CylB0
(f))×I, P ]B0 → [Z×I ∪dCylB0

(f), P ]B0 is a

bijection for each (P, πP ) ∈ ANRB0 . Let G,H : ((Z ∪CylB0
(f))× I, π(Z∪CylB0

(f))×I)→

(P, πP ) be maps over B0 whose restrictions on subspace Z × I × dCylB0
(f) are fiber
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homotopic. Notice that

G|(Z∪dCylB0
(f))×{0} '

B0

H|(Z∪dCylB0
(f))×{0}.

Since the inclusion (Z ∪CylB0
(f))×{0} → (Z ∪CylB0

(f))× I is the fiber inclusion

the maps G and H over B0 are homotopic over B0.

3)⇒4) Let H : (Z × I, πZ×I) → (P, πP ) ∈ ANRB0 be a fiber homotopy between

restrictions g|Z and h|Z of maps g, h : (Z ∪ CylB0
(f), πZ∪CylB0

(f)) → (P, πP ) over B0.

There exists an extension map G : (Z × I ∪ dCylB0
(f), πZ×I∪dCylB0

(f)) → (P, πP ) over

B0 of H such that G|CylB0
(f)×{0} = g and G|CylB0

(f)×{1} = h. By condition iii) there

exists a fiber homotopy extension G′ : ((Z ∪CylB0
(f))× I, π(Z∪CylB0

(f))×I)→ (P, πP )of

G. The pair ((Z ∪CylB0
(f))× I, Z × I ∪ dCylB0

(f)) has the fiber homotopy extension

property with respect to any space over B0 because

(Z × I ∪ dCylB0
(f))× I ∪ CylB0

(f)× I × {0}

is a fiber retract of

(Z × I ∪ dCylB0
(f) ∪ Y × I)× I ∪ CylB0

(f)× I × {0}

and

(Z × I ∪ dCylB0
(f) ∪ Y × I)× I ∪ CylB0

(f)× I × {0}

is a fiber retract of (Z ∪ CylB0
(f)) × I × I. Consequently, G′ is a fiber homotopy

between g and h and the restriction of G′ on Z × I is equal to G.

4)⇒5). The verification of this implications is trivial.

5)⇒6). Let Z = X × I ∪ CylB0
(f) × {0}. By condition v) we infer that the fiber

inclusionX×I∪CylB0
(f)×{0} → dCylB0

(f) is a fiber shape equivalence. Consequently,
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the fiber inclusion dCylB0
(f) → CylB0

× I is shape equivalence. Besides, for Z = X

we get that X → CylB0
(f) is a fiber shape equivalence over B0.

6)⇒7). This implication is obvious because (CylB0
(f), X) and (CylB0

(f)×I, dCylB0
(f))

have the fiber homotopy extension property with respect to any space over B0.

7)⇒1). Let H : (dCylB0
(1X), πdCylB0

(1X))→ (P, πP ) ∈ ANRB0 be a fiber homotopy

between gf and hf , where g, h : (Y, πY )→ (P, πP ) ∈ ANRB0 are maps over B0. There

exists a map G : (dCylB0
(f), πdCylB0

(f)) → (P, πP ) over B0 such that GY×{0} = g

and GY×{1} = h. Let G′ : (CylB0
(f) × I, πCylB0

(f)×I) → (P, πP ) be an extension over

B0 of G. Using the fiber projection π : X × I × I → CylB0
(f) × I and strong fiber

deformation retraction of X×I×I onto X×{1}×I we infer that H is fiber homotopic

relX × {1} × {0, 1} to H ′ × (f × 1I), where H ′ : (dCylB0
(1Y ), πdCylB0

(1Y ))→ (P, πP ) is

a fiber homotopy between g and h. Hence, f is a fiber strong shape equivalence.

Corollary 2.2.4. Let (X, πX) be a space over B0 and A ⊂ X. The fiber inclusion

i : (A, πX|A) → (X, πX) is a fiber strong shape equivalence if and only if i and j :

(X × {0} ∪ A × I ∪ X × {1}, πX×{0}∪A×I∪X×{1}) → (X × I, πX×I) are fiber shape

equivalences.

Proof. Let f = i. This corollary is straight consequence of equivalence of conditions

1) and 6).

Corollary 2.2.5. Let f : (X, πX)→ (Y, πY ) be a fiber homotopy equivalence. Then f

is a fiber strong shape equivalence.

Proof. The space (X, πX) is a strong deformation retract over B0 of CylB0
(f). Hence,

(Y×{0}, πY×{0}) is a strong deformation retract of dCylB0
(f). Thus, the fiber inclusions

of (X, πX) into CylB0
(f) and (dCylB0

(f), πdCylB0
(f)) into CylB0

(f)×I are fiber homotopy

equivalences.
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Corollary 2.2.6. If g : (X, πX) → (Y, πY ) is fiber homotopic to a fiber strong shape

equivalence f : (X, πX)→ (Y, πY ), then g is a fiber strong shape equivalence.

Proof. The cylinder CylB0
(g) over B0 is fiber homotopy equivalence to cylinder CylB0

(f)relX.

Hence, for every space (M,πM) over B0 containing X as a closed set the spaces

M ∪ CylB0
(f) and Z ∪ CylB0

(g) over B0 are fiber homotopy equivalent with respect

M . By equivalence of conditions 1) and 5) of Theorem 3 g is a fiber strong shape

equivalence.

Now prove the following

Theorem 2.2.7. Let f : (X, πX) → (Y, πY ) and g : (Y, πY ) → (Z, πZ) be fiber strong

shape equivalences. Then g f : (X, πX)→ (Z, πZ) fiberpreserving map is a fiber strong

shape equivalence.

Proof. It is clear that the composition g f is a fiber shape equivalence. Let ϕ, ψ :

(Z, πZ)→ (P, πP ) ∈ ANRB0 be fiberpreserving maps and H : (X × I, πX×I)→ (P, πP )

be a fiber homotopy H : ϕgf '
B0

ψgf . By condition of theorem there exists a fiberpre-

serving homotopy H ′ : (Y × I, πY×I)→ (P, πP ) between fiberpreserving maps ϕ g and

ψ g such that

H '
B0

H ′ (f × 1I)relX × {0, 1}.

Besides, there is a fiber homotopy H ′′ : (Z × I, πZ×I)→ (P, πP ) between ϕ and ψ

such that

H ′ '
B0

H ′′ (g × 1I)relY × {0, 1}.

Consequently, we have the following fiber homotopy

H '
B0

H ′′ (g f × 1I)relX × {0.1}.
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Theorem 2.2.8. Let f : (X, πX) → (Y, πY ) and g : (Y, πY ) → (Z, πZ) be maps over

B0 such that g f is a fiber strong shape equivalence. If one of f and g is a fiber strong

equivalence, then both f and g are fiber strong shape equivalences.

Proof. By condition of theorem f and g are fiber shape equivalences. Let H be

some map over B0 from (dCylB0
(f), πdCylB0

(f)) into (P, πP ) ∈ ANRB0 . There is an

fiber extension H ′ : (X × I ∪ CylB0
(f) × {0, 1} ∪ CylB0

(g) × {0, 1}, πX×I∪CylB0
(f)×

{0,1}∪CylB0
(g)×{0,1})→ (P, πP ) ofH because the fiber inclusion (Y, πY )→ (CylB0

(g), πCylB0
(g))

is a fiber shape equivalence. By Corollary 2.5 of [F](CylB0
(f)∪CylB0

(g), πCylB0
(f)∪CylB0

(g))

is fiber homotopy equivalent of (CylB0
(g f), π(CylB0

(g f)). Besides, by condition gf is a

fiber strong shape equivalence. Consequently, H ′ extends onto (CylB0
(f)∪CylB0

(g))×I,

and hence, on CylB0
(f)×I. Thus, by equivalence 1)⇔7) f is a fiber strong shape equiv-

alence.

Let H : (Y × I, πY×I) → (P, πP ) ∈ ANRB0 be a fiber homotopy berween g ϕ

and g ψ, where ϕ, ψ : (Z, πZ) → (P, πP ). There is a fiber homotopy H ′′ : (Z ×

I, πZ×I)→ (P, πP ) such that H ′′ : ϕ'
B0

ψ, H ′′ (gf × 1I)'
B0

H (f × 1I)relX × {0, 1}. Let

G : (Y × ∂I2, πY×∂I2)→ (P, πP ) be a map over B0 given by

G(y, 0, t) = H(y, t), y ∈ Y, t ∈ I,

G(y, 1, t) = H ′′(g(y), t), y ∈ Y, t ∈ I,

G(y, t, 0) = ϕg(y), y ∈ Y, t ∈ I,

G(y, t, 1) = ψg(y), y ∈ Y, t ∈ I.

Then G(f×1I) : (X×(∂I2), πX×(∂I2))→ (P, πP ) extends onto X×I2. By Theorem
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2.2.2 the map G extends onto Y × I2. Hence, we have

H '
B0

H ′′(g × 1I)relY × {0, 1}.

Corollary 2.2.9. Let f : (X, πX) → (Y, πY ) be a fiber shape equivalence. If (X, πX)

has the fiber homotopy type of an ANRB0, then f is a fiber strong shape equivalence.

Proof. Note that there is a map g : (Y, πY )→ (X, πX) over B0 such that g f '
B0

1X . By

Theorem 2.2.8, g f is a fiber strong shape equivalence. Since g f is fiber strong shape

equivalence and f is fiber shape equivalences, then f and g are fiber strong shape

equivalences.

The next Theorem 2.2.10 and Theorem 2.2.11 show that in terms of fiber double

cylinders it is possible to describe fiber strong shape isomorphisms of category SSHB0 .

Theorem 2.2.10. A closed fiber embedding i : (A, πX|A) → (X, πX) is a fiber strong

shape equivalence if and only if i is a SSDR-map over B0.

Proof. Let i is a SSDR-map over B0. First show that the function i∗ : [X,P ]B0 →

[A,P ]B0 ,(P, πP ) ∈ ANRB0 is a bijection. From the equivalence a)⇒ b) of Theorem

2.2.2 follows that i∗ is a surjection because for each map f : (A, πX|A) → (P, πP ) over

B0 there is a map f̃ : (X, πX)→ (P, πP ) over B0 such that f̃ i = f and i∗(f̃) = f . The

map i∗ over B0 also is an injection. Indeed, let g, h : (X, πX) → (P, πP ) be two maps

over B0 such that i∗(h) = g = i∗(f), i.e. h i'
B0

f '
B0

g i. By fiber version of Borsuks

homotopy extension theorem [Y2] there exists maps f̃1, f̃2 : (X, πX) → (P, πP ) over

B0 such that f̃1|A = f = f̃2|A, f̃1 '
B0

g and f̃2 '
B0

h. By the implication a)⇒b) we have

f̃1 '
B0

f̃2rel i(A). Hence, g '
B0

h. One easily sees that [q]B0 = [h]B0 .
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Let now H : (A × I, πA×I) → (P, πP ) be a fiber homotopy between g i and h i.

Since (P I , πP I ) ∈ ANRB0 , the function i∗ : [X,P I ]B0 → [A,P I ]B0 is a bijection. Con-

sequently, the function (i × 1I)∗ : [X × I, P ]B0 → [A × I, P ]B0 is a bijection too.

Hence, there exists a map F : (X × I, πX×I)→ (P, πP ) over B0 and a fiber homotopy

S : (i×1I)∗(F ) = F (i×1I)'
B0

H. Let G = S ∪F : X× I×{0}∪ (A× I)× I → (P, πP )

be a map over B0 given by formulas

G|X×I×{0} = F,

GA×I×I = S.

By Borsuk’s fiber homotopy extension theorem there exists a map G̃ : (X × I ×

I, πX×I) → (P, πY ) over B0 such that G̃|X×I×{1} is a fiber homotopy between fiber

maps g̃ : (X, πX)→ (P, πP ) and h̃ : (X, πX)→ (P, πP ) given by formulas

g̃(x) = G(x, 1, 0), x ∈ X,

h̃(x) = G̃(x, 1, 1), x ∈ X,

g̃|A = g i,

h̃|A = h i.

By the Theorem 3 of [B,T1], there exist fiber homotopies T : g '
B0

g̃ and Q : h̃'
B0

h.

The combination of given fiber homotopies

L = T ∪ G̃X×I×{1} ∪Q : X × I × {1} → (P, πP )
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is fiber homotopy between g and h. Note that

L (i× 1I)'
B0

H relA× {0, 1},

i.e. i is fiber strong shape equivalence.

Now prove inverse fact. Let i be a fiber strong shape equivalence. Then i∗ is a

bijection. Consequently, for each map f : (A, πX|A) → (P, πP ) over B0 there is a map

F̃ : (X, πX)→ (P, πP ) over B0 such that i∗(F̃ ) = F̃ i'
B0

f .

Using Borsuk’s fiber homotopy extension theorem we can conclude that there exists

a fiber extension f̃ : (X, πX)→ (P, πP ) for which f̃ '
B0

F .

Let f̃1, f̃2 : (X, πX) → (P, πP ) be two such fiber extensions of f . Then there is a

fiber homotopy H
′
: f̃1 '

B0

f̃2, for which

(i× 1Y )H
′ '

B0

H : f '
B0

f relA× {0, 1}.

Hence, by implication b)⇒a) of Theorem 2, i is an SSDR-map over B0.

Theorem 2.2.11. Let f : (X, πX)→ (Y, πY ) be a map over B0 of compact metrizable

spaces over B0 and (iX , iY ) : f → f̃ a fibrant extension over B0 of f . Then f is a fiber

strong shape equivalence if and only if f̃ is a fiber homotopy equivalence.

Proof. It is known that f = p i, where i : (X, πX) → (CylB0
(f), πCylB0

(f)) and p :

(CylB0
(f), πCylB0

(f)) → (Y, πY ) are cofibration and fiber homotopy equivalence over

B0, respectively. Let iCylB0
(f) : (CylB0

(f), πCylB0
(f)) → (Z̃, πZ̃) be a fibrant extension

over B0 of the mapping cylinder off . There exist maps ĩ : (X̃, πX̃) → (Z̃, πZ̃) and

p̃ : (Z̃, πZ̃)→ (Ỹ , πỸ ) over B0 such that

iCylB0
(f) i = ĩ iX ,
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iY p = p̃ iCylB0
(f).

Let f be a fiber strong shape equivalence, in the sense of Definition 2.2.1. Since p

is a fiber homotopy equivalence it is strong shape equivalence. Thus from the equality

f = p i it follows that i is a fiber strong shape equivalence. By Theorem 2.2.10 i

is SSDR-map over B0. Consequently, ĩ is a fiber homotopy equivalence. Hence, the

composition p̃ ĩ is a fiber homotopy equivalence. Note that p̃ ĩ and f̃ are fiber extensions

over B0 of map f . Therefore p̃ ĩ'
B0

f̃ . It follows that f̃ is fiber homotopy equivalence

over B0.

Now prove that if f̃ : (X̃, πX̃) → (Ỹ , πỸ ) is a fiber homotopy equivalence then

f is a fiber strong shape equivalence. Note that for each P ∈ ANRB0 the functions

f̃∗ : [Ỹ , P ]B0 → [X̃, P ]B0 , (iX)∗ : [X̃, P ]B0 → [X,P ]B0 and (iỸ )∗ : [Ỹ , P ]B0 → [Y, P ]B0

are bijections. Since (f)∗ (iY )∗ = (iX)∗ f̃∗, we conclude f∗ is a bijection too. The space

P I
B0

over B0 is an ANRB0-space. Hence, f∗ : [Y, P I
B0

]B0 → [X,P I
B0

]B0 is a bijection.

Let H : g f '
B0

h f be a fiber homotopy, where f, g : (Y, πY ) → (P, πP ) are maps

over B0. Then there exists a map H
′
: (Y × I, πY×I)→ (P, πP ) over B0 such that

H
′
(f × 1I)'

B0

H.

Using the argument of proof of Theorem 2.2.3 for fiber inclusion i : (f(X), πY |f(X))→

(Y, πY ) we can construct a fiber homotopy H̃ : g '
B0

h for which H̃ (f × 1I)'
B0

H. Thus,

f is a fiber strong shape equivalence in the sense of Definition 2.2.1.

Corollary 2.2.12. A mapf over B0 of compact metrizable spaces over B0 is a fiber

strong shape equivalence in the sense of Definition 2.2.1 if and only if SSB0([f]Bo
) is an

isomorphism of the category SSHB0.



Chapter 3

Fiber Strong Shape Theory of

Arbitrary Topological Spaces

In the Chapter 3 we construct and develop a fiber strong shape theory for arbitrary

spaces over fixed metrizable space B0. Our approach is based on the method of

Mardešić-Lisica and instead of resolutions, introduced by Mardešić, their fiber pre-

serving analogues are used. The fiber strong shape theory yields the classification of

spaces over B0 which is coarser than the classification of spaces over B0 induced by

fiber homotopy theory, but is finer than the classification of spaces over B0 given by

usual fiber shape theory.

3.1 Resolution and Strong Expansions of Spaces

over B0

Let U = {Uα}α∈A be a covering of a space Y . We say that the maps f, g : X → Y are

U-near, if for every x ∈ X there exists a Uα ∈ U such that, f(x), g(x) ∈ Uα. We say

that a homotopy H : X × I → Y which connects f and g, is a U-homotopy if for every

71
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x ∈ X there exists a Uα ∈ U such that H(x, t) ⊆ Uα for all t ∈ I.

Proposition 3.1.1. (Comp. [B5],Proposition 7) Let (Y, πY ) be a ANRB0 .Then every

open covering U of (Y, πY ) admits an open covering V of Y such that, whenever any

two f.p. maps f, g : (X, πX) → (Y, πY ) from an arbitrary space (X, πX) over B0

into the space (Y, πY ) over B0 are V-near, then there exists f.p. U-homotopy H :

(X × I, πX×I) → (Y, πY ) which connects f and g. Moreover, if for a subset A ⊆ X,

f|A = g|A, then H is f.p. homotopy relA.

Proof. We may assume that (Y, πY ) is a closed subset of space B0 ×K, where K is a

convex set of normed vector space L. Let π : B0 ×K → K be the map given by the

formula π(b, k) = k for every (b, k) ∈ B0 ×K. Since (Y, πY ) is an ANRB0 , there is an

open neighbourhood (G, πG) of (Y, πY ) in B0 ×K together with a fibrewise retraction

r : (G, πG) → (Y, πY ). Let {Oα × Qα}α∈A be a refinement of r−1(U), where Qα is

convex for every α ∈ A . Then V = {(Oα ×Qα) ∩ Y }α∈A is an open refinement of the

covering U. For any two V-near f.p. maps f, g : (X, πX) → (Y, πY ) ⊆ B0 ×K we can

define a f.p. homotopy H : (X × I, πX×I)→ K by formula

H
′
(x, t) = (πX(x), (1− t)π(f(x)) + tπ(g(x)), (x, t) ∈ X × I.

Define a f.p. map H : (X × I, πX×I)→ (Y, πY ) by taking

H(x, t) = r(H ′(x, t)), (x, t) ∈ X × I.

Clearly, we have H0 = f , H1 = g and H is a U-homotopy. Obviously, if f(x) = g(x),

for each x ∈ A, then H(x, t) = f(x) = g(x) for every t ∈ I.

An inverse system of the category TopB0
is a collection X = ((Xα, πXα), pαα′ ,A ) of

space (Xα, πXα) over B0 indexed by a directed set A and f.p. maps pαα′ : (Xα′ , πXα′ )→
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(Xα, πXα), α ≤ α
′
, such that pαα′ pα′α′′ = pαα′′ and pαα = 1Xα , α ∈ A .

A morphism (fβ, ϕ) : X→ Y = ((Yβ, πYβ), qββ′ ,B) of inverse systems of the cate-

gory TopB0
consists of a function ϕ : B → A and of f.p. maps fβ : (Xϕ(β), πXϕ(β))→

(Yβ, πYβ), β ∈ B, such that whenever β ≤ β
′
, then there is an index α ≥ ϕ(β), ϕ(β

′
)

for which fβ pϕ(β) = qββ′ fβ′ pϕ(β′ )α.

Two morphisms (fβ, ϕ), (gβ, ψ) : X→ Y are said to be equivalent, f '
B0

g, provided

for each β ∈ B there is an α ∈ A , α ≥ ϕ(β), ψ(β), such that fβ pϕ(β)α = gβ pψ(β)α.

Let pro − TopB0
be a category, whose objects are the inverse systems X of the

category TopB0
and whose morphisms are the equivalence classes f of morphisms

(fβ,ϕ) : X→ Y with respect to relation '
B0

.

A morphism p = (pα) : (X, πX) → X = ((Xα, πXα), pαα′ ,A ) from a rudimentary

system ((X, πX)) to an inverse system X consists of the f.p. maps pα : (X, πX) →

(Xα, πXα),α ∈ A , such that pα = pαα′ pα′ , α ≤ α
′
.

Definition 3.1.2 (V.Baladze, see [B4]- [B6]). Let (X, πX) be a space over B0 and let

X = ((Xα, πXα), pαα′ ,A ) be an inverse system of the category TopB0
. We say that

p : (X, πX) → X is a resolution over B0 or fiber resolution of the space (X, πX) over

B0 provided it satisfies the following two conditions:

RB01). Let (P, πP ) ∈ ANRB0, let U be an open covering of (P, πP ) and let h : (X, πX)→

(P, πP ) be a f.p. map. Then there exist an index α ∈ A and a f.p. map f :

(Xα, π(P,πP ))→ (P, πP ) such that h and f pα are U-near.

RB02). Let (P, πP ) ∈ ANRB0 and let U be an open covering of (P, πP ). Then there is an

open cover U
′

of (P, πP ) with the following property: if α ∈ A and f, f
′

: (X, πX) →

(P, πP ) are f.p. maps such that the f.p. maps f pα and f
′
pα are U

′
-near, then there

is an index α
′ ≥ α such that the f.p. maps f pαα′ and f

′
pαα′ are U-near.
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If in a fiber resolution p : (X, πX) → X = ((Xα, πXα), pαα′ ,A ) of the space (X, πX)

over B0 each (Xα, πXα) is an ANRB0, then we say that p is a fiber ANRB0-resolution.

The next theorem of V.Baladze ( [B4]- [B6]) is essential in the construction of the

fiber shape category for arbitrary spaces over B0.

Theorem 3.1.3. Every space (X, πX) over a metrizable space B0 admits an ANRB0-

resolution over B0.

Definition 3.1.4 (V.Baladze, see [B4]- [B6], [B10]). Let (X, πX) be a topological space

over B0, X = ((Xα, πXα), pαα′ ,A ) an inverse system in TopB0
and p = (pα) :

(X, πX) → X a morphism of pro − TopB0
. We call p an expansion over B0 of the

space (X, πX) over B0 provided it has the following properties:

EB01). For every ANRB0-space (P, πP ) over B0 and f.p. map f : (X, πX) → (P, πP )

there is an index α ∈ A and a f. p. map h : (Xα, πXα)→ (P, πP ) such that h pα '
B0

f .

EB02). If f, f
′
: (Xα, πXα)→ (P, πP ) are f. p. maps, (P, πP ) ∈ ANRB0 and f pα '

B0

f
′
pα,

then there is an index α
′ ≥ α such that f pαα′ '

B0

f
′
pαα′ .

Definition 3.1.5. A morphism p : (X, πX) → ((Xα, πXα), pαα′ ,A ) is called a strong

expansion over B0 provided it satisfies condition EB01) and the following condition:

SEB02). Let (P, πP ) be an ANRB0-space, let f0, f1 : (Xα, πXα)→ (P, πP ), α ∈ A be

f.p. maps and let F : (X × I, πX×I)→ (P, πP ) be a f.p. homotopy such that

S(x, 0) = f0pα(x), x ∈ X,

S(x, 1) = f1pα(x), x ∈ X.

Then there exists a α
′ ≥ α and a f.p. homotopy H : (Xα′ × I, πXα′×I) → (P, πP ),

such that

H(x, 0) = f0pαα′ (z), z ∈ Xα′ ,
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H(x, 1) = f1pαα′ (z), z ∈ Xα′ ,

H(pα′ × 1I)'
B0

S(rel(X × ∂I)).

It is clear that, every strong expansion over B0 is an expansion over B0.

If all (Xα, πXα) ∈ ANRB0 , then p is called an ANRB0-expansion and strong ANRB0-

expansion, respectively.

The main result of section 4.1 is the following theorem.

Theorem 3.1.6. Let (X, πX) be a topological space over B0. Then every resolution

p : (X, πX)→ X over B0 induces a strong ANRB0-expansion.

Corollary 3.1.7. Every ANRB0-resolution over B0 induces ANRB0-expansion over

B0.

Corollary 3.1.8. Every space (X, πX) over B0 admits a cofinite strong ANRB0-expansion

over B0.

In the proof of Theorem 3.1.6 we need the following lemmas.

Lemma 3.1.9. Let (X, πX) be a topological space over metrizable space B0, let (P, πP ), (P
′
, πP ′ )

be ANRB0-spaces, let f : (X, πX)→ (P
′
, πP ′ ), h0, h1 : (P

′
, πP ′ )→ (P, πP ) be f.p. maps

and let S : (X × I, πX×I)→ (P, πP ) be a f.p. homotopy such that

S(x, 0) = h0f(x), x ∈ X,

S(x, 1) = h1f(x), x ∈ X.

Then there exists an ANRB0-space (P
′′
, πP ′′ ), f.p. maps f

′
: (X, πX) → (P

′′
, πP ′′ ),
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h : (P
′′
, πP ′′ )→ (P

′
, πP ′ ) and a f.p. homotopy K : (P

′′× I, πP ′′×I)→ (P, πP ) such that

hf
′

= f,

K(z, 0) = h0h(z), z ∈ P ′′

K(z, 1) = h1h(z), z ∈ P ′′

K(f
′ × 1I) = S.

Proof. Let S : (X × I, πX×I) → (P, πP ) be a map such that S(x, 0) = (h0 f)(x),

S(x, 1) = (h1 f)(x) and πP S = πX×I . Consider the subspace CB0(I, P ) of the space

C(I, P ). Let πCB0
(I,P ) : CB0(I, P )→ B0 be the map given by πCB0

(I,P )(ϕ) = πP (ϕ(t)).

Consequently, CB0(I, P ) is a space over B0. The f.p. map S : (X × I, πX×I) →

(P, πP ) defines the map s : (X, πX)→ CB0(I, P ) such that (s(x))(t) = S(x, t), x ∈ X,

t ∈ I. The image of the point x ∈ X, s(x) ∈ CB0(I, P ), because πP s(x) : I → B0 is a

constant map. Indeed,

(πP s(x))(t) = πP (s(x))(t) = πP (S(x, t)) = πX×I(x, t) = πX(x)

for every t ∈ I.

For each x ∈ X we have

(πCB0
(I,P ) s)(x) = (πCB0

(I,P )(s(x)) = πP (s(x))(t) =

= πP (S(x, t)) = πX×I(x, t) = πX(x).

Thus, πCB0
(I,P ) s = πX . Hence, s : (X, πX) → CB0(I, P ) is a f.p. map. For all

x ∈ X we have

(s(x))(0) = S(x, 0) = (h0 f)(x)
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and

(s(x))(1) = S(x, 1) = (h1 f)(x).

Let P
′ ×B0 CB0(I, P ) = {(y, ϕ)|πP ′ (y) = πCB0

(I,P )(ϕ)}. The map f
′

: (X, πX) →

P
′ ×B0 CB0(I, P ), given by f

′
(x) = (f(x), s(x)), is a f.p. map. Let πP ′×B0

CB0
(I,P ) :

P
′ ×B0 CB0(I, P )→ B0 be a map defined by

πP ′×B0
CB0

(I,P )(y, ϕ) = πP ′ (y) = πCB0
(I,P )(y).

Then we have

πP ′×B0
CB0

(I,P ) f
′
= πP ′×B0

CB0
(I,P )(f(x), s(x)) = πP ′ (f(x)) = πX(x).

Thus, πX = πP ′×B0
CB0

(I,P ) f
′
.

It is clear that the first projection h : P
′ ×B0 CB0(I, P ) → (P

′
, πP ′ ) is a f.p. map

and h f
′
= f .

We define the subset (P
′′
, πP ′′ ) of P

′ ×B0 CB0(I, P ) be the following way:

P
′′

= {(y, ϕ) ∈ P ′ ×B0 CB0(I, P )|ϕ(0) = h0(y), h1(y) = ϕ(1)}.

Let K : P
′ ×B0 CB0(I, P )× I → P be a map given by formula

K((y, ϕ), t) = ϕ(t), y ∈ P ′ , ϕ ∈ CB0(I, P ), t ∈ P.

The restriction of K on (P
′′×I, πP ′′×I) again denote by K : (P

′′×I, πP ′′×I)→ (P, πP ).

This map is a f.p. homotopy between h0 h|P ′′ and h1 h|P ′′ .
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Indeed, for every (y, ϕ) ∈ P ′′ and t ∈ I we have

K((y, ϕ), 0) = ϕ(0) = h0(y) = h0 h(y, ϕ),

K((y, ϕ), 1) = ϕ(1) = h1(y) = h1 h(y, ϕ),

πP ′×B0
CB0

(I,P )×I((y, ϕ), t) = πP ′×B0
CB0

(I,P )(y, ϕ) =

= πP ′ (y) = πCB0
(I,P )(ϕ) = πP (ϕ(t)) = πP (K(y, ϕ), t).

Note that for each x ∈ X and t ∈ I

K(f
′ × 1I)(x, t) = K((f(x), s(x)), t) = (s(x))(t) = (S(x, t)).

Hence, K(f
′ × 1I) = S.

We shall prove that (P
′′
, πP ′′ ) ∈ ANRB0 . Now suppose that A is a closed subspace

of a space Z over B0 and l : A→ P
′′

is a map such that πA = πZ|A = πP l.

Denote by L : (A× I, πA×I)→ (P, πP ) the map defined by

L(a, t) = (h
′
l(a))(t), (a, t) ∈ A× I,

where h
′

is the second projection P
′ ×B0 CB0(I, P )→ CB0(I, P ). It is clear that L is a

f.p. map. Indeed,

(πP L)(a, t) = πP (L(a, t)) = πP ((h
′
l(a))(t) =

= πCB0
(I,P )(h

′
(l(a))) = πA(a) = πA×I(a, t).
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The map L is a f.p. homotopy between h0 h l and h1 h l. Indeed,

L(a, 0) = (h
′
l(a))(0) = h0 h l(a), a ∈ A

and

L(a, 1) = (h
′
l(a))(1) = h1 h l(a), a ∈ A.

Observe that, since (P
′
, πP ′ ) ∈ ANRB0 and h l : (A, πA)→ (P

′
, πP ′ ) is a f.p. map,

there is a neighbourhood U of A in Z and there exists a f.p. map l̃
′
: (U, πU)→ (P

′
, πP ′ )

such that l̃
′

|A = h l.

There exist a neighbourhood V of A in U and a f.p. homotopy L̃ : (V ×I, πV×I)→

(P, πP ) between h0 l̃
′

|V and h1 l̃
′

|V . Also note that L̃(a, t) = L(a, t) for each a ∈ A and

t ∈ I. Let l̃
′′

be a f.p. map l̃
′′

: (V, πV ) → CB0(I, P ), given by (l̃
′′
(z))(t) = L̃(z, t),

z ∈ V, t ∈ I. For every a ∈ A we have

(l̃
′′
(a))(t) = L̃(a, t) = L(a, t) = (h

′
l(a))(t).

Consequently, l̃
′′

|A = h
′
l. Now define the f.p. map l̃ : (V, πV ) → P

′ ×B0 CB0(I, P )

by the formula

l̃(z) = (l̃
′
, l̃
′′
), z ∈ V.

For each z ∈ V we have

(l̃
′′
(z))(0) = L̃(z, 0) = h0 l̃

′
(z),

(l̃
′′
(z))(1) = L̃(z, 1) = h1 l̃

′
(z).

Consequently, l̃ : (V, πV ) → (P
′′
, πP ′′ ) is an extension of the f.p. map l : (A, πA) →

(P
′′
, πP ′′ ). This fact completes the proof of lemma 3.1.9.
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Lemma 3.1.10. Let p : (X, πX) → X be a resolution over B0 and let α, P, f0, f1 and

F be as in SEB02). Then for every open covering U of (P, πP ), there exist a α
′ ≥ α

and a f.p. homotopy H : (Xα′ × I, πXα′×I)→ (P, πP ) such that

H(y, 0) = f0 pαα′ (y), y ∈ Xα′

H(y, 1) = f1 pαα′ (y), y ∈ Xα′

(S,H(1× pα′ )) ≤ U.

Proof. Let U be an open covering of (P, πP ). There exists an open star-refinement

U
′

of U. Now we choose an open covering V of (P, πP ) such that the assertions of

Proposition 3.1.1 hold for U
′
. We can assume that V is a star-refinement of U

′
. We

choose V
′

so that V
′

is a star-refinement of V and RB02) holds for (P, πP ), V and V
′
.

Let P
′

= P ×B0 P . By g0, g1 : (P
′
, πP ′ )→ (P, πP ) denote the two projections. Let

f : (X, πX)→ (P
′
, πP ′ ) be the diagonal product of f.p. maps f0 pα : (X, πX)→ (P, πP )

and f1 pα : (X, πX) → (P, πP ). It is clear that g0 f = f0 pα, g1 f = f1 pα, F0 = g0 f

and F1 = g1 f .

By the lemma 3.1.9 there exists an ANRB0-space (P
′′
, πP ′′ ), f.p. maps f

′
: (X, πX)→

(P
′′
, πP ′′ ), g : (P

′′
, πP ′′ )→ (P

′
, πP ′ ) and a f.p. homotopy G : (P

′′×I, πP ′′×I)→ (P, πP )

such that

g f
′
= f,

G0 = g0 g,G1 = g1 g,

G(f
′ × 1) = F.

We choose for the open covering G−1(V
′
) of (P

′′ × I, πP ′′×I) a refinement, which is

a stacked covering V of (P
′′ × I, πP ′′×I), given by a locally finite open covering W of

(P
′′
, πP ′′ ) and by finite open coverings JW,W ∈ W of I.



3.1. Resolution and Strong Expansions of Spaces over B0 81

By condition RB01) there exists a α
′′ ≥ α and f.p. mapping h : (Xα′′ , πXα′′ ) →

(P
′′
, πP ′′ ) such that

(f
′
, h pα′′ ) ≤ W

It is clear that for any W ∈W, W×0 ⊆ W×J , where J ∈ JW and W×J ⊂ G−1(V
′
)

for some V
′ ∈ V

′
.

Note that

g0g(W ) = G0(W ) = G(W × 0) ⊆ G(W × J) ⊆ V
′
.

Hence, g0g(W ) refines V
′

and (g0 g f
′
, g0 g h pα′′ ) ≤ V

′
.

From the equalities

g0 gf
′
= g0f = f0pλ = f0pαα′pα′′

it follows that

(g0ghpα′′ , f0 pαα′′ pα′′ ) ≤ V
′
.

We also can claim that

(g1ghpα′′ , f1 pαα′′ pα′′ ) ≤ V
′
.

By condition RB02) there is a α
′ ≥ α

′′
such that

(g0ghpα′′α′ , f0 pαα′ ) ≤ V

and

(g1ghpα′′α′ , f1 pαα′ ) ≤ V.
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Besides, there exist U
′
-f.p. homotopies K,L : (Xα′ × I, πX

α
′×I) → (P, πP ) such

that K0 = f0pαα′ , K1 = g0ghpα′′α′ , L0 = f1pαα′ and L1 = g1ghpα′′α′ .

Note that for any t ∈ I the pairs (f
′
(x), t) and (hpα′′ (x), t) belong to some elements

of V and consequently to G−1(V
′
) for some V

′ ∈ V
′
. Thus G(f

′×1I) and G(hpα′′ ×1I)

are V
′
-near. Hence,

(G(f
′ × 1I), G(hpα′′ × 1I)) ≤ V.

Now we define f.p. homotopy H : (Xα′ × I, πXα′×I)→ (P, πP ) by formulas

H(y, t) =


K(y, t

ϕ(z)
), 0 ≤ t ≤ ϕ(z),

G(z, t−ϕ(z)
1−2ϕ(z)

), ϕ ≤ t ≤ 1− ϕ(z),

L(y, 1−t
ϕ(z)

), 1− ϕ(z) ≤ t ≤ 1,

where z = hpα′′α′ (y) and ϕ : (P
′′
, πP ′′ )→ I is a continuous map defined in [M2].

As in [M2] we can prove that for every (x, t) ∈ X × I, there is a U ∈ U such that

F (x, t), H(pα(x), t) ∈ U.

Proof of Theorem 3.1.6. . First prove the following condition.

EB01). Let U be a open covering of (P, πP ). Consider open covering V as in

Proposition 3.1.1. By RB01) there exist an index α ∈ A and a f.p. mapping h :

(Xα, πXα)→ (P, πP ) which satisfies condition (hpα, f) ≤ V. Thus, by the choice of V,

f '
B0

h pα.

SB02). Let U be a open covering U of. Consider a covering V as in Proposition 3.1.1.

By Lemma 3.1.9 there exist a α
′ ≥ α and f.p. homotopy H : (Xα′×I, πXα′×I)→ (P, πP )
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which satisfies

H(z, 0) = f0pαα′ (z), z ∈ Xλ′ ,

H(z, 1) = f1pαα′ (z), z ∈ Xλ′ ,

(S,H(1× pα′ )) ≤ V.

Consider the spaces Z = X×I and A = X×∂I over B0 and f.p. mappings h0 = F

and h1 = H(pα′ × 1).

Note that h0|A = h1|A. Indeed, for each x ∈ X

h0(x, 0) = F (x, 0) = f0pα(x) = f0pαα′pα′ (x) = H(pα′ (x), 0) = h1(x, 0).

Analogously, for each x ∈ X we have

h0(x, 1) = F (x, 1) = f1pα(x) = f1pαα′pα′ (x) = H(pα′ (x), 1) = h1(x, 0).

Consequently, (h0, h1) ≤ V. By Preposition 3.1.1 there exists a f.p. homotopy

rel(X × ∂I), which connects F and H(pα′ × 1I).

3.2 On Fiber Strong Shape Category for Arbitrary

Topological Spaces

Let ∆n be the standard n-simplex, i.e. the set of all points t = {t = (t0, t1, · · · , tn) ∈

Rn+1}, where t0 ≥ 0, · · · , tn ≥ 0 and t0 + · · ·+ tn = 1.

For n > 0 and 0 ≤ j ≤ n there exist ∂nj : ∆n−1 → ∆n j-th face operators and for

n ≥ 0 and 0 ≤ j ≤ n there exist σnj : ∆n+1 → ∆n j-th degeneracy operators given by
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formulas

∂nj (t0, · · · , tn−1) = (t0, · · · , tj−1, 0, tj, · · · , tn−1),

σnj (t0, · · · , tn+1) = (t0, · · · , tj−1, tj + tj+1, tj+2, · · · , tn+1).

Let B be a directed set. By Bn denote the set of all sequences β = (β0, · · · , βn),

β0 ≤ · · · ≤ βn of elements of B.

For n > 0 and 0 ≤ j ≤ n we consider the j-th face operator dnj : Bn → Bn−1 given

by formula

dnj (β0, · · · , βn) = (β0, · · · , βj−1, βj+1, · · · , βn)

and for n ≥ 0 and 0 ≤ j ≤ n by snj we denote j-th degeneracy operator snj : Bn → Bn+1

given by formula

snj (β0, · · · , βn) = (β0, · · · , βj, βj, · · · , βn).

For simplicity the images dnj (β) and snj (β) we denote by βj and βj, respectively.

Let X = ((Xα, πXα), pαα′ ,A ) and Y = ((Yβ, πYβ), pββ′ ,B) be the objects of cate-

gory pro−TopB0
.

A coherent map f : X→ Y over B0 or fiber preserving (f.p) coherent map consists

of function ϕ : Bn → A and fiber preserving maps fβ : Xϕ(β) × ∆n → Yβ0 , β =

(β0, · · · , βn) ∈ Bn, n ≥ 0 having the following properties:

i). The function ϕ, which assigns to every n ≥ 0 and β = (β0, · · · , βn) ∈ Bn an

element ϕ(β) = ϕ(β0, · · · , βn) ∈ A , satisfies condition:

ϕ(β) ≥ ϕ(βj), 0 ≤ j ≤ n, n > 0.

ii). For every n ≥ 0 and every β = (β0, · · · , βn) ∈ Bn the fiber preserving maps
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fβ : (Xϕ(β) ×∆n, πXϕ(β)×∆n)→ (Yβ0 , πYβ0 ) satisfies condition:

fβ(x, ∂nj t) =


qβ0β1fβ0(pϕ(β0)pϕ(β)(x), t), j = 0

fβj (pϕ(βj)pϕ(β)(x), t), 0 ≤ j ≤ n,

where x ∈ Xϕ(β), t ∈ ∆n−1, n ≥ 0, Xϕ(β) × ∆n is the space over B0 with projection

πXϕ(β)×∆n : Xϕ(β) ×∆n → B0 given by formula

πXϕ(β)×∆n(x, t) = πXϕ(β)(x), x ∈ Xϕ(β), t ∈ ∆n

and

fβ(pϕ(β)ϕ(βj)(x), σnj (t)) = fβj (x, t), 0 ≤ j ≤ n, x ∈ Xϕ(βj), t ∈ ∆n+1, n ≥ 0.

The identity coherent map 1X : X→ X over B0 is given by formulas:

ϕ(α) = αn,α = (α0, · · · , αn) ∈ A n,

1α(x, t) = pα0αn(x), x ∈ Xαn , t ∈ ∆n, n ≥ 0.

A coherent homotopy over B0 or fiber preserwing (f.p.) homotopy F : X× I → Y

connecting f.p. coherent maps f, f
′

: X → Y, is a f.p. coherent map of X × I =

((Xα × I, πXα×I), pαα′ × 1I ,A ) to Y, given by a function Φ and by f.p. maps Fβ :

(Xϕ(β)×I×∆n, πX
ϕ(βj )

×I×∆n)→ (Yβ0 , πYβ0 ), witch have i) and ii) properties and satisfy

the conditions

Φ(β) ≥ ϕ(β), ϕ
′
(β),

Fβ(x, 0, t) = fβ(pϕ(β)Φ(β)(x), t),
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Fβ(x, 1, t) = f
′

β(pϕ′ (β)Φ(β)(x), t),

where x ∈ Xϕ(β), t ∈ ∆n, n ≥ 0.

As in [L-M] we can prove the following

Proposition 3.2.1. The f.p. coherent homotopy relation of f.p. coherent maps is an

equivalence relation.

A f.p. coherent map f : X → Y is called a special f.p. coherent map or a special

coherent map over B0 if ϕ(β) = ϕ(βn) for each β ∈ Bn and ϕ|B : B → A is an

increasing function.

The composition h = g f of special f.p. coherent maps over B0 is defined as

in [L-M].

A special f.p. coherent homotopy connecting two special f.p. coherent maps f, f
′
:

X→ Y is a f.p. coherent homotopy F : X× I → Y between f and f
′

and at the same

time it is a special f.p. coherent map.

Note that if the index set B of Y is cofinite, then special f.p. coherent homotopy

relation of special f.p. coherent maps is an equivalence relation.

The proofs of the following proposition pass as in [L-M].

Proposition 3.2.2. Let f, f
′

: X→ Y, g, g
′

: Y → Z = ((Zγ, πZγ ), rγγ′ ,C ) be special

f.p. coherent maps and let F,G be special f.p. coherent homotopies connecting f with

f
′

and g with g
′
, respectively. If the index set C is cofinite, then there is a special f.p.

coherent homotopy connecting g f and g
′
f
′
.

Proposition 3.2.3. If f : X → Y, g : Y → Z and h : Z → W are special f.p.

coherent maps of inverse systems of TopB0
over cofinite index sets, then there is a

special f.p. coherent homotopy connecting h(gf) with (hg)f .
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Proposition 3.2.4. If f : X → Y is a special f.p. coherent map of inverse systems

of TopB0
over cofinite index sets and 1X and 1Y are the f.p. coherent identity maps,

then there exist special f.p. coherent homotopies connecting f 1X with f and 1Y f with

f .

As in [L-M] we can show that whenever the index set B of Y is cofinite, then every

f.p. coherent homotopy class [f ] : X → Y of f.p. coherent maps f : X → Y contains

a unique f.p. coherent homotopy class of special f.p. coherent maps. Consequently,

in the cofinite case one can define composition of f.p. coherent homotopy classes by

composing their special representatives.

Now define the following category. The f.p. coherent prohomotopy category

CPHTopB0
has as objects inverse systems X = ((Xα, πXα), pαα′ ,A ) of topological

spaces over B0 and f.p. maps over directed cofinite index sets. The morphisms are

f.p. coherent homotopy classes [f ] : X → Y of f.p. coherent maps f : X → Y of

such systems. Composition is defined by composing representatives, which are special

f.p. coherent maps. Identity morphism of X is the class, containing the coherent map

1X : X→ X.

Now define the functor C : pro−TopB0
→ CPHTopB0

. Let (fβ, ϕ) : X→ Y be

a map of inverse systems. We associate with (fβ, ϕ) a f.p. coherent map f : X → Y.

For this aim we extend ϕ : B → A to a function ϕ defined for all β = (β0, · · · , βn) in

such a way that

ϕ(β) ≥ ϕ(βj), 0 ≤ j ≤ n.

We use the method of induction. Let n = 1 and β = (β0, β1). Note that

fβ0 pϕ(β0)ϕ(β0,β1) = qβ0β1fβ1 pϕ(β1)ϕ(β0,β1).
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Let fβ : (Xϕ(β) ×∆n, πXϕ(β)×∆n)→ (Yβ0 , πYβ0 ) a f.p. mapping defined by

fβ(x, t) = fβ0pϕ(β0)ϕ(β)(x), x ∈ Xϕ(β), t ∈ ∆n.

Also note that

fβ(x, ∂n0 t) = fβ0pϕ(β0)ϕ(β)(x) = qβ0β1fβ1pϕ(β1)ϕ(β)(x) = qβ0β1fβ0(pϕ(β0)ϕ(β)(x), t)

and

fβ(x, ∂nj t) = fβ0pϕ(β0)ϕ(β)(x) = fβj (pϕ(βj)ϕ(β)(x), t), 0 < j ≤ n,

fβ(pϕ(β)ϕ(βj)(x), σnj t) = fβ0pϕ(β0)ϕ(βj)(x) = fβj (x, t), 0 ≤ j ≤ n.

Let ϕ
′

be another extension of ϕ. We obtain another f.p. coherent map f
′
. Note

that f and f
′

are f.p. coherently homotopic.

Let (fβ, ϕ), (f
′

β, ϕ
′
) : X → Y are equivalent morphisms. As in [L-M] we can show

that the associated f.p. coherent maps f and f
′

are connected by some f.p. coherent

homotopy F : X× I → Y.

Thus, to every morphism of f : X→ Y of pro−TopB0
we can associate a morphism

[f ] = C(f) of CPHTopB0
. If we restrict pro−TopB0

to inverse systems over cofinite

index sets, then we have defined a functor C : pro−TopB0
→ CPHTopB0

.

By definition,

C(f) = [f ], f ∈ Morpro−TopB0
(X,Y),

C(X) = X, X ∈ ob(pro−TopB0
).

C(1Y) is the f.p. coherent homotopy class of 1Y. Let f : X → Y and g : Y → Z

be morphism of pro−TopB0
. As in [L-M] we can prove that C(g f) = C(g) C(f).

Besides, there exists a functor E : CPHTopB0
→ pro −HTopB0

. Assume that
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for each inverse system X = (Xα, pαα′ ,A ) in TopB0
, EX = (Xα, [pαα′ ]B0 ,A ).

Let f : X → Y be a f.p. coherent map given by fβ and ϕ. We associate with f

the morphism f : X→ Y of pro−HTopB0
, given by function ϕ|B : B → A and the

fiber homotopy classes over B0,[fβ0 ]B0 : Xϕ(β0) → Yβ0 .

Note that f is a morphism of pro−HTopB0
. Indeed, for β0 ≤ β1 and α = ϕ(β0, β1)

we have α ≥ ϕ(β0), ϕ(β1). Besides, the f.p. map fβ0β1 : (Xα×∆1, πXα×∆1)→ (Yβ0 , πYβ0 )

satisfies the conditions

fβ0β1(x, ∂
1
0(1)) = qβ0β1fβ1(pϕ(β1)α(x), 1)

and

fβ0β1(x, ∂
1
1(1)) = fβ0(pϕ(β0)α(x), 1).

Thus,

[fβ0 ]B0 [pϕ(β0)α]B0 = [qβ0β1 ]B0 [fβ1 ]B0 [pϕ(β1)α]B0 .

Let f, f
′

: X → Y be f.p. coherent homotopic maps. Let F : X × I → Y be a

f.p. coherent homotopy between f and f
′
, given by Φ and Fβ. Note that Φ(β0) ≥

ϕ(β0), ϕ
′
(β0) and Fβ0 : XΦ(β0)×I×∆0 → Yβ0 is a f.p. map satisfying conditions

Fβ0(x, 0, 1) = fβ0(pϕ(β0)Φ(β0)(x), 1)

and

Fβ0(x, 1, 1) = f
′

β0
(pϕ′ (β0)Φ(β0)(x), 1).

Consequently,

[fβ0 ]B0 [pϕ(β0)Φ(β0)]B0 = [f
′

β0
]B0 [pϕ′ (β0)Φ(β0)]B0 .
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Thus, with f and with f
′

is associated the same morphism of pro − HTopB0
.

Consequently, it is possible to define a functor E : CPHTopB0
→ pro−HTopB0

.

The composition E ◦C : pro−TopB0
→ pro−HTopB0

is the functor induced by

the f.p. homotopy functor H : TopB0
→ HTopB0

.

A f.p. coherent map f : X → Y consists of f.p. maps fβ : (X × ∆n, πX×∆n) →

(Yβ0 , πYβ0 ),β = (β0, · · · , βn) ∈ B, n ≥ 0, satisfying the following conditions: for each

x ∈ X, t ∈ ∆n−1, n > 0

fβ(x, ∂nj t) =


qβ0β1fβ0(x, t), j = 0,

fβj (x, t), 0 < j ≤ n

and for each x ∈ X, t ∈ ∆n+1, n ≥ 0

fβ(x, σnj t) = fβj (x, t), 0 ≤ j ≤ n.

Note that a f.p. coherent map f : X → Y is always a special f.p. coherent map.

A f.p. coherent homotopy F : X × I → Y, connecting f and f
′
, is a f.p. coherent

map given by Fβ and satisfying the conditions: for each x ∈ X, t ∈ ∆n

Fβ(x, 0, t) = fβ(x, t)

and

Fβ(x, 1, t) = f
′

β(x, t).

Let p = (pα) : X → X be a morphism of pro − TopB0
. It is clear that with p is

associated a unique f.p. coherent map p : X → X given by formula

pα(x, t) = pα0(x),
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where α = (α0, · · · , αn) ∈ A n, x ∈ X, t ∈ ∆n.

The objects of category SSHB0 are all topological spaces over B0. The morphisms

of category SSHB0 are defined by the following way.

Let p : X → X and q : Y → Y be an ANRB0-resolutions of X and Y , respectively.

Let [f ] : X → Y be a some morphism of category CPHTopB0
. Let p

′
: X → X

′
,

q
′

: Y → Y
′
,[f
′
] : X

′ → Y
′

be another triple of fiber resolutions of spaces X and Y

over B0 and morphism of category CPHTopB0
.

Now define the following equivalence relation. We say the triples (p,q, [f ]) and

(p
′
,q
′
, [f

′
]) are equivalent if

[f
′
] [i] = [j] [f ],

where [i] : X→ X
′

and [j] : Y → Y
′

are isomorphisms of category CPHTopB0
.

The fiber strong shape morphisms F : (X, πX)→ (Y, πY ) are the equivalence classes

of triples (p,q, [f ]) with respect to the above defined relation ∼.

Let F : (X, πX) → (Y, πY ) and G : (Y, πY ) → (Z, πZ) be the fiber strong shape

morphisms, defined by triples (p,q, [f ]) and (p
′
,q
′
, [g]), where p

′
: (Y, πY ) → Y

′
,

q
′
: (Z, πZ)→ Z and [g] : Y

′ → Z.

As we know there exists an unique morphism [h] : Y → Y
′
of category CPHTopB0

such that [h] [q] = [q
′
]. Note that

[j][q] = [q
′
] = [h] [q].

Hence, [j] = [h]. Besides, [g] [j] = [g] [h] [1Z].

Thus, we can assume that the morphisms F and G are given by triples (p,q, [f ])

and (q, r, [g]).

Consequently, we can define the composition G F : X → Z as the morphism given
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by triple (p, r, [g] [f ]).

In the role an identity morphism I : X → X we can take the morphism defined

by triple (p,p, [1X ]).

The obtained category SSHB0 call the fiber strong shape category.

Let X ∈ ob(SSHB0). By symbol sshB0(X) denote the equivalence class of topolog-

ical space (X, πX) and call the fiber strong shape of (X, πX).

For each f.p. map ϕ : (X, πX)→ (Y, πY ) choose ANRB0-resolutions p : (X, πX)→

X and q : (Y, πY ) → Y. There exists a unique morphism [f ] : X → Y of category

CPHTopB0
such that [q] [ϕ] = [f ] [p].

We can define a functor SS
′

B0
: TopB0

→ SSHB0 . By definition,

SS
′
(X) = X, X ∈ ob(TopB0

)

and

SS
′
(ϕ) = Φ, ϕ ∈ MorTopB0

(X, Y ).

Here Φ is a fiber strong shape morphism defined by triple (p,q, [f ]).

As in [L-M] we can prove that functor SS
′

B0
induces a functor SSB0 : HTopB0

→

SSHB0 , which we call the fiber strong shape functor. By definition,

SSB0(X) = X,X ∈ ob(HTopB0
)

and

SSB0([ϕ]B0) = SS
′
(ϕ), [ϕ]B0 ∈ MorHTopB0

(X, Y ).

Let us define a functor S : SSHB0 → SHB0 . Assume that S(X) = X for each

object X ∈ ob(SSHB0). Let F : (X, πX) → (Y, πY ) be a fiber strong shape morphism
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given by a triple (p,q, [f ]).

Consider the morphism E([f ]) as an image of [f ] with respect the functor E :

CPHTopB0
→ pro − HTopB0

. The triple (Hp,Hq,E[f ]) generates a fiber shape

morphism, which we denote by S(F ) : (X, πX)→ (Y, πY ).

Now we can formulate the following

Theorem 3.2.5. There exists a commutative diagram

SHB0

HTopB0

SSHB0 ,

SB0

S

SSB0

where SB0 is V.Baladze fiber shape functor [B4].

Corollary 3.2.6. Let (X, πX) and (Y, πY ) be topological spaces over B0. If sshB0(X) =

sshB0(Y ), then shB0(X) = shB0(Y ).

Remark 3.2.7. Using the methods developed in this paper and papers ( [B10], [L-

M], [M2], [M3]) it is possible to construct fiber strong shape theory for category of

arbitrary continuous maps.



Conclusion

The basic achievements made in the thesis are as follows:

1. The study of Borsuks fiber pairs and investigation of their properties.

2. The definition of fiber strong shape deformation retracts, so called SSDRB0-maps

and investigation of their properties.

3.The definition of fibrant spaces over B0 and establishment of their properties.

4. The construction of fiber cotelescope of inverse sequence of spaces over B0 and

study of their properties.

5. The construction of fiber strong shape classification of compact metric spaces

by means of fiber cotelescope, fibrant spaces over B0 and fiber resolutions.

6. The characterization of fiber strong shape equivalences by means of double map

cylinder.

7. The introduction of a concept of fiber strong ANRB0-extension and proof of its

existence theorem.

8. The constructions of fiber strong shape category SSHB0 of general topolog-

ical spaces, the fiber strong shape functor SSB0 : HTopB0 → SSHB0 , the functor

S:SSHB0 → SHB0 with values in V. Baladzes fiber shape category SHB0 and proof

of the equality S · SSB0 = SB0 , where SB0 : HTopB0 → SHB0 is V.Baladze fiber shape

functor [B4].
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[L-M] J.T. Lisica, S. Mardešić, Coherent prohomotopy and strong shape theory, Glas-

nik Mat., 19(1984), 335-399.

[M1] S. Mardešić, Shapes of topological spaces. General Topology Appl., 3 (1973),

265-282.
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