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ONE BOUNDARY VALUE PROBLEM FOR THE PLATES

Gulua B.

Abstract. In this work we consider equations of equilibrium of the isotropic elastic shell.

By means of Vekua’s method, the system of differential equations for thin and shallow shells

is obtained, when on upper and lower face surfaces displacements are assumed to be known.

The general solution for approximations N = 1 is constructed. The concrete problem is

solved.

Keywords and phrases: Stress vectors, displacement vector, shallow shells.

AMS subject classification (2010): 74K25, 74B20.

1. Introduction

The refined theory of shells is constructed by reducing the three-dimensional prob-
lems of the theory of elasticity to the two-dimensional problems. I. Vekua had obtained
the equations of shallow shells [1],[2]. It means that the interior geometry of the shell
does not vary in thickness. This method for non-shallow shells in case of geometrical
and physical nonlinear theory was generalized by T. Meunargia [3].

By means of Vekua’s method, the system of differential equations for thin and
shallow shells was obtained, when on upper and lower face surfaces displacements are
assumed to be known [4].

The systems of equilibrium equations and stress-strain relations (Hooke’s law) of
the tow-dimensional shallow shells may be written in the following form [4]:

∇α

(m)
σ αβ − bβα

(m)
σ α3 +

2m+ 1

h

(
(m+1)
σ β3 +

(m+3)
σ β3 + ...

)
+

(m)

Φ
β = 0,

∇α

(m)
σ α3 + bβα

(m)
σ α

β +
2m+ 1

h

(
(m+1)
σ 33 +

(m+3)
σ 33 + ...

)
+

(m)

Φ
3 = 0,

(1)

where

(m)
σ αβ = λ

[
∇γ

(m)
u γ − 2H

(m)
u 3 − 2m+ 1

h

(
(m−1)
u 3 +

(m−3)
u 3 + · · ·

)]
aαβ

+µ

(
∇β (m)

u α +∇α (m)
u β − 2bαβ

(m)
u 3

)
+ λ

2m+ 1

h

(
(+)
u 3 − (−1)m

(−)
u 3

)
aαβ,

(m)
σ α3 = µ

[
∇α (m)

u 3 + bαβ
(m)
u β − 2m+ 1

h

(
(m−1)
u α +

(m−3)
u α + · · ·

)]
+µ

2m+ 1

h

(
(+)
u α − (−1)m

(−)
u α

)
,

(m)
σ 33 = λ

(
∇γ

(m)
u γ − 2H

(m)
u 3

)
− (λ+ 2µ)

2m+ 1

h

(
(m−1)
u 3 +

(m−3)
u 3 + · · ·

)
+(λ+ 2µ)

2m+ 1

h

(
(+)
u 3 − (−1)m

(−)
u 3

)
.

(2)
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Here λ and µ are Lame’s constants, ∇α are covariant derivatives on the midsurface, aαβ

and bαβ are the contravariant components of the metric tensor and curvature tensor of
the midsurface, H is middle curvature of the midsurface and(

(m)
σ ij,

(m)
u i,

(m)

Φ
i

)
=
2m+ 1

2h

h∫
−h

(
σij, ui,Φi

)
Pm

(x3
h

)
dx3,

(m = 0, 1, 2, · · ·)
(±)
u i = ui(x1, x2,±h),

where σij are contravariant components of the stress vectors, ui are contravariant com-
ponents of the displacement vector, Φi are contravariant components of the volume

force, Pm

(
x3

h

)
are Legendre polynomials, x1, x2 are the Gaussian parameters of the

midsurfaces, x3 = x3 is the thickness coordinate and h is the semi-thickness. So, we
have the infinite system.

An infinite system of equations (1) has the advantage that it contains two indepen-
dent variables - Gaussian coordinates x1, x2 of the midsurface. But the decrease in
the number of independent variables is achieved by increasing the number of equations
to infinity, which, naturally, has an obvious practical inconvenience. Therefore it is
necessary to make the next step for a further simplification of the problem.

2. N = 1 approximation for plates

we consider N = 1 approximation for plates. In other words, in the previous
equations it is assumed that

(m)
σ ij = 0,

(m)
u i = 0, if m > 1.

As a result we obtain a finite system of equilibrium equations
∂α

(0)
σαβ +

1

h

(1)
σβ3 +

(0)

Φβ = 0,

∂α
(0)
σα3 +

1

h

(1)
σ33 +

(0)

Φ3 = 0,

(3)


∂α

(1)
σαβ +

(1)

Φβ = 0,

∂α
(1)
σα3 +

(1)

Φ3 = 0,

(4)

where 

(0)
σαβ = λ

(
∂γ

(0)
uγ

)
δαβ + µ

(
∂β

(0)
uα + ∂α

(0)
uβ

)
+
λ

h

(
(+)
u 3 −

(−)
u 3

)
δαβ,

(0)
σα3 = µ

(
∂α

(0)
u3

)
+
µ

h

(
(+)
uα −

(−)
uα

)
,

(0)
σ33 = λ

(
∂γ

(0)
uγ

)
+
λ+ 2µ

h

(
(+)
u 3 −

(−)
u 3

)
,

(5)
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

(1)
σαβ = λ

(
∂γ

(1)
uγ −

3

h

(0)
u3

)
δαβ + µ

(
∂β

(1)
uα + ∂α

(1)
uβ

)
+

3λ

h

(
(+)
u 3 +

(−)
u 3

)
δαβ,

(1)
σα3 = µ

(
∂α

(1)
u3 −

3

h

(0)
uα

)
+

3µ

h

(
(+)
uα +

(−)
uα

)
,

(1)
σ33 = λ

(
∂γ

(1)
uγ

)
− 3(λ+ 2µ)

h

(0)
u3 +

3(λ+ 2µ)

h

(
(+)
u 3 +

(−)
u 3

)
.

(6)

Substituting these expressions (5) and (6) into equation (3) and (4), we obtain the
system of second-order partial differential equations:

µ∆
(0)
u1 + (λ+ µ)∂1

(0)

θ +
1

h

(
µ∂1

(1)
u3 −

3µ

h

(0)
u1

)
=

(0)

Ψ1,

µ∆
(0)
u2 + (λ+ µ)∂2

(0)

θ +
1

h

(
µ∂2

(1)
u3 −

3µ

h

(0)
u2

)
=

(0)

Ψ2,

µ∆
(0)
u3 +

1

h

(
λ

(1)

θ −3(λ+ 2µ)

h

(0)
u3

)
=

(0)

Ψ3,

(7)



µ∆
(1)
u1 + (λ+ µ)∂1

(1)

θ −3λ

h
∂1

(0)
u3 =

(1)

Ψ1,

µ∆
(1)
u2 + (λ+ µ)∂2

(1)

θ −3λ

h
∂2

(0)
u3 =

(1)

Ψ2,

µ∆
(1)
u3 −

3µ

h

(0)

θ =
(1)

Ψ3,

(8)

where
(m)

Ψi are the known values and

(m)

θ = ∂1
(m)
u 1 + ∂2

(m)
u 2, m = 0, 1.

Introducing the well-known differential operators

∂z =
1

2
(∂1 − i∂2), ∂z̄ =

1

2
(∂1 + i∂2),

where z = x1 + ix2.
System (7) and (8) can be written in the complex form:
a) for the tension-pressure of plates

µ∆
(0)
u+ + 2(λ+ µ)∂z̄

(0)

θ +
1

h

(
2µ∂z̄

(1)
u3 −

3µ

h

(0)
u+

)
=

(0)

Ψ+,

µ∆
(1)
u3 −

3µ

h

(0)

θ =
(1)

Ψ3,

(9)

b) for the bending of plates
µ∆

(1)
u+ + 2(λ+ µ)∂z̄

(1)

θ −6λ

h
∂z̄

(0)
u3 =

(1)

Ψ+,

µ∆
(0)
u3 +

1

h

(
λ

(1)

θ −3(λ+ 2µ)

h

(0)
u3

)
=

(0)

Ψ3,

(10)
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where ∆ = 4
∂2

∂z∂z̄
and

(m)
u + =

(m)
u 1 + i

(m)
u 2,

(m)

θ = ∂z
(m)
u z + ∂z̄

(m)

ū +,
(m)

Ψ+ =
(m)

Ψ1 + i
(m)

Ψ2.

The complex representation of the general solutions of the homogenous systems (9)
and (10) are written in the following form [2, 5]:

(0)
u+ = f(z) + zf ′(z) +

4(λ+ 2µ)h2

3µ
f ′′(z) + g′(z)− ih

3

∂ω(z, z̄)

∂z̄
,

(1)
u3 =

3

2h

(
z̄f(z) + zf(z)

)
+

3

2h

(
g(z) + g(z)

)
,

(11)


(1)
u+ =

5λ+ 6µ

3λ+ 2µ
φ(z)− zφ′(z)− ψ(z) +

λh

2(λ+ µ)

∂χ(z, z̄)

∂z̄
,

(0)
u3 = χ(z, z̄) +

2λh

3(3λ+ 2µ)

(
φ′(z) + φ′(z)

)
,

(12)

where f(z), g(z), φ(z) and ψ(z) are any analytic functions of z, ω(z, z̄) and χ(z, z̄) are
the general solutions of the following Helmholtz’s equations, respectively:

∆ω − γ2ω = 0,

(
γ2 =

3

h2

)
,

∆χ− ν2χ = 0,

(
χ2 =

12(λ+ µ)h2

λ+ 2µ

)
.

From eqs. (5), (6) the following relations follow

(0)
σ11 +

(0)
σ22 = 2(λ+ µ)

(0)

θ ,
(0)
σ11 −

(0)
σ22 + 2i

(0)
σ12 = 4µ∂z̄

(0)
u+,

(1)
σ11 +

(1)
σ22 = 2(λ+ µ)

(1)

θ −6λ

h

(0)
u3,

(1)
σ11 −

(1)
σ22 + 2i

(1)
σ12 = 4µ∂z̄

(1)
u+,

(0)
σ13 + i

(0)
σ23 = 2µ∂z̄

(0)
u3,

(1)
σ13 + i

(1)
σ23 = 2µ∂z̄

(1)
u3 −

3µ

h

(0)
u+.

(13)

3. The solution of the boundary problem for the circle

Let us solve the problem when the midsurface of the body is the circle with the
radius R.

The boundary problem (in stresses) takes the form [3]:
(m)
σ rr + i

(m)
σ rα =

1

2

[
(m)
σ 11 +

(m)
σ 22 −

(
(m)
σ 11 −

(m)
σ 22 + 2i

(m)
σ 12

)(
dz̄

ds

)2
]
=

(m)

F +,

(m)
σ rn = −Im

(
(m)
σ +3

dz̄

ds

)
=

(m)

F 3,

(
(m)
σ +3 =

(m)
σ 13 + i

(m)
σ 23

)
.

(14)



One Boundary Value Problem for the Plates 7

Using eqs. (12) and (13) the boundary conditions are written as

(λ+ µ)(f ′(z) + f ′(z)) +
(
2µzf ′′(z) +

8(λ+ 2µ)

3
f ′′′(z)

+2µg′′(z)− 2µih

3

∂2ω(z, z̄)

∂z̄2

)
e−2iα =

+∞∑
−∞

An1e
inα, r = R,

µ

2h

(
ih
∂ω

∂z̄
− 4(λ+ 2µ)h2

3µ
f ′′(z)

)
e−iα

− µ

2h

(
ih
∂ω(z, z̄)

∂z̄
+

4(λ+ 2µ)h2

3µ
f ′′(z)

)
eiα =

+∞∑
−∞

Bn1e
inα, r = R,

(15)



2µ(φ′(z) + φ′(z))− 3λµ

(λ+ 2µ)h
χ(z, z̄)

+2µ
( λh

2(λ+ µ)

∂2χ(z, z̄)

∂z̄2
− zφ′′(z)− ψ′(z)

)
e−2iα =

+∞∑
−∞

An2e
inα, r = R,(

µ
∂χ(z, z̄)

∂z̄
+

2λµh

3(3λ+ 2µ)
φ′′(z)

)
e−iα

+
(
µ
∂χ(z, z̄)

∂z
+

2λµh

3(3λ+ 2µ)
φ′′(z)

)
eiα =

+∞∑
−∞

Bn2e
inα, r = R.

(16)

Inside the domain the analytic functions f(z), g(z), φ(z) and ψ(z) will have the
following form:

f(z) =
+∞∑
n=1

ane
inα, g(z) =

+∞∑
n=0

bne
inα, (17)

φ(z) =
+∞∑
n=1

cne
inα, ψ(z) =

+∞∑
n=1

dne
inα. (18)

Solutions of the Helmholtz equations ω(z, z̄) and χ(z, z̄) inside of the domain are rep-
resented as follows

ω(z, z̄) =
+∞∑
−∞

αnIn(γr)e
inα, (19)

χ(z, z̄) =
+∞∑
−∞

βnIn(νr)e
inα, (20)

where In(·) are Bessel’s modified functions.
In the boundary conditions (15) we substitute the corresponding expressions (17),

(19) and compare the coefficients at identical degrees. We obtain the following system
of equations

(λ+ µ)(n+ 1)Rnan+1 −
µi

2h
In+2(γR)αn = An1,

iµγ

4

(
In+1(γR)− In−1(γR)

)
αn − 2(λ+ 2µ)n(n+ 1)Rn−1an+1 = Bn1[

(λ+ µ)Rn + 2µnRn−1 +
8(λ+ 2µ)h2

3
(n− 1)nRn−2

]
(n+ 1)an+1

+2µ(n− 1)nbn = Ā−n1.

(21)
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The solutions of the system (21) have the following forms:

Rea1 =
ReA01

2(λ+ µ)
, α0 = −2hImA01

µI2(γR)
,

an+1 =
2In+2(γR)Bn1 + (In+1(γR)− In−1(γR))γhAn1

(n+ 1)Rn−1((λ+ µ)(In+1(γR)− In−1(γR))γhR− 4(λ+ 2µ)nIn+2(γR))
,

αn =
2h[(n+ 1)(λ+ µ)Rnan+1 − An1]

µiIn+2(γR)
,

bn =
Ā−n1

2µn(n− 1)
−
[
(λ+ µ)Rn

2µn(n− 1)
+
Rn−1

n− 1
+

4(λ+ 2µ)h2Rn−2

3

]
(n+ 1)an+1.

Now by substituting (18), (20) into (16) we obtain the system of algebraic equations:

3λµ

(λ+ 2µ)h

(
In+2(νR)− In(νR)

)
βn + 2µ(n+ 1)Rncn+1 = An2,

µν

2

(
In+1(νR) + In−1(νR)

)
βn +

2λµh

3(3λ+ 2µ)
n(n+ 1)cn+1 = Bn2,

3λµ

(λ+ 2µ)h

(
In−2(νR)− In(νR)

)
βn + 2µ(n+ 1)(1− n)Rncn+1

−2µ(n− 1)Rn−2dn−1 = Ā−n2.

(22)

For coefficients cn, dn and βn we have:

cn+1 =
(3λ+ 2µ)[6λI ′n(νR)Bn2 − (λ+ 2µ)h2I ′′n(νR)An2]

4λ2µhn(n+ 1)Rn−1I ′n(νR)− 2(λ+ 2µ)(3λ+ 2µ)µh2(n+ 1)RnI ′′n(νR)
,

βn =
(λ+ 2µ)h(An2 − 2µ(n+ 1)Rncn+1)

3λµI ′n(νR)

dn−1 =
3λ

(
In−2(νR)− In(νR)

)
2(λ+ 2µ)h(n− 1)Rn−2

βn − (n+ 1)R2cn+1 −
Ā−n2

2µ(n− 1)Rn−2
,

β0 =
B02

µνI1(νR)
, Rec1 =

ReA02

4µ
− 3λI ′0(νR)B02

(λ+ 2µ)νhI1(νR)
,

where
I ′n(νR) = In+2(νR)− In(νR), I ′′n(νR) = In+1(νR) + In−1(νR).

It is easy to prove that the absolute and uniform convergence of the series obtained
in the circle (including the contours) when the functions set on the boundaries have
sufficient smoothness.
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Abstract. A simple algorithm for construction of the approximate solution of some classical

and nonlocal boundary value problems of the mathematical physics is considered. The effi-

ciency of the offered algorithm for construction of the approximate solutions of problems is

shown on the examples of two-dimensional classical and nonlocal boundary value problems

of the theory of elasticity and for two-dimensional equations of Laplace and Helmholtz.

Keywords and phrases: Boundary value problems, approximate solution, nonlocal prob-

lems.
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1. Introduction

In this work a simple algorithm for construction of the approximate solution of some
boundary value problems of the mathematical physics is considered. The mentioned
algorithm has been offered in [1]. We may call a considered method a semi-analytical
method. From the approximate methods known in the literature it is the closest to a
method of fundamental solutions [2-4] and a boundary elements method [5-9].

In the work the main relations of the offered method for the problems of the two-
dimensional equations of Laplace and Helmholtz and for problems of the plane theory of
thermoelasticity are obtained. By means of this method the approximate solutions for
several classical boundary value problems and nonlocal problems of Bitsadze-Samarskii
type [10-21] are constructed and exact solutions of these problems are known in ad-
vance. The relevant exact and approximate solutions are compared with each other
and appropriate conclusions are drawn.

2. Problems for the Laplaces two dimensional equation

Let Oxy be a rectangular cartesian coordinate system on the plane. We consider
the Laplace equation

∆u = 0, (1)

where ∆(·) = (·),xx + (·),yy is a two-dimensional laplacian, (·),x ≡ ∂(·)
∂x

, (·),y ≡ ∂(·)
∂y

;

u(x, y) is a scalar function.

First we consider the simply connected domain Ω with a sufficiently smooth bound-
ary L . The domain Ω covers the origin of coordinates. On a contour L the 2N + 1
points with coordinates of (x1, y1), (x2, y2), ..., (x2N+1, y2N+1) are more or less evenly
distributed (Fig. 1).
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The approximate solution is sought in the form of

ū = a0 +
N∑

n=1

rn(x, y)[an cos(nθ(x, y)) + bn sin(nθ(x, y))], (2)

where a0, a1, · · · , an, b1, · · · , bn are sought-for real coefficients; r(x, y) =
√
x2 + y2,

θ(x, y) =



arctan
y

x
, x > 0,

arctan
y

x
+ π, x < 0, y ≥ 0,

arctan
y

x
− π, x < 0, y < 0,

π

2
, x = 0, y > 0,

−π
2
, x = 0, y < 0.

The partial derivatives of ū(x, y) are expressed by the formulas

ū,x =
N∑

n=1

nrn−1(x, y)[an cos((n− 1)θ(x, y)) + bn sin((n− 1)θ(x, y))],

ū,y =
N∑

n=1

nrn−1(x, y)[−an sin((n− 1)θ(x, y)) + bn cos((n− 1)θ(x, y))].

(3)

Fig. 1. The simply connected domain Ω

The algorithm of construction of the approximate solution is stated on the example
of the classical mixed boundary value problem. The contour L is divided into two
contours L1 and L2 so that by L1

∩
L2 = ∅ and L1

∩
L2 = L (Fig. 1). Let us

assume that the contour L1 includes points of (x1, y1), (x2, y2), · · · , (xN1 , yN1) and the
contour L2 includes points of (xN1+1, yN1+1), (xN1+2, yN1+2), · · · , (x2N+1, y2N+1) . On
the contour L1 the value of the sought-for function is set, and on the contour L2 - of
the value of its normal derivative{

u|L1 = f1(x, y), (x, y) ∈ L1

u,n|L2 = f2(x, y), (x, y) ∈ L2,
(4)
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where f1(x, y) and f2(x, y) are the functions defined on the boundary; (·),n derivative
in the direction n⃗ = (cosα, sinα), i. e.

u,n = u,x cosα+ u,y sinα. (5)

External unit normal in a point (xj, yj) on the boundary is designated through
(cosαj, sinαj).

When j = 1, 2, · · · , N1 in the formula (2) x and y are replaced through xj and
yj respectively. The expressions obtained f1(xj, yj) are equated to the corresponding
values of the boundary conditions (4). Similarly, when j = N1 +1, N1 +2, · · · , 2N +1
in the formula (3) x and y are replaced through xj and yj. The expressions received are
substituted in (4), where instead of α value αj is substituted. The resulting expressions
are equated to the corresponding values f2(xj, yj) of the boundary conditions (4).

Thus, we obtain the system of the linear algebraic 2N + 1 equations with 2N + 1
unknown a0, a1, ..., aN , b1, ..., bN

a0 +
N∑

n=1

(A1njan + A2njbn) = f1(xj, yj), j = 1, 2, · · · , N1,

N∑
n=1

(B1njan +B2njbn) = f2(xj, yj), j = N1 + 1, N1 + 2, · · · , 2N + 1,

(6)

where
A1nj = rn(xj, yj) cos(nθ(xj, yj)),

A2nj = rn(xj, yj) sin(nθ(xj, yj)),

B1nj = nrn−1(xj, yj)[cos((n− 1)θ(xj, yj)) cosαj + sin((n− 1)θ(xj, yj)) sinαj],

B2nj = nrn−1(xj, yj)[− sin((n− 1)θ(xj, yj)) cosαj + cos((n− 1)θ(xj, yj)) sinαj].

After solving the system (6), its solution (a0, a1, ..., aN , b1, ..., bN) is substituted in
the formula (2) and thus we’ve got the approximate solution of a boundary value
problem (1), (4).

Example 1. As an example we consider a classical problem of Dirichlet in elliptic
domain V = {(x, y)| x2 + 4y2 < 1} . The boundary of domain V is the ellipse of S,
which is set parametrically x = cos t, y = 0.5 sin t, 0 ≤ t < 2π. Thus, the following
problem is considered

∆u = 0 in V,

u|S = 0.5(x2 + y2)|(x,y)∈S.
The exact solution of this problem is the following function

u = 0.2 + 0.3(x2 − y2).

On the boundary S the points
(
cos

π

36
(j− 1), 0.5 sin

π

36
(j− 1)

)
, j = 1, 2, ..., 71 are

marked (Fig. 2). The approximate solution is sought in the form (2), where N = 35.
Meeting the boundary conditions in the marked points, we’ve got the system of the
algebraic 71 equations with 71 unknown.
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Fig. 2. The domain V with the points marked on the boundary

After solving this system, the resulting solution is substituted in (2) ( N = 35) and
we’ve got the approximate solution.

The appropriate program is made in the Maple12. Numerical results are specified
in Table 1.

Tab. 1. Numerical results for the problem 1

(x, y) ū(x, y) u(x, y) |ū(x, y)− u(x, y)|
(0.01, 0) 0.2000300000 0.20003 0
(0.1, 0) 0.2030000000 0.20300 0
(0.5, 0) 0.2750000000 0.27500 0
(0.9, 0) 0.4429999995 0.44300 5.0 · 10−10

(0.2,−0.2) 0.2000000000 0.20000 0
(0, 0.3) 0.1730000000 0.17300 0
(0.8, 0.1) 0.3890000001 0.38900 10−10

As Table 1 shows the constructed approximate solution may be called the exact
solution of the problem of Dirichlet.

The approximate solutions for multi-connected domains are constructed analo-
gously. For simplicity the doubly connected domain Ω, bounded by the simple closed
contours L1 and L2 is considered from which the last one embraces the latter and the
previous embraces the origin of coordinates. On these contours the points 2(2N + 1)
with the coordinates (x1, y1), (x2, y2), ..., (x2(2N+1), y2(2N+1)) are more or less evenly dis-
tributed (Fig. 3).

Fig. 3. The doubly connected domain Ω
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The approximate solution is sought in the following form

ū = a ln r(x, y) + a0 +
N∑

n=1

r−n(x, y)[an cos(nθ(x, y)) + bn sin(nθ(x, y))]

+rn(x, y)[cn cos(nθ(x, y) + dn sin(nθ(x, y))].

(7)

Partial derivatives of ū(x, y) function are expressed by means of the formulas

ū,x =
ax

r2(x, y)
+

N∑
n=1

−nr−n−1(x, y)[an cos((n+ 1)θ(x, y))

+bn sin((n+ 1)θ(x, y))] + nrn−1(x, y)[cn cos((n− 1)θ(x, y))

+dn sin((n− 1)θ(x, y))],

(8)

ū,y =
ay

r2(x, y)
+

N∑
n=1

−nr−n−1(x, y)[an sin((n+ 1)θ(x, y))

−bn cos((n+ 1)θ(x, y))] + nrn−1(x, y)[−cn sin((n− 1)θ(x, y))

+dn cos((n− 1)θ(x, y))],

(9)

Using the formulas (7)-( 9), (5) of the simply connected domain considered above,
the boundary conditions are satisfied point-wise in the points selected on the boundary.
As a result the we’ve got a system of the linear algebraic 4N +2 equations with 4N +2
unknowns a, a0, a1, ..., aN , b1, ..., bN , c1, ..., cN , d1, ..., dN .

The considered way can be applied to construct the approximate solution of rather
a wide class of tasks for harmonic functions. The example of construction of the ap-
proximate solution of nonlocal problem of Bitsadze-Samarskii for the doubly connected
domain bounded by the rectangular contours is given below.

Example 2. Let the domain V represent the doubly connected domain V =
V1\V 2, where V1 = {−2 < x < 3,−2 < y < 2}, V2 = {−1 < x < 1,−1 < y < 1} (Fig.
4). We consider below the nonlocal problem of Bitsadze-Samarskii

∆u = 0 in V,

u(−2, y) = − 2

4 + y2
− y2 + 20, −2 ≤ y ≤ 2,

u(x,±2) =
x

x2 + 4
+ x2 − 5x+ 2, −2 < x ≤ 3,

u(3, y)− u(2, y) =
3

9 + y2
− 2

4 + y2
, −2 < y < 2,

u,x(−1, y) =
y2 − 1

(y2 + 1)2
− 7, −1 ≤ y < 1,

u,y(x,±1) = ∓
( 2x

(x2 + 1)2
+ 2

)
, −1 ≤ x < 1,
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u,x(1, y) =
y2 − 1

(y2 + 1)2
− 3, −1 < y ≤ 1.

The exact solution of this problem is as follows

u(x, y) =
x

x2 + y2
+ x2 − 5x− y2 + 6.

Fig. 4. Doubly connected domain V , in which nonlocal problem is solved

On an external contour beginning from the point (3, 0), with a step 0.5 points 36 are
marked. Analogously, on an internal contour beginning from a point (1, 0), with the
same frequency 16 more points are marked. On an internal contour two more points
with coordinates (0.75,−1.0) and (−0.75, 1.0) are marked. In fig. 4 also 7 points
are marked on the segment inside the body where nonlocal conditions are set. The
approximate solution sought in the form (7), where N = 13. Boundary and nonlocal
conditions are satisfied in the marked points.

The solution of the nonlocal problem is tabulated to solution of the problem of
system of the linear algebraic 54 equations with 54 unknown. After solving this system,
the resulting solution is substituted in (7) (N = 13) and we’ve got the approximate
solution.

The appropriate program is made in the Maple 12. Numerical results are presented
in Table 2.

Tab. 2. Numerical results for a problem 2

(x, y) ū(x, y) u(x, y) |ū(x, y)− u(x, y)|
(2.0, 0) 0.5000066859 0.5 6.66859 · 10−6

(1.6, 1.8) −2.404136519 −2.404137931 1.412 · 10−6

(0.4, 1.74) 1.257888466 1.257886259 2.203 · 10−6

(−1.43,−2.25) 9.931201879 9.931201249 6.3 · 10−7

(0.7,−1.23) 1.826596858 1.826593235 3.623 · 10−6

(−1.5, 1.5) 13.16666710 13.16666667 4.3 · 10−7

(3.0,−2.0) −3.769230771 −3.769230769 2.0 · 10−9

3. Problems of the plane theory of thermoelasticity

Let consider the plane deformation parallel to the plane Oxy for the homogeneous
transversely isotropic thermoelastic body.
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If the plane of an isotropie is parallel to the Oxy plane then the homogenous system
of the equations of thermoelastic equilibrium in displacements has the form [22, 23, 25]

µ∆u+
1

2

E1E2

(1− ν1)E2 − 2ν22E1

(u,x + v,y),x − βT,x = 0,

µ∆v +
1

2

E1E2

(1− ν1)E2 − 2ν22E1

(u,x + v,y),y − βT,y = 0,

(10)

where µ are shear modulus µ =
E1

2(1 + ν1)
; ν1, ν2 and E1, E2 Poisson’s coefficients and

Young’s modulus in the Oxy and in the direction of perpendicular thereto, respectively.
u and v are components of the displacement vector along axes x and y, respectively;

β constant depending on the thermal properties of material β =
E1E2(α1 + ν2α2)

(1− ν1)E2 − 2ν22E1

;

α1, α2 are the coefficients of the linear thermal expansion; T is the temperature changes
in the elastic body satisfying the Laplace equation

∆T = 0. (11)

Duhamel-Neumann relations has the form

σxx =
2µ

(1− ν1)E2 − 2ν22E1

[(E2 − ν22E1)u,x + (ν1E2 + ν22E1)v,y]− βT,

σyy =
2µ

(1− ν1)E2 − 2ν22E1

[(ν1E2 + ν22E1)u,x + (E2 − ν22E1)v,y]− βT,

σxy = σyx = µ(u,y + v,x),

σzz =
ν2E1E2

(1− ν1)E2 − 2ν22E1

(u,x + v,y)− βT,

(12)

where σxx, σyy, σxy, σzz are components of the stresses tensor. Other components of a
tensor of stresses in case of plane deformation equal to zero.

Next, we construct the general representation of the system of equations (10) by
means of harmonic functions (Kolosov-Muskhelishvilis formula).

The first equation of the system (10) is differentiated by x, the second - by y and
are added up. Given the fact, that we’ve got the T harmonic function

∆[(c+ µ)(u,x + v,y)] = 0, (13)

where denotation is entered

c :=
1

2

E1E2

(1− ν1)E2 − 2ν22E1

.

If the second equation of the system (10) is differentiated by x , and the first equation
is differentiated by y and to consider their difference, we’ll obtain

∆[µ(v,x − u,y)] = 0. (14)
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The notation is introduced

θ := (c+ µ)(u,x + v,y), ω := µ(v,x − u,y). (15)

Thus, according to (13) and (14), θ and ω are harmonic functions

∆θ = 0, ∆ω = 0. (16)

According to notation (15) 
u,x + v,y =

θ

c+ µ

v,x − u,y =
ω

µ

(17)

From (17) there follows

∆u =
θ,x
c+ µ

− ω,y

µ
, ∆v =

θ,y
c+ µ

+
ω,x

µ
. (18)

Formulas (18) are substituted in the system (10) and the notation introduced in this
section are accounted {

(θ − βT ),x − ω,y = 0,
(θ − βT ),y + ω,x = 0.

(19)

As θ and ω are harmonic functions, from (19) we have

θ = aφ+ βT = 0.5[(aφ∗ + βT ∗),x + (aφ̃+ βT̃ ),y], (20)

ω = 0.5a(−φ∗
,y + φ̃,x), (21)

where a is any real constant other than zero; φ∗, φ̃ and T ∗, T̃ are the mutually conjugate
harmonic functions

φ∗
,x = φ̃,y = φ, φ∗

,y = −φ̃,x,

T ∗
,x = T̃,y = T, T ∗

,y = −T̃,x,

Relations (20) and (21) are substituted in system (17)
(
u− a

2(c+ µ)
φ∗ − β

β(c+ µ)
T ∗

)
,x

−
(
v − a

2(c+ µ)
φ̃− β

2(c+ µ)
T̃

)
,y

= 0,

v,x − u,y =
a

2µ
(−φ∗

,y + ϕ̃,x) = 0.

(22)
The first equation of system (22) is identically satisfied, if

u = Φ,y +
a

2(c+ µ)
φ∗ +

β

2(c+ µ)
T ∗, v = −Φ,x +

a

2(c+ µ)
φ̃+

β

2(c+ µ)
T̃ . (23)
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The equalities (23) are substituted in the second equation (22) as a result of which
we’ve got the equation relating to the function Φ

∆Φ =
ca

2µ(c+ µ)
(φ∗

,y − φ̃,x) +
β

2(c+ µ)
(−T ∗

,y + T̃,x). (24)

The general solution of equation (24) is presented in the form

Φ =
ca

4µ(c+ µ)
(yφ∗ − xφ̃) + bψ +

β

4(c+ µ)
(−yT ∗ + xT̃ ). (25)

where ψ is an arbitrary harmonic function, b is any real constant other than zero.
Constants a and b may be represented as follows

a =
c+ µ

c
, b =

1

2µ
,

and the formula (25) is substituted in the ratio (23)

2µu =
c+ 2µ

2c
φ∗ + 0.5(yφ∗

,y − xφ̃,y) + ψ,y +
µβ

2(c+ µ)
(T ∗ − yT ∗

,y + xT̃,y), (26)

2µv =
c+ 2µ

2c
φ̃+ 0.5(xφ̃,x − yφ∗

,x)− ψ,x +
µβ

2(c+ µ)
(T̃ − xT̃,x + yT ∗

,x). (27)

By substituting (26) and (27) in the formulas (12) we’ve obtained the following expres-
sions for stress tensor components

σxx = φ+ 0.5(yφ∗
,xy − xφ̃,xy) + ψ,xy −

βµ

2(c+ µ)
(2T + yT ∗

,xy − xT̃,xy),

σyy = φ− 0.5(yφ∗
,xy − xφ̃,xy)− ψ,xy −

βµ

2(c+ µ)
(2T − yT ∗

,xy + xT̃,xy),

σxy = 0.5(yφ∗
,yy + xφ̃,xx) + ψ,yy −

βµ

2(c+ µ)
(yT ∗

,yy + xT̃,xx),

σzz = 2ν2φ− (1− 2ν2)c+ µ

c+ µ
βT.

(28)

For simplification of representations (26) - (28) the following notation is introduced

ϕ = φ− µβ

c+ µ
T, ϕ∗ = φ∗ − µβ

c+ µ
T ∗, ϕ̃ = φ̃− µβ

c+ µ
T̃ . (29)

ϕ is a harmonic function, and ϕ∗ and ϕ̃ are the mutually conjugate harmonic functions

ϕ∗
,x = ϕ̃,y = ϕ, ϕ∗

,y = −ϕ̃,x.

From (29) functions φ, φ∗, φ̃ are defined and are substituted in the formulas (26) - (28).
As a result we obtain displacement representations

2µu =
c+ 2µ

2c
ϕ∗ + 0.5(yϕ∗

,y − xϕ̃,y) + ψ,y +
βµ

c
T ∗, (30)
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2µv =
c+ 2µ

2c
ϕ̃+ 0.5(xϕ̃,x − yϕ∗

,x)− ψ,x +
βµ

c
T̃ . (31)

The following representations are fair for stresses

σxx = ϕ+ 0.5(yϕ,y − xϕ,x) + ψ,xy,

σyy = ϕ− 0.5(yϕ,y − xφ,x)− ψ,xy,

σxy = −0.5(yϕ,x + xϕ,x) + ψ,yy,

σzz = 2ν2ϕ− (1− 2ν2)βT.

(32)

The analogs of formulas of Kolosov-Muskhelishvili [24] of (30)-(32) plane theories of
thermoelasticity for transversely isotropic bodies may be used both for construction
of exact solutions of boundary value problems and for construction of approximate
solutions of a wide class of problems.

In case of finite simply connected domain the harmonic functions ϕ∗, ϕ̃, ϕ are rep-
resented by the following finite series

ϕ∗ = a0 +
N∑

n=1

rn(x, y)[an cos(nθ(x, y)) + bn sin(nθ(x, y))],

ϕ̃ = b0 +
N∑

n=1

rn(x, y)[an sin(nθ(x, y))− bn cos(nθ(x, y))],

ϕ =
N∑

n=1

nrn−1(x, y)[an cos((n− 1)θ(x, y)) + bn sin((n− 1)θ(x, y))].

(33)

As the formulas (30), (31) show the constants a0 , b0 correspond to rigid displacement
of a body, therefore they are equal to zero a0 = b0 = 0. The harmonic function ψ is
represented as

ψ =
N∑

n=1

rn(x, y)[cn cos(nθ(x, y)) + dn sin(nθ(x, y))]. (34)

Analogously, the harmonic functions T ∗, T̃ , T are also represented as

T ∗ = t0 +

NT∑
n=1

rn(x, y)[tn cos(nθ(x, y)) + τn sin(nθ(x, y))],

T̃ = τ0 +

NT∑
n=1

rn(x, y)[tn sin(nθ(x, y))− τn cos(nθ(x, y))],

T =

NT∑
n=1

nrn−1(x, y)[tn cos((n− 1)θ(x, y)) + τn sin((n− 1)θ(x, y))].

(35)

For construction of the approximate solution of problems, the representations (33)-
(35) are substituted in the formulas (30)-(32), if necessary formulas of transformation
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of components of a vector and a tensor of the second rank are used and the conditions
set are satisfied point-wise. The problem is tabulated to the solution of square system
of the linear algebraic equations for required expansion coefficients (33)-(35).

The example of a nonlocal problem of Bitsadze-Samarskii in case of the plane theory
of elasticity for rectangular domain is given below.

Example 3. We consider the domain V = {−2.5 < x < 2.5,−2 < y < 2}
(Fig. 5). In the domain V it is required to find such solution of system (10) (where
c = 3, µ = 1, T = 0 is accepted), which satisfies the following conditions (see [1])

u = −5.5y2 + 14.375, x = −2.5,−2 ≤ y ≤ 2,

v = 7.0y, x = −2.5,−2 ≤ y ≤ 2,

σyy|y=2 = −2.0x− 1, −2.5 < x < 2.5,

σyx|y=2 − σyx|y=1 = −14.0, −2.5 < x < 2.5,

u = −5.5y2 + 16.875, x = 2.5,−2 ≤ y ≤ 2,

v = −8.0y, x = 2.5,−2 ≤ y ≤ 2,

u = 2.5x2 + 0.5x− 22.0, y = −2,−2.5 < x < 2.5,

v = 6.0x+ 1.0, y = −2,−2.5 < x < 2.5.

The exact solution of this problem is as follows

u = 2.5x2 − 5.5y2 + 0.5x,

v = −0.3xy − 0.5y.

The boundary counter of the considered domain is divided by points into 72 equal
segments. 19 points are also distributed evenly on a segment inside the domain where
nonlocal conditions are set. The approximate solutions are sought as follows

ū = 0.5
36∑
n=1

rn−1
{[5

6
r cos(nθ)− n

2
y sin((n− 1)θ)− n

2
x cos((n− 1)θ)

]
an

+
[5
6
r sin(nθ) +

n

2
y cos((n− 1)θ)− n

2
x sin((n− 1)θ)

]
bn

−n sin((n− 1)θ)cn + n cos((n− 1)θ)dn

}
,

v̄ = 0.5
36∑
n=1

rn−1
{[5

6
r sin(nθ) +

n

2
y sin((n− 1)θ)− n

2
x cos((n− 1)θ)

]
an

−
[5
6
r cos(nθ) +

n

2
y cos((n− 1)θ) +

n

2
x sin((n− 1)θ)

]
bn

−n cos((n− 1)θ)cn − n sin((n− 1)θ)dn

}
.
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The components of the stress tensor σyy and σyx appearing in the reference condition
are presented in the form of the following finite rows

σyy =
36∑
n=1

nrn−2
{[
r cos((n− 1)θ) +

n− 1

2
y sin((n− 2)θ) +

n− 1

2
x cos((n− 2)θ)

]
an

+
[
r sin((n− 1)θ)− n− 1

2
y cos((n− 2)θ) +

n− 1

2
x sin((n− 2)θ)

]
bn

+(n− 1) sin((n− 2)θ)cn − (n− 1) cos((n− 2)θ)dn

}
,

σyx =
36∑
n=1

n(n− 1)

2
rn−2

{[
− y cos((n− 2)θ) + x sin((n− 2)θ)

]
an

−
[
y sin((n− 2)θ) + x cos((n− 2)θ)

]
bn

−2 cos((n− 2)θ)cn − 2 sin((n− 2)θ)dn

}
.

In the last four formulas the coordinates of points marked on the boundary and
inside the domain are substituted and the corresponding boundary and nonlocal con-
ditions are satisfied on them. As a result we obtained the system consisting of the 144-
linear algebraic equations and containing 144 unknowns (a1, ..., a36, b1, ..., b36, c1, ..., c36,
d1, ..., d36). After solving this system by means of the formulas given above one can
easily find components of a vector of displacement and a tensor of stresses.

Fig. 5. The domain V in which the nonlocal problem of the plane theory of elasticity is solved

The appropriate program is made in the Maple 12. Numerical results are pre-
sented in Table 3, where ū and v̄ denote the approximate values of components of the
displacement vector.
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Tab. 3. Numerical results for a problem 3

(x, y) ū(x, y) u(x, y) |ū(x, y)− u(x, y)|
(0, 0) 4.166195286 · 10−8 0 4.166195286 · 10−9

(−1.0, 1.0) −3.499999843 −3.500 1.57 · 10−7

(1.5,−1.5) −5.999999978 −6.000 2.2 · 10−8

(1.2,−0.8) 0.6800000324 0.680 3.24 · 10−8

(−1.7, 1.5) −5.999999651 -6.000 3.49 · 10−7

(2.2,−1.4) 2.420000034 2.420 3.4 · 10−8

(1.25, 1.75) −12.31250013 −12.31250 1.3 · 10−7

(x, y) v̄(x, y) v(x, y) |v̄(x, y)− v(x, y)|
(0, 0) −1.190721638 · 10−7 0 1.190721638 · 10−7

(−1.0, 1.0) 2.499999817 2.500 1.83 · 10−7

(1.5,−1.5) 7.499999968 7.500 3.2 · 10−8

(1.2,−0.8) 3.279999938 3.280 6.2 · 10−8

(−1.7, 1.5) 6.899999694 6.900 3.06 · 10−7

(2.2,−1.4) 9.939999959 9.940 4.1 · 10−8

(1.25, 1.75) −7.437500134 −7.43750 1.34 · 10−7

As numerical results show the considered method gives the good approximate solution
for nonlocal mixed boundary value problem of the plane theory of elasticity.

4. Problems for the Helmholtzs two dimensional equation

Let on the plane Oxy there be a domain Ω (shown in Fig. 3). In this domain the
following equation of Helmholtz is considered

∆ω − ζ2ω = 0 in Ω, (36)

where ζ is any real constant other than zero.
The approximate solution is sought as follows

ω̄ = a0I0(ζr(x, y)) + b0K0(ζr(x, y))

+
N∑

n=1

{In(ζr(x, y))[an cos(nθ(x, y)) + bn sin(nθ(x, y))]

+Kn(ζr(x, y))[cn cos(nθ(x, y)) + dn sin(nθ(x, y))]},

(37)

where In(ζr) and Kn(ζr) are modified Bessel functions of n order according to [26].
Partial derivatives of functions ω̄(x, y) are expressed by means of the formulas

ω̄,x =
ζx

r
(a0I1(ζr)− b0K1(ζr)

+
ζx

2r

N∑
n=1

{(In−1(ζr) + In+1(ζr))[an cos((n− 1)θ(x, y)) + bn sin((n− 1)θ(x, y))]

−(Kn−1(ζr) +Kn+1(ζr))[cn cos((n− 1)θ(x, y)) + dn sin((n− 1)θ(x, y))]},

(38)
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ω̄,y =
ζy

r
(a0I1(ζr)− b0K1(ζr))

+
ζy

2r

N∑
n=1

{(In−1(ζr) + In+1(ζr))[−an sin((n− 1)θ(x, y))

+bn cos((n− 1)θ(x, y))] + (Kn−1(ζr) +Kn+1(ζr))[cn sin((n− 1)θ(x, y))

−dn cos((n− 1)θ(x, y))]}.

(39)

By means of the formulas (37)-(39) one can construct the approximate solutions of
various boundary value problems or boundary value contact problems for Helmholtz’s
equation (36).

An example of nonlocal problem of Bitsadze-Samarskii for the Helmholtz’s equation
is given below.

Example 4. The Helmholtz equation in a rectangle V = {−3 < x < 3, −2 < y <
2}(Fig. 6) is given as an example to find such a function ω satisfying the following
conditions

∆ω − π2

12
ω = 0 in V, (40)

ω(−3, y)−
√
2ω(−1.5, y) + ω(0, y) = 0, −2 < y < 2,

ω(x,±2) = e±
2π
3 sin

πx

6
, −3 ≤ x ≤ 3,

ω(3, y) = e
πy
3 , −2 < y < 2.

It is easy to verify that the exact solution of the problem set is as follows

ω(x, y) = e
πy
3 sin

πx

6
.

The approximate solution of the considered nonlocal problem is sought in the form of
the sum

ω̄ = a0I0

(√3π

6
r(x, y)

)
+

39∑
n=1

{
In

(√3π

6
r(x, y)

)
[an cos(nθ(x, y))

+bn sin(nθ(x, y))]
}
.

(41)

Beginning from a point (-3, 0) on the boundary of the considered rectangle with
a step 0.25, 79 points are evenly distributed. 15 points are evenly distributed on
each piece inside the domain where nonlocal conditions are set. After satisfying
the given boundary conditions and nonlocal conditions we’ve obtained the system
of the linear algebraic 79 equations with 79 unknowns. The solution of this system
(a0, a1, ..., a39, b1, ..., b39) is substituted in formula (41) representing the approximate
solution of the stated problem. The constructed approximate solution satisfies the
Helmholtz equation in the domain V and satisfies the boundary conditions and nonlo-
cal conditions in the respective points marked in advance.
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Fig. 6. Domain V , in which the nonlocal problem for Helmholtz’s equation is considered

The appropriate program is made in the Maple 12. Numerical results are presented
in the table 4.

Tab. 4. Numerical results for the problem 4.

(x, y) ω̄(x, y) ω(x, y) |ω̄(x, y)− ω(x, y)|
(−3.0,−1.5) −0.2078795840 −0.2078795765 7.5 · 10−9

(−1.75, 1.75) −4.958529035 −4.958529038 3.0 · 10−9

(0,−1.5) −3.564486401 · 10−10 0 3.564486401 · 10−10

(0.5,−2.0) 0.03187219544 0.03187219654 1.1 · 10−9

(1.0, 1.5) 2.405238691 2.405238689 2.0 · 10−9

(1.5, 1.25) 2.618033198 2.618032200 2.0 · 10−9

(3.0, 1.5) 4.810477384 4.810477377 7.0 · 10−9

As the table shows the constructed approximate solution of the nonlocal problem is a
good approximation to the exact solution of this problem.

5. Conclusion. In the work we propose the simple method of the approximate
solution of boundary value problems of mathematical physics. The approximate so-
lutions of such two-dimensional classical and nonlocal boundary value problems for
Laplace’s and Helmholtz’s equations and the theory of elasticity, the exact solutions of
which are known in advance, are constructed by the proposed method.

We believe that by means of the considered algorithm it is possible to receive quite
good approximate solutions of some boundary value problems of mathematical physics.
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109/14). Any idea in this publication is possessed by the author and may not represent
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ONE PROBLEM OF THE BENDING OF A PLATE FOR A CURVILINEAR
QUADRANGULAR DOMAIN WITH A RECTILINEAR CUT

Kapanadze G., Gulua B.

Abstract. In the present paper we consider the problem of bending of a plate for a curvilinear
quadrangular domain with a rectilinear cut. It is assumed that the external boundary of the
domain composed of segments (parallel to the abscissa axis) and arcs of one and the same
circumference. The internal boundary is the rectilinear cut (parallel to the Ox-axis). The
plate is bent by normal moments applied to rectilinear segments of the boundary, the arcs
of the boundary are free from external forces, while the cut edges are simply supported.
The problem is solved by the methods of conformal mappings and boundary value problems
of analytic functions. The sought complex potentials which determine the bending of the
midsurface of the plate are constructed effectively (in the analytical form). Estimates are
given of the behavior of these potentials in the neighborhood of the corner points.

Keywords and phrases: The bending of a plate, conformal mapping, Riemann-Hilbert
problem for circular ring.

AMS subject classification (2010): 74B05.

1. Statement of the problem

Let a homogeneous Isotropic plate on a plane z = x+ iy of a complex variable occupy the
doubly-connected domain S, the external boundary of the domain is composed of segments
(parallel to the abscissa axis) and arcs of one and the same circumference. The internal
boundary is the rectilinear cut (parallel to the Ox-axis).

We will assume that normal bending moments Mn act on each rectilinear sections L
(1)
0 =

A1A1, L
(2)
0 = A3A4 of the external boundary, the arcs L

(3)
0 = A2A3, L

(k)
0 = A4A1 of the

boundary are free from external forces, while the cut L1 = B1B2 edges are simply supported
and for better clearness, we consider the symmetric case. We denote by α0π the value of
internal (with respect to the domain S) vertex angles Ak(k = 1, ..., 4) (we mean the angles

between the segments L
(1)
0 , L

(2)
0 and the tangent arcs L

(3)
0 and L

(4)
0 ) and we will choose as the

positive direction on the boundary L = L0 ∪L1 (L0 =
4
∪

k=1
L
(k)
0 , L1 =

2
∪

m=1
L
(m)
1 , L

(1)
1 = B1B2,

L
(2)
1 = B2B1) which leaves the region S on the left. Let α(t) and β(t) be the angles lying

between the Ox-axis and the outer normals to the contours L0 and L1 at the point t ∈ L,
where

α(t) =


π

2
(2k − 1), t ∈ L

(k)
0 , k = 1, 2,

arg t, t ∈ L
(k)
0 , k = 3, 4,

β(t) =


π

2
, t ∈ L

(1)
1 ,

−π
2
, t ∈ L

(2)
1 .
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Fig. 1

The problem consists in defining the bending deflection of the middle surface of the plate
and establishing the situations of the concentration of stresses near the angular points which
in turn depend on the behavior of Kolosov-Muskhelishvili potentials at these points.

Analogous problems of plane elasticity and plate bending for finite doubly-connected
domains bounded by polygons are considered in [1, 4].

2. Solution of the problem

Let us recall some results concerning the conformal mapping of a doubly-connected do-
main S(0) onto the circular ring D0{1 < |ζ| < R0}. The derivative of the function ω(ς) is the
solution of the Riemann-Hilbert problems for the circular ring [5]

Re[iσe−iν0(σ)ω′(σ)] = 0, σ ∈ l, (1)

where l = l0 ∪ l1, l0 = {|σ| = R}, l1 = {|σ| = 1}, ν0(σ) = α[ω(σ)] = α0(σ), σ ∈ l0,
ν0(σ) = β[ω(σ)] = β0(σ), σ ∈ l1.

To solve the problem (1) (with respect to the function ω′(ζ)) of the class h(b1, b2) [6] (the
index of the given class problem (1) is equal to zero), it is necessary and sufficient that the
condition

4∏
k=1

R2a
α0
k−1

k ·
2∏

m=1
bm = 1, (ak = ω−1(Ak), bm = ω−1(Bm)), (2)

be fulfilled, and a solution itself is given by the formula

ω′(ζ) = K0eγ(ζ)B(ζ), (3)

where

γ(ζ) =
1

2πi

∞∑
j=−∞

∫
l0

ln(R2σ−2e2iα0(σ)

σ −R2jζ
dσ, B(ζ) =

∞∏
j=−∞

2∏
m=1

(R2jζ − bm), (4)

with k0 as an arbitrary real constant.
Based on the results given in [6, §78], we conclude that the function eγ(ς) near the points

ak(k = 1, 4) can be written in the form

eγ(ς) =
4∏

k=1

(ζ − ak)
α0
k−1Ω0(ζ), (5)

where Ω0 is the function holomorphic near the point ak and tending to definite nonzero limits
as ς → ak.
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Thus, for a conformally mapping function bounded at the points ak from (4) we obtain
the formula

ω′(ζ) = K0
4∏

k=1

(ζ − ak)
α0
k−1Ω0(ζ)B(ς). (6)

Let us now return to the considered problem. According to the approximate theory of
the bending of a plate, the bending deflection w(x, y) of the midsurface of the plate in the
case considered satisfies the biharmonic equation

∆2w(x, y) = 0, z = x+ iy ∈ S

and the boundary conditions

Mn(t) = f(t),
∂w

∂s
= 0, t ∈ L

(1)
0 ∪ L(2)

0 ,

Mn(t) = 0,
∂w

∂n
= 0, t ∈ L

(3)
0 ∪ L(4)

0 ,

w(t) = 0, Mn(t) = 0, t ∈ L1, N(t) = 0, t ∈ L0 ∪ L1,

(7)

where Mn(t) is the normal bending moments, N(t) is the shearing force.
Using the well-known formulae [6-8] we have

∂w

∂n
+ i

∂w

∂s
= e−iν(t)[φ(t) + tφ′(t) + ψ(t)],

2D0(σ − 1)d[κφ(t)− tφ′(t)− ψ(t)] =

Mn(t) + i

s∫
0

N(t)ds

 dt,
ν(t) = α(t), t ∈ L0, ν(t) = β(t), t ∈ L1, κ = (σ + 3)(1− σ)−1,

(8)

where σ is Poisson ratio, D0 is the cylindrical stiffness of the plate.
By virtue of condition (7) and formula (8) with respect to the required functions φ(z)

and ψ(z) we obtain the boundary problems

Re
[
ie−iν(t)(φ(t) + tφ′(t) + ψ(t))

]
= 0,

Re
[
ie−iν(t)(κφ(t)− tφ′(t)− ψ(t))

]
= F

(1)
0 (t), t ∈ L

(1)
0 ∪ L(2)

0 ,
(9)

Re
[
ie−i(ν(t)+π

2
)(φ(t) + tφ′(t) + ψ(t))

]
= 0,

Re
[
ie−i(ν(t)+π

2
)(κφ(t)− tφ′(t)− ψ(t))

]
= F

(2)
0 (t), t ∈ L

(3)
0 ∪ L(4)

0 ,
(10)

Re
[
ie−iν(t)(φ(t) + tφ′(t) + ψ(t))

]
= 0,

Re
[
ie−iν(t)(κφ(t)− tφ′(t)− ψ(t))

]
= c(1)(t), t ∈ L1,

(11)

where

F
(1)
0 (t) = −[2D0(σ − 1)]−1

s∫
0

Mn(t)ds+ c(0)(t), t ∈ L
(1)
0 ∪ L(2)

0 ,

F
(2)
0 (t) = Re[2D0(σ − 1)]−1t−1c(0)(t), t ∈ L

(3)
0 ∪ L(4)

0 ,
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c(0)(t) = c
(0)
k = const, t ∈ L

(k)
0 (k = 1, 4),

c(1)(t) = c
(1)
k = const, t ∈ L

(k)
1 (k = 1, 2).

The constant c
(j)
k (j = 0, 1) are unknown in advance and must be determined when solving

the problem in such a away that the function φ(z) and z̄φ′(z) + ψ(z) extend continuously
into to domain S ∪ L.

These boundary problems are in turn divided into two problems

Re
[
ie−i∆(t)φ(t)

]
= F (t), t ∈ L0 ∪ L1, (12)

Re
[
ie−i∆(t)(φ(t) + tφ′(t) + ψ(t))

]
= 0, t ∈ L

(1)
0 ∪ L(2)

0 , (13)

where ∆(t) = α(t), t ∈ L
(1)
0 ∪ L(2)

1 ; ∆(t) =
π

2
+ arg t, t ∈ L

(3)
0 ∪ L(4)

1 ; ∆(t) = β(t), t ∈ L1;

F (t) = F
(1)
0 , t ∈ L

(1)
0 ∪ L(2)

1 ; F (t) = F
(2)
0 , t ∈ L

(3)
0 ∪ L(4)

1 ; F (t) = c(1)(t), t ∈ L1.

Let us consider problem (12). After the conformal mapping of the domain S onto the
circular ring D, this problem for the function χ(ζ) = ζ−1φ0(ζ) (φ0(ζ) = φ [ω(ζ)]) reduces to
the Riemann-Hilbert problem for a circular ring

Re
[
iσe−i∆0(σ)χ(σ)

]
= F0(σ), σ ∈ l, (14)

where ∆0(σ) = ∆[ω(σ)], F0(σ) = F [ω(σ)], σ ∈ l.

Let us consider the homogeneous problem corresponding to problem (14)

Re
[
iσe−i∆0(σ)χ(σ)

]
= 0, σ ∈ l, (15)

Although problem (15) is different from problem (1) we can use it [5] and its solution is
given by the formula

χ(ζ) = ω′(ζ)T (ζ), (16)

where T (ζ) =
∞∏

j=−∞

4∏
k=1

(R2jζ − ak)
− 1

2 , ω′(ζ) is defined by formula (6).

Thus we have obtained the factorization coefficient of problem (15) in the form

e2i∆0(σ) σ̄

σ
=

ω′(σ)T (σ)

ω′(σ) · T (σ)
, σ ∈ l.

With the obtained results taken into account, from the boundary conditions (14) for the
function

Ω(ζ) = iφ0(ζ)[ζω
′(ζ)T (ζ)]−1 (17)

we obtain the Dirichlet problem for a circular ring

Re [Ω(σ)] = F0(σ)e
i∆0(σ)[σω′(σ)T (σ)]−1, σ ∈ l. (18)

A solvability condition of problem (18) has the form∫
l

F0(σ)e
i∆0(σ)

σ2ω′(σ)T (σ)
dσ = 0, (19)
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and its solution is given by the formula

Ω(ζ) =
1

πi

∞∑
j=−∞

∫
l

F0(σ)e
i∆0(σ)dσ

(σ −R2jζ)σω′(σ)T (σ)
+ ic∗0, (20)

where c∗0 is an arbitrary real constant.
Thus, using (17) and (20), for the function φ0(ζ) we obtain the formula

φ0(ζ) = ω′(ζ)T (ζ)M(ζ), (21)

where

M(ζ) = − ζ
π

 ∞∑
j=−∞

∫
l

F0(σ)e
i∆0(σ)dσ

(σ −R2jζ)σω′(σ)T (σ)
+ c∗0

 . (22)

Since the function ω′(ζ)T (ζ) at the points ak (k = 1, 4) has singularities of the form

|ζ − ak|α
0
k−

3
2 , for the function φ0(ζ) to be continuously extendable into the domain D ∪ l it

is necessary and sufficient for the following conditions to be satisfied

M(ak) == 0, k = 1, 4. (23)

Since φ′(z) =
φ′
0(ζ)

ω′(ζ) , from (21) we have

φ′(z) =
ω′′(ζ)

ω′(ζ)
T (ζ)M(ζ) + [T (ζ)M(ζ)]′. (24)

Bearing in mind both the behavior of the Cauchy type integral in the neighborhood
on the points density discontinuity [6] and that of the conformally mapping fuction in the
neighborhood of angular points [9], we conclude that near the points bk (k = 1, 2)

ω(ζ) = B + (ζ − b)2[N0 +N1(ζ − b) + · · ·],

ω′′(ζ)

ω′(ζ)
=

1

ζ − b
+ E1 + E2(ζ − b) + · · ·,

T (ζ)M(ζ) =
k0
ζ − b

+ k1 + k2(ζ − b) + · · ·,

(25)

where b is one of the points bk, B is the preimage of the point b, N0,...,k2,... are some
constants.

Thus, using (24) and (25), near a point B we have the estimates∣∣φ′(z)
∣∣ < M1 |z −B|−

1
2 ,

∣∣φ′′(z)
∣∣ < M2 |z −B|−

3
2 , M1,M2 = const.

By a similar reasoning to the above, it is proved that φ′(z) is almost bounded (i.e. has
singularities of logarithmic type ln(z −A)) near the points Ak (k = 1, 4).

After finding the function φ(z), the definition of the function ψ(z) by (13) reduces to the
following problem which is analogous to problem (12)

Re
[
iei∆(t)R(t)

]
= Γ(t), t ∈ L, (26)

where
R(z) = ψ(z) + P (z)φ′(z),
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Γ(t) = F (t) + Re
[
iei∆(t)(P (t)− t̄)φ′(t)

]
, t ∈ L,

and P (z) is an interpolation polynomial satisfying the condition P (Bk) = B̄k (k = 1, 2), B̄k

is a number conjugate to Bk.

The use of the polynomial P (z) makes bounded the right-hand part of the boundary
condition (26) so that the solution of this problem can be constructed in an analogous manner
as above (see problem (12)), while the solvability condition (with the assumption that the
function ψ(z) is continuous up to the boundary) will be analogous to conditions (19) and
(23).

All these conditions are represented as an inhomogeneous system with real coefficient

with respect to 8 constants c
(0)
k (k = 1, 4), c

(1)
m (m = 1, 2), c∗0, c

∗∗
0 (c∗∗0 is a real constant which

occurs when solving problem (26)). For the definition of these constant we have 8 equations.
It is proved that the obtained system is uniquely solvable and therefore the problem posed
has a unique solution.
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HIGHER ORDER DIFFERENCE EQUATIONS WITH PROPERTIES A AND B

Khachidze N.

Abstract. The following higher order difference equation

∆(n)u(k) + p(k)|u(σ(k))|λsign(u(σ(k))) = 0

is considered, where n ≥ 2, 0 < λ < 1, p : N → R, σ : N → N , σ(k) ≥ k + 1.

Necessary conditions are obtained for the above equation to have monotone solutions.

The obtained results are also new for the oscillation of solutions.

Keywords and phrases: Property A, Property B, oscillation.

AMS subject classification (2010): 34K11.

1. Introduction

Consider the higher order difference equation

∆(n)u(k) + p(k)|u(σ(k))|λsign(u(σ(k))) = 0, (1.1)

where n ≥ 2, 0 < λ < 1, p : N → R, σ : N → N , σ(k) ≥ k + 1.
Here

∆(0)u(k) = u(k), ∆(1)u(k) = u(k + 1)− u(k), ∆(i)u(k) = ∆(1) ◦∆(i−1)u(k)

(i = 2, . . . , n).

It will always be assumed that either the condition

p(k) ≥ 0 for k ∈ N, (1.2)

or
p(k) ≤ 0 for k ∈ N (1.3)

holds.
For each k ∈ N denote Nk = {k, k + 1, . . . }.
Definition 1.1. Let k0 ∈ N . A function u : Nk0 → R is said to be a proper

solution of equation (1.1), if it satisfies (1.1) on Nk0 and

sup{|u(k)| : k ≥ s} > 0 for any s > k0.

Definition 1.2. Let k0 ∈ N . A proper solution u : Nk0 → R of equation (1.1) is
said to be oscillatory if for any k ∈ Nk0 there are k1, k2 ∈ Nk0 such that u(k1)u(k2) < 0.
Otherwise the solution is called nonoscillatory.

Definition 1.3. We say that equation (1.1) has Property A if any its proper
solutions either is oscillatory or satisfies

|∆(i)u(k)| ↓ 0 for k ↑ +∞ (i = 0, 1, . . . , n− 1), (1.4)
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when n is odd.
Definition 1.4. We say that equation (1.1) has Property B if any of its proper

solutions is oscillatory or satisfies either (1.4) or

|∆(i)u(k)| ↑ +∞ for k ↑ +∞ (i = 0, 1, . . . , n− 1), (1.5)

when n is even, either is oscillatory or satisfies (1.5) when n is odd.
For a functional differential equation, similar problems were considered in [1–4] (see

also the references therein). Oscillatory properties for first and second order difference
equations are studied in [5–9].

In the present paper we give sufficient conditions for equation (1.1) to have prop-
erties A and B.

2. Necessary condition of the existence of monotone solutions

For any k0 ∈ N denote by Uk0,l the set of solutions u : Nk0 → R of equation (1.1)
which satisfies the condition:

∆(i)u(k) > 0 for k ≥ k0 i = 0, . . . , l − 1,

(−1)i∆(i)u(k) ≥ 0 for k ≥ k0 i = l, . . . , n.

Theorem 2.1. Let 0 < λ < 1, k0 ∈ N , condition (1.3) ((1.4)) be fulfilled, l ∈
{1, 2, . . . , n− 1}, l + n be odd (l + n be even) and Uk0,l ̸= ∅.

Moreover, if
+∞∑
k=1

kn−l(σ(k))λ(l−1)|p(k)| = +∞ (2.1)

then for any δ ∈ [0;λ] and i ∈ N we have

+∞∑
k=1

kn−l−1+λ−δ(σ(k))λ(l−1)[ρl,i(σ(k))]
δ|p(k)| < +∞,

where

ρl,1(k) =

(
1− λ

l!(n− l)!

k−1∑
i=1

+∞∑
j=i

jn−l−1(σ(j))λ(l−1)|p(j)|
) 1

1−λ

, (2.2)

ρl,s(k) =
1− λ

l!(n− l)!

k∑
i=1

+∞∑
j=i

jn−l−1(σ(j))λ(l−1)|p(j)|(ρl,s−1(σ(j)))
λ (s = 2, 3, . . . ).

(2.3)
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3. Sufficient conditions of nonexistence of monotone solutions

Theorem 3.1 Let conditions (1.2) ((1.3)) (2.1) be fulfilled, l ∈ {1, . . . , n − 1}, let
l + n be odd (l + n be even) and for any δ ∈ [0, λ] and i ∈ N

+∞∑
k=i

kn−l−1+λ−δ(σ(k))λ(l−1)(ρl,i(σ(k)))
δ|p(k)| = +∞ (3.1)

then for any k0 ∈ N , Ul,k0 = ∅, where ρl,i is defined by (2.2) and (2.3).
Theorem 3.2. Let conditions (1.2) ((1.3)) (2.1), for any γ ∈ (0; 1)

lim inf
k→+∞

kγ
+∞∑
j=k

jn−l−1(σ(j))λ(l−1)|p(j)| > 0

be fulfilled, l ∈ {1, . . . , n− 1}, let l+ n be odd (l+ n be even) and for any α ∈ (1;+∞)

lim inf
k→+∞

σ(k)

kα
> 0.

Moreover, if either
αλ ≥ 1,

or

αλ < 1 and
+∞∑
k=1

kn−l−1+
αλ(1−λ)
1−αλ

−ε(σ(k))λ(l−1)|p(k)| = +∞

is fulfilled. Then for any k0 ∈ N , Ul,k0 = ∅.

4. Difference equations with property A

Theorem 4.1. Let conditions (1.2) (2.1) be fulfilled, l ∈ {1, . . . , n − 1}, let l + n
be odd and for any δ ∈ [0, λ] and let k ∈ N (3.1) be fulfilled. Moreover, if

n∑
k=1

kn−1p(k) = +∞, (4.1)

when n is odd, then Equation (1.1) has Property A.
Theorem 4.2. Let conditions (1.2) and

lim inf
k→+∞

(σ(k))λ

k
> 0

be fulfilled. Then for the equation (1.1) to have Property A, it is sufficient that

+∞∑
k=1

kn−2+λp(k) = +∞.
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Theorem 4.3. Let conditions (1.2) and

lim sup
k→+∞

(σ(k))λ

k
< +∞

be fulfilled. Then for equation (1.1) to have Property A, it is sufficient that conditions
(4.1) and

+∞∑
k=1

kλ(σ(k))λ(n−2)p(k) = +∞

be fulfilled.

5. Difference equations with property B

Theorem 5.1. Let conditions (1.3), (2.1) be fulfilled, l ∈ {1, . . . , n − 1}, l + n is
even and for any δ ∈ [0, λ] and let k ∈ N (3.1) be fulfilled. Moreover, if

+∞∑
k=1

kn−1|p(k)| = +∞, (5.1)

when n is even, then equation (1.1) has Property B.
Theorem 5.2. Let conditions (1.3) and

lim inf
k→+∞

(σ(k))λ

k
> 0

be fulfilled. Then for equation (1.1) to have Property B, it is sufficient that condition

+∞∑
k=1

kn−2+λ|p(k)| = +∞

be fulfilled.
Theorem 5.3. Let conditions (1.3) and

lim sup
k→+∞

(σ(k))λ

k
< +∞

be fulfilled. Then for equation (1.1) to have Property B, it is sufficient that conditions
(5.1),

+∞∑
k=1

kλ+1(σ(k))λ(n−3)|p(k)| = +∞

and
+∞∑
k=1

(σ(k))λ(n−1)|p(k)| = +∞

be fulfilled.
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ON OSCILLATORY PROPERTIES OF SOLUTIONS OF ALMOST LINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

Koplatadze R.

Abstract. The differential equation

u(n)(t) + F (u)(t) = 0

is considered, where F : C(R+;R) → Lloc(R+;R) is a continuous mapping. In the case

operator F has almost linear minorant, sufficient conditions are established for equation to

have Properties A and B.

Keywords and phrases: Property A, Property B, oscillation.
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1. Introduction

This work deals with the investigation of oscillatory properties of solutions of a
functional differential equation

u(n)(t) + F (u)(t) = 0, (1.1)

where F : C(R+;R) → Lloc(R+;R) is a continuous mapping.
Let τ ∈ C(R+;R+), lim

t→+∞
τ(t) = +∞. Denote by V (τ) the set of continuous

mappings F satisfying the condition F (x)(t) = F (y)(t) holds for any t ∈ R+ and
x, y ∈ C(R+;R) provided that x(s) = y(s) for s ≥ τ(t). For any t0 ∈ R+, we denote
by Ht0,τ the set of all functions u ∈ C(R+;R) satisfying u(t) ̸= 0 for t ≥ t1, where
t1 = min{t0, τ∗(t0)}, τ∗(t) = inf{τ(s) : s ≥ t}.

It will always be assumed that either the condition

F (u)(t)u(t) ≥ 0 for t ≥ t0, u ∈ Ht0,τ (1.2)

or the condition
F (u)(t)u(t) ≤ 0 for t ≥ t0, u ∈ Ht0,τ (1.3)

is fulfilled.
A function u : [t0,+∞) → R is said to be a proper solution of equation (1.1), if it is

locally absolutely continuous along with its derivatives up to the order n− 1 inclusive,
sup{|u(s)| : s ∈ [t,+∞)} > 0 for t ≥ t0 and there exists a function u∗ ∈ C(R+;R) such
that u∗(t) ≡ u(t) on [t0,+∞) and the equality

u(n)∗ (t) + F (u∗)(t) = 0

holds for t ∈ [t0,+∞). A proper solution u : [t0,+∞) → R of equation (1.1) is said to
be oscillatory if it has a sequence of zeros tending to +∞. Otherwise, the solution u is
said to be nonoscillatory.
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Definition 1.1. We say that equation (1.1) has Property A if any of its proper
solutions is oscillatory, when n is even and either is oscillatory or satisfies∣∣u(i)(t)∣∣ ↓ 0 as t ↑ +∞ (i = 0, . . . , n− 1) (1.4)

when n is odd.

Definition 1.2. We say that equation (1.1) has Property B if any of its proper
solution either is oscillatory, or satisfies either (1.4) or∣∣u(i)(t)∣∣ ↑ +∞ as t ↑ +∞ (i = 0, . . . , n− 1) (1.5)

when n is even, and either is oscillatory or satisfies (1.5) when n is odd.

A. Kneser was the first who showed the condition

lim inf
t→+∞

tn/2p(t) > 0

is sufficient for the equation

u(n)(t) + p(t)u(t) = 0 (1.6)

to have Property A [1]. This theorem for Property A (for Property B) was essentially
generalized by Kondrat’ev [2] (by Chanturia [3]). Their methods was based on a com-
parison theorem which enables one to obtain optimal results for establishing oscillatory
properties of solutions of equation (1.6). Koplatadze [4,5] proved integral comparison
theorems of two types for differential equations with deviated arguments. The theo-
rems of the first type enables one not only to generalize the above mentioned results
for equations with deviated arguments, but to improve Chanturia’s result concerning
Property B even in the case of equation (1.6).

The ordinary differential equation with deviating argument

u(n)(t) + p(t)
∣∣u(σ(t))∣∣µ(t) signu(σ(t)) = 0 (1.7)

is a particular case of equation (1.1) where p ∈ Lloc(R+;R), µ ∈ C(R+; (0,+∞)),
σ ∈ C(R+;R) and lim

t→+∞
σ(t) = +∞. In case lim

t→+∞
µ(t) = 1, we call differential

equation (1.7) almost linear, while if lim inf
t→+∞

µ(t) ̸= 1, or lim sup
t→+∞

µ(t) ̸= 1, then we

call equation (1.7) the essentially nonlinear generalised Emden-Fowler type differential
equation.

In the present paper developing ideas of [6,7], the both cases of Properties A and
B will be studied when operator F has almost linear minorant.

Investigation of almost linear differential equations, in our opinion for the first time
was carried out [6–8].

2. Almost linear functional differential equation with property A

Theorem 2.1. Let F ∈ V (τ), conditions (1.2) and∣∣F (u)(t)∣∣ ≥ n∑
i=1

pi(t)

∫ βit

αit

sγi
∣∣u(s)∣∣1+ di

ln sds for t ≥ t0 > 1, u ∈ Ht0,τ (2.1)
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be fulfilled, where

pi ∈ Lloc(R+;R+), 0 < αi < βi, γi ∈ (−1,+∞), di ∈ R (i = 1, . . . ,m). (2.2)

Then for the equation (1.1) to have Property A it is sufficient that

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{−λ(λ− 1) · · · (λ− n+ 1)e−
λd
m

( m∏
i=1

(1 + γi + λ)
) 1

m

( m∏
i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [0, n− 1]

}
,

where

γ =
m∑
i=1

γi, d =
m∑
i=1

di. (2.3)

Theorem 2.2. Let F ∈ V (τ), conditions (1.2), (2.1) and (2.2) be fulfilled, where
βi ≤ 1, di ∈ (−∞, 0] (i = 1, . . . ,m). Then the condition

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{−λ(λ− 1) · · · (λ− n+ 1)e−
λd
m

( m∏
i=1

(1 + γi + λ
) 1

m

( m∏
i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [n− 2, n− 1]

}

is sufficient for equation (1.1) to have Property A, where d and γ are given by (2.3).

Theorem 2.3. Let F ∈ V (τ), conditions (1.2), (2.1) and (2.2) be fulfilled, where
αi ≥ 1, di ∈ [0,+∞) (i = 1, . . . ,m). Then for equation (1.1) to have Property A, it is
sufficient that the condition

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{−λ(λ− 1) · · · (λ− n+ 1)e−
λd
m

( m∏
i=1

(1 + γi + λ
) 1

m

( m∏
i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [0, 1]

}
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holds when n is even and the condition

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{−λ(λ− 1) · · · (λ− n+ 1)e−
λd
m

( m∏
i=1

(1 + γi + λ
) 1

m

( m∏
i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [1, 2] ∪ [n− 2, n− 1]

}
holds when n is odd, where d and γ are given by (2.3).

Theorem 2.4. Let F ∈ V (τ), conditions (1.2) and

∣∣F (u)(t)∣∣ ≥ m∑
i=1

pi(t)
∣∣u(αit)

∣∣1+ di
ln t for t ≥ t0 > 1, u ∈ Ht0,τ (2.4)

be fulfilled, where
pi ∈ Lloc(R+;R+), αi > 0, di ∈ R. (2.5)

Then for equation (1.1) to have Property A, it is sufficient that

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
− λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m
: λ ∈ [0, n− 1]

}
.

Theorem 2.5. Let F ∈ V (τ), conditions (1.2), (2.4) and (2.5) be fulfilled, where
αi ≤ 1 and di ∈ (−∞, 0] (i = 1, . . . ,m). Then for equation (1.1) to have Property A,
it is sufficient that

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
− λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m
: λ ∈ [n− 2, n− 1]

}
.

Theorem 2.6. Let F ∈ V (τ), conditions (1.2), (2.4) and (2.5) be fulfilled, where
αi > 1 and di ∈ [0,+∞) (i = 1, . . . ,m). Then for equation (1.1) to have Property A,
it is sufficient that the condition

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
− λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m
: λ ∈ [0, 1]

}
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holds when n is even and

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
− λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m
: λ ∈ [1, 2] ∪ [n− 2, n− 1]

}
holds when n is odd.

3. Almost linear functional differential equation with property B

Theorem 3.1. Let F ∈ V (τ), conditions (1.3), (2.1) and (2.2) be fulfilled. Then
for the equation (1.1) to have Property B it is sufficient that

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{λ(λ− 1) · · · (λ− n+ 1)
( m∏

i=1

(1 + γi + λ)
) 1

m
e−

λd
m( m∏

i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [0, n− 2]

}
,

where γ and d are given by (2.3).
Theorem 3.2. Let F ∈ V (τ), conditions (1.3), (2.1) and (2.2) be fulfilled, where

βi ≤ 1, di ∈ (−∞, 0] (i = 1, . . . ,m). Then for equation (1.1) to have Property B, it is
sufficient that the condition

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{λ(λ− 1) · · · (λ− n+ 1)
( m∏

i=1

(1 + γi + λ)
) 1

m
e−

λd
m( m∏

i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [n− 3, n− 2]

}

holds when n is even and the condition

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{λ(λ− 1) · · · (λ− n+ 1)
( m∏

i=1

(1 + γi + λ)
) 1

m
e−

λd
m( m∏

i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [0, 1] ∪ [n− 3, n− 2]

}
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holds when n is odd, where γ and d are given by (2.3).

Theorem 3.3. Let F ∈ V (τ), conditions (1.3), (2.1) and (2.2) be fulfilled, where
αi ≥ 1, di ∈ [0,+∞) (i = 1, . . . ,m). Then for equation (1.1) to have Property B, it is
sufficient that the condition

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{λ(λ− 1) · · · (λ− n+ 1)e−
λd
m

( m∏
i=1

(1 + γi + λ
) 1

m

( m∏
i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [1, 2]

}

holds when n is even and the condition

lim inf
t→+∞

t

∫ +∞

t

sn−1+ γ
m

( m∏
i=1

pi(s)
) 1

m
ds

>
1

m
max

{λ(λ− 1) · · · (λ− n+ 1)e−
λd
m

( m∏
i=1

(1 + γi + λ
) 1

m

( m∏
i=1

(
β1+γi+λ
i − α1+γi+λ

i

)) 1
m

: λ ∈ [0, 1]

}

holds when n is odd, where d and γ are given by (2.3).

Theorem 3.4. Let F ∈ V (τ), conditions (1.3), (2.1) and (2.5) be fulfilled. Then
for equation (1.1) to have Property B, it is sufficient that

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m
: λ ∈ [0, n− 2]

}
.

Theorem 3.5. Let F ∈ V (τ), conditions (1.3), (2.4) and (2.5) be fulfilled, where
αi ≤ 1 and di ∈ (−∞, 0] (i = 1, . . . ,m). Then for equation (1.1) to have Property B,
it is sufficient that the condition

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m
: λ ∈ [n− 3, n− 2]

}
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holds when n is even and the condition

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m

: λ ∈ [0, 1] ∪ [n− 3, n− 2]

}
holds when n is odd.

Theorem 3.6. Let F ∈ V (τ), conditions (1.3), (2.4) and (2.5) be fulfilled, where
αi > 1 and di ∈ [0,+∞) (i = 1, . . . ,m). Then for equation (1.1) to have Property B,
it is sufficient that the condition

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m
: λ ∈ [1, 2]

}
holds when n is even and the condition

lim inf
t→+∞

t

∫ +∞

t

sn−2
( m∏

i=1

pi(s)
) 1

m
ds

>
1

m
max

{
λ(λ− 1) · · · (λ− n+ 1)

( m∏
i=1

αie
di
)− λ

m
: λ ∈ [0, 1]

}
holds when n is odd.
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THE ISOMETRIC SYSTEM OF COORDINATES AND THE COMPLEX FORM
OF THE SYSTEM OF EQUATIONS FOR THE NON-SHALLOW AND

NONLINEAR THEORY OF SHELLS

Meunargia T.

Abstract. In this paper, the 3-D geometrically and physically nonlinear theories of non-

shallow shells are considered. The isometrical system of coordinates is of special interest,

since in this system we can obtain bases equations of the theory of shells in a complex form.

This circumstance makes is possible to apply the methods developed by N. Muskhelishvili and

his disciples by means of the theory of functions of a complex variable and integral equations
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AMS subject classification (2010): 74K25, 74B20.

1. Introduction

The refined theory of shells is constructed by reducing the three-dimensional prob-
lems of the theory of elasticity to the two-dimensional problems [1, 2]. I. Vekua con-
structed several versions of the refined linear theory of thin and shallow shells, con-
taining, the regular processes by means of the method of reduction of 3-D problems of
elasticity to 2-D ones [1].

By thin and shallow shells I.Vekua means 3-D shell type elastic bodies satisfying
the following conditions [3]

aβα − x3bβα
∼= αβ

α − h ≤ x3 = x3 ≤ h, α, β = 1, 2, (∗)

where aβα and bβα are mixed components of the metric and curvature tensors of the
midsurface of the shell, x3 is the thickness coordinate and h is the semi-thickness.

In the sequel, under non-shallow shells we wean elastic bodies free from the as-
sumption of the type (*) or, more exactly, the bodies with the conditions

aβα − x3b
β
α ̸= aβα ⇒ |hbβα| ≤ q < 1.

Such kind of shells are called shells with varying in thickness geometry, or non-
shallow shells.

2. System of geometrically and physically nonlinear equations for non-
shallow shells

We write the equation of equilibrium of an elastic shell-type body in a vector form
which is convenient for reduction to the 2-D equations

1
√
g

∂
√
gσ⃗i

dxi
+ Φ⃗ = 0 ⇒ ∇̂iσ⃗

i + Φ⃗ = 0, (1)
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where g is the discriminant of the metric quadratic form of the 3-D domain Ω, ∇̂i are
covariant derivatives with respect to the space coordinates xi, Φ⃗ is an external force,
σ⃗i are the contravariant constituents of the stress vector σ⃗

(
∗
l⃗)
acting in the area with

the normal
∗

l⃗ and representable as the Cauchy formulas as follows

σ⃗
(
∗
l⃗)
= σ⃗i

∗
l i,

∗
l i =

∗

l⃗R⃗i.

A material is said to be hyper-elastic if the stresses are obtained by means of the
strain energy function

σij =
∂∃
∂eij

,

where σij are contravariant components of the stress tensor, ∃ is the strain energy
function, and eij are covariant components of the strain tensor.

The theory of hyper-elasticity of the second order has the form [2, 3]

∃ =
1

2
Eijpqeijepq +

1

3
Eijpqskeijepqesk,

eij =
1

2
(R⃗i∂jU⃗ + R⃗j∂iU⃗ + ∂iU⃗∂jU⃗)

σij = Eijpqepq + Eijpqskepqesk, σ⃗i = σij(R⃗j + ∂jU⃗)

(2)

where Eijpq and Eijpqsk are coefficients of elasticity of the first and second order and
U⃗ is the displacement vector.

Coefficients of elasticity of the first order for isotropic elastic bodies are expressed
by the two Lamé coefficients

Eijpq = λgijgµq + µ(gipgjq + giqgjp), (gij = R⃗iR⃗j) (3)

and coefficients of elasticity of the second order are defined by the formula

Eijpqsk = (E1 + E2)g
ijgpqgsk − E2g

ijgpkgqs + E3g
ipgjqgsk + E4g

isgpqgjk, (4)

where E1, E2, E3 and E4 are modules of elasticity of the second order for isotropic
elastic bodies.

Here R⃗i and R⃗
i are covariant and contravariant base vectors of the space.

3. The coordinate system in a shell normally connected with a surface

Let Ω denote a shell and a domain of the space occupied by the shell. Inside the shell,
we consider a smooth surface S with respect to which the shell Ω lies symmetrically.
The surface S is called the midsurface of the shell Ω. To construct the theory of
shells, we use more convenient coordinate system which is normally connected with
the midsurface S. This means that the radius-vector R⃗ of any point of the domain Ω
can be represented in the form

R⃗(x1, x2, x3) = r⃗(x1, x2) + x3n⃗(x1, x2),
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where R⃗ and n⃗ are respectively the radius-vector and the unit vector of the normal of
the surface S(x3 = 0) and (x1, x2) are the Gaussian parameters of the midsurfaces S.

The covariant and contravariant basis vectors R⃗i and R⃗i of the surfaces Ŝ(x3 =
const), and the corresponding basis vectors r⃗i and r⃗

i of the midsurface S (x3 = 0) are
connected by the following relations:

R⃗i = A.j
i. r⃗j = Aij r⃗

j, R⃗i = Ai.
.j r⃗

j = Aij r⃗j, (i, j = 1, 2, 3),

where

A.j
i. =

{
aβα − x3b

β
α, i = α, j = β,

δ3i , j = 3,
r⃗i, r⃗

i =

{
r⃗α, r⃗

α, i = α,

n⃗, n⃗, i = 3,

Ai.
.j =


(1− 2Hx3)a

α
β + x3b

α
β

1− 2Hx3 +Kx23
, i = α, j = β,

δ3i , j = 3.

Here (aαβ, a
αβ, aβα) and (bα,β,b

αβ, bβα) are the components (covariant, contravariant and
mixed) of the metric and curvature tensors of the midsurface S. By H and K we
denote a middle and Gaussian curvature of the surface S, where

2H = bαα = b11 + b22, K = b11b
2
2 − b12b

2
1.

It should be noted that for the refined theory of non-shallow shells (Koiter, Naghdi,
Lurie) these relations have the form

R⃗α ∼= (aαβ + x3b
α
β)r⃗

β, R⃗α = (aβα − x3b
β
α)r⃗β.

The main quadratic forms of the midsurface S (x3 = 0) have the forms

I = ds2 = aαβdx
αdxβ, II = Ksds

2 = bαβdx
αdxβ,

where ks is the normal courvative of the S and

aαβ = r⃗αr⃗β, bαβ = −n⃗αr⃗β, ks = bαβs
αsβ, r⃗α = ∂αr⃗, sα =

dxα

ds
.

It is necessary to rewrite the relation (1-4) in terms of the midsurface S of the shell
Ω.

Relation (1) can be written as follows:

1√
a

∂
√
aϑσ⃗α

∂xα
+
∂ϑσ⃗3

∂x3
+ ϑΦ⃗ = 0, (ϑ = 1− 2Hx3 +Kx3).

from (2), (3), (4) we obtain

σ⃗i = σij(R⃗j + ∂jU⃗) = (Eijpq + Eijpqskesk)epq(R⃗j + ∂jU⃗)

⇒ σ⃗i = 1
2
Ai

i1
[M i1j1p1q1 + 1

2
M i1j1p1q1s1k1

×(Ak
k1
r⃗s1∂kU⃗ + As

s1
Ak

k1
∂sU⃗∂kU⃗)]

×(Ap
p1
r⃗q1∂pU⃗ + Aq

q1
r⃗p1∂qU⃗ + Ap

p1
Aq

q1
∂pU⃗∂qU⃗)(r⃗j1 + Aj

j1
∂jU⃗),
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where
M i1j1p1q1 = λai1j1ap1q1 + µ(ai1p1aj1q1 + ai1q1aj1p1)

M i1j1p1q1s1k1 = (E1 + E2)a
i1j1ap1q1 − E2a

i1j1ap1k1qq1s1

+E3a
i1p1aj1q1as1k1 + E4a

i1s1ap1q1aj1k1 ,

(aij = r⃗ir⃗j).

4. Isometric system of coordinates

The isometrical system of coordinates in the surface S is of special interest, since
in this system we can obtain bases equations of the theory of shells in a complex form,
which in turn, allows one for a rather wide class of problems to construct complex
representation of general solutions by means of analytic functions of one variable z =
x′ + ix2. This circumstance makes is possible to apply the methods developed by
N. Muskhelishvili and his disciples by means of the theory of functions of a complex
variable and integral equations [1].

The main quadratic forms in this of coordinates are of the type

I = ds2 = Λ(x1, x2)[(dx1)2 + (dx2)2] = Λ(z, z̄)dzdz̄, (Λ > 0)

II = bαβdx
αdxβ =

1

2
[Q̄dz2 + 2Hdzdz̄ +Qdz̄2],

where

Q =
1

2
(b11 − b22 + 2ib12), 2H = b11 + b22.

Introducing the well-known differential operators

∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z̄
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
and the notation

τ⃗ i =

√
g

a
σ⃗i, F⃗ =

√
g

a
Φ⃗,√

g

a
= ϑ = 1− 2Hx3 +Kx23,

we obtain the following complex writing both for the system of equations of equilibrium
and for ”Hooke’s Law”

1

Λ

∂

∂z
[Λ(τ 11 − τ 22 + iτ 12 + iτ 21 )] +

∂

∂z̄
[Λ(τ 11 + τ 22 + iτ 12 − iτ 21 )]

−Λ(Hτ+3 +Qτ̄+3 ) +
∂τ 3+
∂x3

+ F+ = 0,

1

Λ

(
∂Λτ+3
∂z

+
∂Λτ̄+3
∂z̄

)
+H(τ 11 + τ 22 )

+Re[Q̄(τ 11 − τ 22 + iτ 12 − iτ 21 )] +
∂τ 33
∂x3

+ F3 = 0,



The Isometric System of Coordinates and the Complex Form of the ... 51

where

τ 11 − τ 22 + i(τ 12 + τ 21 ) = τ⃗+r⃗+ =

√
g

a

{
[λΘ+ µ(R⃗+∂zU⃗ +

¯⃗
R+∂z̄U⃗

+2∂zU⃗∂ z̄U⃗)](R⃗+ + 2∂ z̄U⃗)r⃗+ + µ[2(R⃗+ + ∂ z̄U⃗)∂z̄U⃗(
¯⃗
R+ + 2∂ z̄U⃗)r⃗+

+(R⃗+∂3U⃗ + 2n⃗∂ z̄U⃗ + 2∂ z̄U⃗∂3U⃗)∂3U⃗ ] } ,

τ 11 + τ 22 + i(τ 12 − τ 21 ) =
¯⃗τ+ ¯⃗r+ =

√
g

a

{
λΘ+ µ(R⃗+∂

zU⃗ +
¯⃗
R+∂z̄U⃗

+2∂zU⃗∂z̄U⃗)(
¯⃗
R+ + 2∂zU⃗)r⃗+ + µ[2(

¯⃗
R+∂z̄U⃗ + ∂zU⃗∂

z̄U⃗)

(R⃗+ + 2∂ z̄U⃗)r⃗+ + (R⃗+∂3U⃗ + 2(n⃗+ ∂ z̄U)∂zU ]∂3U⃗+] }

τ+3 = (τ⃗ 1 + iτ 2)n⃗ =

√
g

a

{
2[λΘ+ µ(R⃗+∂zU⃗ +

¯⃗
R+∂z̄U⃗ + 2∂zU⃗∂z̄U⃗)

(n⃗∂ z̄U⃗)] + µ[2(R⃗+∂z̄U⃗ + ∂ z̄U⃗∂zU⃗)(n⃗∂
zU⃗)+

(R⃗+∂3U⃗ + 2n⃗∂ z̄U⃗ + 2∂ z̄U⃗∂3U⃗)(1 + ∂3U3)] } ,

τ 3+ = τ⃗ 3r⃗+ =

√
g

a

{
[λΘ+ µ(2n⃗∂3U⃗ + ∂3U⃗∂

3U⃗ ]∂3U⃗+

+µ(n⃗∂ z̄U⃗ +
1

2
¯⃗
R+ + ∂3U⃗∂3U⃗∂zU⃗)(R⃗+ + 2∂zU⃗)r⃗+

+(n⃗∂ z̄U⃗ +
1

2
R⃗+∂zU⃗∂3U⃗∂

z̄U⃗)(
¯⃗
R+ + 2∂z̄U⃗)z⃗+ }

τ 33 = τ⃗ 3n⃗ =

√
g

a

{
[λΘ+ µ(2n⃗∂3U⃗ + ∂3U⃗∂

3U⃗ ](1 + ∂3U⃗)

+2µ[(n⃗∂zU⃗+ +
1

2
R⃗+∂3U⃗ + ∂zU⃗∂3U⃗)(n⃗∂z̄U⃗)

+(n⃗∂ z̄U⃗ +
1

2
R⃗+∂3U⃗ + ∂3U⃗∂zU⃗)n⃗∂zU⃗ ] } .

Then

Θ = R⃗+∂zU⃗ +
¯⃗
R+∂z̄U⃗ + 2∂zU⃗∂

z̄U⃗ + ∂3U3 +
1

2
(∂3U⃗)

2,

∂zU⃗ =
1

2
[(R⃗+ ¯⃗

R+)∂zU⃗+ + (
¯⃗
RR⃗+)∂z̄ U⃗ ],

R⃗+ = R⃗1 + iR⃗2, R⃗+ = R⃗1 + iR⃗2,

R⃗+ = ϑ−1[(1−Hx3)r⃗
+ + x3Q¯⃗r+],

r⃗+ = r⃗1 + ir⃗2, r⃗+ = r⃗1 + ir⃗2,

R⃗+R⃗+ =
4x3
Λ

λ−Hx3
ϑ2

Q,

R⃗+ ¯⃗
R+ =

2

Λ

(1−Hx3)
2 + x23QQ̄

ϑ2
=

2

Λ

ϑ+ 2x23QQ̄

ϑ2
,
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R⃗+r⃗+ =
2

ϑ
Qx3,

¯⃗
R+r⃗+ =

2

ϑ
(1−Hx3),

r⃗+r⃗+ = 0, r⃗+ ¯⃗r+ =
2

Λ
, r⃗+ ¯⃗r+ = 2,

F+ = F1 + F2, U+ = U + iU2, U+ = U1 + iU2.

We have the formulas

r⃗+∂zU⃗ =
1

λ
∂zU+ −HU3,

r⃗+∂z̄U⃗ = ∂z̄U
+ −QU3,

n⃗∂z̄U⃗ = ∂z̄U3 +
1

2
(Q̄U+ +HŪ+).

The displacement vector U⃗ , representable in the form

U⃗ = Uαr̄α + U3n⃗ = Uαr⃗
α + U3n⃗ = U(e)l⃗ + U(s)s⃗+ U3n⃗ (U3 = U3)

can be rewritten as follows:

U⃗ =
1

2
(U+ ¯⃗r+ + Ū+r⃗+) + U3n⃗

or

U⃗ = Im

[(
U(l) + iU(s)

) dz
ds
r⃗+

]
+ U3n⃗

where
U+ = U⃗ r⃗, U+ = U⃗ r⃗+, U⃗(⃗l) = U⃗ l⃗, Us = U⃗ s⃗.

Here s⃗ and l⃗ are the unit tangent vector and tangential normal of the midsurface

S(x3 = 0). The expression for the unit tangent vector ˆ⃗s and the tangential normal
ˆ⃗
l of

the surface Ŝ(x3 = const) have the forms

ˆ⃗s =
dR⃗

dŝ
= [(1− xsks)s⃗+ xsτsl⃗]

ds

dŝ
,

ˆ⃗
l = ˆ⃗s× n⃗ = [(1− x3ks)⃗l − x3τss⃗]

ds

dŝ
,

and

dŝ =
√
1− 2x3ks + (k2s + l2s)x

2
3ds,(

ˆ⃗
l × ˆ⃗s = n⃗

)
where dŝ and ds are linear elements of the surfaces Ŝ and S, τs is the geodesic version
of the surface S.

The formula
ˆ⃗
lR⃗α = (1− 2Hx3 +Kx23)(⃗lr⃗α)

ds

dŝ
.
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which is necessary in writing the reduced basic boundary-value problems in stresses, is
also valid.
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SOLUTION OF SOME BOUNDARY VALUE PROBLEMS OF STATICS OF THE
THEORY OF ELASTIC MIXTURE IN AN INFINITE DOMAIN WITH AN

ELLIPTICAL HOLE

Svanadze K.

Abstract. For homogeneous equation of statics of the linear theory of elastic mixture in

the case of an outside the elliptical domain we consider the two boundary value problems

which are analogous to III and IV exterior boundary value problem of the classic theory of

elasticity. Applying the representation of the stress vector by the so-called mutually adjoint

vector functions we obtain effective solutions (Poisson type formulas) of the problems.

Keywords and phrases: Elastic mixture, singular integral equation with a Hilbert ker-

nel, general representation of the displacement and stress vectors, analogues of the general

Kolosov-Muskhelishvilis representations, adjount vector-function.

AMS subject classification (2010): 74E35, 74E20, 74C05.

1. Introduction

The basic two-dimensional boundary value problems statics of the linear theory of
elastic mixtures are studied in [1], [3]-[7] and also by many other authors.

In the paper we consider two boundary value problems for homogeneous equation
of statics of the linear theory of elastic mixtures in an infinite domain with an elliptical
hole, which for the cases of simple connected finite and infinite domains has been
studied by M. Basheleishvili in [5].

To solve the problems we use the method described in [2, §28] and [4]. Applying the
representation of the stress vector by the so-called mutually adjoint vector-functions
the problems are reduced to the singular integral equations with Hilbert kernels, and
owing to the above result, the solution of the problems can be reduced to the first order
linear differential equations.

The solutions of the problems are represented in the form of Poisson type formulas.

2. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixtures in a complex
form looks as follows [4]

∂2U

∂z∂z
+K

∂2U

∂z2
= 0,

where z = x1 + ix2, z = x1 − ix2,

∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,
∂

∂z
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
,
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U = (u1+iu2, u3+iu4)
T , u

′
= (u1, u2)

T and u
′′
= (u3, u4)

T are partial displacements,

K = −1

2
lm−1, l =

[
l4 l5
l5 l6

]
, m−1 =

1

∆0

[
m3 −m2

−m2 m1

]
, ∆0 = m1m3−m2

2 > 0,

mk = lk +
1

2
l3+k, k = 1, 2, 3, l1 =

a2
d2
, l2 = − c

d2
, l3 =

a1
d2
,

a1 = µ1−λ5, a2 = µ2−λ5, c = µ3+λ5, d2 = a1a2− c2, l1+ l4 =
a2 + b2
d1

, (2.2)

l2 + l5 = −c+ d

d1
, l3 + l6 =

a1 + b1
d1

, d1 = (a1 + b1)(a2 + b2)− (c+ d)2,

b1 = µ1 + λ1 + λ5 − α2
ρ2
ρ
, b2 = µ2 + λ2 + λ5 + α2

ρ1
ρ
, ρ = ρ1 + ρ2,

α2 = λ3 − λ4, d = µ3 + λ3 − λ5 − α2
ρ1
ρ

≡ µ3 + λ4 − λ5 + α2
ρ2
ρ
.

Here µ1, µ2, µ3 and λp, p = 1, 5 are elastic modules characterizing mechanical
properties of a mixture, ρ1 and ρ2 are its particular densities. The elastic constants
µ1, µ2, µ3, λp, p = 1, 5 and particular densities ρ1 and ρ2 will be assumed to satisfy
the conditions of inequality [1].

In [4] M. Basheleishvili obtained the following representations:

U =

(
u1 + iu2
u3 + iu4

)
= mφ(z) +

1

2
lzφ′(z) + ψ(z), (2.3)

TU =

(
(Tu)2 − i(Tu)1
(Tu)4 − i(Tu)3

)
=

∂

∂S(x)
(−2φ(z) + 2µU(x)) , (2.4)

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions, (TU)p
(p = 1, 4) are components of the stress vector [1],

µ =

[
µ1 µ3

µ3 µ2

]
, m =

[
m1 m2

m2 m3

]
, detµ = ∆1 > 0,

∂
∂S(x)

= n1
∂

∂x2
− n2

∂
∂x1
, n1 and n2 are the projections of the unit vector of the normal

onto the axes x1 and x2.
Formulas (2.3) and (2.4) are analogous to the Kolosov-Muskhelishvilis formulas for

the linear theory of elastic mixture.
To investigate the problems we use the vector [4]

V =

(
V1 + iV2
V3 + iV4

)
= i

[
−mφ(z) + 1

2
lzφ′(z) + ψ(z)

]
. (2.5)

As is known (see [4]) V is a vector adjoint to U .
From (2.3) , (2.4) and (2.5) we obtain

TU =

(
(TU)2 − i(TU)1
(TU)4 − i(TU)3

)
=

∂

∂S(x)

[
(2µ−m−1)U − im−1V

]
. (2.6)
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3. Statement of the posed boundary value problems and the uniqueness
theorems

Let an infinite isotropic plane be weakened by an elliptic hole with the semi-axis a
and b (a > b). This unbound domain will be denoted by D−. The symmetry axis of
the ellipse is taken at the coordinate axis, and the major axis coincides with the real
axis ox1. By L we denote the elliptic curve (a cos θ, b sin θ) ∈ L.

We consider the following boundary value problems: Find in the domain D− a
vector U = (u1 + iu2, u3 + iu4)

T which belongs to the class C2(D−)
∩
C1,α(D− ∪

L)
is a solution of equation (2.1) and satisfies only one of the following conditions on the
boundary L

(nU)− = f (1), (STU)− = f (2), (3.1)

(SU)− = F (1), (nTU)− = F (2), (3.2)

where f (j) and F (j), j = 1, 2 are the given scalar complex functions on the boundary
L, note that

(f (1), F (1)) ∈ C1,α(L), (f (2), F (2)) ∈ σ0,α(L), α > 0.

In the vicinity of infinity the vector U = (u1 + iu2, u3 + iu4)
T satisfies the following

conditions:

uk = 0(1), |x|2∂uk
∂xj

= 0(1), j = 1, 2, k = 1, 4, |x|2 = x21 + x22.

It will be assumed that the stress and rotation components vanish at infinity; more-
over, we suppose that the principal vector of external forces applied to the contour of
the hole is equal to zero.

Let us denote by (III∗)
− and (IV∗)

− the problems (2.1), (3.1) and (2.1), (3.2)
respectively.
The following assertion is true [5].

Theorem 3.1. The problems (III∗)
− and (IV∗)

− are uniquely solvable.

4. Solution of the (III∗)
− and (IV∗)

− problems

For the solution of the problems we use the method developed in [2]. Let us note
that the solution of the first BVP of statics of the linear theory of elastic mixture for
an infinite plane with an elliptic hole reads as ([7] or [3])

U(x) =
1

2π

∫ 2π

0

(1− τ1τ1)F (θ)dθ

1− τ1eiθ − τ1e−iθ + τ1τ1
− KA0

2π

∫ 2π

0

F (θ)τ1e
−iθdθ

(1− τ1e−iθ)2
, (4.1)

where U− = F ∈ C1,α(L), α > 0, (a cos θ, b sin θ) ∈ L; K = −1
2
lm−1 (see (2.2)),

A0 = (1− η1η1)
(
η−1
1 − η2

)
(η1 − η2)

−1 , τ1 = η−1
1 , |τ1| < 1,

η1 =
z +

√
z2 − a2 + b2

a+ b
, η2 =

z −
√
z2 − a2 + b2

a+ b
, z = x1 + ix2.



Solution of Some Boundary Value Problems of Statics of the theory of ... 57

If x = (x1x2) belong to the boundary of the ellipse then x1 = a cos θ0, x2 = b sin θ0,
and τ1 = e−iθ, τ1 = eiθ0 and A0 = 0.

Further, note that the adjoint vector of (4.1) has the form

V (x) =

(
V1 + iV2
V3 + iV4

)
=

1

2πi

∫ 2π

0

(τ1e
iθ − τ1e

−iθ)F (θ)dθ

1− τ1eiθ − τ1e−iθ + τ1τ1
+

(4.2)

+
KA0

2πi

∫ 2π

0

F (θ)τ1e
−iθdθ

(1− τ1e−iθ)2
.

10. A solution of the problem (III)− is sought in the form (see 4.1.)

U(x) =
1

2π

∫ 2π

0

(1− τ1τ1)(nq + Sχ)dθ

1− τ1eiθ − τ1e−iθ + τ1τ1
− KA0

2π

∫ 2π

0

τ1e
−iθ(nq + Sχ)dθ

(1− τ1e−iθ)2
, (4.3)

where (nU)− = q = f (1) is given by (3.1) and (SU)− = χ is the unknown function

n = (n1, n2)
T =

(b cos θ, a sin θ)T√
a2 sin2 θ + b2 cos2 θ

,

(4.4)

S = (−n2, n1)
T =

(−a sin θ, b cos θ)T√
a2 sin2 θ + b2 cos2 θ

.

We remark also that, on (a cos θ0, b sin θ0) ∈ L

(U(θ0))
− = n(θ0)q(θ0) + S(θ0χ(θ0)), (4.5)

(V (θ0))
− =

∫ 2π

0

ctg
θ − θ0

2
[n(θ)q(θ) + S(θ)χ(θ)] dθ. (4.6)

Using now (2.6) and taking into account (4.5) and (4.6) for the boundary value of
the stress vector we obtain

√
a2 sin2 θ0 + b2cos2θ0(TU)

− = (2µ−m−1)

(
dU

dθ0

)−

+
m−1

2πi

∫ 2π

0

ctg
θ − θ0

2

(
dU

dθ

)−

dθ. (4.7)

If we take into account (4.4) and condition (STU)− = f (2) (see(3.1)) then (4.7) can
be rewritten in the form of one equation

[
(2µ−m−1)

(
dU

dθ0

)−
](

−a sin θ0
b cos θ0

)
+

[
m−1

2πi

∫ 2π

0

ctg
θ − θ0

2

(
dU

dθ

)−

dθ

]
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×
(

−a sin θ0
b cos θ0

)
= (a2 sin2 θ0 + b2 cos2 θ0)f

(2)(θ0). (4.8)

Represent U− in the form (see (3.1) and (4.4))

(U(θ0)
− =

(
b cos θ0
a sin θ0

)
f(θ0) +

(
−a sin θ0
b cos θ0

)
h(θ0), (4.9)

where

f(θ0) =
f (1)(θ0)√

a2 sin2 θ0 + b2 cos2 θ0
, (4.10)1

h(θ0) =
(S(θ0)U(θ0))

−√
a2 sin2 θ0 + b2 cos2 θ0

=
χ(θ0)√

a2 sin2 θ0 + b2 cos2 θ0
. (4.10)2

Substituting (4.9) in (4.8) after obvious transformations we get

[
(2µ−m−1)H

′
(θ0)

]( −a sin θ0
b cos θ0

)
+

[
m−1

2πi

∫ 2π

0

ctg
θ − θ0

2
H

′
(θ)dθ

](
−a sin θ0
b cos θ0

)
= Φ(θ0), (4.11)

where

H(θ) =

(
−a sin θ
b cos θ

)
h(θ), (4.12)

Φ(θ0) = (a2 sin2 θ0+b
2 cos2 θ0)f

(2)(θ0)−(2µ−m−1)

[(
b cos θ0
a sin θ0

)
f(θ0)

]′ (
−a sin θ0
b cos θ0

)

−m
−1

2πi

∫ 2π

0

ctg
θ − θ0

2

[(
b cos θ
a sin θ

)
f(θ)

]′

dθ

(
−a sin θ0
b cos θ0

)
. (4.13)

Bearing in mind the formulas

ctg
θ − θ0

2

(
−a sin θ0
b cos θ0

)
=

(
a cos θ + a cos θ0
b sin θ + b sin θ0

)
+ ctg

θ − θ0
2

(
−a sin θ
b cos θ

)
,

after some calculations we can rewrite (4.11) in the form[
(2mµ− E)H

′
(θ)

]
m−1

(
−a sin θ0
b cos θ0

)
+

1

2πi

∫ 2π

0

ctg
θ − θ0

2
H

′
(θ)m−1

(
−a sin θ
b cos θ

)
dθ − iM = Φ(θ0). (4.14)



Solution of Some Boundary Value Problems of Statics of the theory of ... 59

where

M =
1

2π

∫ 2π

0

H(θ)m−1

(
−a sin θ
b cos θ

)
dθ. (4.15)

Applying the formula of composition of integrals with Hilbert kernels (see[2], §28)

1

4π2

∫ 2π

0

ctg
θ0 − θ∗

2
dθ0

∫ 2π

0

ctg
θ − θ0

2
P (θ)dθ = −P (θ∗) + 1

2π

∫ 2π

0

P (θ)dθ,

from (4.14) we find

H
′
(θ0)m

−1

(
−a sin θ0
b cos θ0

)
+

1

2πi

∫ 2π

0

ctg
θ − θ0

2

[
(2mµ− E)H

′
(θ)

]
m−1

(
−a sin θ
b cos θ

)
dθ

−N =
1

2πi

∫ 2π

0

ctg
θ − θ0

2
ϕ(θ)dθ, (4.16)

where

N =
1

2π

∫ 2π

0

H
′
(θ)m−1

(
−a sin θ
b cos θ

)
dθ. (4.17)

The equalities (4.14) and (4.16) result in[
(2mµ− 2E)H

′
(θ0)

]
m−1

(
−a sin θ0
b cos θ0

)

− 1

2πi

∫ 2π

0

ctg
θ0 − θ∗

2

[
(2mµ− 2E)H

′
(θ)

]
m−1

(
−a sin θ
b cos θ

)
dθ +N − iM

= ϕ(θ0)−
1

2πi
)

∫ 2π

0

ctg
θ − θ0

2
ϕ(θ)dθ (4.18)

Thus, for determining
[
(2mµ− 2E)H

′
(θ)

]
m−1

(
−a sin θ
b cos θ

)
we have obtained a

singular integral equation (4.18) with the Hilbert kernel.
Taking into account the fact that, when f (1) = f (2) = 0,then U(x) = 0, x ∈ D−,

(see theorem 3.1), also ϕ = 0, h = 0, H = 0 and M = N = 0, (see (4.10)1, (4.10)2,
(4.15) and (4.17)) we can conclude that solution of the equation (4.18) is[

(2mµ− 2E)H
′
(θ)

]
m−1

(
−a sin θ
b cos θ

)
= ϕ(θ)−N + iM.

The last formula yields (see (4.12))

h
′
(θ) +

1

2

r
′
(θ)

r(θ)
h(θ =

ϕ(θ)

r(θ)
− N − iM

r(θ)
, (4.19)
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where

r(θ) = 2

[
a2

(
µ1 −

m3

∆0

)
sin2 θ − ab

(
µ3 +

m2

∆0

)
sin2θ + b2

(
µ2 −

m1

∆0

)
cos2 θ

]
̸= 0,

0 ≤ θ ≤ 2π. (4.20)

Here (see [6])

(
µ1 −

m3

∆0

)(
µ2 −

m1

∆0

)
−

(
µ3 +

m2

∆0

)2

> 0, ∆0 = m1m3 −m2
2 > 0. (4.21)

From (4.19) by integration we obtain

h(θ) =
C√
r(θ)

+
1√
r(θ)

∫ θ

0

ϕ(θ0)−N + iM)√
r(θ0)

dθ0, (4.22)

where C is an arbitrary constant
As it is known conditions f (1) = f (2) = 0 imply that U(x) = 0, x ∈ D− and

ϕ = H = h =M = N = 0. Therefore from (4.22) we obtain C = 0 and finally

h(θ) =
1√
r(θ)

∫ θ

0

ϕ(θ0)−N + iM√
r(θ0)

dθ. (4.23)

Now let us find N − iM . Since h(θ) is periodic with the period 2π, i.e. h(θ+2π) =
h(θ) (see (4.9) (4.10)1 and (4.10)2 and r(2π) = r(0) ̸= 0 (see (4.20) and (4.21)) therefore
from (4.23) we obtain

N − iM =

∫ 2π

0
ϕ(θ)(r(θ))−

1
2 dθ∫ 2π

0
(r(θ))−

1
2 dθ

.

Having found h(θ) by formula (4.10)2 we obtain value of S(θ)χ(θ) and after by (4.3)
we obtain the solution of the problem (III∗)

− represented in the form of Poisson type
formula.

Thus the (III∗)
− boundary value problem is solved. The BVP (IV∗)

− is solved
quite analogously.
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ბ.  გულუა 
 

ნაშრომში განხილულია იზოტროპული ერთგვაროვანი დრეკადი გარსის 
წონასწორობის განტოლებათა სისტემა. ვეკუას მეთოდით მიღებულია 
ორგანზომილებიანი განტოლებათა სრული სისტემა, როცა სხეულის ზედა და 
ქვედა პირეულებზე მოცემულია გადაადგილების ვექტორი. ფირფიტისათვის 
აგებულია ზოგადი ამონახსნი N=1 მიახლოებაში. ამოხსნილია ამოცანა 
წრისათვის, როცა საზღვარზე მოცემულია ძაბვის ვექტორი. 

 
 
 

ზოგიერთი სასაზღვრო ამოცანის მიახლოებითი ამონახსნის  
აგების ერთი მეთოდის შესახებ 

 
რ. ჯანჯღავა 

 
 ნაშრომში განხილულია მათემატიკური ფიზიკის ზოგიერთი კლასიკური და 

არალოკალური სასაზღვრო ამოცანის მიახლოებითი ამონახსნის აგების მარტივი 
ალგორითმი. განსახილველი ალგორითმის გამოყენებით, დრეკადობის 
ბრტყელი თეორიის შემთხვევაში, ასევე ლაპლასისა და ჰელმჰოლცის 
ორგანზომილებიანი განტოლებებისათვის,  აგებულია ზოგიერთი  სასაზღვრო 
ამოცანის მიახლოებითი ამონახსნი. აგებული მიახლოებითი ამონახსნები 
შედარებულია შესაბამის ზუსტ ამონახსნებთან.  
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ფირფიტის ღუნვის ერთი ამოცანის შესახებ მრუდწირული  
ოთხკუთხა არისათვის სწორხაზოვანი ჭრილით 

 
გ. კაპანაძე, ბ.  გულუა 

 
განიხილება ფირფიტის ღუნვის ამოცანა მრუდწირული ოთხკუთხა 

არისათვის სწორხაზოვანი ჭრილით. ფირფიტის გარე საზღვარი შედგება 
აბსცისთა ღერძის პარალელური სწორხაზოვანი მონაკვეთებითა და ერთი და 
იგივე წრეწირის რკალებით, ხოლო შიგა საზღვარი წარმოადგენს აბსცისთა 
ღერძის პარალელურ ჭრილს. მეტი თვალსაჩინოებისათვის ვიხილავთ 
სიმეტრიულ შემთხვევას. ვთვლით, რომ გარე საზღვრის სწორხაზოვან 
მონაკვეთებზე მოქმედებენ თანაბრადგანაწილებული ნორმალური მღუნავი 
მომენტები, წრეწირის რკალები თავისუფალნი არიან გარეგანი 
დატვირთვებისაგან, ხოლო შიგა საზღვარი (ჭრილი) – სახსრულადაა 
დაყრდნობილი. 

ამოცანის ამოსახსნელად გამოყენებულია კონფორმულ ასახვათა და ანალი-
ზურ ფუნქციათა სასაზღვრო ამოცანების მეთოდები და საძიებელი 
კომპლექსური პოტენციალები, რომელთა საშუალებითაც გამოისახება 
ფირფიტის შუა ზედაპირის ჩაღუნვა, აგებულია ეფექტურად (ანალიზური 
ფორმით). გამოკვლეულია აღნიშნული პოტენციალების ყოფაქცევა კუთხის 
წვეროებისა და ჭრილის ბოლოების მახლობლობაში. 

 
 

 
მაღალი რიგის სხვაობიანი  განტოლებები A და B თვისებით 

 
ნ. ხაჩიძე 

 
მაღალი რიგის სხვაობიანი განტოლებებისათვის მიღებულია მონოტონური 

ამონახსნების არსებობის აუცილებელი პირობები. გარდა ამისა, დადგენილია 
ამონახსნების ოსცილაციურობის ახალი ტიპის კრიტერიუმები. 
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თითქმის წრფივი ფუნქციონალურ-დიფერენციალურ 
განტოლებათა ამონახსნების ოსცილაციური 

 თვისებების შესახებ 
 

რ. კოპლატაძე 
 

მაღალი რიგის ფუნქციონალურ-დიფერენციალურ განტოლებებისათვის, 
როცა განტოლების მარჯვენა მხარეს გააჩნია თითქმის წრფივი მინორანტი, 
მიღებულია A ან B თვისების არსებობის საკმარისი პირობები. 

 
 
 
 
 

იზომეტრიული კოორდინატთა სისტემა და არადამრეცი 
არაწრფივი გარსების განტოლებათა სისტემის 

კომპლექსური სახე 
 

თ. მეუნარგია 
 

იზომეტრიული კოორდინატთა სისტემის გამოყენებით სხეულის 
წონასწორობის განტოლებათა სისტემა და ჰუკის კანონი ჩაწერილია 
კომპლექსური სახით არადამრეცი და არაწრფივი გარსებისათვის. 
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დრეკად ნარევთა თეორიის სტატიკის ზოგიერთი 
სასაზღვრო ამოცანის ამოხსნა უსასრულო არეში  

ელიფსური ხვრელით 
 

კ. სვანაძე 
 

ნაშრომში დრეკად ნარევთა წრფივი თეორიის სტატიკის ერთგვაროვანი 
განტოლებისათვის, ელიფსის გარე არეს შემთხვევაში ეფექტურადაა ამოხსნილი 
იმ ტიპის ორი ამოცანა, რომლებიც კლასიკურ დრეკადობის თეორიაში 
ცნობილია III და IV ამოცანების სახით. 

ძაბვის ვექტორის ე.წ. ურთიერთ მიკავშირებული ვექტორ-ფუნქციებით 
წარმოდგენის გამოყენებით აღნიშნული ამოცანები მიყვანილია სინგულარულ 
ინტეგრალურ განტოლებებზე ჰილბერტის გულით, რომლის საფუძველზე 
თითოეული ამოცანის ამოხსნა დაიყვანება პირველი რიგის წრფივი 
ჩვეულებრივი დიფერენციალური განტოლების ინტეგრებაზე.  

ამოცანების ამონახსნები მოიცემა პუასონის ტიპის ინტეგრალური 
ფორმულების სახით.  
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