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ONE BOUNDARY VALUE PROBLEM FOR THE PLATES
Gulua B.

Abstract. In this work we consider equations of equilibrium of the isotropic elastic shell.
By means of Vekua’s method, the system of differential equations for thin and shallow shells
is obtained, when on upper and lower face surfaces displacements are assumed to be known.
The general solution for approximations N = 1 is constructed. The concrete problem is
solved.

Keywords and phrases: Stress vectors, displacement vector, shallow shells.

AMS subject classification (2010): 74K25, 74B20.

1. Introduction

The refined theory of shells is constructed by reducing the three-dimensional prob-
lems of the theory of elasticity to the two-dimensional problems. I. Vekua had obtained
the equations of shallow shells [1],[2]. It means that the interior geometry of the shell
does not vary in thickness. This method for non-shallow shells in case of geometrical
and physical nonlinear theory was generalized by T. Meunargia [3].

By means of Vekua’s method, the system of differential equations for thin and
shallow shells was obtained, when on upper and lower face surfaces displacements are
assumed to be known [4].

The systems of equilibrium equations and stress-strain relations (Hooke’s law) of
the tow-dimensional shallow shells may be written in the following form [4]:

m m 2 1 m—+1 m+3 (m)
v, (ot G mh+ (( oy Ty )ﬁ3+...> + o 7 =0,

(m) (m) 2m + 1 [(m+1) (m+3) (m) (1)
Vaaa?’—i—bﬁag—l— ; (0 S+ 0 3—}—...)—1—(1)3:0,

where

m [ m m 2 1 m—1 m—3
(0"‘5:)\ Vy(u)7—2H(u)3— m (u)3+(u)3+-~) a’

m m m 2m + 1 -
o (vﬁ Mo, ga s _ g <u>3) L mh+ ((14;)3 " <u>3> o,

m m m 2 1 m—1 m—3
(Uagzﬂ VOl<u>3+bg<u>ﬁ_ m + (u)a+(u)a+---)}
L 2)
2m+1 [((+) (=) (
+/'L <ua_(_1>m ua ,

m m m 2 1 m—1 m—3
b3 =\ (Vv(u)W—QH(u):s) — (A +2p) mh+ (( u )3—1—( u )3_|_...)

om -+ 1 [(+) )
Hor 0 2E (D- cm).
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Here X and p are Lame’s constants, V, are covariant derivatives on the midsurface, a®’
and b*? are the contravariant components of the metric tensor and curvature tensor of
the midsurface, H is middle curvature of the midsurface and

h
(m),. (m); (m).\  2m +1 o0 i z
(a%u,@)— - /(aﬂ,u,cb)Pm(f)dxg,
(m=0,1,2,---)

(&) . .
= (xt 2%, £h),

where 0¥/ are contravariant components of the stress vectors, u’ are contravariant com-
ponents of the displacement vector, ®* are contravariant components of the volume

force, P, <x—h3) are Legendre polynomials, z!, 2% are the Gaussian parameters of the

midsurfaces, ® = 3 is the thickness coordinate and A is the semi-thickness. So, we

have the infinite system.

An infinite system of equations (1) has the advantage that it contains two indepen-
dent variables - Gaussian coordinates x!, 22 of the midsurface. But the decrease in
the number of independent variables is achieved by increasing the number of equations
to infinity, which, naturally, has an obvious practical inconvenience. Therefore it is
necessary to make the next step for a further simplification of the problem.

2. N =1 approximation for plates

we consider N = 1 approximation for plates. In other words, in the previous
equations it is assumed that

Wi o, Wizo ifm>1

As a result we obtain a finite system of equilibrium equations

(0) 1@ (0)
(9a Uaﬁ—i-ﬁa'ﬁd—i—@/j:o,

(0) 1) (0)
On 0a3+ﬁa33+‘1>3=07

(1) (1)
Oa Oap + ®p = 0,

(1) (1)
aa On3+ &3 = 07

where
( (0 0 0 0 A -
(U>aﬂ _ ) (a7 (u)w> s+ (aﬁ (u)a Lo, (u>ﬂ> 2 ((33 _ e ) o,
0 0 _
(0)a3 =H (aa (u)3> + % ((z)a - (u)a> ) (5)

(0) (0) A+2 + )
0'33:)\(877117)4— hu(ug—u;;),

N\

\
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( (1 1 3 (0 3\ _
(U)aﬁ =\ <87 (u),y — E (u)g) 5a5 + u <(95 Ug + On U@) + — h ( Uz + (u)3) 5(167
(1) (1) 3 (0) 3 (+) -)
O'ag,:/j(aaUg—E(ua —|—#(UQ+(UQ 5 (6)
(1) (1) 3(A4+2u) 0 3(A+2 +) (=)
0'33:)\(8,Y 'LL,Y) — h ’u) U3+ ( h M) (U3+ U3).
\

Substituting these expressions (5) and (6) into equation (3) and (4), we obtain the
system of second-order partial differential equations:

(

(0) 0) 1
pPA Uy 4+ (A +p)0r 0 +E <M5’1 3 Uy

(0) © 1 31 (0) (0)
PA Uy 4+ (A + )02 0 +E <M5’2 3— TM Uz | = Wy, (7)

~“A%+%<ﬁ339%32%)=$%
( pA ul + (A + )0 é)—%al Us = (1)
MAUTMA+M@éLEL%% (” ®)
NA 13—3#(8) (&1)3,

(m)
where ¥; are the known values and

(m)

9 :(91 (717)14—62 (ZL)Q, m:(),l
Introducing the well-known differential operators

1 1
0, = 5(81 —idy), 0;= 5(81 +10y),

where z = x1 + 125.
System (7) and (8) can be written in the complex form:
a) for the tension-pressure of plates

(0) 0) 1 ( ) 31 (0) (0)
pA wy +2(A + p)0: 6 ++ <2M3 Uz — fu U+) = Uy,

O 30
;Ag—#HZ%

>

b) for the bending of plates

1 (1) 6)\ (1)

1/, 3(A+2 ©0)
(Ae—a +;o@)

(0)
PA Uz + E I uz | = W3,
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2

where A =4 and

z20Z

(m) (m) . (m) (m) (m) (m) (m (m) (m)
Uy = uy+1uy O =0, u,+0; Uy, \IJ+—\I/1+Z\I/2

The complex representation of the general solutions of the homogenous systems (9)
and (10) are written in the following form [2, 5]:

U = 1)+ 7 + AT - DD
1) 3/ - 3 — (1)
uy = o (20(2) +21G)) + 55 (90 +9(3))
1) BA+6u — A 0x(z, 2)
e = Sy, P~ 2 V) + g .
ON _ 2)\h , —
iy = x(22) + 55315 (P +9))

where f(2), g(2), ¢(z) and ¥(z) are any analytic functions of z, w(z, Z) and x(z, z) are
the general solutions of the following Helmholtz’s equations, respectively:

Aw — 72w =0, <’Y2:%>7

12(\ + ,u)h2) .

Ay — 13y =0 =
X — VX ,(x N2

From egs. (5), (6) the following relations follow

( () (0) (0) (0) (0) (0) (0)
o+ 02 =2(A+p) 0, 011 — 099 + 20 019 = 4p0; Uy,

1) (1) L 6X0 (1 (1) 1) 1)
o1+ 0o =2(A+p) 6 T Ug, 011 — O9g+ 20 019 = 4pu0; uy, (13)

(0) (0) (0) 1) 1) 1) 3 (0)
013+ 1 093 = 20105 U3, 013 + 1 093 = 210 3—#u+

\

3. The solution of the boundary problem for the circle

Let us solve the problem when the midsurface of the body is the circle with the
radius R.
The boundary problem (in stresses) takes the form [3]:

L |(m) (m) (m) (m) (m dz (m)
5[0’11"‘ 022_(011_ 0-22"—22 012) (@) ] = F’_"_7

(m) (m) dz (m) (m) (m) . (m)
Urn:—Im(U+3E) = I's, (‘7+3: 013+1 023>-

(g})rr +1 (gb)'ra =

(14)
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Using egs. (12) and (13) the boundary conditions are written as
8()\+ 20) ——

;

A+ (') + TG + (207 ) + =2 7 ()
+209"(2) — @%)MW = ZAmem"‘, r=R,
< L (in2 ﬁiiﬂﬂfﬂ(ﬁm_ "
_ﬁ(l_haw((;, z) N 4(A J;ju) 7z ) ZBnle r—R.
[ 2((5)+ 7) - (e
+2“<2(>\)\ﬁ m 8292(;2’ 2 _ 2p"(z) — W) e M = J:::;Anzeim, r=R, »

Pz 3B r2n)”

ox(z, 2) 2Aph -, - ,
(10% — Bn Zna, — R'
\ +(,u P + 3(3/\‘1‘2/1)%0 (z))e 2 2€ r

Inside the domain the analytic functions f(z), ¢g(2), ¢(z) and ¥ (z) will have the
following form:

+00 +oo
= Z ane™,  g(z) = Z bpe™, (17)
n=1 n=0
+oo . +oo )
ple) = 2 ene™, P(2) = 3 dne™. (18)

Solutions of the Helmholtz equations w(z, z) and x(z, Z) inside of the domain are rep-
resented as follows

too .
w(z,z) = goan[n(fyr)ema, (19)
(2.5) = iff B, (vr)eme, (20)

where I,,(-) are Bessel’s modified functions.

In the boundary conditions (15) we substitute the corresponding expressions (17),
(19) and compare the coefficients at identical degrees. We obtain the following system
of equations

/

7)
g_h[nJrQ (’YR) Qpn = Anl )

(InH('yR) In_l(vR)>an — 20+ 20)n(n + 1)R" ap,y = Bu

8(\ + 2u)h?
3

(A 1) (n + D) R" a1 —

iy
4

[(/\ + p)R" + 2un R +
+2u(n — 1)nb, = A_,1.

(21)
(n — D)nR" 2| (n+ 1)an1
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The solutions of the system (21) have the following forms:
EYZURR Qo = ———F 7
200 +p) 7 ph(yR)

A 2L s (VR) By + (Ini1(VR) — Ina (vR))vhAwm
"+ DR+ ) (T (VR) — Lo (YR) YRR — 4N+ 2p)ndg2(vR))

Rea; =

_ 2h[(n + 1)( A+ p) R a1 — Ani]
" Mi]n+2(7R) ,
A_, A+ p)R R 4N+ 2u)h? R
b — 1 [t (A +2p) (n+ 1)ays.
2un(n — 1) 2unin—1) n-—1 3

Now by substituting (18), (20) into (16) we obtain the system of algebraic equations:

( 3\ i B
o 2R (Ins2(WR) = Lu(vR) ) B+ 24100 + 1) R 61 = Ago,
el 2\ih B
5 <In+1(VR) + [n—l(uR)>5n + 303A+ 2NJ)n(n +1)cps1 = B, (22)
3\ )
Oy oh (zn_g(uR) - In(uR)>6n +2u(n+ 1)(1 = n)R"p ey
—2u(n — 1)R"2d,_1 = A_p».

\

For coefficients ¢,, d,, and [, we have:

L (38X + 210)[BAL], (v R) Buy — (A + 2u)h2I" (v R) Apo)
" AN uhn(n + 1) R (VR) — 20\ + 20) (3X + 2u)ph?(n + 1) R* I (vR)’

(A +200)h(An2 — 2u(n + 1) R"cpp1)

bo = 3l (VR)
BA(In,Q(uR) - In(yR)> i,
dnfl = _ Bn - (n + 1>R20n+1 - — o
2(A + 2u)h(n — 1)Rn—2 2u(n — 1)R"—2
5 . B02 Rec: — R,GAOQ _ 3/\]6(1/R)B()2
O wI,(vR)’ YT 4p (N 2u)vhdi(VR)

where
I'(vR) = I,12(vR) — I,(vR), I/(vR)= I,41(vR)+ I, 1(VR).
It is easy to prove that the absolute and uniform convergence of the series obtained

in the circle (including the contours) when the functions set on the boundaries have
sufficient smoothness.
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ABOUT ONE METHOD OF CONSTRUCTION OF APPROXIMATE SOLUTIONS
OF SOME BOUNDARY VALUE PROBLEMS

Janjgava R.

Abstract. A simple algorithm for construction of the approximate solution of some classical
and nonlocal boundary value problems of the mathematical physics is considered. The effi-
ciency of the offered algorithm for construction of the approximate solutions of problems is
shown on the examples of two-dimensional classical and nonlocal boundary value problems
of the theory of elasticity and for two-dimensional equations of Laplace and Helmholtz.

Keywords and phrases: Boundary value problems, approximate solution, nonlocal prob-
lems.

AMS subject classification (2010): 35J25, 35J55, 65N99.

1. Introduction

In this work a simple algorithm for construction of the approximate solution of some
boundary value problems of the mathematical physics is considered. The mentioned
algorithm has been offered in [1]. We may call a considered method a semi-analytical
method. From the approximate methods known in the literature it is the closest to a
method of fundamental solutions [2-4] and a boundary elements method [5-9].

In the work the main relations of the offered method for the problems of the two-
dimensional equations of Laplace and Helmholtz and for problems of the plane theory of
thermoelasticity are obtained. By means of this method the approximate solutions for
several classical boundary value problems and nonlocal problems of Bitsadze-Samarskii
type [10-21] are constructed and exact solutions of these problems are known in ad-
vance. The relevant exact and approximate solutions are compared with each other
and appropriate conclusions are drawn.

2. Problems for the Laplaces two dimensional equation

Let Oxy be a rectangular cartesian coordinate system on the plane. We consider
the Laplace equation

Au =0, (1)
_ : . : : _ _o()
where A(+) = () zz + (+) 4y i a two-dimensional laplacian, (), = ——=, (), = B
Y
u(z,y) is a scalar function.
First we consider the simply connected domain €2 with a sufficiently smooth bound-
ary L . The domain 2 covers the origin of coordinates. On a contour L the 2N + 1
points with coordinates of (x1,41), (2, y2), ..., (Tan+1,Yon+1) are more or less evenly

distributed (Fig. 1).
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The approximate solution is sought in the form of

u=ay+ Z'r’"(&:, y)|an cos(nb(x,y)) + by, sin(nb(z,y))], (2)

where ag, ay, -+ ,a,, b1, , b, are sought-for real coefficients; r(z,y) = /22 + y2,

arctan g, x>0,
x

arctang—ﬂr, r<0,y>0,
x

O(x,y) = arctan 2 —m, x<0,y<0,
x
7r

= =0,y>0

27 x 7y Y
T

L —5, $:0,y<0

The partial derivatives of u(z,y) are expressed by the formulas

= Y0 oy an cos((n = 1Bz, y)) + by sin((n — 10w, y))
7 )
iy = S @)l =ansin((n — D0, ) + b cos((n — DA, )

Fig. 1. The simply connected domain {2

The algorithm of construction of the approximate solution is stated on the example
of the classical mixed boundary value problem. The contour L is divided into two
contours L; and Ly so that by Li(\Ly = @ and L;(Ly = L (Fig. 1). Let us
assume that the contour L; includes points of (z1,v1), (z2,¥2), -, (TN, yn,) and the
contour Lo includes points of (zn,+1,Yny+1), (Tny42,Yni42), -, (Tans1, Yoni1) - On
the contour L; the value of the sought-for function is set, and on the contour L, - of
the value of its normal derivative

{ u’Ll = fl<x>y)7 ($,y) € Ll

Un|r, = fo(z,y), (x,y) € Lo, (4)
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where fi(z,y) and fy(z,y) are the functions defined on the boundary; (-),, derivative
in the direction 7 = (cos o, sin ), i. e.

Uy = Uy COSQ+ Uy sina. (5)

External unit normal in a point (x;,y;) on the boundary is designated through
(cos aj, sin o).

When j = 1,2,--- ,N; in the formula (2) = and y are replaced through z; and
y; respectively. The expressions obtained fi(z;,y;) are equated to the corresponding
values of the boundary conditions (4). Similarly, when j = Ny +1,N; +2,--- 2N +1
in the formula (3) x and y are replaced through x; and y;. The expressions received are
substituted in (4), where instead of a value «; is substituted. The resulting expressions
are equated to the corresponding values fo(z;,y;) of the boundary conditions (4).

Thus, we obtain the system of the linear algebraic 2N + 1 equations with 2N + 1
unknown ag, a1, ..., an, by, ..., bn

N
ap + Z(Alnjan -+ A2njbn> = fl(xj,yj), j = 1, 2, s ,Nl,
W 0
S (Bungan + Bogba) = folwsyy) 5= N+ LN +2,-- 2N + 1,
n=1
where

Arnj = 1"(x5,y;) cos(nb(z;, y;)),
Agnj = 1"(x5,y;) sin(nb(x;, y;)),
By = 1" (x5, y;)[cos((n — 1)8(x;, ;) cos a; + sin((n — 1)6(x;, y;)) sin oy,
Bayj = "y, yj)[— sin((n — 1)0(x;, y;)) cos a; + cos((n — 1)0(x;,y;)) sin ay].

After solving the system (6), its solution (ag, a1, ..., an, by, ..., by) is substituted in
the formula (2) and thus we've got the approximate solution of a boundary value
problem (1), (4).

Example 1. As an example we consider a classical problem of Dirichlet in elliptic
domain V = {(x,y)| 2% + 4y*> < 1} . The boundary of domain V is the ellipse of S,
which is set parametrically x = cost, y = 0.5sint, 0 < t < 27w. Thus, the following
problem is considered

Au=0 1n V,
U|S = 0.5(1‘2 + y2)|(x,y)€S-

The exact solution of this problem is the following function
u =024+ 0.3(z* — y?).

On the boundary S the points (cos %(] —1),0.5sin %(] — 1)), j=1,2,...,71 are
marked (Fig. 2). The approximate solution is sought in the form (2), where N = 35.

Meeting the boundary conditions in the marked points, we've got the system of the
algebraic 71 equations with 71 unknown.
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v
0.5
-1 \\‘ D ’//1 x
L S
-0.5

Fig. 2. The domain V with the points marked on the boundary

After solving this system, the resulting solution is substituted in (2) ( NV = 35) and
we’ve got the approximate solution.

The appropriate program is made in the Maplel2. Numerical results are specified
in Table 1.

Tab. 1. Numerical results for the problem 1

(z,9) u(z,y) u(z,y) | |u(z,y) —ulz,y)|
(0.01, 0) | 0.2000300000 | 0.20003 0
(0.1, 0) | 0.2030000000 | 0.20300 0
(0.5,0) | 0.2750000000 | 0.27500 0
1
0

(0.9, 0) | 0.4429999995 | 0.44300 5.0-1071°
(0.2,—0.2) | 0.2000000000 | 0.20000

(0, 0.3) | 0.1730000000 | 0.17300 0
(0.8, 0.1) | 0.3890000001 | 0.38900 10710

As Table 1 shows the constructed approximate solution may be called the exact
solution of the problem of Dirichlet.

The approximate solutions for multi-connected domains are constructed analo-
gously. For simplicity the doubly connected domain €2, bounded by the simple closed
contours L; and L, is considered from which the last one embraces the latter and the
previous embraces the origin of coordinates. On these contours the points 2(2N + 1)
with the coordinates (w1,y1), (z2,%2), .., (T22n+41), Y2(2n+1)) are more or less evenly dis-
tributed (Fig. 3).

YA

Fig. 3. The doubly connected domain 2
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The approximate solution is sought in the following form

u=alnr(z,y)+ag+ Z r~"(z,y)[a, cos(nb(x,y)) + by, sin(nb(z,y))]

n=1

+r"(x, y)[c, cos(nb(z,y) + d, sin(nb(z,y))].

Partial derivatives of @(z,y) function are expressed by means of the formulas

ax

Uy = m + ; —nr~ " (x,y)[a, cos((n + 1)0(z,y))

b sin((n T 1)0(z, )] + 00" (2,9) [en cos((n — 10z, 3))
+d, sin((n — 1)0(x,y))],

TP 3 —nr " Yz, y)[a, sin((n x
L = 2 ) +; (2, y)]an sin((n +1)0(z, y))

—b, cos((n+ 1)8(x,y))] + nr"z, y)[—c, sin((n — 1)0(z, y))
+d,, cos((n — 1)0(z,y))],

(9)

Using the formulas (7)-( 9), (5) of the simply connected domain considered above,
the boundary conditions are satisfied point-wise in the points selected on the boundary.
As a result the we’ve got a system of the linear algebraic 4N + 2 equations with 4N + 2

unknowns a, ag, a1, ..., an, by, ..., bn, 1, ..., N, d, ..., d .

The considered way can be applied to construct the approximate solution of rather
a wide class of tasks for harmonic functions. The example of construction of the ap-
proximate solution of nonlocal problem of Bitsadze-Samarskii for the doubly connected

domain bounded by the rectangular contours is given below.

_Example 2. Let the domain V' represent the doubly connected domain V' =
Vi\Va, where Vi = {2 <2 <3, -2<y<2}, Va={-1<z<1,-1<y<1} (Fig.

4). We consider below the nonlocal problem of Bitsadze-Samarskii

Au=0 iV,
(—2,7) 2 2420, —2<y<2
u(— = — — —
Y T Y , 2<y<2,
_ 2
u(z, 2)—m2+4—|—x —br+2, —-2<ux<3,
3.y) — u(2y) = — 2 gcy<2
u — U = — _
7y 7y 9+y2 4+y2’ y )
2
y - —1
S(—1y) = 7, —1<y<1,
U ) (y2 + 1)? Y
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y o —1
u (ly) =2~ 3 —1l<y<l.

The exact solution of this problem is as follows

u(z,y) = + 2% — 5x — y* + 6.

x
x2 4 y?

[B¥]

()
—
[=]
—
S iy s ol
Lad|
b

-2

Fig. 4. Doubly connected domain V', in which nonlocal problem is solved

On an external contour beginning from the point (3, 0), with a step 0.5 points 36 are
marked. Analogously, on an internal contour beginning from a point (1, 0), with the
same frequency 16 more points are marked. On an internal contour two more points
with coordinates (0.75,—1.0) and (—0.75,1.0) are marked. In fig. 4 also 7 points
are marked on the segment inside the body where nonlocal conditions are set. The
approximate solution sought in the form (7), where N = 13. Boundary and nonlocal
conditions are satisfied in the marked points.

The solution of the nonlocal problem is tabulated to solution of the problem of
system of the linear algebraic 54 equations with 54 unknown. After solving this system,
the resulting solution is substituted in (7) (N = 13) and we’ve got the approximate
solution.

The appropriate program is made in the Maple 12. Numerical results are presented
in Table 2.

Tab. 2. Numerical results for a problem 2

(.I,y) ﬂ(ZL’,y) u(xay) ‘ﬂ(l‘,y) —U(l‘,y>|
(2.0, 0) 0.5000066859 0.5 6.66859 - 107°

(1.6, 1.8) —2.404136519 | —2.404137931 1.412-10°

(0.4, 1.74) 1.257888466 1.257886259 2.203-107¢
(—1.43,—2.25) | 9.931201879 9.931201249 6.3-1077

(0.7, —1.23) 1.826596858 1.826593235 3.623 - 1076
(—1.5,1.5) 13.16666710 13.16666667 4.3-1077
(3.0, —2.0) —3.769230771 | —3.769230769 2.0-107°

3. Problems of the plane theory of thermoelasticity

Let consider the plane deformation parallel to the plane Oxy for the homogeneous
transversely isotropic thermoelastic body.
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If the plane of an isotropie is parallel to the Ozy plane then the homogenous system
of the equations of thermoelastic equilibrium in displacements has the form [22, 23, 25]

1 EiEy

A 2 x . — BT, =0,
1 EE (10)

A 1 1L ) AT —0

pavT 2(1—u1)Ey — 2V3F; (o +vy)y = BTy ;

FE; ' '
where pi are shear modulus p = m; vy, vy and Ey, 5 Poisson’s coefficients and
n

Young’s modulus in the Ozy and in the direction of perpendicular thereto, respectively.
u and v are components of the displacement vector along axes x and y, respectively;

EyEy(on + vas)
(]. — VI)EQ — 21/22E17
a1, o are the coefficients of the linear thermal expansion; 7' is the temperature changes
in the elastic body satisfying the Laplace equation

[ constant depending on the thermal properties of material § =

AT =0, (11)

Duhamel-Neumann relations has the form

21 ) ,
Tr — E — E - E E o 717
” (1 =) By — 2055, (B2 — 1y Er)us + (n Bz + vy Er)vy] = 6
2
o H [(nEy+ 1/22E1)u7x + (B — V22E1)U,y] — BT,

v (1 — I/l)EQ — 21/22E1
Ouy = Oyo = Uy + V),

V2E1E2
(1 — Vl)E2 — 2V22E1

(12)

0. = (uy+vy) — BT,
where 0,4, 0y, 02y, 0., are components of the stresses tensor. Other components of a
tensor of stresses in case of plane deformation equal to zero.

Next, we construct the general representation of the system of equations (10) by
means of harmonic functions (Kolosov-Muskhelishvilis formula).

The first equation of the system (10) is differentiated by z, the second - by y and
are added up. Given the fact, that we've got the T" harmonic function

Al(e+ p)(uy +vy)] =0, (13)
where denotation is entered

1 E\Ey
C = — .
2 (1 — V1>E2 — 21/22E1

If the second equation of the system (10) is differentiated by z , and the first equation
is differentiated by y and to consider their difference, we’ll obtain

Alp(ve —uy)] = 0. (14)
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The notation is introduced
O:=(c+p)(uy+vy), w:=pv,—uy,). (15)

Thus, according to (13) and (14), 6 and w are harmonic functions

A0 =0, Aw=0. (16)
According to notation (15)
0
Uy +Vy = n
ot (17)
Vg — Uy = ;
From (17) there follows
0, 0 -
Ay = — —@, Ay =¥ 422 (18)
ctp o op ctpoop

Formulas (18) are substituted in the system (10) and the notation introduced in this

section are accounted
0—pT)y —w, =0,
{ (0 —BT), +wy =0. (19)

As 0 and w are harmonic functions, from (19) we have
0 = ap + BT = 0.5[(ap” + 1) o + (ap + BT) . (20)

w = 0.5a(—¢", + @), (21)

where a is any real constant other than zero; ¢*, ¢ and T*, T are the mutually conjugate
harmonic functions
QOT:E = @,y = ¢, ijky = _()5,957

I,=Ty=T, T,=-T,,
Relations (20) and (21) are substituted in system (17)

a B a b&m) _
(“‘2<c+u>“” ‘5<c+u>T>,J (”‘2<c+m‘”‘2<c+u>T),y‘O’
L (—¢", + ) = 0.

Ve — Uy =

2
(2)
The first equation of system (22) is identically satisfied, if
u=7=a, + ¢ "+ b T, v=—-0,+ ¢ b T. (23)

2c+1)” " 20+ p) e+’ T 2cr )
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The equalities (23) are substituted in the second equation (22) as a result of which
we’ve got the equation relating to the function ®

o ca . - 15} -
AD = et ) (Ply = Pa) + 5 T M)( T +Ty). (24)

The general solution of equation (24) is presented in the form

ca 153 ~
P =—<(yp" — @)+ bp + ———(—yT" + 2T). 25
e+ 1) et p) (25)
where ¢ is an arbitrary harmonic function, b is any real constant other than zero.
Constants a and b may be represented as follows

c+ 1
a= , b= —,
c 20
and the formula (25) is substituted in the ratio (23)
c+2pn . . pB . ¥ |
2pu = ———¢" +0.5(yp), — 20,) + ¥y + W(T —yT, +aTy), (26)
c+2p . -
2 = 0.5(2@0 — yo™~) — o + L (T — T, +yT%). 27
o = —5—¢ +0.5(20. —yl) — ¥, +2(c+#)< 2Te +yT7) (27)

By substituting (26) and (27) in the formulas (12) we’ve obtained the following expres-
sions for stress tensor components

Ozz = ¢+ 0.5(yp%, — TP ay) + Py — m@T +yTs, — 2Tay),
£ ~ /B/’L * ‘A

Oyy = @ — 0-5(y§0,xy - ifs%y) - wﬂcy - m(ZT - yT,xy + xT,xy)a ( )
28

* ~ B,U * T
O-J:y = 0‘5(y§0,yy + ﬂp,zx) + ¢,yy - 2(0 + /,[,) (yryy + xz—‘,xa/‘)y
1-2
Ozz = 27/230_ ( VQ)C+M6T'
c+u

For simplification of representations (26) - (28) the following notation is introduced

:uﬁ * * /’LB * 7 ~ /’Lﬁ
Ta ¢ =Y — T7 ¢:SO—
c+ c+pu C+ W

¢=¢— T. (29)

¢ is a harmonic function, and ¢* and ¢ are the mutually conjugate harmonic functions
¢jkg3 - ¢,y - ¢7 ¢:ky - _¢,$'

From (29) functions ¢, ¢*, ¢ are defined and are substituted in the formulas (26) - (28).
As a result we obtain displacement representations

c+2u

2 = 5 ¢ +0.5(ye", — a:q?,y) + Y, + %’“LT*, (30)
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2G4 05260 —ydty) — s+ AT (31)

The following representations are fair for stresses

= (b + O5(y¢7y - x¢,m) + d},xy?
= ¢ — 0-5(y¢,y - :1390,3;) — Yoy,

Oy = _0-5(y¢,x + x(b,x) + w,yw

2uv = et

(32)

0., = 2090 — (1 — 21) BT.

The analogs of formulas of Kolosov-Muskhelishvili [24] of (30)-(32) plane theories of
thermoelasticity for transversely isotropic bodies may be used both for construction
of exact solutions of boundary value problems and for construction of approximate
solutions of a wide class of problems.

In case of finite simply connected domain the harmonic functions ¢*, qg, ¢ are rep-
resented by the following finite series

o =ap+ Z'r’”(m, y)[a, cos(nf(x,y)) + b, sin(nbd(x,y))],
= by + Z r"(x,y)|a, sin(nb(z,y)) — by, cos(nb(x,y))], (33)

n=1

¢
— an”_l(x,y) [a, cos((n — 1)8(z,y)) + b, sin((n — 1)0(x,y))].

As the formulas (30), (31) show the constants ag , by correspond to rigid displacement
of a body, therefore they are equal to zero ag = by = 0. The harmonic function ¢ is
represented as

) = Z " (z,y)[c, cos(nb(x,y)) + d,, sin(nb(x,y))]. (34)

Analogously, the harmonic functions 7%, T, T are also represented as

T =ty + ZT:T”(JC, Y)[tn cos(nb(z,y)) + 7, sin(nd(z,y))],

n 1

=7+ Z (x,y)[tn sin(nb(z,y)) — 7, cos(nb(z,y))], (35)

T = an”_l(:c,y)[tn cos((n — 1)0(z,y)) + 1 sin((n — 1)8(z, y))].

n=1

For construction of the approximate solution of problems, the representations (33)-
(35) are substituted in the formulas (30)-(32), if necessary formulas of transformation
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of components of a vector and a tensor of the second rank are used and the conditions
set are satisfied point-wise. The problem is tabulated to the solution of square system
of the linear algebraic equations for required expansion coefficients (33)-(35).

The example of a nonlocal problem of Bitsadze-Samarskii in case of the plane theory
of elasticity for rectangular domain is given below.

Example 3. We consider the domain V' = {-25 < x < 25,-2 < y < 2}
(Fig. 5). In the domain V it is required to find such solution of system (10) (where
c=3,u=1,T =0 is accepted), which satisfies the following conditions (see [1])

u=—55y*+14.375, x =25, -2<y <2,

v="70y, r=-25-2<y<2
Oyyly=2 = —2.00 — 1, —2.5 <z < 2.5,
Oyaly=2 — Oyzly=1 = —14.0, —2.5 <2 < 2.5,
u=—5.5y*+16.875, x =25, -2<y <2,
v=—-80y, =25 -2<y<2,
=252 +0.5r—220, y=—-2,-25<z <25,
v=06.0r+1.0, y=-2,-25<x<2.5.

The exact solution of this problem is as follows
u = 2.52% — 5.5y + 0.5z,

v = —0.3zy — 0.5y.

The boundary counter of the considered domain is divided by points into 72 equal
segments. 19 points are also distributed evenly on a segment inside the domain where
nonlocal conditions are set. The approximate solutions are sought as follows

5Zr” 1{[ r cos(nf) — Ey sin((n — 1)0) — giﬁ cos((n — 1)«9)] an

+ [gr sin(nd) + gy cos((n —1)0) — gx sin((n — 1)0)} bn
—nsin((n — 1)8)c, + ncos((n — 1)«9)dn},
52 " 1{[ rsin(nd) + 2ysm((n —1)0) — gx cos((n — 1)9)] an

- [gr cos(nf) + gy cos((n —1)0) + ga; sin((n — 1)9)} by,

—ncos((n —1)0)c, — nsin((n — I)H)dn}.
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The components of the stress tensor o,, and o,, appearing in the reference condition
are presented in the form of the following finite rows

n—1 n—1

ysin((n —2)0) +

zcos((n — 2)9)]%

Oyy = 32_6717’”_2{ [r cos((n —1)8) +

+ [r sin((n — 1)0) — ycos((n —2)0) + ——asin((n — 2)0)} by

+(n— 1) sin((n — 2)8)cn — (n — 1) cos((n — 2)9)dn},

36

Oys = Z Mr”_z{ [ —ycos((n —2)0) + xsin((n — 2)9)] an

— [y sin((n — 2)0) + z cos((n — 2)9)] by

“2cos((n — 2)8)e, — 2sin((n — 2)0)dn}.

In the last four formulas the coordinates of points marked on the boundary and
inside the domain are substituted and the corresponding boundary and nonlocal con-
ditions are satisfied on them. As a result we obtained the system consisting of the 144-
linear algebraic equations and containing 144 unknowns (ay, ..., ase, b1, ..., bsg, 1, ..., 36,
dy,...,dsg). After solving this system by means of the formulas given above one can
easily find components of a vector of displacement and a tensor of stresses.

2
LA
=]
[E¥]
L
B

Fig. 5. The domain V in which the nonlocal problem of the plane theory of elasticity is solved

The appropriate program is made in the Maple 12. Numerical results are pre-
sented in Table 3, where u and v denote the approximate values of components of the
displacement vector.



22 Janjgava R.

Tab. 3. Numerical results for a problem 3

(I’,y) ﬂ(l’,y) u(m,y) |fL((L’,y) — U(l‘,y)|
(0, 0) 4.166195286 - 108 0 4.166195286 - 109
(-1.0,1.0) —3.499999843 —3.500 1.57-1077
(1.5,—1.5) —5.999999978 —6.000 2.2-1078
(1.2,-0.8) 0.6800000324 0.680 3.24-1078
(—1.7,1.5) —5.999999651 -6.000 3.49-1077
(2.2,-1.4) 2.420000034 2.420 3.4-1078
(1.25,1.75) |  —12.31250013 | —12.31250 1.3-1077
('Tay) TJ(J],y) U(l’,y) |17(I',y) —U(ZE,y)|
(0, 0) —1.190721638 - 10~7 0 1.190721638 - 107
(-1.0,1.0) 2.499999817 2.500 1.83-1077
(1.5, —1.5) 7.499999968 7.500 321078
(1.2, -0.8) 3.279999938 3.280 6.2-1078
(-1.7,1.5) 6.899999694 6.900 3.06- 1077
(2.2,—1.4) 9.939999959 9.940 4.1-1078
(1.25,1.75) —7.437500134 —7.43750 1.34-1077

As numerical results show the considered method gives the good approximate solution
for nonlocal mixed boundary value problem of the plane theory of elasticity.

4. Problems for the Helmholtzs two dimensional equation

Let on the plane Ozy there be a domain ) (shown in Fig. 3). In this domain the
following equation of Helmholtz is considered

Aw—Cw=0 in Q, (36)

where ( is any real constant other than zero.
The approximate solution is sought as follows

@ = agly(Cr(z,y)) + boKo(Cr(z,y))

)an cos(nb(z,y)) + by, sin(né(x,y))] (37)

Mz

+K:<<r<x 9))en cos(nb(z, ) + dy sin(nb(z, y))]},

where I,,(¢r) and K, (¢r) are modified Bessel functions of n order according to [26].
Partial derivatives of functions w(x,y) are expressed by means of the formulas

2 = L anhi(¢r) ~ o E(Cr)

+§—f > {Tnea (Cr) + Lisa (Cr)[an cos((n — 1)0(x, y)) + by sin((n — 1)0(z, y))] (38)

— (K1 (Cr) + Knpa(Cr))[en cos((n — 1)0(x, y)) + dnsin((n — 1)0(z, y))]},
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W, = %(aoh(gr) — bo K1 (Cr))
+§_?7{ Z{(In 1(C7) 4 L1 (Cr)) [=an sin((n — 1)0(z, y)) (39)

+by, cos((n — 1)0(z,y))] + (Kn-1(Cr) + Kns1(Cr))[cp sin((n — 1)0(z, y))
—dp, cos((n — 1)0(x,y))]}.

By means of the formulas (37)-(39) one can construct the approximate solutions of
various boundary value problems or boundary value contact problems for Helmholtz’s
equation (36).

An example of nonlocal problem of Bitsadze-Samarskii for the Helmholtz’s equation
is given below.

Example 4. The Helmholtz equation in a rectangle V ={-3 <z <3, -2 <y <
2}(Fig. 6) is given as an example to find such a function w satisfying the following

conditions )

T
Aw— —w = ) 40
w 12w 0 m V, (40)
w(=3,y) — V2w(-1.5,9) + w(0,y) =0, —2<y <2,

2

w(z, £2) = &5 sin%x, 3<r<3,

w(3,y) = e, —2<y<?2.
It is easy to verify that the exact solution of the problem set is as follows

w(z,y) = e’ sin 7r_63:

The approximate solution of the considered nonlocal problem is sought in the form of
the sum

& = aalo (L xy>+z{ (L

+by, sin(nf(z, Z/))]}

r(x y)> la,, cos(nd(zx,y)) (41)

Beginning from a point (-3, 0) on the boundary of the considered rectangle with
a step 0.25, 79 points are evenly distributed. 15 points are evenly distributed on
each piece inside the domain where nonlocal conditions are set. After satisfying
the given boundary conditions and nonlocal conditions we’ve obtained the system
of the linear algebraic 79 equations with 79 unknowns. The solution of this system
(ag,ay, ..., asg, by, ..., bgg) is substituted in formula (41) representing the approximate
solution of the stated problem. The constructed approximate solution satisfies the
Helmholtz equation in the domain V' and satisfies the boundary conditions and nonlo-
cal conditions in the respective points marked in advance.
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-2

Fig. 6. Domain V | in which the nonlocal problem for Helmholtz’s equation is considered

The appropriate program is made in the Maple 12. Numerical results are presented
in the table 4.

Tab. 4. Numerical results for the problem 4.

(z,9) w(x,y) w(,y) (2, y) — w(z,y)|
(—3.0,—15) | —0.2078795840 | —0.2078795765 75-109
(—1.75,1.75) —4.958529035 —4.958529038 3.0-107°

(0,—1.5) | —3.564486401 - 10~ 0 3.564486401 - 1010
(0.5,—2.0) 0.03187219544 0.03187219654 1.1-1079
(1.0, 1.5) 2.405238691 2.405238689 2.0-1079
(1.5, 1.25) 2.618033198 2.618032200 2.0-107°
(3.0, 1.5) 4.810477384 4.810477377 7.0-1079

As the table shows the constructed approximate solution of the nonlocal problem is a
good approximation to the exact solution of this problem.

5. Conclusion. In the work we propose the simple method of the approximate
solution of boundary value problems of mathematical physics. The approximate so-
lutions of such two-dimensional classical and nonlocal boundary value problems for
Laplace’s and Helmholtz’s equations and the theory of elasticity, the exact solutions of
which are known in advance, are constructed by the proposed method.

We believe that by means of the considered algorithm it is possible to receive quite
good approximate solutions of some boundary value problems of mathematical physics.
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109/14). Any idea in this publication is possessed by the author and may not represent
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ONE PROBLEM OF THE BENDING OF A PLATE FOR A CURVILINEAR
QUADRANGULAR DOMAIN WITH A RECTILINEAR CUT

Kapanadze G., Gulua B.

Abstract. In the present paper we consider the problem of bending of a plate for a curvilinear
quadrangular domain with a rectilinear cut. It is assumed that the external boundary of the
domain composed of segments (parallel to the abscissa axis) and arcs of one and the same
circumference. The internal boundary is the rectilinear cut (parallel to the Oz-axis). The
plate is bent by normal moments applied to rectilinear segments of the boundary, the arcs
of the boundary are free from external forces, while the cut edges are simply supported.
The problem is solved by the methods of conformal mappings and boundary value problems
of analytic functions. The sought complex potentials which determine the bending of the
midsurface of the plate are constructed effectively (in the analytical form). Estimates are
given of the behavior of these potentials in the neighborhood of the corner points.

Keywords and phrases: The bending of a plate, conformal mapping, Riemann-Hilbert
problem for circular ring.

AMS subject classification (2010): 74B05.

1. Statement of the problem

Let a homogeneous Isotropic plate on a plane z = x4y of a complex variable occupy the
doubly-connected domain S, the external boundary of the domain is composed of segments
(parallel to the abscissa axis) and arcs of one and the same circumference. The internal
boundary is the rectilinear cut (parallel to the Oz-axis).

(1)

We will assume that normal bending moments M,, act on each rectilinear sections L’ =
AAq, L(()z) = A3A,4 of the external boundary, the arcs L(()3) = AsAs, L(()k) = A4A; of the
boundary are free from external forces, while the cut Ly = BBy edges are simply supported
and for better clearness, we consider the symmetric case. We denote by a7 the value of
internal (with respect to the domain S) vertex angles Ai(k = 1,...,4) (we mean the angles

between the segments L(()l), L(()Q) and the tangent arcs L03) and L[()4)) and we will choose as the

. o . A ) 2 s m) ()
positive direction on the boundary L = LyU Ly (Lo = kul Ly’, L= U . Ly, L;” = B1By,
= m=

LEQ) = By Bj) which leaves the region S on the left. Let a(t) and S(t) be the angles lying
between the Ox-axis and the outer normals to the contours Ly and L; at the point ¢t € L,
where

T
Zek-1), te® k=12 5o teri,

2 0 2
alt) = . B(t) = - @)
argt, tELé), k=3,4, —3 te L.
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The problem consists in defining the bending deflection of the middle surface of the plate
and establishing the situations of the concentration of stresses near the angular points which
in turn depend on the behavior of Kolosov-Muskhelishvili potentials at these points.

Analogous problems of plane elasticity and plate bending for finite doubly-connected
domains bounded by polygons are considered in [1, 4].

2. Solution of the problem

Let us recall some results concerning the conformal mapping of a doubly-connected do-
main S onto the circular ring Do{1 < |¢| < Ro}. The derivative of the function w(s) is the
solution of the Riemann-Hilbert problems for the circular ring [5]

Relice ™0/ (0)] =0, o €l, (1)

where | = lpUly, lp = {‘O" = R}, i = {’O’| = 1}, V()(O') = a[w(a)] = 050(0), o € ly,
vo(o) = Blw(o)] = Bo(o), o €.

To solve the problem (1) (with respect to the function w’(¢)) of the class h(by, b2) [6] (the
index of the given class problem (1) is equal to zero), it is necessary and sufficient that the

condition A

Oéo_ 2

be fulfilled, and a solution itself is given by the formula

W'(¢) = KO B((), (3)

where

1 e 1 RQ —2 2iap(o) 00 2 '
1O =5~ /“<U“_R‘;< do, B@O) = [ T[[R¥¢C-bm): @

J=—007 j=—ocom=1

0

with k0 as an arbitrary real constant.
Based on the results given in [6, §78], we conclude that the function ¢"(¢) near the points
ar(k = 1,4) can be written in the form

4
e = T](¢ = ar)*¥10°(), (5)
k=1

where Q0 is the function holomorphic near the point a;, and tending to definite nonzero limits
as ¢ — ag.
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Thus, for a conformally mapping function bounded at the points aj from (4) we obtain
the formula

4
0_
Q) = KO T](¢ = an)* %O B(<). (6)
k=1
Let us now return to the considered problem. According to the approximate theory of

the bending of a plate, the bending deflection w(z,y) of the midsurface of the plate in the
case considered satisfies the biharmonic equation

A*w(z,y) =0, z=x+iyc S
and the boundary conditions

M, (t) = f(t), ‘;‘: =0, teL

0
My (t) =0, % —0, te L UL,

1) U L62)7

(7)
w(t) =0, My(t)=0, te Ly, N()=0, te LyULy,
where M,,(t) is the normal bending moments, N (t) is the shearing force.
Using the well-known formulae [6-8] we have
20 i = e OL(r) + 170 + D)
2Do(0 — 1)ds2p(t) — 17 () — D) = {Mn(t) i / N(t)ds] dt, (8)
v(t) =a(t), te Ly, v(t)= ’

B(t), te Ly, %:(04—3)(1—0)_1,

where o is Poisson ratio, Dy is the cylindrical stiffness of the plate.

By virtue of condition (7) and formula (8) with respect to the required functions ¢(z)
and 1 (z) we obtain the boundary problems

Re [ie‘i”(t)(go(t) + 1/ () + W)} =

0,
9
Re (e (ep(t) — 19/(0) — 0(0)| = BV (1), te L{ UL, Y
Re [z’e*i@(t)%)(gp(t) + o (t) + W)} =0, w0
Re [ie™ 048 (ep(t) — 10/ (1) - 0(0)| = F (1), te L UL,
Re [ze_“’(t)(go(t) + ! (t) + m)} =0, )
Re [ze’i"(t)(%go(t) I0) W)] =), tel,
where

F{(t) = —[2Do(0 — 1) ! /Mn(t)ds +cO@), terPuL?,
0
FP(t) = Re[2Do(o — 1)) 1t 1O @), te P UL

(4)
0 »

29
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O(t) = c,go) = const, t € L(()k) (k=1,4),

D) = c,(:) =const, t e Lgk) (k=1,2).

The constant c,(j ) ( = 0,1) are unknown in advance and must be determined when solving
the problem in such a away that the function ¢(z) and z¢'(z) 4+ 1¥(z) extend continuously
into to domain SU L.

These boundary problems are in turn divided into two problems

Re [ie—m%u)} — F(t), teLyUL, (12)

Re [ie~50(p(t) + 670 + 90)] 0. ¢ e L UL, (13)

where A(t) = a(t), t € LY ULP; A®t) = g targt, t € LY ULWY, A) = B(t), t € Ly;

Fty=F", te LM uL®; Ft) = F?, te LY ULY; F(t) = cD(1), t € Ly.

Let us consider problem (12). After the conformal mapping of the domain S onto the
circular ring D, this problem for the function x(¢) = ¢ "1¢o(¢) (¢0(¢) = ¢ [w(¢)]) reduces to
the Riemann-Hilbert problem for a circular ring

Re [iae‘mo(a)x(a)} = Fy(o), o€l (14)

where Ay(0) = Alw(0o)], Fo(o) = Flw(o)], o €.
Let us consider the homogeneous problem corresponding to problem (14)

Re [z’ae‘mo(a)x(aﬂ =0, o€l (15)

Although problem (15) is different from problem (1) we can use it [5] and its solution is
given by the formula

X(¢Q) = W' (OT(Q), (16)

o0 4 .
where T(¢) = [ Il (R¥¢ - ak)fé, w'(() is defined by formula (6).
j=—o0 k=1
Thus we have obtained the factorization coefficient of problem (15) in the form

2iBo(0) 7 _ w'(0)T'(0)

, o€l
7 W(o) T(o)

With the obtained results taken into account, from the boundary conditions (14) for the
function

Q(¢) = ipo(Q)[¢w' ()T ()] (17)
we obtain the Dirichlet problem for a circular ring

Re [Q(0)] = Fo(0)e™ D [ow! (0)T(0)] 7}, o el. (18)

A solvability condition of problem (18) has the form

Fy(o)ettol) o —
[ 2 (VT () 7 = O (19)
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and its solution is given by the formula

'LAO( )dO'
i

ico, 20
e ) 20
where ¢ is an arbitrary real constant

Thus, using (17) and (20), for the function ¢o({) we obtain the formula

wo(C) = W (OT(OM(C), (21)
where

on( )dU
- Z / =

RZJC Jow'(0)T(0) el (22)

M(Q)

Since the function w'(¢)T(¢) at the points a; (k = 1,4) has singularities of the form
0_3

|¢ — ag|“+~ 2, for the function ¢o(¢) to be continuously extendable into the domain D U1 it
is necessary and sufficient for the following conditions to be satisfied

M(ay) ==0, k=1,4.

(23)
Since ¢'(z) = ié,’((g, from (21) we have
() = S TOM©) + 1M (24)

Bearing in mind both the behavior of the Cauchy type integral in the neighborhood
on the points density discontinuity [6] and that of the conformally mapping fuction in the
neighborhood of angular points [9], we conclude that near the points by (k = 1,2)

w(¢) = B+ (¢ = )*[No+ Ni(¢ —b)

+ ..],

W) 1

=——+E +E( b+, 2
S(C) C—b =0 (25)
ko
T(C)M(C) = (C—b)+
(—b

where b is one of the points b, B is the preimage of the point b, Ng,...,ko,... are some
constants.

Thus, using (24) and (25), near a point B we have the estimates

¢ (2)] < My|z— B]_% " (2)| < Ma |z — B]_% , My, My = const.

By a similar reasoning to the above, it is proved that ¢'(z) is almost bounded (i.e. has
singularities of logarithmic type In(z — A)) near the points Ay (k = 1,4)

After finding the function ¢(z), the definition of the function v (z) by (13) reduces to the
following problem which is analogous to problem (12)

Re [ie’2OR(t)] =T(t), t € L, (26)
where

R(z) = 9(2) + P(2)¢'(2),
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() = F(t) + Re [iem@(P(t) - Z)go'(t)} , tel,
and P(z) is an interpolation polynomial satisfying the condition P(By) = By, (k = 1,2), By,
is a number conjugate to By.

The use of the polynomial P(z) makes bounded the right-hand part of the boundary
condition (26) so that the solution of this problem can be constructed in an analogous manner
as above (see problem (12)), while the solvability condition (with the assumption that the
function (z) is continuous up to the boundary) will be analogous to conditions (19) and
(23).

All these conditions are represented as an inhomogeneous system with real coefficient
with respect to 8 constants c,(co) (k=1,4), iy (m=1,2), ¢, ¢§* (c§* is a real constant which
occurs when solving problem (26)). For the definition of these constant we have 8 equations.
It is proved that the obtained system is uniquely solvable and therefore the problem posed
has a unique solution.
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HIGHER ORDER DIFFERENCE EQUATIONS WITH PROPERTIES A AND B
Khachidze N.

Abstract. The following higher order difference equation
A u(k) + p(k)[u(o (k) sign(u(o(k))) = 0

is considered, where n > 2, 0 <A< 1,p: N - R,0: N — N, o(k) > k+ 1.
Necessary conditions are obtained for the above equation to have monotone solutions.
The obtained results are also new for the oscillation of solutions.

Keywords and phrases: Property A, Property B, oscillation.
AMS subject classification (2010): 34K11.

1. Introduction

Consider the higher order difference equation
A" u(k) + p(k)[u(o(k))sign(u(o(k))) = 0, (1.1)

wheren >2 0<A<1l,p:N—R,0: N — N,ok)>k+1.
Here

AOu(k) = u(k), ADuk) =ulk+1) —u(k), ADuk) =AW o ACDy(k)
(i=2,...,n).

It will always be assumed that either the condition
p(k) >0 for ke N, (1.2)

or

p(k) <0 for ke N (1.3)

holds.

For each k € N denote Ny = {k,k+1,...}.

Definition 1.1. Let ky € N. A function u : N, — R is said to be a proper
solution of equation (1.1), if it satisfies (1.1) on Ny, and

sup{|u(k)| : k> s} >0 for any s> k.

Definition 1.2. Let ky € N. A proper solution u : Ny, — R of equation (1.1) is
said to be oscillatory if for any k € Ny, there are kq, ko € Ni, such that u(ky)u(ks) < 0.
Otherwise the solution is called nonoscillatory.

Definition 1.3. We say that equation (1.1) has Property A if any its proper
solutions either is oscillatory or satisfies

IADu(k)[ L0 for kt+oo (i=0,1,...,n—1), (1.4)
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when n is odd.
Definition 1.4. We say that equation (1.1) has Property B if any of its proper
solutions is oscillatory or satisfies either (1.4) or

IADu(k)|[ 1+ +o0 for kT +oo (i=0,1,...,n—1), (1.5)

when n is even, either is oscillatory or satisfies (1.5) when n is odd.

For a functional differential equation, similar problems were considered in [1-4] (see
also the references therein). Oscillatory properties for first and second order difference
equations are studied in [5-9].

In the present paper we give sufficient conditions for equation (1.1) to have prop-
erties A and B.

2. Necessary condition of the existence of monotone solutions

For any ko € N denote by Uy, the set of solutions u : Ny, — R of equation (1.1)
which satisfies the condition:

ADu(k) >0 for k>ky i=0,...,1—1,
(1! ADu(k) >0 for k>ky i=1,...,n

Theorem 2.1. Let 0 < A < 1, kg € N, condition (1.3) ((1.4)) be fulfilled, | €
{1,2,...,n—1}, l4+n be odd (I +n be even) and Uy, ; # .

Moreover, if
“+oo
DK e (RN (k)| = +oo (2.1)
k=1

then for any 6 € [0;\] and i € N we have

3RS (G (k)M (0 (k) [p(K)]| < oo,
where
a8 = (=1 EZJ" S ) (22)
pua(k) = n_l ,ZZ]” o (V) (s (0()) (5 =2,3,...).
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3. Sufficient conditions of nonexistence of monotone solutions

Theorem 3.1 Let conditions (1.2) ((1.3)) (2.1) be fulfilled, 1 € {1,...,n — 1}, let
I+ n be odd (I 4+ n be even) and for any § € [0,\] and i € N

“+oo

> T (o (k)M (oo (K)))°[p (k)| = +oo (3.1)

k=i

then for any ko € N, U, = &, where p; is defined by (2.2) and (2.3).
Theorem 3.2. Let conditions (1.2) ((1.3)) (2.1), for any v € (0;1)

k——+o0

“+oo
liminf k7Y 5" (o () V()] > 0
Jj=k

be fulfilled, | € {1,...,n—1}, let L+ n be odd (I +n be even) and for any o € (1;+00)

k
lim inf ﬂ > 0.
k—+00 o
Moreover, if either
a\ > 1,
or
e -1 ai(1=X)
a\ <1l and Zk:"_ T _s(U(k))/\(l_l)|p(k)| = +0o0
k=1

is fulfilled. Then for any ko € N, Uy, = .

4. Difference equations with property A

Theorem 4.1. Let conditions (1.2) (2.1) be fulfilled, | € {1,...,n — 1}, letl +n
be odd and for any § € [0, A] and let k € N (3.1) be fulfilled. Moreover, if

> k' p(k) = +oo, (4.1)

when n is odd, then Equation (1.1) has Property A.
Theorem 4.2. Let conditions (1.2) and

A
i inf CED
k—4o00 k‘

be fulfilled. Then for the equation (1.1) to have Property A, it is sufficient that

“+o00

Z k"2 Ap(k) = +oo.

k=1
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Theorem 4.3. Let conditions (1.2) and

(o (k))*
k

lim sup < +00

k—+o0
be fulfilled. Then for equation (1.1) to have Property A, it is sufficient that conditions
(4.1) and
+oo
D KMo (k)M Pp(k) = oo
k=1
be fulfilled.

5. Difference equations with property B

Theorem 5.1. Let conditions (1.3), (2.1) be fulfilled, | € {1,...,n — 1}, I +n is
even and for any 0 € [0, \] and let k € N (3.1) be fulfilled. Moreover, if

—+00

S K (k)| = +oc, (5.1)

k=1

when n is even, then equation (1.1) has Property B.
Theorem 5.2. Let conditions (1.3) and
(o (k)
>0
k

lim inf
k—+o0

be fulfilled. Then for equation (1.1) to have Property B, it is sufficient that condition

+oo

S B (k)| = +oo
k=1

be fulfilled.
Theorem 5.3. Let conditions (1.3) and

A
lim sup (o(k))
k—+o0 k

< +00

be fulfilled. Then for equation (1.1) to have Property B, it is sufficient that conditions
(5.1),

SR (R) ()| = +oo

and
—+oco

> (o (k)" p(k)| = +o0

k=1

be fulfilled.
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ON OSCILLATORY PROPERTIES OF SOLUTIONS OF ALMOST LINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

Koplatadze R.

Abstract. The differential equation
u™(t) + F(u)(t) =0

is considered, where F' : C(Ry;R) — Ljoe(R+; R) is a continuous mapping. In the case
operator F' has almost linear minorant, sufficient conditions are established for equation to
have Properties A and B.

Keywords and phrases: Property A, Property B, oscillation.
AMS subject classification (2010): 34K11.

1. Introduction

This work deals with the investigation of oscillatory properties of solutions of a
functional differential equation

u™(t) + F(u)(t) = 0, (1.1)

where F': C(R4; R) — Lio.(R4; R) is a continuous mapping.
Let 7 € C(R4+;Ry), tliin 7(t) = +oo. Denote by V(7) the set of continuous
—+o0

mappings F' satisfying the condition F(x)(t) = F(y)(t) holds for any ¢ € R, and
x,y € C(Ry; R) provided that x(s) = y(s) for s > 7(t). For any t, € Ry, we denote
by Hi,, the set of all functions u € C(R;; R) satistying u(t) # 0 for ¢t > ¢;, where
t1 = min{tg, 7 (to) }, 7(t) = inf{7(s) : s > t}.

It will always be assumed that either the condition

Fu)(t)u(t) >0 for t>ty, we Hy, (1.2)

or the condition
Fu)(t)u(t) <0 for t>ty, u€ Hy, (1.3)

is fulfilled.

A function u : [tg, +00) — R is said to be a proper solution of equation (1.1), if it is
locally absolutely continuous along with its derivatives up to the order n — 1 inclusive,
sup{|u(s)| : s € [t,+00)} > 0 for t > t, and there exists a function u, € C(R,; R) such
that w.(t) = u(t) on [tg, +00) and the equality

ul () + Fu.)(t) = 0

holds for t € [tg, +00). A proper solution u : [tg, +00) — R of equation (1.1) is said to
be oscillatory if it has a sequence of zeros tending to +o00. Otherwise, the solution u is
said to be nonoscillatory.
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Definition 1.1. We say that equation (1.1) has Property A if any of its proper
solutions is oscillatory, when n is even and either is oscillatory or satisfies

D@10 as tt+oo0 (i=0,...,n—1) (1.4)
when n is odd.
Definition 1.2. We say that equation (1.1) has Property B if any of its proper
solution either is oscillatory, or satisfies either (1.4) or
|u(i)(t)‘T+oo as tt+oo (i=0,...,n—1) (1.5)
when n is even, and either is oscillatory or satisfies (1.5) when n is odd.

A. Kneser was the first who showed the condition

lim inf t"/?p(t) > 0

t—+o00

is sufficient for the equation

u™(t) + p(t) u(t) = 0 (1.6)

to have Property A [1]. This theorem for Property A (for Property B) was essentially
generalized by Kondrat’ev [2] (by Chanturia [3]). Their methods was based on a com-
parison theorem which enables one to obtain optimal results for establishing oscillatory
properties of solutions of equation (1.6). Koplatadze [4,5] proved integral comparison
theorems of two types for differential equations with deviated arguments. The theo-
rems of the first type enables one not only to generalize the above mentioned results
for equations with deviated arguments, but to improve Chanturia’s result concerning
Property B even in the case of equation (1.6).
The ordinary differential equation with deviating argument

u™ (t) + p(t)|u(o (£)|" signu(o(t)) = 0 (1.7)
is a particular case of equation (1.1) where p € Li(Ry;R), p € C(Ry;(0,+00)),
o € C(Ry;R) and tliin o(t) = +oo. In case tliELn wu(t) = 1, we call differential

— 400 —+00
equation (1.7) almost linear, while if l}/m Jrimf,u(t) # 1, or limsup u(t) # 1, then we
— oo t—+o0
call equation (1.7) the essentially nonlinear generalised Emden-Fowler type differential
equation.
In the present paper developing ideas of [6,7], the both cases of Properties A and
B will be studied when operator F' has almost linear minorant.

Investigation of almost linear differential equations, in our opinion for the first time
was carried out [6-8].

2. Almost linear functional differential equation with property A

Theorem 2.1. Let F' € V(1), conditions (1.2) and

n Bit
> pilt) /
=1 Qq

d4
u(s)| i ds for t>ty>1, u€ Hy, (2.1)
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be fulfilled, where
pi € L106<R+; R+), O<ao; < 6@, i € (—1, +OO>, d; € R (Z = 1, - ,m). (22)

Then for the equation (1.1) to have Property A it is sufficient that

m

400
NN Pl 1—|—
it ¢ [ (e )i

A= 1) O e (TT0+ 7+ 0) "
>%max{ - = :)\E[O,n—l]},
<11;[1( plit a;ﬂﬁ,\)) ™

where

Y= Z%‘; d= Zdi- (2.3)
=1 :

Theorem 2.2. Let F' € V(7), conditions (1.2), (2.1) and (2.2) be fulfilled, where
i <1,d; € (—00,0] (i =1,...,m). Then the condition

m

+oo 1
. " 1+ m
it ¢ [ 5% (T te)) s
1

_)\(/\—1)...<)\—n+1)6_%(ﬁ(1+,yi+)\)vn
{ — i=1 - :)\G[n—2,n_1]}
(11 (s —abr))”

i=1

> — max
m

is sufficient for equation (1.1) to have Property A, where d and 7y are given by (2.3).

Theorem 2.3. Let F' € V(7), conditions (1.2), (2.1) and (2.2) be fulfilled, where
a; >1,d; €[0,+00) (i =1,...,m). Then for equation (1.1) to have Property A, it is
sufficient that the condition

~+o00 m 1
. . n_1+% ) m
I%I_I)l_:glof t/t s (Jll pz(s)> ds

m ﬁ (ﬁlﬂiﬂ _ a1+fyi+,\)) m
(2

3=

7
i=1
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holds when n s even and the condition
+oo 1
I s 1+ m
pmint ¢ [ 005 (T o) s
{A()\l)---()\nJr e (H(1+%+)\>

3

> — max
m

1

L e P E SRS L
I1 (; & )
AeL,2]Un—2,n— 1]}

holds when n is odd, where d and ~y are given by (2.3).
Theorem 2.4. Let F' € V(1), conditions (1.2) and

> Zpi(t)’u(ait)’prm for t>ty>1, we€H,, (2.4)

be fulfilled, where
pi € L10C<R+; R+), a; > 0, dl € R. (25)

Then for equation (1.1) to have Property A, it is sufficient that

+oo m
[ ([T
>%max{—>\()\—1). A—n+1 (HO‘Z )72:)\6[0,71—1]}.

Theorem 2.5. Let F' € V(7), conditions (1.2), (2.4) and (2.5) be fulfilled, where
a; <1and d; € (—00,0] (i =1,...,m). Then for equation (1.1) to have Property A,
it 1s sufficient that

+00 m #
lglﬁgof t /t s 2 ( gpl(s)> ds
A

>lmax{—/\()\—1)- A—n+1 (Hae ) m:)\e[n—Z,n—l]}.

m

Theorem 2.6. Let F' € V(7), conditions (1.2), (2.4) and (2.5) be fulfilled, where
a; > 1 and d; € [0,+00) (i =1,...,m). Then for equation (1.1) to have Property A,
it is sufficient that the condition

400 m 1
. . n—2 m
it 2T to) "

1

> Emax{ —)\()\—1)---(A—n+1)(ﬁaiedi>_;:)\E [0,1]}
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holds when n is even and

liminf ¢

im in} /t+00 §"2 < erjpz(s)> %ds

1 TVL
>Emax{—)\()\—1)- —n+1<Ho¢Z )
holds when n is odd
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e (1,2 U m—zn—u}

3. Almost linear functional differential equation with property B

Theorem 3.1. Let F' € V(7), conditions (1.3), (2.1) and (
for the equation (1.1) to have Property B it is sufficient that

liminf ¢

.2) be fulfilled. Then
+o0 m 1
n—1+-2L ) m
it [ o5 () o

His

1 {MAD~4An+n(ﬁ(+%
> — max
" (

N) e
=1 . Ae0,n—2]p,
(ﬁil"r’}’i‘i')\ _ a;ﬂﬁ’\))E
2.3).
Theorem 3.2. Let F €V
Gi<1,d; € (—00,0] (i=1,...,m)

(1), conditions (1.3), (2.1) and (
sufficient that the condition

—3

<
Il

1
where v and d are given by (

2) be fulfilled, where
Then for equation (1.1) to have Property B, it is
liminf ¢

t—5400 /t st <sz ) ds

1 {MAD~%An+U<ﬁO+% -3
> — max
" (

N) e
- =1 :)\G[n—3,n—2]}
[T (3

3|

3=

Ly +A
i e ))
=1

holds when n is even and the condition

liminf ¢

it 715 (T o) "o

. {/\(,\1)...()\n—|—1)<lﬁl(1—|—%—|—)\)>;
> — max — T
m <£l[1( I+ a;-l-'yi—&-)\))E

:)\E[O,l]U[n—B,n—2]}

_Ad

m
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holds when n is odd, where v and d are given by (2.3).
Theorem 3.3. Let F' € V(7), conditions (1.3), (2.1) and (2.2) be fulfilled, where
a; >1,d; €10,+00) (i=1,...,m). Then for equation (1.1) to have Property B, it is

sufficient that the condition

+o0 m 1
lim inf t/ sVt (sz(8)> "ds
t i=1

t——+o0

3|

1 A(A—l)---(A—nH)e—%(ﬁ(1+%~+A)
> — max = Ae 1,2
m { < :nl (ﬁilJr’YHr)\ B a;ﬂﬁ/\)) m }

~

holds when n is even and the condition

~+o00 m 1
lim inf t/ sVt (sz(5)> "ds
t i=1

t——+o0

m 1
) A(A—1)---(A—n+1)e—%<H(1+%+A)”
>Emax{ - = :/\6[0,1]}
yitd I vtA )™
e alt )

holds when n is odd, where d and ~y are given by (2.3).
Theorem 3.4. Let F' € V(7), conditions (1.3), (2.1) and (2.5) be fulfilled. Then

for equation (1.1) to have Property B, it is sufficient that

+o0 m 1
) n—2 ) m
it 1 [+ ()"

A

> imax{)\(/\—1)--~()\—n+1)<.17_71[ozz-edl>_m tAE [O,n—Q]}.

m

Theorem 3.5. Let F' € V(1), conditions (1.3), (2.4) and (2.5) be fulfilled, where
a; <1 andd; € (—00,0] (i =1,...,m). Then for equation (1.1) to have Property B,

it 1s sufficient that the condition

400 m 1
. . n72 ) m
l%gl +1{1}101“ t /t s <i|:|1 pz(s)> ds

m Py

> %max{)\()\—1)---(A—n+1)<Hai6d")_m tAE [n—3,n—2]}

=1
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holds when n s even and the condition

+o0 m %
ot o2 (Tt "

> imax{)\(/\—1)--~(/\—n+1)<ﬁaiedi>_%

:AG[O,l]U[n—B,n—Q]}

holds when n is odd.

Theorem 3.6. Let F' € V(7), conditions (1.3), (2.4) and (2.5) be fulfilled, where
a; > 1 and d; € [0,+00) (i =1,...,m). Then for equation (1.1) to have Property B,
it 1s sufficient that the condition

+oo m L
I%gﬁcr}of t/t 3"2<Epi(s)> ds
> %max{)\()\—1)---()\—n+1)<1jaied">_$ tAE [1,2]}

holds when n is even and the condition

+o00 m 1
. . n72 ) m
1%21 +1Cr>1of t /t s <i|:|1 pz(s)> ds

> imax{)\()\—1)---(A—n+1)<ﬁaied")_$ TN E [0,1]}

m .
=1

holds when n s odd.
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THE ISOMETRIC SYSTEM OF COORDINATES AND THE COMPLEX FORM
OF THE SYSTEM OF EQUATIONS FOR THE NON-SHALLOW AND
NONLINEAR THEORY OF SHELLS

Meunargia T.

Abstract. In this paper, the 3-D geometrically and physically nonlinear theories of non-
shallow shells are considered. The isometrical system of coordinates is of special interest,
since in this system we can obtain bases equations of the theory of shells in a complex form.
This circumstance makes is possible to apply the methods developed by N. Muskhelishvili and
his disciples by means of the theory of functions of a complex variable and integral equations

Keywords and phrases: Non-shallow shells, the isometrical system of coordinates.

AMS subject classification (2010): 74K25, 74B20.

1. Introduction

The refined theory of shells is constructed by reducing the three-dimensional prob-
lems of the theory of elasticity to the two-dimensional problems [1, 2]. I. Vekua con-
structed several versions of the refined linear theory of thin and shallow shells, con-
taining, the regular processes by means of the method of reduction of 3-D problems of
elasticity to 2-D ones [1].

By thin and shallow shells I.Vekua means 3-D shell type elastic bodies satisfying
the following conditions [3]

I

al =23 2o’ —h<iP=uz,<h, apf=12, (%)
where af and b2 are mixed components of the metric and curvature tensors of the
midsurface of the shell, 23 is the thickness coordinate and h is the semi-thickness.

In the sequel, under non-shallow shells we wean elastic bodies free from the as-
sumption of the type (*) or, more exactly, the bodies with the conditions

ag — w,b # a = |hbBa| < g < 1.

Such kind of shells are called shells with varying in thickness geometry, or non-
shallow shells.

2. System of geometrically and physically nonlinear equations for non-
shallow shells

We write the equation of equilibrium of an elastic shell-type body in a vector form
which is convenient for reduction to the 2-D equations

1 a 7 - A . -
LT G os sy d =, (1)
N
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where ¢ is the discriminant of the metric quadratic form of the 3-D domain §2, V; are

covariant derivatives with respect to the space coordinates z, ® is an external force,

&' are the contravariant constituents of the stress vector & . acting in the area with
(1)

*

the normal [ and representable as the Cauchy formulas as follows

G. =061 li=IR:.
0
A material is said to be hyper-elastic if the stresses are obtained by means of the
strain energy function
o = ,
aeij
where 0% are contravariant components of the stress tensor, 3 is the strain energy
function, and e;; are covariant components of the strain tensor.
The theory of hyper-elasticity of the second order has the form [2, 3]

1. 1 ..
E| = §Elqu€ij€pq + gEquSkeijQqusk,
e = ~(R,U + R,00 + 0,00,0) (2)
i 92 1Yj 7+ ? J
ol = Eiivie, + Eiiriske ey G = o (R; + 8;0)
where E¥P4 and E“Pask are coefficients of elasticity of the first and second order and
U is the displacement vector.

Coefficients of elasticity of the first order for isotropic elastic bodies are expressed
by the two Lamé coefficients

E7P = X\g7g" + p(g?g" + gg™"), (g7 = B'RY) (3)
and coefficients of elasticity of the second order are defined by the formula
Eiirask (E1 + EQ)gijgpqgsk _ E2gijgpkgqs + Eggipgqusk + E4gisgpqgjk’ (4)

where Fi, Fy, E3 and E, are modules of elasticity of the second order for isotropic
elastic bodies.
Here R; and R’ are covariant and contravariant base vectors of the space.

3. The coordinate system in a shell normally connected with a surface

Let €2 denote a shell and a domain of the space occupied by the shell. Inside the shell,
we consider a smooth surface S with respect to which the shell 2 lies symmetrically.
The surface S is called the midsurface of the shell €2. To construct the theory of
shells, we use more convenient coordinate system which is normally connected with
the midsurface S. This means that the radius-vector R of any point of the domain (2
can be represented in the form

R(z', 2%, 2%) = (o', 2?) + %7 (2!, 2?),
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where R and 7 are respectively the radius-vector and the unit vector of the normal of
the surface S(x® = 0) and (z!, 2?) are the Gaussian parameters of the midsurfaces S.

The covariant and contravariant basis vectors B; and R' of the surfaces S(z3 =
const), and the corresponding basis vectors 7; and 7% of the midsurface S (z* = 0) are
connected by the following relations:

R = AlT) = Ay, R = A5 = AVr;, (i,j=1,2,3),

where
. Gg—l’;abg, i:Oé, j:B7 . 7:‘0”77047 i:()é,
A = i T =
55’, 7 =3, n,n, =3,
, (1 - 2Hzg)aj + 2sbj i=a, j=0
Al = 1—2Hzs + Ka2 ’ ’
83, j=3.

Here (ang,a*?,a?) and (b, 50", 0°%) are the components (covariant, contravariant and
mixed) of the metric and curvature tensors of the midsurface S. By H and K we
denote a middle and Gaussian curvature of the surface S, where

2H = b = b + b2, K = blb2 — blb?.

It should be noted that for the refined theory of non-shallow shells (Koiter, Naghdi,
Lurie) these relations have the form

Re = (af + xgbg)F’g, Ry = (af — z3b)7s.
The main quadratic forms of the midsurface S (z3 = 0) have the forms
I = ds® = agpdr®da’, 11 = K,ds* = bysdr®da”,

where k, is the normal courvative of the S and

- — - = — — dxa
Aap = Tal'g, baﬁ = "N, ks = baﬁsa‘sﬂa To = 8o<7ﬂ7 % = d_s

It is necessary to rewrite the relation (1-4) in terms of the midsurface S of the shell
Q.
Relation (1) can be written as follows:
1 0y/ada” N ol
Va  Oxe 03
from (2), (3), (4) we obtain

+90 =0, (U=1—2Hzxs+ Kas).

&' = o'(R; + 0,U) = (B 4 Eiiraske Ve, (R + 0;0)

= Ft = %Azl [Miljlplql + %Mi1j1p1‘1151k1

X (AF 7, 00U + A3, AL 8,00,0)]

X (Ap 7, 0,0 + A8 7, 0,U + Ap A2 9,00,0) (7, + A%, 0;0),
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where
MNP — \q"itgPrat 4 M(allplahql + a11q1a]1P1)

Miapiqisikl — (El + EQ)ailjlaplql _ E2ailj1ap1k1qlhsl
+E3a11p1a]1Q1a81k1 + E4a“51ap1‘ha]1k1,

(a9 = 7).

4. Isometric system of coordinates

The isometrical system of coordinates in the surface S is of special interest, since
in this system we can obtain bases equations of the theory of shells in a complex form,
which in turn, allows one for a rather wide class of problems to construct complex
representation of general solutions by means of analytic functions of one variable z =
x4+ iz?. This circumstance makes is possible to apply the methods developed by
N. Muskhelishvili and his disciples by means of the theory of functions of a complex
variable and integral equations [1].

The main quadratic forms in this of coordinates are of the type

I =ds* = A(z', 2?)[(dat)? + (da?)?] = A(z, 2)dzdz, (A > 0)

1 _
11 = bopdrda’ = 5[de2 +2Hdzdz + Qdz?),
where .
Q= 5(b} — b2+ 2ib)), 2H = bl 4 12.

Introducing the well-known differential operators

9 _1(90 9\ 9 _
0z 2\ ox! oxr2 )’ 0z

and the notation

DO | —
VR
3o
S
[\

N——

g:ﬁ:1—2Hx3+K:C§,
a
we obtain the following complex writing both for the system of equations of equilibrium
and for "Hooke’s Law”
K&[A(Tl — Ty +iTy +iTy)] + g[A(Tl + 75 +imy — i1y
+ 4y, 072
—ANHT +Q75) + e + Fp =0,
1 (OATs  OATS L 9
— H
A( % T )T (i +75)
3

- . . ot
—|—Re[@(7‘11 — 7'22 + 27'21 — 27'12)] + (9_13?;‘ + F3 =0,
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where
T3 ) =7 = \/g{p@ + u(Br0.0 + Rro.U
L2 TP (B + 20°0)F, + p2(Ry + 070)0U (R + 20°0)7,
+(R, 05U + 278U + 20°U 850050 }
ﬁ+ﬁ+dﬁ—ﬁﬁﬁ”i:Vgp@+miﬁﬁ+ﬁ@ﬁ
120r U000 (BT + 20°0)7, + p2(R0.U + 0,00°0)
(R* 4 20°0)7, + (RT0sU + 2(7t + 0°U)9*U)0sU ] }
= (P it = \/g {2[/\@ + u(RT0,0 + R+o.U + 20°00.0)
(707°0)] + p[2(R*0:U + 070 0,0) (707U )+
(R 05U + 207U + 207U 05U ) (1 4 05Us)] },
= B, = \/g {[A@ + u(2iPU + 8,00°T 05U
- 1= - o o -
+u(ii0°U + 5 B + 0,00,U00.0) (R, + 20.0)7,
> 1 — — — = = —
AU + S R 0.00,00°0) (R, +20:0)7, }
3 =P = \/g{[x@ + u(2R0°U + 05U00°U) (1 + 950)
. 1- - L. .
+2u((0°U. + SR 05U + 0°U0sU) (710:U)
(77T + %émgﬁ + oy00.0)R0.0] }
Then

- . = _» S 1 .
@=F@U+F@U+wﬂWU+@%+?&mi
- 1 - = - > - -
8ZU - §[<R+R+)83U+ + (RR+)QZU],
RB*=R' 1R, R, =R, +iR,,

Rt = 07Y(1 — Hay)™ + 23Q7, ],

FH =7 i, =1+ i,
=, = 41’3)\—Hl’3
R*RY = —
A /192 Q? ) )
B — 2 (1 = Ha)* + 230Q _ 29 +223QQ
A V2 A 02 ’
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R'Fy = —Qu3, R7p = —(1 — Huag),
9 U
_ 2 _
WW — 0, 7'_”\4»7:‘+ — K, _»+7:’+ — 2,

Fi=F+F, U =U+il,, Ut =U"4iU>

We have the formulas

The displacement vector U , representable in the form

U = UsFo + U = Uy + Usii = Ul + U5+ Uit (U = U®)

can be rewritten as follows:
— 1 — —
U - §(U+F+ + U+’I?+) + Ugﬁ

or

— d
U =Im (U(l) + iU(S)) —ZF+ + Usnl

ds

where

Ut =UF, Uy = Uy, Uy =Ul, U, =US.
Here § and [ are the unit tangent vector and tangential normal of the midsurface

S(x3 = 0). The expression for the unit tangent vector § and the tangential normal [ of
the surface S(x3 = const) have the forms

. dR . _ds
5= i [(1—%1{:5)8—1—1:87'5[]%,
f—?xﬁ—[(l—xk’)f—x Tﬂﬁ
- - 3fvs 3ls d§’

and

45 = \J1 = 2wsk, + (K2 + 12)ads,

(fx§:ﬁ>

where d§ and ds are linear elements of the surfaces S and S, 7, is the geodesic version
of the surface S.

The formula
ds

% .

—

IRy = (1 — 2Hzxs 4+ Kaz2)(I7,)
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which is necessary in writing the reduced basic boundary-value problems in stresses, is
also valid.
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SOLUTION OF SOME BOUNDARY VALUE PROBLEMS OF STATICS OF THE
THEORY OF ELASTIC MIXTURE IN AN INFINITE DOMAIN WITH AN
ELLIPTICAL HOLE

Svanadze K.

Abstract. For homogeneous equation of statics of the linear theory of elastic mixture in
the case of an outside the elliptical domain we consider the two boundary value problems
which are analogous to III and IV exterior boundary value problem of the classic theory of
elasticity. Applying the representation of the stress vector by the so-called mutually adjoint
vector functions we obtain effective solutions (Poisson type formulas) of the problems.

Keywords and phrases: Elastic mixture, singular integral equation with a Hilbert ker-
nel, general representation of the displacement and stress vectors, analogues of the general
Kolosov-Muskhelishvilis representations, adjount vector-function.

AMS subject classification (2010): 74E35, 74E20, 74C05.

1. Introduction

The basic two-dimensional boundary value problems statics of the linear theory of
elastic mixtures are studied in [1], [3]-[7] and also by many other authors.

In the paper we consider two boundary value problems for homogeneous equation
of statics of the linear theory of elastic mixtures in an infinite domain with an elliptical
hole, which for the cases of simple connected finite and infinite domains has been
studied by M. Basheleishvili in [5].

To solve the problems we use the method described in [2, §28] and [4]. Applying the
representation of the stress vector by the so-called mutually adjoint vector-functions
the problems are reduced to the singular integral equations with Hilbert kernels, and
owing to the above result, the solution of the problems can be reduced to the first order
linear differential equations.

The solutions of the problems are represented in the form of Poisson type formulas.

2. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixtures in a complex
form looks as follows [4]
O*U o*’U
— + K— =0,
8282 822

where z = 11 + ix9, Z = 11 — 122,

o_1fo oo _1[lo9 .0
0z 2\0x; Oxs) 0z 2\0r, Oxy)’
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U = (ug+iug, us+iug)T, v = (uy,up)” and u” = (us, uy)” are partial displacements,

1 1 -
S b B E e DRl

1 a9 c aq
= —1 k=123 IL1i=— Il=— I31=—=
my k+23+k7 y 4y 0, 1 dy’ 2 dy’ 3 dy’
as +0b
ap = iy —As, Gz = fig — A5, €= [z + As, d2:a1a2—02, L+l = 2d 2: (2-2)
1
+d +b
btly= = Ll ="t dy= (a4 by)(az+ b) — (c+d),
1 1

51=M1+)\1+/\5—042%, b2:/L2+/\2+)\5+062%, p = p1+ p2,
P11 _ P2
gy = A3 — Ay, d=M3+/\3—/\5—042F:u3+)\4—)\5+a2;.

Here pi1, pa, 13 and A,, p = 1,5 are elastic modules characterizing mechanical
properties of a mixture, p; and py are its particular densities. The elastic constants
p1, 2, 3, Ap,  p = 1,5 and particular densities p; and py will be assumed to satisfy
the conditions of inequality [1].

In [4] M. Basheleishvili obtained the following representations:

U= ( Z; i zzz ) = mep(z) —l—% [z (2) + ¢¥(2), (2.3)
o (@Tu—i(Tup N _ 0 )
TU = ( e ) ~ 07 (2009 + 200, (2.4)

where ¢ = (1, ¢2)" and ¢ = (1,12)7 are arbitrary analytic vector-functions, (TU),
(p = 1,4) are components of the stress vector [1],

M1 3 my M2
— s m = 5 det — A > O,
s [ M3 2 } [ mz M3 } H !

_9 _ _, 0 . 9 et ;
55@ = Magy — 25,0 M and ngy are the projections of the unit vector of the normal

onto the axes x; and x,.

Formulas (2.3) and (2.4) are analogous to the Kolosov-Muskhelishvilis formulas for
the linear theory of elastic mixture.

To investigate the problems we use the vector [4]

As is known (see [4]) V' is a vector adjoint to U.
From (2.3) , (2.4) and (2.5) we obtain

2 — 1 1 9 -1 1
TU = < 25534 _225553 ) = 95(2) [(2u—m ™ HU —im™'V] . (2.6)
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3. Statement of the posed boundary value problems and the uniqueness
theorems

Let an infinite isotropic plane be weakened by an elliptic hole with the semi-axis a
and b (a > b). This unbound domain will be denoted by D~. The symmetry axis of
the ellipse is taken at the coordinate axis, and the major axis coincides with the real
axis ox;. By L we denote the elliptic curve (acosf,bsinf) € L.

We consider the following boundary value problems: Find in the domain D~ a
vector U = (uy + iug, uz + iuy)” which belongs to the class C?(D~) (" CY*(D- L)
is a solution of equation (2.1) and satisfies only one of the following conditions on the
boundary L

()~ =Y, (STU)” = f®, (3.1)

(SU)y"=FY,  (nTU)” = F?, (3.2)

where fU) and FU), j = 1,2 are the given scalar complex functions on the boundary
L, note that

(fO, POy ecto(L), (f®.F®) e (L), a>0.

In the vicinity of infinity the vector U = (uy + iug, uz +iuy)? satisfies the following
conditions:
_ A - T 2 2 2
up =0(1), |z[*=—=0(1), =12, k=14, |z|° =27+ 5.
(9xj
It will be assumed that the stress and rotation components vanish at infinity; more-
over, we suppose that the principal vector of external forces applied to the contour of
the hole is equal to zero.
Let us denote by (I11,)~ and (IV,)~ the problems (2.1), (3.1) and (2.1), (3.2)
respectively.
The following assertion is true [5].
Theorem 3.1. The problems (I11,)~ and (IV.)~ are uniquely solvable.

4. Solution of the (//I,)” and (/V,)~ problems

For the solution of the problems we use the method developed in [2]. Let us note
that the solution of the first BVP of statics of the linear theory of elastic mixture for
an infinite plane with an elliptic hole reads as ([7] or [3])

Ul(x)

1 /2’r (1-mm)F(@)dd KA /2” F(0)me "do (4.1)
0 0

or 1 —1e? —me ® + 77 or (1 —Fe#)2’

where U™ = F € C**(L), «a>0,(acosf, bsinf) e L; K=—1lm"' (see(2.2)),
Ag = (=m) (" =) (- m=n' |nl<1,

_z+\/z2—a2—|—b2 _z—\/z2—a2+b2
= atb 2= atb

,  Z2=x1+ 1x,.
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If x = (x129) belong to the boundary of the ellipse then z1 = a cosfy, o = bsin by,
and 1 = e ¥, 7 =¢e% and A; = 0.

Further, note that the adjoint vector of (4.1) has the form

Viz) = ( Vi +iVs ) 1 /2” (r1e” — e ) F(0)do N
0

Vs+iVy )~ 2mi 1 —7me? —Te " + 7y
(4.2)
KA, /2” F(0)me "do
omi Jy (1—me @)
19, A solution of the problem (I11)~ is sought in the form (see 4.1.)
Ue) = — /2” (1 = n7)(ng + Sx)do KA /27r e~ (ng + Sx)df (4.3)
C2mfy 1—me? —Te P +mT 2w (1 —7e~0)2 ~ '

where (nU)~ = ¢ = fU) is given by (3.1) and (SU)~ = x is the unknown function

beosf,asin )T
n=(n;,n)t = ( 4 ,
(2, m2) Va2 sin® 6 + b2 cos? §
(4.4)
—asinf,bcos0)T
S = (—ng.ny)T = (—asind, .
(=2 m) Va2sin? 0 + b2 cos? 0
We remark also that, on (acosfy,bsinfy) € L
(U(fo))™ = n(bo)q(o) + S(Box(0o)), (4.5)
27 0 —06
V) = [ ctg™ 5% 0)a(6) + SO (0)) . (46)
0

Using now (2.6) and taking into account (4.5) and (4.6) for the boundary value of
the stress vector we obtain

JUN -
\/@2 sin? 0y + b2cos20y(TU)™ = (2u — m™ 1) <£)
0

-1 2T o -
+I ctge o (@) do. (4.7)

21 J, 2 do

If we take into account (4.4) and condition (STU)™ = f® (see(3.1)) then (4.7) can
be rewritten in the form of one equation

dU\ "~ —asiné m™t [T 0 —0y (AU~
[(QM m”) <d90) ( b cos b, ) + [ 2mi /0 ctg 2 < do ) d9]
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—asin@o 2 .2 2 2 (2)
X ( b cos by ) = (a”sin” 6y + b* cos” 0y) ' (6p). (4.8)

Represent U~ in the form (see (3.1) and (4.4))

Wi = (ospngy ) 70w+ (e Y o) (19)

asin b, bcos b,
where
f(l)(eo)
0y) = , 4.10
/(o) Va2 sin? 0 + b2 cos? 0, ( )

\/a2 sin? By + b2 cos? 6, N \/a2 sin® By + b2 cos? 6, .

Substituting (4.9) in (4.8) after obvious transformations we get

T —a sin Oy m=t [T 0—0y —a sin Oy
[(Q’U_m )H (90)}( b cos 6y )+ {2_7”/0 ctg 2 H (0)do bcos b,

— B(0,), (4.11)

where

H(O) = < osm? ) ho), (4.12)

®(Ay) = (a®sin? y+b% cos® 0y) f P (0y) — (2u—m™1) [( beos bl ) f(@o)] < —asinfy )

asin 6, bcos b,

_m__l 2wct96—2@0 {( bcosf > f(9)} d9< —asinfy ) (4.13)

27/, asinf b cos 6y

Bearing in mind the formulas

y 0—0o [ —asinfy \ [ acosf+ acosb 4ot 0—6y( —asinf
Iy b cos b, ~ \ bsinf + bsinb, 9y bcosO )’
after some calculations we can rewrite (4.11) in the form

[(2mu - E)H'(Q)} m-! ( —asin by )

b cos 6y
L [ 0—0. . _1( —asinf :
—i-% i ctg H (0)m < beos 0 > df — iM = P(by). (4.14)
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where

L[ _1( —asinf
M = H(0)m do. (4.15)

2r J, bcos 0

Applying the formula of composition of integrals with Hilbert kernels (see[2], §28)

1 2 90_0* 2 Q_QO 1 2
— P(0)dd = —P(0* P(0)do
oz | ey [ eg S P@)i ——Pr)+ o [ Py,

from (4.14) we find

/ _1 ([ —asinf 1 [ 0—0 B / 1 { —asinf
H (6y)m ( )+—,/0 ctg 5 [(2mu EYH (9)] m bcos 0 do

b cos 6y 2714
_N = L/%ct =% y0)a0 (4.16)
“omi )y, U2 ’ '
where
Tl —asinf) g (4.17)
T or bcos @ ' :

The equalities (4.14) and (4.16) result in

[(2mu — 2E)H’(90)] - ( —asin >

bcos b,

L[ 6y —6 / _1 [ —asinf :
“omi ), ctg 5 [(Zm,u —2E)H (9)] m ( beos 0 ) dd+ N —iM
— $(60) — L)/% 197 =% 56)a0 (4.18)
7 o A '
—asind

.. . ’ 1
Thus, for determining [(2mu — 2E)H ()] m beos

singular integral equation (4.18) with the Hilbert kernel.

Taking into account the fact that, when f() = f = 0.then U(x) = 0,2 € D™,
(see theorem 3.1), also ¢ = 0,h = 0,H = 0 and M = N = 0, (see (4.10)1, (4.10),,
(4.15) and (4.17)) we can conclude that solution of the equation (4.18) is

) we have obtained a

asin O

!/ 71 - . - .
[(Zm,u _2E)H (9)] m < A ) = $(0) — N + M.
The last formula yields (see (4.12))

, 17'(6)

KO+ 5

no =20 N M (4.19)
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where

2
m m m
(Ml - A_j) (Mz - A_(l)) - <M3 + A_Z> >0, Ag=mymg—mj>0. (4.21)

From (4.19) by integration we obtain

N—l—z]\/[)

h(0) = \/_ \/_/ gl dby, (4.22)
where C' is an arbitrary constant

As it is known conditions f) = f® = 0 imply that U(z) = 0,2 € D~ and
¢=H=h=M = N = 0. Therefore from (4.22) we obtain C' = 0 and finally

N—HM

\/_ / ¢ do. (4.23)

Now let us find N —iM. Since h(0) is per1odlc Wlth the period 27, i.e. h(0+27) =
h(0) (see (4.9) (4.10); and (4.10)9 and r(27) = r(0) # 0 (see (4.20) and (4.21)) therefore
from (4.23) we obtain

N —iM = 027"2( )( ( )2 % d@
o (r(0)7z df

Having found h(#) by formula (4.10)s we obtain value of S(0)x(6) and after by (4.3)
we obtain the solution of the problem (/71,)~ represented in the form of Poisson type
formula.

Thus the (I11.)~ boundary value problem is solved. The BVP (IV,)~ is solved
quite analogously.
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