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CONVERGENCE IN MEASURE OF LOGARITHMIC MEANS
OF DOUBLE FOURIER SERIES

Baramidze L., Goginava U.

Abstract. We establish condition which guarantees convergence in measure of logarithmic

means of the two-dimensional Fourier series.

Keywords and phrases: Two-dimensional Fourier series, convergence in measure, summa-

bility

AMS subject classification (2010): 43A50.

Let T2 := [−π, π)2 denote a cube in the 2-dimensional Euclidean space R2. The
elements of R2 are denoted by (x, y).

The notation a . b in the paper stands for a ≤ cb, where c is an absolute constant.
We denote by L0(T2) the Lebesgue space of functions that are measurable and finite

almost everywhere on T2. mes(A) is the Lebesgue measure of the set A ⊂ T2.
We denote by Lp (T2) the class of all measurable functions f that are 2π-periodic

with respect to all variables and satisfy

∥f∥p :=

∫
T2

|f |p
1/p

<∞.

The weak − L1 (T2) space consists of all measurable, 2π-periodic relative to each
variable functions f for which

∥f∥weak−L1(T2) := sup
λ
λmes

{
(x, y) ∈ T2 : |f (x, y)| > λ

}
<∞.

Let f ∈ L1 (T2) . The Fourier series of f with respect to the trigonometric system
is the series

S [f ] :=
+∞∑

n,m=−∞

f̂ (n,m) ei(nx+my),

where

f̂ (n,m) :=
1

(2π)2

∫
T2

f(x, y)e−i(nx+my)dxdy

are the Fourier coefficients of the function f . The rectangular partial sums are defined
as follows:

SNM(f ;x, y) :=
N∑

n=−N

M∑
m=−M

f̂ (n,m) ei(nx+my).

In the literature the notion of the Riesz’s logarithmic means of a Fourier series is
known. The n-th Riesz logarithmic mean of the Fourier series of the integrable function
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f is defined by
1

ln

n∑
k=0

Sk(f)

k + 1
, ln :=

n∑
k=0

1

k + 1
,

where Sk(f) is the partial sum of its Fourier series. This Riesz’s logarithmic means
with respect to the trigonometric system has been studied by a lot of authors. We
mention for instance the papers of Szász, and Yabuta [13, 15]. This mean with respect
to the Walsh, Vilenkin system is discussed by Simon, and Gát [12, 2].

Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The Nörlund means for
the Fourier series of f are defined by

1∑n
k=0 qk

n∑
k=0

qkSn−k(f).

If qk =
1

k+1
, then we get the (Nörlund) logarithmic means:

Ln (f ;x) :=
1

ln

n∑
k=0

Sn−k(f)

k + 1
. (1)

Although, it is a kind of “reverse” Riesz’s logarithmic means. In [5] some convergence
and divergence properties of the logarithmic means of Walsh-Fourier series of functions
in the class of continuous functions, and in the Lebesgue space L are proved.

In one of his last papers [14] Tkebuchava constructed a set of logarithmic summation
methods which contains both of the above mentioned logarithmic summation methods
as limit cases. Namely, for any integers n, n0 such that 0 ≤ n0 ≤ n let Tkebuchava’s
means Tn,n0 be defined by

Tn,n0 (f ; x)

: =
1

l (n, n0)

(
n0−1∑
k=0

Sk (f ;x)

n0 − k + 1
+ Sn0 (f ;x) +

n∑
k=n0+1

Sk (f ;x)

k − n0 + 1

)
,

where

l (n, n0) :=

n0−1∑
k=0

1

n0 − k + 1
+ 1 +

n∑
k=n0+1

1

k − n0 + 1
.

It is clear that l (n, n0) ≍ log n. This summation method includes the Riesz (for
n0 = 0) and Nörlund (for n0 = n) logarithmic methods, too.

Define the kernels Fn,n0 of Tkebuchava’s means by

Fn,n0 :=
1

l (n, n0)

(
n0−1∑
k=0

Dk

n0 − k + 1
+Dn0 +

n∑
k=n0+1

Dk

k − n0 + 1

)
.

Tkebuchava [14] gave estimates of kernels. Namely, the following theorem holds.
Theorem T (Tkebuchava). Let 0 ≤ n0 ≤ n. Then

1 +
log2 (n0 + 2)

log (n+ 2)
. ∥Fn,n0∥L1(T) . 1 +

log2 (n0 + 2)

log (n+ 2)
.
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The mixed logarithmic means of double Fourier series are defined by

(Ln ◦Rm) (f ; x, y) :=
1

lnlm

n∑
i=0

m∑
j=0

Sn−i,j (f ;x, y)

(i+ 1) (j + 1)
.

The Nörlund logarithmic means and Riesz logarithmic means of double Fourier
series are defined by

(Ln ◦ Lm) (f ;x, y) :=
1

lnlm

n∑
i=0

m∑
j=0

Sn−i,m−j (f ;x, y)

(i+ 1) (j + 1)
,

(Rn ◦Rm) (f ;x, y) :=
1

lnlm

n∑
i=0

m∑
j=0

Si,j (f ;x, y)

(i+ 1) (j + 1)
,

respectively.
It is evident that

(Ln ◦ Lm) (f ; x, y) =
1

π2

∫
T2

f (s, t)Fn (x− s)Fm (y − t) dsdt,

(Rn ◦Rm) (f ;x, y) =
1

π2

∫
T2

f (s, t)Gn (x− s)Gm (y − t) dsdt

and

(Ln ◦Rm) (f ;x, y) =
1

π2

∫
T2

f (s, t)Fn (x− s)Gm (y − t) dsdt,

where

Fn (u) :=
1

ln

n∑
i=0

Dn−i (u)

i+ 1
, Gn (u) :=

1

ln

n∑
i=0

Di (u)

i+ 1
.

Let LQ = LQ(T2) be the Orlicz space ([10], Ch 2) generated by Young function Q,
i.e. Q is a convex continuous even function such that Q(0) = 0 and

lim
u→+∞

Q (u)

u
= +∞, lim

u→0

Q (u)

u
= 0.

This space is endowed with the norm

∥f∥LQ(T2) = inf{k > 0 :

∫
T2

Q(|f | /k) ≤ 1}.

In particular, if Q(u) = u logβ(1 + u) (u, β > 0), then the corresponding space will
be denoted by L logβ L(T2).

The rectangular partial sums of double Fourier series Sn,m (f ;x, y) of the function
f ∈ Lp (T2) , 1 < p <∞ converge in Lp norm to the function f , as n→ ∞ [16]. In the
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case L1 (T2) this result does not hold . But for one dimensional case and for f ∈ L1 (T),
the operator Sn (f) is of weak type (1,1) [17]. This estimate implies convergence of
Sn (f ;x) in measure on T to the function f ∈ L1 (T). However, for double Fourier series
this result does not hold [9, 11]. Moreover, it is proved that quadratical partial sums
Sn,n (f ;x, y) of double Fourier series do not converge in two-dimensional measure on
T2 even for functions from Orlicz spaces wider than the Orlicz space L logL (T2). On
the other hand, it is well-known that if the function f ∈ L logL (T2), then rectangular
partial sums Sn,m (f ; x, y) converge in measure on T2.

Classical regular summation methods often improve the convergence of Fourier
seeries. For instance, the Fejér means of the double Fourier series of the function
f ∈ L1 (T2) converge in L1 (T2) norm to the function f [16]. These means present the
particular case of the Nörlund means.

It is well known that the method of Nörlund logarithmic means of double Fourier
series is weaker than the Cesáro method of any positive order. In [7] it is proved, that
these means of double Fourier series in general do not converge in two-dimensional mea-
sure on T2 even for functions from Orlicz spaces wider than Orlicz space L logL (T2).
Thus, not all classic regular summation methods can improve the convergence in mea-
sure of double Fourier series.

The results for summability of logarithmic means of Walsh-Fourier series can be
found in [3, 4, 6, 5, 13, 15].

In [7] the mixed logarithmic means (Ln ◦Rm) of rectangular partial sums multiple
Fourier series are considered and it is proved that these means are acting from space
L (T2) into space weak − L1 (T2). This fact implies that mixed logarithmic means of
rectangular partial sums of double Fourier series converge in measure. In particular,
the following is true.

Theorem GG1(Goginava, Gogoladze). Let f ∈ L1 (T2). Then

(Rn ◦ Lm) (f ;x, y) → f in measure on T2, as n,m→ ∞.

Theorem GG2 (Goginava, Gogoladze) Let f ∈ L logL (T2). Then

(Ln ◦ Lm) (f ;x, y) → f in measure on T2, as n,m→ ∞.

Theorem GG3 (Goginava, Gogoladze). Let LQ (T2) be an Orlicz space, such that

LQ

(
Td
)
" L logL

(
T2
)
.

Then the set of the functions from the Orlicz space LQ (T2) with logarithmic means
(Ln ◦ Lm) (f) of rectangular partial sums of double Fourier series convergent in mea-
sure on T2 is of first Baire category in LQ (T2) .

For any integers n, n0,m such that 0 ≤ n0 ≤ n we put

(Tn,n0 ◦ Lm) (f ;x, y) = f ∗ (Fn,n0 × Fm) .
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It is easy to show that

(Tn,n0 ◦ Lm) (f ; x, y) =
1

π2

∫
T2

f (s, t)Fn,n0 (x− s)Fm (y − t) dsdt.

This summation method includes the (Rn ◦ Lm) (for n0 = 0) and (Ln ◦ Lm) (for
n0 = n) methods, too.

On the basis of the above facts we can formulate the following problem:
Let f ∈ L1 (T2). What condition on the n0 = n0 (n) ensure the convergence in

measure on T2 of the (Tn,n0 ◦ Lm) means of the two-dimensional trigonometric Fourier
series?

A solution of this problem is given in
Theorem 1. a)Let f ∈ L1 (T2) and

log n0 (n) = O
(√

log n
)
.

Then
(Tn,n0 ◦ Lm) (f ;x, y) → f in measure on T2, as n,m→ ∞.

b) Let

lim
n→∞

log n0 (n)√
log n

= ∞.

Then the set of the functions from the space L1(T2) with logarithmic means
(Tn,n0 ◦Lm)(f) of rectangular partial sums of double Fourier series convergent in mea-
sure on T2 is of first Baire category in L1 (T2) .

In order to prove Theorem we apply the reasoning of ([1], Ch. 1) formulated as the
following proposition in a particular case.

Theorem G. Let H : L1(T2) → L0(T2) be a linear continuous operator, which
commutes with family of translations E, i. e. ∀E ∈ E ∀f ∈ L1(T2) HEf = EHf .
Let ∥f∥L1(T2) = 1 and λ > 1. Then for any 1 ≤ r ∈ N under condition mes{(x, y) ∈
T2 : |Hf | > λ} ≥ 1

r
there exist E1, ..., Er, E

′
1, ..., E

′
r ∈ E and εi = ±1, i = 1, ..., r such

that

mes{(x, y) ∈ T2 :

∣∣∣∣∣H
(

r∑
i=1

εif(Eix,E
′
iy)

)∣∣∣∣∣ > λ} ≥ 1

8
.

Theorem GGT (Gát, Goginava, Tkebuchava). Let {Hm}∞m=1 be a sequence of lin-
ear continuous operators, acting from the space L1(T2) into the space L0(T2). Suppose
that there exists the sequence of functions {ξk}∞k=1 from the unit ball S(0, 1) of space
L1(T2), sequences of integers {mk}∞k=1 and {νk}∞k=1 increasing to infinity such that

ε0 = inf
k
mes{(x, y) ∈ T2 : |Hmk

ξk (x, y) | > νk} > 0.

Then K - the set of functions f from the space L1(T2), for which the sequence
{Hmf} converges in measure to an a. e. finite function is of first Baire category in
the space L1(T2).
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The proof of Lemma GGT can be found in [3].
Set

αkm :=
π (12k + 1)

6 (m+ 1/2)
, βkm :=

π (12k + 5)

6 (m+ 1/2)
, γm :=

π

6 (m+ 1/2)
,

Jm :=

[√
m+1−5
12

]∪
k=1

[αkm + γm, βkm − γm] .

Lemma T (Tkebuchava). Let 0 ≤ z ≤ γn and x ∈ Jn. Then

Fn,n0 (x− z) & log (n0 + 2)

x log (n+ 2)
.

The proof of Lemma T can be found in [6].
Proof of Theorem 1. a) In [8] it is proved that the one dimensional operator

Lm (f) := f ∗ Fm (see (1)) is of weak type (1, 1), i. e. for f ∈ L1 (T1) we have

∥Lm (f)∥weak−L1(T1) . ∥f∥L1(T1) . (2)

On the other hand, Tkebuchava in [14] proved that

sup
n

∥Fn,n0∥L1(T) <∞

when
log n0 = O

(√
log n

)
. (3)

Set
Ω :=

{
(x, y)∈T2 : |(Tn,n0 ◦ Lm) (f ,x,y)| > λ

}
.

Then from (2) and (3) we have

λmes (Ω) (4)

= λ

∫
T2

IΩ (x, y) dxdy = λ

∫
T

∫
T

IΩ (x, y) dy

 dx

. ∥(f ∗ Fn,n0) (f)∥L1(T2) . ∥f∥L1(T2) ,

where IE is a characteristic function of the set E.
By virtue of standart argument (see [17]) we can prove the validity of part a) from

the estimation (4).
Now, we prove part b). Let

lim
n→∞

log n0 (n)√
log n

= lim
k→∞

log n0 (nk)√
log nk

= ∞.

By Lemma GGT the proof of Theorem will be complete if we show that there exists
for the sequences of integers {nk : k ≥ 1} and {νk : k ≥ 1} increasing to infinity, and
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a sequence of functions {ξk : n ≥ 1} from the unit bull S (0, 1) of space L1 (T2), such
that for all n

mes{(x, y) ∈ T2 :
∣∣(Tnk,n0(nk) ◦ Lnk

)
(ξk; x, y)

∣∣ > νk} ≥ 1

8
. (5)

First, we prove that

mes

{
(x, y) ∈ T2 :

∣∣∣∣∣(Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2nk

; x, y

)∣∣∣∣∣ & n
3/2
k

}
(6)

& log2 n0 (nk)

n
3/2
k log nk

.

From Lemma T we have(
Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2nk

; x, y

)
=

1

γ2nk

1

π2

∫
[0,γnk ]

2

Fnk,n0(nk) (x− u)Fnk
(y − v) dudv

& log n0 (nk)

log nk

1

xy
, (x, y) ∈ Jnk

× Jnk
.

Set

si,nk
:=

√
nk log n0 (nk)

i log nk

.

Then we can write

mes

{
(x, y) ∈ T2 :

∣∣∣∣∣(Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2nk

;x, y

)∣∣∣∣∣ & n
3/2
k

}

≥ mes

{
(x, y) ∈ Jnk

× Jnk
:

∣∣∣∣∣(Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2nk

;x, y

)∣∣∣∣∣ & n
3/2
k

}

≥ mes

{
(x, y) ∈ Jnk

× Jnk
:
log n0 (nk)

log nk

1

xy
& n

3/2
k

}
= mes

{
(x, y) ∈ Jnk

× Jnk
: y . log n0 (nk)

xn
3/2
k log nk

}

& 1

n2
k

[√
n0(nk)+1−5

12

]
∑
i=1

si,nk∑
l=1

= c

[√
n0(nk)+1−5

12

]
∑
i=1

√
nk log n0 (nk)

in2
k log nk

& log2 n0 (nk)

n
3/2
k log nk

,
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Hence (6) is proved.
Then by the virtue of Theorem G there exists E1, ..., Erk , E

′
1, ..., E

′
rk

∈ E and
ε1, ..., εrk = ±1 such that

mes{(x, y) ∈ T2 :

∣∣∣∣∣
rk∑
i=1

εi
(
Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2nk

;Eix,E
′
iy

)∣∣∣∣∣ (7)

& n
3/2
k } > 1

8
,

where

rk ∼
n
3/2
k log nk

log2 n0 (nk)
.

Denote

νk =
log2 n0 (nk)

log nk

and

ξk (x, y) =
1

rk

rk∑
i=1

εi

I
[0,γnk ]

2 (Eix,E
′
iy)

γ2nk

.

Thus, from (7) we obtain (5).
Finally, we prove that ξk ∈ S (0, 1). Indeed,

∥ξk∥L1(T2) ≤
1

rk

rk∑
i=1

∥∥∥∥I[0,γnk ]
2

∥∥∥∥
L1(T2)

γ2nk

≤ 1.

Hence, ξk ∈ S (0, 1), and Theorem is proved.

Acknowledgment. The research of U. Goginava was supported by Shota Rustaveli
National Science Foundation grant No. 31/48 (Operators in some function spaces and
their applications in Fourier analysis).
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BOUNDARY VALUE PROBLEMS OF THE FULLY COUPLED THEORY OF
ELASTICITY FOR SOLIDS WITH DOUBLE POROSITY FOR HALF-PLANE

Bitsadze L.

Abstract. In the paper the two-dimensional version of steady vibration in the fully coupled

linear theory of elasticity for solids with double porosity is considered. Using the Fourier

integrals, some basic boundary value problems are solved explicitly (in quadratures) for the

half-plane.
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Introduction

Porous media theories play an important role in many branches of engineering,
including material science, the petroleum industry, chemical engineering, and soil me-
chanics, as well as biomechanics.

In a material with two degrees of porosity, there are two pore systems, the primary
and the secondary. For example in a fissured rock (i.e., a mass of porous blocks sep-
arated from each other by an interconnected and continuously distributed system of
fissures) most of the porosity is provided by the pores of the blocks or primary porosity,
while most of permeability is provided by the fissures or secondary porosity. When fluid
flow and deformations processes occur simultaneously, three coupled partial differential
equations can be derived [1],[2] to describe the relationships governing pressure in the
primary and secondary pores (and therefore the mass exchange between them) and the
displacement of the solid.

A theory of consolidation with double porosity has been proposed by Aifantis [1].
The physical and mathematical foundations of the theory of double porosity were con-
sidered in the papers [1],[2], [3], where analytical solutions of the relevant equations
are also given.This theory unifies a model proposed by Biot for the consolidation of
deformable single porosity media with a model proposed by Barenblatt for seepage in
undeformable media with two degrees of porosity. The basic results and the historical
information on the theory of porous media were summarized by R.de Boer [4]. How-
ever, Aifantis’ quasi-static theory ignored the cross-coupling effect between the volume
change of the pores and fissures in the system. The cross-coupled terms were included
in the equations of conservation of mass for the pore and fissure fluid and in Darcy’s
law for solids with double porosity by several authors [5-8].

In the last years many authors have investigated different types of problems of
the 2-dimensional and 3-dimensional theories of elasticity for materials with double
porosity, publishing a large number of papers (some of these results can be seen in
[9-20] and references therein). There the explicit solutions on some BVPs in the form
of series and in quadratures are given in a form useful for engineering practice.



Boundary Value Problems of the Fully Coupled Theory of ... 13

The purpose of this paper is to consider the two-dimensional version of steady
vibration in the fully coupled linear theory of elasticity for solids with double porosity.
Using the Fourier integrals, some basic boundary value problems in the fully coupled
linear theory of elasticity are solved explicitly (in quadratures) for the half-plane.

2. Basic equations. Boundary value problems

Let R2
+ denote the upper half-plane x2 > 0. The boundary of R2

+ which is x1-axis

we denoted by S : Let x := (x1, x2) ∈ R2
+, ∂x :=

(
∂

∂x1
,
∂

∂x2

)
. We assume the

domain R2
+ to be filled with an isotropic elastic material with double porosity.

The governing homogeneous system of the theory of steady vibration in the fully
coupled linear theory of elasticity for materials with double porosity has the form [9]

µ∆u+ (λ+ µ)graddivu− grad(β1p1 + β2p2) + ρ1ω
2u = 0,

iωβ1divu+ (k1∆+ a1)p1 + (k12∆+ a12)p2 = 0,

iωβ2divu+ (k21∆+ a21)p1 + (k2∆+ a2)p2 = 0,

(1)

where u(x) = u(u1, u2) is the displacement vector in a solid, p1(x) and p2(x) are the
pore and fissure fluid pressures respectively. aj = iωαj − γ, ω > 0 is the oscillation
frequency, ρ1 > 0 is the reference mass density, β1 and β2 are the effective
stress parameters, γ > 0 is the internal transport coefficient and corresponds to
fluid transfer rate with respect to the intensity of flow between the pore and fissures,
λ, µ, are constitutive coefficients, α1 and α2 measure the compressibilities of the

pore and fissure system, respectively. kj =
κj
µ′ , k12 =

κ12
µ′ , k21 =

κ21
µ′ . µ

′ is the fluid

viscosity, κ1 and κ2 are the macroscopic intrinsic permeabilities associated with matrix
and fissure porosity, respectively, κ12 and κ21 are the cross-coupling permeabilities for
fluid flow at the interface between the matrix and fissure phases, ∆ is the Laplace
operator. Throughout this article it is assumed that β2

1 + β2
2 > 0. Vectors, if needed,

we consider as column matrices.
Here we state the following BVPs.
Find a solution U(u, p1, p2) ∈ C2(R2

+) to the Eqs. (1) in R2
+ , satisfying one of the

following boundary conditions (BCs) on S :
Problem 1.

u+ = f(x1), p+1 = f3(x1) p+2 = f4(x1), x1 ∈ S, (2)

Problem 2.
u+1 = f1(x1),

(P(∂x,n)u)+2 = f2(x1), p1 = f3(x1), p2 = f4(x1), (3)

Problem 3.

(P(∂x,n)u)+1 = f1(x1), u+2 = f2(x1),
∂p1
∂x2

= f3(x1),
∂p2
∂x2

= f4(x1). (4)
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The symbol (.)+ denotes the limit on S from R2
+,

lim
R2

+∋x→x1∈S
u = f(x1), lim

R2
+∋x→x1∈S

p1 = f3(x1), lim
R2

+∋x→x1∈S
p2 = f4(x1),

lim
R2

+∋x→x1∈S

[
P

(
∂

∂x
,n

)
U

]
α

= fα(x1), α = 1, 2,

the functions fj, j = 1, 2, 3, 4, are prescribed, n := (0, 1) is a unit normal vector,

P(∂x,n)U = T(∂x,n)u− n(β1p1 + β2p2), (5)

T(∂x,n)u is the following vector

T(∂x,n)u :=

 µ
∂

∂x2
µ
∂

∂x1

λ
∂

∂x1
µ0

∂

∂x2

u, µ0 := λ+ 2µ.

In the domain of regularity the regular solution U = (u, p1, p2) ∈ C2(D) of system (1)
is represented as the sum (see appendix 1)

u(x) = −grad
3∑

m=1

φm(x)

λ2m
+ u(4)(x), divu(4)(x) = 0,

p1(x) =
3∑

m=1

Bmφm(x), p2(x) =
3∑

m=1

Cmφm(x),
(6)

where
(∆ + λ2m)φm(x) = 0, (∆ + λ24)u

(4)(x) = 0, divu(4)(x) = 0,

Bm = − iω

δm

[
β1(a2 − k2λ

2
m)− β2(a12 − k12λ

2
m)
]
,

Cm = − iω

δm

[
β2(a1 − k1λ

2
m)− β1(a21 − k21λ

2
m)
]
,

δm = (k1k2 − k12k21)λ
4
m − k0λ

2
m + a1a2 − a12a21,

β1Bm + β2Cm = − iω

δm
(α12 − α11λ

2
m).

λ2j , j = 1, 2, 3, are roots of cubic algebraic equation

µ0α0ξ
3 − [µ0k0 + iωα11 + ρ1ω

2α0]ξ
2

+[µ0(a1a2 − a12a21) + iωα12 + ρ1ω
2k0]ξ − ρ1ω

2(a1a2 − a12a21) = 0,

α11 = k2β
2
1 + k1β

2
2 − β1β2(k12 + k21), α12 = a2β

2
1 + a1β

2
2 − β1β2(a12 + a21),

α0 = k1k2 − k12k21, k0 = a1k2 + a2k1 − k12a21 − k21a12, λ
2
4 =

ρ1ω
2

µ
.

(7)

Let us assume that

F̂(x1) =
1√
2π

+∞∫
−∞

F(ξ) exp(−ix1ξ)dξ



Boundary Value Problems of the Fully Coupled Theory of ... 15

and the inversion formula

F(ξ) =
1√
2π

+∞∫
−∞

F̂(x1) exp(ix1ξ)dx1

is valid.
The Fourier integral theorem holds if both F and its Fourier transform are absolutely

integrable and F is bounded and continuous at the point x1. [24]
In what follows we assume, that the vector f, and the functions f3, f4 are

absolutely integrable, bounded, and continuous on S, moreover f̂, f̂3, and f̂4 are
absolutely integrable on S.

Theorem 1. Problem 1 has at most one regular solution in the domain D.
Theorem 1 can be proved similarly to the corresponding theorem in the classical

theory of elasticity (for details see [25]).

Solution of Problem 1 for a half-plane

The solution of Problem 1 is sought in the form (6). Let us assume that the
functions φm(x), m = 1, 2, 3, and u(4)(x) are sought in the form [23]

φm =
1√
2π

+∞∫
−∞

αm(ξ)exp(−x2rm)exp[ix1ξ]dξ, k = 1, 2, 3,

u(4)(x) =
1√
2π

+∞∫
−∞

α(4)(ξ)exp(−x2r4)exp[ix1ξ]dξ,

r2m = ξ2 − λ2m, α(4) = (α
(4)
1 , α

(4)
2 ),

(8)

where α(4) and αm are absolutely integrable on S unknown values.
It is not difficult to prove that (8) satisfy equations (∆ + λ2m)φm = 0, m =

1, 2, 3, (∆ + λ24)u
(4) = 0 for arbitrary αm and α(4), respectively.

By substituting in (6) the expressions of φm(x) and u(4) from (8), passing to the
limit as x2 → 0, and taking into account boundary conditions, for determining the
unknown values αm, k = 1, 2, 3 and α(4), we obtain the following system of algebraic
equations

ξ2
3∑

m=1

αm

λ2m
+ r4α

(4)
2 = iξf̂1,

3∑
m=1

rmαm

λ2m
+ α

(4)
2 = f̂2,

3∑
m=1

Bmαm = f̂3,
3∑

m=1

Cmαm = f̂4, iξα
(4)
1 − r4α

(4)
2 = 0.

(9)

It easy to show that the determinant of system (9) has the form

∆1 =

= −ω2d

{
(λ22 − λ23)(r4λ

2
1 + r1λ

2
4)

λ21δ2δ3(r1 + r4)
− (λ21 − λ23)(r4λ

2
2 + r2λ

2
4)

λ22δ1δ3(r2 + r4)
+

(λ21 − λ22)(r4λ
2
3 + r3λ

2
4)

λ23δ1δ2(r3 + r4)

}
d = (β1a2 − β2a12)(β2k1 − β1k21)− (β2a1 − β1a21)(β1k2 − β2k12).
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Due to Theorem 1 we conclude that the determinant of system (9) different from zero
and system (9) is uniquely solvable.

From (9) we find

∆1α1 = −
[
iξf̂1 − r4f̂2

]
η1 +

[
C3

λ22
(r2r4 − ξ2)− C2

λ23
(r3r4 − ξ2)

]
f̂3

−
[
B3

λ22
(r2r4 − ξ2)− B2

λ23
(r3r4 − ξ2)

]
f̂4,

∆1α2 =
[
iξf̂1 − r4f̂2

]
η2 −

[
C3

λ21
(r1r4 − ξ2)− C1

λ23
(r3r4 − ξ2)

]
f̂3

+

[
B3

λ21
(r1r4 − ξ2)− B1

λ23
(r3r4 − ξ2)

]
f̂4,

∆1α3 = −
[
iξf̂1 − r4f̂2

]
η3 +

[
C2

λ21
(r1r4 − ξ2)− C1

λ22
(r2r4 − ξ2)

]
f̂3

−
[
B3

λ22
(r2r4 − ξ2)− B2

λ23
(r3r4 − ξ2)

]
f̂4,

∆1α
(4)
2 =

[
r1 − r3
λ21λ

2
3

B2 +
r2 − r1
λ21λ

2
2

B3 +
r3 − r2
λ22λ

2
3

B1

]
ξ2f̂4

−
[
r1 − r3
λ21λ

2
3

C2 +
r2 − r1
λ21λ

2
2

C3 +
r3 − r2
λ22λ

2
3

C1

]
ξ2f̂3,

−ω
2d(a1a2 − a12a21)

λ21λ
2
2λ

2
3δ1δ2δ3

(λ21 − λ22)(λ
2
1 − λ23)(λ

2
2 − λ23)ξ

2f̂2,

+

[
r1η1
λ21

− r2η2
λ22

+
r3η3
λ23

]
iξf̂1, iξα

(4)
1 = r4α

(4)
2 ,

η1 =
ω2d

δ2δ3
(λ22 − λ23), η2 =

ω2d

δ1δ3
(λ21 − λ23), η3 =

ω2d

δ1δ2
(λ21 − λ22).

Substituting the obtained values in (6), we obtain the desired solution of the BVP in
quadratures.

Solution of Problem 2 for a half-plane

A solution is sought in the form (6),(8). Keeping in mind BCs and

[Pu]2 = − µ√
2π

+∞∫
−∞

{
(r24 + ξ2)

3∑
m=1

αm

λ2m
exp(−x2rm) + 2r4α

(4)
2 exp(−x2r4)

}
exp(ix1ξ)dξ,

after passing to the limit, as x2 → 0, we get the following system of algebraic equations

ξ2
3∑

m=1

αm

λ2m
+ r4α

(4)
2 = iξf̂1, (r24 + ξ2)

3∑
m=1

αm

λ2m
+ 2r4α

(4)
2 = − f̂2

µ
,

3∑
m=1

Bmαm = f̂3,
3∑

m=1

Cmαm = f̂4, iξα
(4)
1 − r4α

(4)
2 = 0.
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From here we obtain

3∑
m=1

αm

λ2m
=

[
f̂2
µ

+ 2iξf̂1

]
1

λ24
,

3∑
m=1

Bmαm = f̂3,
3∑

m=1

Cmαm = f̂4,

(10)

The determinant of system (10) has the form

D2 = − ω2d

λ21λ
2
2λ

2
3δ1δ2δ3

[a1a2 − a12a21](λ
2
1 − λ22)(λ

2
1 − λ23)(λ

2
2 − λ23) ̸= 0

By elementary calculation, from (10) we obtain

αmD2 = (−1)m

{[
f̂2
µ

+ 2iξf̂1

]
ηm + cmf̂3 − bmf̂4

}
, m = 1, 2, 3,

α
(4)
2 = − 1

λ24r4

[
iξ(ξ2 + r24)f̂1 + ξ2

f̂2
µ

]

where

η1 =
ω2d

λ24δ2δ3
(λ22 − λ23), η2 =

ω2d

λ24δ1δ3
(λ21 − λ23), η3 =

ω2d

λ24δ1δ2
(λ21 − λ22),

c1 =
C3

λ22
− C2

λ23
, c2 =

C3

λ21
− C1

λ23
, c3 =

C2

λ21
− C1

λ22
,

b1 =
B3

λ22
− B2

λ23
, b2 =

B3

λ21
− B1

λ23
, b3 =

B2

λ21
− B1

λ22
.

Substituting the obtained values in (6) and taking into account the following formula
[24]

1√
2π

+∞∫
−∞

exp(−x2rm) exp[iξ(x1 − y1)]
1

rm
dξ = i

√
π

2
H

(1)
0 (iλmr),

where H
(1)
0 (iλmr) is the first kind Hankel function of zero order,

r2 = (x1 − y1)
2 + x22, r2m = ξ2 − λ2m, m = 1, 2, 3

we obtain

φm =
i(−1)m+1

2D2

+∞∫
−∞

[
ηm
µ
f2(y1) + cmf3(y1)− bmf4(y1)

]
∂

∂x2
H

(1)
0 (iλmr)dy1

+
i(−1)m+1

2D2

ηm

+∞∫
−∞

f1(y1)
∂2

∂x1∂x2
H

(1)
0 (iλmr)dy1,
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u
(4)
1 = − i

2λ24

+∞∫
−∞

[
2

∂3

∂x21∂x2
H

(1)
0 (λ4r) + λ24

∂

∂x2
H

(1)
0 (iλ4r)

]
f1(y1)dy1

− i

2λ24µ

+∞∫
−∞

f2(y1)
∂2

∂x1∂x2
H

(1)
0 (iλ4r)dy1

u
(4)
2 =

i

2λ24

+∞∫
−∞

[
− ∂3

∂x31
H

(1)
0 (iλ4r) + λ24

∂3

∂x1∂x22
H

(1)
0 (iλ4r)

]
f1(y1)dy1

− i

2λ24µ

+∞∫
−∞

f2(y1)
∂2

∂x21
H

(1)
0 (iλ4r)dy1,

Solution of Problem 3 for a half-plane

A solution is sought in the form (6),(8). Keeping in mind BCs, after passing to the
limit, as x2 → 0, we get the following system of algebraic equations

−2ξ2
3∑

m=1

rmαm

λ2m
− (r24 + ξ2)α

(4)
2 =

iξf̂1
µ
,

3∑
m=1

rmαm

λ2m
+ α

(4)
2 = f̂2,

3∑
m=1

Bmrmαm = −f̂3,
3∑

m=1

Cmrmαm = −f̂4, iξα
(4)
1 − r4α

(4)
2 = 0.

From here we get

3∑
m=1

rmαm

λ2m
= − 1

λ24

[
iξf̂1
µ

+ (ξ2 + r24)f̂2

]
3∑

m=1

Bmrmαm = −f̂3,
3∑

m=1

Cmrmαm = −f̂4,
(11)

It is easily seen that the determinant of system (11) has the form

D3 = − ω2dr1r2r3
λ21λ

2
2λ

2
3δ1δ2δ3

[a1a2 − a12a21](λ
2
1 − λ22)(λ

2
1 − λ23)(λ

2
2 − λ23) = r1r2r3D2 ̸= 0

By elementary calculation, from (11) we obtain

αm =
(−1)m

rmD2

{
ηm
λ24

[
iξf̂1
µ

+ (ξ2 + r24)f̂2

]
+ cmf̂3 − bmf̂4

}
,

α
(4)
1 =

r4
λ24

[
f̂1
µ

− 2iξf̂2

]
, α

(4)
2 =

1

λ24

[
iξf̂1
µ

+ 2ξ2f̂2

]
.
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Finally we have

φm =
i

2D2λ24

+∞∫
−∞

ηm
∂

∂x1
H

(1)
0 (iλmr)

f1(y1)

µ
dy1

− i

2D2λ24

+∞∫
−∞

ηm

(
2
∂2

∂x21
H

(1)
0 (iλmr) + λ24H

(1)
0 (iλmr)

)
f2(y1)dy1

+
i

2D2

+∞∫
−∞

[Cmf3(y1)− bmf4(y1)]H
(1)
0 (iλmr)dy1,

u
(4)
1 =

i

2λ24

+∞∫
−∞

[
∂2

∂x22
H

(1)
0 (iλ4r)

f1(y1)

µ
− 2

∂3

∂x1∂x22
H

(1)
0 (iλ4r)f2(y1)

]
dy1,

u
(4)
2 =

i

2λ24

+∞∫
−∞

[
− ∂2

∂x1∂x2
H

(1)
0 (iλ4r)

f1(y1)

µ
+ 2

∂3

∂x2∂x21
H

(1)
0 (iλ4r)f2(y1)

]
dy1,

Appendix 1. A Representation of Regular Solutions
Theorem 2. If U := (u, p1, p2) is a regular solution of the homogeneous system

(1), then u, divu, p1 and p2 satisfy the equations

(∆ + λ21)(∆ + λ22)(∆ + λ23)(∆ + λ24)u = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)divu = 0

(∆ + λ21)(∆ + λ22)(∆ + λ23)pj = 0, j = 1, 2.

(12)

where λ2j , j = 1, 2, 3, are roots of equation (7).
Proof. Let U = (u, p1, p2) be a regular solution of the equations (1). Upon taking

the divergence operation, from (1) we get

(µ0∆+ ρω2)divu− β1∆p1 − β2∆p2 = 0, µ0 = λ+ 2µ,

iωβ1divu+ (k1∆+ a1)p1 + (k12∆+ a12)p2 = 0,

iωβ2divu+ (k21∆+ a21)p1 + (k2∆+ a2)p2 = 0,

Rewrite the latter system as follows

D(∆)Ψ :=

 µ0∆+ ρω2 − β1∆ − β2∆
iωβ1 k1∆+ a1 k12∆+ a12

iωβ2 k21∆+ a21 k2∆+ a2

Ψ = 0, (13)

where Ψ = (divu, p1, p2).
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By the direct calculation, we get

detD = µ0α0(∆ + λ21)(∆ + λ22)(∆ + λ23),

Clearly, from system (13) it follows that

(∆ + λ21)(∆ + λ22)(∆ + λ23)divu = 0,

(∆ + λ21)(∆ + λ22)(∆ + λ23)pj = 0, j = 1, 2.
(14)

Further, applying the operator (∆ + λ21)(∆ + λ22)(∆ + λ23) to equation (1), and using
the last relations we obtain

(∆ + λ21)(∆ + λ22)(∆ + λ23)(∆ + λ24)u = 0 (15)

The last formulas (14),(15) prove the theorem.
Theorem 3. The regular solution U = (u, p1, p2) of system (1) admits in the

domain of regularity a representation

U = (
1
u+

2
u, p1, p2), (16)

where
1
u, and

2
u are the regular vectors, satisfying the conditions

(∆ + λ21)(∆ + λ22)(∆ + λ23)
1
u = 0, rot

1
u = 0,

(∆ + λ24)
2
u = 0, div

2
u = 0.

Proof. Let U = (u, p1, p2) be a regular solution of system (1). Using the identity

∆w = graddivw− rotrotw, (17)

from Eq.(1) we obtain

u = − µ0

ρω2
graddivu+

µ

ρω2
rotrotu+

1

ρω2
grad(β1p1 + β2p2),

Let
1
u := − µ0

ρω2
graddivu+

1

ρω2
grad(β1p1 + β2p2), (18)

2
u :=

µ

ρω2
rotrotu. (19)

Clearly

u =
1
u+

2
u, rot

1
u = 0, div

2
u = 0. (20)

Using the identity ∆
2
u = −rotrot2u, from (19) we obtain

(∆ + λ24)
2
u = 0. (21)
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Taking into account the relations (14),(15),(18) and (19) we can easily prove the
following

Theorem 4. In the domain of regularity the regular solution U = (u, p1, p2) ∈
C2(D) of system (1) is represented as the sum

u(x) = −grad
3∑

m=1

φm(x)

λ2m
+ u(2)(x),

p1(x) =
3∑

m=1

Bmφm(x), p2(x) =
3∑

m=1

Cmφm(x),

(22)

where
(∆ + λ2m)φm(x) = 0, (∆ + λ24)u

(2)(x) = 0, divu(2)(x) = 0,

Bm = − iω

δm

[
β1(a2 − k2λ

2
m)− β2(a12 − k12λ

2
m)
]
,

Cm = − iω

δm

[
β2(a1 − k1λ

2
m)− β1(a21 − k21λ

2
m)
]
,

δm = (k1k2 − k12k21)λ
4
m − k0λ

2
m + a1a2 − a12a21.
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Abstract. In this paper the 2D fully coupled quasi-static theory of poroelasticity for ma-

terials with double porosity is considered. For these equations the fundamental and some

other matrixes of singular solutions are constructed in terms of elementary functions. The

properties of single and double layer potentials are studied.
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Introduction

The theory of consolidation for elastic materials with double porosity was presented
in [1-3]. The theory of Aifantis unifies the models of Barenblatt for porous media
with double porosity [4] and Biot’s model for porous media with single porosity [5].
However, Aifantis’ quasi-static theory ignored the cross-coupling effects between the
volume change of the pores and fissures in the system. This deficiency was eliminated
and cross-coupled terms were included in the equations of conservation of mass for the
pore and fissure fluid and in Darcy’s law for solid with double porosity in [6]. In [6,7]
the cross-coupled terms were included in Darcy’s law for solid with double porosity.

The double porosity concept was extended for multiple porosity media in [8, 9]. The
basic equations of the thermo-hydro-mechanical coupling theory for elastic materials
with double porosity were presented in [10-12]. The theory of multiporous media, as
originally developed for the mechanics of naturally fractured reservoirs, has found ap-
plications in blood perfusion. The double porosity model would consider the bone fluid
pressure in the vascular porosity and the bone fluid pressure in the lacunar-canalicular
porosity. An extensive review of the results in the theory of bone poroelasticity can
be found in the survey papers [13-15]. For a history of developments and a review of
main results in the theory of porous media see [16].

The fundamental solutions have occupied a special place in the theory of PDEs.
They are encountered in many mathematical, mechanical, physical and engineering
applications. Indeed, the application of fundamental solutions to a recently developed
area of boundary element methods has provided a distinct advantage in the fact that
an integral representation of solution of a boundary value problem by fundamental
solution is often more easily solved by numerical methods than a differential equa-
tion with specified boundary and initial conditions. Recent advances in the area of
boundary element methods, where the theory of fundamental solutions plays a pivotal
role, has provided a prominent place in research of problems in the theories of PDEs,
applied mathematics, continuum mechanics and quantum physics. The fundamental
solutions in the linear theories of elasticity and thermoelasticity for materials with
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microstructures are constructed by means of elementary functions by several authors
[17-20].

In this paper the 2D fully coupled quasi-static theory of poroelasticity for materials
with double porosity is considered. For these equations the fundamental and some
other matrixes of singular solutions are constructed in terms of elementary functions.
The properties of single and double layer potentials are studied.

2. Basic equations

Let x = (x1, x2) be a point of the Euclidean 2D space E2. Let D+ be a bounded
2D domain surrounded by the curve S and let D− be the complement of D+ ∪ S.

Dx =

(
∂

∂x1
,
∂

∂x2

)
. Let us assume that the domainD is filled with an isotropic material

with double porosity.

The system of homogeneous equations in the 2D fully coupled quasi-static linear
theory of elasticity for solids with double porosity can be written as follows

µ∆u+ (λ+ µ)graddivu− grad(β1p1 + β2p2) = 0,

iωβ1divu+ (k1∆+ a1)p1 + (k12∆+ a12)p2 = 0,

iωβ2divu+ (k21∆+ a21)p1 + (k2∆+ a2)p2 = 0,
(1)

where u = (u1, u2)
T is the displacement vector in a solid, p1 and p2 are the pore

and fissure fluid pressures respectively. aj = iωαj − γ, aij = iωαij + γ, ω > 0 is the
oscillation frequency, β1 and β2 are the effective stress parameters, γ > 0 is the internal
transport coefficient and corresponds to fluid transfer rate with respect to the intensity
of flow between the pore and fissures, α1 and α2 measure the compressibilities of the
pore and fissure system, respectively; α12 and α21 are the cross-coupling compressibility
for fluid flow at the interface between the two-pore systems at a microscopic level. λ, µ,
are constitutive coefficients, kj =

κj

µ′ , k12 =
κ12

µ′ , k21 =
κ21

µ′ , µ
′ is the fluid viscosity, κ1

and κ2 are the macroscopic intrinsic permeabilities associated with matrix and fissure
porosity, respectively, κ12 and κ21 are the cross-coupling permeabilities for fluid flow
at the interface beetween the matrix and fissure phases, ∆ is the Laplacian. The
superscript “T” denotes transposition.

We assume that the inertial energy density of solid with double porosity is a positive
definite quadratic form. Thus, the constitutive coefficients satisfy the conditions

µ > 0, k1 > 0, a1a2 > a12a21, k1k2 > k12k21, γ > 0.

We introduce the matrix differential operator with constant coefficients:

A(Dx, ω) = (Aij)4×4,
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where

Alj := δljµ∆+ (λ+ µ)
∂2

∂xl∂xj
, l, j = 1, 2,

Aj3 := −β1
∂

∂xj
, Aj4 := −β2

∂

∂xj
j = 1, 2

A3j := iωβ1
∂

∂xj
, A4j := iωβ2

∂

∂xj
j = 1, 2 A33 := k1∆+ a1,

A34 := k12∆+ a12, A43 := k21∆+ a21, A44 := k2∆+ a2,

δlj is the Kronecker delta. Then the system (1) can be rewritten as

A(Dx, ω)U = 0, (2)

where

U := (u, p1, p2).

The conjugate system of the equation (1) is

µ∆u+ (λ+ µ)graddivu− iωgrad(β1p1 + β2p2) = 0,

β1divu+ (k1∆+ a1)p1 + (k21∆+ a21)p2 = 0,

β2divu+ (k12∆+ a12)p1 + (k2∆+ a2)p2 = 0,

(3)

Ã(Dx, ω)U = AT (−Dx, ω)U = 0.

We assume that µµ0(k1k2 − k12k21) ̸= 0, where µ0 := λ + 2µ. Obviously, if
the last condition is satisfied, then A(Dx, ω) is the elliptic differential operator.

3. The basic fundamental matrix

In this section, we will construct the basic fundamental matrix of system (2). We
introduce the matrix differential operator B(∂x) consisting of cofactors of elements of
the matrix AT divided on µµ0(k1k2 − k12k21):

B(Dx) = (Bij)4×4,

where

Blj =
δlj
µ
∆(∆ + λ21)(∆ + λ22)− ξlξj

iω

α0

(α12 + α11∆)

−ξlξj
λ+ µ

α0

[(k1k2 − k12k21)∆∆ + k0∆+ a1a2 − a12a21],
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B3j = −iωµ
α0

ξj∆[(β1k2 − β2k12)∆ + β1a2 − β2a12],

B4j = −iωµ
α0

ξj∆[(β1k21 − β2k1)∆ + β1a21 − β2a1],

Bj4 = − µ

α0

ξj∆[(β1k12 − β2k1)∆ + β1a12 − β2a1],

Bj3 =
µ

α0

ξj∆[(β1k2 − β2k21)∆ + β1a2 − β2a21], ξj =
∂

∂xj
, l, j = 1, 2,

B33 =
µ

α0

∆∆[µ0k2∆+ µ0a2 + iωβ2
2 ], B44 =

µ

α0

∆∆[µ0k1∆+ µ0a1 + iωβ2
1 ],

B43 = − µ

α0

∆∆[µ0k21∆+ µ0a21 + iωβ1β2], B34 = − µ

α0

∆∆[µ0k12∆+ µ0a12 + iωβ1β2],

k0 = a1k2 + a1k1 − k12a21 − k21a12, µ0 = λ+ 2µ, α0 = µµ0(k1k2 − k12k21),

δlj is the Kronecker delta.
Substituting the vector U(x) = B(∂x)Ψ into (1), where Ψ is a four-component

vector function, we get
∆∆(∆ + λ21)(∆ + λ22)Ψ = 0,

λ2j are roots of equation

µ0(k1k2 − k12k21)ξ
2 − (µ0k0 + iωα11)ξ + µ0(a1a2 − a12a21) + iωα12 = 0, (4)

α11 = k2β
2
1 + k1β

2
2 − β1β2(k12 + k21),

α12 = a2β
2
1 + a1β

2
2 − β1β2(a12 + a21).

Whence, after some calculations, the function Ψ can be represented as

Ψ =
r2(ln r − 1)

4λ21λ
2
2

− 1

λ21 − λ22

[
φ1 − ln r

λ41
− φ2 − ln r

λ42

]
(5)

where
φm =

π

2i
H

(1)
0 (λmr),

H
(1)
0 (λmr) is Hankel’s function of the first kind with the index 0

H
(1)
0 (λmr) =

2i

π
J0(λmr) ln r +

2i

π

(
ln
λm
2

+ C − iπ

2

)
J0(λmr)

−2i

π

∞∑
k=1

(−1)k

(k!)2

(
λmr

2

)2k (
1

k
+

1

k − 1
+ ...+ 1

)
J0(λmr) =

∞∑
k=0

(−1)k

(k!)2

(
λmr

2

)2k

, r2 = (x1 − y1)
2 + (x2 − y2)

2, m = 1, 2.

Substituting (5) into U = BΨ, we obtain the matrix of fundamental solutions for the
equation (1) which we denote by Γ(x-y)

Γ(x-y) =∥ Γkj(x-y) ∥4×4
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where

Γkj(x-y) =
ln r

µ
δkj −

∂2Ψ11

∂xk∂xj
, Γj3(x-y) =

∂Ψ13

∂xj
, k, j = 1, 2,

Γj4(x-y) = −∂Ψ14,

∂xj
Γ3j(x-y) = −∂Ψ31

∂xj
Γ4j(x-y) =

∂Ψ41

∂xj
,

Γ33(x-y) =
µ

α0(λ21 − λ22)
[m12φ2 −m11φ1] , m1j = −µ0k2λ

2
j + µ0a2 + iωβ2

2

Γ44(x-y) =
µ

α0(λ21 − λ22)
[m22φ2 −m21φ1] , m2j = −µ0k1λ

2
j + µ0a1 + iωβ2

1

Γ34(x-y) =
−µ

α0(λ21 − λ22)
[n12φ2 − n11φ1] , n1j = −µ0k12λ

2
j + µ0a12 + iωβ1β2

Γ43(x-y) =
−µ

α0(λ21 − λ22)
[n22φ2 − n21φ1] , n2j = −µ0k21λ

2
j + µ0a21 + iωβ1β2,

j = 1, 2, Ψ11 = [(λ+ µ)(a1a2 − a12a21) + iωα12]
r2(ln r − 1)

4α0λ21λ
2
2

+
iωµ

µ0α0(λ21 − λ22)

2∑
1

(−1)j
(
α11 −

α12

λ2j

)
φj − ln r

λ2j
,

Ψ13 =
µ

α0(λ21 − λ22)

2∑
1

(−1)jmj3(φj − ln r),

mj3 = β1k2 − β2k21 −
β1a2 − β2a21

λ2j
, j = 1, 2,

Ψ31 =
iωµ

α0(λ21 − λ22)

2∑
1

(−1)jm3j(φj − ln r),

m3j = β1k2 − β2k12 −
β1a2 − β2a12

λ2j
, j = 1, 2,

Ψ14 =
µ

α0(λ21 − λ22)

2∑
1

(−1)jmj4(φj − ln r),

mj4 = β1k12 − β2k1 −
β1a12 − β2a1

λ2j
, j = 1, 2

Ψ41 =
iωµ

α0(λ21 − λ22)

2∑
1

(−1)jm4j(φj − ln r)

m4j = β1k21 − β2k1 −
β1a21 − β2a1

λ2j
, j = 1, 2

Clearly

π

2i
H

(1)
0 (λr) = ln |x− y| − λ2

4
|x− y|2 ln |x− y|+ const+O(|x− y|2).

It is evident that all elements of Γ(x-y) are single-valued functions on the whole plane
and they have a logarithmic singularity at most. It can be shown that columns of the
matrix Γ(x-y) are solutions to the system (3) with respect to x for any x ̸= y. By
applying the methods, as in the classical theory of elasticity, we can directly prove the
following;
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Theorem 3. The elements of the matrix Γ(x-y) have a logarithmic singularity as
x → y and each column of the matrix Γ(x-y),considered as a vector, is a solution of
the system (4) at every point x if x ̸= y.

Let us consider the matrix Γ̃(x) := ΓT (−x). The following basic properties of Γ̃(x)
may be easily verified:

Theorem 4. Each column of the matrix Γ̃(x-y), considered as a vector, satisfies

the associated system Ã(∂x)Γ̃(x-y) = 0, at every point x if x ̸= y and the elements of

the matrix Γ̃(x-y) have a logarithmic singularity as x → y.

4. Singular matrix of solutions

Using the basic fundamental matrix, we will construct the so-called singular matrix
of solutions and study their properties.

Write now the expressions for the components of the stress vector, which acts on
an elements of the arc with the normal n = (n1, n2). Denoting the stress vector by
P (∂x,n)u, we have

P (∂x,n)u = T (∂x,n)u− n(β1p1 + β2p2), (6)

where

T (∂x,n)u =

 µ
∂

∂n
+ (λ+ µ)n1

∂

∂x1
(λ+ µ)n1

∂

∂x2
+ µ

∂

∂s

(λ+ µ)n2
∂

∂x1
− µ

∂

∂s
µ
∂

∂n
+ (λ+ µ)n2

∂

∂x2

u,

∂

∂s
= n2

∂

∂x1
− n1

∂

∂x2
.

We introduce the following notation R(∂x,n), R̃(∂x,n)

R(∂x,n) =



T11(∂x, n) T12(∂x, n) − β1n1 − β2n1

T21(∂x, n) T22(∂x, n) − β1n2 − β2n2

0 0 k1
∂

∂n
k12

∂

∂n

0 0 k21
∂

∂n
k2

∂

∂n


,

R̃(∂x,n) =



T11(∂x, n) T12(∂x, n) − iωn1β1 − iωn1β2

T21(∂x, n) T22(∂x, n) − iωn2β1 − iωn2β2

0 0 k1
∂

∂n
k21

∂

∂n

0 0 k12
∂

∂n
k2

∂

∂n


,
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By Applying the operator R(∂x,n) to the matrix Γ(x-y and the operator R̃(∂x,n)

to the matrix Γ̃(x-y), we shall construct the so-called singular matrix of solutions
respectively

R(∂x,n)Γ(x− y) = ∥Rpq∥4×4, R̃(∂x, n)Γ̃(y − x) = ∥R̃pq∥4×4,

The elements Rpq are following:

Rpp =
∂ ln r

∂n
+ (−1)p 2µ

∂2

∂x1∂x2

∂Ψ11

∂s
, p = 1, 2

R12 =
∂ ln r

∂s
− 2µ

∂2

∂x22

∂Ψ11

∂s
, R21 = −∂ ln r

∂s
+ 2µ

∂2

∂x21

∂Ψ11

∂s
,

R13 = 2µ
∂

∂x2

∂Ψ13

∂s
, R23 = −2µ

∂

∂x1

∂Ψ13

∂s
, R14 = −2µ

∂

∂x2

∂Ψ14

∂s
,

R24 = 2µ
∂

∂x1

∂Ψ14

∂s
, R3j =

∂

∂xj

∂

∂n
(k12Ψ41 − k1Ψ31),

R4j =
∂

∂xj

∂

∂n
(k2Ψ41 − k21Ψ31). j = 1, 2

R33 =
µ

α0(λ21 − λ22)

∂

∂n
{(k1m12 − k12n22)φ2 − (k1m11 − k12n11)φ1} ,

R44 =
µ

α0(λ21 − λ22)

∂

∂n
{(k2m22 − k21n12)φ2 − (k2m21 − k21n11)φ1} ,

R34 =
µ

α0(λ21 − λ22)
(m22k12 − k1n12)

∂(φ2 − φ1)

∂n
,

R43 =
µ

α0(λ21 − λ22)
(m12k21 − k2n22)

∂(φ2 − φ1)

∂n
,

Similarly we obtain the matrix

R̃(∂x, n)Γ̃(y − x) = ∥R̃pq∥4×4,

where

R̃pq = Rpq, p, q = 1, 2, R̃13 = 2µ
∂

∂x2

∂ψ31

∂s
R̃14 = −2µ

∂

∂x2

∂ψ41

∂s
,

R̃23 = −2µ
∂

∂x1

∂ψ31

∂s
, R̃24 = 2µ

∂

∂x1

∂ψ41

∂s
, R̃3j =

∂

∂n

∂(k21ψ14 − k1ψ13)

∂xj
,

R̃4j =
∂

∂n

∂(−k12ψ13 + k2ψ14)

∂xj
, j = 1, 2,

R̃34 =
µ

α0(λ21 − λ22)
(k21m22 − k1n22)

∂

∂n
(φ2 − φ1),

R̃43 =
µ

α0(λ21 − λ22)
(k12m12 − k2n12)

∂

∂n
(φ2 − φ1),

R̃33 =
µ

α0(λ21 − λ22)

∂

∂n
{(k1m12 − k21n12)φ2 − (k1m11 − k21n11)φ1} ,

R̃44 =
µ

α0(λ21 − λ22)

∂

∂n
{(k2m22 − k21n22)φ2 − (k2m21 − k21n21)φ1} ,
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Let us consider the matrix [R(∂y,n)Γ(y−x)]∗, which is obtained fromR(∂x,n)Γ(x−
y) = (Rpq)4×4 by transposition of the columns and rows and the variables x and y

(analogously
[
R̃(∂y,n)Γ̃(y-x)

]T
.) We can state the following:.

Theorem 5. Every column of the matrix [R(∂y,n)Γ(y-x)]T , considered as a vec-

tor, is a solution of the system Ã(∂x) = 0 at any point x if x ̸= y and the elements of
the matrix[R(∂y,n)Γ(y-x)]T contain a singular part, which is integrable in the sense
of the Cauchy principal value.

Theorem 6. Every column of the matrix
[
R̃(∂y,n)Γ̃(y-x)

]T
, considered as a

vector, is a solution of the system A(∂x)U = 0 at any point x if x ̸= y and the

elements of the matrix
[
R̃(∂y,n)Γ̃(y-x)

]T
, contain a singular part, which is integrable

in the sense of the Cauchy principal value.

Let us introduce the following single and double layer potentials : The vector-
functions defined by the equalities

V(x;g) =
1

π

∫
S

Γ(x− y)g(y)dyS

Ṽ (x;g) =
1

π

∫
S

ΓT (y− x)g(y)dyS

will be called single layer potentials, while the vector-functions defined by the equalities

W(x;h) =
1

π

∫
S

[P (∂y,n)Γ(y− x)]T h(y)dyS

W̃ (x;h) =
1

π

∫
S

[
P̃ (∂z,n)Γ

T (x− y)
]T

h(y)dyS

will be called double layer potentials. Here g and h are the continuous (or Hölder
continuous) vectors and S is a closed Lyapunov curve.

We can state the following:

Theorem 7. The vector W(x;h) is a solution of the system Ã(∂x)U = 0 at any
point x and x ̸= y. The elements of the matrix [P (∂y,n)Γ(y− x)]T contain a singular
part, which is integrable in the sense of the Cauchy principal value.

Theorem 8. The vector W̃ (x;h) is a solution of the system A(∂x)U = 0 at

any point x and x ̸= y. The elements of the matrix
[
P̃ (∂y,n)Γ

T (x− y)
]T

contain a

singular part, which is integrable in the sense of the Cauchy principal value.

Theorem 9. If S ∈ C1,η(S), g,h ∈ C0,δ(S), 0 < δ < η ≤ 1, then the vectors

W(x,h), V(x,g), W̃ (x,h) and Ṽ (x,g) are the regular vector-functions in D+(D−),
and when the point x tends to any point z of the boundary S from inside or from
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outside we have the following formulas:

[W(z,h)]± = ∓h(z) +
1

π

∫
S

[P (∂y,n)Γ(y− z)]T h(y)dyS,

[W̃ (z,h)]± = ∓h(z) +
1

π

∫
S

[
P̃ (∂y,n)Γ

T (z− y)
]T

h(y)dyS

[P (∂z,n)V(z,g)]± = ±g(z) +
1

π

∫
S

P (∂z,n)Γ(z− y)g(y)dyS

[P̃ (∂z,n)Ṽ (z,g)]± = ±g(z) +
1

π

∫
S

P̃ (∂z,n)Γ
T (y− z)g(y)dyS

Here the integrals are singular and understood as the principal value.
Theorem 10. The potentials V(x,g) and W̃ (x,h) are solutions of the system

A(∂x)U = 0 and the potentials Ṽ (x,g) and W(x,h) are solutions of the system

Ã(∂x)U = 0 in both domains D+ and D−.
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ON HIGHER ORDER “ALMOST LINEAR” FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH PROPERTY A AND B

Koplatadze R.

Abstract. An operator differential equation is considered. A particular case of this equations
is the ordinary differential equation

u(n)(t) + p(t)
∣∣u(t)∣∣µ(t) signu(t) = 0,

where p ∈ Lloc(R+;R), µ ∈ C(R+; (0,+∞). This equation is “almost linear” if the condition

lim inf
t→+∞

µ(t) = 1 holds, while if lim inf
t→+∞

µ(t) ̸= 1 or lim sup
t→+∞

µ(t) ̸= 1, then the equation is an es-

sentially nonlinear differential equation. “Almost linear” differential equations are considered

and sufficient condition are established for oscillation of solutions.

Keywords and phrases: Property A, property B, oscillation.

AMS subject classification (2010): 34K11.

Introduction

This work deals with study of oscillatory properties of solutions of a functional-
differential equation

u(n)(t) + F (u)(t) = 0, (1.1)

where F : C(R+;R) → Lloc(R+;R) is a continuous mapping. Let τ ∈ C(R+;R+),
lim

t→+∞
τ(t) = +∞. Denote by V (τ) the set of continuous mappings F satisfying the

condition: F (x)(t) = F (y)(t) holds for any t ∈ R+ and x, y ∈ C(R+;R) provided
that x(s) = y(s) for s ≥ τ(t). For any t0 ∈ R+, we denote by Ht0,τ the set of all
functions u ∈ C(R+;R) satisfying u(t) ̸= 0 for t ≥ t∗, where t∗ = min{t0, τ∗(t0)},
τ∗(t) = inf{τ(s) : s ≥ t}. Throughout the work whenever the notation V (τ) and Ht0,τ

occurs, it will be understood, unless specified otherwise that the function τ satisfies
the conditions stated above.

It will always be assumed that either the condition

F (u)(t)u(t) ≥ 0 for t ≥ t0, u ∈ Ht0,τ , (1.2)

or the condition
F (u)(t)u(t) ≤ 0 for t ≥ t0, u ∈ Ht0,τ (1.3)

is fulfilled.
A function u : [t0,+∞) → R is said to be a proper solution of equation (1.1), if it is

locally absolutely continuous along with its derivatives up to the order n− 1 inclusive,
sup{|u(s)| : s ≥ t} > 0 for t ≥ t0 and there exists a function u ∈ C(R+;R) such that
u(t) ≡ u(t) on [t0,+∞) and the equality

u (n)(t) + F (u)(t) = 0
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holds for t ∈ [t0,+∞). A proper solution u : [t0,+∞) → R of equation (1.1) is said to
be oscillatory if it has a sequence of zeros tending to +∞. Otherwise the solution u is
said to be nonoscillatory.

Definition 1.1 We say that equation (1.1) has Property A if any of its proper
solutions is oscillatory when n is even either is oscillatory or satisfies∣∣u(i)(t)∣∣ ↓ 0 for t ↑ +∞ (i = 0, . . . , n− 1) (1.4)

when n is odd.
Definition 1.2 We say that equation (1.1) has Property B if any of its proper

solutions either is oscillatory or satisfies either (1.4) or∣∣u(i)(t)∣∣ ↑ +∞, for t ↑ +∞ (i = 0, . . . , n− 1) (1.5)

when n is even and either is oscillatory or satisfies (1.5) when n is odd.
The ordinary differential equation with deviating argument

u(n)(t) + p(t)
∣∣u(σ(t))∣∣µ(t) signu(σ(t)) = 0 (1.6)

is a particular case of equation (1.1), where p ∈ Lloc(R+;R),
µ ∈ C(R+; (0,+∞)). In the case lim

t→+∞
µ(t) = 1, we call differential equation (1.6)

“almost linear”, while if lim inf
t→+∞

µ(t) ̸= 1 or lim sup
t→+∞

µ(t) ̸= 1, then we call equation (1.6)

essentially nonlinear generalized Emden-Fowler type differential equation.
Everywhere below we assume that the inequality∣∣F (u)(t)∣∣ ≥ m∑

i=1

∫ σi(t)

τi(t)

∣∣u(s)∣∣µ(s)ds ri(s, t) for t ≥ t0, u ∈ Ht0,τ , (1.7)

holds, where

µ ∈ C(R+; (0,+∞)), τi, σi ∈ C(R+;R+), τi(t) ≤ σi(t)

for t ∈ R+, lim
t→+∞

τi(t) = +∞ (i = 1, . . . ,m), (1.8)

ri : R+ × R+ → R+ are nondecreasing in the first argument and Lebesgue integrable
in the second argument on any finite subsegment of [0,+∞).

Study of oscillatory properties of differential equation of type (1.1) begin in 1990.
Namely, in [1,2] for the first time a new approach was used for establishing oscillatory
properties. Investigation of “almost linear” (essentially nonlinear) differential equa-
tions, in our opinion for the first time, was carried out [3,4] ([5–7]).

In the present paper the both cases of Properties A and B will be studied for
“almost linear” differential equations.

2. Necessary conditions of the existence of monotone solutions

Let t0 ∈ R+, ℓ ∈ {1, . . . , n − 1}. By Uℓ,t0 we denote the set of proper solutions of
equation (1.1) satisfying the conditions

u(i)(t) > 0 for t ≥ t0 (i = 0, . . . , ℓ− 1),

(−1)i+ℓu(i)(t) ≥ 0 for t ≥ t0 (i = ℓ, . . . , n− 1).
(2.1ℓ)
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Theorem 2.1 Let F ∈ V (τ), conditions (1.2) ((1.3)), (1.6), (1.7) be fulfilled, ℓ ∈
{1, . . . , n− 1}, ℓ+ n be odd (ℓ+ n be even),∫ +∞

0

tn−ℓ

m∑
i=1

∫ σi(t)

τi(t)

s(ℓ−1)µ(s)dsri(s, t) = +∞, (2.2ℓ)∫ +∞

0

tn−ℓ−1

m∑
i=1

∫ σi(t)

τi(t)

sℓµ(s)dsri(s, t) = +∞, (2.3ℓ)

and
lim inf
t→+∞

µ(t) > 0. (2.4)

Moreover, let Uℓ,t0 ̸= ∅ for some t0 ∈ R+. Then there exist λ ∈ [ℓ− 1, ℓ] such that

lim sup
ε→0+

(
lim inf
t→+∞

gℓ(t, λ, ε)
)
≤ (ℓ− 1)! (n− ℓ− 1)!,

where

gℓ(t, λ, ε) = tℓ−λ+h2ε(λ)

∫ +∞

t

s−n(s− t)n−ℓ−1
(
σ(s)

)−hε(λ)

×
∫ s

t0

(s− ξ)ℓ−1ξn−ℓ

m∑
i=1

∫ σi(ξ)

τi(ξ)

ξ
λ+h1ε(λ)
1 dξ1ri(ξ1, ξ)dξ ds, (2.4)

σ(t)=max
{
max(s, σ1(s), . . . , σm(s)) : 0 ≤ s ≤ t

}
,

h1ε(λ) =

{
0 for λ = ℓ,

ε for λ ∈ [ℓ−1, ℓ),

h2ε(λ)=

{
0 for λ = ℓ− 1,

ε for λ ∈ (ℓ−1, ℓ],
hε(λ) = h1ε(λ) + h2ε(λ). (2.5)

Theorem 2.2 Let the conditions of Theorem 2.1 be fulfilled and

lim inf
t→+∞

t

σi(t)
> 0 (i = 1, . . . ,m). (2.7)

Then there exist λ ∈ [ℓ− 1, ℓ] such that

lim sup
ε→0+

(
lim inf
t→+∞

gℓ,1(t, λ, ε)
)
≤ (ℓ− 1)! (n− ℓ− 1)!,

where

gℓ,1(t, λ, ε) = tℓ−λ+h2ε(λ)

∫ +∞

t

s−n−hε(λ)(s− t)n−ℓ−1

∫ s

t0

(s− ξ)ℓ−1ξn−ℓ

×
m∑
i=1

∫ σi(ξ)

τi(ξ)

ξ
(λ+h1ε(λ))µ(ξ1)
1 dξ1ri(ξ1, ξ)dξ ds, (2.8)
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h1ε, h2ε and hε are given by (2.6).

3. Sufficient conditions of nonexistence of monotone solutions

Theorem 3.1 Let F ∈ V (τ), conditions (1.2) ((1.3)), (1.6), (1.7), (2.2ℓ)–(2.4) be
fulfilled, ℓ ∈ {1, . . . , n− 1}, with ℓ+ n odd (ℓ+ n even), and for any λ ∈ [ℓ− 1, ℓ]

lim sup
ε→0+

(
lim inf
t→+∞

gℓ(t, λ, ε)
)
> (ℓ− 1)! (n− ℓ− 1)!. (3.1ℓ)

Then for any t0 ∈ R+, Uℓ,t0 = ∅, where gℓ, h1ε, h2ε and hε are defined by (2.5) and
(2.6).

Theorem 3.2 Let F ∈ V (τ), conditions (1.2) ((1.3)), (1.6), (1.7), (2.2ℓ)–(2.4) and
(2.7) be fulfilled, ℓ ∈ {1, . . . , n−1}, with ℓ+n odd (ℓ+n even) and for any λ ∈ [ℓ−1, ℓ]

lim sup
ε→0+

(
lim inf
t→+∞

gℓ1(t, λ, ε)
)
> (ℓ− 1)! (n− ℓ− 1)!. (3.2ℓ)

Then for any t0 ∈ R+, Uℓ,t0 = ∅, where gℓ1, h1ε, h2ε and hε are defined by (2.6) and
(2.8).

4. Functional differential equation with property A

Relying on the results obtained in Section 3, in Sections 4 and 5 we establish
sufficient conditions for equation (1.1) to have Properties A and B.

Theorem 4.1 Let F ∈ V (τ), conditions (1.2), (1.6), (1.7) and (2.4) be fulfilled and
for any ℓ ∈ {1, . . . , n− 1} with ℓ+n odd and λ ∈ [ℓ− 1, ℓ] conditions (2.2ℓ), (2.3ℓ) and
(3.1ℓ) hold. If moreover, (2.30) holds when n is odd, then equation (1.1) has Property
A.

Theorem 4.2 Let F ∈ V (τ), conditions (1.2), (1.6), (1.7), (2.4), (2.7) be fulfilled
and for any ℓ ∈ {1, . . . , n − 1} with ℓ + n odd and λ ∈ [ℓ − 1, ℓ] conditions (2.2ℓ),
(2.3ℓ) and (3.2ℓ) hold. If moreover, (2.30) holds when n is odd, then equation (1.1) has
Property A.

Theorem 4.3 Suppose F ∈ V (τ), condition (1.2) be fulfilled and for large t0 ∈ R+∣∣F (u)(t)∣∣ ≥ m∑
i=1

pi(t)

∫ βit

αit

|u(s)|1−
d

ln sds for t ≥ t0, u ∈ Ht0,τ (4.1)

and

lim inf
t→+∞

1

t

∫ t

0

sn+1
( m∏

i=1

pi(s)
) 1

m
ds >

1

m
max

( m∏
i=1

(
β1+λ
i − α1+λ

i

)− 1
m×

×eλd(1 + λ)λ(λ− 1) · · · (λ− n+ 1) : λ ∈ [0, n− 1]

)
.

Then equation (1.1) has Property A, where

pi ∈ Lloc(R+;R+), 0<αi<βi<+∞ (i = 1, . . . ,m), d ∈ [0,+∞). (4.2)
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Theorem 4.4 Suppose F ∈ V (τ), condition (1.2) be fulfilled and for large t0 ∈ R+∣∣F (u)(t)∣∣ ≥ m∑
i=1

pi(t)
∣∣u(αit)

∣∣1− d
ln t for t ≥ t0, u ∈ Ht0,τ (4.3)

and

lim inf
t→+∞

1

t

∫ t

0

sn
( m∏

i=1

pi(s)
) 1

m
ds >

>
1

m
max

(( m∏
i=1

α
− λ

m
i

)
eλdλ(λ− 1) · · · (λ− n+ 1) : λ ∈ [0, n− 1]

)
.

Then equation (1.1) has Property A, where

pi ∈ Lloc(R+;R+), αi ∈ (0,+∞) (i = 1, . . . ,m), d ∈ [0,+∞). (4.4)

5. Functional differential equation with property B

Theorem 5.1 Let F ∈ V (τ), conditions (1.3), (1.6), (1.7), (2.4) be fulfilled and for
any ℓ ∈ {1, . . . , n − 1} with ℓ + n even and λ ∈ [ℓ − 1, ℓ] conditions (2.2ℓ), (2.3ℓ) and
(3.1ℓ) hold. If moreover, (2.30) when n is even, and (2.2n) hold then equation (1.1) has
Property B.

Theorem 5.2 Let F ∈ V (τ), conditions (1.3), (1.6), (1.7), (2.4), (2.7) be fulfilled
and for any ℓ ∈ {1, . . . , n−1} with ℓ+n even and λ ∈ [ℓ−1, ℓ] conditions (2.2ℓ), (2.3ℓ)
and (3.2ℓ) hold. If moreover, (2.30) when n is even, and (2.2n) hold then equation (1.1)
has Property B.

Theorem 5.3 Suppose F ∈ V (τ), conditions (1.3), (4.1), (4.2) be fulfilled and

lim inf
t→+∞

1

t

∫ t

0

sn+1
( m∏

i=1

pi(s)
) 1

m
ds >

1

m
max

(
−

m∏
i=1

(
β1+λ
i − α1+λ

i

)− 1
m×

×eλd(1 + λ)λ(λ− 1) · · · (λ− n+ 1) : λ ∈ [0, n− 1]
)
.

Then equation (1.1) has Property B.
Theorem 5.4 Suppose F ∈ V (τ), conditions (1.3), (4.3), (4.4) be fulfilled and

lim inf
t→+∞

1

t

∫ t

0

sn
( m∏

i=1

pi(s)
) 1

m
ds >

>
1

m
max

(
−

m∏
i=1

α
− λ

m
i · eλd · λ(λ− 1) · · · (λ− n+ 1) : λ ∈ [0, n− 1]

)
.

Then equation (1.1) has Property B.
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AND BASEMENTS OF THE PROJECT “ONE MORE STEP TOWARDS
GEORGIAN TALKING SELF-DEVELOPING INTELLECTUAL CORPUS”
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Abstract. The paper shortly overviews the aims and fundamentals of the two years project

“A One More Step Towards Georgian Talking Self-Developing Intellectual Corpus” and the

paper “Strategic Research Agenda for Multilingual Europe 2020” by the META-NET techno-

logical board. Also, taking into account the national aim of defending the Georgian language

from the danger of digital extinction, as well as, the national aim of joining with the Georgian

language the European Union, which according to the strategic research agenda of the Meta-

Net is planned to become completely free from language barriers, the current paper underlines

that the prioritization of the task of the complete technological foundation of the Georgian

language, i.e. the task of creation of the Georgian thinking, speaking and translating system

is the question of vital necessity for the Georgian society.

Keywords and phrases: Georgian self-developing intellectual corpus, technological alpha-

bet of the Georgian language, logical grammar of the Georgian language
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Introduction

In 2010-2012 with the financial support of the European commission, there was
carried out a research “Europe’s Languages in the Digital Age” [1]. As a result, in
2012, Meta-Net published a press-release “At Least 21 European Languages in Danger
of Digital Extinction - Good News and Bad News on the European Day of Languages”
[2], and also Strategic Research Agenda for Multilingual Europe 2020” [3]. These
publications, which are very important for us, are overviewed in the paper “Open Let-
ter To The Georgian National Academy Of Sciences Id Est The Fact That European
Languages Are At The Danger, Makes It Clear That The Georgian Language Is At
Especially High Quality Danger! Id Est, Once Again For Defending The Rights Of
The Georgian Language!! Id Est, It’s Time To Take Care Of The Georgian Language!!!
Short Version” [4]. - Here the main thing is that for today, in the European Union,
processes are going on in concordance with the Strategic Research Agenda for Multi-
lingual Europe 2020 with the aims of building such new Europe whose every citizen
will be able to have access to any kind of service, knowledge, media, and technologies
with their own mother language and, according to this agenda, in this new Europe,
there will be no language barriers in communication, and there will be freely accessible
high quality translations of domain independent as well as domain specific contents.

The coordinator of Meta-Net, Prof. Hans Uszkoreit, scientific director at German
Research Center for Artificial Intelligence (DFKI) says the following: “The results
of our study are most alarming. The majority of European languages are severely
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under-resourced and some are almost completely neglected. In this sense, many of our
languages are not yet future-proof.” [2]

This all in sum once again make clear the urgent necessity of declaring as one of
the main state priorities of Georgia the researches aimed at defending the Georgian
language from the danger of digital extinction. There is also a clear necessity of forma-
tion a united Georgian group of researchers, which via collaboration with Meta-Net,
will work on the tasks of complete mathematical and technological foundation of the
Georgian language, in other words, on the task of creation of the high quality Georgian
thinker, talker and translator system. - Without this type of system it will be impos-
sible to join the European Union with the Georgian language, as well as, to defend the
Georgian language from the danger of the digital extinction. For us it is clear that if we
do not act in this way, and if we again do not manage properly the local processes with
the aim of creation Georgian thinker, talker and translator system, i.e. if we continue
chaotic, uncoordinated activities, like it is the case today, then the Georgian language
will have the future about which Dr. Georg Rehm said in [2]: “There are dramatic dif-
ferences in language technology support between the various European languages and
technology areas. The gap between ‘big’ and ’small’ languages still keeps widening.
We have to make sure that we equip all smaller and under-resourced languages with
the needed base technologies, otherwise these languages are doomed to digital extinc-
tion.” - We say the same: We should be certain that we will be capable to defend the
Georgian language from the very high danger of digital extinction in the digital age
[5-8], and therefore, we should not act chaotically, but in an ordered manner, so that
we could minimize today the existing gap instead of making it even bigger.

The aims and basement of the two year project “A one more step towards
Georgian talking self-developing intellectual corpus”. In 2012, in the Center
for Georgian Language Technology at the Georgian Technical University, there was
started a long-term project “The Technological Alphabet of the Georgian Language”
[9 - 11] with K.Pkhakadze’s leadership;1 in the confines of this project, now center
works on the N ◦31/70 project “Foundation of the logical grammar of the Georgian
language and its applications in the information technologies” financed by Shota Rus-
taveli National Science foundation. In addition to it, within this long-term project, the
center in March 2014 accomplished a project N ◦048 “Internet Versions of a Number of
Developable (Learnable) Systems Necessary for Creating The Technological Alphabet
of the Georgian Language ”2 financed by Georgian Technical University. Also, in 2012,
there were started the two doctoral theses in the doctoral program “Informatics” at
the Georgian Technical University, namely: Giorgi Chichua’s doctoral thesis - “Geor-
gian Speech Synthesis and Recognition”, and Merab Chikvinidze’s doctoral thesis -

1This long-term project was elaborated via the further development and completion of a state
priority program of the Iv. Javakhishvili Tbilisi State University “Free and Complete Programming
Inclusion of a Computer in the Georgian Natural Language System” [12 - 13], which was going on in
previous years with K.Pkhakadze’s leadership.

2The results of this project were successfully presented on the seminar “The Technological Alphabet
Of The Georgian Language - One Of The Main Georgian Challenges Of The 21st Century” held on
14 April 2014 that was dedicated to the day of the Georgian language.
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“Georgian grammar checker (analyzer)” [14].

In 2014, on the basis of the results achieved within these above mentioned projects
and doctoral theses, the center worked out a two year project “One More Step Towards
Georgian Talking Self-Developing Intellectual Corpus”, which is one more subproject
of the long-term project “The Technological Alphabet of the Georgian Language” of
the Center for Georgian Language Technology. This project, with which the Center
applied for financing to Shota Rustaveli National Science Foundation, aims at building
up a complete version of the Georgian self-developing intellectual corpus via further
developing the trial version of the Georgian self-developing intellectual corpus, which
is already created by us [15-23]. Thus, to build up the Georgian talking self-developing
intellectual corpus means to create an automatically developing complete Georgian
web-corpus which will be equipped with: the logic of the Georgian natural language
systems; with the intellectual procedures constructed on the basis of this logic; and,
also, with the Georgian technological alphabet, which is constructed on the basis of
this logic and these intellectual procedures, in other words, with the Georgian talking
Intellectual System, i.e., with the Georgian written and spoken texts analyzer and
generator systems, which are necessary to realize full scale human computer intellectual
interaction by means of the Georgian language. Besides it, to build up the Georgian
talking self-developing intellectual corpus means to equip it with the two-way translator
systems from Georgian to foreign languages, which, in turn, will be constructed on the
basis of the above-mentioned Georgian talking intellectual system.

Obviously, it is impossible to build the above-described Georgian Talking Self-
Developing Intellectual Corpus in the confines of one two-year project. Therefore,
this two year project aims at building above-described Georgian corpus as complete
as it is possible, and, also, the project aims to provide the Georgian language with
all the necessary resources that are needed in order to be able to participate in those
processes that are already going on in concordance with the strategic research agenda
for multilingual Europe 2020. - In our opinion, this is the only way to defend the
Georgian language from digital extinction in the digital age.

Below, we will very briefly present those results on which the project is based on;
they are as follows:

1. A trial version of the Georgian self-developing multilingual and mul-
timodal intellectual web-corpus [15], which despite that it is still only trial one
contains already over 144 126 000 words, among which 2 267 700 words are mutually
different, and it is already equipped with trial versions of the Georgian intellectual
procedures and technological systems, which are listed below and some of which even
are unique (see: http://geoanbani.com/Corpus/):
–Taggers, descriptors and generators of the words of the types of V, N and A [16];
–Self-developing syntactic/orthographic spellcheckers and Georgian orthographic cor-
rector [17];
–Georgian-Mathematical/Georgian-English-German translators [18];
–Speech recognizers based on teaching and studying principles [19, 20];
–Georgian e-text and web-page reader [21];
–Georgian multilingual speech assistant and Georgian Spoken Support for Persons with
Speech Disorder [22];
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–Georgian Multi-lingual Spoken Lexicon and Georgian Extension of Google Translator
[23].

2. The foundations of the logical grammar of the Georgian language
[24-28], which is elaborated within the project N ◦31/70 “Foundations of the Logical
Grammar of Georgian Language and its Applications in the Information Technolo-
gies”, and which, on the one hand, is the first logical grammar of the natural Georgian
language system. On the other hand, the above-listed intellectual procedures and
technological systems are created on the basis of this logical grammar of the Georgian
language.

The importance and benefits of the two year project “A one more step
towards Georgian talking self-developing intellectual corpus”.

For today, the Georgian language in the sense of language resources (resources, data
and knowledge basis) and technologies (tools, technologies, applications) is very poorly
supported. Even more, the Georgian language is alarmingly lagging compared to al-
most any of those 21 European languages, which according to the research “Europe’s
Languages in the Digital Age” [1- 3] done by META-NET, are under the danger of digi-
tal extinction in the digital age. All these together clearly indicate the urgent necessity
of reducing this lagging as much as it is possible and as soon as it is possible. The
aim of two year project “One More Step Towards Georgian Self-Developing Intellectual
Corpus” is to reduce this lagging in the shortest possible period, and consequently, to
radically change the current state of affairs.

Indeed, in the case of successful completion of the project, which is truly realistic
taking into account our existing results that serve as the foundation for the project, in
the summer 2017, there will be already built the Georgian self-developing intellectual
corpus, i.e. the Self-developing Georgian-net, which will be equipped with the con-
tinuously developing Georgian text analyzer (such as: automatic descriptor of tokens
and descriptive databases (that define knowledge and logic of the corpus), automatic
extender of intellectual procedures; morphological and syntactic structure generators
for words and composed linguistic expressions; the hybrid morphological, syntactic and
semantic checker; the Information/knowledge extractor, question-answerer, and logi-
cal problem solver-checker), speech processor (such as: the Georgian e-texts semantic
reader equipped with possibility to built in it users own voice; the recognizer of syn-
thesized and natural speeches; the various kinds of segmentators of voice and subtitled
voice data), automatic translator (such as: the rule based Georgian-English-German
and Georgian-Mathematical translators; the hybrid Georgian-English-German transla-
tor; the Georgian extension of Google translator; the Georgian spoken lexicon) and
the corpus voice manager systems. In addition, the Georgian-net, i.e. the Georgian
self-developing intellectual corpus, from the day of its launch, will extend automat-
ically itself with Georgian and Georgian-foreign texts freely available in the web in
a such a way that it will be able to record the source and date of entrance of any
newly added Georgian words in it and, accordingly, in the Georgian web space. - It is
absolutely obvious that here very shortly but almost completely described the Geor-
gian self-developing intellectual corpus or, shortly, the Georgian-net, from the point
of view of technological support, will essentially reduce the existing alarming lagging



In the European Union with the Georgian Language ... 43

with technologically advanced languages.

Besides, if we take into account that within the project it is planned to build
Georgian−Thinker&Talker&Translator−1 web-system and mobile apps some of its mod-
ules (they are: Georgian multilingual spoken lexicon, Georgian extension of Google
translate, Georgian multilingual speech assistant, Georgian e-text and web-page reader),
and also to publish monographic work “The Georgian Web-Corpus: Aims, Methods,
and Recommendations”, it gets even clearer that the project has very high or even
groundbreaking importance for the scientific community that is concerned with build-
ing Georgian information technology systems.
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ON ESTIMATION OF THE INCREMENT OF SOLUTION FOR A
CONTROLLED FUNCTIONAL DIFFERENTIAL EQUATION CONSIDERING

DELAY PARAMETER PERTURBATION

Shavadze T.

Abstract. The estimation of the increment of solution is obtained with respect to small

parameter for nonlinear delay functional differential equation with the continuous initial con-

dition. Moreover, value of the increment is calculated at the initial moment. This estimation

plays an important role in proving the variation formulas of solution.

Keywords and phrases: Controlled delay functional-differential equation, variation for-

mula of solution, effect of delay perturbation, continuous initial condition.
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Let Rn
x be the n-dimensional vector space of points x = (x1, ..., xn)T , where T is

the sign of transposition; suppose that O ⊂ Rn
x and V ⊂ Rr

u are open sets. Let
the n-dimensional function f(t, x, y, u) satisfy the following conditions: for almost all
t ∈ I = [a, b], the function f(t, ·) : O2 × V → Rn

x is continuously differentiable; for any
(x, y, u) ∈ O2 × V, the functions

f(t, x, y, u), fx(t, x, y, u), fy(t, x, y, u), fu(t, x, y, u)

are measurable on I; for arbitrary compacts K ⊂ O,U ⊂ V there exists a function
mK,U(t) ∈ L(I, [0,∞)), such that for any (x, y, u) ∈ K2 × U and for almost all t ∈ I
the following inequality is fulfilled

| f(t, x, y, u) | + | fx(t, x, y, u) | + | fy(t, x, y, u) | + | fu(t, x, y, u) |≤ mK,U(t).

Furthermore, let 0 < τ1 < τ2 be given numbers and let Eφ be the space of continuous
functions φ : I1 → Rn

x, where I1 = [τ̂ , b], τ̂ = a − τ2; Φ = {φ ∈ Eφ : φ(t) ∈ O, t ∈ I1}
is a set of initial functions; let Eu be the space of bounded measurable functions
u : I → Rr

u and let Ω = {u ∈ Eu : clu(I) ⊂ V } be a set of control functions, where
u(I) = {u(t) : t ∈ I} and clu(I) is closer of the set u(I).

To each element µ = (t0, τ, φ, u) ∈ Λ = (a, b) × (τ1, τ2) × Φ × Ω we assign the
controlled delay functional differential equation

ẋ(t) = f(t, x(t), x(t− τ), u(t)) (1)

with the initial condition
x(t) = φ(t), t ∈ [τ̂ , t0]. (2)

Condition (2) is said to be a continuous initial condition since always x(t0) = φ(t0).
Definition 1. Let µ = (t0, τ, φ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈

[τ̂ , t1], t1 ∈ (t0, b), is called a solution of equation (1) with the initial condition (2) or
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a solution corresponding to µ and defined on the interval [τ̂ , t1] if it satisfies condition
(2) and is absolutely continuous on the interval [t0, t1] and satisfies equation (1) almost
everywhere on [t0, t1].

Let µ0 = (t00, τ0, φ0, u0) ∈ Λ be a fixed element. In the space Eµ = R1
t0
×R1

τ×Eφ×Eu

we introduce the set of variations:

V = {δµ = (δt0, δτ, δφ, δu) ∈ Eµ − µ0 : | δt0 |≤ α, | δτ |≤ α,

δφ =
k∑

i=1

λiδφi, δu =
k∑

i=1

λiδui, | λi |≤ α, i = 1, k},

where δφi ∈ Eφ − φ0, δui ∈ Eu − u0, i = 1, k are fixed functions ; α > 0 is a fixed
number.

Theorem 1([1]). Let x0(t) be the solution corresponding to µ0 = (t00, τ0, φ0, u0)∈ Λ
and defined on [τ̂ , t10], t10 ∈ (t00, b) and let K0 ⊂ O and U0 ⊂ V be compact sets
containing neighborhoods of sets φ0(I1) ∪ x0([t00, t10]) and clu0(I), respectively. Then
there exist numbers ε1 > 0 and δ1 > 0 such that, for any (ε, δµ) ∈ [0, ε1]× V, we have
µ0+εδµ ∈ Λ. In addition, a solution x(t;µ0+εδµ) defined on the interval [τ̂ , t10+δ1] ⊂
I1 corresponds to this element. Moreover,{

x(t;µ0 + εδµ) ∈ K0, t ∈ [τ̂ , t10 + δ1],

u0(t) + εδu(t) ∈ U0, t ∈ I.
(3)

Due to the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t)
on the interval [τ̂ , t10 + δ1].

Theorem 1 allows one to define the increment of the solution x0(t) = x(t;µ0) :{
∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t),

(t, ε, δµ) ∈ [τ̂ , t10 + δ1]× [0, ε1]× V.

Theorem 2. Let the following conditions hold:
1. the function φ0(t), t ∈ I1 is absolutely continuous and the function φ̇0(t) is

bounded;
2. there exist compact sets K0 ⊂ O and U0 ⊂ V containing neighborhoods of

sets φ0(I1)∪x0([t00, t10]) and clu0(I), respectively, such that the function f(t, x, y, u) is
bounded on the set I ×K2

0 × U0;
3. there exist the limits

lim
t→t00−

φ̇0(t) = φ̇−
0 , lim

w→w0

f(w, u0(t)) = f−,

where w = (t, x, y) ∈ (a, t00] × O2, w0 = (t00, φ0(t00), φ0(t00 − τ0)). Then there exist
numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that

max
t∈[τ̂ ,t10+δ2]

| ∆x(t; εδµ) |≤ O(εδµ) (4)
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for arbitrary (ε, δµ) ∈ [0, ε2]× V −, where V − = {δµ ∈ V : δt0 ≤ 0}. Moreover,

∆x(t00; εδµ) = ε
[
δφ(t00) + {φ̇−

0 − f−}δt0
]
+ o(εδµ).

Here the symbols O(t; εδµ), o(t; εδµ) stand for quantities that have the correspond-
ing order of smallness with respect to ε uniformly with respect to t and δµ.

Theorem 3. Let the conditions 1 and 2 of Theorem 2 hold and there exist the
limits

lim
t→t00+

φ̇0(t) = φ̇+
0 , lim

w→w0

f(w, u0(t)) = f+, w ∈ [t00, b)×O2.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that inequality (4) is valid
for arbitrary (ε, δµ) ∈ [0, ε2]× V +, where V + = {δµ ∈ V : δt0 ≥ 0}. Moreover,

∆x(t00 + εδt0; εδµ) = ε
[
δφ(t00) + {φ̇+

0 − f+}δt0
]
+ o(εδµ).

Theorems 2 and 3 are proved by the scheme given in [2,3].
Theorem 4. Let the conditions of Theorems 2 and 3 hold. Moreover,

φ̇−
0 − f− = φ̇+

0 − f+ := f̂ .

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that inequality (4) is valid
for arbitrary (ε, δµ) ∈ [0, ε2]× V and

∆x(t00 + εδt0; εδµ) = ε
[
δφ(t00) + f̂ δt0

]
+ γ(εδµ), (5)

where

γ(εδµ) =

{
o(εδµ) + Ô(εδµ) for δt0 ≤ 0,

o(εδµ) for δt0 ≥ 0.

Here Ô(εδµ) = 0 for δt0 = 0.
Proof. It is clear that inequality (4) holds for arbitrary (ε, δµ) ∈ [0, ε2] × V and

formula (5) is valid for δt0 ≥ 0 .
Let δt0 ≤ 0 then

∆x(t00 + εδt0; εδµ)−∆x(t00; εδµ) =

∫ t00+εδt0

t00

∆̇x(t; εδµ)dt

=

∫ t00+εδt0

t00

[f(t, x(t;µ0 + εδµ), x(t− τ ;µ0 + εδµ), u(t))− φ̇0(t)]dt = Ô(εδµ),

(see (3) and the conditions 1 and 2 ), i.e.

∆x(t00 + εδt0; εδµ) = ∆x(t00; εδµ) + Ô(εδµ)

= ε
[
δφ(t00) + f̂ δt0

]
+ o(εδµ) + Ô(εδµ).
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THE PROBLEM OF STATICS OF THE THEORY OF ELASTIC MIXTURE OF
FINDING FULL-STRENGTH CONTOUR INSIDE THE POLYGON

Svanadze K.

Abstract. In the present work we consider the problem of statics of the linear theory of

elastic mixture of finding a full-strength contour for a finite doubly-connected domain whose

outer boundary is a convex polygon, while the inner boundary is a smooth closed contour. It

is assumed that absolutely smooth rigid punches are applied to every link of the polygon. The

punches are under the action of external normal contractive forces. The goal of the problem

is to find an unknown contour under the condition that tangential normal stress vector on it

takes constant value.

Keywords and phrases: Elastic mixture, conformal mapping, Riemann-Hilbert problem,

Kolosov-Muskhelishvili type formulas.

AMS subject classification (2010): 74B05.

1. Introduction

The problems of the plane theory of elasticity for infinite domains weakened by
equally strong holes have been studied by many authors, particularly in [1], [9] the same
problem for simple and doubly-connected domains with partially unknown boundaries
are investigated in [2], [10] etc. The mixed boundary value problems of the plane theory
of elasticity for domain with partially unknown boundaries have been studied by R.
Bantsuri [3]. Analogous problem in the case of the plane theory of elastic mixtures is
considered in [15].

In [14] using the method suggested by R. Bantsury in [4], the author gives a solution
of the mixed problem of the plane theory of elasticity for a finite multiply connected
domain with a partially unknown boundary having the axis of symmetry. Analogous
problem in the case of the plane theory of elastic mixtures has been studied in [16].
The problem of statics of the plane theory of elasticity of finding an equally strong
contour for square which is weakened by a hole and by cuttings at vertices have been
investigated in [5] by R. Bantsuri and G. Kapanadze. The analogous problem in the
case of the plane theory of elastic mixtures has been studied in [17].

In the work of R. Bantsuri and G. Kapanadze [6] the problem of statics of the plane
theory of elasticity of finding a full-strength contour inside the polygon are considered.

In the present paper in the case of the plane theory of elastic mixtures we study
the problem analogous to that solved in [6]. For the solution of the problem the use
will be made of the generalized Kolosov-Muskhelishvili’s formula [17] and the method
developed in [6].

2. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixtures in a complex



The Problem of Statics of the Theory of Elastic Mixture of ... 51

form looks as follows [8]

∂2U

∂z∂z
+K

∂2U

∂z2
= 0 (2.1)

where z = x1 + ix2, z = x1 − ix2,

∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
,

U = (u1 + iu2, u3 + iu4)
T , u

′
= (u1, u2)

T and u
′′
= (u3, u4)

T ,

are partial displacements,

K = −1

2
em−1, e =

[
e4 e5
e5 e6

]
, m−1 =

1

△0

[
m3 −m2

−m2 m1

]
, △0 = m1m3−m2

2,

mk = ek +
1

2
e3+k, e1 = a2/d2 e2 = −c/d2, e3 = a1/d2, d2 = a1a2 − c2,

a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5, e1 + e4 = b/d1, e2 + e5 = −c0/d1,

e3 + e6 = a/d1, d1 = ab− c20, b1 = µ1 + λ1 + λ5 − α2ρ2/ρ,

b2 = µ2 + λ2 + λ5 + α2ρ1/ρ, α2 = λ3 − λ4, ρ = ρ1 + ρ2, a = a1 + b1, b = a2 + b2

c0 = c+ d, d = µ2 + λ3 − λ5 − α2ρ1/ρ ≡ µ3 + λ4 − λ5 + α2ρ2/ρ.

Here µ1, µ2, µ3, λp, p = 1, 5 are elasticity modules characterizing mechanical
properties of a mixture, ρ1 and ρ2 are its particular densities. The elastic constants
µ1, µ2, µ3, λp, p = 1, 5 and particular densities ρ1 and ρ2 will be assumed to satisfy
the conditions of the inequality [13].

In [7] M. Basheleishvili obtained the following representations:

U =

(
u1 + iu2
u3 + iu4

)
= mφ(z) +

1

2
zeφ′(z) + ψ(z), (2.2)

TU =

(
(TU)2 − i(TU)1
(TU)4 − i(TU)3

)
=

∂

∂S(x)

[
(A− 2E)φ(z) + Bzφ′(z) + 2µψ(z)

]
, (2.3)

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions;

A = 2µm, µ =

[
µ1 µ3

µ3 µ2

]
B = µe, m =

[
m1 m2

m2 m3

]
, E =

[
1 0
0 1

]
,

∂

∂(x)
= −n2

∂

∂x1
+ n1

∂

∂x2
,

∂

∂n(x)
= n1

∂

∂x1
+ n2

∂

∂x2
,

n = (n1, n2)
T is the unit vector of the outer normal, (TU)p, p = 1, 4, the stress compo-

nents [7]
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(TU)1 = r
′

11n1 + r
′

21n2, (TU)2 = r
′

12n1 + r
′

22n2,

(TU)3 = r
′′

11n1 + r
′′

21n2, (TU)4 = r
′′

12n1 + r
′′

22n2,

r
′

11 = aθ
′
+ c0θ

′′ − 2
∂

∂x2
(µ1u2 + µ3u4), r

′

21 = −a1ω
′ − cω

′′
+ 2

∂

∂x1
(µ1u2 + µ3u4),

r
′

12 = a1ω
′
+ cω

′′
+ 2

∂

∂x2
(µ1u1 + µ3u3), r

′

22 = aθ
′
+ c0θ

′′ − 2
∂

∂x1
(µ1u1 + µ3u3),

r
′′

11 = c0θ
′
+ bθ

′′ − 2
∂

∂x2
(µ3u2 + µ2u4), r

′′

21 = −cω′ − a2ω
′′
+ 2

∂

∂x1
(µ3u2 + µ2u4),

r
′′

12 = cω
′
+ a2ω

′′
+ 2

∂

∂x2
(µ3u1 + µ2µ3), r

′′

22 = c0θ
′
+ bθ

′′ − 2
∂

∂x1
(µ3u1 + µ2u3),

θ
′′
= duυν

′
, θ

′′
= duυν

′′
, ω

′
= rotu

′
, ω

′′
= rotu

′′
.

Introduce the vectors:

τ (1) = (r
′

11, r
′′

11)
T , τ (2) = (r

′

22, r
′′

22)
T , τ = τ (1) + τ (2), (2.4)

η(1) = (r
′

21, r
′′

21)
T , η(2) = (r

′

12, r
′′

12)
T , η = η(1) + η(2), ε∗ = η(1) − η(2). (2.5)

Let (n, S) be the right rectangular system, where S and n are respectively, the
tangent and the normal of the curve L at the point t = t1 + it2. Assume that n =
(n1, n2)

T = (cosα, sinα)T and S0 = (−n2, n1)
T = (−sinα, cosα)T , where α is the angle

of inclination of the normal n to the ox1 axis.
Introduce the vectors

Un = (u1n1 + u2n2, u3n1 + u4n2)
T , US = (u2n1 − u1n2, u4n1 − u3n2)

T , (2.6)

σn =

(
(TU)1n1 + (TU)2n2

(TU)3n1 + (TU)4n2

)
, σS =

(
(TU)2n1 − (TU)1n2

(TU)4n1 − (TU)3n2

)
, (2.7)

σt =

( [
r
′
21n1 − r

′
11n2, r

′
22n1 − r

′
12n2

]T
S0[

r
′′
21n1 − r

′′
11n2, r

′′
22n1 − r

′′
12n2

]T
S0

)
(2.8)

Let us call the vector (2.8) the tangential normal stress vector in the linear theory of
elastic mixture.

After elementary calculations we obtain

σn = τ (1)cos2α + τ (2)sin2α + ηsinαcosα,

σt = τ (1)sin2α + τ (2)cos2α− ηsinαcosα,

σs =
1

2

[
(τ (2) − τ (1))sin2α + ηcos2α− ε∗

]
.

Direct calculations allow us to check that on L [15]

σn + σt = τ = 2(2E − A−B)Reφ
′
(t), (2.9)
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σn + 2µ

(
∂Us

∂S
+
Un

ϱ0

)
+ i

[
σS − 2µ

(
∂Un

∂S
− Us

ϱ0

)]
= 2φ

′
(t), (2.10)

[(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)]L = −i
∫
L

eiα(σn + iσs)ds, (2.11)

where det(2E − A − B) > 0, 1
ϱ0

is the curvature of L at the point t = t1 + it2.
Everywhere in the sequel it will be assumed that the components Un and Us are bounded
[8].

Formulas (2.2), (2.3), (2.9) and (2.10) are analogous in the linear theory of elastic
mixtures to those of Kolosov-Muskhelishvili [12].

3. Statement of the problem and the method of its solving

In the present work we consider the problem of statics of the linear theory of
elastic mixture of finding a full-strength contour for a finite doubly-connected domain
whose outer boundary is a convex polygon, while the inner boundary is a smooth
closed unknown contour. It is assumed that the unknown contour is free from external
stresses and absolutely smooth rigid punches are applied to the polygon boundary; the
punches are under action of normal contractive forces.

Our problem is to find strained state of the polygon (with a hole) and analytic form
of the unknown contour under the condition that the tangential normal stress vector
(2.8) on it takes constant value (the condition of the unknown contour full-strength).

Statement of the problem. Let smooth rigid punches be applied to the boundary
of a convex polygon which is weakened by an internal hole, and let the punches be
under the action of external normal contractive forces; the hole boundary is free from
external forces.

We consider the problem: Find elastic equilibrium of the polygon and analytic form
of an unknown contour under the condition that the tangential normal stress vector
on it takes constant value σt = K0, K0 = (K0

1 , K
0
2)

T = const.
By D we denote a doubly-connected domain whose internal boundary is a smooth

closed curve L1 (an unknown part of the boundary), and the external boundary is a
polygon L0. By A

0
j (j = 1, n) we denote vertices (and their affixes) or the polygon

(G0) and assume that the point z = 0 lies inside the contour L1. The positive direction
on L = L0

∪
L1 is taken that which leaves the domain D on the left.

It is not difficult to note that in the case under consideration the σS = 0 (see
(2.7)) on the entire boundary of D, and the Un(t) (see (2.6)) is a piecewise constant
(unknown) vector on L0.

Relying on the analogous Kolosov-Muskhelishvilis formulas (2.9) - (2.11) the above
posed problem is reduced to finding two analytic vector-functions φ(z) and ψ(z) in
domain D, by the following boundary conditions on L = L0

∪
L1 :

Reφ
′
(t) = H, t ∈ L1, H =

1

2
(2E − A−B)−1K0, (3.1)

Imφ
′
(t) = 0, t ∈ L0, (3.2)
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Ree−iα(t)
[
(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)

]
= C(t), t ∈ L0, (3.3)

(A− 2E)φ(t) + Btφ′(t) + 2µψ(t) = 0, t ∈ L1, (3.4)

where α(t) is the angle lying between the ox1 − axis and external normal to the
boundary at the point t ∈ L0,

C(t) = Re{−i
∫ t

A0

σ(t0)expi[α(t0)− α(t)]dS0 + (δ(1) + iδ(2))exp(−iα(t))}, t ∈ L0,

δ(j) = (δ
(j)
1 , δ

(j)
2 )T , (j = 1, 2), are arbitrary real constant vectors.

Moreover if t ∈ L0 then we can write

Ret e−iα(t) = Ree−iα(t)A0(t),

where A0(t) = A0
k for t ∈ A0

kA
0
k+1.

Since α(t) is the piecewise constant function, we obtain for C(t) the representation

C(t) =
k∑

j=1

P (j)sin(αk − αj) + δ(1)cosαk + δ(2)sinαk = Ck,

for t ∈ A0
kA

0
k+1, k = 1, n, (A0

k+1 ≡ A0
1) where αk is the value of the function α(t)

on A0
kA

0
k+1,

P (j) = −
∫ Sj+1

Sj

σn(S)ds, j = 1, n,
n∑

k=1

P (k) cosαk =
n∑

k=1

P (k)sinαk = 0,

P (j) = (P
(j)
1 , P

(j)
2 )T ,

(the equilibrium conditions), Thus, C(t) is the piecewise constant vector-function con-
taining n arbitrary real constants to be defined in the sequel.

Now note that, the conditions (3.1) and (3.2) is the Keldysh-Sedov problem having
a solution [11]

φ(z) = Hz =
1

2
(2E − A−B)−1K0z, z ∈ D (3.5)

(an arbitrary constant is assumed to be equal to zero).
Let the function z = ω(ζ) map conformally a circular ring G(1 < |ζ| < R) onto

the domain D. We assume that the contour l0(|ζ| = R) turns into L0 and the contaur
l1(|ζ| = 1) into L1.

By virtue of (3.3), (3.4) and (3.5) for the vector-functions ψ0(ζ) = ψ[ω(ζ)] holo-
morphic in the ring G, we obtain the following boundary value problem:

Ree−iα(ξ)[
1

2
K0ω(ξ)− 2µψ0(ξ)] = −C(ξ), |ξ| = R, (3, 6)

1

2
K0ω(σ)− 2µψ0(σ) = 0 |σ| = 1. (3.7)
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Note that on l0 there takes place the equality

1

2
Ree−iα(σ)K0ω(σ) =

1

2
K0f0(σ) = F0(σ), (3.8)

where f0(σ) = Re[e−iα(σ)A0(σ)], A0(σ) = A0
k, σ ∈ l

(k)
0 (lk0 are the arcs of the

circumference l0 corresponding to the sides Lk
0) k = 1, n.

Let us consider a new unknown vector-function W (ζ) = (W1,W2)
T defined by the

formula

W (ζ) =

{ 1
2
K0ω(ζ), 1 < |ζ| < R,

2µψ0

(
1
ζ

)
, 1

R
< |ζ| < 1.

(3.9)

By the conditions (3.7) and (3.8) we can conclude that W (ζ) is the vector-function,
holomorphic in the ring G∗( 1

R
< |ζ| < R) and satisfying the boundary conditions

Ree−α(ξ)W (ξ) = F0(ξ), ξ ∈ l0,

Ree−α(σ)W (σ) = F ∗
0 (σ), σ ∈ l∗0, (3.10)

where l∗0 the circumference |ζ| = 1
R
, F ∗

0 (σ) = C(σ) + F0(σ).
Since F0(ξ) and F

∗
0 (σ) are the piecewise constant vector-functions, from (3.10) by

means of multiplication by the abscissa s, with respect to the vector-function W
′
(ζ)

we obtain the boundary value problem

Re[iσe−iα(σ)W
′
(σ)] = 0, σ ∈ l0Ul

∗
0 (3.11)

Consider now the polygon (G1) lying completely inside the contour L1 and similar
to the polygon (G0); the corresponding vertices lie on one and the same ray emanating
from the point z = 0 (the similarity coefficient q remains unfixed yet).

We denote by A∗
j (that is, A∗

j = q−1A0
j ,), vertices of the polygon (G1) and by L∗

0

the boundary.
By D∗ we denote the doubly-connected domain which is bounded by the polygons

(G1) and (G0), and as the positive direction on the boundary of D∗ (L0

∪
L∗
0) we

choose that which leaves the domain D∗ on the left.
Let the function z = ω0(ζ) map conformally the circular ring G∗(R−1 < |ζ| < R)

onto the domain D∗ (this can be achieved by the choice of q). Assume that (|ζ| = R)
corresponds to L0 and l∗0 (|ζ| = R−1) corresponds to L∗

0.
Taking into account that on l0 and l∗0 the equalities:

Re[e−iα(ξ)1

2
K0ω0(ξ)] = F0(ξ), ξ ∈ l0,

Re[e−iα(σ)1

2
K0ω0(σ)] =

1

q
F0(σ), σ ∈ l∗0, (3.12)

take place, we obtain with respect to the vector-function 1
2
K0ω

′
0(ζ) the boundary value

problem (3.11). Thus the vector-functions W
′
(ζ) and 1

2
K0ω

′
0(ζ) satisfy one and the

same boundary conditions on l0Ul
∗
0
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Taking into account the results cited in [6], we can conclude that the necessary and
sufficient condition for solving the problem (3.11) is of the form

n∏
k=1

( ak
R2

)γk−1
(
ak
q

)1−γk

= 1, (3.13)

and the solution itself is given by the formula

W
′
(z) = ν

n∏
k=1

(ak
R

) 1
2
(γk−1)

(
1− ζ

ak

)γk−1(
1− ak

ζR2

)γk−1

T (ζ)[ζ2T (R2ζ)]−1, (3.14)

where by ak we denote the preimages of the points A0
k (ak ∈ l0), k = 1, n, ν =

(ν1, ν2)
T is an arbitrary real constant vector,πγk is the innear angle at the vertex

Ak, k = 1, n and

T (ζ) =
∞∏
j=1

n∏
k=1

(
1− ak

R4jζ

)γk−1(
1− ζ

R4jak

)γk−1

.

Since
∑n

k=1(γk − 1) = −2 form (3.13) we get the relation q = R2.
On the basis of the above results we can conclude that the problem of finding a

full-strength contour inside the polygon is closely connected with the problem of con-
formal mapping of a doubly-connected domain, bounded by polygons, onto the circular
ring. In order that the above-mentioned problems (3.10) and (3.12) be identical, it is
necessary that the equality (see [6])(

1− 1

R2

)
F0(σ) = C(σ), σ ∈ l∗0, (3.15)

hold, or what is the same thing,

1

2

(
1− 1

R2

)
K0(A(1)

m cosαm + A(2)
m sinαm) =

=
m∑
j=1

P (j)sin(αm − αj) + δ(1)cosαm + δ(2)sinαm, (3.16)

where A0
m = A

(1)
m + iA

(2)
m . m = 1, n.

If we choose the constants P (j) = (P
(j)
1 , P

(j)
2 )T , j = 1, n and δ(1), δ(2) (two of P (j)

are expressed through the rest ones) in such a way that the equality (3.16) holds, we
obtain W (ζ) = 1

2
K0ω0(ζ), and hence the equation of the unknown contour L1 will be

t = ω0(σ) =
2

K0
1

W1(σ) =
2

K0
2

W2(σ), σ ∈ l1

and the vector-function 2µψ0(ζ) will be represented in the form 2µψ0(ζ) =
1
2
K0ω0

(
1
ζ

)
,

ζ ∈ G.



The Problem of Statics of the Theory of Elastic Mixture of ... 57

As an example, we consider the case with the rectilinear polygon (G0). Assume that
to every polygon side are applied punches whose middle is under the action of normal
concentrated force −P, (P = (P1, P2)

T ).
The coordinate origin is at the center of the polygon (G0) and the ox1 − axis is

perpendicular to the side A0
1, A

0
2. Owing to the symmetry in the case we may assume

that

A0
k = exp

[
−πi
n

+
2πi

n
(k − 1)

]
; αk =

2π

n
(k − 1) ak = Rexp

[
2πi

n
(k − 1)

]
.

It can be shown that the function f0(σ) = Re
[
e−iα(σ)A0(σ)

]
is constant: f0(σ) = rcosπ

n
,

and the vector-function C(t) in this case has the form

C(t) =
P

2 sin π
n

[
cos

π

n
− cos

π

n
(2k − 1)

]
+ ν(1) cos

2π

n
(k − 1)+

ν(2) sin
2π

n
(k − 1) =

1

2
P

[
ctg

π

n
− cos

2π

n
(k − 1)ctg

π

n
+ sin

2π

n
(k − 1)

]
+

+ν(1) cos
2π

n
(k − 1) + ν(2) sin

2π

n
(k − 1).

Taking ν(1) = 1
2
Pctg π

n
; ν(2) = −1

2
P , we get C(t) = −1

2
Pctg π

n
and hence (3.15)

results in the relation

K0 =
PR2

r(R2 − 1) sin π
n

. (3.17)

In particular, if we assume that the polygon side is equal to unity, i.e. an =
2r sin π

n
= 1, then from (3.17) we obtain

K0 =
2PR2

R2 − 1
,

whence we conclude that K0
j > 2Pj; (j = 1, 2) and also, when R increases (i.e. when

the hole shrinks to the point) K0 → 2P, while as R → 1 i.e., when K0 increases and
does not exceed critical value, the hole contour approaches to that of the polygon.
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Abstract. In the paper the following inverse problem is considered: find such initial functions

that the value of corresponding solution at given moment is equal to a fixed vector. On the

basis of necessary conditions an algorithm is provided for the approximate solution of the

inverse problem.

Keywords and phrases: Inverse problem, neutral functional differential equation, neces-

sary optimality conditions.
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Let Rn be an n-dimensional vector space of points x = (x1, . . . , xn)T with

| x |2=
n∑

i=1

(xi)2.

Let K1 ⊂ Rn, K2 ⊂ Rn be convex compact sets, let τ(t), t ∈ R and η(t), t ∈ R be
continuously differentiable scalar functions (delay functions) satisfying the conditions

τ(t) < t, η(t) < t, τ̇(t) > 0, η̇(t) > 0.

Let t0 < t1 be given numbers with τ(t1) > t0 and η(t1) > t0. By ∆1 and ∆2 we
denote, respectively, the sets of measurable initial functions φ : [τ̂ , t0] → K1 and
g : [τ̂ , t0] → K2, where τ̂ = t0 −max{τ(t0), η(t0)}.

To each element (initial data) w = (φ(t), g(t)) ∈ W = ∆1×∆2 we assign the linear
neutral functional differential equation

ẋ(t) = A(t)x(t) +B(t)x(τ(t)) + C(t)ẋ(η(t)) (1)

with the initial condition{
x(t) = φ(t), t ∈ [τ̂ , t0], (φ(t0) = φ(t0−)),

ẋ(t) = g(t), t ∈ [τ̂ , t0),
(2)

where A(t), B(t), C(t), t ∈ [t0, t1], are given continuous matrix functions with appro-
priate dimensions.

Definition. Let w = (φ(t), g(t)) ∈ W, a function x(t) = x(t;w) ∈ Rn, t ∈ [τ̂ , t1] is
called a solution of differential equation (1) with the initial condition (2) or a solution
corresponding to the element w if x(t) satisfies the initial condition (2) is absolutely
continuous on the interval [t0, t1] and satisfies equation (1) almost everywhere.

For every element w ∈ W there exists a unique solution x(t;w) defined on the
interval [τ̂ , t1].
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Introduce the set

Y =
{
y ∈ Rn : ∃w ∈ W, x(t1;w) = y

}
.

The inverse problem. Let y ∈ Y be a given vector. Find element w ∈ W such that
the following condition holds

x(t1;w) = y.

The vector y, as a rule, by distinct error is beforehand given. Thus instead of the
vector y we have ŷ (so called observed vector) which is an approximation to the y and
in general, ŷ /∈ Y . Therefore it is natural to change the posed inverse problem by the
following approximate problem.
The approximate inverse problem. Find an element w ∈ W such that the devia-
tion

1

2
|x(t1;w)− ŷ|2

takes the minimal value.
It is clear that the approximate inverse problem is equivalent to the following opti-

mization problem:

ẋ(t) = A(t)x(t) +B(t)x(τ(t)) + C(t)ẋ(η(t)) (3)

x(t) = φ(t), t ∈ [τ̂ , t0], ẋ(t) = g(t), t ∈ [τ̂ , t0), (4)

J(w) =
1

2
|x(t1;w)− ŷ|2 → min, w ∈ W. (5)

Problem (3)-(5) is called an optimal control problem corresponding to the inverse
problem.

Theorem 1.([1])There exists an optimal element w0 = (φ0(t), g0(t)) for problem
(3)-(5).

Theorem 2.([1]) Let w0 = (φ0(t), g0(t)) ∈ W be an optimal element. Then the
following conditions hold:
1) the condition for the initial function φ0(t)

ψ(γ(t))B(γ(t))γ̇(t)φ0(t) = max
φ∈K1

ψ(γ(t))B(γ(t))γ̇(t)φ,

t ∈ [τ(t0), t0],

where γ(t) is the inverse function of τ(t);
2) the condition for the initial function g0(t)

ψ(ρ(t))C(ρ(t))ρ̇(t)g0(t) = max
g∈K2

ψ(ρ(t))C(ρ(t))ρ̇(t)g,

t ∈ [η(t0), t0].

where ρ(t) is the inverse function of η(t).
Here (ψ(t), χ(t)) is solution of the system{

χ̇(t) = −ψ(t)A(t)− ψ(γ(t))B(γ(t))γ̇(t),

ψ(t) = χ(t) + ψ(ρ(t))C(ρ(t))ρ̇(t)
(6)
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with the initial condition

ψ(t1) = χ(t1) = −(x0(t1)− ŷ)T , ψ(t) = χ(t) = 0, t > t1.

Let the optimal element w0 = (φ0(t), g0(t)) be unique and conditions 1) and 2) give
the unique initial functions φ(t) and g(t), respectively.
The algorithm. Let φ1(t) ∈ ∆1 and g1(t) ∈ ∆2 be starting approximation of the
initial functions. We construct the sequences

{φk(t)}, {gk(t)}, {xk(t)}, {ψk(t)}, {χk(t)}
by the following process:

3) for given φ1(t) and g1(t) find x1(t) : the solution of the differential equation (3)
with the initial condition

x(t) = φ1(t), t ∈ [τ(t0), t0], ẋ(t) = g1(t), t ∈ [η(t0), t0);

4) find ψ1(t) and χ1(t) : the solution of the differential equation (6) with the initial
condition

ψ(t1) = χ(t1) = −(x1(t1)− ŷ), ψ(t) = χ(t) = 0, t > t1;

5) find the next iterations φ2(t) and g2(t) from 1) and 2), respectively.
6) if

| J(w1)− J(w2) |≤ ε

stop, where w1 = (φ1(t), g1(t)), w2 = (φ2(t), g2(t)) and ε is a given number.
If

| J(w1)− J(w2) |> ε

go to 3).
Theorem 3. The following relations are valid:

lim
k→∞

φk(t) = φ0(t) weakly in the space L[τ(t0), t0];

lim
k→∞

gk(t) = g0(t) weakly in the space L[σ(t0), t0];

lim
k→∞

xk(t) = x0(t) uniformly for t ∈ [t0, t1];

lim
k→∞

sup
[t0,t1]

| ψk(t)− ψ(t) |= 0;

lim
k→∞

χk(t) = χ(t) uniformly for t ∈ [t0, t1].

Moreover, w0 = (φ0(t), g0(t)) is an optimal element, x0(t) = x(t;w0) is an optimal
trajectory, (ψ(t), χ(t)) is the solution of equation (6) corresponding to w0.

Theorem 3 is proved by the scheme given in [2].
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Science Foundation, grant 31/23.
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თ. შავაძე 

 
 მიღებულია ამონახსნის ნაზრდის შეფასება  მცირე პარამეტრის მიმართ 

არაწრფივი  დაგვიანებულ არგუმენტიანი სამართი ფუნქციონალურ-დიფერე-
ნციალური განტოლებისათვის უწყვეტი საწყისი პირობით. გარდა ამისა, 
ამონახსნის ნაზრდი  გამოთვლილია საწყის მომენტში.  
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დრეკად ნარევთა თეორიის სტატიკის ამოცანა 
მრავალკუთხედში თანაბრადმტკიცე კონტურის 

მოძებნის შესახებ 
 

კ. სვანაძე 
 

 ნაშრომში განხილულია დრეკად ნარევთა წრფივი თეორიის სტატიკის 
ამოცანა, რომელიც ეხება თანაბრადმტკიცე კონტურის მოძებნას სასრული 
ორადბმული არისათვის, რომლის გარე საზღვარი წარმოადგენს ამოზნექილ 
მრავალკუთხედს, ხოლო შიგა საზღვარი–გლუვ შეკრულ კონტურს. იგულისხმე-
ბა, რომ მრავალკუთხედის გვერდებზე მოდებულია აბსოლუტურად გლუვი 
ხისტი შტამპები, რომელზედაც მოქმედებენ ნორმალური კუმშავი ძალები, 
ხოლო შიგა კონტური (საზღვრის უცნობი ნაწილი) თავისუფალია გარეგანი 
დატვირთვისაგან. ამოცანა მდგომარეობს განისაზღვროს საძიებელი კონტურის 
ანალიზური სახე იმ პირობით, რომ მასზე ე.წ. ტანგენციალური ნორმალური 
ძაბვის ვექტორი ღებულობდეს მუდმივ მნიშვნელობას. 

 

 
 
 

შებრუნებული ამოცანა ფიქსირებულ წერტილში 
გადასვლის შესახებ წრფივი ნეიტრალური ფუნქციონალურ-

დიფერენციალური განტოლებებისთვის 
 

თ. თადუმაძე 
 

ნაშრომში განხილულია შემდეგი ამოცანა:  იპოვეთ ისეთი საწყისი 
ფუნქციები, რომლის შესაბამისი ამონახსნის მნიშვნელობა მოცემულ მომენტში  
ემთხვევა მოცემულ ვექტორს. მოყვანილია ამოცანის მიახლოებითი  ამოხსნის 
ალგორითმი.  
 
 

 



C O N T E N T S

Baramidze L., Goginava U. Convergence in measure of logarithmic means of double
Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Bitsadze L. Boundary value problems of the fully coupled theory of elasticity for
solids with double porosity for half-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Bitsadze L. Fundamental solution in the fully coupled theory of elasticity for solids
with double porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Koplatadze R. On higher order “almost linear” functional differential equations with
property A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Pkhakadze K., Chikvinidze M., Chichua G., Beriashvili I., Pkhakadze N.,
Kurckhalia D., Maskharashvili A. In the European Union with the Georgian lan-
guage - the aims and basements of the project “one more step towards Georgian talking
self-developing intellectual corpus” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Shavadze T. On estimation of the increment of solution for a controlled functional
differential equation considering delay parameter perturbation. . . . . . . . . . . . . . . . . . . . .46

Svanadze K. The problem of statics of the theory of elastic mixture of finding full-
strength contour inside the polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Tadumadze T. Inverse problem about transition in a fixed point for linear neutral
functional differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Georgian Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



avtorTa sayuradRebod! 
 

ჟურნალში გამოსაქვეყნებელი სტატია უნდა წარმოადგინოთ ინგლისურად, ელექტრონული და 
ამობეჭდილი სახით, აკრეფილი TEX (Plain, LATEX, AMSTEX, AMSLATEX) პროგრამის გამოყენებით.  

დაიცავით შემდეგი მოთხოვნები: 
♦ ასოების ზომა და სტრიქონებს შორის მანძილი – 12 pt; 
♦ ტექსტის სიგრძე – 227 mm, სიგანე – 155  mm; 
♦ პირველ სტრიქონებში აიკრიფოს ნაშრომის სათაური, შემდეგ - ავტორის გვარი და ინიციალი; 
♦ აბსტრაქტი - არაუმეტეს 1/4 გვერდისა (აკრეფილი Sylfaen-ში) ; 
♦ საკვანძო სიტყვები და ფრაზები; 
♦ ინდექს(ებ)ი MSC 2010 წლის კლასიფიკატორის მიხედვით; 
♦ ციტირებული ლიტერატურის სია მოთავსდეს სტატიის ბოლოს ტექსტში მითითებული 
თანმიმდევრობით (დაინომროს კვადრატულ ფრჩხილებში არაბული ციფრებით, წიგნის 
შემთხვევაში გარდა ზოგიერთი გამონაკლისისა უნდა დაერთოს გვერდის ნომრები მაგ.: ([2], 
გვ.30)). სიის  შედგენისას გთხოვთ  იხელმძღვანელოთ Mathematical Reviews სტანდარტით:          

Hartman P. Ordinary differential equations. John Wiley & Sons, New York-London-Sydney, 1964.  
Hartman P. A differential equation with non-unique solutions. Amer. Math. Monthly, 70 (1963) , 255-
259.  
Vekua, I. N. A class of statically definable problems of the theory of shells. (Russian) 
Sakharth. SSR Mecn. Akad. Moambe  83, 2 (1976), 273-276. 

♦ ინფორმაცია ავტორის შესახებ: გვარი და სახელი, დაწესებულება და მისამართი,  
   ელ-ფოსტა; 

♦ ქართული რეზიუმე: ნაშრომის სათაური, ავტორის სახელი და გვარი, ტექსტი არაუმეტეს   
¼  გვერდისა; 
♦ სტატია იქნება რეცენზირებული; სტატია, რომელიც არ გამოქვეყნდება ავტორს არ    
დაუბრუნდება;  
♦ ნაშრომები გამოგზავნილი უნდა იქნეს ჟურნალის პასუხისმგებელი მდივნის მისამართზე  

e-mail: viam.seminars@gmail.com 
 

 

INFORMATION  FOR THE AUTHORS! 

The papers, submitted for publication, should be presented in English prepared in any TEX format (Plain, 
LATEX, AMSTEX, AMSLATEX). 

The following requests are to be fulfilled: 
♦ Letter's size and intervals between lines should be 12 pt. 
♦ Text height must be 227 mm, text width 155 mm. 
♦ The title of the paper should be printed in the first lines, in the next one author's name and initial. 
♦ Abstract should be not more than ¼  of page. 
♦ Keywords and phrases should be given (not more than 5 items). 
♦ Index(es) of Mathematics Subject Classification (2010) should be presented.  
♦ Reference numbers should appear in the text between square braсkits, the book  pages must be  

also indicated, e.g.([2], p.30) except some natural cases. 
♦ References must be given according to the order of their use in the text at the end of the paper in  

the Mathematical Reviews standard. 
Hartman P. Ordinary differential equations, John Wiley & Sons, New York-London-Sydney, 1964. 
Hartman P. A differential equation with non-unique solutions, Amer. Math. Monthly, 70 (1963), 
255-259. 
Vekua, I. N. A class of statically definable problems of the theory of shells. (Russian) 
Sakharth. SSR Mecn. Akad. Moambe 83, 2 (1976), 273-276. 

♦ At the very end of paper please write: author's name, affiliation and address, e-mail. 
♦ All the papers will be peer reviewed. The unpublished papers will not be returned to the authors. 

Papers should be forward to managing editor e-mail:    viam.seminars@gmail.com. 
 

http://www.ams.org/mathscinet/search/journaldoc.html?cn=Amer_Math_Monthly
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=177620
http://www.ams.org/mathscinet/search/journaldoc.html?cn=Sakharth_SSR_Mecn_Akad_Moambe
mailto:viam.seminars@gmail.com
http://www.ams.org/mathscinet/search/journaldoc.html?cn=Amer_Math_Monthly
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=177620
http://www.ams.org/mathscinet/search/journaldoc.html?cn=Sakharth_SSR_Mecn_Akad_Moambe
mailto:viam.seminars@gmail.com


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0179 თბილისი,  ი.ჭავჭავაძის გამზირი 1 
1 Ilia Tchavtchavadze Avenue, Tbilisi 0179 
Tel 995 (32) 225 14 32, 995 (32) 225 27 36 
www. Press. tsu.edu. ge 
 

 
 
 
 


	ISSN 1512-0058
	É Ë Ý Ï Â Ê Â Œ Â Œ Æ
	R E P O R T S
	SEMINAR OF I. VEKUA INSTITUTE OF APPLIED MATHEMATICS

	kda_41.pdf
	ISSN 1512-0058
	É Ë Ý Ï Â Ê Â Œ Â Œ Æ
	R E P O R T S
	SEMINAR OF I. VEKUA INSTITUTE OF APPLIED MATHEMATICS





