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1. Statement of the problem and formulation of the results

This work is dedicated to the investigation of the solvability question of the regular
difference system

Ay(k—1)=Gi(k)y(k — 1) + Ga(k)y(k) + g(k) (k=1,2,...) (1.1)

under the general boundary value problem
Lly) =Y L(k)y(k) = co, (1.2)
i=1

where G; € E(No,R™") (j = 1,2), L € E(No,R™™), L : BV (N)R") — R" is a
bounded linear operator, and g € F(Ny, R") are respectively, discrete matrix and vector
functions, and ¢y € R™. In this work the Green’s type theorem is proved for the unique
solvability of the problem (1.1),(1.2) in the case when G; € E(Ng,R™™") (j = 1,2),
L € E(Ny,R™™) and g(k) € E(Ny,R") are, respectively, so called regular matrix
and vector functions on the set Ny(see below). Moreover, successive approximations
methods is investigated for constructing the solution for the Cauchy problem for the
system (1.1). For investigating this problem we use the theory of so called generalized
ordinary differential equations [1]. Analogous questions for the finite difference system
are investigated in [1,2].

Along with the problem (1.1),(1.2) we consider the corresponding homogeneous
problem

Ay(k —1) = Gi(k)y(k —1) + Ga(k)y(k) (k=1,2,..), (1.1o)
L(y) = 0. (1.20)

Throughout the paper, the following notation and definitions will be used.
N={1,2,...}, Ng={0,1,...}.
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R =] — 00, +o0[, [a,b] and |a, b[ (a, b € are, respectively, a closed and an open
intervals.
R™™ is the space of all real n x m — matrices X = (2;); 2, with the norm

| X]| = max { D lagli=1,... ,m}.
i=1

IF X = (2i);;21, then [X| = (Joy])i 2

Opxm 18 the zero n x m-matrix.

Rixm = {(2727])27;11 c T Z 0 (Z = ]_, cee ,n;j = 1, cee ,m)}

R"™ = R™! is the space of all real column n-vectors z = (z;)1_; R" = R\

If X € R™*" then X! is the matrix, inverse to X; det X is the determinant of X;
and r(X) is the spectral radius of X.

I,, is the identity n X n-matrix.

E(Np, R™™) is the set of all matrix-functions Y : Ny — R™*™.

A is the difference operator of the first order, i.e.,
AY(k—=1)=Y(k)=Y(k—1) for Y € E(Ng,R"™™) (k=1,2,...).

We say that the discrete matrix function X € E(Np, R™™) has the bounded total
variation on the set Ny if

D IIAX (k= 1)[| < +oo.
k=1

In this case we assume
XN, =D IIAX (k- 1)
k=1

By BV,(Np; R™™) we denote the Banach space of all discrete matrix-functions
E(Ng, R™™) with the norm ||.],.

The inequalities between the matrices are understood componentwise.

A matrix function is said to be continuous, integrable, nondecreasing, etc., if such
is every its component.

Under a solution of the difference problem (1.1),(1.2) we understand a matrix func-
tion y € BV, (Eq, R") satisfying difference system (1.1) (i.e., the equality (1.1) for every
k € N) and the boundary condition (1.2).

Below we show that, in the regular case, i.e., when discrete matrix G; and G, and
vector g functions are regular, every discrete vector-function y € FE(Ny, R") satisfy-
ing difference system (1.2) belongs to BV, (Ey, R"), as well. So that the definition of
solutions of system (1.1) given above, is natural for the regular case.

The discrete matrix-function X € E(Ny, R"*™) is said to be regular if

D X (R)] < +oo.
k=1
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Definition 1.1. The system (1.1) is called regular if the matrix-and vector func-
tions G1, G and g are regular, i.e., (1.3)

ZHG )| < 400 (j=1,2) (1.3)

and

Z lg(k)|| < +o0. (1.4)

We will assume that system (1.1) is regular. Moreover, we assume that the matrix
function L € E(Ny, R"*") is regular, too.
Let Y be the fundamental matrix of the system (1.1p) under the condition

If the condition
det (I, + (—1)/G;(k)) #0 for ke {1,2,..} (j=1,2) (1.5)

is valid, then the fundamental matrix Y of the system (1.15) exists and

k) = f[ (L — Gy (1)) ™' (L, + Ga(1) for ke {1,2,..}. (1.6)
We assume h
D= iL(Z)Y(l) and D(j) = Zj:L(l)Y(l) (j=0,1,..). (1.7)
If h h
det D # 0, (1.8)

then we assume

Y(k)DT'D(j = )Y () (1, — G
G(k,j)=q =Y (k)(I, — D7'D(j — 1))Y ()
Opxn for k=7,

(7)) ' for 0<]<k:
(I, — G (j)) ™" for 0<k<j, (19

where Y (k) is the fundamental matrix of the system (1.1y) defined by (1.6). The matrix
function G(k, j) is called the Green matrix of the problem (1.15),(1.2¢).

Theorem 1.1. Let the condition (1.5) hold and let the system (1.1) be regular.
Then the boundary value problem (1.1),(1.2) has a unique solution if and only if the
corresponding homogeneous problem (1.1y), (1.2y) has only the trivial solution. If the
letter condition holds, then the solution y of problem (1.1),(1.2) admits the represen-
tation

y(k) = oo + Zg (k,Dg(1) for k € Ny, (1.10)
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where G(k,1) is the Green matriz of the problem (1.1p), (1.20).

Remark 1.1. We note the homogeneous problem (1.1y), (1.2¢) has only the trivial
solution (as well problem (1.1),(1.2) is uniquely solvable) if and only if the condition
(1.8) is valid. Therefore, there exist the Green matrix appearing in Theorem 1.1.

Remark 1.2. If the condition (1.8) is not fulfilled, then for every regular g €
E(Np, R™) there exists a vector ¢y € R™ such that problem (1.1),(1.2) has no solution.
In addition, if £ : E(Np,R") — R™) is the onto mapping, then for every ¢, € R”
there exists a regular function g € E(Ny, R") such that the problem (1.1),(1.2) is not
solvable.

We give a successive approximation method of construction of the solution of the
system (1.1), too, under the Cauchy condition

y(ko) = co, (1.11)
where kg € N, ¢y € R".
Theorem 1.2 Let
det (I, + (=1)G;(k)) #0 for (=1)(k —ko) <0 (j =1,2). (1.12)

Then the Cauchy problem (1.1),(1.11) has a unique solution y € E(N,R"™) and

lim y,,(k) = y(k) uniformly for k € Ny, (1.13)

m—ro0

where

Ym(ko) = co (m=0,1,...),
yo(k) = (In + (—1)G(k +j — 1)) ey for (=1)(k —ko) <0 (j =1,2)

and

Yn(k) = (I + (=1)7G;(k +5 = 1)) | co + (=1)7G;(k + 5 = 1)ym-1(k)

- k=(j—1)(k—ko)
— (1) > (G1(D)ym—1(1) + Go(D)ym-1 (1 — 1))
I=ko+1+(j—1)(k—ko)

for (=1)9(k—ko) <0 (j =1,2).

2. Generalized differential equations

We give some necessary definition to formulate bases of the theory of the generalized
ordinary differential equations.

The interest in the theory of generalized ordinary differential equations has also
been stimulated to a considerable extent by the fact that this theory enables one to
investigate ordinary differential, impulsive and difference equations from a unified point
of view (see, e.g. [1-10] and the references therein).
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If X : [a,b] — R™™ is a matrix-function, then V’(X) is the sum of total variations
on [a,b] of its components z;; (i = 1,...,n;5 = 1,...m); V(X)(t) = (v(@i)(t)); 5,
where v(z;5)(a) = 0, v(z;)(t) = VEi(zy) for a <t < b; X(t—) and X (t+) are, respec-
tively, the left and the right limits of X at the point ¢ (X (a—) = X (a), X (b+) = X (b)).

i X(t)=X(t) — X(t—), do X (t) = X (t+) — X ().

BV(][a, b], R"*™) is the Banach space of all bounded variation matrix-functions X :
la,b] — R™™ (i.e., such that V?(X) < oo) with the norm || X ||, = | X (a)|| + V(X).

s; : BV([a,b],R) = BV([a,b],R) (j =0, 1,2) are the operators defined, respectively,
by

si(z)(a) = 82(1’)(60) =0,
= Z dyz(7) and so(x Z daz(1) for a <t <,

a<t<t a<t<t

and
So(2)(t) = z(t) — s1(z)(t) — s2(x)(t) for t € [a,b)].
If g : [a,b] — R is a nondecreasing function, z : [a,b] - R and a < s <t < b, then

/ £(r) dg(r) = /] A+ 3 a@holn) + 3 a(r)dag(r),

s<t<t s<t<t

where f 7)dso(g)(T) is the Lebesgue—Stieltjes integral over the open interval |s, ¢[
with respect to the measure uo(so(g)) corresponding to the function s¢(g).
Ifa = b then we assume f (t)dg(t) = 0, and if a > b, then we assume f (t)dg(t) =

_fb

If g(t) = g1 (t) — go(t), where ¢g; and gy are nondecreasing functions, then
t t t
/ x(7)dg(T) = / x(7)dgr (1) — / x(7) dge(1) for s <t.
If G = (gir)i7_y € BV([a,b], R”") and X = (ay))1", : [a,b] = R™™, then

SHG)(t) = (s;(gu) ()54, (7 =0,1,2)

a a i,j=1

Let A € BV([a,b],R™™) and f € BV([a, b, R™).
Under a solution of the system of linear generalized ordinary differential equations

and

dx(t) = dA(t) - z(t) + df () (2.1)

we understand a vector-function x € BV([a, b], R") such that

x(t) = x(s) + /tdA<T) cx(T)+ f(t) — f(s) for a<s<t<b.
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We consider system (2.1) with the boundary value condition
l(x) =c, (2.2)

where ¢ : BV([a, b], R") — R"™) is a linear bounded operator, and ¢ € R" is a constant
vector.

The question of the unique solvability of the generalized boundary value problem
(2.1),(2.2) is investigated in [1,2,10] (see also the references therein).

3. Proof of the results

We will rewrite problem (1.1),(1.2) in the form of problem (2.1),(2.2) in order to
apply the results from [1,2,10] to the last generalized problem.

Let Y be the fundamental matrix of system (1.1) under the condition Y (0) = I,.
Then by (1.3) and (1.6) there exists a positive number r > 0 such that

1Y (k)|| < for k € N, (3.1)

We assume
G;(0) = Onxn (1 =1,2), ¢(0) =0,.

Let y € E(Ny,R™) be an arbitrary solution of the problem (1.1),(1.2) and let z =
(2:)?_;, where 2; € E(Ng,R")(i = 1,2) be functions, defined by

z1(k) = zo(k) =y(k) (k=0,1,...).
Then by (3.1) we get
ly(R)I| <y ()] for k& No.
From this by (1.1),(1.3) and (1.4) we have
> lAy(k = 1) < +oo
k=0

and -
> llAz(k = 1)|| < +oo. (3.2)
k=0
Moreover, it is evident that

21(k—=1)\ _ (Gi(k)z1(k) + Go(k)z2(k — 1) + g(k)
> ( ) a (Gl(k)zl(k’) + Go(k)za(k— 1)+ i(@) for ke Ny (3.3)

and
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where

()= (5)

and ¢, : F(Np, R?*") — R?" is an arbitrary operator such that the condition (5(z) = 0
guarantees the equality z; (ko) = 22(ko) for some ko € Ny.

We will assume that
G 1) zo(ko) — 21 (ko)
22 zo(ko) — 21(ko) )’
where kg is an arbitrary fixed integer from Nj.
The contrary is evident too. If the vector-function z = (z;)%, is a solution of
problem (3.1),(3.2) then z(k) = z3(k) and this discrete vector function is a solution
of problem (1.1),(1.2). Therefore, problems (1.1),(1.2) and (3.3),(3.4) are equivalent

among themselves.

We note that by (1.3) there exists ko € N such that ||G;(ko)|| < 1/2 (j = 1,2) and,
therefore, the inverse matrices (I, + (—1)jGj(/f))_l(j = 1,2) exist for k > ko. From
this, taking into account the condition (1.3) we get that there exists a constant r; > 0
such that

(L + (1G5 (k) ' <7y for k>ke (5 =1,2). (3.5)

Let now

= [tlmtk—i-l[ and I :]tkytk-i-l} for k € No,

where t, = k/(k+1) (k=0,1,...).

Let z = (z;)%, be a vector function defined by
xi(t) = zi(k) for te Ly (i=1,2,k=0,1,...). (3.6)

Then by (3.2) we have z € BV([0, 1], R*").
It is not difficult to verify that the vector function z will be a solution of the
2n-dimension problem (2.1),(2.2) with a = 0,0 =1,

A(t) = (A (1)) =1 (3.7)

Ay(t) = iej(z) for t € Iy, (i,j = 1,2k =0,1,..); (3.8)
h F6) = (fi))i, (3.9)

filt) = Xk:g(z) for t € Ly, (i,j=1,2k=0,1,..); (3.10)

Uz) = (G(2))2, for == (x)2,, =€ BV([0,1,R"), (i=1,2) (3.11)
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and

c:(%o)

It is evident that the inverse proposition is true as well. So that the following lemma
is true.

Lemma 1.1 Let y € E(Ng,R™) be a solution of problem (1.1),(1.2). Then the
vector function v = (x;)?_, BV([0,1],R"), defined by (3.6), will be a solution of the
2n-dimensional generalized boundary value problem (2.1),(3.2), where a = 0,b = 1,
and matriz-and vector functions A and f, linear operator { and constant vector c
are defined, respectively, by (3.7)-(3.11). On the contrary, if the vector-function x =
(z)™, € BV([0,1],R®") is a solution of the last 2n-dimensional problem (2.1),(3.2),
then the vector-function y € E(Ng,R™), y(k) = z1(k), will be a solution of the problem
(1.1),(1.2), where

Gi(k) = AAy(k) (i =1,2), g(k) = Afi(k),

and L(y) and ¢y are n-vectors whose i-th component coincides with i-th component of
U(y) and c, respectively, for everyi € {1,...,n}.

Using the lemma we conclude that the theorems and remarks immediately follow
from corresponding results of paper [1,2,10].

Acknowledgement. This work was supported by the Shota Rustaveli National
Science Foundation (Grant No. FR/182/5-101/11).
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Introduction

The linear theory of thermoelasticity for materials with inner structure whose parti-
cles, in addition to the classical displacement and temperature fields, possess microtem-
peratures was constructed by Iesan and Quintanilla [1]. The fundamental solutions of
the equations of the three-dimensional (3D) theory of thermoelasticity with microtem-
peratures were constructed by Svanadze [2]. The representations of the Galerkin type
and general solutions of the system in this theory were obtained by Scalia, Svanadze
and Tracina [3]. The 3D linear theory of thermoelasticity for microstretch elastic ma-
terials with microtemperatures was constructed by lesan [4] where the uniqueness and
existence theorems in the dynamical case for isotropic materials are proved.

The purpose of this paper is to solve explicitly one basic boundary value problem
(BVP) of the linear equilibrium theory of thermoelasticity with microtemperatures for
the spherical ring. The obtained solutions are represented as absolutely and uniformly
convergent series.

Basic equations

Let D be a bounded (respectively, an unbounded) domain of the Euclidean 3D
space E3, bounded by the surface S. Let x = (x1,29,23) € B3, p = |x|, 0x =
(i, i, i) . Assume that the domain D is filled with isotropic elastic materials

(93:1 85172 81'3
with the thermoelastic properties possessing microtemperatures.

The basic homogeneous (i.e., body forces are neglected) system of equations of the

linear equilibrium theory of thermoelasticity with microtemperatures has the form [1]

pAu + (A + p)graddivu — Bgradd = 0, (1)

ke Aw + (ky + ks)graddivw — ksgradf — kew = 0, (2)
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EAO + kydivw = 0, (3)

where u = (uy, ug, u3)? is the displacement vector, w = (wy, wy, w3)? is the microtem-
perature vector, 6@ is the temperature measured from the constant absolute tem-
perature Ty (7p > 0) by the natural state (i.e. by the state of the absence of loads),
Aoow, B,k kj, j=1,...,6, are constitutive coefficients, A is the 3D Laplace
operator. The superscript ”'T” denotes transposition.

Definition 1. A vector-function U = (u, w, #) defined in the domain D is called
regular if it has integrable continuous second order derivatives in D , and U itself and
its first order derivatives are continuously extendible at every point of the boundary of
D, that is U € C?(D) N CY(D).

Note that BVPs for the system (2),(3), that contain only w and 6, can be inves-
tigated separately. Then supposing 6, as known, we can study BVPs for the system
(1) with respect to u. Combining the results obtained we arrive at explicit solution for
BVPs for the system (1)-(3). First we assume that 6(x) is known, when x € D, then
for u we get the following nonhomogeneous equation

pAu + (A + p)graddivu = Bgrade. (4)
It is known that the volume potential ug [6]
uy = _B /I‘(X-y)gdeds, (5)
7T
D
where
L' = |[Tk;ll32s,

A+3uog; A ;
D, = A3y | A+ pma,

k,g=123.
2ap 1 2apu 13’ K

is a particular solution of (4). In (5) gradf is a continuous vector in D along with
its first order derivatives.
Thus, the general solution of the equation (4) is representable in the form u = V+u,
where
PAV + (A + p)graddivV = 0. (6)

The last equation is the equation of an isotropic elastic body. So we have reduced
the solution of basic BVPs under consideration to the solution of the basic BVPs for
the equation of an isotropic elastic body.

The solution of the BVPs for the equation (6) is given in [6]. So it remains to solve
BVPs for the system (2),(3).

Expansion of regular solutions

In this section the general solution for the equations (2),(3) is obtained that gives
possibility to solve the BVP for the spherical ring.

Theorem 1. The regular solution W = (w,0) of equations (2),(3) admits in the
domain of regularity a representation

W(z) = (W +w,0), (7)
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where
1 1 1 2
AA=sHw =0, rotw=0, (A—sH)divw =0, (A—s3)w =0,

kko — k1K
2 LENS

2
divw =0, AA—-sH0=0, 5= "

0, s3=-—>0.

Proof. Let W be certain solution of the equation (2),(3). Let us prove that W can
be represented in the form (7) and it satisfies the conditions (8). Using the identity

Aw = graddivw — rotrotw

rewrite equation (2) as follows

_ kr . ke ks
W = k—graddww — k—rotrotw — k—gradﬁ.

2 2 2
Let I )
W = 2 graddivw — — grads, 9)
ko ko
2 k’6
W = ——7rotrotw. (10)
ka

Clearly, from (9),(10) we obtain

rotw =0, divw =0, (A—s2)w = 0. (11)
(2),(3) yield
Substitution of the value divw = —kﬁlAH from (3) in (12) results in
A(A — $2)0 = 0. (13)

From (9) and (10) we have
AA =YW =0 (A— s2)divw = 0. (14)

Formulas (11),(13),(14) prove the theorem.
Theorem 2. In the domain of regularity the regular solution of equations (2),(3)
can be represented in the form

1 2 3
W=V+V+V, (15)
where , )

and
AvD =0, (A-=sHv@ =0, (A-sHv® =0, rotv) =0,
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rotv® =0,  divv® =0, Ap; =0, (A —53)py = 0.
Proof. Let

1 1
1 A — 2w 2 Aw A —52)0 Ab
v:—#, V=75 1 :—¥7 Y2 = 5 (17)

51 51 S1 S1
then, by virtue of (14), it follows

Viv=w, Av=0, (A-s)v=0.

6 is the solution of a scalar equation of the same type that it satisfied by the vector
w(l); therefore, by analogy we will have § = ¢; + o, where

Ap; =0, (A —sH)p,.
Now, it is clear that if we take v(3) = V2V, we obtain representation (15). Hence

v1\/:\1f—|—\2/, 0 = o1 + po, rotv1v:0, divvzv:(),

1

AV =0, Adivv=0, (A—s)divv=0 (A—s)v=0, (18
Ap =0, (A—sDp=0, (A—s)hw=0.

Substituting in (2),(3) w = W+ w and replacing w and 6 by their values from (17),
we have ) L
kesiv — kao(V + V) = ksgrad(pr + ¢2),
(19)

kAps + kidivw = 0.
Equation(19) is satisfied by

v = —k—zgmdtpl, v = —k—lgradwg.
Finally, if we take

1 3 2
v=—"grade,, V=——grad
kZQTa 1 oy graaps

and they satisfy the conditions

1

AV =0, (A—s)v=0,

then the general solution of the thermoelasticity equations (2),(3) takes the form

w(x) = a grade,(x) + b gradps(x) + vzv(x),

i k’ (20)
0(x) = p1(x) +2(x), a= _k_z’ b=—1
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2 2 .2
where W satisfies the equations (A — s2)w =0, divw = 0.

Now let us prove that if the vector W(w, ) = 0, then ¢ = ¢y = 0, w = 0. It
follows from (20) that

a gradp;(x) + b gradps(x) + v2v(x) =0,

P1(X) + pa(x) = 0.

From here, after simple transformations we find that
divia grade;(x) + b gradps(x) + vzv(x)] = bs2py = 0.

Thus we have ¢ = @9 =0, W = 0 and the proof is completed.

Let us assume that DT is a ball of radius R;, centered at point O(0,0,0) in space
E3 and S is a spherical surface of radius R;.

Let us consider the metaharmonic equation

(A+v*)Y =0, v#0.

For this equation the following theorems are valid and we cite them without proof.
Lemma 1. If reqular vector v satisfies the conditions

(A+v*p =0, v#0, divip=0,
(zap) =0, =xe€ DT,
then it can be represented in the form
Y(x) = [2.V]h(z)),

where

i addition if

/ h(@)ds = 0,

S(0,a1)

where S(0,a1) C DT is an arbitrary spherical surface of radius ay, then the function
h in DT can be defined uniquely by means of vector 1.
Lemma 2. If reqular vector ¥ satisfies the conditions

(A+1v*p =0, v#0 divep =0, x€ DT,
then it can be represented in the form

P(x) = [x.V]ps(x) + rot[x.V]pa(x),

where
(A—s3)p; =0, j=34,
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i addition if
/ pids =0, j =34,
S(0,a1)

where S(0,a1) C DT is an arbitrary spherical surface of radius ay, then the functions
w; j=23,4 in DT can be defined uniquely by means of vector 1.

Lemma 1 and Lemma 2 are proved in [7].

Now from these theorems it follows that the following theorem is valid.

Theorem 3. The regular solution W = (w,0), where w = (wy,wy, ws), of the
homogeneous equations (2),(3), in DT, can be represented in the form

w(x) = a gradp,(x) + b gradps(x) + ¢ rotp>(x),

(21)
0(xz) = p1(z) + p2(x),
where
A(pl =0, (A - S%)SOZ =0, (A - 83)903 =0, di’UgOS =0,
kky — kiks ko ks k ke
o _ N2 = MRy 2 _ R2 __ p— _ "
57 i > 0, S5 e > 0, a by’ o c e’
% (x) = [x - V]ps(x) +rot[x.V]pa(x),  (A—=s3)p; =0, j=34
(22)

In addition if
/ pids =0,
S(0,a1)

where S(0,ay) C DT is an arbitrary spherical surface of radius a;. Between the vector
W(x) = (w,0) and the functions ¢;, j =1,..,4, there exists one-to one correspon-
dence.

Remark. By virtue of the equality

rotrot[x.V]ps = —Alx.V]py,
formula (21) can be rewritten in the form

w(x) = a gradp, (x) + b gradp,(x) + [x.V]ps(x) + ¢ rot[x.V]ps(x), 8)
23
0(x) = p1(x) + @2(x).
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Below we shall use solution (23) to solve the BVP for spherical ring.

Some auxiliary formulas

Let us introduce the spherical coordinates
x1 = psinvcosy, x5 = psindsingp, x3=pcosd, x €,
y1 = Rysindgcos g, 1y = Rysindgsingy, y3= Rycosty, y €S, (24)
p2:x%+x%+x§, 0<I<m, 0<p<2r 0<p<R;.
In the sequel we use the following notations: If g(x) = g(g1,92,93) and q(x) =

a(q1, g2, g3) then by symbols (g-q) and [g- q] will be denote scalar product and vector
product, respectively

3
(g-a)= ng%7 g d] = (9203 — 9392, 9301 — 9103, 9102 — Go1).-
k=1

The operator 5 Sf(m) is determined as follows
0 o o0 0
. = k=12 ==—,—,— .
bVl = 55w 23V ((9:101’ Oxs’ 8x3>
Simple calculations give
0 —xi—mi——cos ctﬂi—sm—
95, (z) POy 0w, PV, 70
0 —xi—xi——sin ct19£+cos2
0S,(x)  Pom  Yow, IV, T oy

Below we use the following identities [7]

(x.rotg(x)) = 1§:1 ggz(z> ) Z 8Sf(z (rot[x.V]h), = 0,

(rotg(x))x = pdive(x) — S 1u g (x), (25)
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il 35(3(,2) [x.rotg(x)]r = —(pagp +1) kz:; ggi((z)y

k=

S0 g o 9 9 9
k=1 k@Sk(a:) o 8Sk(x) ka _(%k@Sk(a:)’

3. 92 o 9, 1 02 Oxy,

252 o Tt G a8
5.0 0 o dg(p)Y (W) o OY(V,p)
Lo mam " T asw Y asm)

From this formulas it follows that, if ¢, is the spherical harmonic, the operator

0

95 k =1,2,3, does not affect the order of the spherical function:
k

; %gg(i_x)) = —m(m+ 1)g,(x).

We introduce the following notations:

@) =hi(@), Y oo F = hi(2), S e[ = hi(2), i = hi(2).

= 05(2) £~ 95:(2)
(ZF) = hl_(z)a £ an(Z) [Z F]k = hz_(z)a — %(Z)fk_ = h?T(Z)? f4_ = hI(Z)

Let us assume that f and f, are sufficiently smooth(differentiable) functions and Ay, can
be represented in the form

Wi (2) =Y B9, 9),
m=0

where hfm is the spherical harmonic of order m :

+  2m+1
fm 47 R?

[ Putcos iz )as,
S

P, is Legender polynomial of the m-th order, ~ is an angle formed by the radius-vectors
Oz and Oy,

1
COS7y = x— Z TrYk.

The BVP for the spherical ring

Let us assume that 2 is a spherical ring, R; < |x| < Ry, centered at point O(0, 0, 0)
in the Euclidean 3D space Ej3, Sy is a spherical surface of radius R, and S, is a spherical
surface of radius Rs. S = 5; U Ss.
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The boundary value problem for the spherical ring is formulated as follows:
Find in the domain € a regular solution U(u, w,#) of equations (1),(2),(3) by the
boundary conditions

W =P ), W=t (k) =@ o= R

W =P, W = (K e =) =

where F£, £+, fif are the given functions on S.

Theorem 4. Two reqular solutions of the considered BVP problem may differ by
the vector V(u, w,0), where u=0, w=0, 6= const.

The general solution of the equations (A — s2)» =0, k = 1,2, in the domain
has the form ([7])

¢<X) = i [(bgg)(zskp)ym(ﬁ? (10) + \Pg) (Zskp>Zm(197 ¢>i| ) Rl <p< RQ;

m=0

The general solution of the equation A¢ = 0 in the domains {2 has the form

qs(x):n;:io[( e ¥alt )+ ¢ By

m (7, , Ri<p<R,,
2m + 1) Ry~ 2m -+ 1)+ (90)] Pers

where Y,,,(0, @), Z,(0, @) are the spherical harmonics,

\% Jm-‘r (Zskp) \11(2) . ‘R1H7(nl-)4-
VP (ZSkRQ) "

o2 (ispp) =

Using (23), we have

dp1(x) 3902 D*p3(x
+ Z 852 ()’

=0 L e Pex) | = Peax) (D > 92p3(x)
> st v =X Ty X gy < (g ) X gy @

3 a’U)k 3 82 2(X
Y et = X Gat 000 = 60 + )

Let the functions ¢,,,(x), m =1,2,3,4, be sought in the form

m Rm+2
Yim (9, @) +

mt1 Zlm(ﬁ’ <)0):| )

o P 1
o) =2 [( Gm + 1p

2m + 1)R’2”_1
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22(%) = 3 [0 (i510)Yon (D, ) + U2 (is19) Zom (9, ¢)]

m=0

o) = 3 [0 isap) Y (0,0) + W2 (i520) 2y (0.0) ] G = 3.4,

The conditions | ¢;ds =0 j = 3,4 in fact mean that
S(0,a1)

Y30 = Yo =0, Zzo = Zao = 0.

Substitute in (26) the functions ¢;(x), passing to the limit as p — Ry, p — R, and
taking into account boundary conditions , for determining the unknown values Y}, and

Zjm, we obtain the following system of algebraic equations

maR (m+ 1)aRy { 0 (9,. }
(2m + 1) Ry ! om+1 ! p@p¢m (is10) =R 2

i [pa%wﬁs) <z‘slp>} e entm e { (6@ (isin)]

maRs _ (m+1)aRy*?
Cm+1) "™ (2m+ )Ryt

0
+b {pa_png%) (islp)} Zom — cm(m + 1) {ng + [@533 (@'SQp)]p:R ng} =h,

m(m + 1)aR} am(m + 1)R; ,
2m+ )Ry 2m + 1 ! m(m + 1) {0 (is1Fa) Yz om }

YE’)m + ZBm} = h1_m7

p:

0 .

p=R2

p=R2

0 . 0 . _
Fem(m + 1) { [%—p " 1>¢£5><w2p>} Yom + [ma—p + 1T <zs2p>] Zsm} — hy
=R p=R;

m(m + 1)aR, am(m + 1) R
71— bm Yom + \II Ry) Zom,
2m + 1 ! (2m + 1) Ry ' (m+1){Y; (i5172) 2 J

Fem(m + 1) { [%% ¥ 1>¢£,%><z'82p>} Y + [@8% 1w <z'82p>} Z } Sy
p=Rz2

p=R2
—m(m + 1){® (is3R1)Yim + Zam} = hip,

m(m + D{Ya + U5 (i53R2) Zam } = b, (27)

mR ~ m+1
Cm+ DR ™ 2m 41

0
Zim + | —0P (i Yo,
1m + |:8p¢m (ZSIP)} o 2



20 Bitsadze L.

0 hy, 1
+ |:_\Ij£2)(281p):| ZQ’m = 2m + 5= _m7
dp R k' Rib?
m (m + 1Ry { 9 @), }
om+1 ™ (2m 1 )RI? gpm (1517) o
0 hi
+ {—‘Pﬁ)(ism)} Zo =1 4
dp =R k Rob
Note that for m = 0, (27) is transformed to the system
b _ _ _
Z10 = mMm 0=hsy, 0=hy, 0=nhg, 0=nhg,
0-Yy+ {ggb(()?)(@'slp)} Y50 + [2\1/62) (islp):| Zog = I + Zlo, (28)
dp =Ry ap =Ry le b
0-Y, +[—¢( zsp} Y: —i—[ \IJ 1S1p A :—+—Z
10 9" (is1p) . 20 op 0 (is1p) o 20 =97, bR 10

Taking into account the identities .J; (z) =/ Zsinz, HS)(Z) = —iy/ 2 exp(iz), after

certain calculations, the determlnant of system (28) takes the form

exp Risq
R1 RQ sinh S1 R2

+51(Ry — Ry)cosh sy (Ry — Ry)} # 0.

5 == {(S%RlRQ - 1) sinh 81(R2 - Rl)

Thus we have shown that Yj, is an arbitrary constant and for the solution to exist
it is necessary that the conditions hi, = 0, hyy =0, RZhjy = R?h,, be fulfilled.
By virtue of the uniqueness theorems of solutions of the BVP, we conclude that the
determinant of system (26) for m > 1 is different from zero and we obtain the required
solution of problem in the form of series.
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Let us consider the linear ordinary differential equation of third order
u" + pr(t)u” + pa(t)u’ + p3(t)u =0, (1)

where pi : Ry — R (k= 1,2,3) are continuous functions.

A nontrivial solution of equation (1) is called oscillatory if it has an infinite number
of zeros, and non-oscillatory otherwise. In the present paper, when pj3 is non-negative,
we prove the statements on the existence of unbounded oscillatory solutions, and also
show that non-oscillatory solutions vanish at infinity.

We will first prove some auxiliary propositions.

Lemma 1. Let a < 1, let the conditions

lim sup " |py.(t)| < +oo (k =1,2,3) (2)

t—4o00

be fulfilled and let equation (1) have a solution, satisfying for some u > 0 the condition

lim sup ¢t #|u(t)| < +o0. (3)
t——+o0
Then . .
lim sup t #7209 (1) < +o00 (j = 1,2). (4)

t——+o00
Proof. By (2) and (3) we can choose numbers ¢y > 1 and ¢ > 1 such that

thpr(t)] < ¢ (k=1,2,3) for t > t,, (5)
t™Hu(t)| < ¢ for t > ty. (6)

Therefore

2
|u///(t)| < Czt(j*3)oz|u(j)(t)| for t > t,. (7)
=0
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Assume that the lemma is not true, i.e.

2

lim sup Z t=HHIe 0 (1) = +-o0.
t——+o00 =1

Then there exist increasing sequences (¢;);°, (M;) > such that t; > to, t; — +oo,

M; — 400 as i — +o0 and

2
M, = Zt u+]a|u | _maX{Zt“HﬂuU)(tﬂ . tOStSti}

j=1
Thus we can assume that there exists [ € {1,2} such that for any i € N

) 2

Suppose first that [ = 2 and h > 0 satisfies the inequalities

1 1
he < T he(l — h)P3 < T

Then by virtue of (7)

ti

[ ()] > |u"(t; /|u'” Vds > — t“ o /cMis“_?’o‘ ds

and therefore if 1 — 3a > 0, then

M.

(2 —20 —3a M
W/ (t)] > == 472 — Mt e >
2 (2 K3 K3

o LT for t € [t — htY;ty),

and if u — 3a < 0, then

Mi — — Ml —2a
" (t)] > 71&5 2 Mt (1 — )Pt > th 2

for t € [t; — ht; t;].

ht$
R

u(§) _ u(so) _ u(s1) u(sz)

2 (s1—80)(s2—50) (51— 50)(52—81) (52— 50)(52— 1)

Let so = t; — htd, sy = t; — So = t;. Then there exists £ € [sq, $o] such that

Hence by virtue of (6) we obtain

tu 204<‘ /I ’<2Z|u 8] SCC,utu 2a

hta = i
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where ¢, =1 if 4 >0, and ¢, = (1 — h)* if 4 < 0. Therefore

32cc,

M; < %

For any + € N, which is a contradiction. In an analogous manner we obtain a contra-
diction when [ = 1. The lemma is proved.

Remark 1. For @« = = 0, Lemma 1 is proved in [1]. For second order equations
see [2].

Lemma 2. Let > 0, a > 0, let the conditions

lim sup |py (t)| exp(—akt?) < 400 (k =1,2,3)

t—+o00

be fulfilled and for some p > 0 let equations (1) have a solution, satisfying the condition

lim sup |u(t)] exp(—put®) < +o0.

t—+00

Then '
lim sup |u ()] exp(—(p + ja)t’) < +oo (j = 1,2). (8)

t——+o0

Proof. By transformation of the variable

u(t) = exp(pt®)v(s), s= /exp(aTﬁ)dT, 9)

equation (1) takes the form
v"(s) + p1(s)v”(s) + p2(s)V'(s) + pa(s)v(s) =0, (10)
where
Bi(s) = (pr(0) + pBE7™" + (s + @) B + B+ 20)6% 1) exp(—at?),
Pa(s) = [m(t) + () (Bt 4 (e + @) BT + BB — 172+
+ BT 4 BB = DT 4 e+ ) B4
(e @)B(B = D72 + (s + a)?82272 | exp(—2at”),
ps(s) = [p:s(t) + pa ()t +

+ o1 () (pB(B = 72+ p?B2%072) + 12 570 ‘3] exp(—3at”?).

It is obvious that for equation (10) the conditions of Lemma 1 are fulfilled if it is
assumed that g = 0 and o« = 0. Therefore

limsup [v9(s)| < +00 (j = 1,2).

t——+o0
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This, by virtue of (9), implies inequality (8). The Lemma is proved.
Theorem 1. If the inequalities

po(t) <0, p3(t) >0 for t€ Ry,
+o00

/ﬂmm+ﬁ<+m

0

are fulfilled, then there exists a solution of equation (1) such that

limsupt—2H [ (1)) >0 (j =1,2).

t——+o0

(11)

(12)

(13)

If, besides, condition (2) is fulfilled for some a < 1, then equation (1) has a solution

which, in addition to (13), also satisfies the condition

lim sup t =172 |u(t)| > 0.

t—+4o0

(14)

Proof. Let u; and uy be solutions of equation (1) which satisfy the initial conditions

Let us introduce the notation

vor(t) = wn()us(t) — ui(t)ua(t),

wnalt) = exp ([ pn(6)) ds ) (0105 0) ~ i 0a),

vi2(t) = exp (/t[pl(S)h dS) (W) (H)us (1) — u (H)us(t)).

The vector-function x = colon(vgy, vg2, v12) is a solution of the problem

¥ = A(t)x, x(0) = colon(0,0,1),

0 mp(—j@mm+w)

mmm+w) on

where

A(t) = [ —pa(t) exp (

~+ O
~+

pwwm(/m@mﬂﬁ 0 ()]
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Let

)= cton( [ seso( = [ntolar) anr).

Then y satisfies the system

y' = B(t)y.
where |
B(t) = 0 exp ( - 0/[p1(8)]+d8> 0
0 0 '
0 0 ;

Since z(0) > y(0) > 0 and
A(t) > B(t) >0 for t>0

it is easy to show that
z(t) > y(t) for t > 0.

Therefore .

v () > /SeXp(—/S[pl(T)]+dT) ds for t > 0.

With (12) taken into account, we obtain

vorlt) (15)

t2

lim sup
t—+00

Let us show that u; or us satisfies condition (13). Indeed, assuming the contrary, we
have ) ,
. —% o . -2, _ -
1tEeroot 2u(t) = tBeroot 2u;(t) =0 (i =1,2),
which contradicts condition (15).
Now assume that conditions (2) are fulfilled, then
lim ¢ 2u(t) =0 (i=1,2).

t—+o00

In that case, by virtue of Lemma 1

limsupt 2w (t) < 400 (i=1,2)
t——+o00

and therefore
lim t_21)01 (t) = O,

t——+o0

which contradicts inequality (15). The theorem is proved.
Corollaries 1.2.1, 1.3.1 (see [3], pp. 453, 455]) and Theorem 1 immediately give rise
to the following propositions.
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Corollary 1.1. Let a < 1, conditions (11),(12) and
: ko _ _
Jim () =0 (b =1,2),
0< lierinf t3ps(t) < limsup t**ps(t) < +oo
—400

t——+o0

be fulfilled. Then equation (1) has an oscillatory solution which satisfies conditions
(13) and (14).
Theorem 2. Let (11),(12) and let one of the following two conditions

. 3 _
tl}g{lxt p3(t) = +o0 (16)
or
. 2 o
t£+moot pa(t) = +00 (17)

be fulfilled. Then equation (1) has a solution such that

lim sup t#|u'9 (t)| = +o0 (18)

t—+o00

for any u > 0 and j € {1,2}. If, besides, conditions (2) hold for some o < 1, then
there exists a solution of equation (1) which satisfies condition (18) for any p > 0 and
Jj€40,1,2}.

Proof. It is analogous to the proof of Theorem 1, now for t > t; > 0 we put

t

0 e (= [In(o)eds) o

0
B(t) = 0 0 Ly,
v(v—1)t—2 0 0

Ofts” exp (— bf[pl (7)]4 dr) ds

y(t) = colon( / & exp ( _ / ()]s dT) ds. 1", yt”_l)

if conditions (16) are fulfilled, and

0 mp(—/@mm+w)<)
B(t) = ; 4 0 R
[ s exp (- Jr(7)]+ dr) ds
0 0 0
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if (17) is fulfilled.

Remark 2. In Theorems 1 and 2, the requirement that py(¢) < 0 for ¢ > 0 is an
essential one.

Indeed, let us consider the differential equation

1 9
u///_u//+1ul+1u:07 (19)

which has a fundamental system of solutions

N 4 IRV

e, e 'sin—1t, e "cos—t.
2 2

Thus equation (19) has no unbounded solution though all the conditions of Theorems
1 and 2 are fulfilled except the condition that the function py is non-positive.
According to Theorem 3.2 [5], Theorem 2 immediately implies
Corollary 2.1. Let a < 1, let conditions (11), (12), (16) and

limsup t*|pe(t)| < +oo (k=1,2), limsupt**ps(t) < +oo

t—+00 t—+o00

be fulfilled. Then equation (1) has an oscillatory solution, satisfying conditions (18)
for any p > 0 and j € {0,1,2}.
Theorem 3. Let o > 0,

t

lim sup ¢~ /[pl(s)]+ ds < +o0, (20)

t—+o00

let inequality (11) and one of the following two conditions

lim #*73ps(t) = +o00 (21)
t——+oo
or
: 2—20 o
i 220]po(0)] = o (22)

be fulfilled. Then (1) has a solution such that
lim sup [u) (t)| exp(—put?) = 400 (23)

t—+o00

for any p >0 and j € {1,2}. If, besides, for some a >0
lim sup |py(t)] exp(—akt?) < 400 (k=1,2,3), (24)
t—-+o00

Then there exists a solution of equation (1) which satisfies condition (23) for any > 0
and j € {0,1,2}.

Proof. We begin by assuming that condition (21) is fulfilled. Let g > 0 and uy, us,
Vo1, Vo2, V12, T, A be defined as they were in proving Theorem 1, and let v be chosen

so that .

/[pl(s)]+ ds < (v —2u)t° for t > to. (25)
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Put
y(t) =
t s
= colon (/exp <—/[p1 (7)]+ dT) exp(vs?) ds, exp(vt?), vot™ ! exp(yt")).
0 0
Then y on the interval ]0, +-00[ satisfies the system
y = B(t)y,
where
t
0 exp ( - /[pl(s>]+ ds) 0
B(t) = 0 )
0 0 1
boy () 0 0
v(o —1)ot" 2 + 120?277 2) exp(vt?)
by (t) = ( - . ) :
[exp (= [[p1(7)]+ dr) exp(vs?) ds
0 0
By (21) it is easy to verify that
t
ps(t) exp ([ [pi(s)]+ ds)
I s = +o0.
oy bou (1) e
If ¢ > 0 is such that
x(to) > ey(ty) > 0,
A(t) > B(t) >0 for t > t,
then it can be easily shown that
x(t) > ey(t) for t > t.
Therefore
t s
vo1(t) > 5/exp ( — /[p1<7')]+ dr) exp(vs?)ds for t > t.
0 0
Hence by virtue of (25) we obtain
t
lim sup vou(t) = +00. (26)

ttoo 177 exp(2ut?)
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Let us show that u; or uy satisfies condition (23). Indeed, if we assume the contrary,
we have

lim sup |u;(t)| exp(—put?) < +o00 (i = 1,2),

t——+o0
lim sup |u; (1)|t7 exp(—put?) < +oo (i = 1,2).
t—+00
Then
lim sup vo; ()7 ! exp(—2ut”) < +o0,
t——+o00

which contradicts (26). Thus u; or uy satisfies condition (23).
If, besides, (24) holds and

lim sup |u;(t)] exp(—ut?) < +o00 (i = 1,2),

t——+4o00

then by virtue of Lemma 2 we obtain

lim sup |u;(t)| exp(—(p + a)t?) < 400 (i =1,2)
t——+o0
and
lim sup voy (t) exp(—(2p + @)t?) < +00.
t—+o00
But, as above, this is a contradiction.
Now assume that condition (22) is fulfilled. Then the proof is carried out as above,
only in this case

0 exp (—/[pl(s)]+ ds) 0
B(t) = vot®Lexp(vt9) ’ 0 ol
bfexp (- Of[pl (7)]+ dr) exp(vs?) ds
0 0 0

y(t) = cozon< / exp ( - / oy (7)) dT) exp(vs”)ds, exp(vt7), 1).

The theorem is proved.
According to Theorem 3.2 [5], Theorem 3 immediately implies
Corollary 3.1. Let conditions (11), (20) be fulfilled and
limsup |px(t)] < +00 (k=1,2), lim p3(t) = +oo,
t—+o00 t—+o00
lim sup ps(t) exp(—3at?) < +oo.

t——+o0

Then equation (1) has an oscillatory solution, satisfying conditions (23) for any j €
{0,1,2}.
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In conclusion, we present a theorem on an asymptotic oscillatory solution of equa-
tion (1) when p3 is a non-negative function.
Theorem 4. If equation (1) is oscillatory,

pi(t) >0, pa(t) <0, p3(t) >0 for t>0 (27)

and
“+00

/pl(t) dt < 400,

0

then equation (1) has a non-oscillatory solution and any of such solutions satisfies the
condition
w(t)u'(t) <0 for t >0, lim wu(t) =0, (28)

t—+o0

To prove this theorem we need lemmas on the asymptotic properties of solutions of
the differential equation

/

( = (Lt))) +p(t)z =0, (29)

ag(t) (11(

where a;(t) : Ry —10,+00[ (i =1,2), p: Ry — Ry are continuous functions.
Lemma 3. Let

+oo +o0 t

/ as(t) dt = +o0, / a(t) / ax(s) ds dt = 400 (30)

0 0 0

and equation (1) have the solution x which for some ty > 0 satisfies the conditions

2(t) >0, (1) >0, ( x’(t)>/>0 for t > to.

a(t)

Then equation (29) is non-oscillatory.

For the proof of this lemma see ([6], Lemma 4.2).

Lemma 4. If p is not identically zero in the neighborhood of +oo, conditions (30)
are fulfilled and x is a solution of equation (29) that satisfies the inequality

z(t) >0 for t > t. (31)

Then there exists t; > tg such that either

!/
a:’(t)) >0 for t >t

or

/
x'(t)) >0 for t > to.
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Proof. To prove the lemma it suffices to show that
/

agl(t) <a11(t) x'(t)) >0 for t>t.

Since p(t) > 0, the function
S
—(—=
a9 \a1

(32)

does not increase. If (32) does not hold, then since p is not identically zero in the

neighborhood of oo, there are t; >ty and ¢y < 0 such that

agl(t) <a11(t) x'(t))l < ¢p for t>t.

This inequality readily implies that

t S1
Y (1)

z(t) < Co/al(sl) /a2(52) dsy dsy + ay(ty)

t1 t1 t1

t
/al(S)d8+$(t1) for tztl

If in the latter inequality we pass to the limit as ¢ — 400, then, taking (30) into

account, we have

The obtained contradiction proves (32). The lemma is proved.

Lemma 5. Let condition (30) be fulfilled. Then for the existence of a solution x

of equation (29) that satisfies the condition

lim z(t) =1,

t—+o00
it 1s necessary and sufficient that

+00 s3

//a2(32 / (s1) dsy dsop(ss) dssz < +oc.
0 0

Proof. Sufficiency. Choose such a large ¢y that

+00 s3

/ / (82 / (s1) dsy dsop(ss)dss = O < 1.

to to

Let
S = {x e O([to, +00]) : 0 < z(t) < 2fort > to}.

Consider the integral operator F': S — S defined by the equality

+o0 83

=1+ / / (52 / (s1) ds dsap(s3)a(ss) dss.

(33)
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If u,v € S, then

|F(u)(t) = F(v)(t)|

+0oo s3 52

< ‘ / /a2(82)/a1(51) dsy dsop(s3) (u(sz) — v(s3)) dss

<lu—v|-© for t > to.
This means that F' is a contracting operator and by virtue of the well-known Banach
theorem, F' has a fixed point, i.e. there exists x € S such that

+0o0 s3 52

z(t) =1+ / /GQ(SQ)/CLl(Sl) dsy dsap(ss)dss for t > ty.
¢t

t

It is easy to verify that z is a solution of equation (29) that satisfies (33).
Necessity. Assume that x is a solution of equation (29) that satisfies condition (33).
Then by virtue of Lemma 4 there exists ¢, > 0 such that
1

(1) > 0, f@<0,(a®

/
x'(t)) >0 for t>t.

The equality

(jj@wﬂjmﬁﬂﬁn&m®ﬂ$@

z—/@@ﬁ/MQQ%M@za(zgy

t

+/m@g@1

to

0]
(ll(t)

—z(t) + x(ty) for t >t

implies (34). The lemma is proved.
Lemma 6. Let condition (30) be fulfilled. Then for the existence of a solution x
of equation (29) that satisfies the condition

lim z(t) = 1. (35)

t—+00

It is necessary and sufficient that

+o0o 53

/p(83) /al(sl) 7a2(32) dsy dsy dss < +00. (36)

0 0
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Proof. The sufficiency is proved as in Lemma 5, but in this case the set S and the
operator F': S — Sare defined as follows

S = {u € C([tg, +o0) : Ogu(t)g/tal(s)/sag(ﬂ dr ds for tZto},
Flu)(t) = /t a1(s1) ]1@2(52) dsy ds,
+/ta1(81)7&2(32) +/0020(53)U(33) ds3 dsy ds.

Necessity. If x is a solution of equation (29) that satisfies condition (35), then,
taking into account Lemma 4, we obtain

w(t) >0, 2(t)>0, (%(t) Y1) >0 for 1> 1y,

Then by virtue of (35) from the equality

we have (36). The lemma is proved.
Lemma 7. Let equation (29) be oscillatory and let condition (30) be fulfilled. In
addition to this, assume that there is a number ¢ > 0 such that the inequality

> al(sz) - C

- GQ(SQ)

ai(s1)
ag(Sl)

holds for for any s; > 0 and sy > 0, where s; < so. Then equation (29) has a
non-oscillatory solution and any such solution tends to zero at infinity.

Proof. The existence of a non-oscillatory solution follows from Theorem 14.2.1 in
[7]. Since equation (29) is oscillatory, by virtue of Lemmas 3, 4, 6

—+00 s3 S1

/p(SB)/CLl(Sl)/aQ(SQ) dsy dsy dss = +00.

0 0 0
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Then, since

+oo s3
//a2(32 /a1 s1) dsy dsap(ss) dss
0 0
+oo s3 )
//CLQ S9o / ) 2(81) d51 d82p(53) ng
+oo 83
/ / (82 / (s1) dsy dsap(ss) dss,
we have

+oo 83
/p(sg)/ag(sg /a1 s1) dsy dsy dsg = +00.
0 0

Therefore, if  is a non-oscillatory solution of equation (29), by virtue of Lemmas
3,4,5
lim x(t) = 0.

t—-+o0

The lemma is proved.
Proof. [Proof of Theorem 4] Equation (1) on the interval [0, +oco[ can be written
in the form (29), where

t

p(t) = palt)o(t) exp ( [ ds),

0

ay, ao are defined by the equalities

arlt) = v(t), as(t) = v2(t) exp ( - / pi(r) dT),

and v is a solution of the equation

(g()v")" +q(t) =0,

where .
g(t) = exp ( [n df), o(t) = gD (),
0
which satisfies the condition
v(t) >0, V'(t)<0 for t >0.

Then, as is known (see [7, pp. 419-422]), condition (30) is fulfilled.
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Moreover,
52
ar(s1)  ay(sa) vi(s1) < / >
= . ex - T)dT
wlon) ~als) Wil TP 00
S1
> aa(s2) -c for s9 > 81 >0,
CLQ(SQ)
where

+0o0

o (- [ niorir).

0
Thus all the conditions of Lemma 7 are fulfilled. This lemma immediately implies the
validity of the theorem.
Remark 3. In Theorem 4 the condition py(t) < 0 for ¢ > 0 is an essential one.
Indeed, let us consider the equation

u/// _|_ iul _|_ C
a3 Py
where ¢ > 0. By Theorem 5 [8] this equation is oscillatory. Equation (37) can be
written in the form (29), where

u=0 (t>a>1), (37)

N

ar(t) = 13, ag(t):% ¢

) p(t) = —t5/2 1n3/2t.

Since
+0o0 s3 52

/ / 0 (55) / ax(s1) dsy dsap(ss) dss < +oo.

By virtue of Lemma 5, equation (37) has a solution, satisfying condition (33).
Corollaries 1.1, 2.1 and Theorem 4 immediately give rise to the following proposi-
tions.
Corollary 4.1. Let a < 1, conditions (27) be fulfilled and

“+o00

. ko _ _
/pl(t) dt < +oo, I #*py(t) =0 (k=1,2),
0
0 < liminf t3ap3(t) < lim sup t3ap3(t) < +400.

t—+00 t—+o00

Then equation (1) has both non-oscillatory solutions, satisfying condition (28) and
oscillatory solutions, satisfying conditions (13), (14).
Corollary 4.2. Let conditions (27) be fulfilled and

—+00

/pl(t) dt < oo, T tpelt) =0 (k=1,2),
0

2v3
%_ < liminf #*ps(t) < limsup t*p3(t) < +oo.

t—+oo t—+o00
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Then equation (1) has both oscillatory solutions satisfying both condition (28) and
conditions (13), (14).

Remark 4. From the results of [9] (see also [10], [11]) it follows that under the
conditions of Theorem 4, the solution of equation (1), satisfying condition (28), is
unique to within a constant multiplier.
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PROBLEMS FOR SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS
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Abstract. Some two-point singular boundary value problems for second order linear differ-
ential equations are investigated.
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1. Introduction

Consider the differential equations
u" +pt)u=0 (1.1)

and
V' +q(t)v =0, (1.2)

where p,q € C((a,b); R). For these equations Sturm [1] proved a comparison theorem,
which later was widely used in studying the boundary value problems and asymptotic
behavior of solutions. For generalizations of Sturm’s theorems see [2], and for singular
case see [3-5].

2. Some auxiliary lemmas

Lemma 2.1. Leta <ty < b,

p,q € C(a, to; Ry) (2.1)
and .
/ ((s) — q(s))ds > 0 for t€ (ato] (2.2)
t
Let v € C®((a,tg]; [0, +00)) be a solution of equation (1.2) under conditions

lim v(t) =v(ap+) =0, v'(to) =0

t—ao+
o ds
:+OO
/ao v?(s) ’

where a < ag, v(t) > 0 for t € (ag,tg] and v(ag) = 0. If u € CP((ag,to); R) is a
solution of equation (1.1), then at least one of the conditions

1) there exist t. € (a,ty) such that u(t,) =0
or

and
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2) U,(to) S 0

15 fulfilled.
Lemma 2.2. Leta <ty <b

p,q € C([to,b); Ry) (2.3)

and .
/ (p(s) —q(s))ds >0 for t€ [to,b).
to
Let v € C®([tob); [0, +00)) be a solution of equation (1.2) under conditions
v(bp—) = lim v(t) =0, V' (tx) =0

t—bo—

o s
= +OO,
|, 7

where by < b, v(t) > 0 fort € [tg,by) and v(by) = 0. If u € CP[ty,by); R) is a solution
of equation (1.1), then at least one of the conditions

1) there exist t. € (to,by) such that u(t,) =0
or

2) u'(tg) >0

15 fulfilled.
Remark 2.1. If in Lemmas 2.1 and 2.2 p(t) > ¢(t) for t € (a,b), then conditions
(2.1) and (2.3) are unnecessary.

and

3. Two-point boundary value problems

Consider the problems on the existence of solution of the equation

u" +q(t)u = f(t), (3.1)

where ¢, f € C((a,b); R), under conditions

u(a+) =0, u'(b—) =0, 3.2)
uw'(a+) =0, wu(—)=0 (3.3)

and
u(a+) = u(b—) =0. (3.4)

Theorem 3.1. Let g € C((a,b]; Ry), (t—a)q € L([a,b]) and there exists a function
p € C((a,b]; Ry) such that

/t (p(s) —q(s))ds >0 for te (a,b),

and equation (1.1) has a solution u : (a,b) — (0,+00) such that u'(b) > 0. Then
problem (3.1), (3.2) has only one solution.
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Corollary 3.1. Let ¢ € C((a,b]; R4), (t — a)q € L([a,b]) and

’ b—t
/tp(S)ds§4(b_a)(t_a) for t € (a,b).

Then problem (3.1), (3.2) has only one solution.
Corollary 3.2. Let ¢ € C((a,b]; R4), (t —a)q € L([a, b)),

1

q(t) < = ap for t € a,b).

Then problem (3.1), (3.3) has only one solution.
Theorem 3.2. Let g € C([a,b); R:), (b—t)q € L([a,b]) and there ezists a function
p € C([a,b]; Ry) such that

/t(p(s) —q(s))ds >0 for te€a,b),

and equation (1.1) has a solution u : (a,b) — (0,400) such that u'(a) < 0. Then
problem (3.1), (3.3) has only one solution.
Corollary 3.3. Let ¢ € C([a,b); R}), (b—t)q € L([a,b] and

/aq(s)dsgél(b—ta_)((z—t) for tea,b).

Then problem (3.1), (3.3) has only one solution.
Corollary 3.4. Let ¢ € C([a,b); R), (b—t)q € L([a,b]) and

1

Then problem (3.1), (3.2) has only one solution.
Theorem 3.3 Let p;q € C((a,b); R), (t —a)(b—t)q € L([a,b]) and

at) <p(t) for t€ (a,b). (3.5)

If there exist t, € (a,b) and solution u € C®((a,b); (0, +00)) of equation (1.1) such
that u'(t) > 0 fort € (a,t.] or ' (t) <0 fort € [t,,b), then problem (3.1), (3.4) has
only one solution.

Corollary 3.5. Let ¢ € C((a,b); R), (t —a)(b—t)q € L([a,b]) and let (3.5) be

fulfilled, where
1

plt) = { 40 1 a)’

4(b —t)?
Then problem (3.1), (3.4) has only one solution.

for te (a, aTer},

for te [QTH)’b)'
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ON ONE PROBLEM OF STATICS OF THE THEORY OF ELASTIC MIXTURES
FOR A SQUARE WHICH IS WEAKENED BY A HOLE AND BY CUTTINGS AT
VERTICES

Svanadze K.

Abstract. In the present work we consider the problem of statics of the linear theory of
elastic mixtures for a square which is weakened by a hole and by cuttings at vertices about
of finding an equally strong contour. The hole and cutting boundaries are assumed to be free
from external forces, and to the remaing part of the square boundary are applied the same
absolutely rigid punches, subjected to the action of external normal contractive forces with
the given principal vectors.

Relying on the analogous to Kolosov-Muskhelishvilis formulas, in the linear theory of
elastic mixtures, the problem reduces to a mixed problem of the theory of analytic functions
(the Keldysh-Sedov problem), and the solution of the latter allows us to construct complex
potentials and equations of an unknown contour efficiently (in analytical form). The analysis
of the obtained results is carried out and the formula of tangential normal stress vector is
derived.

Keywords and phrases: Equally strong contour, elastic mixture, generalized Kolosov-
Muskhelishvili representation, Keldysh-Sedov problem.

AMS subject classification (2010): 74B05.

Introduction

The problems of the plane theory of elasticity for infinite domains weakened by
equally strong holes have been studied in [1], [8] and also by many other authors.
The same problem for simple and doubly-connected domains with partially unknown
boundaries are investigated in [2], [9] etc. The mixed boundary value problems of the
plane theory of elasticity for domains with partially unknown boundaries have been
studied by R. Bantsuri [3]. Analogous problem in the case of the plane theory of elastic
mixtures is considered in [16].

In [14], using the method, suggested by R. Banstsuri in [4], the author gives a
solution of the mixed problem of the plane theory of elasticity for a finite multiply
connected domain with a partially unknown boundary having the axis of symmetry.
Analogous problem in the case of the plane theory of elastic mixtures has been studied
in [17]. In the work of R. Bantsuri and G. Kapanadze [5] the problem, of statics of
the plane theory of elasticity, of finding an equally strong contour for a square which
is weakened by a hole and by cuttings at vertices are considered.

In the present work, in the case of the plane theory of elastic mixtures we study
the problem, analogous to that solved in [5]. For the solution of the problem the use
will be made of the generalized Kolosov-Muskhelishvili’s formula [17] and the method,
developed in [5].
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1. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixtures in a complex
form looks as follows [7]
02U 0*U
K =0 1.1
= (1)

: = : o) 1(_0 - 0 0 1(_0 - 0
where z = x1 + 129, Z = X1 — 129, = 5(8_231_28_m2>’ % = §<71+Z<9_x2>’ U=

(uy + dug, uz + iug) T, v’ = (ug,uz)” and v’ = (us,uys)’ are partial displacements

€4 €5 -1 1 ms —Ma
,  m )

e5 € Ag |[—m2 my

K= —§em_1, e= [

2
Ay =myms — my, My =e;+ §€3+k, €1 = az/dm

62:—0/612, 63:a1/d2, d2:a1a2—02, ap = iy — As, Qg = flg — As,
as = p3+ X5, €1 +eg=0b/dy, es+es=—co/dy, es+es=ald,
a=a+b, b=ay+by, coy=c+d, dlzab—cg,
bi =+ M+ A5 —agpa/p, by =po+ Ao+ A5+ aspr/p, az = A3 — Ay,
p=p1+p, d=p2+A3— s —agp1/p= pz+ A\ — A5 + azpa/p.

Here pu1, pa, f13, Ay, p = 1,5 are elasticity modules, characterizing mechanical properties
of a mixture, p; and p, are its particular densities. The elastic constants ju1, o, i3, Ap
= 1,5 and particular densities p; and p, will be assumed to satisfy the conditions of
inequality [13].
In [6] M. Bashaleishvili obtained the following representations:

U— (“ * “) = (=) + 5673 + 03) (1.2)

= [(A=2E)p(2) + Bzp(2)' + 201 (2)], (1.3)

where ¢(2) = (¢1,p2)T and 1(2) = (Y1, 1)T are arbitrary analytic vector-functions:

I - S |

0
=ni— +nNg—, n= (nl,ng)T

0
0xy dry”  On(x) 0x 019

are the unit vectors of the other normal, (Tu),, p = 1,4, the stress components [6]

(Tu), = 7“/11”1 + 7"/21”27 (T'u)y = 7“/12711 + T/22”2>

/! i ! "
(TU)B = TN+ Ty N, (TU)4 = TN + TyoNa,
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Consider the following vectors [16] or [17]

(71_) _ T _la « o' —Qi,u Uy
e co b \g" Ory \uy)’ 14
1.4
@ _ The _la < ¢ —Zi,u Uy
4 co b \¢" Oxy" \ug)’
(1) 7J21 a; ¢C W’ 0 Ug
e = — 2—
! (7’/2,1) [C a2] (W" - a9'3'1“ Uy )’
/ / (1.5)
(727) _ 19 _ a; ¢ w n 2i U
7y c az| \w" Ors" \ug)’
¢ =dive/, 0" =dive’, & =rotu/, wrotu”.

Let (n,S) be the right rectangular system, where S and n are respectively, the

tangent and the normal of the curve L at the point ¢ = t; + it,. Assume that n =

(n1,n2)T = (cosa, sina)? and S° = (—ny, ny) (—sina,cosa)T, where a is the angle

of inclination of the normal n to the ox;-axis.
Introduce the vectors

T (1.6

Up = (u1ng + ugng; usng + U4n2)T, Us=(uanq — uing; ugng — ugng)’ ;
o — ((Tu)1n1 + (TU)Q’I’LQ
" (Tu)3n1 —|— (TU)4H2 (TU)4R1 — (Tu)gng

/ /
[T21”1 — Tne,
Oy =

" " " " T Q0
[7’21711 — N2, TNy — 7"12”2] S

Let us call (1.8) vector the tangential normal stress vector in the linear theory

elastic mixture.
After elementary calculations we obtain

1 2
o, = (7-) cos® o + (7') sin? o + 7 COs ¢ Sin v,
1 2
o = (7') sin? o + (7') cos® o — 7) COs (¢ Sin v,
1. 1 1 1
o5 = §((7-) — (7')) sin 2c + 577 cos 20 — 56*

n @ , @O (2
wheren=mn+mn,"=n —1n.
Direct calculations allow us to check on L [16]

utor=7=7+7 =202F — A- B)Rey(1);
ou, U, ,
)| =200, (

oUs U, .
"n+2ﬂ(§+g) +iloy =2 - 0
(A — 2B)o(t) + BIg(D) + 2up )]s = —i / ¢ (0, + i0r,)ds:

L

)

)’ o ((Tu)2n1 - (Tu)1n2>7 W

rhong — 1l onglT S0
2271 1272] ) (1.8)

of

(1.9)
1.10)

(1.11)
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where det(2E — A— B) > 0, pio is the curvature of L at the point t. Everywhere in the
sequel it will be assumed that the components U,, and U, are bounded [7].

Formulas (1.2), (1.3) and (1.9), (1.10) are analogous to those of Kolosov-Muskhelishvili
in the linear theory of elastic mixture [12].

2. Statement of the problem and the method of its solving

Let an isotropic elastic mixture occupy on the plane z = x1+ix5 a doubly-connected
domain G, a square. The side lenght of square will be denoted by a’.

Let to the boundary of the square which is weakened by an interior hole and cuttings
at vertices be applied the same absolutely smooth rigid punches, subjected to the action
of external normal contractive forces with the known principal vectors. The hole and
cutting boundary is free from external forces.

We formulate the following problem: Find an elastic equilibrium of the square and
analytic form of the hole and cutting contours under the condition that tangential
normal stress vector, i. e. (1.8) vector, will take one and the same constant value
oy =K’ K°= (K}, KY) = const on them.

X,

J 2/ A 4,
o

yAl A, X,

R 4

RN

Figure 1:

In these conditions, we call the assemblage of hole and cutting boundaries an equally
strong contour. Owing to the symmetry of the problem, we consider the shaded part
of the square, i. e. the curvilinear polygon AgA;A;A3A4A5As and denote it by Dy,
where Ay is the mid point of the arc AgA; (a shaded in fig.1).

The boundary of the domain Dy consists of rectilinear segments L, = Ung ), ng ) =
A;Ai (j=1,2,4,5) and unknown arcs Ly = L(()l) U L[()Q), L(()l) = A3Ay, L(()z) = AgA;.

The boundary conditions of the problem are of the form U, = U® = const on
ng) U L§4), and U, = 0 on Lgl) U LSE’), vector (1.7), is equal to zero on the entire
boundary of the domain Dy, i.e. 0, =0on L = Ly U L.

Relying on the analogous Kolosov-Muskhelishvilis formulas (1.9)-(1.11), the above
posed problem is reduced to finding two analytic vector-functions ¢(z) and (z) in DY
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by the boundary conditions on L

Rey/'(t)=H, te€ Ly, H= %(2E — A-B)'KY, (2.1)
Im¢'(t) =0, te€ Ly, (2.2)

Ree " @W[(A — 2E)p(t) + Bt/ (t) + 2up(t)] = C(t), t € Ly, (2.3)
(A= 2E)p(t) + Bto'(t) + 2up(t) = BO(1), teLY, j=12 (2.4)

where a(t) is the angle, made by the outer normal to the contour L; and the 0z;-axis,

C(t) = Re [—z'/A on(to) expila(to) —a(t)|dSo+vexp(—ia(t))|, te L, (2.5)

t .
BY(t) = —i / o (to) exp(ia(te))dSy + v, te LY, j=1,2, (2.6)
A

v = (v1,12)7 is an arbitrary complex constant vector. It is easy to notice that C(t) is
a piecewise constant and BY) is a constant vector-function.
Moreover, if t € Ly, then we can write

Ree @t = Ree M A(t) (2.7)

where A(t) = Ay, for t € ApAgyq.

In the sequel, the vector-function ¢(z) will be assumed to be continuous in a closed
domain Dy, and ¢'(z) and ¢(z) are continuously extendable on the boundary of the
body Dg except possibly of the points Ay, A3z, A4, Ag in the neighborhood of which
they admit the estimate of the type

|(,0;(Z)|, |¢J(Z)| < M|Z - Ak‘|_6k7 J=12 (28>

where 0 < §;, < %, k=1,3,4,6, M = const > 0.

The equalities (2.1)—(2.2) are in fact the Keldysh-Sedov problem for the domain
D.

By virtue of the condition (2.8), the (2.1)-(2.2) problem has a unique solution [10]
or [11], ¢'(2) = H.

Consequently, leaving out of account the constant summand we get

o(z) =Hz = %(2E — A—B) 'K (2.9)

Here KV is to be defined in the course of solving the problem.
On the basis of formulas (1.11), (2.5), (2.6), (2.9) and putting v = 0, the boundary
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conditions (2.3), (2.4) and (2.7) yield

1 1
Im <§K0t - 2uw(t)) =0; ITm (§K°t + 2uw(t)) =0, t e L{";

1 1
Re (§K°t - 2m/f(t)) =P; Re <§K°t - 2uw(t)> =a’K° — P, t e L

Re (%K% - 2M¢(t)) —=P; Im (%K% + 2,up(t)> =P teL:
(2.10)

1 1
Im (§K°t - 2/w(t)) =a"K" — P; Im (§K0t - 2u@/}(t)) =P, te L

1 1
Re <5K °t — 2u¢(t>) =0; Re (éKOt + mb(t)) =0, t e L{Y;

1 1
Re (§K°t - 2w<t>) =P; Im <§K0t + mb(t)) —0, t € LY;

where

P:/ o,dS, j=1,2,4,5.
LY

Let the function z = w((), ( = & + i€ map conformally the upper half-plane
(Im¢ > 0) onto the domain Dy. By [ we denote the preimages of the points A
(k = 0,6) and assume that 83 = —1; 84 = 1; By = —oo. Moreover, owing to the
symmetry, we may assume that 05 = —fs; fg = — 1. Note that

—00< 1 << —-1<1< =0y < =01 <+00.

Consider the vector-functions

8(0) = ~i(5K%(Q) — 2mi((©))): (211)
W(Q) = SK%(C) + 24mb(u(C)). (212)

Taking into (2.11) and (2.12), boundary conditions (2.10) take the form

Im¢(&) =0, & € (—00;81) U (—P2;00);
Rep(&1) =0; & € (Bi; b2);

Im (&) = —P; & € (B 1), (2.13)
Rep(&) = a°K® — P, & € (1;—f);
ImW(&) =0, & € (—o0;82) U(=p;00);
ReW(&) =a’KY — P, & € (By;—1), (2.14)

ImU(&) =P, & € (-1,—p),
ReW(&) =0, & € (=2, —Ph).

The above problems are the vector form of the Keldysh-Sedov problems [10], [11]
for a half-plane Im ¢ > 0.
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A solution of problems (2.13) and (2.14) can be represented as follows [10], [5]

@[ o0 _py [ [T dG
M= [< " P)/l NCET /ggx(&x&—o]’ (2.15)

_eQfop0  py [ & S
Y= [( " P)/@ waa—o T / m(&)(él—o}’ (2.16)

x1(€) = V(€= B)(¢ = B)(C — 1)(C + B),
x2(¢) = \/(C + B1)(C + B2)(C+ 1) (¢ = Ba)

Note that, under the x;(¢) sign we mean a branch whose decomposition near the
point at infinity has the form

GO =Craid+a +, j=12

It is easy to show that

_ ) ba&l, &1 € (=00, 41) U (B2, 1) U (=2, 0)
&) {—ilxl(&)l, & € (81, 5) U (1, — o) (247
) xe()], &€ (=00, B2) U (=1, —fB2) U(—pP1,00)
xalb) = {z’\(gm, 61 € (B —1) U (~fo,—By): (219
X1 (€)] = [xa(=&1)l. (2.19)
By virtue of (2.17)-(2.19) formulas (2.15) and (2.16) can be written as
$(¢) = 9(¢), ¥(Q) =g(=¢), Im¢>0, (2.20)

where g = (g1, 92)".

_ Q[ o0 o dg, o[ dg,
9= [( "k P>/1 MERCES P/52|xl<o|<51—<>]' (2.21)

Now note that we will seek for a bounded at infinity solution of the problems (2.13)
and (2.14). On the other hand, from (2.20) and (2.21) we conclude that, the necessary
and sufficient condition for the existence of such a solution is of the form

070 —dg _ bode
WK P [ P/ﬂ2 e (2.22)

Having found the vector-function ¢(¢) and ¥(¢), by virtue of (2.12) and (2.20) we
can define the vector-functions K°w(¢) and ¥ (w(¢)) by the formulas

1

KPw(Q) = 9(=0) +ig(0),  ¥(w(Q) = 71 [9(=0) —ig(Q)]. (2.23)
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Let us now pass to finding analytical form of the unknown equally strong contour.
Equations for the parts Lgl) and L(()Q) of the unknown contour can be obtained from
the image of the function w(¢) for ¢ = &% € (—1,1) and ¢ = &% € (—o0, B1) U (=1, )
respectively.

By the Sokhotskii-Plemelj formulas [11] and owing to (2.21) and (2.23), we find

that the equations for the arcs L(()l) and L(()Z) are given by the formulas respectively

_ 0 P ; 0 P, _¢0 ; 0 P
w({?) _ g1(=¢&7) + 1[“;?@(91@1) + P) _ g2(—€7) + Z[<(g82<€1) + 2)’ (2.24)
~01(=8) +i(91(&))  go(=€0) +i(g2(ED))
w(&y) = : 70 L = L 7 L (2.25)
where
o0\ T Xl(f?){ 070 e d&: _ ! &,
o6 = (o) = XKD [ P | e
Revert now to the condition (2.22). Equality (2.22) yelds
1 F
KO = EP(l v FD (2.26)
where e s ”
= omer Bl e (227

It should be noted the integrals appearing in (2.27) and (2.21) are expressed in
terms of elliptic integrals of the first and third kind [15].

Of special importance is the definition of parameters KY, K9, 8; and S, involved
in the above formulas. For defining above parameters we use the way and results,
described in [5].

Refer now to formulas (2.26) and (2.27). the values F; and F, are the complete
elliptic integrals of the first kind [15], namely [5]

P () e (3.

where
M =356 = 1) E F(g/m’) = /2(1 — m®sin® 6) "2 do,
2 0

mO — 265(81 — 1)(B1 + B2) m0 — (B2 + 1) (81 — B2)
' 20,(/—1) 1 7 26:(81—1)

(of interest is the fact that m? +m) = 1 and m{ > m)).
Fixing the value of the parameter m{ (and hence of parameter mJ = 1 — m{) for
finding 8, and [ we obtain the equality

B3 + (1 —2m) (B —1)B2 — B =0 (2.28)
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the discriminant of the above equation(with respect to f33) is of the form D = (1 —
2m(1))2(51 — 1)2 + 4ﬁ1
Introducing the notation v/—/; = z, from the condition D > 0, x > 1 we get

- 1+ 2y/mi(1 —m)) _
- 2mf — 1
If we assume that D > 0, then to every value > [, and hence 3; < —I?, according
to (2.28), there correspond two values [, both satisfying the condition 5y < —1, but

this contradicts the condition of the uniqueness of the conformally mapping function
z = w((), and hence we should have D = 0 from which it follows that

b=

0 0 0
_[1‘}‘22’”31(1 ml)]z; /32: (le—l)(ﬁl—l) (229>
my — 1 2

Summing the obtained results, we conclude that for the fixed m{ in the domain
(%, 1), from the table of complete elliptic integrals we can find F; and F;, and using
formulas (2.26) and (2.27) we define parameters K, 31, 8 and the conformally mapping
function z = w(() formulas (2.24) and (2.25) which establishes analytical form of the
unknown equally strong contour.

Direct calculations show that as m! increases, the length of the contour Lél) de-
creases, Lgf) increases, and K j = 1,2, increases (see [5]).

In a particular case, for m{ = 0,75 we have approximately [18]

2,28
Fy =2,156; F,=1,686; K} =——P;, j=12;
a

Bi=—13,T; Br=-3,T; g;(0)=0,743P;, j=1,2;
w(0) = (0, 764a°; 0, 764a°);
g;(=1)=0,386P;, j=1,2; w(—1)=(a’0,608a");
gj(00) = gj(—00) =1,08P;, j=1,2
w(00) = w(—00) = (0,474a°; 0, 474a);
9;(—=B1) = 1,451P;;  w(f1) = (0,636a°;0).
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1. Formulation of main results

Let to1 < tpa < 01 < 0y < t11 < t12 be given numbers and R} be the n-dimensional

vector space of points
n

v= (', 2" 2P =) (@),
i=1

where T' means transpose; suppose that O C R} and Y C R} are open sets, U C R,
and V C R? are compact sets. Further, let Ey = Ef(I; x O, R?), be the space of
functions f(t,z) € R? defined on I; x O and satisfying the following conditions:

1.1. for any = € O the function f(t,z) is measurable on I = [to1, 0a];

1.2. for any function f € E; and any compact set K C O there exist functions
mysk(-), Lyk(-) € Li(I1, Ry), Ry = [0,00) such that for almost all ¢ € Iy,

|f(t, )| < myr(t),Vee K

and
|f(t,21) = [, 32)] < Lypg ()| — 2], V(z1,20) € K*.

Let B} = E} (I X O, R}) be the space of functions f(¢,z,u) € R} defined on I; x O x U
and satisfying the following conditions:

1.3. for any (z,u) € O x U the function f(¢,z,u) is measurable on Iy;

1.4. for any function f € E} and any compact set K C O there exist functions
my(-), Lyk(-) € L1(I1, Ry) such that for almost all ¢ € Iy,

\f(t,x,u)] <mp(t),V(r,u) e K xU

and
\f(t,z1,u) — f(t,29,u)| < Ly g(t)|wr — xa|, V(21 22,u) € K* x U.

Analogously are defined the following spaces £y = Ey(l x Y, R)") and E} = E7(Iy %
Y x V, R?), where ]2 = [81, tlg].
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Let fo € EY and go € E] be given functions and z9 € O and y; € Y be given
points. By €2 and A we denote sets of measurable functions v : Iy — U and v : [y — V,
respectively.

To each element

w = (tO,Q,tl,u(-),v(-)) cW = [t()l,tog] X [91,92] X [tll,tlg] x ) x A

we assign the two-stage system of differential equations

T = fO(t>x7u(t))7t € [t079]7
Y= gO(t7 y,U(t)),t S [07 tl]

with the initial condition

and the intermediate condition at the switching moment 6
y(0) = Q(0, z(0)). (1.3)

Here the function Q(t,r) € R} is continuous on [0, 6] x O and continuously differen-
tiable with respect to x € 0.

Definition 1.1. Let w = (tg,0,t1,u(-),v(-)) € W. The pair of functions ®(w) =
{z(t) = z(t;w) € O,t € [to,0);y(t) = y(t;w) € Y.t € [0,t1]} is called solution corre-
sponding to the element w, if the conditions (1.2) and (1.3) are fulfilled. Moreover, the
function x(t) is absolutely continuous and satisfies the first equation of (1.1) almost
everywhere (a.e.) on [to, 0]; the function y(¢) is absolutely continuous and satisfies the
second equation of (1.1) a.e. on [f,t4].

Definition 1.2. The element w € W is admissible if for corresponding solution
®(w) the condition

y(t) = (1.4)
holds.

The set of admissible elements is denoted by Wj.

Definition 1.3. The system (1.1) is called controllable with the conditions (1.2)-
(1.4), if W, # 0.
To formulate the main results we introduce the following notation: let C' > 0, N > 0
and K C O, M CY be given numbers and compact sets,

Fe={feE;: / [y (t) + Ly (D)t < €},

Iy

52
VK,(; = {f S FK,C’ : ‘/ f(t,%)dt‘ <4,Vs1,80 € I1,x € K},(S > 0;
S1

Crn ={o€ B, / mgae(t) + Ly ()t < N},

Ip)
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Hyrs = {9 €Gun: ‘/ g(t,y)dt‘ < 0,Vs1,82 € I,y € M};

S1

Flo = {f € Bl / s (8) + Ly (t))dt < (J},

I

Vﬁyé—{fEF}é’C:/ sup | f(t,z,u)|dt <6
I (

1 (z,w)EKXU

Iz

J
Gth{ge@:/h%Mm+Lw4 }
<d};

Mo = {g €Gyy: / sup  |g(t,y,v
I (y,v)EM XV

By-={yevilu-yl< g},g >0,

Theorem 1.1. Let the system (1.1) be controllable i.e.  there exists
wo = (oo, o, t10, uo(+), vo(:)) € Wy. Then for arbitrary ¢ > 0 there exists a number
d = d(e) > 0 such that for any f € Vi, s and g € Hyy,, s the perturbed two-stage
system

i(t) = fo(t, z,u(t)) + f(t,z),t € [to, ], (15)
y(t) - gO(taya U(t)) + g(t>y)vt € [evtl] ‘
with the conditions
z(to) = o, y(0) = Q(6,2(0)),y(t1) € By, . (1.6)

1s controllable. Here Ky C O and My, CY are compact sets, containing some neigh-
borhoods of Ko = {x(t;wg) : t € [teo, o]} and My = {y(t;wo) : t € [fo,t10]}, respec-
tively.

Theorem 1.2. Let the system (1.1) be controllable. Then for arbitrary € > 0 there
exists a number § = 0(¢) > 0 such that for any f € Vi s and g € Hy, s the perturbed
two-stage system

.I‘(t) = fO(taxﬂi(t)) + f(t7x7u<t))7t € [to,e],
y(t) = go(t,y, v(t)) + g(t,y,v(t)),t € [0, 1]

with the conditions (1.6) is controllable.

Definition 1.4. The pair of functions ®(w) = {#(t) = &(t;w) € O,t € I1;§(t) =
g(t;w) € Y,t € I} is called a continuation of the solution ®(w), if Z(¢) on the interval
I, is a continuation of the solution z(t),t € [to,0] and §(t) on the interval I, is a
continuation of the solution y(t),t € [6,¢1] (see Definition 1.1).

Theorem 1.3. Let the following conditions hold:

1.5. for any w € W there exists the continuation solution ®(w) ; moreover, there
exist compact sets K1 C O and My CY such that, for any w € W

T(t;w) € Ky, t € I and §(t;w) € My, t € Is;
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1.6. the sets
folt,z, U) ={fo(t,z,u) : u € U} for any fized (t,z) €I, x O

and
90(s5,4, V) ={go(t,z,v) : v € V} for any fired (s,y) € I, x Y

are conver;
1.7. there exist sequences {e;} — 0,{;} = 0,{fi € Viy,.5,} and {g; € Hup,, 5.} such
that for any i = 1,2, ... the perturbed system

l‘(t) = fD(tax7U(t)) + fi(t>$)at S [t079}7
y(t) = go(t,y,v(t)) + gi(t,y),t € [0,t]

with the conditions

x(to) = o, y(9> = Q(0>x(9))7 y(tl) € Bylﬁi (17)

is controllable i.e. there exists admissible element w; = (to;, 0;, t1s, u;, ;).

Then the system (1.1) is controllable with the conditions (1.2)-(1.4). Here K13 C O and

My, CY are compact sets, containing some neighborhoods of K1 and My, respectively.
Theorem 1.4. Let the conditions 1.5, 1.6 hold and let there exist sequences

{ei} = 0,{0:} — 0,{fi € Vi, 5.} and {g; € H},, 5.} such that for any i =1,2,... the

perturbed system

2(t) = folt,z,u(t)) + filt, z, u(t)),t € [to, 0],
y(t) = gO(tv y,’l](t)) + gi<t7yvv(t>>7t € [07t1]

with the conditions (1.7) is controllable. Then system (1.1) is controllable with condi-
tions (1.2)-(1.4).

Finally, we note that Theorems, analogous to Theorems 1.1-1.4 are given in [1] for
ordinary and delay differential equations. Optimal control problems for various classes
of the two-stage and multi-stage systems are investigated in [2-17].

2. Auxiliary assertions

Theorem 2.1([1], p.101; [18], p.108). Let © = (iy, 0,1, u(-),9(-)) € W be a
given element and let ®(w) be the corresponding solution. For arbitrary € > 0 there
exists a number 6 = 0(g) > 0 such that for any f € Vi,s and g € Hy; s the perturbed
two-stage system

{a’s(t) = folt,,lt) + f(t,2),t € [fo, 0]
y<t> = gO(tayaﬁ(tD + g(tay)’t € [6751]

with the conditions

z(to) = xo,y(0) = Q(0,z(0))

has the solution

O(w; f, 9) = {x(t; W, f,g) € Ki,t € [to, O y(t; W, f, g) € Mi,t € [0,5,]}
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and the following inequalities
|$(taﬁ)) - fE(t,@D, f7 g>| S 57t S [5075]7 |y(t7w) - y(tvwa f7 g)| S 57t € [é7 t~1]

hold.Here Ky C O and My C'Y are compact sets, containing some neighborhoods of
{x(t; D) : t € [to,0]} and {y(t;w) : t € [0,11]}, respectively.

Theorem 2.2([1], p.101; [18], p.108). Let the condition 1.5 hold. Then for
arbitrary € > 0 there exists a number § = d(g) > 0 such that for any w € W, f € Vi, 5
and g € Hyy,, 5 the perturbed two-stage system

I(t) = fO(t7m7U(t)) + f(t,x),t € [t079]7
y(t) = go(t,y,v(t)) + g(t,y), t € [0,t1]

with the conditions
z(to) = xo,y(0) = Q(0,z(0))

has the solution

O(w; f,9) = {@(t;w, f,g) € Kn,t € Ii;9(t;w, f,9) € Miy,t € I}
and the following inequalities

(tw) — 2w, f,9)| et € Islgtw) —g(tw, f,9)] S et €Iy

hold.
Lemma 2.1 ([19], p.86). Let z(t) € O,t € I be a continuous function and let a
sequence { fi € Vi o} satisfy the condition

52
lim sup {’/ fi(t,x)dt) 181,80 € I, x € K} =0.
s1

1—00
Then o
lim sup {’/ fi(t,:v(t))dt‘ : 81,89 € Il} = 0.
51

1— 00

Here K C O is a compact set containing some neighborhood of K.

Let p(t,u) € R? be a given function, defined on I; x U and satisfying the following
conditions: for almost all ¢t € I; the function p(t,-) — R is continuous; for each u € U
the function p(-,u) : I; — R? is measurable.

Theorem 2.3([20], p.257). Let the set

P(t) = {plt,u) : u € U}
be convex and
pz() € Ll(Il,R2)7pZ(t) < P(t) a.e. on Il,i = 1,2,....

moreover,
lim p;(t) = p(t) weakly on I.

1—00
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Then
p(t) € P(t) a.e. on I

and there ezists a measurable function u(t) € U,t € I such that

p(t,u(t)) = p(t) a.e. on Ii.

3. Proof of Theorem 1.1
Let g9 > 0 be so small that
Kso = {.T € R;L cdx e Ko, |I‘ — .’2’| < 50} C intKgl

and
M, ={y€ R? :3g € Mo, |y — 9| < e} CintMoy.

According to Theorem 2.1 for any € € (0, go] there exists a number 6 = d(¢) > 0 such
that for any f € Vi, s and g € Hyy,, s the perturbed two-stage system

Z‘(t) = fO(twru Ug(t)) + f(ta x)7t € [t007 90]7

y(t) = go(t, y,vo(t)) + g(t, y),t € [0, tr0]
with the conditions

x(too) = w0, y(0) = Q(6o, x(0o))
has the solution
O (wo; f,9) = {x(t;wo, f,9),t € [too, Oo); y(t;wo, f,9),t € [0, t1o]}
and the following inequalities
|2 (t; wo) — x(t;wo, f,9)| < e,t € [too, Ool; [y(t; wo) — y(t;wo, f,9)| < e, € (0o, o]

hold.

Consequently, the element wy is admissible for system (1.5) with conditions (1.6)
for any f € Vi, s and g € Hyy, -

Remark 2.1. Theorem 1.2 is a simply corollary of Theorem 1.1, since for any
u(-) € Q and v(-) € A we have

52
sup{‘/ f(t,x,u(t))dt‘ 181,50 € [, € K} < / sup | f(t, z,u)|dt,
S1 Il

(z,u)e K XU

52
su{| [“attyowf s e hyedf< [ sw gty

s1 I (y,v)EM XV

4. Proof of Theorem 1.3

Let g9 > 0 be so small that

Ki.,={z€R!: 3t € Ky, |xv— 1| <eo} CintKy
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and
Ml,z—:o = {y € Rzl 1 dy € My, ’y - ?j| < 50} C mitMy;.

It is clear that there exists a subsequence {e;, } C {1, €9, ...} such that &;, € (0,e0],7 =
1,2, .... On the basis of Theorem 2.2 for each ¢;, there exists d;, € {1, ds, ...} such that
for W;, = (tOiU 92'1 s t17i1 y Uiy s Uil), fil and gi, We have

\z(t;wi,) — x(t;wiy, fir, i) < e, t € 1 (4.1)
and
ly(t; wi,) — y(t;wiy, firs 9i)| < €iy,t € L. (4.2)
Thus,
T(t; Wiy, fir, 9in) € Kiegrt € Iy
and

y(t;winfingh) € MLEO?t € ]2'

The sequences {x(t;w;,)} and {y(t; w;, )} are uniformly bounded and equicontinuous,
since
x(t;wy) € Ky, t € I, y(t;wy,) € My, t € I

and
|x'(t;wi1)‘ < ’fo(t,l‘(t; wil)vuil (t))’ < mg, (t) = Mfy,K, (t)7t € Il?
|y<t; wi1)| < |g0<t, y(t; wil)? Ui1(t))| < man <t> = Mygg, My <t>7t S IQ-

By the Arzela-Ascoli lemma from sequences {z(t; w;, )} and {y(¢; w;, )} we can extract
uniformly convergent subsequences. Without loss of generality, we assume that

lim z(t; w;,) = xo(t) uniformly in Iy, (4.3)
71— 00
lim y(t; w;,) = yo(t) uniformly in Io; (4.4)
1— 00

11111 tOil = t007 hIIl Qil = 007 hIIl tlil = th-
i—>00 i—00 i—00
On the basis of (4.1)-(4.4) we obtain

lim x;, (t) = zo(t) uniformly in Iy, lim y;, (t) = yo(t) uniformly in I,
1—00

i—ro0
where
iy (1) = x(t;wiy, firs 9i) Yin (1) = y(& iy, Gir )5 Vi)
Obviously,
iy (toiy) = w0, Yiy (0iy) = Q03 24,(01,)), viy (tiy) € By, e

therefore

Zo(too) = Zo, Yo(0o) = Q(0o, z0(6h)), Yo(t10) = v1. (4.5)
Further,

t

iy (1) = 2o + / [fo(s, i, (8), iy () + fir (8,74, (5))]ds = g +/ pi(s)ds + a;(t)

toiq toiy
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where
pi(s) = Jfo(s, zo(s), ui, (), s (t) = . fir(s,20(s))ds,
B0 = [ Ul (5 (5) = pildse i) = [ 1fuls.(9) = Flss(s)lds.

It is not difficult to see that

/52 it wo(0))de] 51,50 € 1}

pi(s)] < i, (0,1 = 1,2, ()] < sup {

i (1) — :Uo(t)’ /1 | Lic,, (s)ds,

; <
|Bi(t)] < max

/ sz.l,KH(s)ds <C

Without loss of generality,we assume that

[Yi(0)] < max |z, (1) — wo(?)

tely

22, (1) — zo(t) ‘

lim p;(s) = p(s) weakly on [

1—+00
([20], p.239). Moreover, we have
lim «;(t) = 0, lim G;(t) = 0, lim ~;(¢) =0
1—00 1—00 1—00

(see Lemma 2.1, 4.3 and 4.4). From (4.6) it follows

ZL‘()(t) =Ty + / p(S)dS,t € [too, ‘90]

too
Obviously,
pi(s) € P(s) = fi,(s,70(s),U),s € L.

From Theorem 2.3 follow the inclusion p(s) € P(s) and existence of such a function
up(+) € €2 that

p(s) = fo(s,xo(s),ue(s)), a.e. on .
Thus,

xo(t) = xo +/t Jo(s, zo(s), up(s))ds,t € [too, bo].

In a similar way, taking into account convexity of the set go(¢,y,V’), one can prove
t
Yo(t) = Q(bo, wo(6o)) +/ 90(8,Yo(s), vo(s))ds, t € [0, t10], vo(-) € A.
o

Consequently, the element wy = (tog, 0o, t10, wo(+), vo(+)) is admissible (see (4.5)).
Remark 4.1. Theorem 1.4 is proved analogously to Theorem 1.3.
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THE SOLUTION OF THE STRESS PROBLEM OF THE THEORY OF
THERMOELASTICITY WITH MICROTEMPERATURES FOR A CIRCULAR
RING

Tsagareli 1., Svanadze M.

Abstract. The solution of statics of the stress boundary value problem of the theory of
thermoelasticity with microtemperatures for the circular ring is presented. The representation
of regular solutions for the system of equations of the linear theory of thermoelasticity with
microtemperatures by harmonic, biharmonic and metaharmonic functions is obtained. The
solution is obtained by means of absolutely and uniformly convergent series. The question
on the uniqueness of the solution of the problem is studied.

Keywords and phrases: Thermoelasticity, microtemperature, sress problem, uniqueness
theorem, explicit solutions.

AMS subject classification (2010): 74F05, 74G10, 74G30.

1. Basic equations

The basic system of equations of the theory of thermoelasticity with microtemper-
atures can be written in the form [1,2]:

pAu(x) + (A + p)graddivu(z) = Bgradus(x),
kAus(z) + kydivw(x) = 0, (1)
ksAw(x) + (kg + ks)graddivw(z) — ksgradus(x) — kaw(z) = 0,

where \, i1, B, k, k1, ks, k3, ky, ks, ke are constitutive coefficients [1]; u(z) is the displace-
ment vector of the point x = (1, x2); u = (u1,uz); w = (wy, ws) is the microtemper-
atures vector; ug is temperature measured from the constant absolute temperature Tp;
A is the Laplace operator.

Problem. Find a regular vector U = (uy, ug, us, wy, wy), (U € CY(D)NC?*(D), D =
DUS,US)) satisfying in the ring D a system of equations (1) and on the circumferences
Sp and S7 the boundary conditions:

dus(2) ’

[T'(0.,n)u(z) — Buz(2)n(2)]" = fi(z), |k () + kw(z)n(2)| = fi(z), ()

[T7(0:; m)w(2)]" = p'(z), i=0,1,

where f = (f1,f2), p = (p1,p2), f1,[fe, f3 are the given functions on Sy and Si;
T'u is the stress vector in the classical theory of elasticity; T"w is stress vector for



The Solution of the Stress Problem of the Theory of .... 63

microtemperatures [1,2]:

T (0, n)u(z) = /Lag—g) + An(z)divu(z) + ,LLZnZ Ygradu;(z),
(3)
T" (O, n)w(z) = (ks + k¢) 8157(1 ?) + kyn(x)divw(x) + ks Z n;(x)gradw;(x).

=1

The above-formulated problem of thermoelasticity with microtemperatures can be
considered as a union of two problems A and B, where:

Problem A. find in a ring D the solution u(x) of equation (1);, if on the circum-
ferences Sy and S there are given the values of the vector 77(9., n)u(z) — Busz(2)n(2);

Problem B. find in the ring D the solutions uz(x) and w(z) of the system of
equations (1), and (1)s,if on the circumferences Sy and S; there are given the values
of the function k%qu((;)) + kyw(z)n(z) and of the vector T"(0,, n)w(z).

Let (u/,uf,w’) and (u”,uf, w”) be two different solutions of any of the problems.
Then the differences u = v’ —v”, w3 =us—uj and w = w"—w” of these solutions,
obviously, satisfies the homogeneous system (1), and zero boundary conditions (2).
For a regular solutions of equation (1); and equations (1), and (1)3 the Green’s formulas
2,3]:

/D By (u(z), () — Bua(x)divu(a)]dz = — / W) [T (0, n)uly) — Bus(y)n()]'dy So

+/Su1(y)[T’(8y, n)u(y) — 5“3(3/)71(3/)]1%51,

/D[TOEQ(w(x), w(x)) + k| gradus |* +(ky + ksTo)wgradus + ko Ty | w(z) [*]dx
= — Js u§W)[kduus(y) + kuw(y)n(y)]* + Tow () [Ty, n)w(y)]'d,So (4)

+ [ us() [kOnus(y) + kiw(y)n(y)]' + Tow' (y) [T (0, n)w(y)] dy Sy

is valid, where

E1 (u, ’LL) = (/\ + u)(@lul -+ 82u2)2 + u(@lul — 82’11,2)2 -+ ,u(c?gul + 81u2)2;

1
Eg(w, w) = 5(2]{?4 + k’5 + kG)(81w1 + 82102)2 + (k’G + k:5)(81w1 — 82w2)2

+(k6 + k5)(82w1 + 81102)2 + (k@ — k5)(81w2 — 82w1)2,

under the conditions that: A4+u, p > 0and, accordingly, 2ks+ks+kg > 0, kgt ks > 0
are nonnegative quadratic forms.

Taking into account formula (4), under the homogeneous boundary conditions for
the problem B, we obtain Fy(w,w) =0, graduz =0, w=0. The solution of the
above equations has the form: uz(z) = const,w = 0.

The following uniqueness theorem is valid.
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Theorem. The difference of two arbitrary solutions of the BVP (1), (2) is the
vector U = (uy, ug, ug, wy, ws), where ui(x) = —c1xg+clzy + qr, ue(r) = —c121 +clag +

G2, u3 = c,wy = we = 0;¢,c1,q1,q2 are arbitrary constants, | = TowmE

2. Solution of the problem B

90 mo 00 md
dre  COr  r oY dm  or  r oy
we rewrite the representation solutions of the system [(1)q,(1)3] and the boundary
conditions of the problem B in the tangent and normal components [3]:

Taking into account formulas:

us(x) = @1 () + a(),

0 ) 10
wn () :a1§¢1(1f’)+a2§¢2( T) — @3—% e3(), (5)
o) = a1y () + 0 (o) + aa (),

Ous " i ow, 1" ky 0wsi_i
o] et =gon w5 o g 5] =
ow, 1" ks [Ow, Z_ ;
] ] -

where w,, = (U) ’ n)aws = (U) ’ S)7pn = (p ’ n>7ps = (p ’ S)an = (nbn?)as = (_n27n1)7

(6)

i 5 | kko — k1K

EEE ZzO,l;k A901:Ol;(A“‘S%)]ZD?:Ov(A"{'Sg)%:O’S%:_277137
k

53 = _k_Z>a1 = _k_za@ = k] a3 = k_i; ke = kya+ ks + ke; K, ko, kg, k7 > 0;

Wy = (UJ : n), Ws = ('UJ ’ 5) Pn = (p n>7 Ps = (p : S>7 n = <n17n2>7 s =
(—ng,m1); == (r,¢), r*=az}+12% Ry isradius of the boundary Sy; Ry is radius
of the boundary 5;.

The harmonic function ¢; and metaharmonic functions ¢y and (3 are represented
in the form of series in the ring ([4], p.417; [5]):

p1(r) = XlOlnT"'Ylﬂ‘l'Z (Xim = (V) + 17" (Xum - v (¥))],

pa(w) = Y [In(s2r) (Xom - vin () + Kon(527) (Yam - ()], (7)
3(x) = Y [m(s57)(Xam - 5($)) + Kon(s37) Yam - s (1)),

where 1,,,(s;r) and K,,(s;r) are the Bessel’s and modified Hankel’s functions of an imag-
inary argument, respectlvely, Xpm and Yy, are the unknown two-component constants
vectors, v, (1) = (cosmip, sinma)), s,,(¢) = (—sinmap, cosmap), j = 2,3,k = 1,2.

We substitute (7) into (5) and then the obtained expressions substitute into (6).
Passing to the limit, as r — Ry and r — R; for the unknowns X,,, and Y,,, we obtain
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a system of algebraic equations:

1 Al
ﬁXlO + ags3 1§ (s2R;) Xao + K{ (s2R;)Yag] = 2—1{1;07
i 7

Az‘
1§ (s3Ri) Xs0 + K (s3Ri)Ys0 = 2k6;§33’
1 Al
E(l + klal)Xlo + 82(1 + CLQ)[I(I)(SQRZ‘)XQO + K{)(SQRZ)}/QO] = 230,

m2

R2
Ln(s3R;) + sgf;n(ngi)} X + armB " [kz(m + 1) = kgm] Yim

almRZn_2[k:7(m - ].) — k4m]X1m + a9 |:]€7S§]#L(82RZ) — ]{74 ]m(SQRZ'> Xgm

m 1
s | =

R | R;
m2
+ag | krso K (s2R;) — k4ﬁKm(52Ri):| Yom
m [ 1 , ;
—|—k7a3§ ﬁKm(SSRi) + 53K, (s3R;i) | Yam = AL,

1
almRyhz[%m + k:g(m - 1)]X1m + azﬁ |:_k56_]m(52Ri) + 52(]{75 + kG)L/n(SQRz) Xgm
2

R; R;
—|'Cl3 [k’ﬁS%LZl(SgRZ) — k’5%[m($3Rz)]X3m — almRi_(mH) [k@(m + 1) + k5m]Y1m

1
‘f“CLQm |:—]{Z6—Km(82Ri) + (k’5 + ]{76)82K;,L(82Ri):| ng

R; R;
m2 .
+as |:—k5?Km(83Rz> + kGS?')K#L(SgRIL)] YE’)m = AZQm?
k’llem_lem + SQ],,In(SQRZ‘)(k: + k‘lag)XQm — klagglm(S;gRi)Xgm
—k?lmRi_(m—H)}/lm + 82(]{3 + k?lag)K;n(SgRi)}/ém — k;lag)%Km(s;;Ri)ng = Aém’

where A%, . AL and A} are the Fourier coefficients of the functions p,(z), ps(2)
and f3(z), respectively; i=0,1; m=1.2.....

3. Solution of the problem A

The solution of the first equation of the system (1) with the boundary condition
(2) is represented by the sum

u(r) = vo(@) + v(2), (8)

where vy is a particular solution of equation (1); :

(o) = g oradl=5a(a) + eu(o)}
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2()) is the solution of the

@p is a biharmonic function: Apy = ¢1; v(z) = (v1(x),v
= 0 which can be found by means

homogeneous equation pAv(x)+ (A + p)graddivo(z)
of the formulae [6]

0 0 0 0
a—xl[cbl(x) + ®o(z)] — 8_1-2%( z), va(x) = a—@[q’l(fﬂ) + ®q(z)] + 8_:1:1%( z),

where A®(z) =0, AAdy(x) =0, AAP;(z) = 0;

vi(z) =

m=1 Rl
o) - $ (E)m (Zan - vl
30 () v+ rarza - + 5 () 2
m=2 - S (9)
Py(z) = e 22'“) Z: (}%) (Zsm - sm(¥))

T
K m=2

A2 1 ?
—|-—< —; 'u)rlnr(ZH -51(¢)) + Zyolnr + - (];: > Z30,
1

where Zj,, are the unknown two-component vectors, k = 1,2, 3,4. Taking into account
(8) and relying on the condition (2);, we can write

[T'(0,,n)v(2)]" = ¥'(2), z2€S8; i=0,2,

where Ui(2) = fi(2)+ Bui(2)n(z) — [T" (9., n)v(2)]* is the known vector, Uf = (¢, ).
We rewrite this conditions in the tangent and normal components:

[T(0:, n)o(2)];, = V(2),  [T7(0:, mv(2)]s = Wi(2), (10)

where ,
ovilz) 1 0ui2)
or R; oY 7’

(0 mo(a)l = (25 ot O,

i _ d i 10
h(2) = - (B(E) + 94(2)) - L i),

10, i 9 i
_ raw@ 1(2) + @4(2) + 5-(B5(2)).

[7'(0:, n)v(2)], = (A + 2p)

vi(2)
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We substitute (9) into (10). Passing to the limit, as » — Ry and » — R; for the
unknowns Z,,; we obtain a system of algebraic equations:

A

A(m Zlm + B( )tm+222m + C

(M)t™ 271, + B(m) Zom + C(m)t™ Zay, + E1(m) Zym = 10,
(m)
(m)
(m)

)

m) Zsm + Ea(m) Zam = 1y,
)
)

D

m)t" 2 Z 1 + B(m) Zay + D(m)t™ Zsy, + E3(m) Zay = (2,

(
(
(
D(m)Zsn + Es(m) Zum = (.

A(m) Zym + B(m)t"™ 2 Zy,, +

where B
t= 20 ealm) =20 w(m o+ 1), es(m) =260+ p)m 1),
1
2u(m —1)m 2u(m+1)m e1m(m — 2
Agm) = 200y = 2Ty om0 22)
1 0 1
e1(m)m 2020+ 3 ea(m)(m + 2
Dim) = ~etmm (1) = 2B gy Calmln )
0 0
2(2X + 3p) _e(m)(m+2) 2 _ex(m)m
E2(1> - Rl ) EQ( )_ ILLRO t ) Eg(l) RQ’ Es(m) - R%
_ 2 _ep(m)t™ B
E4(].) = Rl lan, E4(m) = —IMRO y m = 2,3,....

If the principal vector and principal moment of external stresses is equal to zero, then

we obtain
27 27

Rf/\l@(e)de - Rﬁ/xpg(e)de =0.
0 0

From here when m = 0, we get: R?(} = R2(). When m = 0 for the unknowns Zg, Zog
and Z49 we obtain the system

2p 2(A\ + ) ¢ 24 G
R2Z10 + R—%ZZO =5 —R—3Z40 =

Z3p is an arbitrary constant, ¢ = 0, 1.
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