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COMPUTATION OF POISSON TYPE INTEGRALS

ABSTRACT. We consider problems occurring in computing the
Poisson integral when the point at which the integral is evaluated
approaches the ball surface. Techniques are proposed enabling
one to improve computation effectiveness.
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0. Let B* be the ball from R? with center at the origin and radius p:
B* = {r e R?||2] < p}

and B~ be the unbounded domain:
B~ = {«l‘ € ]Rw Je] > /1}.

S=oaB* =08 = {z e R®||z| = p}.

The solution of the Dirichlet problem for the Laplace equation in the
domain B* is expressed by the Poisson integral. The solutions of
the Dirichlet problem in B~ and of the Neumann problem in B* and
B~ are expressed by integrals of the same kind. We shall call these
expressions Poisson type integrals.

It is well known (see [2-3]) that in case of ball solutions of the
basic boundary value problems of elasticity, thermoelasticity, elastic
mixtures, fluid flow can also be expressed by simple combinations
of Poisson type integrals. Such representations prove convenient in
constructing numerical solutions. The latter solutions possess the ad-
vantages of the method of boundary integral equations. namely: they
decrease the problem dimension by one and allow us to evaluate the
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644 T. BUCHUKURI

solution at any pomt without using solution values at other points of
the domain under consideration. The method can equally be used for
the domains Bt and B~; in both cases we must compute integrals
extended over the surface S. The solutions are represented as combi-
nations of Poisson type integrals whose kernels are expre:
of elementary functions and densities are given boundary conditions.

»d by means

Methods of computing such integrals do not actually differ from
those commonly used in computing two-dimensional integrals. Nev-
ertheless they need a certain modification so that they could lead to
effective algorithms for computing Poisson type integrals. In particu-
lar, difficulties arise when integrals are computed at points close to the
surface S because at these points the kernels of integrals have strong
singularities.

1. In computing integrals which are solutions of the considered boun-
dary value problems we come across the same difficulty as in the case
of the Poisson integral regarded as the simplest one among integrals
of this kind.

Let u be the solution of the Dirichlet problem for the ball B*:

Va € BT : Au(z) =0,
Wye s ut(y) = fly),

where f is a given function on S. Then u can be represented by the
Poisson formula

h=72"5 sin /~(
dm (1 =27 cosy + 72)3/2

V,0)dedd. (1)

u(po, Yo, po) =

Here (po. Vo, o) and (p.v).p) are the spherical coordinates of the
points @® € BY and y € 5

0 : . . 0 ;
&) = po cos posin Vo, 25 = posin gosindg, a3 = pocos Vo;

y1 = peospsind, y, = psinpsind, yz = pcosv,

7 is the angle between the vectors +° and y,

T=po/p,. f(. @) = f(pcospsind, psingsing, pcosv).

To compute the integral (1) it is convenient to represent it as an
iterated integral and to use any of the quadrature formulae for one-
dimensional integrals (in our case this will be Simpson’s formula; see,
for example. [6]).



S
AN

A
TS

COMPUTATION OF POISSON TYPE INTEGRALS

2. In computing the integral

b
[y (2)
by Simpson’s method., its value is approximately replaced by the sum

/ =

S(foa,bym) = %(_/'(a Z a4+ 2kh)

m—1 -

+43 Fla+ 2k +1)h). (3)
k=0

where h =

Note that (3) contains the value of f at the 2m + 1 points: { = a,
t=a+h,..., t=a+ (2m+ 1)h, t =b.
Denote the error of Simpson’s formula by R(/):

R(h) = / J()dt = S(fa,b,m). (1)
If f € C*([a, B]), then [6] "
R = LI g (5)
for some € €]a, b, Thus to estimate the error we obtain
i) < LM s |0, (6)

The estimate (6) is rather crude and its application may lead to a
substantial increase of m in the sum (3). This happens particularly
when fM) strictly increases in the neighborhood of some point of [a, b].
It will be shown below that the same situation occurs in computing
Poisson type integrals.

In practice, the error is frequently estimated using Runge’s principle
[6] which is as follows: If the condition

o= ‘,S'(f. a,b.2m) — S(f,a.b, m)\ <z (7)

is fulfilled for some m. then S(f.a,b,2m) is taken as an approximate
value of integral (2) and the number ¢ for the error. As has been
established, for Simpson’s formula the error can be estimated by

o

h) =~
R(h) T
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3. To compute the integral (1) the above-mentioned procedure of re-

placing the one-dimensional integral by the sum (3) should be applied
Let us estimate the error for either of the cases so that the

twice.
computational error for the integral (3) be not greater that <.
Denote by S(f.a,b,d) sum (3) for m such that
b
I/ J(t)ydt = S(f, u.b.m)’ <0, (8)
|
a

From (6) it follows that for the fulfilment of (8) it is sufficient to

take
(b—a)’/

(4) 4
S sour Lmax LF@) T e (9)

m >

Denote by F' the function

FU, ) = K(r.0.2) (0, ),
MEv9) = T rcosy + 707

and by T the integral

Now (1) can be rewritten as

5
U /I(zf)(h), (1)
0

”(/’()J)uq«”o) = T

Due to (3) and (9) we have

IZ) - IW)] < &, (10)
where
I(0) = S(F(¥,-),0,27,.8) = S(F(9,-),0,27,m1),
2r)*/ PFEW, )\ Y4 1y
my > - ( ]:(]l/4<111<1\ U,:‘Y ) 011/'. (11)

Let @(po, Yo, o) be an approximate value of integral (1"):

i
! —5(Z.0.7.6,).

u(po, Vo, o) =
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Then

1—a2

[u(po. Vo o) = T pos Vo, o)| <

s

/I(u) & —
0

" h 1— AL
S(Z.0.7,65)|dv + |3(Z.0,7.8) — S(T.0.7.65)].  (12)

S(T.0.7,68,) = S(Z.0.7,m>).

~3/4 ?)‘17(1) YA) 1/4 i
T ol . -1/4 «
M2 2 SIS0 (“3.‘? BIE ) b 3)

The first term on the right-hand side of (12) is less than (1 —
72)6,/(47). Let us estimate the second term. Note that

|[S(fya,bym)| < (b— (/)l.“gl.fé\'h 2]l

Therefore

IS Casd) =Sl = & w00 =)<k

Now (12) yields

T'Z

_ I
[te( o, Yo. o) — U(po. Vo, o)| < T(bz + 7éy).

ire

b= = Ty

we finally obtain
i“(/’lh Yo. o) — (o, Vo, r"U)| e

From (11) and (13) it follows that the number of nodes .V required
that a given accuracy ¢ be achieved is estimated as follows:

N = mymy = coel F)(1 = 7)/2:712, (14)

where ¢y does not depend on I and

i P, ) (). ) )
d”‘(”}.“;‘\ Jpt "”}.‘l‘\ PIE ') (15)

Below ¢ will denote an arbitrary positive constant.
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4. In practice it is important to know the values of the Poisson inte-
gral at points close to the boundary. But when the point
2% = (po,Vo,po) approaches the boundary S = 9B(0.p), in com-
puting the values of the Poisson integral at the point 2° by the above-
described method, we observe a strict increase of the number of nodes
at which the function f is evaluated, and, accordingly, nearly the same
increase of the computational time. We shall show why this happens.
Let
A=(1-2rcosy+ 2,

then

A =(1—7) +drsin L > (1 - 1)

and 1/A < 1/d, where d = 1 — 7. Moreover, if

o d
Sim E < ﬁ4
then A% < 2(1 — 7)% and
1 " 1
i\ 2d’

Hence we conclude that 1/4 has order 1/d for small 5.
Let us now estimate fourth order devivatives of F.
Assume that

(16)
atp <4
Since v is the angle between the vectors x° and y, we have either
[ — o] < v and | — o] <5 or 27 — v < |¢ — ol < 27. Therefore
: d . d
| sin(p — @o)| < o |sin(v — dy)| < ﬁ
Hence we conclude that if 0 < a <4, then

K (7,9,0) 1 K (7,3,¢) 1

G T g
and therefore
AMFW, ) 1 NFW, ) N ae (17)
At d’ vt g

sin -

=2
wi
]
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From (14), (15) and (17) we obtain

Theorem 1. The number of nodes required that a given accuracy be
achicved in formula (1) admits the estimate

N(d) = O(d™®). (18)

This theorem explains the phenomenon of an increasing number of
nodes as the point x° approaches the boundary 5.

5. Now let us find how for a given accuracy we can decrease the
number of nodes and, accordingly. the computational time when the
point 2% is near the boundary. This can be accomplished in different
w One of the ways of reducing nodes is the so-called method
of separation of singularities. To realize this method note that the
identity

=2
=7 iy sin v/
I // 1-2 2y i =1 o

27Co89y 7%
00
is obviously valid and therefore (1) can be rewritten as
1— 42 T 2r
ulpoy Vor 00) = Fldoso) + ——— [ [ (0, 0)dgdi, * (20
00
with
(,fi(w 0= ,f(”u» ©o))-
Lagrange’s theorem implies

|F(0.0) = [(90.00)| < €.

This makes it possible to improve the error estimate, since

PR, ) L PF (Y, 1
Dt de vt s
for
. d
SIN. == <2 -
2 21 —d
and therefore
N(d) = O(d™*"?). (21)

A further improvement of the method can be effectively achieved
by the rotation of the coordinate system.
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6. Let 2V € BY\{0}. Denote by Ao the following transformation of
the Cartesian coordinates y = (y1.y2. ya)-

) I)"/' T )
(10000, = Gy e+ (it m

.0 “U
(:\ro(_x/))x =

i ;
Lot
for 2% > 0 and

Ys

m' o

0.0 .0

= a (a7)? N it Ty
(-\w(.t/))l = (l O] = )> Y1 Tl = 20 2 i+ Bla
(.\,.u(//))z

(Asw), ==

Now we have

Theorem 2. Let 20 € B¥\{0}. Then u(x®) = ulpo. Vo. o) from (1)

can be wrilten as

~ =72 7 s
u(pos Yo, o) = f(Vo,20) + o / (1= 2rcosn + 722 X
L2
x ([ a0, 0)do = 2 (o, ;m) ., (22)
‘\Y

where
gly) = _f(x‘_ro(vl/)), (. ) = glpcospsind, psingsint. pcos).

Proof. As one can easy verify, for any fixed 2% € BT\ {0} the transfor-
mation Ao is the rotation of the coordinate system transforming the
point ¥ = (0,0, |2°]) into the point 2. Therefore v(x) = u(Ao(x)) is
a harmonic function taking on S the boundary value g(y). Morcover,
in terms of spherical coordinates we shall have
v(po.0.0) = u(po, Vo. o). §(0.0) = f(Vo.p0)-

Now apply (20) to the function v at the point (po.0.0). Note that in
the case under consideration v = o). Therelore the kernel K does not
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depend on ¢ and can be put outside the internal integral. Then (20)
gives (22). ®

Now let us estimate the number of nodes required for the computa-
tion of u(po. vy, o) by formula (22).

Theorem 3. The number of nodes required that a given accuracy be

achicved in compuling u(po. V. po) by (22) admils the estimale

N(d) = O(d™"). (23)
Proof. We introduce the notation
I,(l’)E/f/( s@)dp /(’)l) o).
0
T,(0) = S, ). 0.27.81) — 27 f(Vo. 20)
2 = 1 -7 Sfova = \
u(po. Vo po) = [(Vo,20) + T ) (}\ (7 21 50575 z‘_,).

Then

‘“(/"u- Yo, 0) =t po. V. y’u” bt

s
i/ TN = S )T.0,7,85) .
0

Since

L—7% 7} 1
= /}\‘(;. pldd = —

we obtain

= §

u(pos Vo o) = il po, 170-?0)‘ < —I i

('hoosing
& =me, & =2rd e,
we have
!u(pu. Yo, o) — Ul po, Yo. ;U)l < E
Let

{g(9,-),0,27, 6:) = S{g(¥,-), 0,27, m4),
(7.0, 21,0, 7, 65) = S(K(7,-). 21,0, 7, m3).
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Then by (11) and (16)
m = e/
Now we shall estimate m,. Taking into account (9). we obtain
0“ F l“ 1/4 1
: o [ e =1/
my > ¢ (U‘%‘j‘é\n i?)l” (A.(:.l/)I.(l))) D dYie -

Let us show that [fl(z‘fﬂ < ). Indeed, _f(xlu.\,:u) = §(0,0) and
therefore

L) =183, ) = §(0,-),0,27,6,)] <
< |8(ed, 0,27, 81)] < er0.

With regard to this estimate we have

| o (Km0 L))

max |=— <ed®
0<I<r [P\ i

Therefore
N(d) =mmy=0(d™"). B

7. A further improvement of the technique of computing the Poisson
integral may be accomplished by giving up the uniform distribution
of nodes on the integration interval. Irom the analysis of (22) it
is obvious that when the condition (16) is fulfilled for not too large
¢, the approach of the point ¥ to the boundary S does not affect
in any essential way the computation of the internal integral. The
computation of the external integral becomes, however. more difficult
because the kernel
sin v

= (1 =27 cosd + T'))'j/j

and its derivatives strictly increase as «” approaches the boundary.

In case the computation is performed with a constant step (this im-
plies the uniform distribution of nodes). there occurs a loss of accuracy
on the part of the integration interval on which the derivatives of K
strictly increase (see the estimates (6) and (7)), i.e. near the bound-
ary. This means that we can improve the computational effectiveness
by taking the lesser division step. the greater A and its derivatives
are. We shall describe the technique realizing this idea.

Suppose we must compute the integral

/',/'(/)(/z (24)
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to within = (¢ > 0) when f strictly increases near the limit a.
A positive nonincreasing function ¢ determined on the segment [a. b]
so that

b

/4\(1)(11:1

a

will be called a node distribution function.

Let, further,
/ 8()d.

Divide [a,b] by the points a = ay < a3 < ay < --- < @, = b into n
parts such that the condition

A(z)

ST

/ [y dt —S(f, agyap41.2)

ay

< a(Alargr) = Aag)),

where S is the sum determined by (3). be fulfilled on each part
[ap, agsq]. For this, by Runge’s principle it is sufficient that

i,s’(./., Aoy, L) — SO, (ll\u(/k*_].z)' < 2(Alagsr) — Alag)). (25)

Then, denoting by § (f.a.b,¢) the sum

=1

S (fanbe) = 3 S(fvan ax +1,2), (26)

k=0

we will have

]
=Y
k=0

b b
‘ /f(/)r/l— g (0. E) /f(l‘\(/f = S(f,ap,ap1.2)| <

Z (A((/A,H ) — A(u”) = 5/?)(/)4// =5

k=0

Therefore § (f.a.b.s) is the desired approximation of the inte-
gral (24).
Let the points ag.- - , a, be chosen such that for any & =0.--- . n:

iﬁ'(‘/'. gy Wgrs 1) — S(f, ru,.qu“l)i ~ a(Alaggr) — Aayg)).

Then the estimate (5) and the equality

Alarsr) = Alag) = (arpr — ap)d(Ek), ax < & < dpgas
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imply
J,M\/"”(,.)'Nf(” — ap)d(&r)
el T el e

Hence

180 - 44:68(&x)

L5 fO ()|
The relation (27) provides us with the criteria for choosing points aj.
The integration step

i
(apgr —a)' ~

(27)

Uy — Uy
|
depends on the values of ¢ and [ on a given segment [ay. a;44] of the

=

integration interval. Therefore we can choose points ;. by induction
so that (25) be fulfilled.
By an appropriate choice of & we can obtain various degrees of
dependence of the step on the function f. In particular, if
1g)
b (1 ’
I 19 dt

then the actual step hy will be nearly independent of f. i.e. we shall

o) =

have the integration "with an almost constant step”.
Consider the simplest case when & is a constant function on [a, b].
Then

T

o) =

N)=

h—a

3 (28)
b—a

and condition (25) becomes

(pgr — ap)

S(foag. apgr 1) = S(f, ap, agyr,2) i

=

In that case

hp=10

@]

Thus by an appropriate choice of the node distribution function we
can improve the computational algorithim. In practice, a noticeable
effect can be achieved even in the simplest case (28).
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NON-STATIONARY PROBLEMS OF GENERALIZED
ELASTOTHERMODIFFUSION FOR INHOMOGENEOUS
MEDIA

T. BURCHULADZE

ABSTRACT. The method of investigation of non-stationary boun-
dary value problems of the theory of thermodiffusion using the
Laplace integral transform is described. In the classical theory
of elasticity this method was first used by V. Kupradze and the
author.

Lo/ 9

AIB0TB0. offghnrmos shalidzombatmo balisticgem odm(3abgdols
35009308 3gomeoe Q.}EQJ}OB aeéQodHEnb 638ma[]6330m Qéa J"Q"’anb
ogednpogtoné mgm@oeddo. o3 dgomel g smdel gmdliog®
0060530 30Gggmor §:4363dg3 ©d sgEBmE@as dadotmal.

The interconnection of deformation, thermal conductivity and dif-
fusion processes in an elastic isotropic solid body is described by a
system of five scalar partial differential equations of general type. In
the classical case this system is hyperbolic with respect to some part
of components of an unknown vector function and parabolic with re-
spect to the rest components. A system of equations of the conjugate
(connected) theory of thermoelasticity is a particular case [1-4].

In the classical theory of elastothermodiffusion it is assumed that
propagation velocity of heat and of diffusing substance is infinitely
large.

In particular, however, it is often necessary to take into account the
fact that heat propagates not with an infinitely large but with a finite
velocity. The heat flux does not occur in the body instantly but is
characterized by the finite relaxation time.

The consideration of these physical factors makes the main system
of differential equations very complicated. There exist various gener-
alizations of this theory. Three-dimensional non-stationary problems
of non-classical (generalized) thermodiffusion are treated in [5-8].

1991 Mathematics Subject Classification. T3B30, 73C25.
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In this paper the Green-Lindsay theory is generalized to problems
of elastothermodiffusion. Initial boundary value problems are inves-
tigated for the considered physical system of differential equations in
piecewise-homogeneous media with boundary and contact conditions;
a substantiation of the Riesz-Fischer-Kupradze method is given and
approximate solutions are considered.

Let us consider a three-dimensional homogeneous isotropic elastic
medium in which a thermodiffusion process takes place. The deformed
state is described by the displacement vector v(w,t) = (vy, vy, v3) =
[lvkllaxt (one-column matrix), the temperature change vy(x,t) and the
"chemical potential” of the medium vs(a,t); C(a,t) = yadivo(a,t) +
appvg(, t) +azvs(a,t), where C'(x,t) is the diffusing substance concen-
tration; @ = (1, 2. x3) is a point in the Euclidean space R® ¢ > 0 is
the time and X = (X7, X3, X3), X4, X5 are the given functions. We
consider a system of partial differential equations of the generalized
elastothermodiffusion theory written in the form

17 Z 9%
A(E)Uk kz::I-,/k gradvay, + X = pa,2
2 7]
+7! é 7k,a7g1*a('l V34k,
0\ vy 7]
6A14+\_,—al(1+'r5t-)()t+,1)t(h\t+ )
dvs
+flu(1 +7 a) %
00 \Ovs (Gl
b Avs + X5 _u;(l +7 ()t) ot + ;za—ffhvu-}-
d\ Ovy
+Clrz(1+7' 7);)*

2

where 4(, = ||pdin A + (A + p) 5
of Lamé [8], ;% being the Kroneker nbol. The elastic, thermal,

diffusion and relaxation constants satisfy the natural restrictions

|3x3 is the statical operator

6 >100 3N 20 >0, p>0, @y >0, 850, >0, H=1,2
(2)
(11a2~af2>0, > >0

In particular, for relaxation constants r! = 7% = 0 we have the
classical case.
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Let Dy C R3 be a finite domain bounded by the closed Liapunov
surface S and D, = R*\ Dy be an infinite domain. n = (ny.n2,13) is
the unit normal on S. Elastothermodiffusion constants of the domain

D; will be denoted by the left-hand subscripts ;jA, jp. jp. ;
=09
i Pl!(;l;iem At. Define in the infinite cylinder
Zo =z t) cme Dy UDs €]0, 00}
the regular vetor
W = (o ) €M Do) TP (2}
from the conditions

V(2,t) € Zoo : judv(a.t) + (A + jp) grad dive —

2 o 0
Z v grad vagy + ;.X; = p== pTE + ;7 Z ’ ,k g.,la(luﬂ,
k=1
0 0 0v.
01 Dvy(z,t) + ;X = ,(11(1 + ;7 ()t) (,);
7] 00 ()1'-
+5 ,17(11\ v+ ap(l Fyr ()f)
0.0 ()t'
820 vs(z,1) + ;X5 = az(l +,7 ()7‘) T
J 0 0 v,
+ iYems o dive + (Lu(l + ;7 dt>7'll’
(3)

el 3=1,2
Ve e Dj: lim, Via,t) = ;o) j=1,

for large values of t and @ € Dj:

const
——— ¢, |a|=0,2, 06020,

|D3 V(2. 1)] <
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olal 4
.= = Vs
= g emaagre fE oL
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where a = (ay, az, a3, ay) is a multi-index;

0 0 0 0
(O)( ) = (51 )7199(2]»19’(3) 159&)»1'9’2)%

1 1
J‘r’“)(‘l') = (1#7( )sJ‘PZ wJS’Ii ,]593 )7.7'\19? ))v

fy.t) = (f, fas f3, fas f5)5
F(y,t) = (F, F, B, Fy, Fs), t>20, y€Ss,

are the given real functions; J-R(J—,n) is a stress operator in the ther-

modiffusion theory for the medium D; (5 x 5 matrix):
J
JR(%WH) = lliRull =15
where
J J J
iR = J/L(s“»a @ + (@) 53— = + jung(x )07_17
k1 =13,

d A,
iRe = —jm-an(l +JT"3E). k=T1,3, 1=4,5,

i Ru = ;636 k=45, {=15;
kl Azud( 595 0

here n(zx) is C™-extention of n onto R?;

=+ — 3 7 b Vi o o '
Vily,t) =, dim 1 (z,t), V7 (y,1) Dﬁl;‘r_nye‘s‘(ut),
17 " + ! 7]
[13(?};. n('y)) \/(y,t)] = D131§1111/‘€\1R(E,11(y)) V(z,t),
0 - . 0 -
LR(£,”(M)V(IJJ)] = Dﬁl‘gj‘yeszﬁ(;ﬂ,”(y))v(1~t)~

It is easy to verify that

H(%,n)v = (Tv - ')1(1 +7 T)n“

« where T is the ”classical” stress operator.



NON-STATIONARY PROBLEMS

1
0101939

For a classical (regular) solution to exist, it is necessary that the
conditions of "natural compatibidity” of initial data be fulfilled. These
conditions have the form

vy e S 1100y) — 202) = f(y,0),

10 (y)— 20 (y) = Jim
B2 n)igO(y) = 2R(Z, m)agW(y) = F(y,0)
1 ay’ 1 2 8!/, 2 ) 9

19} d . OF(y,t)
9 o= S RIZ BeD) = firm 22 Y
iR e (= ailemhe ) = 10—

The dynamic Problem A’ is investigated by the Laplace trans-
form method. However, the "natural compatibility” conditions of
this method are not sufficient for our purpose and should therefore
be complemented with "higher order compatibility” conditions. The
latter have the form

I"f(y, 1)

T‘i_o = 1<P(m)(y) — 2™ (y),

o F(y,t)
Jm

= 1R1»7(m)(’/) = szv(m (),

t=0

where

(m — m m), m
#™(2) = (pi™(@), 198 (@), o5 (2) =
(¢

=1 =) = =)
= 1{1”‘3 (m >7.7'“r7‘(2m z)’]¢gm ))+

+(A + jp) grad <liv(jp§'"‘“._,¢‘2"”2),]a,og’”'”) -

—m grad @™ — ;7 grad jo{" Y -

— 2 grad jol" P — jyp;7! grad "V +
otm—2
-2 m—1
10170508 (@) + ;127000 () = ;610,05 — ayjlm T -
_]a]zjg(s'm—l) — (lw( ‘Pgm 1) i (2,,,,1
oMm=? =0’

_7a12.170j99(4m)(1‘) +jft2j70;99(5m>(1') = 152A1¢gm~2) 742j ‘Pgm &

t=0J

aJSQ(BmiAJ) +
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(m=1) _ _ qe o (m-1)  (m-1) _(m=1)
—j12jPs — 2 div(;e ViYr 1 iPs )+
Jm—2
I"

= o2 |

These conditions of "quantitative nature” are sufficient for the ex-
istence of the classical solution. We will not dwell on this here but
proceed to the construction of approximate solutions by the Riesz-
Fischer-Kupradze method.

Theorem. If the initial data of Problem A" satisfy the above-given
“higher order compatibility”™ conditions, then Problem A" has the uni-
que classical solution which is represented by the Laplace~Mellin inte-
gral

L e
Vit / (2, )G,
2me

T—ico

where V(x,¢) is the solution of the corresponding problem for elliptic
system represented in the form

V() = 35 au0) 6 (2.0) + 92, 0)
k=0

The series converges uniformly: ax(C). (A) (x,€), Ua,C) are the given
vector-functions (constructed explicitly) and ¢ = o + iq, where o >
oy > 0o, 0 is the defined constant.

Consider the Laplace transform

B3

D(e,0) = /e-ﬂv(m, 1)t (1)

0

where ( = o + iq is a complex parameter.

Using formally transform (4), the dynamic problem At is reduced
to the corresponding problem with the complex parameter ¢ (spectral
problem) for V(. ().

Problem A(¢). Define for each ¢ € Il,; = {(: Re( > o5 > oo} in
D = D; U D; the regular vector

V= (5,80, ¥)) = V() € CY(Di U Dz) N C*(D1 U Dy)
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from the conditions
Nai€ Dy = 12
AT 4+ (G + ) grad dive —

= 3 (L 4,70 grad Gagp — ;pC%% = ; X,
k=1
701485 — jay (1 + ;7°C) 8y — jar((1 +,7%0)0s —
—imCdive =

702805 — jaa(1 + ;7°¢) 85 — jara((1 + ;79C)0y —

= mCdivi = ; Xs;
const

L+ Ja] i

where 3 = (31, 3,/33) is a multi-index.

D2V (2,¢)| < 8= 0,2

¥ g (1)
X = =X —ip(ip1 s J‘r’? /?73 )

- (0 (0) (0 . N ()

—iPCGiP1 s w2 s 53 )72.1 Yij grad joz /),

k=1
kg v (0) 1) .. A0)
iXa ==X = jaol” — Gl + Gl -
0) o (1), - )
_j”llj*r’.la — e (jes + (s ) —
R (1) e (1))
—ndiv(jer, 95 Jva)

1 ~ 0
== .7("2‘/“;'5 - §e25T (JSQ.(S ) + Q_i*r/’g )) -

5

iXs = =

—sa1208" — jan; TGl + ¢ol®) —

= i diviel”, o, iod);

Vyes VHy.0) - V(5.0 = fly a)

[lﬁ(di V(0] - [;H( ) V(.0 = F(y.0),
Fly.¢)= F(y,¢) = 1y117 ”(l/)lw +2:1z7' Tn(y)apl” —

(0
— 17217 n(yh '5)+_/HT n(y )2¢5 s

=70 ~ < 70T
iR(—=—, ) — k(1 ) i6 )
3 ?(i)y n)‘ (Fz n(y ’2 + ;7)) Bagns b .

Let L(,—;g) be a matrix differential operator of Problem . () and
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12 5
O(z,¢) = [|Pr(@,)|lsxs = || ®sP,--.,® ||sx5 be a matrix of funda-

k
mental solutions of this operator L(j ,0), @ (2,0)=(Pik, Pokye - -, Psi),
k =T1.5, be column vectors. The matrix ®(a, () is constructed e\pllc
itly in terms of elementary functions [8]. Namely:

((fy.c)w.zr.c) =
#(2,€) = Bo o, C) (r.0),

®(z,() =

u &~

= ZU(%,g) (A+A

i i
¥ exp(iAelz])
Bl 0)= 2o =T,
k=1 ||
where Ay, cx, k = T,1 are constants, Z( 52 ,() is a matrix connected
with L(3= a ,¢):LL=LL =1-detL, I is the unit 5 x 5 matn\

In the abme assumptions the sense of the notations ;L(4=,() and
;®(x, () becomes quite clear.
Thus we have to construct the solution of

Problem A(().
V = (5,8,5) € CY(D) N C¥(D),

0 i .
VzeD; : ]L<E’C el = i), J—1,9. ©)
Yy es : [V =P*4,0- V(5,0 = flg, ),
DT 7 -~ 1+
f]?\»’];: = [13(57,”)‘,/@’(” o o
~, 0 = =
~[R(5, "V 0] = Fuw.0,
const e .
|D£V 1‘ Q 1 o m, |ﬂ| =052, (b)

where ;x(z) = (; X ,J-Aq,JXs) is the given vector.

Let V(a, () be a regular solution of Problem A((). Taking into
account the contact conditions, by virtue of the formulas for genelal
representation of the solution [8] we have

Vre D :V(z,()= /lqm — 2, 0GRV LS -

ﬁ/ R 0TS — /Ql\dy, (9)
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Vi & Dy o,/ O R sﬁ/(lxi’ﬁb‘)‘f'*(/,ﬁ—

S

/ @y \d=, (10)
Vi€ By W laC)ime / RV (/s+/ Ra®™) T+ ds —

A/ Byyd= +/ oF (l%~/ (2R, 07) fds, (11)

D,

Vi 61D 1D e /<1> (R (/s+/ R TS —

/ Byxde +/ LB FdS —/(21€2<I>‘)‘f«[,§', (12)
S
where the superscripts = and ~ denote transposition and Lagrange’s
conjugation, respectively. "

It is clear that by sul)stiluiing V+ and (4 RV)* found from (10)
and (12) in (9) and (11) we will solve Problem . A(¢). It appears that
(10) and (12) can be used for constructing approximate values of the
unknown vectors.

We introduce the following notations: = € S, v € R3,

1Yz, 2, H h’ d( —Ifl)
2U(a, 2, ” 2Ry —®(a
< (I 2 4 5% 5 »XlU

vl = H: illiox: = (\,'+‘()]{\,’)+) is the sought for vector. Now
relations (10) and (12) can be rewritten in the form

xxl()

VeeD, : /1\11(1::AC)I,*(:.C)(/,S = \F(2), (15)

Vee Dy /2\11(41‘.:A()r.'(:‘C)(/,S': 2F(2), (16)
5
where
- / 1Py dz,

N / O ¥/ o (/s+/ (2R, ds

D,
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are the given vectors.

Let us construct auxiliary domains and surfaces in the following
manner: D; is a domain bounded by Sy located strictly in Dy, i.e.
51 cDi; f)z is an infinite domain bounded by ,:'3 located strictly in
D,. 1t is clear that f?l ns =g, ,q', RS =10,

Let {;2%};2,. j = 1.2, be a countable. dense everywhere, set of
points on the auxiliary surface S;, j = 1,2, Trom (15) and (16) we
have

/1\11(_».:'L'.;()zr(:.()(/..ﬁ'=|I*‘(J.r")4 = oo an
5

LUk, 2 O (2. O)d.S =, F (1Y), k=T, 0. (18)
S

We denote the rows of the matrix ;¥ considered as ten-component
vectors by ;W' W2 0 Bt W and consider the countably infinite
set of vectors

o0, 5

(v ) Ut 0l L

It is proved that (19) is lincarly independent and complete in the space
Ly(S): i.e., forms the basis in this space.

Let us enumerate set (19) arbitrarily and denote the resulting count-
able set by

{1,‘1“(.:)};:]A (20)

We have, for example, performed enumeration like this:

Pr(z) = o U (2%, 2,C), k=T, o0,

where

[k] is the integer part of the number k. It is clear that by virtue of
(17) and (18) the scalar product

(¥, P) = /Iz;"‘r,'d,‘;' = (.05

S



NON-STATIONARY PROBLEMS

is known for any k. Using our notations, we have

"D dS = Fals2%); k=10

Obviously, the complex conjugate system

kp oy ;
{2 (21)
is also complete.
Now we have to find coefficients ay. & = I, N assuming that the
mean-square norm

“f,‘(:) = X\‘ Qj "'A'(‘:)HLJ(*»

k=1

is minimal. As is well-known. for this it is necessary and sufficient

that
< Z(\U )s (= )):(), i=

k=1

Hence we arrive at an algebraic system ol equations

Z”* f Y = (Y, g = LN,

k=1
with the known right-hand side and Gram’s determinant differing from
zero, which defines coefficients ap. Therefore, due to the property of
the space Ly(S). we have

\]!11\ “1 () Z(\u (2) Hl)(\) =) (22)

k=1

Let us introduce the notation

U10)

Then we have in the sense of the metric of Ly(S):
X - N r. . {7
P(z) = \l)ln v (z), VE= lim yV*

N—oo
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Rt = lim NGRV)Y.

Substituting the obtained approximate values in (9) and (11) and
denoting the result of the substitution by yvV(x.(). we get

N
Ve e Dy :nV(a, Q) = /I(P(ZOA.(I,‘(), ) b m)>(/H &
2 k=1
/ R0) (Z“‘ E kL z,:é))(/.S'— /.‘l)l\(l:\
S Dy

N
Vee Dy ixV(,) = —/&(an(;g, f vfo))("”

3
+/ RZ(I) (Z“" f zé _1,7"5))(/,9'—

= / 0, +/,<1>1 ds — /( R, 07y dS.
5

Dy

Now for any ¢ > 0 we can give a positive number N(z) such that for
N > N(g) we will have

xe D C D; f(z () is the exact solution of the problem, i.e..
Vie.() = lim sV, ), veD,

the convergence to the limit is uniform in D',
The method presented here can also be generalized for other more
complicated problems.
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POTENTIAL METHODS IN CONTINUUM MECHANICS

T. GEGELIA AND L. JENTSCH

ABSTRACT. This is the survey of the applications of the poten-
tial methods to the problems of continuum mechanics. Historical
review, new results, prospects of the development are given.
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This survey paper is dedicated to the 90th birthday of Victor Kup-
radze. Therefore we shall cover here mainly questions connected with
his scientific interests and dealt with by his pupils and followers. We
wish to note specially that V. Kupradze’s old works on the application
of potential methods to the study of wave propagation, radiation and
diffraction problems that had greatly contributed to the progress in
these directions will hardly be mentioned.

Eight years have passed since our previous survey of the field in
question! That was the period of great events in our life, change of the
outlook, revaluation of many results, the arising of new difficulties in
the development of science. The potential method keeps on developing
and we do have results obtained in these years which are worthwhile
being told about.

1. A HISTORICAL REVIEW

1.1. Initiation of Potential Methods. When applied to problems
of continuum mechanics, potential methods were initially based on
the concept of representing solutions of these problems in the form of
convolution type integrals, one of such convoluting functions being a
special solution of the corresponding equation possessing : <ingularity
and called the kernel of the potential. Later solutions kind

1991 Mathematics Subject Classification. 35Q, 73-02, 73C.
!See Burchuladze and Gegelia [1] where the reader can find sufficiently mplete
information on the development of the potential method in the elasticity . ‘cory.
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672 T. GEGELIA AND L. JENTSCH

came to be referred to as fundamental solutions, while convolution
type integrals as potentials.

Potentials were constructed as early as the first half of the last cen-
tury, proceeding from physical considerations. Another source for the
construction of potentials was Green’s formula (1828) and especially
the representation of a regular function by means of this formula as
the sum of a volume potential and single- and double-layer potentials.
In the subsequent period the investigation (Sobolev [1]) involved po-
tential type integrals that were a combination of potentials of the
above-mentioned three types:

K(p)e) = [ K(e,o - y)e(y)du(y). M
X

Here X is some nonempty set from R™, yx is a complete measure
over some class of subsets X forming the o-algebra, the kernel K :
Y xR™ - C (Y C X, Cis a set of complex numbers), the density
¢ : X — C. Thus the theory of a potential is the theory of an integral
of type (1) dealing with the investigation of its boundary, differential
and other properties. The potential method implies the application
of a potential type integral to the study of problems of mathematical
physics.

Alongside with methods of series, the potential methods have be-
come a powerful tool of investigations in physics and mechanics. True,
for some particulare domains methods of series gave both solutions of
the problems and algorithms for the numerical realization of solutions,
but for arbitrary domains the use of these methods was connected with
certain difficulties. In this respect the method of the potential theory
is undoubtedly more promissing. Moreover, algorithms provided by
methods of series are not always convenient for numerical calculations,
while potentials with integrals taken over the boundary of the consid-
ered medium, i.e., the so-called boundary integrals are very convenient
for constructing numerical solutions. To this we should add that the
prospect to represent solutions of problems of continuum mechanics
by potentials in terms of boundary values and their derivatives looks
very enticing. For a regular harmonic function, for example, such a
representation formula immediately yields its analyticity, the charac-
ter of its behaviour near singular points and other properties which are
rather difficult to establish by the methods of series. Besides, the for-
mula for representation of solutions in the form of potentials initiated
the introduction of the Green function that had played an outstanding
role in the development of the theory of boundary value problems.

S
N
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1.2. Potentials of the Elasticity Theory. As it was mentioned in
the foregoing subsection, kernels of potentials are constructed by spe-
cial singular solutions of differential equations of problems under con-
sideration. The construction of harmonic potentials is based on the
fundamental solution of the Laplace equation. In other problems of
mathematical physics use is made of fundamental and singular solu-
tions of the corresponding differential equations. For example, in the
elasticity theory potentials are constructed by means of the fundamen-
tal solution of the system of the basic equations of this theory. This
system is written in terms of displacement components as

A(Op)u = =F, A(0:) = || Ai;(0:)]lax3,
D? o ) (2)
a.l'ii). / ’

Aij(0y) = A+ (A + )

where v = (uy,uz,u3) is the displacement vector, F' is the volume
force, A and g are the Lamé constants, ¢;; is the Kronecker symbol, A
is the Laplace operator. The fundamental solution of this system is the
matrix (see, e.g., Kupradze, Gegelia, Basheleishvili and Burchuladze
[1], which below will be referred to as Kupradze (1))

=t ) Néy  plaie;
I(z) = |ITi;(2)llaxs, Tii(x) = 2] I 3)

N o=\ +3p)drpA+20))7Y 4 = A+ p)(drp(X +20)) 7

whose each column (as well as each row) regarded as a vector satisfies
the system (2) at any point of the space, except the origin, where this
vector has the pole of first order.

This fundamental solution was constructed as far back as 1848 by
the outstanding English physicist Lord Kelvin whose name at the time
and till 1892 was Thomson. It was constructed proceeding from the
physical arguments: if the entire space is filled up by an isotropic
homogeneous elastic medium with the elastic Lamé constants A and
4 and the unit concentrated force is applied to the origin, directed
along the xj-axis, then the displacement at the point @ produced by
this force is equal to the j-th column of the matrix of fundamental
solutions.

This result of Kelvin can hardly be overestimated. It had opened
a vista for the potential method in the elasticity theory. Before long
this discovery was followed by the works E. Betti, J. Boussinesq and
others, where potentials of the elasticity theory were constructed and
applied to boundary value problems.

0
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The studies we have mentioned above belong mainly to the second
half of the last century when the Fredholm theory did not exist. There-
fore the potential methods were not applied to prove existence theo-
rems of solutions of boundary value problems, and if they were, then
there was no proper substantiation. From the results of that time we
should draw the reader’s attention to the solutions of numerous par-
ticular problems. Representatives of the Italian school were especially
inclined to a wide use of potential methods (see the surveys Love [1],
Tedone [1], Boussinesq [1], Trefftz [1], Marcolongo [1] and others).

The works of the scientists of the 19th century reflect an insufficient
development of the mathematical means of that time. Mathematical
arguments were largely based on physical considerations and proofs
based on these considerations. Mathematicians of that time, including
some oustanding ones, were quite content with the situation. For
example, H. Poincaré wrote that one could not demand the same rigor
of mechanics as of pure analysis. During a rapid development of the
potential method suchlike opinions evidently led to the appearance of
many statements having no mathematical substantiation. The theory
of harmonic potentials, their boundary and differential properties had
been developed only by the beginning of our century (H. Poincaré,
O.D. Kellog, A.M. Liapunov, H.M. Giinter, etc.), while the theory of
potentials of elasticity in the second half of our century.

The fundamental solution of equations of fluid flow (the Stokes sys-
tem) does not differ in any conspicuous way from the fundamental
Kelvin matrix and the theory of the corresponding potentials is con-
structed similarly to potentials of the elasticity theory (see Lichten-
stein [1], Odgqvist (1], Ladyzhenskaya [1], Belonosov and Chernous [1]).

1.3. Invention of the Theory of Fredholm Integral Equations. The
creation of the theory of integral equations by Fredholm gave a new
impetus to the development of potential methods. In 1900 I. Fredholm
proved his famous theorems for integral equations and the theorem of
the existence of solution of the Dirichlet problem. The latter result
made Fredholm worldwide famous and drew the attention of the math-
ematical community to the theory of integral equations. It was not
difficult to guess what big prospects lay before Fredholm’s discoveries
- after all many problems of continuum mechanics are reduced by the
potential method to integral equations. This formed the ground for
the revival of potential methods and for a rapid development of the
theory of integral equations (D. Hilbert, E. Goursat, G. Giraud, T.
Carleman, F. Noether, E. Picard, H. Poincaré, J. Radon, F. Rellich,
F. Riesz, F'. Tricomi, E. Schmidt and many others).
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Various problems of mathematical physics were reduced to various
integral equations. In these problems the integration set was assumed
to be a segment of the straight line, a finite or infinite domain from
R™, a surface or a curve and so on. The resulting integral equations
contained a continuous kernel, a kernel with a weak singularity, a sym-
metrical kernel and so on. In an attempt to cover general situations
completely continuous operators were introduced and the foundations
of functional analysis were laid (D. Hilbert, . Riesz. S. Banach).

In investigating the Dirichlet problem, Fredholm sought for a solu-
tion in the form of a harmonic double-layer potential and obtained the
integral equation. From the uniqueness of the solution of the Dirichlet
problem he concluded that the corresponding homogeneous equation
had only the trivial solution. In that case an alternative of his theory
gave the theorem of the existence of solutions. However, Fredholm
could not apply the same technique to the elasticity theory, since the
double-layer potential of this theory leads to singular integral equa-
tions whose theory did not exist at his time. Using a roundabout way,
namely, introducing the so-called pseudostress operator, in 1906 Fred-
holm succeeded in proving, by the potential method, the existence
theorem of solution to the first basic problem of the elasticity theory.

This dicovery of Fredholm was no less important that the previous
one. True, scientists had long been trying to prove the existence of
solutions of the Dirichlet problems and their efforts had yielded pos-
itive results. Almost at the same time with I. Fredholm, H. Poincaré
solved this problem using a different method (E. Picard, O. Perron).
Poincaré’s method is fit only for the Dirichlet problem for the Laplace
equation and cannot be applied to the elasticity theory. This circum-
stance further enhanced interest in the potential method that previ-
ously was sometimes referred to as the Fredholm method but in recent
years has come to be known as the method of boundary integral equa-
tions. The latter name reflects well the essence of the method from
the standpoint of constructing numerical solutions, but the essence of
the potential method is by no means confined to numerical analysis.

Though Fredholm’s method was worthy of high praise, still it did
not turn out to be universal. For example, it could not be applied
to the investigation of the second problem of the elasticity theory.
Scientists’ efforts in this direction were vain (K. Korn, T. Boggio,
H. Weyl, N. Kinoshita, T. Mura and others). They obtained singular
integral equations for which Fredholm’s theorems were not valid, while
their attempts to introduce pseudostress analogues led to nothing.
Neither were Fredholm’s theorem valid for Wiener and Hopf’s integral
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equations.

1.4. Singular Integral Equations. The theory of singular integral
equations was developed only forty years after. In the 40ies this theory
was worked out mainly by the Georgian mathematicians (see also the
works by D. Hilbert, H. Poincaré, F. Noether and T. Carleman) led by
N. Muskhelishvili but only for one-dimensional equations. It appeared
that, unlike Fredholm’s equations, the theory of singular equations
largely depended on dimension of the integration set.

One-dimensional singular integral equations were fit for the investi-
gation of only plane problems of mathematical physics. This initiated
the era of a tempestuous development of plane problems. The sit-
uation was also facilitated by the well-developed theory of complex
analysis connected, due to the efforts of N. Muskhelishvili, with plane
problems of mechanics and one-dimensional singular integral equations
(I. Vekua, N. Muskhelishvili, N. Vekua, D. Kveselava, D. Sherman, G.
Mandzhavidze, M. Basheleishvili and others).

1.5. Multidimensional Singular Integral Equations. It took another
twenty years for the theory of multidimensional singular equations to
acquire an ability to solve three-dimensional problems of mechanics.
Three possible ways were available for constructing the theory of sin-
gular integral equations (SIE): it could be connected with the theory
of complex analysis and boundary value problems of linear conjuga-
tion; it could be constructed by means of I. Vekua’s inversion formulas
and, finally, using the general theory of functional analysis. Only the
third way is suitable for multidimensional SIE. But to apply meth-
ods of functional analysis one should have a conjugate equation in the
sense of functional analysis, which cannot be done in Hélder spaces, as
it is difficult to construct explicitly the conjugate space and to write
the conjugate operator for these spaces. A formal application of the
conjugate equation gives us nothing because it must be afterwards
connected with the boundary value problem. N. Muskhelishvili man-
aged to circumvent this difficulty by introducing the adjoint equation
and proved the validity of Noether’s theorems for this pair. In the
multidimensional case SIE had to be investigated in the space Lq (S.
Mikhlin), and, after that, using the embedding theorems (T. Gegelia)
in Holder spaces. The Holder space is necessary to obtain the classical
solutions of problems of continuum mechanics.

The theory was elaborated sufficiently well in the 60ies mainly due
to the efforts of S. Mikhlin and V. Kupradze (see also F. Tricomi,
G. Giraud, T. Gegelia, A. Calderon, A. Zygmund, Gohberg [1], A.I.
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Volpert, Selley [1,2] and others). By that time singular potentials
had been studied completely (A. Calderon, A. Zygmund, Maz’ya [1],
T. Gegelia and others) and the advantageous situation had formed
for the application of potential methods. The results were not long
in coming. The existence of solutions of the second basic problem
of the elasticity theory (T.Gegelia, V. Kupradze), also of the third
and the fourth problem (M. Basheleishvili, T. Gegelia) was proved.
The dynamical problems of elasticity (V. Kupradze, T. Burchuladze,
L. Magnaradze, T. Gegelia, O. Maisaia, R. Rukhadze, D. Natroshvi-
li, R. Kapanadze, R. Chichinadze and others) and contact problems
(V. Kupradze, M. Basheleishvili, T. Gegelia, Jentsch [5, 10, 14, 15],
D. Natroshvili, M. Svanadze, R. Katamadze, R. Gachechiladze, M.
Kvinikadze [1, 2], O. Maisaia and others) were studied completely.
The improved models of an elastic medium were investigated, tak-
ing into account moment, heat and other stresses, electromagnetic
and other fields (W. Nowacki, V. Kupradze, Jentsch [4, 8, 13], T.
Burchuladze, M. Basheleishvili, D. Natroshvili, N. Kakhniashvili, T.
Gegelia, T. Buchukuri, M. Agniashvili, Yu. Bezhuashvili, O. Napet-
varidze, R. Gachechiladze, O. Maisaia, R. Chichinadze, R. Kapanadze,
G. Javakhishvili, O. Jagmaidze, R. Dikhamindzhia, K. Svanadze, Za-
zashvili [1-3], R. Meladze, R. Rukhadze, Y. Adda, J. Philibert, J.
Hlavacek, M. Hlavacek, J. Ignaczak, S. Kaliski, W. Nowacki and oth-
ers).

The potential method was used to prove anew the theorems on
the existence and uniqueness of solutions of plane problems and to
investigate various two-dimensional models of the elasticity theory (M.
Basheleishvili, G. Kvinikadze, Zh. Rukhadze, Jentsch [18-25], Jentsch
and Maul [1], Zazashvili [2-4] and others).

1.6. Applications of Multidimensional SIE in the Elasticity The-
ory. Application of a newly created theory to applied problems usually
demands serious intellectual effort, as well as a considerable amount
of improvement and modific/ation of the theory itself. This is con-
vincingly evidenced by the works starting from T. Carleman and F.
Noether (1920-1923) and ending with N. Muskhelishivi (1945). The
theory of one-dimensional SIE was developed mainly in the mentioned
works by T. Carleman and F. Noether, but applications of the results
stated therein began actually only after the publication of N. Muskhe-
lishvili’s monograph.

As compared with the one-dimensional case, the investigation of SIE
in the multidimensional case was connected with difficulties of various
nature. In the one-dimensional case all SIE are reduced to one and the

1
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same type of SIE with a Cauchy type kernel. However we do not have
such a universal technique of representation for the multidimensional
case. Here we deal with quite a variety of SIE characterized by the
so-called SIE characteristic. Besides, the complicated topology con-
nected with multidimensional SIE is yet another obstacle. Noether’s
theory holds for normal SIE in both the one-dimensional and the mul-
tidimensional case, but to verify the normality of one-dimensional SIE
is not difficult at all, while in the multidimensional case the normal-
ity is established by means of the symbol matrix which is not always
constructed explicitly. The calculation of the index becomes a much
more difficult matter in the multidimensional case.

Naturally, the above-listed difficulties of the theory of multidimen-
sional SIE complicate its application to problems of continuum me-
chanics. One has to seek for special techniques in order to establish
the normality of the obtained SIE and to calculate their indices. Thus
the theory of multidimensional SIE was created mainly in .the 60ies
but its improvement goes on to this day. The theory of SIE over open
surfaces has not yet reached its perfection.

Let us illustrate what we have said above by the example of the
classical elasticity theory.

1.7. Investigation of the Third Basic Problem of the Elasticity The-
ory. We shall consider the third houndary value problem of the classi-
cal elasticity theory. It consists in finding the solution u = (uy, uz, us)
of the system (2) in the domain Q occupied by an elastic medium
when tangential components of displacement and normal components
of stress are given on the boundary dQ. The simplest technique for
investigating this problem is to reduce it to the SIE system by means
of the potential

/(R )Ty — ) o(y)d,S, 4)
aQ

where v is the unit exterior normal vector to the surface 9Q at the
point y, I' is the fundamental matrix (3), and

R(0y,v) = || Rij(y, v)|laxa,
) d
Ri(8,,v) = (2,%0 Rl )5H+(5k]_yw])(1—5k4)

As a result, for defining the uknown density ¢ = (¢1, 92, p3.904) We
obtain a rather complicated SIE system consisting of four equations
for defining the three-component vector u.
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The SIE theory elaborated, for example, in the monograph by S.
Mikhlin cannot be applied directly to the obtained system. Therefore
a nonstandard technique had to be developed in order to study the
obtained SIE system (see Basheleishvili and Gegelia [2], Kupradze
(1)). The application of this method of investigation of problems of
the mentioned type tc zther models of continuum mechanics turned
out to be a difficult matter that has not been coped with to the end.

2. NEW RESULTS. PROSPECTS OF THE DEVELOPMENT

2.1. Basic Problems of the Elasticity Theory for an Anisotropic
Medium. If the medium under consideration is an anisotropic one,
then the investigation of boundary value problems becomes rather
sophisticated for many reasons, for example, because in that case we
do not have the corresponding fundamental matrix written explicitly
in terms of elementary functions but for one exception (E. Kroner).
It is given in the form

ot

da=y) =20 [ lw—y) A7), (
B(0,1)

where B(0,1) is the ball in R® with center at the origin and radius
equal to unity,
92

= [|Ai(02)llsxs, Air(:) = UUHMa (6)

is the differential operator of the classical elaticity theory, A71(z) is
the reciprocal matrix to A(z), A is the Laplace operator, a;jx are
the elastic constants. Here and in what follows the summation over
repeated indices is meant.

The fundamental solution (5) was used as a basis for the elabora-
tion of the potential theory (T. Gegelia, R. Kapanadze, Burchuladze
and Gegelia [1]) by means of which boundary value problems were
reduced to SIE systems. The main difficulty, however, is connected
with the investigation of the obtained systems. The general SIE the-
ory states that if the determinant of the symbol matrix of this system
is different from zero everywhere, then the Noether theorems hold for
SIE. As distinct from the isotropic c. se, the symbol matrix cannot be
constructed effectively. R. Kapanadze succeeded in finding a beautiful
way to overcome all obstacles. He connected, in some sense, the sym-
bol matrices of the obtained SIE with the Cauchy problems for the
definite simple systems of ordinary differential equations and proved
the following theorem.
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Theorem 1. The symbol determinants of SIE systems of boundary
value problems are different from zero if and only if the corresponding
homogeneous Cauchy problems have only trivial solutions.

The Cauchy problems have only trivial solutions under one natu-
ral restriction, namely under the positive definiteness of the specific
energy of strain. This beautiful discovery of R. Kapanadze was used
to investigate all the basic and contact problems of the classical elas-
ticity theory for anisotropic media (see Kapanadze [1], Burchuladze
and Gegelia [1], M. Basheleishvili, D. Natroshvili). Note that in in-
vestigation of the basic and the contact problems for an anisotropic
homogeneous medium, i.e., when coefficients of the basic equations are
constant numbers, the obtained singular integrals still depend on the
pole. This is due to the fact that these integrals include derivatives
of the fundamental matrix. If, however, the medium is anisotropic
and nonhomogeneous, then the dependence of singular integrals on
the pole is also due to the variability of equation coefficients. The
method proposed by R. Kapanadze turns out suitable for this diffi-
cult situation, too. Moreover, R. Kapanadze showed that the above-
mentioned connection of the boundary value problems with the cor-
responding Cauchy problems remains valid provided that the system
under consideration is the strongly elliptic one. He thereby extended
his method to the investigation of boundary value problems of couple-
stress elasticity, thermoelasticity and other generalized models of an
elastic anisotropic nonhomogeneous medinm.

2.2. New Uniqueness Theorems for Problems of Statics. The uni-
queness theorems of problems of the classical elasticity theory are
treated in the fine monograph Knops and Payne [1], also in the book
Kupradze (1) where the uniqueness theorems are also proved for couple-
stress elasticity and thermoelasticity. The results of these monographs
were afterwards improved and generalized to other models of an elastic
medium (see Burchuladze and Gegelia [1]).

Let an elastic isotropic homogeneous medium with the Lamé con-
stants A and g occupy the infinite domain Q= which is a complement
to the bounded domain QF : Q= = R*\Q*. Then, under the assump-
tions of the classical theory, the static state of this medium is described
by the system of equations (2). The following uniqueness theorem is
proved (see Buchukuri and Gegelia [1-4]).

Theorem 2. Any basic problem of the static state of an elastic me-
dium for the domain Q= cannot have two regular solutions satisfying

1l
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the condition

u(z) = o(1) (1)
in a neighbourhood of infinity.

Note that in the classical uniqueness theorems (see Knops and Payne
[1], Kupradze (1)), in addition to the condition (7), it is required that
the decay condition at infinity

Ju(x)
dx;

1 g =
:O(W)’ i1=1,2,3, (3)
be fulfilled.

Theorem 2 was later on proved for anisotropic media (Buchukuri
and Gegelia [3]), for problems of thermoelasticity, couple-stress elastic-
ity (Buchukuri and Gegelia [4], a microporous elastic medium (Gegelia
and Jentsch [1]).

In the second basic problem boundary stress vector is given on the
boundary 992~. Therefore it is natural to prove the uniqueness theo-
rem under restrictions imposed on the stress vector. Such a problem
posed in the book Knops and Payne [1] was solved by T. Buchukuri
(see Buchukuri [1]).

In Buchukuri and Gegelia [1-4] Theorem 2 is proved by the method
of asymptotic representation of solutions of the external problems in a
neighbourhood of infinity. The same theorem is proved in Kondratyev
and Olejnik [1, 2] by a different method based on the Korn’s inequal-
ity. The method of asymptotic representation of solutions turned out
suitable also for other models of the elasticity theory; in particular, for
models described by systems of equations containing both the higher
derivatives and the derivatives of first and zero orders (equations of
couple-stress elasticity and equations of a microporous medium).

2.3. Uniqueness Theorems for Oscillation Problems. If a homoge-
neous isotropic elastic medium is subjected to the action of external
forces periodic in time, then it is natural to assume that displacement,
strain and stress components depend on time in the same manner.
Such a state of an elastic medium is called stationary elastic oscilla-
tion. Equations of this state are written in the form

A(Dp)u 4 W =0, 9)

where w is the oscillation frequency, A(9,) is the differential operator
of classical elasticity determined by the formula (2). The density of
the medium in question is assumed to be equal to unity without loss
of generality.
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V. Kupradze proved (see Kupradze (1)) the following theorem.

Theorem 3. Any external basic problem of stationary clastic oscil-
lation cannot have two reqular solutions u satisfying the conditions

lim u(”)(.r) =0, lim u®(z)=0, (10)
|z|—o0 2| —00
P (g
|llim 7(117“-) - iklu(”)(.r)) =0}
| z|—00 r
11
lim (——U“(s)(’) ik (2)) = 0 .
r - —ikou'®(2)) =
Jel—co or 2
where
r=lz|, ¥=w!A+20)7", E2=wil, ¢=-1,
1 . 1
W= A kw9 = (A R

By analogy with the radiation conditions of Sommerfeld (A. Som-
merfeld, V. Kupradze, F. Rellich), the conditions (10), (11) are called
the conditions of elastic radiation (Kupradze (1)).

Theorem 3 is valid for an isotropic medium. Its extension to an
anisotropic medium turned out a difficult problem which was never-
theless solved.

Let A(0,) be the matrix differential operator of the classical elastic-
ity theory of anisotropic media (see (6)). We shall consider equations
of stationary oscillation

A(Dp)u(x) + wu(z) = 0. (12)

It is assumed that
1) Ved(§,w) # 0 for ¢(¢,w) =0, € € R
2) the total curvature of the manifold ¢(¢,w) = 0 vanishes nowhere.

Here ¢(€,w) = det(Iw? — A(€)) , € € R®, 1 = [|8;]laxs-

With these assumptions the equation ¢(£,w) = 0 determines three
compact, convex, two-dimensional surfaces S;, S;, S3 which do not
intersect. Moreover, for any point @ € R*\{0} there exists on S; a
unique point & such that n(é7) is directed along the vector z. By
n(&) we,denote the external normal to the surface S; at the point &
(G =1,23).
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Let W,,,(Q7) denote a set of vectors v = (vy, vy, v3) € C'(Q27) satis-
fying in a neighbourhood of infinity the conditions
3

vi(e) = Y vi(e), vi(z) = O(l2|™),

2=1 (13)
" dvi(x) . BN
lim r(Z57 + 07 €)vidla) =0,

g=1,2:37 lzl=w dn= Lo m=2

D. Natroshvili proved the following theorem:

Theorem 4. Any external basic problem of stationary elastic oscil-
lation of anisotropic media cannol have two regular solutions of the

class W, (7).

To prove the theorem D. Natroshvili had constructed a fundamental
matrix T'(z,w,m) of the operator A(d,) + [w?. This matrix belongs
to the class W,,(R*\{0}). It is constructed by means of the limiting
absorption principle from the fundamental matrix I'(x, 7.) of the oper-
ator A(9,) — 721 (7. = £ +iw), which vanishes at infinity more rapidly
than any negative power of |z| (cf. Vainberg [1]).

2.4. Asymptotic Representation of Solutions at Infinity. The asy-
mptotic representation of solutions in a neighbourhood of infinity dis-
cussed in Subsection 2.2 is based on the Green and Somigliana for-
mulas which, in turn, are constructed by means of the fundamental
solution.

Let us consider a system of equations

Air(Op)ur =0 (A(Dz)u =0), (14)

where A;(0,) is the differential operator determined by the formula
02

= aijklm7

uw = (uy,... ,uy,) is the unknown vector, = (21,... ,Tm) is a point
from R™, a;j are the constants satisfying the conditions

Air(0r) (15)

Qijkl = ilkj. (16)

In addition, we require of the system (14) to be elliptic. This is equiv-
alent to the condition

VE= (£, 1 €m) € R™M\{0} : det A() = det || Aa(E)llnxn # 0- (17)
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If it is assumed that m = n = 3 and ajju = ani; = @ji, then the
system (14) turns into the system of the classical elasticity theory for
an anisotropic medium.

Let us consider the conjugate system of equations

An(B)os =0 (A"(3,)v = 0), (18)
where
Fo 2
Aj(0:) = Wi iy = ki e = Api(z). (19)
In John [1] there is constructed a fundamental matrix ¢ = ||¢xs||nxn

such that

1) ¢rs € C(R™\{0}), Y € R™\{0} : Aix(0:)drs(2) = 0;

2) WVt # 0, Yo € R™\{0} : 9°¢(tx) = t~1*I=m+299%(z), where a =
(a1y... ,0p) is an arbitrary multiindex;

3) Ve e R™:

lim [ Ta(00)6u(y — )4, = b, (20)
9B(x.6)

where B(z,8) is the ball with center at the point = and radius , and

T*(0y, v) = | T30y, ¥)llnxns (21)
e J :
T5(0y,v) = hsitVig = Tii( 0y, v),

T(9y,v) = ITki(y, ¥)lnxn- (22)

The following theorem is valid (see Buchukuri and Gegelia [1-4]):

Theorem 5. Let Q be a domain from R™ containing a neighbour-
hood of infinity, u be a solution of the system (14) in the domain §Q,
belonging to the class C*(Q) and satisfying one of the conditions below:

S - 9
lim ey lu(z)|dz = 0, (23)
B(0,r)\B(0,r/4)

Izlilnoo {_Z%%l i a4
EAlde L (25)

mtptl
21+ El
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where p is a nonnegative integer. Then in a neighbourhood of infinity
the following asymptotic representation of u = (uy, ... ,u,) holds:

u(@)= 3 e+ 3 dO Do) + pu(a),  (26)
lol<p 181<q

where ¢{®) = const, clg") =const, a=(ay,...,on) and = (B1,..., m)

are multiindices, ¢ s an arbitrary nonnegative integer, and

¢
|I|m+|’v|+q+l

[D"y(@)] < (27)

c=const, ¥ = (Y1,... ,Ym) ts an arbitrary multiindez.

It should be emphasized that each of the three terms in the right-
hand side of the representation (26) is a solution of the system (14).
Theorem 5 implies the following corollaries:

Corollary 1. If u € C*(Q), Vo € Q: A(d,)u(z) = 0 and
u(z) = o(1) (m >2), u(z)=o(lnlz|) (m=2) as |z| = oo,
then there exists the limit

Limy U(E)= (Cis5a0 560): (28)

|z|—o00
Corollary 2. Ifu € C*(), Vo € Q: A(d,)u(x) = 0 and u(z) = o(1)
(m >2) as |x| — oo, then for any multiindex a:
Du(z) = O(|z|*™1h) (m > 2),
u(2) = O(|z| 1 ) ( ) (29)
Du(z) = O(|z|*~1l) (m = 2).

In particular,
u(x) = O([z|*™™), T(0,,v)u(z) = O(|z]'™) (m > 2),
u(z) = O(le|™), T(0w,v)u(z) = O(Jz|7%) (m =2).

2.5. Solutions of Boundary Value Problems with Power Growth at
Infinity. Theorem 5 makes it possible to investigate boundary value
problems in more general formulations than the classical ones.

Let @ be a bounded domain from R™ with the smooth boundary
0Nt =S, Let Q- =R™\(Qt U S).

Problem (7). In the domain Q- find a vector u = (uy,... ,u,) of
the class C2(Q7) N CY(Q7), satisfying the conditions

Yz e Q7 : A(dy)u(z) =0, Vy €S: (u(y) =

u(z) = o(|z|P™?) as |z| — oco.
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Here A(0;) is the differential operator determined by the formula
(14), ¢ is a given function (¢ = (¢1,... ,9,)) on S, and p is a non-
negative integer.

Let us denote by G (p, m) the set of all solutions of the correspond-
ing homogeneous (¢ = 0) problem.

T. Buchukuri proved (see Buchukuri and Gegelia [3]) the following

Theorem 6. G (p,m) is a finite-dimensional linear set whose di-
mension is calculated by the formula

dim(}gs(p.m) = 71,((""'] 1+ Gl ): (30)

'ptm— p+m—2

here C? is the binomial coefficient; C2 =0 if s > r.

Corollary 1. If ¢ € H*(007) (a > 0), then the problem (I);, is
solvable and the solution is represented in the form
w=ul® 4

where u'® is a solution of the problem (I)7,, vanishing at infinity, and
u?) is an arbitrary element of the set G' (p,m).

Similar theorems and corollaries hold for all the basic problems,
also for the main contact problem. However, it is difficult to calculate
dimension of the set of solutions of the homogeneous problems which
in the classical formulations have nontrivial solutions.

Corollary 2. In the classical theory of elasticity, m =n =3 and
dim GL(p,3) = 3(Cr,y + C2py)- (31)

There/re we shall have three linear independent solutions of the first
basic problem, satisfying the condition

u(z) 0.

m =
lel=o 2]

Note that the investigation of problems of the type (1) is far from
completion. Dimensions of spaces of the type G (p,m) have not been
calculated for other problems of elasticity. Nothing has been done in
this direction in couple-stress elasticity and thermoelasticity, as well
as for other models.
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2.6. Asymptotic Representation in the Couple-Stress Theory of
Elasticity. To prove the validity of a representation of the form (26)
for solutions of a system of the couple-stress theory of elasticity turned
out to be a difficult task. A system of the basic equations of this theory
for an anisotropic medium is written in the form

. ?uy, L .
kA — CiilmEkim 5— =
0z 0xy T T O 2 A
2 7 (32)
duy e Owy, 0
Cimlk€ijm 75— T Cjuk a7 a — CimlpEijmErlpWk =
mikEijm o ””()‘r,-(’)x, imip€ijmEkip! 5

u = (uy, us,u3) is a displacement vector, w = (wy,wz,ws) is a rotation
vector, &;jx is the Levy-Civita symbol, ¢;ji = const, ;. = const.

The system (32) contains both the second order derivatives of the
unknown vectors and the first and zero order derivatives. The latter
circumstance essentially complicates the character of the fundamental
matrix of the system (32). This matrix does not possess the property
2) from Subsection 2.4. Yet, T. Buchukuri managed to obtain the
estimates of the fundamental matrix needed to prove the validity of a
representation of the form (26) (see Buchukuri and Gegelia [4]).

An asymptotic representation of the form (26) has not been obtained
for many models of the elasticity theory in the case of an anisotropic
medium.

2.7. Mixed Basic Problem of the Elasticity Theory. Mixed basic
problems of the elasticity theory — when a boundary condition of one
type, say, displacement is given on one part of the boundary and a
condition of another type, say, stress is given on the remaining part
of the boundary - are reduced to SIE on open surfaces. Mixed plane
problems are reduced to SIE on open contours.

The SIE theory on open contours is completely elaborated both in
the classes of smooth functions and in the classes of summable func-
tions (Muskhelishvili [2], Muskhelishvili and Kveselava [1], N. Vekua
[1] and others). These results and their development enabled G. Man-
dzhavidze, V. Kupradze and T. Burchuladze to bring to the end the
investigation of mixed plane probleius of elasticity.

The SIE theory on open surfaces in the classes of Holder functions
has not been developed to a sufficient extent; some results in this di-
rection are obtained by R. Kapanadze in Kapanadze [2]. For the time
being mixed problems of the elasticity theory have not been investi-
gated with the required completeness (see Subsection 2.12).

0
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2.8. Properties of Solutions of the Basic Equations of Elasticity
near Singular Points. As said previously, the fundamental solution of
the considered system plays a special role in potential methods. This
solution satisfies the system everywhere except the origin at which it
has a singularity. Such a solution is a displacement field produced
by the force source concentrated at the origin. Singular solutions are
generated by other force sources as well. For example, the so-called
double force produces a field of a higher singularity than the funda-
mental solution. It is natural to try to find all singular solutions of the
system under consideration, or, speaking more exactly, all solutions of
the system which, at given points, possess a concentrated singularity
of any order, say, of the power order. The following theorem provides
the answer to this problem (see Buchukuri and Gegelia [1-4]).

Theorem 7. Let Q be a domain fromR™, y € Q, u = (uy,... ,u,) be
a solution of the system (14) in the domain Q\{y} and Yz € Q\{y} :

(6

o) < —— 3
Ju(z)| < T (33)
where ¢ = const, v > 0. Then Vo € Q\{y}:
Wl =l | e e, (34)

laf<(+2-m

where u° is a regular solution of the system (14) in the domain Q
(v € CHQ)), @ = (ou,...,0m) is a mulliindex, [y] is the integer
part of the number ~, a'® (a(]“’,“. salel), aﬁ‘“ = const, ¢ is the
Sfundamental matriv of the system (14).

It should be noted that the second term in (34) is absent when
[7] + 2 — m < 0. Moreover, replacing (33) by the condition

u(e) = 0(1—1——), (35)

z =yl

where ¢ is a natural number, we can perform summation in the rep-
resentation (34) up to ¢ + 1 —m.

Theorem 7 precisely establishes the properties of solutions of the
system (14) in the neighbourhood of an isolated singular point. The
representation (34) immediately implies the theorem on a removable
singularity.
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Corollary 1. Let Q be a domain in R™, u = (uy,... ,uy) belong to
the class C*(Q\{y}), y € Q@ and Vy € Q\{y} : A(D.)u(x) = 0. Let,
besides,

=
lz) = O(W), m>2; (36)
w(z) =o(ln|z —yl), m=2.

Then y is a removable singularity for u, i.e., there exists a limit

lLII; u(z) = uly)
and if we complete the definition of u at the point y by the value u(y),
then u € C*(Q).

The representation (34) also implies yet another theorem frequently
used in applications.

Corollary 2. Let the conditions of Theorem T be fulfilled and v >
m —2 (m > 2) in the estimate (33). Then for any multiindex o

c

[D%u(z)| < o=y (37)
In particular,
c
| (8, v)u(z)| < m, (38)

where T is the stress operator.

Theorem 7 can be used to investigate the basic problems for the
system (14) in more general formulations than their classical counter-
parts.

Let Q be a bounded domain from R™ with the smooth boundary
S =00 and ...,y be a set of ponts lying in this domain.

Problem (/). Find a vector u = (uy,...,un) of the class
CHO\{yD,...,yOHNCH(SUQ\{y™,... ,yI}), satisfying the con-
ditions

vz e Q\{y",... .y} A(:Ju(e) = F(2), (39)r
vyes: | lim u(z) = ly), (40),

) o)y . 3 ¢
Ve O\{y"Y,... 57} |“(7c)|§i=1 [z — y@ri (41)

Iz

N
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Here F and ¢ are given vector-functions, ¢ = const, and p; are given
nonnegative numbers.

This problem will also be referred to as problem (39)r, (40),, (41).

Theorem 8. The homogeneous problem (I).s, i.c., the problem (39)o,
(40)o, (41) has exactly
nY (CEa+CE) (42)
i=1
linearly independent solutions.

If ¢ € H*(S) (a > 0), the nonhomogencous problem (I)cs, or more
exactly the problem (39)o, (40)4, (41) has a solution u which is repre-
sented in the form

w=u'® + o
where u¥) is a solution of the problem (39)o, (40),, regular in the
domain Q, and u(® is an arbitrary element of the set G((I)cs). Here
G((I)es) denotes the set of all solutions of the homogeneous problem
(39)0, (40)o, (41).

The investigation of the second basic problem demands some ef-
fort to overcome certain difficulties. For the sake of simplicity let us
consider a system of the classical elasticity theory m =n = 3.

Problem (I7).. Let Q be a bounded domain from R3, containing

the origin. It is required to find a vector u = (u1,uz,u3) in the domain
0, = Q\{0} by the conditions

we CHO)NCHS UM),

Ve € Qy: A(dy)u(z) =0, (43)
Vyes: Qaglpi_rges T(9y,v)u(z) =0, (44)
¢
: S
Ve et lu(o)] S T (19)

Let u be a solution of the problem (43)-(45). Then, by virtue of
Theorem 7, it is represented in the form

w(z) = u®(@)+ 3 caiDTij(2), (46)
lol<p-1

where u(©) is a regular solution of (14) in the domain Q.
Here T is the matrix of fundamental solutions of the classical elas-
ticity theory.
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Taking into account (44) and the easily verifiable equalities

[ Ty, 1()us(w)dy 5 = 0,

(47)
/EffkyfT’f'(ayw"(?/))ul(y)dys =0,
9
we find from (46) that
)
+623<0011k; - 00?:) 29%4 Caj DTj. (48)

Thus any solution of the problem (43)-(45) can be represented as
the sum of a solution u(® regular in Q and a linear combination of
vectors () = (1,[:('), hy ),11{( )) with

Bl 2V (2) _ 43 @ = Oy b = Ok, Ol
K Fri ik Azy E 83 ¢ dxy dz,’
o = Mg _ O ) _ Ol 3Tk (49)
dxy 0zz’ F T Bz, Jxy
and
(Daru,Dargj,Dargj)2<ﬂ<p_l (i =1,2,3). (50)

The above reasoning leads to

Theorem 9. dimG((11)es) = np + 6, where n, = 0 for p < 1 and
=3p® —6 forp>2.

This theorem belongs to T. Buchukuri (see Buchukuri and Gegelia
3]

As one may conclude from this survey, the investigation of prob-
lems with concentrated singularities has not been completed even in
the classical elasticity theory. They have not been studied at all in
thermoelasticity, couple-stress elasticity, elasticity with independent
dilatation and so on.

We would like to note that solutions of problems with concentrated
singularities contain arbitrary constants. These constants can be used
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to construct solutions possessing some additional properties, for ex-
ample, a property to minimize a functional or a property to take given
values at given points.

2.9. Dynamic Problems. The investigation of dynamic problems
or, as they are frequently called, initial-boundary problems in the
elasticity theory is fraught with some difficulties. In these problems it
is required to define a dynamic state of the medium, i.e., it is required
to find in the cylinder C = Q x [0, 00] a solution of the system

D*u(z,t)
2 ie)
A@Os)u(a,t) = p —ar~ﬂF(I»i)w (51)
which satisfies the initial condition
; N . u(a,t) - .
limu(e,1) = p(2), 11_037 =1() (52)

at each point 2 in the domain Q and one of the boundary conditions
of the basic problems.

Dynamic problems were initially investigated by Hilbert space meth-
ods (G. Fichera, O. Maisaia and others) and afterwards by potential
methods (V. Kupradze, T. Burchuladze, L. Magnaradze, T. Gegelia,
R. Rukhadze, R. Kapanadze, R. Chichinadze and others).

Using the Laplace transform V. Kupradze and T. Burchuladze re-
duced the dynamic problems to the boundary value problems for an
elliptic system

A0 u(z, 1) — T*0(2,7) = F(z,7). (53)

The complex parameter  that also participates in the boundary con-
ditions is the result of the formal Laplace transformation with respect
to the time variable.

Thus the initial boundary problems are formally reduced to the
elliptic boundary value problems with a complex parameter.

Such a reduction of the dynamic problem has long been known in
mathematical physics. The investigation begins after this procedure,
as it is necessary to substantiate the inverse Laplace transformation by
the parameter 7. For such a procedure V. Kupradze and T. Burchu-
ladze used the Green tensors. Presently, there are several approaches
to obtain estimates of the Green tensors. One of them is the represen-
tation of the Green tensors in the form of a composition of singular
kernels (T. Gegelia, D. Natroshvili, R. Kapanadze, R. Chichinadze).

The methods of solution of dynamic problems proposed by V. Kup-
radze and T. Burchuladze were afterwards extended to other models.
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Especially intensive investigations are being carried out in this direc-
tion in the thermoelasticity theory and its modern models of Green—
Lindsay and Lord-Shulman (see Burchuladze and Gegelia [1]).

2.10. Contact (Interface) Problems of the Elasticity Theory. The
potential methods turned out efficient also in investigating contact
and boundary-contact problems. Let O and Y (k=1,....,n) be
domains with the connected smooth boundaries 9Q and 9. Note
that Q; N Q] =0 ifi#jand Q; C Q. We introduce the notation:

0.

(@]

D=0\ %, S=00 U o (r<n), L=
k=1

k=r+1 k:

1

Let the domain Qg be filled up by an elastic medium with the Lamé
constants A and 19, and the domains (k =1,...,7) by elastic
media with the Lamé constants )\, and k- Thus a nonhomogeneous
elastic medium with piecewise-homogeneous structure occupies the
domain

N
k=0
and Q; (i=r+1,... n) are hollow inclusions.
The case is admitted when Q is the entire space R then 0 = @.
We also may encounter the case r = n.
The basic boundary-contact problem consists in finding in the do-
main Q; (k=0,...,7)a regular solution of the equation

A®(B,)u = pyF,

which satisfies one of the boundary conditions of the basic problems on
the boundary 5, and the contact conditions on the contact (interface)
surfaces 90 (k =1,... ,7): displacement and boundary stress jumps
are given (A*)(9,) is defined by (2) where A and i are replaced by Ay
and fix).

We may also consider a more general problem when different bound-
ary conditions are given on the surfaces 00, 0 y1,...,00, - this is
a mixed boundary-contact problem.

When the dynamic state is considered, to the above conditions we
must add initial conditions.

V. Kupradze was the first to investigate the boundary-contact prob-
lem by the potential method. He proved that this problem is solvable
when the Poisson coefficients of the contacting media coincide. Subse-
quently, these problems were investigated without any restrictions on

559520
101945
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the Poisson coefficients in Basheleishvili, Gegelia [1] and, for problems
of thermoelasticity, in Jentsch [1, 3, 14].

L. Jentsch [5-8] and afterwards V. Kupradze introduced into con-
sideration other contact problems. In these problems instead of dis-
placement and stress jumps we are given jumps of normal components
of the displacement and the stress vectors and values of the tangent
components of the stress vector (problem G) or jumps of normal com-
ponents of the displacement and stress vectors and values of the tan-
gent components of the displacement vector (problem H). Other con-
tact conditions are also possible. Various type of contact problems of
elasticity and thermoelasticity were investigated by V. Kupradze, L.
Jentsch, R. Katamadze, R. Gachechiladze, O. Maisaia and others and
for the anisotropic case in Jentsch and Natroshvili [1].

We would like to note that the true contact problems which occa-
sionally are also called Picone problems were investigated even earlier
by the Hilbert space methods (J. Lions, S. Campanato, G. Fiche-
ra). G. Fichera and afterwards O. Maisaia, R. Gachechiladze and
M. Kvinikadze studied contact problems for isotropic as well as for
anisotropic and homogeneous media.

More complicated contact problems were investigated when, for
example, the assumptions of classical elasticity are valid for media
occupying the domain €; (i = 1,...,v; v < r), and the assump-
tions of couple-stress elasticity are valid for other media occupying
Q (i =v+1,...,r). Problems of this kind are treated in the pa-
pers of O. Maisaia and M. Kvinikadze. Some new properties of the
solutions have been found.

So far it has been assumed that €; C Q, but if ; C Q, then
INNIN # @ or &N = @, but IN,;NIN # @. In such situations the
contact problem becomes essentially more complicated. Using pseu-
dodifferential operators, O. Chkadua has obtained the first results in
this direction. In the plane case similar problems of bimodal type were
investigated with the aid of the theory of singular integral equations
with fixed singularities (see Duduchava [1]) and Mellin techniques by
L. Jentsch [10-25].

2.11. New Models of Thermoelasticity. In recent years intensive
investigations have involved new various models of the elasticity the-
ory which take into account interactions of different mechanical and

. nonmechanical fields. Thermoelasticity is the natural generalization
of the classical elasticity theory. The classical model of the elasticity
theory does not take into account temperature changes. But deforma-
tion is always accompanied by temperature changes and a temperature

1101945
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change is always accompanied by deformation even in the absence of
external force. The physical fundamentals of the thermoelasticity the-
ory were developed by J.M.K. Duhamel, W. Voigt, H. Jeffreys, M.A.
Biot and discussed by G. Cattaneo, I. Miiller, S. Kaliski, W. Nowacki,
A.E. Green, K.A. Lindsay, H.W. Lord, Y. Shulman, J. Ignaczak, Ya.
Podstrigach, Yu. Kolyano, and others.

Equations of the classical thermoelasticity theory are written in the
form

2 )
Aol 1) 7 grad 0z, 1) — p T2

i =P, (6
100(z,t) 0
x

Ab(z,t) — — o + nadivv(a@.t) = (1), (55)

where A(,) is the matrix differential Lamé operator (see Kupradze
(1)), v = (vi,vq,v3) is the displacement vector, # is a temperature
change, F = (Fy, F3, F3) and Fy are given by external force and v, »,
p, n are physical constants.

V. Kupradze and his pupils T. Burchuladze and N. Kakhniashvili
were the first to apply potential methods to thermoelasticity. They
developed completely the theory of boundary value, initial-boundary
and contact problems, studied the steady state oscilation problems
and investigated other aspects of the theory.

The classical model of thermoelasticity does not take into account
the heat flow time, which led to the well-known paradoxes in this
theory. Hence new improved models were created, of which the models
of Green-Lindsay and Lord-Shulman enjoy particular popularity. The
Green-Lindsay model is described by the system

2
A(0;)v(z,t)—~grad O(z, t)~‘y1’182 grad 0(z, t)—p%: F(z,t),
Lo0(x,t) 7 (')29(1 t)
Ab(z,8) — ——7 S oz T a—dlv v(z,t) = Fy(x,1), (56)
and the Lord-Shulman model by the system
92,
Aol ) - 7 grad .1~ 20 o,
190(x,t) | 100°0(x,t) 9
Ab(z,t) — ot < on +n 5 divo(a

+7]T18—(11V v(z,t) = Fy(z,t). (57)

)2
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For these models and also for models in which diffusion and couple
stresses are taken into account T. Burchuladze and his pupils con-
structed fundamental solutions, derived Green formulas and represen-
tations of solutions, constructed the corresponding potentials, estab-
lished radiation conditions, obtained estimates of Green tensors and
investigated both boundary value and initial-boundary problems (see
Burchuladze and Gegelia [1]).

Mention should further be made of the approximate method of
Fourier series which in the foreign literature is called the Riesz—Fisher—
Kupradze method. T. Burchuladze showed that this method is effi-
cient also for just mentioned models (see Burchuladze and Gegelia [1]).
Methods of constructing explicit solutions for some domains bounded
by a system of planes also work well (see Burchuladze [1]).

2.12. Application of Pseudodifferential Operators. This subsec-
tion contains an outline of the investigation of the mixed problems of
elasticity by the potential method using pseudodifferential operators
(see Prossdorf [2], Maz’ya (1], Eskin [1], Boutet de Monvel [1], Triebel
[1, 2], Shamir [1], Duduchava [3], Shargorodsky [1, 2], Duduchava, Na-
troshvili and Shargorodsky [1], Natroshvili, Chkadua and Shargorod-
sky [1], Natroshvili and Shargorodsky [1] and others).

Let Q* be a bounded domain from R® with a smooth boundary S
of the class C* (k > 4); O~ = R*\(Q* U S). Let S be represented as
S = 5,US,, where 51N, = @, $1NS; = L. It is assumed that S, and
S and also L are smooth manifolds. S; and S, are two-dimensional
surfaces with boundary and L is a closed curve (without an edge).

Problem [QF,5),5,]. Find a solution of the system (14) in the
domain Q% satisfying the conditions

+
Si

+

=9, T(0;,n)u <

= (58)

e

The mixed problem for the domain Q= is formulated similarly, but
in that case, to preserve the uniqueness theorem, the solution must
satisfy the condition u(z) = o(1) for |z| — co.

Note that the formulation of the boundary value problems [Q2% S}, S;]
and [Q27, S1,.5;] is not rigorous because we have not indicated those
functional classes where solutions are to be found. This refinement
will be made later.

Let ¢ be the fundamental solution of the system (14). Consider the
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single-layer potential

Vigha) = [ éla = n)g(w)d,5, (59)
S
and denote its restriction on S by Vs(g). Vs(g) : S — R®is a pseu-
dodifferential operator (PDO) of order —1.
If u is the solution of the problem [Q*%, S, S,], then it satisfies the
system (14) in the domain Q% and the boundary condition

u|;r = (60)

where f: S — R?® and coincides with ¢ on S;. The values of f on S;
are unknown. This function can be written in the form f = ¢ + o,
where @q is some known function coinciding with ¢ on Sy, and ¢q is
the desired function on S, which is equal to zero on S;. Thus, if we
find g, then for defining u we obtain the first basic problem (14), (60).

The solution of the problem (14), (60) will be sought for in the form
of the simple-layer potential u = V(g). Then from (60) it follows that

Vs(9) = £ = do + 0.

It can be proved that the operator Vs(g) is invertible in the corre-
sponding pair of functional spaces. That is why

9=V (¢o + %o)
and therefore
w=V(V5' (¢ +00) = V (Vs (60) + V (Vs (o)) (61)

The solution u represented by the formula (61) satisfies the system
(14) and the first boundary condition from (58). We must choose
©o such that the second boundary condition from (58) be fulfilled.
Calculating T'(8,)u|¥, we obtain

(0 n)uf(2) = —W + /T(')zd)(z — )V (60)(y)dyS —
- 5
) 19,60 - Ve o) ).
S

For z € S, this equality implies

—53“—+/Ta¢ S )VE () () =
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Vst (go)(2
9

= () + Lo [ 10,00~ V@), 5. (62)

S

which is a pseudodifferential equation on the manifold S, with the
boundary L.

Note that the PDO contained in (62) does not possess the trans-
mission property (see Eskin [1], Boutet de Monvel [1], Rempel and
Schulze [1]) and the theory of such equations in Holder spaces C™+*
has not as yet been developed. That is why we have to investigate the
equation (62) in Bessel potential spaces H; and in Besov spaces B,
(see Burchuladze and Gegelia [1], Triebel {1, 2]). The PDO theory for
these spaces is worked out in Shamir (1], Duduchava [3], Shargorodsky
[1,2]. After the uniqueness and existence theorems are proved in these
spaces, the Holder continuity of the solution is established by means
of the embedding theorem.

Before we proceed to formulate the results, two circumstances have
to be noted: for some particular cases we have expilicit formulas (see,
e.g., Vorovich, Aleksandrov and Babeshko [1]) for the solution of the
problem [Q*, 5y, S5], according to which at points z near the edge L
the solution behaves like /p(x), where p(z) is the distance from the
point @ to L. Therefore, generally speaking, the solution does not
belong to the class ”/2 for p > 4/3, to the class ”” for p > 4 and to
the class C* for o > 1/)

Besides, if the solution of the problem [Q*, Sy, S,] is sought for in
the Sobolev spaces W2(Q*) or W) (QF), then the equation (14) can be
understood in the sense of genexa]l?nd functions. Then the respective
sense should be given to the boundary conditions (58), too, under-
standing by them the trace of the corresponding functions. However,
in the case of the space LV;(Q*) there arises a complication because the
derivative of the function from the class ‘/VI}(Q*) belongs to the class
L,(Q%) and its trace on S is not determined. Therefore we should give
sense to the second boundary condition of (58) by means of Green’s
formula and generated by it duality. This can be done thanks to the
fact that the solution of the problem is not an arbitrary function from
the class LV;(Q*‘), but a function satisfying the equation (14) in QF.

We finally obtain the validity of the following theorem (see Dudu-
chava, Natroshvili and Shargorodsky [1], Natroshvili, Chkadua and
Shargorodsky [1]).

Theorem 10. Let 4/3 < p <4 (1 <p < 4/3) and ¢ € B 1/”( S1),
' € B, l/”(ﬂg) (o € B>-UP(S)), o € 1};_,)1/”( S2)). Then [/1{, /)70/)/1 m

pp

0
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[F.S1. 53] has the unique solution of the class W)(Q") (WEHQT)).
If ¢ € B;,(S1) and ¢ € Bi7'(S:), then the solution u of the class
W) Q) also belongs to the class Hf““(ﬂ*’). Ifo € B (5), ¢ €
BiN(Ss), then w € BisVHQY). If o € C%(51), ¥ € BA(S2) (0 <
a < 1), then u € C'(QF) with o < a.

Herel <t<oo,1<qg<o0, 1/t—1/2<s<1f/t+1/2.

A similar theorem holds for the problem [Q27, S, S3], too.

The method described can be used to investigate mixed problems
for the oscillation equation (12) and the pseudooscillation equation

AQu —7tu=0, T=0+iw, o#0. (63)

The initial-boundary mixed problems for the dynamic state are
treated by the conventional technique, i.e., by reducing them using
the Laplace transform to the mixed problems of pseudooscillation (see
Natroshvili, Chkadua and Shargorodsky [1]).

Problems of the mathematical theory of cracks evoke special inter-
est. They are also successfully investigated by the method of pseudod-
ifferential equations (see Duduchava, Natroshvili and Shargorodsky [1]
and Natroshvili, Chkadua and Shargorodsky [1]).

2.13. Optimization and Control Problems in the Elasticity Theory.
Let Q be a domain from R*® with a sufficiently smooth boundary S.
Consider some basic problem of the elasticity theory:

Find in the domain Q a regular solution of the equation

A(D)u(z) = F(z), (64)
by the boundary condition
Yy € St (D(9y)u)(y) = f(y)s (65)

where F = (Fy, Fy, Fs) f = (f1, fa, f3) are given vectors in Q and on
S, respectively. A(d,) is a differential operator of the elasticity theory
(see (2) or (6)), D(9,) is the boundary operator of some basic problem
(if the first problem is considered, then D(9,) is the identity operator;
if the second problem is considered, then D(9,) is the boundary stress
operator and so on).

Under certain additional restrictions (see Kupradze (1)), which we
shall assume to be fulfilled, the problem (64), (65) has the unique
solution u. Let us consider some functional {(u) of the solution w. It
is obvious that u depends on the parameters of the problem (64), (65),
i.e., on the coefficients of the operator A(d,), on the right-hand side F’
of the equation (64) and on the boundary data f. These parameters

% ']
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can be used to control the functional {(u). We may, for example, pose
a question of finding in the defined functional space H a vector F'
minimizing the functional /.

If a similar problem is considered for elastic stationary oscillation (in
that case the equation (64) is replaced by the equation (12)), then to
the considered parameters of the problem we should add an oscillation
frequency and then the control of the functional can be effected by any
parameter (or parameters) of the problem.

Similar problems can be investigated for the dynamic state, too.
For example, the following problem has been investigated:

02 i
Yo ) € @ Adau(e,t)— o) ozt <o,
Ve Q: u(z,0) =0, gl_‘((_;tﬂ =0; (66)

Vi(zt) € B ¢ ulzyt) =gle,t);
where Q is a domain from R3, Q = Q x (0,7), ¥ = 9Q x (0,T), g is

a given vector on .
If g is a sufficiently smooth vector and 9 is a sufficiently smooth
surface, then the problem (66) has a sufficiently smooth solution w.
Let ¢ and © be vectors of the class L?() given on Q. Consider the
functional
59) = [ (1ute.) - el + |20

Q

i) 2)@-. (67)

Theorem 11. There exists a number Ty such that if T > Ty, then

infJ(g) =0, g€ C™(Q).

Some investigations involve problems of the control of various func-
tionals by solutions of problems of thermoelasticity, by solutions of
singular integral equations and so on.

Problems of control have not been as yet considered with sufficient
completeness in the elasticity theory. Only the first results have been
obtained (see works by O. Maisaia, A. Jorbenadze, T. Tsutsunava).

2.14. Noncorrect and Nonclassical Problems. Various nonclassical
(see Vorovich, Aleksandrov, Babeshko [1], Maz'ya [2] and others) and
noncorrect problems of the elasticity theory have been investigated. In
these problems the sets with given boundary data or contacting media
are not bounded or have additional boundary conditions on one part
of the boundary and free boundary conditions on the remaining part.

2
110194
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We shall mention one noncorrect problem which was investigated
by the quasi-inversion method (O. Maisaia)

Let (i1, (i, ('3 be bounded domains from R? and Gy C Gs, Gy C Ga.
Let Q, = G\Gy and Q, = G3\Gy. Then 9Q, = G, U G, and
00, = 9G35 U JG,. Functions u") and u? are to be found, for which

vz € Qi : AV (@) =0, k=1,2 (68)
Yy € 9Gy : u'(y) = o(y),

T3, n)uV(y) = ¥(y);
Yz € 0G; : uV(z) —u@(z) =0,

T“)(f)z,n)um(z) _ T(2>(azyn)u<2)(3) =0.

(69)

(70)

2.15. Potential Methods in the Plane Elasticity Theory. Potential
methods are used to solve and to investigate many plane problems
of elasticity, in problems of anisotropic plate bending, in boundary-
contact problems and so on. These problems are reduced to equivalent
integral equations, which makes it possible to represent the solutions of
problems by means of potentials whose kernels are written in terms of
elementary functions. These potentials are applied to obtain solutions
in series or in quadratures for some particular cases (a half-plane,
a strip, an ellipse and so on). For example, an effective solution is
obtained for the mixed problem for the whole plane with an elliptic
cavity or with cuts arranged on the straight line and so on (Jentsch
[20, 21, 24], M. Basheleishvili, Sh. Zazashvili, Zh. Rukhadze and
others). The concept of equivalent potentials of single-layer type was
applied by J. Maul (see Jentch, Maul [1], Maul [1,2] to very general
mixed contact problems.

If an elastic medium occupies a plane domain with a piece-wise
smooth boundary, then we obtain singular integral equations contain-
ing singular integrals with fixed singularities. Such equations and their
applications are treated in Duduchava [1].

Mention should also be made of the investigations conducted by
complex potentials (see works by G. Mandzhavidze, E. Obolashvili,
R. Bantsuri. G. Janashia and others).

2.16. Solutions in Quadratures of Boundary Value Problems of
the Elasticity Theory for a Ball and the Whole Space with a Spher-
ical Cavity. Methods of constructing effetive solutions of problems of
this theory play a special role in the theory of continuum mechanics.
By effectiveness we understand the construction of solutions either in

1101945
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elementary functions or in series or in quadratures. To avoid misun-
derstanding we shall always indicate clearly in what form the solutions
are constructed.

Sufficiently detailed information on effective solutions of the spatial
problems of elasticity and thermoelasticity can be found in Kupradze
(1). We shall dwell here on some most noteworthy results obtained in
this direction by the potential methods.

Numerous works starting from the the well-known memoirs of Lord
Kelvin to the present-day studies are devoted to solution of the basic
problems for a ball and the entire space with a spherical cavity. It
is not our intention here to give a full account of the history of this
question. We wish only to note that in 1972 D. Natroshvili succeeded
in summing series of spherical functions that give solutions of the ba-
sic problems of the elasticity theory and in representing the obtained
solutions in the form of quadratures (D. Natroshvili). After Professor
G. Fichera learnt about D. Natroshvili’s results, he sent the Thilisi col-
legues the paper of R. Marcolongo where the solutions in quadratures
of the basic problems were obtained by a different method without
resorting to series as far back as 1904. The method and results of
Marcolongo became the subjectmatter of many interesting investiga-
tions. We shall discourse on some of them below.

To grasp the essence of Marcolongo’s method which is in turn based
on V. Cerruti’s ideas, let us consider how this method is applied to
the solution of the problems of classical elasticity.

Let Bt be a ball with centre at the origin and radius p, B~ =
R3\B¥, S = 9Bt = 0B~.

The basic problems of the elasticity theory are formulated as follows:
Find in B* a continuous vector u, which in B* is a solution of the
system (2), by the boundary conditions: on the boundary S we are
given displacement f (Problem (/)%) or stress f (Problem (I7)*), or
tangential stress components g and normal displacement component
I (Probiem (I11)%), or tangential displacement components ¢ and a
normal stress component { (Problem (IV)*), or a linear combination
of displacements and stresses (Problem (V)*). The problems for the
unbounded domain B~ are formulated in the same manner.

The following theorems are proved (see Gegelia and Chichinadze [2]):

Theorem 12. [f

2

T
P T erady(a), (11)

2

u(z) = v(z) +

0
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where the vector-function v and the scalar function ¢ are continuous
in BY or B~ and satisfy the condilions

Av=0, Ay =0, (D,+a)=Ldivo,
A4 p d a (72)

a 3= — = o =r— = e
J_A+3u‘ r=lel, Dr=ro Z-“a.c;

= A+ 3pu .
then the vector u is a solution of the system (2) in B* or B~. And
conversely, if u is a continuous solution of the system (2) in Bt or

B~, then there exist a vector v and a scalar 1 continuous in BY or
= for which the conditions (T1) and (72) are fulfilled.

The solution of Problem (I)* is sought for in the form (71). Then
to define v we obtain the Dirichlet problem

Ve e BT : Av(z)=0, VyeS: vi(y) = f(y),
whose solution is given by the Poisson formula

1o p =2

() = T(f)(x) = 5 f()dyS. (73)

47r/) ly —af

To define ¥» we obtain an ordinary differential equation

P2 4 o = iV,
Finally, the solution of Problem (/)% is given in the form
u(@) = [ K@) fw)d,5, (74)
s
where K = [|Kyjllsxs,
Kij(z,y) =

_ L (P=bl, | Bl @ /‘(/ﬂ—w 1) dr
Tamp\ ly—2P ¥ 2 0.7',01]0 ly—rz|?  p/ 12
The representation (74) implies

Theorem 13. If f € C(S), then the solution of Problem (I)* is
given in quadratures in the form of the integral (74) and is the unique
classical solution (from the class C*(B*) N C(B*)) of this problem.
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The solution of Problem (I)~ is also given in quadratures and it is
also the unique solution in the class of functions satisfying the condi-
tion at infinity

u(z) = o(1). (75)

Similar theorems are valid for Problems (11)* and (V)*, while for
Problems (//1)* and (IV)* more rigid restrictions are imposed on
the boundary data g and [ (see Chichinadze [4], Gegelia, Chichinadze
2D

Note that it is not convenient to represent the solution in the form
(71) for Problems (I11)* and (IV)*. TFor these problems we must
modify the representation (71) and Theorem 12.

2.17. Solution in Quadratures of Boundary Value Problems of
the Thermoelasticity Theory. Marcolongo’s method is applied with
some modifications in the thermoelasticity theory as well. In classical
thermoelasticity a static state is described by a separated system of
equations

pAu(z) + (A + p) grad divu(z) — v grad 0(z) = 0,
Ab(z) = 0. (76)

If we find @ from the Laplace equation and substitute it in the
first equation (74), then we shall obtain a system of nonhomogeneous
equations of the classical elasticity theory. This simple way of inves-
tigating the stationary state is quite suitable for proving theorems of
the existence and uniqueness of solutions of boundary value problems,
but cannot be used for constructing effective solutions. Formulas for
representation of solutions of nonhomogeneous equations are rather
inefficient and not suitable for our purposes.

Boundary value problems for the system (76) can be solved in
quadratures directly, applying a theorem similar to Theorem 12. A
lot, of problems of the form (p,¢)* (p = 1,2,3,4,5, ¢ = 1,2), where
p corresponds to the problem (p)* of the elasticity theory and ¢ to
the problem (¢)* of harmonic functions, have been posed in the ther-
moelasticity theory. All these problems are solved in quadratures and
theorems of the type of Theorem 13 (see Gegelia and Chichinadze [2])
are proved.

Problems for a sphere have not been solved for nonclassical models
of thermoelasticity such as, for example, the Lord-Shulman or Green—
Lindsay theory (see Burchuladze and Gegelia [1]).
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2.18. Problems for the Polyharmonic Equation. The method of
representation of solutions by means of harmonic functions proved to
be suitable in solving problems for a higher order equation. Consider
the polyharmonic equation

A" ly(z) = 0, (77)

where A**1 = A(AY), A' = A is the Laplace operator and v is a
positive integer.

In regard to the equation (77) it is of interest to investigate the
Lauricella, Riquier and mixed problems (M. Nicolesco, I. Vekua, K.
Miranda). In these problems it is required to find a continuous so-
lution of the equation (77) in the domain by the following boundary
equations:

Lauricella problem: Vy € S : (%)Jr(y) = Ry k=005

Riquier problem: Yy € S: (Afu)*(y) = fi(y), k=0,...,v;

Mixed problem: Yy € S:

dFu\+
\dn*
(AN () = fily), k=p+1,... 0

All these problems are solved in quadratures (see Chichinadze [5,
6], Gegelia and Chichinadze [2]).

()= faly)y k=0,...,p, 1< p<uw,

2.19. Problems for Elastic Mixtures. In recent years researchers
have displayed great interest in the investigation of elastic mixtures.
We shall not discuss here whether the respective models are viable
or not. For information concerning this question we refer the reader
to Khoroshun and Soltanov [1], Natroshvili, Jagmaidze and Svanadze
[1], Truesdell and Toupin [1], Green and Naghdi [1], Steel [1], Green
and Steel [1], Atkin, Chadwik and Steel [1], Tiersten and Jahanmir
(1], Villaggio [1]. )

Thorough consideration has been given to the two-component mix-
ture whose equations are written in the form

alA(llt) + by grad div @ + AD + dgrad div @ = F,
(1 (1) (2) 2) (78)
e\ u) + dgrad div v’ + a;Au + by grad div u = Fy,

o 1 1 1 1
where ay, aq, by, by, c,d are the elastic constants, (u) = ((u)l,(u)z,(u)s)

2 2) (2) (2 ’
and (u) = ((u)l, (u)z, (u)g) are the displacement vectors.
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The boundary value problems are posed and comletely investigated
for the system (78) in Natroshvili, Jagmaidze and Svanadze [1] by
means of potential methods. Problems of thermoelastic mixtures have
also been investigated. All these problems are solved in quadratures
for the ball and the whole space with a spherical cavity in Chichinadze
[5], Gegelia and Chichinadze [2].

2.20. Numerical Computation of Singular Integrals of the Poisson
Integral Type. Methods of potential and integral equations proved to
be very convenient for obtaining numerical realizations of solutions
The representation of solutions by means of potentials and the reduc-
tion of problems to integral equations taken over the boundary form
the method of boundary integral equations which reduces by 1 the di-
mension of the problem and enhances considerably the computational
means. Moreover, this method is equally applicable both to finite and
to infinite domains. The method can be used to compute the solution
at any point without using in the course of computation other values
of the desired function. This is a serious advantage for engineers who
are well aware of stress concentration points and other drawbacks of
the computation procedure.

Numerical methods become much more efficient if solutions of prob-
lems are represented by quadratures. We have mentioned above some
problems of continuum mechanics that are solved in quadratures and
whose solutions are represented by formulas of Poisson type. The pe-
culiar feature of these formulas is that near the boundary the integrand
tends to infinity and special approaches are needed for its computa-
tion. In this connection we would like to note that if the point at
which the integral is computed lies on oz, then the Poisson kernel
will be the function of the angular coordinate only and the double
integral will be represented as iterated simple integrals only one of
which contains a singularity. It is not difficult to create a good algo-
rithm for computing a simple integral. Indeed, suppose it is required
to compute the integral

where f is a sufficiently smooth function on [a,b], but the inte
and its derivatives acquire large values near « or b. Divide somel
[a, b] by the points ap = ¢ < a@; < -+ < a, = b and replace the integral
on the interval [ar, aryq] by the Simpson sum
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QK41

/ F(6)dt ~ Su(f, hi) = %(mk; ¥

ay

+4f(ag + hy) + 27 (ax + 2hi) + 4F (ax + 3he) + flarsr))-

Here hj = =% If the estimate
i 180 -4% . ¢
(apss —ar) e e, ar <k < kg, (79)

is fulfilled, then

n—1

1 j eyt = 3 ()

S ¢&.

Thus, according to the computation algorithm for a Poisson type
integral the point at which the value of the desired function is being
computed, is to be placed on the oxs- axis and after that the obtained
singular integral is to be computed by the above algorithm; note that
in this case one must see to the fulfilment of the condition (79) on each
interval [k, axqq1]. If (79) holds for each interval [ak, aks1], then the
required computation accuracy is accomplished. If however the esti-
mate (79) is not fulfilled on some [ay, ax41], then [ak, ars1) is divided
in halves and each is considered separately. Such a division is to be
continued until the estimate (79) becomes valid. The estimate (79) is
a good criterion in choosing a variable division step Ay.

The algorithm is meant to optimize the computation time. None
of the computation stages is lost; they are succesively stored in the
memory and the computer will waste no time on finding them.

The foregoing computation method was used by T. Buchukuri (see
Gegelia and Chichinadze [2]) to compute singular Poisson type inte-
grals (see also T. Buchukuri [2]).

2.21. Boundary Value Problems of Macropolar Fluid Flow. If a
fluid contains a countless quantity of solid particles in the form of an
admixture, the flow of such a fluid will not obey satisfactorily the clas-
sical Navier-Stokes model. Eringen [1] gives an example confirming
this phenomenon. In such situations it is better to represent the flow
both as the displacement of the point and as its rotation about itself.
This is the moment theory of flow or, speaking differently, the flow
with regard to the fluid microstructure. The model of such a flow was
created by A. Eringen, also by D. Kondif and I. Dagler. It however



2]
10193

708 T. GEGELIA AND L. JENTSCH

turned out to be rather complicated, since it involved a nonlinear sys-
tem of partial equations containing seven equations with respect to
seven unknowns

(4 a)Av(z,t) + 2arot w(z, t) — grad p(z,t) + pf(z, 1) =

_ 0u(a:,t) al)(l‘,t)
= e ot (80)
(v + B)Aw(z,t) + (¢ + v — B) grad divw(z, t) + 2arot v(z,t) —
—dow(z,1) + pd(2, i)—faw(ar 4 e, >2w5(;:t-).,
divol(z,t)=0. (81)

This is a closed system of nonstationary flow of a viscous noncom-
pressible homogeneous isotropic micropolar fluid, v = (v, vy, v3) is the
flow velocity, w = (wi,ws,ws) is a rotation, p is the pressure, and a,
B, u, v, T, p are the physical constants.

Like in the classical Navier-Stokes model, two linearization variants
of the system (80) are considered, namely systems obtained by analogy
with the Stokes linearization and with the Ozeen linearization.

All the basic problems formulated for the obtained linearization
systems are investigated in Chichinadze [1], Buchukuri and Chichi-
nadze [1, 2].

In addition to the above-mentioned references, various questions of
the micropolar fluid flow are treated in work by N. Ramkinson.

2.22. Effective Solutions of Boundary Value Problems of Fluid
Flow. It should be noted that the method of representing solutions
of the Stokes-linearized classical Navier-Stokes model by means of
harmonic functions proved to be a convenient tool in solving the fluid
problem for a sphere.

The above-mentioned homogeneous system of equations is written
in the form

plAv(x) —grad p(z) =0, divu(z) =0, (82)

where v = (vy,v9,v3) is a velocity vector, p is a pressure, u is the
viscosity coeflicient.
For this case the following representation theorem is valid.

Theorem 14. If

26002
o(z) = u(z) + 2(2D, + 1)$(z) — r* grad () + 2 — grad ()
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p(z) = —p(2D, + 1)(z), (83)
Au=0, Ap=0, 2D +4D + 3¢ = —divu,
then the pair (v, p) gives the solution of the system (82) in B and B~.

The converse statement is valid, too. Here B = {z € R:” lz| < p},
B~ =R3\B+, § =90t =90-, D, = rd =z

v
This theorem is used to prove

Theorem 15. If f € C(S) and the necessary condition of solvability
[vfwa,s=o,
s

is fulfilled, then the pair (v,p) defined by the equalities

a1 otz
o) = g [T ), +

2 _ 52 1 3yv(z
+E again | (|~— + 25DV sya,s, (s
X
S

arp -yl

- - 2 1 3 z, )
p(:r):—-'u—div/<p 2 x(2,y)

= ) S+po (85
2mp emyF Tlamal 2 )OSR (9)

s

gives all classical solutions of the first basic problem.
Here py is an arbitrary constant and

Ty 7
x(@9) = o =yl + = Eln((fe =yl + p)" = Jof?).

Similar theorems are valid also for the other problems of fluid flow.
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CRITERIA OF WEIGHTED INEQUALITIES IN ORLICZ
CLASSES FOR MAXIMAL FUNCTIONS DEFINED ON
HOMOGENEOUS TYPE SPACES

A. GOGATISHVILI AND V. KOKILASHVILI

ABSTRACT. The necessary and sufficient conditions are derived in
order that a strong type weighted inequality be fulfilled in Orlicz
classes for scalar and vector-valued maximal functions defined on
hcinogeneous type space. A weak type problem with weights is
solved for vector-valued maximal functions.

HOBOTBI.  oggomes gaogygbomgbo. Gmdomgbog b=
aegregb ghegpérgb boghgdty asbbstoghgme 33““3&@“3{'”
bbbl ghofrbasbo dennho ©o Lo Gk gemumdg-
by Bothorggurendls thnofols jemalygdBo.

§ 0. INTRODUCTION

The main goal of this paper is to obtain criteria for the validity of
an inequality of the form

[oMr@)ea)dn < e [ o/l d (0.1)
X X

for maximal functions defined on homogeneous type spaces.

The solution of a strong type one-weighted problem for classical
maximal functions in reflexive Orlicz spaces was obtained for the first
time by R. Kerman and A. Torchinsky [5]. This investigation was fur-
ther developed in [6], [7]). Quite a simple criterion established in this
paper in the general case is the new one for Hardy-Littlewood-Wiener
maximal functions as well. Our present investigation is a natural con-
tinuation of the non-weighted case [1], [2], [3], [4]. Conceptually it is
close to [2], [8], [9], [153], [16].

For vector-valued Hardy-Littlewood-Wiener maximal functions in
the non-weighted case the boundedness in LP, 1 < p < oo, was es-
tablished in [9]. A weighted analogue of this result was obtained in
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[10] (see also [11], [12], [13]). Finally, we should mention [14], [15],
[16] containing the full descriptions of functions o and a set of weight
functions ensuring the validity of a weak type weighted inequality for
maximal functions.

We shall now make some comments on how this paper is organized.
The introduction contains some commonly known facts on homoge-
neous type spaces and weight functions defined in such spaces. Here
the reader will also find the definition of quasi-convex functions and a
brief discussion of some of their simple properties. The main results
are formulated at the end of the introduction. In §1 we describe the
class of quasi-convex functions, also functions which are quasi-convex
to some degree less than 1. A number of useful properties to be used in
our further discussion are established for such functions. The further
sections contain the proofs of the main results.

Let (X,d, ;) be a homogeneous type space (see, for example, 7]
[19]). It is a metric space with a complete measure such that the
class of compactly supported continuous functions is dense in the space
L'(X,p). It is also assumed that there is a nonnegative real-valued
function d : X x X — R! satisying the following conditions:

(i) d(z,a) = 0 for all v € X}

(ii) d(a,y) > 0 for all x # y in X;

(iii) there is a constant ag such that d(z,y) < aed(y, ) for all 2,y
in X;

(iv) there is a constant a; such that d(z,y) < ay(d(z,2) + d(z,y))
for all z,y,z in Xj;

(v) for each neighbourhood V of x in X there is an r > 0 such that
the ball B(z,r) = {y € X; d(x,y) < r} is contained in V;

(vi) the balls B(x,r) are measurable for all x and r > 0;

(vii) there is a constant b such that

uB(x,2r) < buB(x,r)

for all 2 € X and r > 0.

An almost everywhere positive locally p-summable function w :
X — R! will be called a weight function. For an arbitrary g-measurable
set I we shall assume

wE = /w(a‘)(l;[.

E
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By definition, the weight function w € A,(X) (1 < p < oo)if

! 1 -1/(e-1) , \P7!
S\’;p (;Eb/uf(.v)du) (”—Bl(w(;v)) du) < 00

for 1<p<oo,

where the supremum is taken over all balls B C X and
1
— a)dp < cessinfw for p= 1.
'“BZIU(T)(;I < Syselél w(y) p

In the latter inequality ¢ does not depend on B. The above conditions
are analogues of the well-known Muckenhoupt’s conditions.

Let us recall the basic properties of classes A, (see [17], [20], [23]).
If w € A, for some p € [l,00), then w € A, for all s € [p,o0) and
there is an € > 0 such that w € A,_..

By definition, the weight function w belongs to A (X) if to each
¢ € (0,1) there corresponds & € (0,1) such that if B C Xisa ball and
I is any measurable set of B, then uE < éuB implies wk < cwB.

On account of the well-known properties of classes A, we have

Ax(X) = Y A(X)

(see [17], [20], [21].)

In what follows we shall use the symbol @ to denote the set of all
functions ¢ : R! — R! which are nonnegative, even and increasing on
(0,00) such that ¢(0+) = 0, limy—o ¢(t) = co. For our purpose we
shall also need the following basic definition of quasi-convex functions:

A function w is called a Young function on [0,00) if w(0) = 0,
w(o0) = oo and it is not identically zero or oo on (0,00); it may have
a jump up to oo at some point ¢ > 0 but in that case it should be left
continuous at ¢ (see [18]).

A function ¢ is called quasi-convex if there exist a Young function
w and a constant ¢ > 1 such that

w(t) < plt) S wlet), t20.

Clearly, ¢(0) = 0 and for s <t we have @(s) < p(et).
To each quasi-convex function ¢ we can put into correspondence its
complementary function ¢ defined by
@(t) = sup (st - p(s)). (0.2)

520
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The subadditivity of the supremum readily implies that ¢ is always a

Young function and ;S . This equality holds if ¢ itself is a Young
function. If ¢ < ¢, then @, < @y, and if

@r(t) = an(bt)
then
= /it
Gi(t) = “P(E)-
Hence and from (0.2) we have

5(2) < 86 <30) (0.3)

Now from the definition of ¢ we obtain the Young inequality
st < p(s)+@(t), s,t>0.

By definition, the function v satisfies the global condition A, (¥ €
A,) if there is ¢ > 0 such that

t )(t
“’(;) Lo S (0.4)
t, ty

(see [3], Lemma 1.3.2).
Given locally integrable real functions f on X, we define the maxi-
mal function M f(z) by

Mf(z) = sup(uB)~! / |f(y)ldp, z€X,

where the supremum is taken over all balls B containing .

As is well-known (see [20]), for the operator M : f — M inequality
(0.1) is fulfilled when ¢p(u) = u? (1 < p < o) and w € A,(X). Now
we are ready to formulate the main results of this paper.

Theorem 1. Let o € ®. The following conditions are equivalent:
(i) there is a constant ¢ > 0 such that for any function f: X — R!
locally summable in the sense of pu-measure we have the inequality

/ap(Mf(.T))w(l‘)(l}L < c/«p(f(z))w(r)dp, (0.5)
> X
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(i) @ is quasi-convex for some o, 0 < a < 1, and w € A where
q ()

1
—— =infla : @ is quasi-convex . 0.6
) {o:omisq } (0.6)

Theorem II. Let o € ®, 1 < § < co. In order that there exist a
constant ¢ > 0 such that the inequality

/ ,9((?: Mef,-(x)) 1/9> w(x)dp <
X =1
<e [o((Srr)” Juto) 1)

x
be fulfilled for any vector-function f = (f1, f2,...) with locally sum-
mable components, it is necessary and sufficient that the following
conditions be fulfilled: p € Ay, ¢~ is quasi-convex for some a, 0 <
a <1, and w e Ay
Theorem III. Let o € ®. Then the following conditions are equi-
valent:
(i) there is a constant ¢; > 0 such that the inequality
Mf(x e f(s
/’19(-&)10(1‘)(1/1 <i¢ /;(M) w(a) dp
w(zx) w(z)
X X
holds for any p-measurable f : X — R*;
(i) ¢ is quasi-convex for some a € (0,1) and w € A5,
1

0,
(iii) @ is quasi-convex for some a € (0,1) and there is a constant
¢y > 0 such that

Q(ﬁ/;(ﬁ)w(r)dﬂ) wB < ¢y /g(ﬁ)w(z) dp
B B

for any A > 0 and ball B;
(iv) o is quasi-convex for some a € (0,1) and there exists a con-
stant cz > 0 such that

/z,o(—/\iB—>w(1:) dp < esp(A)wB
4 w(x)uB

for any A > 0 and ball B.

Theorem IV. Let o and v be nonnegative nondecreasing on {0, ]
functions. Further we suppose that 1 is a quasi-convex function and
€ Ay, If0 < 0 <1, then the following conditions are equivalent:
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(i) there exists a constant ¢; > 0 such that the inequality

e(Mw {r € X, (i (Mfi(x))g)”a > )\} <
= c‘/ < (Z‘fa al ) )w(r)dﬂ (0.8)
X

is fulfilled for any A > 0 and vector-function f = (Frse moifnsesis)) with
locally summable components;
(i1) there is a € > 0 such that

/ 18- S Juote)du < 5. (09)
(x . (0.
sup ssl;g (s wB 8 puBuw(x) Ml =es

In this paper the letter ¢ may denote different positive constants
which are independent of the meaningful variables in the present con-
text. Throughout this paper we take 0 - oo to be zero.

§ 1. SOME PROPERTIES OF QUASI-CONVEX FUNCTIONS
In this paragraph we describe the class of quasi-convex functions.

Lemma 1.1. Let ¢ € ®. Then the following conditions are equiva-
lent:
(i) ¢ is quasi-convex;
(i) there is a constant ¢, >0 such that
o(ty) o(crts
e(ty) .‘v(ﬁ 2) (1.1)
1 1,
is fulfilled for any t, and ty provided that ty < ly;
(iii) there is a constant c; >0 such that
o(t) <P (eat), t>0; (1.2)

(iv) there are positive ¢ and c3 such that

4,5(5 #)) < eplt), t>0; (1.3)

(v) there is a constant ¢q > 0 such that

so(;tl—Bl!f(y)du) < :—LZ»;(m.f'(y)) dp (1.4)

for any locally summable function f and an arbitrary ball B.

1l
01101943
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Proof. For the equivalency of the conditions (i) and (ii) see [3], Lemma
L.1.1. We shall prove that the conditions (i) and (iii) are equivalent.
Indeed, if the function ¢ is quasi-convex, then for some convex function
w and constant ¢; we have

(1) < wleat) =6 (eat) <P (cat).
Conversely, let (iii) hold. The function & is convex and ég . There-
fore by (iii)
#lt) <7 (cat) < pleat),
which means the quasi-convexity of the function ¢.

Now we shall show that (i) (iv). The condition (i) implies that
there is a convex function w such that for some ¢ > 0

w(t) < o(t) < w(ct), t>0.
The function & is convex and
B(t) < &(t).

Therefore we have.(see Lemmas 2.1 and 2.2 from [16])

() <3 2« S <

provided that ce < 1. We have thereby proved the implication (i)=(iv).
Let us now assume that the condition (iv) holds. By the Young in-

equality we have for s < ¢ b
w(s) 1 @(s) 2¢5 1 ~< q(s)) 1 (‘.ng )
Tl o s D i, 1 < ol e ol —1t .
s 2¢at - s & T 2ecat i s ks 2eat T\ & B
Lo(s) 1 ('2(‘3 )
g S AR S
=52 T e

Hence we obtain

S r3f
which means the fulfilment of (ii) and, accordingly, of (i). The equiva-
lency of the conditions (i) and (v) is proved as in [3], Lemma 1.1.1.

Corollary 1.1. For a quasi-convex junction ¢ we have the estimates
ep(t) < pleet), t>0, e>1,
and
o(yt) S yeplet), t>0, 7<1,

where the constant ¢ does not depend on t.
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Corollary 1.2. Let ¢ € & and ¢ be quasi-convex. Then there is a
constant ¢ > 0 such that for an arbitraryt > 0 the following inequali-
ties are fulfilled:

&(s@)sw)s,z(‘z@) (1.5)
and
o(2Y) <500 < (2 22). (1.6)

Proof. The right-hand inequality of (1.5) is contained in Lemma 1.1.
Further, the convexity of the function ¢ implies

5 (2 <o, t>0

while by Lemma 1.1 the quasi-convexity of the function ¢ implies
o(t) <P (ct), t>0,
for some ¢ > 0. Therefore, choosing ¢ > 0 such that ce < 1, we obtain
B(t ~ P(t ~ ((t =
\9(5 &( )) <5 (ce &( )) <3 (P( )) < &),

t i t

thereby proving the left-hand inequality of (1.6).
Next, by virtue of the Young inequality

POLEE
y(t/')* ‘;#(’)4

o) < 3(2

Hence
o0 <3(220).
Analogously, we obtain

~ 5 )
B(t) = ?(2 T)’
thereby also proving the right-hand sides of inequalities (1.5) and

(1.6) m

Lemma 1.2. Let ¢ € ©. Then the following conditions are equaiva-
lent:
(i) the function ¢® is quasi-conver for some a, 0 <o < 17
(ii) the function ¢ is quasi-conver and ¢ € Ng;
(iii) there is a a > 1 such that

plat) > 2ap(t), t>0; (&70)
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(iv) there is a constant ¢ > O such that for any t we have

f s) t N
0/2(2 ds < cv—(;l. (1.8)

Proof. The equivalency of the conditions (i), (iii) and (iv) is proved
in [3] (Theorem 1.2.1). It remains for us to assume that each of these
conditions is equivalent to the condition (ii). We shall show that
()& (iii). Assume that (iii) holds. Then

#(21) = sup (2ts - <p(s)) = sup (‘Zats - 99(as)) =
>0 520
< sup (Qats - Qap(s)) = 2ap(t).
520
Let now

2(2t) < a1 g(t)

for some constant ¢; and an arbitrary ¢ > 0. Since ¢ is quasi-convex,
then by Lemma 1.1

& (ct) > (1)

for some ¢ > 0 and any ¢ > 0.
For the constant a; with the condition 2a; > ¢; we have

; (ait) = sup (alts - 5(3)) = sup (2(1,!5 - Q(‘Zs)) >
520 520
> sup (2a1ts - claﬁ(s)) > 2a; :’) (t).
5>0
Further,
plealt) 2P (abet) > 2ak @ (ct) > 2*afp(t).
For 2F > 2¢ the latter estimate implies
w(at) > 2ap(t),

where ¢ = cat. W
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§ 2. A WEAK TYPE ONE-WEIGHTED PROBLEM IN ORLICZ
CLASSES FOR MAXIMAL FUNCTIONS (THE SCALAR CASE)

We begin by presenting two results to be used in our further reason-
ing. The first of them describes the class of those functions ¢ from @
for which a strong type inequality is fulfilled in the nonweighted case.

Theorem A. Let ¢ € ®, pE > 0. Then the conditions below are
equivalent:
(i) the inequality

[oMf@)du < [ o(er@) du
E E

holds for an arbitrary p-measurable function f with the condition
supp f C E and with the constant ¢ not depending on f;

(i1) ¢* is quasi-convez for some a, 0 < a < 1.

For E = X the proof of Theorem A is given in [4]. In the general
case the proof is nearly the same and we therefore leave it out.

Theorem B. Let o € ®. Then the conditions below are equivalent:
(i) there is a ¢; > 0 such that the inequality

oM w{z € X : Mf(z) > A} > o /ga(clf(:r))w(ar)dp 2.1)
F X

is fulfilled for any X\ > 0 and locally summable function f : X — RY;
(ii) there are positive constants ¢ and ¢, such that the inequality

S ¢(\) _wB )
e du < MwB 2.2
! P B ey V) S eV (22)
is fulfilled for any ball B and positive number A;

(iii) there is a positive constant cs such that the inequality

v(ﬂ%B/f(r)d#) < :—SBB/L;(Cgf(x))w(:r)dp. (2.3)

is fulfilled for any ball B and nonnegative measurable locally summable
function f with the condition supp f C B.

Theorem B is the particular case of Theorem 5.1 from [16] for §(u) =
u, v =0, dB = wdp @8, n = 1, P(t) = ¢(t) and v(z) = o(z) = w(z),
where & is the Dirac measure supported at the origin.

Now we shall prove several lemmas on which the proof of Theorem
I rests.
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Lemma 2.1. If condition (2.2) is fulfilled for ¢ from ® and the
weight function w, then the function ¢ is quasi-convez and w € A
for an arbitrary s > p() where p(p) is defined by (0.6).

Proof. We shall show in the first place that in the conditions of the
theorem ¢ is quasi-convex. Let E = {} < w(z) < k} be such that the
set has a positive y-measure. Choose a ball such that uBNE > 0.
From (2.2) we have

pBNE ~( wB <p(/\)><
k -3 E;LBE—)\ < ap(R),

which means that there are positive numbers €; and ¢, such that we
have

@(51 “’(/\A)> < ep(R)

for any A > 0. By virtue of Lemma 1.1 the latter inequality is equiv-
alent to the quasi-convexity of ¢.

The definition of the number p(¢) implies that the function 503777
is not quasi-convex for anyone of o € (0,1). Therefore, according to
Lemma 1.2, for an arbitrary a > 1 there exists a t > 0 such that

¢ (at) < 20079 (1)
or, which is the same thing,
plat) < (20 Di(t). (2.4)

Let B be an arbitrary ball and E be its any p-measurable subset.
Using the Young inequality and condition (2.2), we obtain

1 2¢; puB o(t) wB
=— | —t—e—" dp <
2cch(t)E/ e pE a pBuw(z) BT =
1 2¢, [LB) 1 _,(5z,o(t) wB )
L —t— dp <
’202Ap(t)(p( e uE wE+20230(t)E‘P t pBuw(z) w(z)dp <
1 2¢y uB) 1
< —t— =
= 2¢20(t) <P( € t,uE P 2 e

from which we conclude that

wB uB
—Fet) < C%P(QL'E? t). (25)
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Let a = CZ_E and t be a corresponding number such that (2.4)
holds. On substituting this value of ¢ in (2.5), we get

B 1B\ P(®)
— p(t) < e (CZZ—Et) <ea (QL_E) o(t)
from which we conclude that
) (%)
o8 _ (8Y
wE = \pE

This means (see [21]) that w € A for an arbitrary s > p(¢) when
p(p) > 1 and w € A; when p(p) =1. R

Lemma 2.2. Let condition (2.2) be fulfilled and 3 € A,. If
=7l
Y= uw(;),
then the function Y (tw) € A uniformly with respect to t, t > 0.

Proof. Let B be an arbitrary ball and E be its any p-measurable

subset. The convexity of the function ¢ implies that ﬂtﬂ increases.
Using this fact and the condition § € A,, from (2.2) we obtain

J#(E2 22 Yut)du < co0E, (26)
4 A pBuw(z)
where ¢ does not depend on A, B and E.
Setting
(A wE 1
X uB 1
we have

1
/@(*———)ilu(x) dp < ctp(ANwE.
i tw(zx)
From the expression for t and the Young inequality we obtain

to(MwE < gp(/\)wE-}— / < Zg twl(w))tw(x)d/t.

Hence we conclude that

Z@(twlw) w(z)dp < cE/ ( #g twl(r))fw(a)d,u (2.7)

The condition @ € A, implies that (see [3], Lemma 1.3.2)
¢lar) < c1a?@(7), (2.8)
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where the constant ¢; does not depend on a > 1 and 7 > 0. If in the

latter inequality we take a = Z—g and T = m-lT)’ we shall obtain
~(uE B
VV(Z—B tm(:r)iw(.v)) < C(ZE> b(tw(z)). (2.9)

Using (2.9), from the inequality (2.7) we obtain

/U'(lw(:r dp < c( ) /z,;(tu' (z)) dp.
B

Thus ¢ (tw) € Ay uniformly with respect to t. B

Lemma 2.3. Let p € & and o™ be quasi-convex for some a, 0 < o <
1. If now condition (2.2) is fulfilled, then there is a convex function
o such that p(p) > p(po) > 1 and condition (2.2) with ¢ replaced by
wo ts fulfilled.

Proof. By Lemma 2.2 the function 1 (tw) € Ay uniformly with respect
to t. Therefore (see [17]. [20]) the reverse Holder inequality

(& / S (tu(e) (l;z)1+§§r(#l—8 [ttt de)  (210)
B N

holds, where the constant ¢ does not depend on .
We set

G
-

Since the function @ is convex, vy will be convex, too. Therefore if

bolt) = (2.11)

Yo = JOA, we shall have @g ::}0: Yo. Moreover, the condition ¢ € A,
implies o € Az. By Lemma 1.2 hence it follows that p(¢e) > 1.

Substituting ¢ = wot,\)% into (2.10) and making use of (2.11), we

obtain

-

T+3

1 ~ (%o(A)  wB s
(L,oo(/\)urBZ\PU( A /thu(Az',))“(l}d'u> =

< AT (po(NwB )"/@(*9";” M‘;ﬁf})w(mdﬂ. (2.12)
B

Let s be such that for a given A
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Then by virtue of (1.5) and the condition ¢ € A, we have

& 5(250(8)) (;(vo(l))

A
s
= (e (2)) ¥ (22 < e
Therefore
So Rl (2.13)
€~ .
wo(A) T " l(s)
Now from (2.13) and (2.12) we conclude that
1 ~ (vo(A) wB ) _
‘Fo()\)wBlg/w)( N pBu(z) w(z)dp < c. (2.14)

Thus (2.2) holds, where ¢ is replaced by the convex function .
Now it remains for us to show that p(¢) > p(go). First, we shall ‘
prove that there are constants ¢; and ¢; such that

et rp(at™) < golt) < atfip(atd).  (215)

Using (1.5), (1.6) and the Young inequality, on the one hand, we have

polt) = tTHe wétﬁ’sgt%@( “’0“))+t1 ¢(i ﬁ%) =
=58 (c )(ew(t))—”u

el (1) (eul®) ™ + t"“v(

5 s 1.4
< 6va(t)+tmsa(gtm>~

tﬁl) <

s

ﬂ-@

(/\

1
-1
€

Hence we conclude that

wo(t) < Czt%“;’(ﬂzt"h)-
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On the other hand,

5 o(tT) 2t
rhyrr) = G S B <
e 2t & _ [ep(tT)
< Seo(zm) + 5 ( = )=
& 2 e pltHINT 0 pltT)
== = v} <
2"00(6‘ 5)+2(8 1748 ) € (s 118 )_
& 2 1
= 5%(@ t) ot -2-¢o(tﬂ7)t7’q"’-

This implies
s 1 5 2
th (1) <e vo(mt).

Inequality (2.15) is therefore proved. From the definition of p(o)
3

the function g %)= is quasi-convex for an arbitrary sufficiently small

e >0 . By Lemma 1.1 this is equivalent to the fact that the function
t‘lngW_;W(t) almost increases. On account of (2.15) this means that
the function t‘_”(”")«p(tﬂ_ﬁ)t% is almost increasing. Therefore the
function p(u)u~((P(v0)=)(1+5)=5) almost increases. The latter conclu-
sion is equivalent to the fact that the function wmﬁ:’_o‘)-_'m is quasi-
convex. From the definition of p(p) we have p(y) > (1 + 8)(p(¥o) —
) — 6 for a sufficiently small e. Since p(po) > 1, we conclude that
pl¢) > plpo). ®

Proof of Theorem 1. First, we shall prove that (ii)=-(i). By virtue of
the A,-condition there is a p; < p(p) such that w € A, . On the
other hand, the definition of p(p) implies that the function (pﬁ is
quasi-convex. Applying the definition of quasi-convexity, the Jensen
inequality and the fact that the operator M : f — M is bounded in
L2 (X) for w € A,, (see [20]), we obtain

[eMs@)wi)dn = [ o7 Mf@)]" w(z)dz <
X X

-

< c/ (M(¢7 (cf(2))) " wle) dz < /Lp(clf(z)w(z)dz.
X

X

Next we shall show that (i)=(ii). Choose k > 0 such that the set
E = {k! < w(z) < k} have a positive measure. Then from the
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condition (i) it follows that
[es@)dp < ok [ oles(e)) du
E E

for an arbitrary f provided that supp f C E. By Theorem A hence
we conclude that ¢ is quasi-convex for some «, 0 < a < 1. Now
let us prove that w € A,,). The condition (i) implies that inequality
(2.2) is fulfilled. Applying Lemma 2.3, we arrive at the existence of a
convex function g such that

~(.%o(A) wB i
B/V(» 3 m)w(l)d# < cpo(A)wB,

where the constant ¢, does not depend on A and the ball B and,

besides, p(¢) > p(po) > 1. But in that case, according to Lemma 2.1,

the function w € A, for any s > p(po) and therefore w € A,,). W
Finally, we wish to make some useful remarks.

Proposition 2.4. Either of conditions (2.1) and (2.2) is equivalent
to the fact that the function ¢ is quasi-convexr and w € Ay,).
Proof. The fact that the condition w € A, implies (2.2) (and, ac-
cordingly, 2.1) can be proved directly.

Let w € Ay, and p(@) > 1. Then there is a p, < p(¢) such that
w € A,,. The definition of p(¢) implies the existence of a p; such that

L s : ; ;
p2 < p1 < p(p) and the function ¢# is quasi-convex. Therefore by
Corollary 1.1 we have

sPo(t) < p(est), s> 1.
Hence for a > 1 we obtain

P(at) = sup(sat — p(s)) = sup ((ﬁl&:‘/cs — \p((ﬁxlf‘c.s) <

550 50
b _rL SPLE
< sup (a*’l*‘r/s —am-1 L;(s)) = a®i-1 5 et).
5>0

From the latter estimate, inequality (1.5) and the condition w € A,

we derive
wB
Pled ——— Jw(x)dx <
/ ?( : ;LBw(Jf))u(L)dl -

(et > 1)
wB

< &(cs/\)! (m) m_lw(m)du < e@p(MwB.
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Thus
. wB i iy
/A,O(E)\ —)w(z) dr < g(eN)wB + cp(A)wB <
4 nBuw(zx)
< a@(AwB. (2.16)
Let now p(¢) = 1. Then the function uz;ﬁz) is bounded on B by a

constant independent of B and we have (2.16).

Further, if in inequality (2.16) we replace A by 602.(}&1 where ¢¢ is
the respective constant from (1.3) and in the right-hand side use the
above-mentioned inequality, then we shall obtain (2.2). ®

Proposition 2.5. Let ¢ be quasi-convex. The conditions below are
equivalent:
(i) there are constants €y and ¢ such that

’ (A%BB 5(%)“‘”‘“) wB <
<a /ﬁ(w?—m))w(z)d,l (2.17)
B

for any ball B and number X > 0;
(ii) there are constants €5 and ¢, such that

a AwB o
!y)(ez W)w(z)dﬂ < ap(NwB (2.18)
Jor any ball B and number X > 0;

(iii) w € Ap(y)-

Proof. 1t is easy to show that (i)=(ii). To this effect in (2.17) it is

sufficient to replace A by ;C:”:;B. Then (2.17) can be rewritten as

2c e B
2"’(AwlB ”(T B)w(m)d">
B 21 j
2c¢, (1 AwB
Nob ) e

<A (2.19)

Taking into account that ZEQ increases and using inequality (1.5), we
conclude from (2.19) that (2.18) is valid.

The implication (ii)=(iii) is obtained as follows. In Proposition 2.4
it was actually proved that (ii)=-(2.2). By Lemma 2.4 it follows from
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(2.2) that w € Ay,). The reverse statement was shown in proving
Proposition 2.4. B

Now we proceed to proving Theorem III. The proof will be based
on the following propositions.

Proposition 2.6. Let ¢ € ®. Then the statements below are equiva-
lent:

(i) there is a constant ¢ such that the inequality

oS Jedns<e [ ¢ (L ’)) 2) dy
X

is fulfilled for any p-measurable function f : X — R and an arbitrary
A

(ii) the function ¢ is quasi-conver and there are positive constants
&> 0 and ¢y > 0 such that

7 (MLB!;<%I)>W(J.)(1/L) wB < 6113/,9(:‘(33)10(1)dp

Since the proof of this proposition repeats that of Theorem 5.1 from
[16], we leave it out.
If in Proposition 2.6 we replace ¢ by @ and take into account that

{z:Mf(z)>A}

99~  for a quasi-convex function ¢ (see Lemma 1.1), then by Propo-
sition 2.5 we conclude that the following proposition is valid.

Proposition 2.7. Let ¢ € ®. The conditions below are equii  nt:
(i) the function ¢ is quasi-conver and there is a constant ¢ > 0
such that the inequality

g(w(l)) v)dp < Cl/ (fl

{=:Mf(x)>\}

)u z)dp

is fulfilled for any A\ > 0 and p-measurable function f X - R';;
(ii) there is a constant ¢; > 0 such that the inequality

AN [ ) < e [ oleaf(@)ete) du
{z:Mf(z)>X} 3

is fulfilled for an arbitrary X > 0;
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(iii) the function ¢ is quasi-convex and there are positive numbers €
and cs such that

o (555 [y o) < [ tern
2 B

is fulfilled for any X > 0 and an arbitrary ball B;
(iv) there are positive numbers € and ¢y such that the inequality

() B
B/p(e e w(r),uB)w(x)d“ < eyp(N)wB

is fulfilled for any X > 0 and ball B;
(v) the function ¢ is quasi-convex and w € Ay,).

Proof of Theorem 111. First, we shall prove the implication (i)=-(iii).
From the condition (i) we obtain a weak type inequality. Moreover, the
same condition implies that »® is quasi-convex. Indeed, the condition
(i) implies that the inequality

/va (lu<f/¢6f(1

is fulfilled on the set £ = {; < w(z) < k} where k is a number such
that uE > 0. Therefore on account of Theorem A the function p*
quasi-convex for some a, 0 < a < 1. Further by Lemma 1.2 the quasi-
convexity of * (0 < a < 1) implies ¢ € Az. Now by Proposition 2.6
from (i) we conclude that (iii) is valid.

The implication (iii)=(iv) follows from Proposition 2.5. We shall
prove the validity of the implication (iv)=-(i). By virtue of Lemma
2.1 the condition (iv) implies w € A.. Now we shall use the method
developed in [25]. Let Bf and E]‘-" (j € N, k € Z) be respectively balls
and sets from Lemma 2 of [2]. We set

= [ fw) du.

7 gk
EJ

m’B;‘(f) =

Applying the above-mentioned lemma, we obtain

/W(Mf( ) (x)dp < Z/ (”'"B“(f )w(x)d#' e
X

w(zx)
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Now in the condition (iv) we set

1

and use the resulting inequality to estimate the right-hand side of
(2.20). This leads us to the estimates

M/ (x b [ |f(y)ldpe :
!w(%)*)w(x)du < ngp (_.BJwT_) wBf <

£ cZy)( If((zz))l w(w)du)wE]k

We set
1

M. f(a) = sup =z [ 1f@)he(y) dn,

o}

which implies that

J‘P(l\fp{g)) dﬂ<62/ (M (b;{g)))w(z)dug

< ck/t,a(b2Mw <1£((z)))>w(z)dp

On the other hand, the function ¢ is quasi-convex for some a € (0, 1)
and w € A.,. The latter condition implies that w satisfies the doubling
condition. Therefore we are able to apply Theorem A to the right-
hand side of the above inequality. As a result, we conclude that

)\!w(%{i?)w(x)du = c}(/p(ci((z)))w(x) dp. ®

§ 3. CRITERION OF A STRONG TYPE ONE-WEIGHTED
INEQUALITY FOR VECTOR-VALUED FUNCTIONS. THE PROOF
oF THEOREM II

Let f = (fi,fas--+s fny...) where f; : X — R! are y-measurable
locally summable functions for each = 1,2,...,n. Forf,1 <6< o0,
and z € X we set

Il = (150 @r)".



CRITERIA OF WEIGHTED INEQUALITIES

Let Mf = (Mfi,Mfs,...,Mf,,...).
The proof of Theorem II will be based on some auxiliary results to
be discussed below.

Theorem 3.1. Let 1 < p,f < oco. Then the following conditions are
equivalent:

(i) there is a constant ¢ > 0 such that the inequality
/ IMf (@) o) dp < e / 17 (@)l () d (3.1)

is fulfilled for any vector-function f;
(il) w € A (X).

To prove the theorem we need the following lemmas:

Lemma A ([17], Lemma 2). Let F be a family { B(x,r)} of balls with
bounded radii. Then there is a countable subfamily { B(xi,r;)} consist-
ing of pairwise disjoint balls such that each ball in F is contained in
one of the balls B(x;,ar;) where a = 3a? + 2agay.

Lemma3.1. Let 1 < p < oo, f: X = R', ¢ : X — R! be non-
negative measurable functions. Then there is a constant ¢ > 0, not
depending on f and @, such that

[P o) dn < ¢ [ £ Mp(e) dp.

X X

Proof. This lemma is well-known for classical maximal functions and

so we give its proof just for the sake of completeness of our discussion.
As can be easily verified, for any nonnegative locally summable

function ¢ we have the estimate

B/¢ ( /(M*’( D) Fa) " <o (32)

where ¢ does not depend on the ball B.
Further, let A > 0 and By be a fixed ball in X. We set

H'={zeX : Mf(z) > 2} 0 Bo.

Obviously, for an arbitrary point = € H* there is a ball B(z,r,) such
that )
i r
—_— dy > .
nB(syrs) / fy)dy >

B(z,rz)
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According to Lemma A, from the family {B(z,r.)} we can choose
pairwise disjoint balls B(z;,ar;) such that each chosen ball will be
contained in one of the balls B(z;,ar;) where a is the absolute con-
stant. Applying the Holder inequality, the doubling property of the
measure g and (3.2), we obtain

/4;(1) dp < Z / e(x)dp <A™ ”Z — / () dp x

I=1B(z, ar;) = H B(r Jar;)

(] Pt i) (5 / (Mp(a) *Tan)” <

Blz;:r;)

<ed” PZ / fPa)Me(x)dp < cA” P/fp z)Mo(z) dp.

=1z, r))

Now to complete the proof we only have to apply Marcinkiewicz’ in-
terpolation theorem. H

Proof of Theorem 3.1. Let 1 < p < 8 < 0o and w € A,(X). Since
inequality (0.1) is fulfilled for p(u) = u?, 1 < p < oo, and w € A, (see
[20]), we have

[IMs@pue) de < o [ @) e de
X X

and also

/(squfg(Ar))”w(x)dx S/(M(su_pf{(x))) w(z)de <
X X '

Scz/(supf,‘(T))pw(r)da‘.

X

If we apply an interpolation theorem of the Marcinkiewicz type (see,
for example, [24]), (3.1) will hold for an arbitrary 8,1 < p < 8 < oco.

Next let 1 < § < p < co. By virtue of the property of the class
A,(X) there is a number 6y < p such that w € A, for an arbitrary 0,
1 < 8 < 8y < p. It will be now shown that (3.1) holds for an arbitrary
6 provided that 1 < 6 < 6y < p.

We have

([ M@ty dn) ™" = sup
X

[IMf(@) () du,
X
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where the least upper bound is taken with respect to all functions
¢ : X — R! for which

/I\p r)]P—‘? w(.r)) ke (l[t <1 (3.3)
By virtue of (3.2) we obtain
/ (ZM“M Vi@ du = / M fi(2)l()] dp <

<eX [ 1@ Mo dﬂ—C/IIf(IIEaM»a)

i=1 X

Applying the Hélder inequality to the latter expression, we have

6/p
/(ZMﬂ )o@ du<f(A/ 2|f ) w(r)ldﬂ) x

“ (/ (Mm))”"’w »—s(rw) g (3.4)

X

The fact w € A,y implies W € A_r_. Taking into account
p/ P o5 g

(3.3), we estimate the second multiplier in the right-hand side of (3.4)
as follows:

(/ M) <

</I1Mf IHEE Idu<C</Hf Moo dn) "

provided that 1 < 6 < 6.

Now let us show that (3.1) holds for y < 6 < p as well. Consider two
pairs of numbers, (p,fy) and (p,p). By virtue of the above reasoning
and the well-known result in the scalar case we have the inequalities

JIMs@)E () dn < e [ 1) () dn
X X

and

[IM@) () du < e [ 15 () du
X X
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The proof is completed by applying Marcinkiewicz’ interpolation the-
orem. M

Theorem 3.2. Let ¢ € ® and 1 < § < oco. Then the following
conditions are equivalent:
(i) there exists a constant ¢ > 0 such that

a,o()\)w{z €eX : (i (Mw(l:))g)llg p-5 /\} <

i=1

e [o(e(S 1) " utw) dn (35)
X =1

for all X\ > 0 and vector-functions f;
(ii) the function ¢ is quasi-convexr and p € Ay.

Proof. The quasi-convexity follows from (3.5) by virtue of Lemma 2.1.
We shall prove that ¢ € A,.
Let 29 € X and pu{z} > 0. We set 7y =1 and

1
rE = sup {r v pBlzo,7) < %-ILB(I(),Tk_l)}‘ k=20 0

where the constant b is taken from the doubling condition of the mea-
sure . Obviously, by the definition of numbers ry we shall have

kB(xo, i)\ B(zo, 1k41) = B (0, 1) — pB(wo, rkr1) 2
> B0, 74) — buBlro, 3ren) 2
> jB(ao, ) ~ 5uB(wo,ms) = 3uB(zo,m).
Therefore
1B(xo,mi)\B(2o,Tk41) 2 1153(1077%) (3.6)

Let us define the vector-function f = (fi,..., fa,...) where

t
fJ(I) = EXB(IQ.YJ)\B(—"Or']+1 )(r),

with the constant ¢ taken from the condition (i).
Obviously,

1/6
> 15e)°) " = guBawn)

\I/[\?@
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At the same time, for any @ € B(wxo,r;), (j = 1,2,...), we have on
account of (3.6)

B (o, ri)\Blro,ri1)

t t
Mfi(z) > - Lo
fi(z) 2 e puB(xo,7;) e

Now let k& > 4c. Then it is obvious that

] - NVl kt
; >t ;
(; (M@)) " 25> (3.7)
for an arbitrary @ € B(xo,r).
Next set A = 2t in (3.5). By (3.7) we obtain the estimate

e (2t)wB(zo, k) < cp(t)wB(xo, ).

Therefore ¢ € A,.
The implication (ii)=>(i) can be proved by the arguments used in
proving Theorem 1.3.1 from [3]. " &

Proof of Theorem 1I. The necessary condition for the function ¢ to
be quasi-convex for some a, 0 < a < 1, and w € Ay, follows from
the scalar case (Theorem T).

Assume that these conditions are fulfilled. Then there is an € > 0
such that w € Ayy)—.. The definition of the number p(y) implies
that there is a po such that p(¢) — e < po < p(p) and the function

p# is quasi-convex. The function ﬁ,;)) almost increases by virtue of

Lemma 1.1. Therefore for p; with the condition p(¢) —¢ < p1 < p we
have

P P1 e P1—1 = un
2 u 4 U

/ e 13.8)
LPU uP1—Po—1 upP1 \

0

/ud_pwwg;(_u)_l_ [otw e

On the other hand, since w € A,,, by Theorem 3.1 we obtair

w{x €x: (fj (ij(m.))")l/e > A}

J=1

S 1)) i (39)

IA
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At the same time, by the condition of the theorem we have ¢ € A,.
Therefore there is a p such that %Q almost decreases. Setting p, =
max{p(p), p}, we have

]%Mﬂ< folt)dt _  p(u) [t _ cpr o(u)
o P2 Tt =P, tr=p=1 " py—p urz

(3.10)

Since p, > p, the function w € A,, and again by Theorem 3.1 we have

1/6

w{.r €EX : (i (M-f-7(‘v))o)

.ﬁunﬂmmwu»wu (3.11)

>/\}§

IN
%o
S—
e

Ay = 4 5@ @ > A,
e {0 if | f(2)llo < A,
( "

_ i) it f(@)lle < A,
i {o if [ f(2)lle > X

Assume that Af = (\fiyeoosnfis-e)s M = Chryeey M iyeor). Itis
obvious that

M/j(2) < Mafy(a) + M fy(a)
and hence, by Marcinkiewicz’ inequality,
MA@l < M (2)lo + M () o
Therefore
el € X+ M@)o > A} <
< e € X ¢ Ml > 31+

+,9(A)ur{x: e X IMyf(z)lle > %}
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Further,

[e(iMs@le)uz)de <

X

c\g

w{x €X : |IMf(z)|lg > /\}(lap(/\) =

< [ufee X+ M@ > J}do(3) +
0

+0/w{z €X ¢ ||Myf(a)lle > %}d¢(A) L+ T

Applying (3.9) and (3.8), we obtain

L <c1/m (/n F@)|Bw I)(za-){1¢(x) =

=7%( [ W@l )0 =
0 Azl (@)lle>N}

I1£@)llo

—a fis@ ([ g iz = [ Al (e eyote)d
X 0

Analogously, applying (3.11) and (3.10), we ascertain that the estimate
I, < liz/’y‘(“.f Ne)w(z) dx
X
is valid.
§ 4. WEAK TYPE INEQUALITIES FOR VECTOR-VALUED MAXIMAL
FUNCTIONS

This paragraph will be devoted to proving Theorem IV. To this end
we need several well-known facts.

Proposition 4.1 (see [19], p. 623). Let Q be an open set in X. Then
there is a sequence (B;) = (B(z;,r;)) such that
(@)= UB;
i=1

(il) there exists a constant £ > 0 such that

3 X, (0) < &
j=1
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(ili) for each j = 1,2,..., we have B; N (X\Q) # @, where B; =
B(x;,3a17;) and the constant oy is from the definition of the space X .

Proposition 4.2 (see [17], Lemma 1). For cach number a > 0 there
is a constant oy ~u(‘h that if B(x,r) N B(y.r') # @ and r < ar’, then
B(x,r) < B(y,azr'). Note that ay = a}(1 + a) + agaia.

Proposition 4.3 ([16], Lemma 3.2). If condition (0.8) is fulfilled,
then there is a constant ¢ > 0 such that

»(s)

S

¢
ga”w@—_) 0<s<t 4.1)
7(s) =)

We start with an extension of Theorem B. The following statement
is in fact the sharpening of Theorem 5.1 from [16] for maximal func-
tions in the case 0(u) = u, d3 = wdp @ é.

Theorem 4.1. Let ¢ and v be nondecreasing functions dcfined on
[0,00), ® be a quasi-convex function. Further assume that w, v and o
are weight functions. Then the following statements are equivalent:

(i) there is a positive constant cy such that ihe inequality

e(Mw{x : Mf(z) > A} < ¢ /’ U’(('] o T)[)n(,r)(l/!

is fulfilled for any A > 0 and locally summable function f: X — R':
(ii) there is a positive constant & such that

wB
sup s\l;]g ,o(/\ wB /w( /1]30‘(.r)1/(m))0(m)d” e

Proof. Since in the proof of Theorem 5.1 the quasi-convexity of oy
was used only to show that the implication (i)=(ii) is valid, now it is
sufficient to prove this implication by our weakened assumptions.

Tet B he a fived ball and s > 0. Given k € N, put By = {x € B :
o(x)v(z) > 1} and

(,:(s) wB )‘1 7(:5:(3)‘,(3) wB
\ s wuBo(z)v(z) s pBo(z)v(z)

)\'Hk(-l‘)

with € to be specified later.

P
m’uuu

ol ——
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In our notation we have

I= /J(Lb)}@ u_ﬁ%ﬂ)amdﬂz

By
_ gl wB (),
s ;LB l/(x)l

If B and s are chosen such that

1 rg(z) ,
#—BZ I/(I)dﬂ < 8,

then we obtain the estimate

Let now

By the condition (i) for the function

. S
f’(.z>=z‘(ﬂlﬁ ii‘;id,\ g(x)

and Corollary 1.1 we derive the estimates

j<28) 1 Jll
- s )IB

xrl\/ ()(I(HB/U; ) ‘gifj)*s)a(x)dus

< (‘l;‘/IA/Y(QCIC:,”((:::i)a(w)d-iL'

)>stdu<

Therefore

1< p(s)wB +r1/ w(zqc%) o(2)dp.

Choose ¢ so small that 2¢;c*e < 1. By Corollaries 1.1 and 1.2 and the
definition of ¢ we obtain, from the above inequality, the estimate

I < p(s)wB +cel. (4.2)
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Now we shall show that I is finite for a small €. Let 9(¢)- 17" — oo
as t — oo; then 1 is finite everywhere and thus

~(_ 9(s)1(s) wB
Igzb(ek . ,uB) aBi< oo,

since o and w are locally integrable.
Let now ¢(t) < At, A > 0. Then the condition (i) implies

YN Nwlz € X : Mf(z) > s} < ¢ [ If(@)lv(e)o(a)d.
X

If in this inequality we put f(z s“BXE , where E is a measurable
q Y P

subset of B, we shall obtain the mequahty

%(5)7(5 wB
K] uE / v(z)dp
which yields the estimate
pls)r(s) _ wB .

—

s pBo(en(@) =

almost everywhere on B. Here the constant ¢ does not depend on B
and s. Therefore we conclude that

I < ¢(ec)oB

Choosing ¢ so small that 9(ec) < oo, we see that I is finite.
Further, if ce < 1, then inequality (4.2) implies

/$(€ML>a(z)d,¢s
B

e(s)wB.

s pBo(z)v(z) 1—ce

Passing here to the limit as k — oo, we derive the desired inequality
(ii). @

In the same manner we can generalize Theorem 5.1 from [16] to its
full extent.
Proof of Theorem IV. Let A > 0 and

0 ={eeX: M(fllo)(z)> A}

Let further (B;); be a sequence from Proposition 4.1. We set G =
X\, and introduce the notation fi = fx,, = (fixgys s FaXayr - )
fo = fxq4. Condition (0.9) readily implies that w € A, and therefore
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w € A, for some p > 1. Let a number p be chosen so that the func-

tion ¢7Py(1) almost decreases. This is possible due to the condition
Y € A,. As can be easily verified,

POz : IMF(@)lo > 3} < eOefe : IMA ) > 3} +

+eule: MA@l > 5} (4.3)
By Theorem 3.1

eNufe: [Mfi(e) ||9> / () llp(e)dp. (4.4)

Next, since |[f(z)[ls < A for @ € Gy, from (4.1) and the A,-condition
we obtain the estimate

/Hf( w(z)dp < c / £ ‘”) I £ (@) fpw(x) dp <

9

< CG[ ( ”f/(A He) . C/L,,.(HJ;((-Z))Ha%(r)dﬂ‘

X

A»

Therefore (4.4) implies
, @y 45
eWufze X s MAa@e> 3} <e fu(1L0e S5 Jwleda. (45)
e

V\ewt (f,,..., ,...), where
@ =% (5 / 5 0)ldi) iy ).

Let By = B(xr, 2a171). We set €y = UpBy, and G = X\,
Now it will be shown that

M(fixa,)(2) < Mfi(z) (=1,2,...) (4.6)

for z € G).
Let € G\ and B = B(y,r) be an arbitrary ball containing the
point @ and BNQ, # @. It will be shown that for an arbitrary k € S,
={k € N: BeNB # @}, we have B, C a;B, w' ~re ap is an
absolute constant not depending on k. Since z € G, obvious
that @ € B\By. Therefore

d(zik,z) > 2ay7.
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Let z € By N B. We have

d(z,2) < ar(d(z,y) + d(y,x)) < ay(ag + 1)r

and l

2airy < d(zp, @) < ar(d(ag, 2) + d(z,2)) < ag(ri + ar(ao + 1)r).

Hence it follows that

ri < ay(ag + 1)r.
Now on account of Proposition 4.2 we have
By C a3B,

where a; = a?(ai(ao + 1)) + agai(ao + 1), a2 B = B(y, aar).
By virtue of the latter inclusion and doubling condition for p we
derive the inequalities

1 1
N—Bijxnxm)duﬁ[;z [ 5wy <

k€S BAB,
% / 1(y) du )

1 / e
s fi(y)dp < —=
uB :L;g_ i) ,uazB fes

/sz ( (/11)’ /fj dl,))\ﬁ dp <

< lldzB"/B Fi(y) dp < MJj(2)

thereby proving (4.6).
Taking (4.3) into account, we obtain

A o
eMw{zr € X ¢ [IMf(e)llo > 5} < e(Nwl +

+o(Nwfz € Gy« [MF(@)lls > A} (4.7

Since condition (0.8) ensures the belonging of the function w to the
class A.., this function will satisfy the doubling condition. Therefore

3 X, dit S crbwlly. (4.8)
k
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Further by virtue of Theorem 3.1 we have

?(X) w{r € C:‘A : [Mf(l)]]g > c/\} <

z)dp. (4.9)

Applying the Minkowski inequality and taking into account that BN
Gy # @ and M(||f(z)]le)(2) < A for z € G\, we find that for 2 € Q)

7@l = (Z )" =
1/60 .
- (i (=) If](y)lduxs,(r))e) <

Il
e
i

1/6
( (ﬁ_f i(yHdpX s, (%) )e) =
o 1/6
( /f] Jl(du)) X5, (7) <

i=1 °g,
k(E/ EO:: " i du X5, (2) =

(o3 /@) lladu)xgk( )<
By

[
pl/]s
[\/]8

>
[N
I

-

qug
‘H

5
S

I
Mz
{8

Yo, (2) < EX.

=
0]

k:

1

Thus (4.9) implies
Nz € Gy + IMF(@)llo > A} < esp(Auwls.
Due to the latter estimate (4.7) yields
A
Wiz € X : [Mf()lo > 5} < esp(Nw.  (4.10)

By virtue of the respective result in the scalar case (see Theorem 4.1)
we have

POty < o [o (141 ( A Yu(e)d (4.11)
X

1z




754 A. GOGATISHVILI AND V. KOKILASHVILI

Now, from (4.3), (4.5), (4.10), (4.11) we obtain the validity of the
desired inequality. H
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ON THE OSCILLATION OF SOLUTIONS OF FIRST ORDER
DELAY DIFFERENTIAL INEQUALITIES AND EQUATIONS

R.KOPLATADZE AND G.KVINIKADZE

ABSTRACT. Oscillation criteria generalizing a series of earlier re-
sults are established for first order linear delay differential inequal-
ities and equations.

GIBOTBI.  Sothggeo bogol Qowosaam&%gags@msn Fégog
RoggegrorPe mEmmmdgols ©o gbEmrigobingel corag-
bomos GB1giEbob ghaghogiodo. Grmimpdog gbslimgryie Soge
Gogl sty Bmdorza Fggpgdobe:

1. Introduction. It is a trivial consequence of the uniqueness of solu-
tions of initial value problems that a first order linear ordinary differ-
ential equation cannot have oscillatory solutions. As to the equation

u(t) + p(t)u(r(t) =0,

the introduction of a delay leads to the fact that oscillatory solutions
do appear. Moreover, if p is nonnegative and the delay is sufficiently
large, all proper solutions (see Definition 1 below) turn out to be
oscillatory. Specific criteria for the oscillation of proper solutions of
linear delay equations were for the first time proposed by A.D.Myshkis
(see [1]). It follows from the results of [2,3] that if the functions p :
Ry — Ry(R; = [0,+c0[) and 7 : Ry — R are continuous, 7 is
nondecreasing, 7(t) < t for t € Ry, limy— 00 7(t) = +00,

t t
i _ T = | 1
v =T [ po)ds, po= lim [ p(e)ds M
7(t) 7(t)
and
either p*>1 or p.> i, (2)

1991 Mathematics Subject Classtfication. 34K15.
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then the inequality

u'(t) signu(t) + p(t)u(r(t)] < 0 ®3)

is oscillatory (see Definition 3 below).

If p. < 1/e, the condition p* > 1 can be improved. For 7(t) =
t—7(7 = const > 0) such an improvement was carried out successively
in [4,5,6] where the condition p* > 1 was replaced, respectively, by

2

pr>1- ”72, p*>1-— 5525 and
PN o) Lo, i @
2
Below we shall prove that the condition (4) remains to be sufficient
for (3) to be oscillatory when 7 : Ry — R is an arbitrary continuous
nondecreasing function.

On the other hand, in [7] the sufficient conditions for the oscillation
of all proper solutions of (3) are given which involve the classes of
inequalities not satisfying (2).

In the present paper, using the ideas contained in [6] and [7], we
establish some criteria for the inequality (3) to be oscillatory which
imply, among others, all the above mentioned results.

2. Formulation of the main results. Throughout the paper we shall
assume that p : Ry — R is locally integrable, 7 : Ry — R is continu-
ous and

p(t) >0, 7(t) <t fort € Ry, llir+n°o 7(t) = +oo. (5)
Put
n"(t) = max{s: 7(s) <t} for t € Ry, )
n=nT ol =nTonly (i=23,...)

Definition 1. Let a € Ry. A continuous function u : [a,+oo[— R
is said to be a proper solution of the inequality (3) if it is locally
absolutely continuous on [77(a), +ocl, satisfies (3) almost everywhere
in [7(a), +oo[ and

sup{|u(s)] : t < s < +o0} >0 for t > a.

Definition 2. A proper solution of (3) is said to be oscillatory if the
set of its zeros is unbounded from above. Otherwise it is said to be
nonoscillatory.
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Definition 3. The inequality (3) is said to be oscillatory if any of its
proper solutions is oscillatory.
Define

n) =0, () =exp{ [ pOh(®)} ™)
(t)
(i=2,3,...) for t€ Ry,
§(t) = max {T(S) 1S € [a,t]} for t € R,. (8)
Theorem 1. Let k € {1,2,...} exist such that
t 6()
T [ reen{ [ seu©dds >1-cp), (©)
5(t) 8(s)
where i, § are defined by (7),(8), p« is defined by (1) and

0 if pe>1/e,
e(p)=1—p.—/1-2p.— p? (10)
”—T”_”* i T e

Then the inequality (3) is oscillatory.

Corollary 1 ([7]). Let k € {1,2,...} ezist such that

¢ 5(t)
Jm [ pe)es{ [ pemuepe)ds > 1,
5() &(s)

where 1 and § are defined by (7),(8). Then the inequality (3) is
oscillatory.

Corollary 2 (see [6] for 7(t) =t — 7). Let p, < 1/e and

t
t@w / p(s)ds > 1 —c(p.)
8(t)

where p., § and c(p.) are defined respectively by (1),(8) and (10). Then
the inequality (3) is oscillatory.

Corollary 3 ([2]). Let

t
'_l-zi;w / p(s)ds > 1,
8(t)

25 <
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where § is defined by (8). Then the inequality (3) is oscillatory.
Theorem 2 ([3]). Let p. > 1/e where p. is defined by (1). Then the
inequality (3) is oscillatory.
Theorem 3. Let p. < 1/e and
t (1)
T [ e {Mp) [ pepde}ds > 1-cp), ()
5(t) O]
where p., 8, c(p.) are defined respectively by (1), (8), (10) and A(p.)
is the least root of the equation
e =\ (12)
Then the inequality (3) is oscillatory.

3. Some auxiliary statements. In this section we establish the es-
timates of the quotient |u(7(t))|/|u(t)|, where u is a nonoscillatory
solution of (3).

Lemma 1. Let @ € Ry and u : [a,+00[— R be a solution of (3)
satisfying

u(t) #0 for t>a. (13)
Then for any i € {1,2,...}
[u(r ()| = i(t)|u()] for t = ni(a), (14)

where the functions n] and ¥; (i = 1,2,...) are defined respectively by
(6) and (7).

Proof. Put z(t) = |u(t)| for t 2 a. By (3) and (13) we have

whence

o) 2 exp { [ o) T at}s(0) for @y st (13

The inequality (14) is obviously fulfilled for 7 = 1. Assuming its
validity for some 7 = {1,2,...}, by (15) we obtain
¢
s(r)2exp | [ pOUEE} ) =bins(02(0) for £2171(c).
()
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Lemma 2. Lel p. < /e, where p. is defined by (1). Lel, morcover,
a € Ity and u: fa.+oc[—= R be a solution of (3) salisfying (13). Then
Jor any sufficicntly small ¢ >0

lu(r (1)} > (Mp) = )|u(t)] for large t (16)
where Mp.) is the least root of the equation (12).

Proof. In view of Lemma 1 it suffices to show that there exists k &
{1.2,...} such that

1 () > AMpa) — €. (17)

=
By (1) po €]0, p.] and {5 > a can by chosen such that

t
7

/ ps)ds > po for t > 1, Ao > AMp.) — ¢, (18)
1)

where Ag is the least root of the equation ¢?* = X. From (7) and (18)
we can easily obtain that

Yi(t) > a; for t>nl(to), (19)
where oy = 0, 0; = €P9%-1 (§ = 2,3, ...). It is not difficult to venif
that the sequence {a;}72, is increasing and bounded from above by
Ao. Morcover, limi—yo a; = Ag.” This fact, together with (18) and

(19), shows that (17) is true. H

Remark 1. The equation v’ + pu(t — 7) = 0, where p > 0, 7 > 0
are constants and pr < 1/e has the solution u(t) = ‘!, where Xg is
the greatest root of the equation A+ pe™7 = 0. Since u(t — 7)/u(t) =
90T = 7%} and this constant is the least root of the equation ¢?7)\ =
A, we see that the constant A(p.) in (16) is exact.

Lemma 3. Let p. < 1/e, where p. is defined by (1) and let T be
nondccreasing. Let, morcover, a > 0 and w : [a,+o0[— R be a solution
of (3) satisfying (13). Then for any sufficiently small ¢ > 0

[u(t)] = (c(p<) = &)|u(r(t))| for large t, (20)
where ¢(p.) is defined by (10).

Proof. If p. =0, (20) is obvious
1/e and define the sequence {3,}

y fulfilled. So suppose that 0 < p. <
2, as follows:

; 1 g,
B = —11)3, Bi=BE, + pfio + ;pi =230 (21)



762 R.KOPLATADZE AND G.KVINIKADZE

Since A1 < ¢(p.), B2 — By = pl 4 T P> 0and B — Bioy =
(ﬂ, 1 — Bic2)(Bic1 + Bi—z + p.), we see that the sequence 4i}l 7
is increasing and bounded from above by ¢(p.). Since, moreover,
lim; .o Bi = ¢(p.), in order to prove the lemma it suffices to show
that for any i € {1,2,...} and ¢ > 0

2(t) > (Bi —e)a(r(t)) for large t, (22)

where x(t) = |u(t)| for t > a.

First show that (22) is valid for i = 1. In view of (1)
t

p(s)ds > p. —e for large t. (23)
) ;

T(t

Therefore, since 7 is nondecreasing, for any sufficienty large ¢ there
exists t* € [r(t),1] such that

- (1)
[ oe)ds =5 =2), [ plo)is 2 Ko =e). ()
(t) (t*)

By (1) and the monotonicity of 7 we have

t

z(7(t)) > jp(s)x(r(s))dsZ /[)(s)(j])({)l‘(T(f))(lf)dSZ

(t) 7(t) 7(s)
t (t)

= </p(s)</p(f)d{)ds) -x(r(r(t))) for large ¢.  (25)

(t) 7(s)
Since by (24)

t (1) ' e (1)
[ rs)( [ eae)as> [ o) [ pterie)as >
(1) (s) () 7(s)

>,<[ ) ((/) (€E)ds > 3(p. =P 2 =5, (20)

7(1) = 400 as t — 400, T is continuous and € > 0 is arbitrary, the
validity of (22) for ¢ = 1 follows from (25).
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Suppose now that (22) is true for some i € {1,2.... }. By (23) for
any sufficienty large ¢ there exists ¢ > t such that
t* (3¢
p(s)ds > p. —¢, /[)(s)(ls =p.—c, (27)
r(t*) v

which implies that 7(¢*) < t.
Integrating (3) from ¢ to t* we obtain

.
() > 2(t7) + /p(s)l:(r(s))dﬁ, (28)

Since 7(t) < 7(s) < 7(t*) < t for s € [t,17], again integrating (3)
from 7(s) to ¢ and using (22),(27) and the fact that x is nonincreasing,
we obtain for large ¢

x(r(s)) 2 =(t) + / p(E)a((€))dE = (B — e)z(7 (1)) +
r(s)

+a(r(t) [ ol f/f—l(”f(i)(f——c-&-/p £)dé — /,, £)de) 2

7(s) 7(s)

> (B p—2e - / PENE)a(r (1)

Substituting this into (28), taking into account that by (22) (t*) >
&) Wi

(Fd 1‘ a(r(t¥) > (8 — e)z(t) = (B: — £)%x(r(t)) and using (27)

.

2(0) 2 (¢ + a(r(0) [ o) (B + 2 = 26— [ @) ds =
= 5(t)+ z(r;t»((p. ST _e%) -
[ (frere)as( frore)) =
> 15— pemelt a2 S — el (0).

Since ¢ > 0 is arbitrary, by (21) this completes the proof of the induc-
tion step. H
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4. Proofs of the theorems. ’roof of Theorem 1. Suppose. to the
contrary, that the inequality (3) has a nonoscillatory solution u
[a.+oo[— R and put a(t) = |u(f)] for t > a. As seen while prov-
ing Lemma 1, the inequality (15) holds. So, according to this lenuma.
5(t)
r(8(s)) > (‘xp{ / [J(E)l,"k{f)(/f}.1'(5(/)) for ni (@) <o(1) < s <t
s(s) '
Substituting this into (3) and integrating with respect to s from §(1)
to 1, we obtain
t 5(t)
w(t) = 2(8(1)) + 2(8(1)) [ plsjesp
: {

sit

bt

mf)z»k(at/f}rls <0.
)

(s

Since by Lemma 3 (20) is fulfilled for any ¢ > 0 the last incquality

“.Mir‘\'

P &(1)

& [ A

[ osresp{ [ werwnpie}is < 1= etn)+ -
s(t) s{(s)

for large ¢, which contradicts (9). B
Proof of Theoremn 2. Note that the condition p. > 1/¢ implies
S

. 1
T /,)(5)(/.; 5= (29)
8(t)

Indeed, if this is not so, then there exist ¢ > 0 and a sequence {#;}72,
such that ¢; — 400 as ¢ — oo and

8(th)

Putting I; = min{t € [0,4;) - 7(¢) = 8(¢;)} and recalling limy— 4o T(1) =
+o00, we see that t; — +oc as 1 — oo and

Rl

ti t, 1
i i
pls)ds < / pls)ds < — + ¢,

=

) 5(1)

T



ON THE OSCILLATION OF SOLUTIONS

which contradicts the condition p. > 1/e. Therefore (29) is proved.
By (29) there exist 1o € Ry and a number ¢ > 1/e such that

t

plsids 2 ¢ for &>ty (30)
sit)
Repeating the arguments used in proving the inequality (26), we see
from (30) that
(1)
/[1 (/ P )//f\,(/~ > T for t 2 1y (31)
s(t) 5(s)

On the other hand. since §(1) > 7(¢) for t € 14 and €* > ex for » 2 0;
by (7) and (30) we have
Pilt) > (ee)™? for large t (1=2,3,...). (32)
Choose a natural k such that (ec)*=2 > {fec?, ie. C= cfec)®1/4 > 1.
Then by (31) and ({32)
s(t)

p s)(\l){ / PEYL( (/Ef(h >¢>1 for large
A(r) 8(s)

This means that the conditions of Corollary 1 are fulfilled. Therefore
the inequality (3) is oscillatory. B

Proof of Theorem 3. By (11) there exists ¢ €]0, A(p.)[ such that

8(t

t
'@ /p(s)cxp{(/\(p —¢) /p({ (/f}(is > 1 —c(p.).
sy

(s)

It was proved in Lemma 2 that

Inn Pp(t) > Mp.) — ¢

t—+00
for some natural k. Therefore Theorem 3 is a st raighforward conse-
quence of Theorem 1. H
Remark 2. Put

o {,;, for 1 € [2k. 2k + 1]

k=101,
pr fort e 2k+1,2k+2] ( )

i
101935
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7(t) =t — 1. It can easily be verified that

t t—1

,E;/P(S)exp{ /p(f)d{}dsz
i 2k+1t:1\ 2% ‘—ld ) _prer —1)
2 i [ 7 en{ [ wouefas = FT =1

Since (e* —1)/x =1+ a/2 + 2?/6 + o(2?) and
(1_ l—2—V1-2r—2?

)

. 3 5
) =144 Zm‘ + o(z?)

as x — 0, we can choose p. €]0,1/¢[ and p* €]p.,1[ such that the
conditions of Corollary 1 would be fulfilled for & = 2, while those of
Corollary 2 would be violated.

Consider, in conclusion, the equation
W(8) + f(t,u(n(t),. animalE)]) =, (33)

where m € {1,2,...}, f: Ry x R™ — R satisfies the local Carathéo-
dory conditions, the functions 7; : Ry — R are continuous, and

7i(t) <t for t € Ry, tliLn T(t) = +oo (1=1,...,m). (34)
Put

7(t) = min{ri(t),..., (1)},

8(t) = max{7i(s): 1 € {1,...,m}, s € [a,?]}. (35)

Definitions 1-3 are trivially extended to the equation (33).
The above results immediately imply

Theorem 4. Let (34) be valid and

flt,zy,. .. @) sign xe > p(t)|a
for t€ Ry, |zi| > |o|, 2izo >0 (4=1,...,m)

where p : Ry — Ry is a locally integrable function. Let, moreover,
the conditions of one of Theorems 1-3 or Corollaries 1-3 be fulfilled,
where the functions 7 : Ry — R and § : Ry — R are defined by (35).
Then the equation (33) is oscillatory.
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