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BOUNDARY VALUE PROBLEMS OF ELECTROELASTICITY
WITH CONCENTRATED SINGULARITIES

T. BUCHUKURI AND D. YANAKIDI

ABSTRACT. We investigate the solutions of boundary value prob-
lems of linear electroelasticity, having growth as a power function
in the neighbourhood of infinity or in the neighbourhood of an
isolated singular point. The number of linearly independent solu-
tions of this type is established for homogeneous boundary value

problems.

@IBOTBI.  gadmygmgmmmos Gégago gemg JE Pty gomdob balbiseogen
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6o baallsmgebo ol Gngo. @agagbermos dbgoo 3ol Gogo-
E @A odyrme B0bolslibgdols Gragbge N S babstiegem

S8 (356 g bengobs.

The basic equations of the static state of an electroclastic medium
are written in terms of displacement and electric potential components

as follows [1, 2]:

D%uy 9o
Cijle——— + €rijm—— + 5 =0,
L a0 = D0y ’
D%y &

—Cikln . 5. h=——— =0, =12,
00 T Or0xy, ’

where u = (uy.uy, us) is a displacement vector, ¢ is an electric field
potential, ¢;jx, €xij, Eik. are constants, I' = (Fy, Fy, F3) is mass force.
It is assumed that the constants c¢;ju, €xij » Eix satisfy the conditions

Cijkl = Cjikl = Cklijs

el = i G G by gk L=1528
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514 T. BUCHUKURI AND D. YANAKID!

System (1), (2) can be written in the matrix form. We introduce
the operator

A0 = [ 450 aes, ()
a2
Au(92) = cij=—s—,
Hor) = cing o
4a(02) = & 5
g .Z) = Ckij ?)J';J‘),I'»,‘ 35 L dady
(-)2
Ap(dx) = —epuz——0 k=123
(0%) i D)
&
A(02) = Ep——.
caile driday
Introducing the four-component vectors 7 = (U e Usslly), =

(1, wz. tz, 2) and y = (£, Fy, F3,0), system (1). (2) is rewritten as
AQ)U +\ = 0. ()

It is easy to show that the operator A(dr) is a second order homo-
geneous operator of the elliptic type.

Assume that an clectroelastic medium occupies a bounded domain
OF of the three-dimensional space R Let Q7 = RM\Q*. § = 00* =
o0,

Assume that the surface S is partitioned into four parts: Syy. St
Si3, Sia. where S;; N S; = @. i # j and UL S = 5. Also assume

that we have another partitioning of S into two parts: Sop and Sy
S NSy =0, SnUSn=>5.

We shall consider a boundary value problem for system (5) when
the following conditions are given: displacements on the part Siyoof

the boundary S, boundary mechanical stresses on the part Syy, normal

components of the displacement vector and tangential components of
the mechanical stress vector on the part Spa. and normal components
of the boundary stress vector and tangential components of the dis-
placement vector on the part Spy. These conditions can be written in
the form

wl, ()= fily). =123 (6)

mi|y )= gily). i=1.2,3 (M)
wnil . ()= 1) (g — )| (0) =

=g7(y).i=1,2.3, 3)
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n.rj,'n/‘g_ (y) = (/(“)( y). (i = mpugn; J!\.H(.’/) =

=), i=1.2.3. 9)

Here fi, gi, f0, g™, 117 ¢ (1 ™ are the known functions.
In a(l(lltmon to the above "mechanical” boundary conditions we
should also be given “electric” conditions

ol )= vy (10}
1521

Dini| . (y) = h(y). ()
Sx

In the above formmlas 7;; denotes the mechanical stress tensor. D, the
clectric induction vector. These values are related with the unknown
displacement vector {7 and the electric potential ¢ by the relations

1 uy 1'):11) Do ’
Tii = —¢ — | + epi;—, 12)
T gt ( day s Ay ks dxy, i
1 Du Dug\ do
i L2 D) g, 80 "
L) i dx;  day k(').u (¥3)

We shall apply the term “the basic internal regular boundary value
problem of electrostatics™ to the following problem:

Find in the domain Q% the four-component vector U = (u. ) of the
class C2(QF) 0 CHQT) which is a solution of system (5) and satisfies
conditions (6)-(11). Denote this problem by (&)*

The external boundary value problem (€)~ is formulated absolutely
in the same manner. In that case the vector {7 is sought for in the
domain Q.

I'rom the basic problem (€)* one can obtain, as the particular case,
various problems. Denote by (p,q)E the problem (&% when Sy, = S
(Sii=@.ili+#p)and Sy =5 (Su=@.if i #q).

Denote by (€)F the ln()l)l(m ()% with the homogeneons bonndary
conditions f, = 0. ¢, =0. [ = 0. J” =0, f =0,¢™ =0, =0,
h =0, when \ = 0. The notatlon (p-q)E has the same meaning as
above.

The following uniqueness theorem is valid:

Theorem 1. [[ 7 = (u.p) is a solulion of the problem (E)E, then it
has the form

Ula) = eijraizr + bi, @ =0, 1=1,2,3,
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where o, a;. b; are arbilrary constants and ¢y, is the Levy-Clivila
symbol. In that case if %ll ;ﬁ @ and is nol a subsct of some plane,
then a; =0, b; =0, (i = 1,2.3); if So1 # @, then oo = 0.

The proof is based on the Green formula

Z«/h Au(02)Vi(z) dz = /u YTy, n)Vily) dy S —
Lklb

ik=1Gy
‘/mumm@, (14)

Qt

here Ti(dy, n) are the components of the boundary stress operator

Ti(Dy,n) = cijun;(y ) o ik =1,2,3

0

Ti(Dy,n) = erijn; (U)dﬂ- i=1,23, :
) L)
Tyu(dy,n) = —eni(y)m—, k=123
dy
1%

Tya(Oy,n) = Exnily )()JL

Du; Doy du; D
EllLV=¢eymi=— - FtCiiz 5
UASEE ]U(').rj + Ekij daj Dy

Do Dy g ()_Y_ _()_1_ (16)
M G Dy O Dy
U=(ug) V=(,¢).
If U = (u,) is a solution of the problem ()¢, then
4
vyesS S Uily)Tin(dy.n)Uily) = 0. (7
ik=1
Applying (17), from the formula (14) we conclude that
(18)

Vee Qt : E(U,U)=0
where U is a solution of the problem (£)§. From (18) we obtain
Qui(x)  Juj(x)
d; I 0.
dole) al
gp\T) . .
=0 =1,2,3.
01{ =0, 5 3

Yz e QF :
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This formula immediately implies that all the statements of Theo-
rem | ave valid.

Theorem 2. If U is a solution of the problem (€); and satisfies the
conditions
Ui(x) = O(Jz|™), i=1,2,3,4,
oUy(x)

dz;

(20)

= o(|:1‘|7l), = 15235

in the neighbourhood of a point al infinily, then
Yzefl™ : Ufr)=0.

The theorem is proved by the reasoning used in proving Theorem 1
for the domain Q, = Q "\ B(0.r) where B(0.r) is the ball with centre
at the point 0 and radius r and with pas

age to the limit as 7 — oo,
We can formulate Theorem 2 more precisely. since it turns out that
conditions (20) can be considerably weakened.
The results of [3] imply, as the particular case,

Lemma 1. Lel U be a solution of the system
A(Qx)U =0 (50)

of the class C*(Q7) in the domain Q~ and one of the condilions below

iz R [ ()l dy = 0, (21)
B(0,/)\B(0.r/2)
Uy) = o(lyl™), yl = oo, (22)
U
U@l dy < 400 (23)

1 ptd
g+l

be fulfilled for some nonncgative integer number p. Then for any non-
negative integer g we have the representation

VreQ o Ujx)= Y ('i“)m" + 5 (lic'a)i)’@¢'jk(.r) + (),
lal<p 181<q (24)
7= 142,345
Cga) = consl, d(km = const, ;€ CHQ7), and in the neighbourhood of
infinity g

F";(x) = O(Je>"-). (23)
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Here ® = ||®illyxa is the matriz of fundamental solutions of equa-
tions (Hg).

Theorems 2 and 3 imply directly the following uniqueness theorem:

Theorem 3. Let U be a solution of the problem (€)g and satisfy at
infinity the condition

Ula) = o(1)- (26)
Then
Yoe O 2 Ulz)=0.
Consider now the boundary value problem: Find in the domain Q-
the solution U of the Problem (£)~, satislying at infinity the condition

Y(x) = ofjz|P). (27)

This problem will be denoted by (€,)~ and the corresponding ho-
mogeneous problem by (&,)g .

Let N (p) be the numl)(l of linearly independent |ml\nmm,|\ <ol
tions of system (50) with a degree not higher that p. Repeatine the
reasoning given in [4] for an equation of classical elasticity we can
readily prove that

1\'(,)):4[( N \; (”fj‘)):;(mx)?. (23)
/ - 1

Now it is easy to prove the following

Lemma 2. Lel the homogencous problem (£)g has a solution satis-
fying condition (26) (it will be trivial by virtue of Theorcm 3). Then
the homogeneous problem (E,)g has at most K(p) = 1(p+ 1)? linearly
independent solutions.

Proof. Let UM, ... U™ (r > 4(p + 1)?) be solutions of the homo-
geneons problem (&,)5. By virtue of Lemma 1 U = P 4 v
wherc P is a polynomial solution of system (50) of a degree not
higher than p and V) is a solution of system (5¢) satisfying condi-
tion (26). Then by the condition of the lemma there exist numbers ¢;
not all equal to zero such that YI_, ¢; Pt ) =0, C onsldel the vector
W=yYaUd = Zc V@ 1 is a linear combination of U and kence
will be a solution of the homogeneous problem (&,)g ., but at the same
time 1V is a linear combination of solutions V), therefore satisfying
condition (26), and hence, on account of Theorem 3, W = 0. Thus
solutions U are linearly dependent. B

Lemma 2 immediately yields
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Corollary 1. [f the nonhomogencous problem (€)™ has the unique
solution for any fi. gi. [0, gl A/',(-'. ;/(r). o and b bclonging to the

i

class C. then the homogencous problem (E,)5 has cractly K(p) =
Wp + 1) lincarly independent solutions, while the nonhomogencous
problem (£,)7 has the solution U for arbitrary boundary data and this
solution is represented as

U=1,+U®,

where Uy is the solution of the problem (€)™ salisfying condilion (26)
and U0 is an arbitrary solution of the problem (£,)g .

Ihe problem ()% is treated with sufficient completeness in [5]. This
paper also contains the proof of the existence of a generalized solution
i Sobolev spaces. Using the well-known regularization theorems [6].
froms these restlts we easily obtain the existence of classical solutions

for sufliciently smooth S and boundary data. In particular, we have

Lemma 3. Lel the boundary S of the domain Q@ and the boundary
data belong Lo the class C(Q%). Then:

problems (1.1 and (L1)* have the unique solution of the class
LR )

the problem (3.1)F has the unique solulion of the class c=(at) if
S is not the rotation surface;

the problem (2.1)* has a solulion of the class C>(QF) if and only
if the conditions

/y,(,,)(/ys =0 =198 (29)
/;‘,jkg/_,gk(y) 4,8=0, i=1,23, (30)

are fullilled to within a term of the form U = (11‘10), ”(zo)‘ 11_»(30),0) where

['1(0)(.(') = egrz;ok + bi, (31)

a; and b; are arbitrary constants (1 = 1.2.3);
problems (1.2)* and (1.2)%, and also problem (3.2)T if S is not the
votation surface, have a solution if and only if

[ w)d,s =o; (32)
S

the solulion is defincd to within a term of the form U = (0,0,0.¢0)
whire ¢ is an arbitrary n umber;
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problem (2.2)F has a solution if and only if conditions (29), (30),
(32) are fulfilled; the solution is defined lo within a term of the form
U = (u,p0) where u is wrillen as (31) and gy is an arbitrary number.

We are interested in investigating not smooth solutions of the prob-
lems (£)*, but such solutions that at some given points have singu-
larities not higher than given power orders.

Lét oM.y ) be  points  lying in  the domain  QF,
M, = {20}

Consider the problem with concentrated singularities: Find the so-
lution U/ of equation (5) which belongs to the class C2(QF\M,) N
CHQFT\M,), satisfies the boundary conditions (6)-(11) and, in the
neighbourhood of the point @), the condition

> c 2
[U(x)] < W A

P

where p; are given nonnegative numbers. Denote this problem by (€)7,.
The investigation of this problem is largely based on one proposition

following from the theorem proved in a more general situation in [3].
Lemma 4. Lt Q CR? y € Q, U be a solulion of (50) of the class
CHO\{y}) in the domain Q\{y} and, for somc ¢ >0 and p >0,
2

()] € —— .
Wl S =

Then

1
Ua) = U@+ 3 a0du(e—y), j=1,...,4,
k=1 Ja|<[p)-1

where U s the solution of system (50) of the class C*(Q), a =
(a1, az,ay) is the multiinder, [p] is the intcger part of the number p,
(:L“J = const, & = || k|lsxq is the matriz of fundamental solutions of
equation (5).

Using this lemma, by a reasoning analogous to that from [1], we
prove

Lemma 5. Let F, be a finite-dimensional space stretched onlo the
system of vectors {07 PH (- — W)k =1,2.3,4; |a| < [p] =1}, where
Q) = (Oys, Doy Pag, Pu). Then

dimF, =4 Z[p,]z.

i=1
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Proof. We assume V = (v, ) and introduce the notation

, 1/dv;  dv e 0
Y R
dugi. 10w " Ok o
v v AV V) (w o
TT(J ) p CUWL,J — (’ku]"t« ), Di — r‘k,(“ ) + t‘,il:,(C )

Let {w®; &k = 1,...,dimF,} be base spaces F. Denote by U®) a
solution of system (5¢) satisfying the boundary conditions (6)-(11) for

5 k 0k s e
Fi=0®, gi=1 My, 1 =0,
(k) ) G
g7 = 'rl(l“’ L n/Tj[f g, g™ = ‘r( ",

058 Wk (%) 3 (k)
j,-( ) = TJ(t Jnj - n,Tj(f/ )n]nl, P = w‘_(‘“, h= 7.7,(“' In,

Consider the vectors V) = UK — () - Obviously, the vector V©*
is a solution of the homogeneous pml)ltm (&), We shall prove Lhat
the system ol vectors

{\r"(k), z,‘v('); k=leepdimFa 1= Liso oy r[}ﬁ

where {1/} a linearly independent system of solutions of the homo-
geneous problem ()7, is lincarly independent. Indeed, if

dim F;,
PECA L +Z(l P =
k=1
then
dim 7, dim 7, e )
aw® = 3 U +3 dy

i

k=1 i=1
By virtue of (2 ) Y aw!®™ = 0 and therefore ¢, = 0 and ud; = 0.
Now from Lemma 2 we obtain the proof of Theorem 4. W

Theorem 4. [f the problem (E)* has a solution for any boundary
data of class , then the homogeneous problem (&7, has exactly
4 [pi)? 4 q lincarly independent solutions, where q is the number
of lincarly independent solutions of the problem (E,)* and [p;] is the
integer part of the number p;.

This theorem readily implies

Corollary 2. The homogencous problems (1.1)2; and (4.1)7; have ex-
actly 45°7_ [pi)? linearly independent solutions and if the boundary S
is not the surface of rotation, then Problem (3.1)2,, too, has the same

number of linearly independent solutions.

i}
101945
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Similar theorems hold for the other problems as well.
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PASSAGE OF THE LIMIT THROUGH THE DOUBLE
DENJOY INTEGRAL

N. CHELIDZE

ABSTRACT. The conditions are given for passage of the limit
through the double Denjoy integral defined by V.G. Chelidze.

B0, dgggigenos Tiogoély poobgemols 3oheadgde ©6gmsb mé-
Xﬂ‘”Q obgaPde. Gl Fnmbame ogn gro Fgepedal
dogh.

As is well-known, there exist various definitions of the double Denjoy
integral (see [1,2,5]). Conditions for passage of limits through these
integrals have not yet been studied. The object of this paper is to
investigate the conditions for passage of the limit through the double
Denjoy integral defined by V.G. Chelidze (see [7]).

Here we shall use the well-known terms (see, for example, [8]). We
recall only a few definitions.

Definition 1 (see [8], pp. 127-128). A function f : Ry — R with
Ro = [a,b] x [e,d] is said to be Denjoy integrable (D-integrable) on
Rq or, briefly, f € D(Ro) if there exists a generalized absolutely con-
tinuous function F (ACG-function) on Ry, briefly, F' € ACG(Ro)
(see [8], pp. 99-100), with an approximate derivative ([8], p. 103)
equal to f a.e. The function F is called a D-primitive of f and
A(f; Ro) = F(b,d)— F(a,d)— F(b,c)+ F(a,c) is called the D-integral
of f on Ry which is written as

A(F, Ro) = (D) [[ f(z,y)dady.
Ro

A function f : Ry — R is called D-integrable on a measurable !

1991 Mathematics Subject Classification. 28A35.
!Measurability is meant in the Lebesgue sense and |A| will stand for the
Lebesgue measure of the set A.
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subset £ C Ry (briefly f € D(E)), if fe(x,y) € D(Ro) where
) _ @) (vy) ek,
fe(z,y) = {0 U.g) B

Definition 2. A compact interval I is said to be of type 2 with res-
pect to E if at least one pair of the opposite vertices of I lies in £.

Lemma 1. Let By be a compact subsel of [a,b] whose contiguous
intervals are {r;};. If f € D(E), f € D(R;), i = 1,00, where £ =
Ey x [¢e,d], Ri =7r; x [c,d], and

2 0(D; f, i) < o0, 0

where

O[D; f, Ri] = sup { / [t 7)dt dr]}

pCR:

and p stands for any measurable subsel of Ri. Then f € D(Ry) and
for each subsegment R C Ry we have

(D) //f(t,r)dl(lr* // JiLT) (1[([T+Z// f(t,7)dtdr.
‘R ! RAR;
Proof. Let us consider the function
Fla,y) / 7t 7)dt dr,
RinI(w,y)
where I(z,y) = [a,z;¢,y].

We shall show that F' is continuous on Ry, i.e., I is continuous at
any point (2o, y0) of Ro; for & > 0 there must exist a §(¢) > 0 such
that the inequality

|F(xo+ K, yo+ 1) — F(zo,50)| < €.

must take place for all k and [, [k| < é(¢), |I] < 8(¢). Then

|F(zo+ b, o+ )~ F(wo,0) :’Z(I)) Il oy J TV~
_Z(D) //Rxm(roqyo)f(t,r)(lt dr| < lel(p)//’éxn%m f(t,r)dedr],
where

Pry o = [a, 20390, 50 + [ U [wo, 20 + ks ¢, 50 + 1]
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To estimate the last sum let us consider two subsystems of intervals
from the system {R;},_y=: I' = {Ri} and I" = {R!} such that system
I’ satisfies the conditions:

1'{1 N Py # G andi >N
and system [” the conditions

RIO Py #Dand i <N,

For the first system for all € > 0 there is an No = No(e) such that
if N > Ny, then by the condition (1) we get the estimate

P [C2) // f(t,r)dtdr| < 3 O[D; £, Ri] < %

i>N RIOPrg.u0 i>N

Now consider system [”. Since ¢ < N, this system is finite. Let N~
be the number of members of this system. Then for & > 0 there is a
§(g) > 0 such that |Prgy| < & and

|Proo 0 R < [Prg o < &

Hence it follows

/ ftrrll(17'<———

2N~
I? 'NPzq o
Now
S (D) // f(tr)dtdr| < )—i— N =%
SN RUAPry 4o - -
Finally, we obtain
|F(xo+ k,yo+ 1) — F( lUJD\<Z‘ // f(t,r)dtdr| =
RinPsg .0

// f(t,7)dtdr| +
x>N Ri0Pxq .50

(D)//ffz'npra‘yo f(t,7)dedr| <

Thus F is continuous on Ro.

Now for the fixed i let us consider any finite system of pairwise
disjoint compact intervals of type 2 with respect to R;, say, {Sk}i=1-

If
SISkl <8,
=1

-t}
101935



526 N. CHELIDZE

then, by the conditions of the lemma,

Zl_\l: Sl Zl//fi'r(/t(lr <e.

Therefore F € ACG (R;),_7=. Now we shall show that I is absolutely
continuous on [ (or, briefly, is AC, written as F € AC(L)) (see
Definition 3 or [8], p. 97). To this end we define the function G as
follows:

Gla,y) = (i when (z.y) €
NIV (D) g, £t T)dedr, when  (a,y) €

We show that (i is Lebesgue integrable on Ro.

//Ra |Gz, y)|dady = Z: //R. |Gz, y)dedy =
= 21://1 (“}?—J(D){ //R, f(t,7)dtdr )(lAzr([y =
D)//R. f(t,7)dtdr //fe dll‘ﬁ;,lf/ .

=3 ‘(D)//R, f(t,7)dt dr| <

U(a //(r(t T)dt dr.

Since G is summable, for any & > a there is a § > 0 such that |e| < 6
implies

C.

Put

ZE 2)

/ G(t, 7)dt dr

for each measurable subset e C Ro.

If we consider any finite system of pairwise disjoint compact inter-
vals of type 2 with respect to E, say, {Ix}je,, and if 7o, [Ik] < 6,
then

We shall now show that ¥ is AC on E. Assume I = [k, Bi; Yk, O]

Then . .
S AT = Y y// Git,r)dtdr| < &
k=1 k=117,
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It is not difficult to check that F(x,y) = ¥(x,y) when (2,y) € E.
Since I is ACG on each R; and F € AC(E), it follows that F'is ACG
on Ry.
Moreover,
DF(a,y) = DV¥(x,y) = G(2,y) = 0 almost everywhere on [
and
DF(x,y) = f(x,y) almost everywhere on Ro\FE = U; Ri.
Thus F is a D-primitive of oy defined as follows:
f(z,y) when (z,y)€eU;R
ei(a,y) = {0 i ;
when (z,y) € E.

On the other hand, we consider
0 when (z.,y) € U; Ri,
wa(w,y) = : i
f(z,y) when (z,y)€E.

Since f € D(E), we have ¢, € D(Rg) and f € D(Ro), f(z,y) =

e, y) + o2(x.y).
Finally, we obtain the equality

(D) //R F(t,7)dt dr = (D)//Rpl(t,r)(ltdr+ (D}//n«pg(t,r)c/t dr =
- D)//nglu.r)(/z(/r+(1))//R i il r)dedr +
//W (t,7)dtdr + (D) //WU AT =
(D)/R )t +(D) // o [Tl =

// l‘r(]idr+ZD // f(t,r)dtdr,
R F

where R is a subsegment of Ry. W

Lemma 2. Let F, be continuous on Ry, n € N, and lim, .o, F, = F,
where Fis also continuous. Then

lim O[Fy; Ro) 2 O(F'; Ro).
Proof. Since I is continuous, there exist points (21,y1), (%2,y2) on Ro

such that F(xz9.y2) — F(21.51) = O(F; Rg). On the other hand, for
any ¢ > 0 there is an Ny = No(g) > 0 such that

Fo(zi yi) — € < F(ai,y:) < Falayi) +6, 1=12,

for all n > Np.
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It follows that

F(xa,y2) = Far.yn) < Fa(za,y2) = Fa(eryn) + 2

and so

g/

O(F; Ry) < O(Fy; Ro) + 22 P

from which the result is immediate. B y

Definition 3. Let F), : Ry — R be continuous, n € N. Then {F,; /
n € N} is said to be a sequence of uniformly A,-functions on the set 7~
P C [a.b]if P = Uy Py and F, is uniformly AC on each [y = P x[e.d]
(see [9]).i.c., for alle > 0 thereisa§ = 6(¢) > 0 such that for any finite
system of pairwise disjoint compact intervals of type 2 with respect to
Hy, say, {R;}, i = T.m, the inequality

Yol <6
i=1

implies

-

=1

A(F,; Rl <e

for all n € V.

Lemma 3. If f, € D(Ro), n € N, E C [a,b] is a closed set and the
sequence

xr y
Flzy) = //f"(l.r)(ll dr, néeN,

is uniformly AC on E' = E x [v,8], then for all e > 0 there is a
6 = 68(z) > 0 such that for all measurable sets, e, e C £ and |e] <6,
we have

l// fu(t,7)dtdr

Proof. By the conditions of the lemma, if € > 0, then there is a §>0
such that for any finite system {Rx}, k = I.m. of disjoint compact
intervals of type 2 with respect to £’ the inequality

<e, n=1,00, where ' =ex [v,8].

m

ST IR <6

k=1

implies

<E (3)

éan(Rk)‘ = g}//& fn(t,'f')dl(l‘r
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for all n € N.

Let now ¢ be a measurable subset of £ with |e| < . Then there
are open sets G, m € N, such that G, D Gy D e, m € N, and
limy— |G| = le]. Tt can further be assumed that

o
Gn=Ur”, sMar™ =g, k#1
k=1
for each m, where ") are open intervals. We set

em = ENGr = J(Enr™).
k

iﬁj/j

Denote by /’k, .j € N, contiguous intervals of £Nr™ on r™. Then

Gm\em = UU/)'”

The endpoints of each pi"l' lie on FZ. Morecover, for § = §(g) > 0
there is an Ny(6) = Ny > 0 such that if m > Ny, then

|Gl < 6.

If m > Ny, from (3) we obtain

Z‘//[m)x[“ falt,F)dtdr| <

ZEU/W Fult,T)dt dr| <

for all n € N.
Now, by Lemma 1, for m > Ny we have

//m. bl falt,T)dtdr =

= Lty 7)dtd // (t,r)dtdr, n=T,
//T(m‘ﬁf)x[—yvﬁ]f( T)d (T+z A st 6] ,T)dtdr, n

Performing the summation of the last expression over k, from (4) we

obtain

fult,7)dtdr| < 26, n=1,00,

em X [7,6]

and so

U Falt, 7yt dr| < 2¢

=0
101935
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Note that the following lemma of P. Romanovskii is very essential
for our investigation.

Lemma 4. Let § be a nonempty system of open subintervals of the
open interval Ja, bl, having the following four propertics:

1) If la, Bl€ § and 3,7[€ F. then |a,v[€ §;

2) If Ja, B[€ . then every subinterval of |, B also belongs to §:

3) If every proper open subinterval of o, B[ belongs to §, then Ja, Bl€
3

1) If all contiguous intervals on [a,b] of a noncmply perfect sct I2
from Ja b belong to §. then § contains an interval o, B[ such that
la, B[NE # @.

Then Ja, ble §.

Theorem. If f, € D(Ry), lim,— [, = [ almost everywhere on
Ry and the sequence

T

,
Fales) = [ [ faltsydedr, n=To,

is uniformly conlinuous on Ry and uniformly A, on [a,b], then [ €

D(Ry) and

Jim // Fult, T)dt c[r:/] 1t 7)dt dr.
Ro Ro

Proof. The subinterval o, #[Cla. b will be said to lie in the family of
subintervals § if for Ja. 4] and all all compact subintervals we have

B & B s

,}E};//f,l(t.r)(lt<lr://f(l.r)(h‘dr, (v

where [v, 6] C [e,d].

The theorem will be proved if we show that § satisfies the condi-
tions of Romanovskii's lemma. The condition of the theorem implies
that there exists a portion P such that {F,},» is uniformly AC on
P x [e,d]. Then due to Vitali’s theorem on passage of limits through
integrals and by virtue of some properties of the Denjoy integral there
exists an interval [a”, 37,77, §7] for which the equation (*) is fulfilled.

Thus § # @.
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Now assume that Ja. 3[€ § and ]8.9[€ §. Then Ja.n[€ §. Indeed,

0§
}E)\[//fn(l.r)(ll[lr:
v n 4§

3§
”lEn (Q// s :l(/trlr-l»//fnl T)dt llT‘) =
_//j (//rlr+///I-rrlldr*///fr(l/dr

o9 8 9

e., Ja,n[€ 3.

Condition 2) follows from the definition of the family §.

Now let us consider condition 3). It is assumed that every open
proper subinterval of Ja, 3] is contained in F. Then we must show
that Ja, 8[€ §.

Consider A, ptm[€ T [ Ams fm[Cles Bl Am L oy i T8, m — o0,

Since {F, },>1 1s uniformly continuous on Ry, for all £ > 0 there is
an Ny = .\'U(s)—such that if m > Ng, then

8

/f (¢, 7)dtdr —e < 7/5f"(t.r)(1tdr <

>
] E
.4\5
2

Hm

//j,, (t,7)dtdr + ¢,

Am ¥

where [v,8] C [c.d] is arbitrary.
Since A . ptn[€ §, we have

tm 8 B8 &
ft,7)dtdr —e < lim falt.T)dbdr <
Tjmona-esin]
um/s
< hm/ Fult, 7Yt dr < / f(t,r)dtdr + ¢ (5)
@ ’V/ Ao ¥

Hence, € > 0 being arbitrary, (5) implies that

#m S

Tim / /f(t,r)dt dr (6)

Am ¥
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exists and

)
]nn//[n (25 r(/lrlr*///l T)dt dr.

Thus Ja, 3[€ § and condition 3) is satisfied.

Finally, we shall check condition 4). It is assumed that £ C [a,b]
is a closed set. Since the sequence {[},>; is uniformly A, on [a. 0],
there exists a portion P = [ N [a, 3] such that {7, },>1 is uniformly
AC on P x [c,d]. r

Let {I; =]ok, Bi[, k = T.,oc} be the contiguous intervals of P on
Jer, B[ which are the members of §. By Lemma 1, where Iy, x [y, 6] are
the contiguous intervals of P x [v,6], k =T, 00, we have

8
a/j ult, T)(lt(lr:// (4, 7)dLdT +

+Xk://lk><[‘¥,é] falt,T)dtdr. )

By Lemma 3 and Vitali's theorem on passage of limits through inte-

grals
lim //} fulty7)dbdr = //P Tt Tyt dr, ®)
where P' = P x [v,6].

Since {F.}u>1 is uniformly AC" on P’ for all ¢ > 0, there is an
No = Ny(¢) such that if & > Ny, then
> O(Fy L x [y, 8) <e. 9)

k>No

Since I, € §, (9) implies

ST O(F; I x [v,8) < ui O(F; I x [7,8]) < +o00.  (10)

£>No k=1
Thus f € D([a, 8;7,6]) and from (7), (8), (10) we obtain
§ B s
llm Faltyr)dtdr = f(t,7)dt dr,
] i

ie..]a,B[€ § and Ja, B[NE # @. Therefore § satisfies all conditions
of Romanovskii’s lemma and Ja, b€ §. B
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GENERALIZED SIERPINSKI SETS

A. KIHARAZISHVILI

ABSTRACT. The notion of a Sierpinski topological space is intro-
duced and some properties of such spaces connected with Borel
measures are considered.

&IB0IBD. 653hndda oo bg@3oBliols Em3memmponéo bog-
é@nb GBUB\) © 6»6&1@13@‘) >0 bnaéeasanh Zﬁmt‘waq:mb %mgaam)ﬁ
@goPofgdamo ogobigbado.

We assume that all topological spaces E to be considered below
possess the following property: any singleton in I is a Borel subset of
E. In particular, all Hausdorff topological spaces possess this property.

We say that a topological space I7is a Luzin space if cach o-finite
continuous, i.c., difffused, measure defined on the Borel g-algebra of
E is identically zero.

We say that a topological space I is a Sierpinski space if £ contains
none of Luzin spaces with the cardinality equal to card(E).

The classical Luzin set on the real line R gives us a nontrivial ex-
ample of an uncountable Luzin topological space (sce, for example,
[1]). Similarly, the classical Sierpinski set on R gives us a nontriv-
ial example of an uncountable Sierpinski topological space (see [1]).
Therefore Luzin topological spaces (accordingly, Sierpinski topological
spaces) may be considered as generalized Luzin sets (accordingly, as
generalized Sierpinski sets). Some properties of Luzin and Sierpinski
topological spaces are investigated in [2] and [3]. In this paper we
investigate some other properties of Sierpinski topological spaces.

It is obvious that the cardinality of any Luzin topological space is
strictly majorized by the first measurable (in the broad sense) cardinal
number. The following simple proposition gives a characterization of
measurable (in the broad sense) cardinal numbers in the terms of
Sierpinski topological spaces.

1991 Mathematics Subject Classification. 54H05.
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Proposition 1. Let E be the main base sct. Then the next two rela-
tions are cquivalent:

1) card(E) s a measurable (in the broad sense) cardinal number;
2) the topological space (E.T') is a Sicrpinski space for every topology
"on the set .

~

Proof. Indeed, if card(F) is a measurable (in the broad sense) cardinal
number, then for cach set X' C £ with card(.X') = card () there exists
a probability continuous measure defined on the family of all subsets
of X. Therefore for any topology T on the set £ the space (F,T)
contains none of Luzin spaces with the cardinality equal to card(£).
Thus we see that in this situation the topological space (£,T) is a
Sierpinski space. Conversely, let us assume that the topological space
(E.T)is a Sierpinski space for every topology 1" on the set [, If we
set,
T = a discrete topology on [,

then we immediately find that card(£) is a measurable (in the broad
sense) cardinal number.

It is not difficult to verify that if £ is a Sierpinski topological space
and X is a subspace of I with card(X) = card(F), then X too is a
Sierpinski topological space. B

Proposition 2. Let E be a topological space and let
E= U E;,
i€l
where (E,)ier s a finite family of Sierpinski subspaces of 5. Then the
topological space E is a Sierpinski space. In particular, the topological
sum of any finite family of Sierpinski spaces is also a Sierpinski space.

Proof. Let X be an arbitrary subspace of the space F with card(X) =
card(F). Assume that X is a Luzin subspace of the space E. Since
the set of indices [ is finite, there exists an index i € [ such that the
equality

card(E; N X) = card(E;) = card(E)
is fulfilled.

Let us consider the set /2;N.X. This set. being a subset of the Luzin
topological space X is also the Luzin space. At the same time, this
set is a subspace of the topological space ;. Therefore we see that
the Siepinski topological space F; contains the Luzin topological space
E; N X with the same cardinality, which is impossible. The obtained
contradiction proves the proposition. H
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We shall ascertain below that the result of Proposition 2. generally
speaking. does not hold for topological sums of infinite families of
Sierpinsl

Let [2 be the main base set whose cardinality is not cofinal with the
least infinite cardinal number w = wy. We set

T(E)={X CE:card(E\X) < card(E)} U {@}.

It is not difficult to verily that T'([) is a topology in £ and the topo-

K1 Spaces. .

logical space ([2.T(1)) is a Sierpinski space. It is further easy to as-
certain that if card(F) = weqq, then any subset of (£, T(F)), having
the cardinality we, is discrete. Hence it follows that if card(£) = weqy
and the cardinal number we is not measurable (in the broad sense),
then any subset of the space (£, T'(E)). having the cardinality wg, is
a Luzin topological space.

Let us now consider a countable disjoint familiy of sets (Fn)new
where

(Yn)(n € w = card(E,) = wpgr)-

Provide each set F, with the topology T'(E,) defined above and
denote by 2 the space which is the topological sum of the family of
spaces (L2, T([2,))nen. We assert that IV is not a Sierpinski space.
Indeed, each space (£,.1T(L,)) contains a discrete subspace L, with
the cardinality equal to w,. By the well-known result of Ulam the
cardinal number w, is not measurable (in the broad sense). Therefore
L, is a Luzin space. Thus the space F contains the topological sum
L of the countable family (L, ),e. of Luzin spaces. Obviously, L itself
is a Lusin space (we have the general fact by virtue of which the
topological sum of the family of Luzin spaces is a Luzin space if the
cardinality of the set of indices of this family is not measurable in the
broad sense). Finally, it is absolutely clear that

card(L) = card(E) = w,

and thus the topological space I is not a Sierpinski space.
Similar arguments are used to prove

Proposition 3. Let us assume that all cardinal numbers are not mea-
surable in the broad sense (this assumption does not contradict the
standard arioms of the modern sel theory). Then for any infinite car-
dinal number a there exists a family (E:)er of topological spaces such
that

1) eard(]) = u;

2) cach F; is a Sierpinski topological space;

3) the topological sum of the family (E;)ier is not a Sierpinski space.
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On the other hand, we would like to note here that by Proposition
Lif (£:)ier is a family of Sierpinski spaces and card([) is a measurable
(in the broad sense) cardinal number, then the topological sum (£;);e;
too is a Sierpinski space.

Example 1. Let £ be the main base set and ¢ be a filter in E.
Consider the topology Ty on I associated with the filter &. This
topology is defined by the equality

Te={X:Xed}u{o})

It is clear that the topology T'(E) considered above is the particular
case of the topology associated with the filter. Assume that for the
filter ® the following conditions hold:
1) for each element x € £ the set [2\{x} belongs to the filter &;
2) the filter ® is countably complete (wi-complete), i.e., @ is closed
with respect to intersections of arbitrary countable families of its ele-
ments.

Now we can sce that the topological space (F.T4) is not a Luzin
space, since in this situation there exists a two-valued probability con-
tinuous Borel measure on £. Assume also that the cardinality of £
is not measurable in the broad sense. Then the said topological space
(2, Ts) is a Sierpinski space if and only il the relation X NY #* O is
fulfilled for cach set X C £ with card(X) = card(£) and for each set
Yead.

Let now I be a topological space. Assume that E is not a Luzin
space. Then there naturally arises the question: does the space E
contain at least one Sierpinski subspace? It will be shown below that
the answer to this question is negative even in the case when the
cardinality of the space £ is cqual to the first uncountable cardinal
number wy. For this we need one auxiliary assertion.

Lemma. Let w, be an arbitrary uncountable reqular initial or-
der number provided with the standard order topology and X be an
arbitrary unbounded subset of w,. Then there exists an unbounded
nonstationary (in w,) st Y C X.

Proof. The required set Y C X can be readily constructed by the
method of transfinite recursion. Indeed, using the regularity of the
ordinal number w,, it is possible to define by transfinite recursion the
family of sets (Z¢)e<u, satislying the following conditions:

1) for any index & < w, the set Zg is an open bounded interval in
the ordered set w,;

2) the intersection Z¢ N X is not empty for any index € < w,;
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3) for any indices £ < wy and ¢ < w, such that £ < ¢, the right
end-point of the interval Z¢ is strictly less that the left end-point of
the interval Z.

Having constructed the family (7Z¢)e<w, we choose for each ordinal
number € < w,, an element y¢ from the nonempty intersection Zg N.X

and set
Y= U {ne}

{<wa
Now it is not difficult to verify that the set Y™ is the required one,
since it is unbounded and nonstationary in w, and is certainly entirely
contained in the original set X. H

Example 2. Let us consider the first uncountable ordinal number wy
provided with its order topology. Let @ be the filter in the topological
space wy generated by the family of all unbounded closed subsets of
this space. Further, let Ty be the topology in the set wy associated with
the filter ®. Then the topological space (wy, T4) is not a Luzin space.
Indeed, if ¢ is the standard two-valued probability continuons Borel
measure in the space wy. then the domain of definition of the measure ji
(of the usual completion of y) coincides with the Borel g-algebra of the
topological space (wy,Tg). Thus we see that there exist nontrivial o-
finite Borel measures on the space (wy, Tg). Let us ascertain that at the
same time the space (wy, Tp) does not contain any Sierpinski subspace.
Let X be an arbitrary subspace of the space (w. Tg). Without loss of
generality it can be assumed that the cardinality of X is equal to wy.
Then, according to the above lemma, there exists a nonstationary (in
wy) set Y C X with the cardinality also equal to w;. Note now that
the subspace Y of the space X is discrete. Taking into consideration
the fact that by the result of Ulamm the cardinal number w; is not
measurable in the broad sense, we see that Y is a Luzin subspace of
the space X. Finally, we ascertain that the topological space X is not
a Sierpinski space. Therefore our topological space (w1, Ts) does not
contain Seirpinski subspaces.

A similar example can evidently be constructed for an arbitrary un-
countable regular nonmeasurable (in the broad sense) cardinal number
Wa-

For our further consideration we need two simple notions from the
general set theory.

Let £ be a base set and D be a family of subsets of E covering F.
We put

cov(D) = inf{card(D') : D' C D and D' covers L}.
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It is easy to see that the cardinal number cov(D) is an invariant
with respect to bijective mappings. Therefore cov(D) can be regarded
as some cardinal-valued characteristic of the given family D.

Let E be a base set again and D be an arbitrary family of subsets

of £. We put

cofl (D) = inf{card(D") : D' C D and for any set X € D there exists
aset Z € D' such that X C Z}.

The cardinal number cof(D) is also an invariant with respect to
bijective mappings and thercfore can be regarded as another cardinal-
valued characteristic of the given family D. If D is an ideal of subsets
of £ and D' is a subfamily of D such that

(VX)(X € D = (32)(Z € D'&X C Z)),

then we say that D’ is a base of the ideal D. Clearly, this notion is
dual to the well-known notion of a filter base.

We have the following proposition which gives us some sufficient
conditions for the existence, in the topological space E, of a Sierpinski
subspace with the cardinality equal to card(F).

Proposition 4. Let [2 be a topological space. i be a nonzero o-finite
conlinuous Borel measure in E and D(ji) be the countably additive
ideal of subsets of E generaled by all p-mcasure-zcro sets. It is also
assumed that the next two conditions are fulfilled for the ideal D(y):

1) if card(l) < card(E), then the union of any family (X;)ier C
D(y) does not coincide wilh the space E (in other words, the equality
cov(D(p)) = card(E) is true);

2) there exists a base of the ideal D(y) with the cardinality less
than or equal lo the cardinali’y of I (in other words, the incquality
cofl(D(p)) < card(E) is true).

Then the topological space I contains some Sierpinski subspace S

with card(S) = card(E).

Proof. Let w, be the initial ordinal number corresponding to the car-
dinality of the given topological space E. Fix any base of the ideal
D(p) with the cardinality less than or equal to w,. It is obvious that
we can represent this base as a familiy of sets (Zg)ecw,. Now, us-
ing the method of transfinite recursion, let us define the w,-sequence
(S¢)e<wa of clements of the given space . Assume that for an ordinal
number € < w, we have already defined the partial €-sequence (s¢)c<e

0
101945
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of elements of £, Consider the set
( U 7'«’) U ( U{-"(}>v
(<€ (<¢
Since the condition 1) holds, this set does not coincide with the space
. Thercfore there exists an element s¢ € I which does not belong to
the mentioned set. In this manner we shall construct the w,-sequence
(s¢)e<wa and, having done so, set

S= U {se}-
{<wa
It remains for us to verify that the set S is a Sierpinski subspace of
the space /7. Indeed, let X' be an arbitrary subset of S such that

card(X) = card(5) = card(E) = w,.

Then the procedure of the construction of the set S immediately im-
plies that the set .\ is not contained in any of the sets Z¢ (£ < wy).
Thus we have the inequality p*(.X) > 0 where g~ denotes an out-
er measure associated with the given measure p. The latter fact
leads to a conclusion that the topological space X is not a Luzin sub-
space. Therefore the constructed topological space S is the Sierpinski
space. H

One may easily note here that if card(/7) = wy, then the condition
1) in the formulation of Proposition 4 becomes superfluous. The next
simple example, on the other hand, shows that if card(£) = w,, then
this condition plays an essential role.

Example 3. Assume that the relation

21 =y

is fulfilled. Take two disjoint sets Ey and F; such that
card(Ey) = wy, card(E;) = ws.

Identify the set £y with the ordinal number w; and equip £y with
the topology T4 (see Example 2). Further, equip the set 2, with a
discrete topology. Denote by [ the topological sum of two spaces £y
and F,. Now it is not difficult to verily that the topological space I
satisfies the following conditions:

a) card(E) = wo;

b) there exists a probability continuous Borel measure ¢ in the space
E such that cof(D(y)) < wy;

¢) the space I does not contain any Sierpinski subspace.
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Example 4. Let w, be an arbitrary uncountable regular initial or-
dinal number not measurable in the broad sense. Equip w, with its
order topology and denote by @ the filter in w, generated by the fam-
ily of all closed unbounded subsets of w,. Turther, set £ = w, and
equip E with the topology Te. Then the topological space E satisfies
the following conditions:

a) card(E) = wy;

b) there exists a probability continuous Borel measure p in the space
E such that cov(D(p)) = wy;

¢) the space E does not contain any Sierpinski subspace.

Thus Example 4 shows us that the condition 2) in the formulation
of Proposition 4 also plays an essential role and cannot be omitted.

Example 5. Let F be a metric space with the cardinality continuum
2¥. It is clear that if the cardinality continuum is measurable in the
broad sense, then any subspace X of E with card(X) = card(E) is a
Sierpinski topological space (in particular, E is not a Luzin topolog-
ical space). Now let us consider some situation when the cardinality
continuum is not measurable in the broad sense. Assume that Mar-
tin’s axiom holds and that the siven metric space E is not a Luzin
space. Then one can establish that there always exists a subset S of
E satisfying the next two conditions:

&) card(S) = card(E) = 2;

b) S is a Sierpinski subset of the space E.

The existence of such a space S C FE is proved in [3]. Note that
the proof is essentially based on the following well-known fact: ev-
ery o-finite Borel measure defined in the space E is concentrated on
some separable subspace of E (in other words, for every o-finite Borel
meas. ‘e given in the space E there exists a separable support in E).

Example 6. Let E be again a metric space with the cardinality con-
tinuum 2¥. Assume that the continuum hypothesis holds and that £
is not a first category space. Then there always exists a subset L of
E satisfying the next two conditions:

a) card(L) = card(E) = 2¥;

b) L is a Luzin subspace of the space £.
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The existence of such a set L C E is also proved in [3]. To establish
this result we need to consider two cases. We begin by assuming that
the space E is not separable. Then there exists a discrete set L C E
such that

card(L) = wny = 2.

As we know, the least uncountable cardinal number w; is not mea-
surable in the broad sense. Therefore the subspace L of F is a Luzin
topological space with the cardinality continunm. Now assume £ to
be a separable metric space. In that case every o-finite continuous
Borel measure defined in the space I is concentrated on a first cate-
gory subset of /2. Using the classical transfinite construction due to
Luzin (see. for instance. [1]). we can define a set L C F with the
cardinality continuum such that we shall have the inequality

card(LNX) <w

for each first category set X C E.

Now it is not difficult to verify that such a set L is a Luzin subspace
of our space E.

From the foregoing arguments it also follows that any nonseparable
metric space E contains an uncountable Luzin subspace.

Finally. let us formulate one unsolved problem concerning Sierpinski
topological spaces.

Problem. Give a characterization of Sierpinski spaces in purely
topological terms.

Remark. In the literature the term “Luzin topological space” is
used in other senses as well. For example, Luzin topological spaces
in the sense of N. Bourbaki coincide with Borel subsets of complete
separable metric spaces while in the modern set-theoretical topolo-
gy Luzin topological spaces are uncountable Hausdorff spaces which
contain neither isolated points nor uncountable first category subsets.
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ON SOME PROPERTIES OF SOLUTIONS OF SECOND
ORDER LINEAR FUNCTIONAL DIFFERENTIAL
EQUATIONS

i. KIGURADZE

ABSTRACT. The properties of solutions of the equation u”(1) =
pilt)u(ri()+ pa(t)u'(72(1)) are investigated where p; © [a, 4+~ [—
R (i = 1,2) are locally summable functions, 7, : [a,4o<[— R
irable function and 7 : [a,+~[— R is a nondecreas-

IS A mea

ing locally absolutely continuous one. Moreover, (1) >ti=
L2), pi(t) > 0, p3(t) € (4 = )ma(Opi(t), € = const > 0 and
j:’ Q(,—](I} = U)pi(t)dt < 4. In particular, it is proved that so-
lutions whose derivatives are square integrable on [a, 4+c[ form a
one-dimensional line

- space and for any such solution to vanish
ry and sufficient that [T~ tp;(t)dl = +0.

at infinity it is nec

&IB0T3D. 298 33emgenes u”(8) = pr(Ou(ry(t))+ pali)u’ (7o(1)) 2%6-
remgbob admbabgdas wgabybado. bagagy pi ¢ [0+l It (i = 1,2)
o ,«wﬁon }(gdda_)(m ot [a,+x[— R '"&\mRQQn. bogoe 7y
[a, +oc[— R comprmgfiag Bmeonggioe 7fanse g0 sogmpboee
@abdgogdeo. sborb () > 1 (i =1.2). py(t)20. pi(t) < (4 -
)TOp1(1). =const >0 @o [T (r (1) = )py (1)dt < +. 396
g beBgbyfos. éod oAilibgbo. e GodogBaein gaice-
00! SIN0OENY |, T o, 436006 A®0 b Tiemdn 0
Gogon godgdoeos [ oz Poosh gl endogmgonss
§éxgng Logégsghe \mmr, gogme dbgemo odmbaklbbel ﬂhmqgmwo
d‘vmﬁogm%nbomanb S Go(::q%gmn ©o lmdg.%m 0o, md f tpy(t)dt =

Consider the differential equation

W) = pr(u(m(t)) + pa( ) (ma(1)), (1)

where p; ¢ [a.4o0[— R (i = 1,2) are locally summable functions,
7t [a, +00[— R (i = 1,2) are measurable functions and

Ti(t) =2t for t2a (1=1,2). (2)

1991 Mathematics Subject Classification. 34K15.



N2

546 I. KIGURADZE
We say that a solution u of the equation (1) is a Nnescr-fype solution
if it satisfies the inequality
(u(t) <0 for (> aq
for some ag € [a,4+00[. A set of such solutions is denoted by K. By
W we denote a space of solutions of (1) that satisfy

+0

/ u”*(1)dt < +oo.

The results of [1, 2] imply that if
pt)>0 for t>a
and the condition
+oo
@) m=t (=12, [Ind <+,

a

or
+00
(i) pa(t) <0, for £ >0 /.vp.(,«)(/,q < ool
+
[ == lmt)lds < oo,
Tz< )

a

holds, then W' D N and A is a one-dimensional lincar space. The case
when the conditions (i) and (i) are violated, the matter of dimension of
K and 117 and their interconnection has actually remained unstudiced.
An attempt is made in this note to fill up this gap to a certain extent.

Theorem 1. Let 7i(1) >t (i = 1,2), pi(t) >0 fort > a,

+oo
/ [Tl(l) - []111([)(/1 < +o0, (3)

and lct 7, be a nondecrcasing locally absolutcly continuous function
salisfying
Pt S U =e)r(Op(t) for t>a, ()
where ¢ = const > 0. Then
WcCcK, dmW=1. (5)

Before proceeding to the proof of the theorem we shall give two
auxiliary statements.

2~

101945



SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS 547

Lemuna 1. Let the conditions of Theorem 1 be fulfilled and let ay €
[a,+o0[ be large cnough for the cquality

+00

/ [‘r] s) — ~]1)1 )ds < 462, (6)

ag

where § = }[2—(445)‘/2], to hold. Then any solution u of the equation
(1) satisfies

(5/ W (s) 4 pu(s)u(s)]ds < o' (@)u(x) — o' (Hu(t) +
(@) (7)
+(1=96) / u*(s)ds for ap<t<a < +oo,
where 7(x) = ess S”Paogrgr[ma-\'lsiﬁl mi(x)]. Moreover, if u € W, then

w(Du(t) < =6 { (s) 4+ pi(s)u’(s)]ds for t>ag (8

._\g

(lll(l
P2
/ (s—1) s) 4+ pr(s)u®(s)]ds < uP(t) for t>ae.  (9)

Proof. Let u be any solution of the equation (1). Then

¢
—u" (D) u(t) + pr(Du?(t) = py(t)u(t) / u'(s)ds —
Ti(t)

=p2()u'(7a(1))u(t).

Integrating this equality from ¢ to x, we obtain

u'(tu(t) — ' (x)u(x) +

o~

{uﬂ(s) + pi(s)u?(s))ds =

:/[[;l(s)u(s) / u'(y)(ly](/s—/pz(s)u'(Tg(s))u(s)(ls.

m1(s)
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However, in view of (1) and (6),

][11,(.\)11(&] / u/(y)(/y]([.s = 5/11,(5)112(5)([s+
t

t ()

Sﬁ/]()u( </~+6/u s)ds for ap <t <x <400
t

and
—/1)2(5)11'(1'2(.v‘,)u(,s)(/s <
t
7 1/2 ) 1/2
<21 —25)/ |:])|(_.'~‘]llz(,\)} {,—;(x)tt' (Tz(\s”] ds <
t
<(1- 2(‘,)/]71(3)1!2(3)4[‘: + (1 —26) /T;(s)u'z(rz(s))(/s <
t i
()
< (1-28) /11, u? s)ds + (1 = 28) /u s)ds
t
for ap<t<a<+oo.
Therefore

' (Hu(t) — o' (x)ulx) + / [u'z(.x) + pu(s)ud(s)]ds <

171</ s) + pi(s)u (.s)](/:a+
t
(x)
+(1—=9§) / W(s)ds for ay<t<a< 400

and thus the inequality (7) holds.
Suppose now that u € . Then, as one can easily verify,

liminf o' (2)u(x)| = 0.
T—too
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So (7) immediately implies (8). Integrating both sides of (8) from ¢ to
+oc, we obtain the estimate (9). W

Lemma 2. Let the conditions of Lemma 1 be fulfilled and there exist
b €lag, +oc| ~uch that
p(t)=0 Jor tZ2 b (i=1,2). (10)
Then for any ¢ € R there exists a unique solulion of the cquation (1)
salisfying
u(ag) = ¢, W(t)y=0 for t>b. a1
Proof. Tn view of (2) and (10). for any a € R the equation (1) has a
unique solution ¢(-: a) satisfving
v(t;a)=a lor b<t< +o0.
Moreover,
v(t; a) =vow(t;l).
On the other hand, by Lemma 1 the function v(:1) : [ag. +oo[—
I? is non increasing and v(ag:1) > 1. Therefore the function u(-) =
ml‘(llu; -) is a unique solution of (1), (11). &
Proof of Theorem 1. First of all we shall prove that for any ¢ € R the
equation (1) has at least one solution satisfying
+oe
u(ag) = ¢, / u'l(s)(/.x < +o0. (12)

ag

For any natural & put

( 5 for o < < o .
I’ik(,)={p,(/) for ap<t<ap+k Tt (13)

0 for t>a9+k
According to Lemma 2, for any & the equation
u’(1) = pue(Ou(Ti(t)) + par()u'(r2(2))

has a unique solution uy satisfying

up(ag) = ¢, wi(t)=0 for {>a+ k. (14)
On the other hand, by Lemma 1
+0
lus(D] < lel for t> a0, 28 [ (s—aohu'd()ds < (15)
J

ag
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Taking (2) and (13)-(15) into account, it is easy to show that the
o

+oo : .
sequences (uk) and (u’k) are uniformly bounded and equicon-

(=1

tinuous on each closed subinterval of [ag.+oc[. Therefore, by the

A +0
Arzela-Ascoli lemma, we can choose a subsequence (ukm) L out

m=
of (uk) :r: which is uniformly convergent alongside with (“2»",)::]
on each closed subinterval of [a,4oc[. By (13)-(15) the function
u(t) = limpy—qo up,, (1) for t > a is a solution of the problem (1),
(12):

We have thus proved that dimW > 1. On the other hand, by
Lemma 1 any solution u € W satisfies (8) and is therefore a Kneser-
type solution. To complete the proof it remains only to show that
dim W < 1, i.e., that the problem (1), (12) has at most one solution
for any ¢ € R. Let u; and uy be two artbitrary solutions of this
problem and

uo(t) = ua(t) — up(t).

Since ug € W and ug(ao) = 0, by Lemma 1

+00

2 /(s —ap)u'2(s)ds = 0 and uo(t) =0 for ¢ > ao,
ao
e, up(l) = ug(t). M
Remark 1. The condition (4) of Theorem 1 cannot be replaced by

the condition

pa(t) < (4 +e)m(t)p(t) for t>a. (16)
Indeed, consider the equation
u(t) = ;u([)—lu'(l) (17)
(44 ¢)t2 t ’

satisfying all conditions of Theorem 1 except (4), instead of which the
condition (16) is fulfilled. On the other hand, the equation (17) has
the solutions

where

A== ey =1,

Clearly, u; € W (2 = 1,2). Therefore in our case instead of (5) we
have
KcWw, dmW =2.
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Corollary 1. Let the conditions of Theorem 1 be fulfilled. Lel, more-
over,
p21) <0 for t>a. (18)
Then
K =1 dimK =1 (19)

Proof. Let w € K. Then by virtue of (18) and the non-negativity of
P there exists {y € [a, +oc[ such that
u(Hu'(8) <0, W"(Hu(t) >0 for t > 1.

Hence

+

/ u'z(s)ds < Ju(to)u'(to)]-

to
Therefore u € 1. Thus we have proved that W > K. This fact,
together with (3), implies (19). ®
A solution u of the equation (1) will be called vanishing at infinity if

iJjEsz1(I) =10, (20)

Theorem 2. Lel the conditions of Theorem 1 be fulfilled. Then for
any solution w € W lo vanish at infinity it is necessary and sufficient
that

+09

/ spi(s)ds = 4o0. (21)

a
Proof. Let w € W. Then by Lemma 1 u?(t) > 5 for t > ag, where
7 = limy_ 400 u?(t), and f:“o\(s — ao)pi(s)ud(s)ds < uP(ag)/26. Hence
it follows that (21) implies n = 0, i.e., u is a vanishing solution at
infnity.

To complete the prool it is enough to establish that if

+50
/ spi(s)ds < +00, (22)
then any nontrivial solution v € W tends to a nonzero limit as ¢t —
+oc. Let us assume the contrary: the equation (1) has a nontrivial
| solution w € 11" vanishing at infinity. Then by Lemma 1

(' (t) <0, p(t) < np*ud(t) for 1> ao, (23)
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where

p(t) =

1

(s——l,)[ (s) + pi(s)u®(s )}1/&. r]:('_’(‘,)_}A

On the other hand. by (4). (20) and (22) we have

s = 1) [ ()u(ri()) + pals)ud (ra(s)] ds| <

+0

< { /(~v1 Jpi(s 1/] [/ pi(=) u?( 1(,&))(/:;]}/2-1—
i
S

(s =) '1/7[7'( ]I/l[u (2(s)|ds <

“\

+oc 1/2
G i St
g[/( Fipi(s [{/ Dpr(s)u(m( \)/J +
+0 1/2p 4+ 1|/z
r2l (=t w/l (s = O7(s)u (o))
{,/ : i Lj/ - 2 J
for (> a

Hence by (2) and (23) we find

|, vl/Z +0 1/2
Ju(t)] < { / s —1)pi (s )(’ { s—1)p(s)u (.w)z/x‘l +
t

6 ‘\

= 37;{ /(~ — )‘,)Izl(ﬁj(h] |u(t)] for ¢ >aqp

and therefore u(t) = 0 for ¢ > a;, where a; is a sufficiently large

number. By virtue of (2) the last equality implies

u(t) =0 for ¢>a.

But this is impossible, since by our assumption u is a nontrivial solu-
tion. The obtained contradiction proves the theorem. @

2]
"101945
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TWO-WEIGHTED ESTIMATES FOR SOME INTEGRAL
TRANSFORMS IN THE LEBESGUE SPACES WITH MIXED
NORM AND IMBEDDING THEOREMS

V.KOKILASHVILI

ABSTRACT. Two-weighted inequalities are proved for anisotropic
potentials. These estimates are used to obtain the refinements
of the well-known imbedding theorems in the scale of weighted
Lebesgue spaces.

F{J%OTUBO 6:36m3B0 ©ad®) go3dmmos @@fmbobo mEmemmdnda bo-
nE)Fdgmo dmg, %oﬁaanlmmgnb Qﬂagﬁnb bogh397880 Bg@gmeme
9600, o3 'HO(B 980l boggmdggensy docgdammns (36mdogmo hoe-

Lnanl.) ogmtgdgdel @%ﬁbmm 30ga0b feobooo bagh3gadel bjoemso.

Two-weighted inequalities are obtained for anisotropic potentials in
Lebesgue spaces with mixed norm. These estimates are used to prove
imbedding theorems for different metrics and different dimensions for
weighted spaces of anisotropic Bessel potentials.

Nonweighted cases were previously treated in [1-3]. One-weighted
estimates for isotropic Bessel potentials can be found in [4].

1. A measurable almost everywhere positive function o : R! — R!

will be called a weight function. Let w = (wy, w0, ... ,w,) be a vector-
function where w; (i = 1.2,...,n) is a weight function. By defi-
nition a measurable function f(x) = f(x1,22,...,2,) given on the

n-dimensional space R™ belongs to L2, p=(p1,p2,...,pa), 1 < pi < o0
(1=1,2,...,n), it the norm

11l =

1

(7 (@y)dx .(f wh? (xg)dasy. . (7 f(ar)wf;"(.z',l)(l.z',) B ) . ) ;%) =

o0 -0 -0

is finite.
We shall introduce a class of pairs of weight functions.

1991 Mathematics Subject Classification. 42B25, 46E30.
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For a given number r, 1 < r < oo, we write 1’ = 5.

Definition 1. A pair of weight [unctions (o0.0) given on R! will be
said to belong to the class (557, 0 < 8 < 1,1 <r < s < oo, il the

conditions

S”l)(/gﬁ(”d,)%(/m:—i_;;_(i)”—)ﬁﬁdl)% 00y (1)
1

El

sup (}/a_"l(l)([l)%’(/ m-%)?rﬂ)% el o)) (1:2)

B
are fulfilled, where the supremum is taken over all bounded one-
dimensional intervals 1, with centre and length, £7 and |/ respectively.

In the sequel we shall proceed from

Theorem A [5-7). The fractional inlegral

L) = / |T'—/_(,—T|%7"T‘ 0<v<l,

generales a conlinuous opcrator from LI(RY) into LZ(RI) if and only

if (0,0) € (r‘T'T."
Let numbersa; > 0(j =1,2,..., n) be given. For a=(r1, vz, ..., )

el = (S 11’

=1

we set

2000 n) we obtain an usual

It is obvious that for ¢; =1 (j =1
Iuclidian distance.
Theorem 1. Let w = (w0y,way .. s10,). v = (V102,000 s v,), where
i) arc weight funclions given on R™. We set

i and v (2= 1,250

ki@ = | ll’f%//

where
n
=3 a;(l—7), 0<v <1 (= 1,2, 5 s}y
=1
9P (= 152,000 ,n), then there

If1<pi<q<oo, (viyw) € GIE (1 =1,2,
cxisls a posilive number ¢ such that the incqualily

WK Mg < el
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holds for any [ € L.

The proof of Theorem 1 will be based on several lemmas. The first

lemma is a weighted analogue of the well-known Iardy- Littlewood

incquality (see [S], Theorem 382).

Lemma 1. Let (0,0) € G771 <r <s<oo,0<y<1. Then
there cxists a constant ¢ > 0, such that the incquality

l/ /| (Iul:/
T

holds for any arbitrary ¢ € LL(RY) and v € II/O(RI).

< el vl (1.3)

Proof. By virtue of the Hélder inequality we have
'/ /M(h-du <
oS o=y
(/(/'ll/[/l/) 1 I)%
¢ dz )’ .
: k—yi=) @

. N r!,s'
From the condition (0,0) € (27, readily follows that (5i) ele 2
Using Theorem A we obtain the estimate

(=]

)/ / ‘17’/‘ _) dady

Bellow we shall set o = (u A llj ..... lL) for v = (v, ve,... ,00)

< elllles - 10l

Lemma 2. Let | < p; < qi < oc, (viow;) € G120 < < 1. Then
there cxists a posilive constant ¢ such that

' (')Hr/)

e ] < clillg Il

Jor arbitrary ¢ € L2 (R") and > € LZ,'(R”).
Proof. \We shall apply the reduction technique to the one-dimensional
case.

Let 2! = (@125« 5 Camt)5 ¥ = (s Y2y o+ s¥n=1) and

n-1

W= a(l-7), o

Facl

(035085 et}
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It readily follows that
le =yl = le =yl e =yl 2 1o’ = y/lilen = yal T

Therefore by Lemma 1 we obtain

f//yq ]

S/ / da'dy' //|1n QUL j)|dl‘nrlyn5

Rn-1 Rn=1 e’ — y’l“ = Y[t

FYH(y'
<e —-—.%,—)(lr'(ly',
R—-1En—1 o' —y |a’

F(a') = (/ |+‘(17)I”"mf,"(ﬂ'n)d.rn)PL",
R!
iy = 1o )

Further reduction leads us to the proof of Lemma 2. B

where

Proof of Theorem 1. By the property of the norm and also by Lemma
2 we have
/Af (2)dx|,

where the least upper bound is ldl\(‘l\ over all functions g for which

lollyy <10 2= (e so)-

vy’ vy’ Vn

1K fllg = sup

Next, by Lemma 2 we have

I//———f L 1”) dx dy

EnEn

<l flleg - Nglly < ellfllee.-

Theorem 2. Let 1 < m < n, vy = (v1,02,..+,Um), Wy =
(w1, Wy v v W), W = (Wi, Wayes ¢ 3 Wiy Lyon ey 1), L < Pp < s <00
(i=1,2,...,m), ¢+ = (1,42, sqm). P+ = (D1 D3y ieiw 5 D L S
pi< 00 (1 =m + Lysee 5n)s

Neaxt we sct

;1—2(1](1——7, )+ Z (1.4

j=m+1 1’]
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where a; >0 Dewy; <1 ('* 1520 selusiiy)
If (o) € GiEZe (i= 1,2 ,m), then there crisls a constant

¢ > 0 such that for any [ € L”(R”) and arbitrary (a9 ;.. .., 20) the
function

J()

ozl

h(z) = dy

belongs to the space LZ:(R“) and the inequality holds
e < el lse,
where the constant ¢ is independent of f.
The prool of Theorem 2 is based on the following

Lemma 3. Let the conditions of Theorem 2 be fulfilled. If o =
(%,i % ,UL), ¢ = (4145 oq,), then there cxists a constant

¢ > 0 such that for all f:R* = R" and g : R™ — R! we have
v)f(y) .
\ o / = ‘ < ez Mol gy gy (15)

EmEn

"

Proof.  Let y' = (y1,92,-- s ¥m)s ¥ = (Umttseee s¥n)y Py =
(P1y P2y s P )s P= = (Pmats e 2 Pa)s Do = (Drgrs oo 5 D0)-

Obviously
’// ]1_! (/1(/1/
</‘g </( / L{f!i)—i!;/f{;)(/y’)z/.v. (1.6)

Em Ba-m

By virtue of the Hélder inequality

g 1, -
LN < oo aoem - e = w17 (1.7)

J ~(R7=);
grim

We introduce some notation:
o) = 11 - @n-m),
pi(e,y') = [He =l

m

(ZP —w~)

1]
101935
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Let us prove that there exists a positive number ¢; such that

e
e y) < ru'/'( djs ‘)- (1.8)
We have
L =5
T* e = 1) ; i =
H( 3 ,X,,:H i L'= (Rn-m)
T+ U ) “ . .
”( J%;, ! L= (Rn-m)

[he change of the variable y; = Tt; in the latter expression leads

to the equality

f o n b
ey =1 [0+ = ow) )
j=m+1 L= Ry
Now it is obvious that
£ ~F ey FAT w10

2 NS & 2
1+ X ) =+ = wE)”
J=m+1

j=mt1
n = ~,t++| 0 e
=10 (1+ > ) < I (+1l)
J=m+1 J=m41 J=m+1
where ¢ > 0.
Therefore
n 2y
e S )L,
”( j:%;l . L= (nmmy
5 2.\ =1(%+e)
<IETEE g) ; -
J=m ( ) L'~ (Rn=m)
On the other hand,
It 1t
& - < & - < 00.
N T
B (L) R )
[hus we have proved the estimate (1.8). It implies
i 2\=E 7 es(l-)
el < (Xl —ul®) <
S

(1.9)

m

<e Tl =yl
J=1
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TWO-WEIGHTED ESTIMATES FOR INTEGRAL TRANSFORMS BGLI

Using the generalized Hélder inequality and Lemma 1 with (1.6),
(1.7), (1.8) and (1.9) we obtain:

92/ (0) (@)l
L A T R T
Iczrl / v =yl ]:‘ [ // T, [z — i1 A{(lz(/;/A

EmEm
< allely’ ”1”+ (Rm) ”’/”1: (BRmy"
This implies that
’/d.z'/wdu
o s |z — y|!

Proof of Theorem 2. Using the standard arguments, the validity of
Theorem 2 readily follows from Lemma 3. W

<C!|””I” H’/“l‘” (Rm)* L

2. In this paragraph weshall prove the imbedding theorems for differ-
ent metrics and different dimensions for weighted spaces of anisotropic
Bessel potentials.

Definition 2 (see[2]). Let r = (ry,r2,...,7), p = (1,pa,... 2 Pn)s
;>0 () =1,2,...,n). It will be said that f e Ler(R™) if

= /G-(<I'~y)!/(!/)f/y~,

where (7, is the anisotropic Bessel-Macdonald kernel and g g € L2 (R™).
By the definition,

I llezr = Ngllrs,-

The kernel ¢, is characterized by its Fourier transform as follows
(sce[2])

(2m)FGa(N) = [1 + * (V)7
where the function ¢(A) is determined by the equation
Y

'Y

o5 o0

L j=1

The kernel G obeys, along each j - the coordinate direction, the
estimates

1Go(2)] < efay (i 1), 21)

Now we shall prove the imbedding theorem of different metrics.
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Theorem 3. Lel 1< pj < q; <00, (viowi) € GED = 1,2,...,n).

Put .,
=17
and
o=sr, 1T=(r1,Ta. . Ta)

Then cach function [ € L7 (R™) belongs to the space L1¢(R") and

the incqualily
N pge < ellflezr

holds, where the constant ¢ is indepe ndant of f.
Proof. We have
f(e) = /("g(-l'*.'/)/l(!/)t/!/-

Bn

where

= /(,-',(14)(-1' —y)gly)dy

and g € L2 (R").
Now it will be shown that h € LI(R™). Due to (2.1) we have
l(' - ,() l < “hi =iy Z)[Z‘.’:l v.u'j«»“‘]‘

or
|Gram)] < claif ™ T 5

Let a; = L and
=

"y aill=v) L al=w)
mas |72 = Lzl :
As can be t'éml\' verified,
2y BED, et o
() = <kl A
Therefore
|G- )| € el (2.2)
where
n
= Zuj(l -
g=1
Hence
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Applying Theorem 1, we obtain

4llg < esllf]

LY

which implies

Using Theorem 2 one may prove an imbedding theorem of different
dimensions in a similar manner.

Theorem 4. Let 1 < p; < o0 (1 = 1,2
(i=1,2,....m), 1 € m<u. It isalso a
Oy <l (0 = 152,000 )

If

v 5 M)p L < Py < ig; < 00
sumed that (vi,w;) € GI

m n
S
=17 j=mt1 TiPi

(2.3)

then for an arbitrary function f from the space LU (R™) the function

o 0 (]
Flay 9 w05 57 ) = I T508 s By sl )

belongs to the space LT¢(R™) and the incquality

I£ “L’,‘ ¢(R™) < (‘||./||L',::'(R")
holds where the constant ¢ is independent of f.
Proof. Tn the case under consideration the kernel (i), admits the
estimate

|Gy ()] < el 3"
where ¢ = (dy, Uz, - 3 0n)5 a5 = r, and
)

m n 1

}l*Zl+ Z = (2.4)

j=m+1 Tilj

Hence we can apply Theorem 2. The rest of the proof is as for the
preceding theorem. W
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LINEAR DYNAMICAL SYSTEMS OF HIGHER GENUS

V. LOMADZE

ABSTRACT. A class of linear systems which after ordinary linear
systems are in a certain sense the simplest ones, is associated with
every algebraic function field. From the standpoint developed in
the paper ordinary linear systems are associated with the rational
function field.

COBIRD.  oompPen bz ymgoen ggmenb goggBeriody-
mod gemdbo Faggoge bnb@ggaanb\x Gmdemgdoy gofyggame Sttoo

qofgoggins RggmemgBogo Gégoge bab@gdgdls Spdegy  6B8émaln

3B gotgbamo ogebsbiobob dobgoqun gb 0B e G-

sagbgh Gogorbar® qabigeone goredh gapFetgbar fégrg

ol

§ 0. INTRODUCTION.

As is well known, there is a close relationship between linear sys-
tems and the rational function field. The subject of the paper is to
study new linear systems which are closely connected with arbitrary
algebraic function fields.

The idea of introducing linear systems of "higher genus” is due to
R.Hermann [7]. He tries to describe them in terms of linear spaces of
infinite dimension. Our approach is different and uses vector bundles
(of finite rank) over algebraic function fields.

In what follows we shall assume that the reader is familiar with
the elementary concepts of commutative algebra such as a discrete
valuation, a Dedekind domain, a maximal ideal, an exact sequence
of modules and a localization. In the appendix we give all necessary
concepts and facts from the theory of algebraic function fields.

Throughout the paper, k will denote a ground field, and m and p
input and output numbers, respectively. We fix once and for all:

an algebraic function field R over k;

1991 Mathematics Subject Classification. 93A99, 93B05, 93B07, 93B25, 93B55.
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566 V. LOMADZE

a discrete valuation v of R trivial on k and such that its residue
field coincides with A;

a function s such that v(s) = —1.

The simplest example (%) is given by the following data:

R = k(z) where z is an indeterminate;

v = discrete valuation determined by the formula v(f/g)=degg —
deg fif fog € k[z], g # 05

8=z

Let X denote the set of all places of R. Recall that each place
gives a discrete valuation ord, of R trivial on k, and that this cor-
respondence is bijective. Denote by oo the place corresponding to v
and call it the infinite place. Let O denote the standard vector bundle
over R. For any divisor D the associated vector bundle is denoted
by O(D). For each integer n let us write O(n) instead of O(noo).
Let A denote the ring of functions which are regular outside from co.
This is a Dedekind domain. Its maximal ideals are in the one-to-one
correspondence with places distinct from co. Finally, let K denote the
divisor of the differential ds and ¢ the genus of R.

We define a linear system over (R, v, s) as a quintuple (V, €.0, B, (")
consisting of a linear space V over k, a vector bundle € over R, a
morphism 0 : O @ V — € and linear maps B : k™ — H°E(-1),
C :V — kP. 1t is required that the following conditions hold:

(1) H'E(K) = 0;

(2) 0 induces a bijective linear map V' — &(o0);

(3) the canonical map HOO(K) ® V @& H°O(K)™ — HPE(K) is
surjective.

It is the goal of the paper to show that this definition should lead
to an interesting theory.

Let us see what linear systems are in the example (). We have:
K = =200, H°O(=2) = H'O = 0. So the conditions (1) and (3)
can he rewritten as H'€(—=2) = 0 and H°E(—2) = 0, respectively.
Vector bundles with the above properties and linear spaces (of finite
dimension) are made equivalent by the functors & — H°E(—1) and
W — O(1) ® W. Next, giving a morphism 0: 0@V — O(1) @ W
is equivalent to giving a pair of linear maps I, A : V — W. It
follows that in the case of (x) a linear system can be described in
terms of linear algebra, namely, as a sextuple (V, W, E, A, B, (') where
V and W are finite-dimensional linear spaces, £ : V — W is a
bijective linear map and A: V — W, B: k™ — W, C:V — kP
are arbitrary linear maps. It is easily seen that such sextuples are
equivalent to ordinary linear systems. (The equivalence is established
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by

(V.W,AE,B,C) — (V,ET'A,E7'B,C).)
Thus linear systems associated with (x) and ordinary linear systems
are the same thing.

The paper is organized as follows.

In §1 we define controllability, observability, transfer functions and
Martin-Hermann sheaves. Here we also introduce a category ¥ whose
objects are triples (F, D, N) consisting of a coherent sheaf F generated
by global sections, a morphism D : O™ — F such that D(co) :
k™ — F(o0) is a bijection and a morphism N : O — F such that
N(oo) : k? — F(o0) is zero.

In §2 we prove that the category of linear systems is equivalent
to the opposite category of . This means that a linear system can
be defined as an object of ¥.' From this we casily derive Kalman’s
theorem on realization.

In §3 we define a feedback equivalence and prove the Martin-Her-
mann theorem which says that two linear systems are feedback equiva-
lent if and only if their Martin-Hermann sheaves are isomorphic. Then
we discuss the pole-placement theorem. Unfortunately, we prove it for
one input linear systems only.

§ 1. LINEAR SYSTEMS

In this section we do not impose the third condition on linear
systems.  So by a linear system here we shall mean a quintuple
(V.€.0, B.C) where V is a linear space, £ is an effective vector bundle
such that H'E(K) = 0, 0 is a morphism of @ @ V into & such that
the linear map 0(o0) : V. — &(o0) is bijective, B is a linear map
k™ — H°E(—1) and C is a linear map V — k.

1. Let 0 = (V,&,0, B,C) be a linear system.

Definition. We define the rank of o as the rank of £ or, what is the
same, as the dimension of V. We define the McMillan degree of o as
the degree of £.

Definition. The characteristic sheaf of o is defined to be the cokernel
of 0.

If C denotes the characteristic sheaf of o, then, by definition, one
has an exact sequence

0— 0V —E-—C—0. (1)

!Such a definition was in fact the starting point of the paper. One immediately
comes to it through Corollary 4 of Theorem 1 from [10].
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Definition. The state sheaf of o is defined to be C(K), and the pole
sheaf of o is defined to be Ext'(C,0).

Observe that to give a lincar map k™ — H°E(—1) is to give a
morphism O™ — &, which induces a zero map on the reduced stalks
at infinity. (This follows from the exact sequence 0 — HE(—1) —
H°E — E(c0).) Likewise, to give a linear map V — k? is to give
a morphism O @ V. — OP. Tor this reason we shall use the same
letters B and ' for the corresponding morphisms.

One defines morphisms of lincar systems in the obvious way.

2. Let 0 = (V,&,0. B,C) be a linear system.

Definition. If 2 is a finite place, then we say that
(a) o is reachable at x if
tk[0(2) B(z)] = dimV,
i.e. if the morphism
[6B}:0@VaO™ — €&
is surjective at x;
(b) o is observable at x if

rk [ 0((}) ] =dimV,

i.e. if the morphism
9 e »
c O0QV —EQO
is left invertible at w.

Because 0 is bijective at one place, namely at infinity, it should be
bijective at all but finitely many places. This implies, in particular,
that every linear system is reachable (observable) at all but finitely
many places.

For each N > 0 put

Q(=N) = H°O(K + (N + 2)0).
We then have a composition series
H°O(K) C 0(0) CQ-1) C-2) C -

Let
Q = UQ(=N).
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€2 consists of the sections of O(K) over the affine open set X — {co},
and therefore, is a projective A-module of rank 1. All successive quo-
tients in the above series are one dimensional linear spaces.
Example. For (x) we have: H°O(K) =0 and
Q(=N) = {the space of polynomials in s of degree < N}
Therefore Q = k[s].
Set
I'=R/Q.
This is an injective A-module. We have
R/H°O(K) 2 R/D(0) D R/Q(-1) D R/Q(=2)---
and I' = NR/Q(=N).

Following R.Kalman we call Q™ the input module and I'” the output
module.

Now let C, S and P denote the characteristic, the state and the
pole sheaves of o, respectively. These three sheaves may be regarded
as A-modules of finite length because their supports do not contain
0.

Tensoring the morphism [0 B] by O(K), we obtain a morphism
O(N) @V @& O(K) — E(K). This gives a morphism O™(K) — S
and hence a homomorphism of A-modules

I(o): Q™ — S.
O(K)

Further, dualizing [ C ], we obtain a morphism £* @ 0P —
O@V*. This gives a morphism O? — P and hence a homomorphism
of A-modules A? — P. Applying now the functor Homy(-,T), we
get a homomorphism

O(0): S — IP.

We call /(o) the input homomorphism and O() the output homo-

morphism of o.

Proposition 1. Let o be as above and x be a finite place. Then
(a) o is reachable at x if and only if (o) is surjective at x.
(b) o is observable at x if and only if O(o) is injective at x.

Proof. (a) To say that I(o) is surjective at  is equivalent to saying
that the morphism O™ — C is surjective at 2. The assertion follows
now from the cdmmutative diagram
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0 —0,QV—&E—+C.—— 0

[

.
o;

having an exact row.

(b) o is observable at 2 if and only if the morphism [0* C™] is sur-
jective at @. From this, as above, it follows that a necessary and
sufficient condition for o to be observable at x is that the homomor-
phism O — P, be surjective. Since P, is an O,-module of finite
length, this homomorphism gives rise to a homomorphism Of — P,
where " denotes the adic completion. Moreover. the surjectivity of the
first one is equivalent to that of the second one. Now applying the
functor Hom(-, R/Q,.). we complete the proof. (Recall that the above
functor is exact, and by the local duality

Hom(P,, R/Q,) =S, and Hom(R/Q.,R/Q,) = Ol
See [5].) ®

3. Let us call a function f € R strictly proper if ord.(f) > 0.

Definition. A transfer function is a (p x m)-matrix whose entries
are strictly proper functions.

A transfer function may be identified with a homomorphism O —
Or, which takes values in 1OZ,.

Let o = (V.£,0,B,C) be a lincar system. We have a sequence of
O..-homomorphisms

B gt 2 - (o}
O —— € — 0,0V — 0.

Since B(oo) : k™ — &(00) is zero, the composed linear map

B(s)

o B9, gy O &

V —— k7

is also zero. This implies that the above composed homomorphism is a
transfer function. We denote it by T'(o) and call the transfer function
of o.

4. Let ¥ denote the category of triples (F, D, N), where F is a
globally generated coherent sheaf of rank m, D is a morphism of O™
into F such that D(oc) : k™ — F(oo) is bijective, and N is a
morphism of O into F such that N(oco) : k? — F(o0) is zero.
Morphisms of this category are defined in the obvious way.
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Definition. Let 0 = (V,&,0,B,C) be a linear system. We let
M (o) denote the cokernel of the morphism

0~ 1

(which is clearly injective) and call it the Martin-Ilermann sheaf of
o. Next, we let D(a) denote the canonical morphism O™ — M H (o)
and call it the denominator of o. Finally, we let N(o) denote the
composition of C* and the canonical morphism O @ V* — Ml (7),
and call it the numerator of o.

Definition. Let o be a linear system. Put
FR(c)=(MH(c),D(c),N(o))
and call it the fraction representation of o.

It is easily seen that /71 is a contravariant functor from the category
of linear systems to the category Y.

Let o = (V,&£.0. B.C) be a linear system and let F'R(o)=(F, D, N).
Proposition 2. The McMillan degree of o is equal to deg F.
Proof. The proof follows immediately from the exact sequence
0— & —0RV' a0 —-F—0 @ 2)

Proposition 3. The pole sheaf P of o is canonically isomorphic to
coker D.

Proof. Dualizing (1) we get an exact sequence
0— & — 0V — P —0.
From this and from (2) follows the statement. H

Proposition 4. Let @ be a place. Then

(a) o is reachable at @ if and only if F is locally free at x.

(b) o is obscrvable at x if and only if the morphism [D N is sur-
Jective at x.

Proof. (a) We have an exact sequence
0—& — 0,0V a0 — F, — 0.

o is reachable at x if and only if the linear map £*(z) — k(z)@ V™ &
k(&)™ is injective. Hence, the assertion follows from Proposition 6 of

[2], Ch.2, §3.

=2
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(b) Let P be the pole sheaf. From the proof of Proposition 1 we
know that o is observable at x if and only if O — P, is surjective.
So, the assertion follows from the commutative diagram

Op —F, —Pr — 0

I 2

oz

z

having an exact row. W
Proposition 5. The transfer function of o is equal to N3, 0 D'

Proof. Let L denote the canonical morphism O @ V* — F. Using
the exact sequence

0—)5;—>Om®V*G;OZA—»]:N—>O,
one easily verifies that D o B, 060! = L. It follows from this that
BLo0*l'oCs =D;'oN, ®
§ 2. REALIZATION THEOREM
Lemma 1. Let (V,€,0,B,C) be a linear system and F be its Martin—
Hermann sheaf. Then
dimV < dim H*F(-1).

Proof. By Serre’s duality, H°€~ = H'E(K) = 0. Hence, from (2) we
get an exact sequence

0— V@b — H°F.

The map V* — H°F must have its image in H°F(—1) because the
composed map V* — H°F — F(o0) is zero. Consequently, we
have a canonical injective linear map V* — H°F(—1). Furthermore,
the composition k™ — H°F — F(c0) is bijective. W

Lemma 2. Under the notations of the previous lemma the following
conditions are equivalent:

(a) dimV = dim H°F(—-1);

(b) the map H'O(K) @V & HO(K)™ — 1OE(K) is surjective;

(c) the canonical sequence HOO(K)™ — H°S — V — 0, where
S is the state sheaf, is exact.
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Proof. Tt follows from the proof of the previous lemma that (a) is
equivalent to the bijectivity of the linear map V=@ k™ — H°F. On
the other hand, by Serre’s duality, (b) is equivalent to the injectivity
of the linear map H'E* — H'O @ V=& H'O™. So, the equivalence
(a) & (b) follows immediately from the cohomological exact sequence
0— V' Ok™ — H'F — H'E — 'OV e HO™,
which can be derived from (2). The equivalence (b) & (c) follows
immediately from the exact cohomological sequence
0 — H°O(K)®V — H°E(K) — H°S — V — 0

induced by the exact sequence

0—OK)eV — EK)—S—0 =

In what follows we restrict attention only to linear systems which
satisfy the equivalent conditions of the previous lemma, i.e. to linear
systems defined as in Introduction.

Theorem 1. The functor F'R establishes an cquivalence of the cate-
gory of linear systems with the category L.

Proof. Let (F, D, N) be an object of S. Since F is generated by global
sections, we have, in particular, an exact sequence
0 — H°F(—-1) — H°F — F(o0) — 0.
Because the composed map
E™ — H°F — F(c0)

is bijective, this exact sequence splits canonically, i.e. there is a canon-
ical isomorphism
H°F ~ H°F(-1) @ k™.
Furthermore, because N(oo) is zero, the map HN takes values in
HOF(-1).
Now put

®(F,D,N) = (V,&,6,B,C),
where V = (H°F(=1)), € = (ker(O @ HF — F))7, 0 is the
canonical morphism O @ V — &, B is the canonical linear map
k™ — HOE and C is the dual map to k* — HOF(—1). It is easy to
see that this is a linear system.

L]
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Clearly, ® is a contravariant functor from the category ¥ to the
category of linear systems, and one checks without difficulty that £/
and @ ave inverse to each other.

The theorem is proved. W

Corollary (Kalman’s theorem on realization). The assignment
o — T(o) induces a bijective correspondence between the isomor-
phism classes of canonical lincar systems and the transfer functions.

(The sense of the word "canonical” is evident.) To prove the corol-
lary we need one lemma.

Let ¢ = m + p. Let Grass,,(R?) be the set of m-dimensional sub-
spaces in R7 and let LFQ,,(O7) be the set of locally free quotients of
O of rank m. The elements of Grass, (R?) may be identified with
the equivalence classes of (m x g)-matrices of rank m with entries in
R. (Two such matrices M, and M, are equivalent if M; = G, for
some (G € GL(m.R).) The elements of LFQ,,(O7) may be identified
with the isomorphic classes of pairs (F, [), where F is a vector bundle
of rank m and f is an epimorphism of O7 onto F. (Two such pairs
(F1, 1) and (Fz, f2) are isomorphic if f, = ¢o f; for some isomorphism

¢: —»]“2.)

Lemma 3. There is a natural bijection between the sels Grass,, (127)
and LFQ,,(0%).

Proof. Let I be a nondegenerate (m x ¢)-matrix with elements in 12
and let fi,..., f, be its columns. Define a vector bundle F by the

formula
F=(r" (ZO )

Clearly, all f; € H°F. lence, we may view the matrix I as a mor-
phism Q7 — F (of course, surjective). If now F’ = GF, where
G € GL(m,R), and F' is the corresponding vector bundle. then G
clearly defines an isomorphism of F onto F' such that the diagram

<
<

F

o1

commutes.

Thus we have a well-defined map from Grass,(R?) to LFQ,,(07).
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Counversely, let F = (F,(F,)) be a vector bundle of rank m, and let
[ : 07 — F be au epimorphism. We then have a surjective R-linear
map 7 — 7. The image of the dual linear map is a lincar subspace
in R (= R of dimension m. By the "transposing” of this one we
get an element in Grass,,(R?). It is obvious that if we take a pair
isomorphic to (F, f), we shall come to the same element.

So we have a map from LFQ.,,(O?) into Grass,,(R?).

It is not hard to verily that the above two maps are inverse to each

other. @
Proof of the corollary. First note that by
T'— [IT"] mod GL(m,R),

where [ is the identity (1m xm)-matrix, one can identify transfer func-
tions with some clements from Grass,,(R?).

Now let T be a transfer function. Let F be the vector bundle
corresponding to [/ 7] as in the proof of the previous lemma, and let
D:O" — Fand N : O — F be the morphisms determined by
the matrices I and T, respectively. Clearly, Foo = O%, Dy = I and
N(oo) = 0. So, (F.D,N) is a linear system. The proof now can be
casily completed. H

§ 3. FEEDBACK

By a linear system in this section we shall mean a quadruple
(V,€,0, B) where V is a linear space over k of finite dimension, &
is a vector bundle over R such that H'E(K) = 0, # is a morphism
O oV — & such that the induced map V — €(o0) is bijective,
and B is a linear map k™ — [°E(—1). We shall assume that the
equivalent conditions of Lemma 2 hold. It follows from the proof of
Theorem 1 that such a linear system can be defined as a pair (F, f)
where F is a globally generated coherent sheaf and f: O™ — F is
such that f(oo): k™ — F(o0) is bijective.

1. Definition. Two lincar systems (V;, &1, 01, By) and (Vz, &2, 04, By)
are said to be feedback equivalent if there exist an isomorphism ¢ :

&, — &1, a bijective linear map o : V3 — V4, a linear automorphism
3 k™ — k™ and a linear map L : 13 — k™ such that

0= 6 00+ 0" BiL and By= ¢ 'BiB.

Theorem 2 (Martin-Hermann). Two lincar systems are feedback
equivalent if and only if their Martin-Hermann sheaves are isomor-
phic.
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Proof. Let oy = (V1,&1,01, By) and oy = (V3, &, 02, By) be linear sys-
tems, and let Fy and F, be their Martin-Hermann sheaves, respec-
tively.

Suppose that o; and o are feedback equivalent. By definition, we
then have a commutative diagram

& — 0Vraom

0o g
& — OQ VO™
where ¢,a,3 and L are as above. Since the vertical arrows here are
isomorphisms, this diagram yields an isomorphism F; ~ F,.
Conversely, suppose that F; and F; are isomorphic, and let 3 be
any isomorphism of Fy onto F,. We then have a commutative diagram

0© H°F, — F

oL
OQHF, —— F,.

Since HOF; ~ Vi@ k™ and HOF, ~ V7 @ k™, we can find linear maps
a:Vo— WV, B k™ — k™ L:Vy — k™ and G : k™ — V] such

G | = g ; :
that (; 3 ] is nonsingular and the following diagram

OoVrEOn — F
a* L* )
[ G p } J J
0RVy 0™ — Fy

is commutative. This diagram can be extended to the commutative
diagram

& — 0 V0™ — F
¢'l l ld’,
& — 0QV;p0™ — F
where ¢ is an isomorphism of &, onto &. We thus have
[0+ BiL 0,G + Bij] = [¢0, ¢ Ba).
It remains to show that G = 0. By the above equality,

01(20)G + Bi(00)f = ¢(00) By(0).
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v

Since B (o0) and By(o0) are zero, we obtain from this that 0;(c0)G =
0; whence G =0. ®H

2. Let F be a globally generated coherent sheaf of rank m which is
nonsingular at infinity. Given an effective divisor D, which does not
contain oo, one can ask whether there exists an injective morphism
[ O™ — F such that y(coker f) = D. (Note that such a morphism
will necessarily be bijective at infinity.) This is the pole placement
problem (PPP).

Lemma 4. Let [ : O™ — F be an injective morphism, where F
is a coherent sheaf of rank m. Let T be a torsion subsheaf of F and

Fi1=F/T. Then

\(coker f) = \(coker fi) + x(T),
where fy denotes the canonical morphism from O™ to F.
Proof. We have a commutative diagram

0 — 0 — O — OI"‘ — 0
o anlien, |
0 — 7 — F — F — 0
Applying Proposition 2.10 of [1], we get an exact sequence
0 — 7 — coker(f) — coker(f;) — 0.
By Proposition 6.9 of [1] from this follows the lemma. &

The above lemma means in particular that "one cannot change the
unreachable modes by feedback”™. One sees also that it reduces the
PPP to the case when F is a vector bundle.

Observe that if F is a vector bundle of rank m and f is an injective
morphism of O™ into F, then the class of the divisor x(coker f) is
equal to the Chern class of F.

Thus, the PPP for a globally generated vector bundle F of rank m
can be posed in the following way: Given an effective divisor D which
does not contain oo and is such that cl(D) = ch(F), does there exist
an injective morphism f : O™ — F with y(coker f) = D?

Example. Consider the case (*). For this case the homomorphism
deg: CI(R) — Z is an isomorphism. Hence, the Chern class of a
vector bundle can be identified with its degree. Next, effective divisors
supported in X — {oo} can be identified with monic polynomials in s.
Let now F be a vector bundle of rank m and degree n. The PPP takes
the form: Given a polynomial P in s of degree n, choose a morphism

~ ‘//%/
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f: O™ — F such that f(o0) is bijective and y(coker f) = P. Notice
that the sheaf coker f being finite and with support in X — {20} can be
identified with a finite &[s]-module or. which is the same thing, with a
pair (V, I), where V' is a lincar space over k and [ is an endomorphism
of V. Clearly. y(coker f) = the characteristic polynomial of F.

We do not know if the answer to the PPP is always affirmative. But
we have the following

Theorem 3. The PPP has a solution in the case of one input.

Proof. See Proposition 7.7 in [6]. ('h.2. Here is another proof. By hy-
pothesis, the sheaves O(D) and F are isomorphic. Hence the sheaves
O and F(=D) also are isomorphic. The sheal F(=D) is a sub-
sheaf of F. since D is effective. Thus, there exists a monomorphism
f: O — F whose image is F(—D). We have: coker f = F/F(=D).
Because F is locally free of rank 1, it follows that coker f >~ O/O(=D);
whence y(coker f)=D. W

The following lemma may be helpful when one attempts to solve

the PPP.

Lemma 5. Let F be a globally generated veetor bundle of rank m.
Let O — F be an injective morphism such thal its cokerncl Fy is a
vector bundle too. (Such a morphism always exists.) Assume that the
canonical map H°F — HOF, is surjective. If the PPP is solvable
for Fy, then it is solvable for F as well.

Proof. Let. D be an effective divisor such that oo ¢ Supp D and
cl(D) = ch(F). Clearly, ch(Fy) = ch(F). According to our assump-
tion there exists an injective morphism f; : O™~ — F; such that
\(coker fi) = D. Since I°F — H°F; is surjective, f can be lifted
to some f: O™ —s F. We then have a commutative diagram

0 —s O — O™ —5 Ol —y 0
i IJ' fl B l
0 — 0 — F — Fi — 0.

One can derive casily from it an isomorphism coker f =~ coker f. H

Remark. Trom the above lemma one can deduce at once the classical
result on state feedback. Indeed, let ¢ = 0. Let O — F be any
injective morphism with a locally free quotient Fy. We then have an
exact sequence

0—0—F—F —0

135
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which yields an exact sequence of cohomologies
HF — H°F, — H'0O.

Since H'O = 0, we find that the additional condition of Lemma 6
holds automatically. By the induction argument we obtain the desired
result.

APPENDIX

Here we give a brief review of the theory of algebraic function fields
(in one variable). For additional information, see [3,4,6,11,12). (Recall
that algebraic function fields are equivalent as objects to nonsingular
complete irreducible algebraic curves.)

In what follows, & is a ground field.

An algebraic function field over k is a finitely generated extension
of k of transcendence degree 1 or, which is the same thing, a finite
extension of a field isomorphic to the rational function field over & in
one indeterminate.

Let 12 be such a field. For simplicity assume that it is separable
over k.

A place of R is an equivalence class of nontrivial absolute values of
R trivial on k. (Recall that two nontrivial absolute values ||y and | |
of a field are said to be equivalent if they induce the same topology.
[t is not hard to prove that this holds if and only if | |, = | |} for
some A > 0. See [8], Ch.XII, Prop. 1.) Denote the set of all places
by X. There is a onc-to-one correspondence between the places of
R and the discrete valuations of R trivial to k. A discrete valuation
corresponding to a place x is denoted by ord,.

A function f € R is said to be regular at a place @ if ord,(f) > 0.
The set of regular functions at @, denoted by O,., is a discrete valuation
ring. The residue field k(z) of O, is a finite extension of k; one denotes
its degree by d(r). A place x is said to be rational if d(z) = 1. An
affine set is a complement to a nonempty finite set of places of X. If U
is an affine set. then the ring of regular functions on U is a Dedekind
domain. Its maximal ideals are in a natural one-to-one correspondence
with the places in /. The affine sets together with the empty set
and the whole space form a topology on X. A constant is a rational
function which is algebraic over k or, equivalently, which is regular
everywhere. The constants form a finite extension of k. If R possesses
at least one rational place, then the constant field coincides with k.

A divisor is an element of the free abelian group Div(R) generated
by places. There is an evident partial order on divisors. One says
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that a divisor D is effective if D > 0. I f is a rational function # 0,
then ord,(f) = 0 for almost all 2, and therefore [f] = 3 ord,(f)x is a
divisor. It is called the principal divisor belonging to f. The quotient
group of Div(R) modulo the principal divisors is called the divisor
class group and is denoted by CI(R). For any divisor D = Y n(x)x
one puts deg D = Y n(x)d(z). Clearly, deg : Div(R) — Z is a
homomorphism. An important fact is that the degree of a principal
divisor is zero. This makes possible to define deg : CI(R) — Z.

The space of differential forms of R over k is a "universal” R-linear
space Q(R/k) equipped with a k-linear map d : R — Q(R/k) satis-
fying the condition

d(fg)=fdg+gdf; f.g€R.

Since R/k is a finitely generated separable extension of transcendence
degree 1, this is a linear space of dimension 1.

Let w be a nonzero differential form. If z is a place and if 7 is a
uniformizer at @, then w = fdr for some f € R. Put ord,(w) =
ord,(f). This definition does not depend on choosing 7. For all but
finitely many places @ one has: ord,(w) = 0. Therefore the formal
sum [w] = ¥ ord,(w)x is a divisor. It is called the divisor associated
to w.

A vector bundle £ = (E,(F,)) of rank r consists of a linear space I/
over R of dimension r and of a 'coherent’ system (I,) of O,-lattices in
E (i.e. of free O -submodules of F of maximal rank). The coherence
means that if (ey,... ,e,) is a basis of E, then E, = Oye;+---+O,e,
for almost every x. (See [12], Ch.6.) The elements of E are called
the rational sections of £. The elements of I'(£) = NE, are called
the global sections. The simplest example of a vector bundle is O =
(R, (O:)).

A morphism of a vector bundle (E,(E;)) into a vector bundle
(F,(F;) is a linear map 0 : £ — F over R such that §(E,) C F, for
each z.

Let & = (E,(E;)) be a vector bundle of rank r. Let ey,... e, be
linearly mdepcn(lem rational sections of €. For each place x choose
any basis (eg1,...,€s) of E; and put [ey,... ,e]; = ord(det(a;)),
where a;; € R are defined by e, = )" ajje,;. This is an integer which
does not depend on choosing (ez1,... e ). Clearly, [e1,...,¢e], =0
for almost every x. Therefore [eq,... e,] = Yler,... 6]y -2 is a
divisor. The class of this divisor is independent of ey,... ,e,. This is
the Chern class of £ denoted by ch(€).
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A vector bundle of rank 1 is called a linear bundle. 1f D = Y n,-a is
a divisor, we have a linear bundle O(D) = (R, ({f|ord, [ > —n,})).
Every linear bundle is isomorphic to O(D) for some D. Note that if
L is a linear bundle, then £ ~ O(D) if and only if ch(£) = cl(D).

A finite sheaf is a collection of O,-modules M, of finite length such
that A, = 0 for almost all . The characteristic divisor of a finite sheaf
M = (M,) denoted by \(M) is defined as the divisor 3~ length(M, )z.

We are going now to define sheaves and their cohomologies. We shall
do this under the hypothesis that we are given a fixed nonconstant,
rational function s.

Let Uy and U; be the sets where s and s™! are respectively regular.
These are affine sets, and they cover the whole of X. Denote their
intersection by U and put: A; = O(U), A, = O(U,) and A = O(U).
A sheaf is a quintuple (M. My, M. 7y, 1) where Ay, My and M are
modules over the rings A}, Ay and A, respectively, and 7y : My —s M
and rg : My — M are homomorphisms over A; and Aj, respectively.
It is required that the canonical homomorphisms

A@q, My — M and A@4, My — M
be isomorphisms. Here are

Examples. 1) Let (£, (E,)) be a vector bundle. Then

(1) Bas ) Bes ) Bortvsda)s
vel cel,  wel
where j; and j, are the canonical inclusions, is a sheaf.
2) Let (M) be a finite sheaf. Then
(& My & M, @ Myyri,ra),
zel; 2€U, z€U
where 71 and r; are the obvious restriction maps, is a sheaf.
3) Let E be a linear space over R. Then
(E,E,E,id,id)
is a sheaf. We shall denote it simply by E.

A sheaf is said to be coherent if the modules M; and M, are of
finite type. It is said to be locally free if these modules are projective,
and is said to be torsion if they are torsion modules. One can identify
coherent locally free sheaves with vector bundles (see Example 1)),
and coherent torsion sheaves with finite sheaves (see Example 2)).

For each sheaf F one defines in the obvious way the space of global
sections I'(F), the stalk F, and the reduced stalk F(z) at a point z,
the support Supp F and the rank rk(F). (See, for example, [9], §1.1.)
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One defines in the standard way subsheaves and quotient sheaves,
morphisms, kernels. cokernels and images of morphisms, various oper-
ations on sheaves (direct sums, direct limits, tensor products, sheaves
Hom, dual sheaves), exact sequences of sheaves. For a sheaf F and a
divisor D one usually writes F(D) for F @ O(D). One defines (as in
[9], §1.1. for example) the functors Eat’(-,O), i = 0,1.

If V is a linear space V over k of finite dimension and F is a coherent
sheaf, then Hom(O @ V, F) = Hom(V.I'(F)). In particular, one has a
canonical morphism O @ I'(F) — F. If this morphism is surjective,
one says that F is generated by global sections.

If ¢ : F — G is a morphism. then for each point & one has a
homomorphism ¢, : F, — G, and a linecar map ¢(x) : F(x) —
G(x).
For each sheaf F = (M,, My, M,ry,r;) we introduce k-linear spaces
C°F = M, @ M, and C'F = M, and define k-linear map d : C°F —
CYF by the formula d(my,my) = ri(my) — ra(m2). We denote the
kernel and cokernel of this map by H°F and H'F, respectively, and
call them the 0-dimensional and 1-dimensional cohomology spaces of
F, respectively.

Clearly, H° and H' are functors. Here are their principal properties:

(a) For each exact sequence of sheaves

0—F —F— F,—0
there is an exact sequence of cohomologies
0— H°Fy — H°F — H°F, — H'F, — H'F — H'Fy — 0;

(Moreover, this cohomological sequence is functorial).

(b) H® and H' commute with direct limits;

(¢) H°F =T(F) for each F;

(d) H'F = 0 for each finite F;

(e) HIR=0.

(a) follows from Proposition 2.10 of [1]. Other properties are obvi-
ous. It is not difficult to prove that the above properties determine
H® and H' uniquely.

The following is the basic result on cohomologies.

Finiteness theorem. If F is a coherent sheaf, then
hF =dim H'F < +o0.

The genus of the curve is the number g = A'O.
The degree of a coherent sheaf F is defined by the formula

deg F = hOF — h'F —tk(F)(1 — g).
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The degree is an additive function. This means that if
0—F —F—F—0
is an exact sequence of coherent sheaves, then
deg F = deg Fy + deg F3.
Note that if .M is a finite sheaf, then deg M = deg \(M).

For vector bundles we have the famous

Riemann-Roch theorem. If € is a vector bundle, then
deg & = degch(€).

Let A be the divisor of the differential ds. If € is a vector bundle. set
& = &(K). Clearly, £=¢ We finish with the following important
result.

Serre’s duality theorem. For every vector bundle € there is a non-
degenerate canonical pairving

HOE x H'€ —F;
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ON THE DURRMEYER-TYPE MODIFICATION OF SOME
DISCRETE APPROXIMATION OPERATORS

PAULINA PYCH-TABERSKA

ABSTRACT. In [10], for continuous functions f from the domain of
certain discrete operators L, the inequalities are proved concern-
ing the modulus of continuity of L, f. Here we present analogues
of the results obtained for the Durrineyer-type modification L,, of
Ln. Moreover, we give the estimates of the rate of convergence of
Z"f in Holder-type norms

AOBOTA0. 6568 Bogbemos r@dgogfeos Godols m3ghogmbom
holsdsols figmBols Aragomrools ﬂagobg&a&n @ogQBormns obof-
Baemo msgmcs)mm Foslsgrmmeols Gogols Fyegoligbao Iyl odols
bog@aggbd:

1. INTRODUCTION AND NOTATION

Let I be a finite or infinite interval. Consider a sequence (J;)5®
of some index sets contained in Z := {0,£1,£2,...}, choose real
numbers & € I and fix non-negative functions p;x continuous on /.
Write, formally,

Lef(x):= Y fl&u)pin(e) (zel ke N:={1,2,...}) (1)
J=Jx

for univariate (complex-valued) functions f defined on I. If for fy(r) =
L on I the values Ly fo(x) (¢ € I. k € N) are finite, then Lif are
well-defined for every function f bounded on [. Under appropriate
additional assumptions, operators (1) are meaningful also for some
locally bounded functions f on infinite intervals /. The fundamental
approximation properties of operators (1) in the space C([) of all
continuous functions on I can be deduced, for example, via the general

Bohman-Korovkin theorems ([5], Sect. 2.2).
Recently, several authors have investigated relations het\\(on the
smoothness properties of the functions f and Ly f (1], [10], [15]). For

1991 Mathematics Subject Classification. 41A17, 411A25, 26A15.
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example, taking an arbitrary function f € C(/) N Dom(L,), n € N,
Kratz and Stadtmiiller [10] obtained the following result. Let

Zp“ <¢ forall zel, keN, (2)
JEJk

and let the sum of the above series be independent of 27 if. moreover,

]1’k6(7(;), [(Ex — )P (@) < ) for all .1‘6}, keN,
gy 7 J- IR
JEJK

9 o
where ¢y, ¢} are positive constants and [ denotes the interior of 7, then
the ordinary moduli of continuity of [ and L, f satisly the inequality

w(Lnf;8) < 2er + &)w(f;8) (62 0).

They proved an analogous inequality for the suitable weighted moduli
of continuity of f and L,f when [ is an infinite interval and f has
the modulus |f| of polynomial growth at infinity. In [12] their result
is extended to functions f having |f]| of a stronger growth than the
polynomial one. [12] also presents some applications of the above-
mentioned inequalities in problems of approximation of continuous
functions [ by L, [ in some Holder-type norms.
Suppose that for every j € Ji and every k € N the integral

/ ()l
I

coincides with a positive number, say, 1/¢;x. Denote by Ly the oper-
ators given by

Lif(z) = Le(f)(2) =
- Z(,Jvk,,j_k/f(umm(u (xel. keN) (3)
¥

J€Jk

for those measurable (complex-valued) functions f for which the right-
hand side of (3) is meaningful. This modification of the classical Bern-
stein polynomials was first introduced by J.1. Durrmeyer (see | [4]). The
approximation properties of these polynomials were inv estigated, for
example, in [4], [7], [2]. Some results on the approximation of func-
tions by the Durrmeyer-type modification of the Sz ~Mirakyan op-
erators, Baskakov operators or Meyer— I(Eixlif' and Zeller operators can
be found, for example, in (8], [9]. [13], [14], [16].

In this paper we derive Kratz and S(Adlmull(‘r type inequalities
involving ordinary or weighted moduli of continuity of the functions

S
AN
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[ and an on [. Using these inequalities, we obtain estimates of
the degree of approximation of f by f"f in some Hoélder-type norms.
Theorems 1-3 show that the smoothness properties of L, [ are slightly
different from those of L.f.
We adopt the following notation. Given any non-negative function
w defined on [ and any x, y € I, we write w(,y) := minfw(x), w(y)}.
For an arbitrary function f defined on I we introduce the quantities

IF 1l = sup{|f(a) () : @€ 1},
Qu(/:6) = sup{|f(2) = [(y)ll () : @,y € I]x—y| <8} (5> 0).

If fis continuous on I and Iflle < oo, we say that f € Cy(I). The
quantity Q,(f;6) is called the weighted modulus of continuity of f on
I. In case w(x) =1 for all v € [, Q.. (f:8) becomes w(f;8) and the
symbol || /]| is used instead of [[f]lw- If the weight w is nondecreasing
[nonincreasing] on 7, then

Qu(/f:8) = sup{If(x) = f(y) ()}
[0(738) = sup{If(2) = f)lw(w))],

where the supremum is taken over all .y € I'suchthat 0 < y—a < 6.

We denote by 1V the set of all continuous functions w on I with
values not greater than 1, which are positive in the interior of I and
satisly the inequality w(x,y) < w(t) for any three points x,1,y € [
such that = <t <y (obviously. this inequality holds if, for example,
w is nondecreasing, nonincreasing or concave on /). When / is an
infinite interval, we indtrouce, in addition, the set A of all positive
functions 7 belonging to I such that 5(2) — 0 as |z] — 0.

Given two weights w,7 € IV | we define a more general modulus of
continuity of f on [ by

Quan(f:6) = sup{[F(2) = f()l (e, y)i(,y) + @y €1, o —y| < 6).

It reduces to Q,(f;6) if = 1 on I, and to Q,(f;6)ifw=1onI.
Taking into account that the positive function @ is nondecreasing on
the interval (0, 1] and has values not greater that 1, we put

10 = 1Sl +

/(@) = f)lo(e, y)i(z, y)
el —yl)

If this quantity is finite, we call it the Holder-type norm of f on 1.

Under the assumption f € C,(1), |[f]|\Y) < oo if and only if there

o
exists a positive constant A such that Quin(f;6) < Ko(8) for every

+snp{ ca,y €l <].r—yf§]}.

55950
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§ € (0,1]. We write Hf||m for “’”'Jn ifn=1lonl,and|f|, “ifw=1
on [.

Throughout this paper the symbols ¢, (v = 1.2.... ) will mean
some positive constants depending only on a given quuence (L
and eventually on the considered weights 1,7, p. The integer part of
the real number will be denoted by [a].

. SMOOTHNESS PROPERTIES
Let Lg, k € N, be the operators defined by (3) such that Lifo(z)
are finite at every @ € I. Put
)= pix(z)—1 (zel, keN)
J€JK

and make the standing assumption that all functions pjx (j € Ji, k €
N) are absolutely continuous on every compact interval contained in /.
Consider measurable functions f locally bounded on I and belonging

to Dom(zn) for some n € N. Write, as in Section 1, ;: Int 1.

Theorem 1. Suppose that condition (2) is salisfied and

> dinlpiule \/t—zip]k Hydt <

i u'(v)

(4)

fore €] and all k € N, w being a function of the class W. Then
Qu(Laf;8) < e f:6) + | flluw(ra; &) (62 0), (5)

where ¢z = 2(cy|Jwl] + ¢2).

Proof. Let z, y € I 0 < y —a < & and let x := (z +y)/2. Clearly,

Lnf(r) - an(y) = Z (Ij,n(l’.m(l') = Pj.n(.'/)) S

J€Jn

(6)
x [((0) = (a0 pin(O)dt + [(zo)ra() = 1a0)-
I

Taking into account (2) and the well-known inequality
(1) = F(wo)l < (L4 (1t = 2ol6™ (S 6),
we obtain

|Lof(2) = Laf ()] € (261 + A, ) (f36) + [ f (o) (a3 6)5

\%/
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where

Aulz,y) 1= Z G lPin(T) — pj,n(y)[é_l / |t — wolpja(t)dt <

1€ K1
<6 / ( > Ginlpials) / |t — 2o|pjn( )(l[)(ls
z \i€n 1

and I5:= 1N (20— 86,20+6). Ifz <s<yand |t —a¢| >y —x, then
|t — xo| < 2|t — s]. Hence, applying (4), we get

Au(z,y) /y <

1
< 2¢; (3_1/ ds ,
S J w(s)

and inequality (5) follows.

The result of Theorem 1 is interesting if w(f;6) < oo. This holds,
for example, for functions [ € C'(I) on the compact interval 1. If [ is
an infinite interval, the assumption w(f:8) < oo implies the restriction
f(x) = O(|2]) as |x| — oo. So, in this case, it is convenient to use
the weighted modulus of continuity Q,(f;8) with some n € A. If
f € C,(1), then this modulus is a nondecreasing function of 6 on the
interval [0,00). It is casy to verify that, for every 6 > 0 and for all
z,y € I there holds the inequality

> Ginlpials l/ltfs

pia(t (l[)(ls <
J€Jn

(@) = f)i(X.y) < (1487 e = ylDQ(f: ). (7)

Moreover, in case p € A and p(x)/n(z) — 0 as |z] — oo we have
Q,(f;6) — 0 as & — 0+, whenever f € C,(I) is uniformly continuous
on each finite interval contained in 1.

Note that under the assumptionsy € A, f € C, (1) and Li(1/n)(z) <
oo we have |Lif(x)| < co. If, moreover, p € A and

Lk( )( ) < (—“) forall @€l and ke N (8)
then || Ly fll, < oo

In the next two theorems it is assumed that [ is an infinite inter-
val. ®
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Theorem 2. Let condition (2) be satisfied. Suppose, morcovcr, that
there exist functions w € W, p, n € A, p <1 such that (4), (8) and

> aiklpiu(x \/ m (t)dt <
J€Jk (g)

& = for ae. x 6[ and k€N
w(@)nlz)

hold. Then
Qup(Lnf;6) < o (f:6) + | flupe(rni 8) (620),  (10)
where cg = 2((e1 + c)||w|| + 2 + ¢5).

Proof. Consider x,y € I such that 0 < y — 2 < §. Retain the symbol
2o used in the proof of Theorem 1 and start with identity (6). In view

of (7),
Lof(2) = Laf(y)] € Bale.y)Q(f36) + |f(@0)llra() = raly)],

where

(00) 5= 3 ialpin()=pin0)] [ 14187 ol s ()1
J€Jn Ji
Observing that for every t € [
Al.y) pla,y)
: 295 1
i(t, o) n(t) ()

and applying (2), we obtain

- pla
Bu(@,y)p(x,y) < 2c1 + Z @jn|Pin(T) = P, ()] / 1’1 W(t)dt +
J€Jn T

T

22, qm/\m |ds / <1+ﬂ(( Y )lt— olpin(t)dL.
J€Jn I-Is

Further, the inequality |t — zo| < 2|t —s| (t € I\Is, 2 < s < y) and

assumptions (4), (8), (9) lead to

@+ C5
w(

Bu(a,y)p(z,y) < 2er + ) + 267 /

The desired estimate is now evident.
For functions f for which |f] is of the polynomial growth at infinity
our result can be stated as follows. W
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Theorem 3. Let conditions (2), (1) be satisfied and let p(x) = (1 +
z|)77 x €I a>0. Suppose that inequality (9) in which p =y holds.
Then

Quw(znf: 6) < crQy(f56) + | fllunw(ra; &) (6 2 0),
where ¢z =2(cy +2-3%¢; + ¢ + 2¢s5).

Proof.  To sce this it is enough to make a slight modification in the
evaluation of the term B,(x,y) occurring in the proof of Theorem 2.
Namely, let us divide the interval [ into two sets [, and I\, where
Ip:=1N0(xg—=h,x0+h), h =y —a. It €I, then [67!]t — 2]] =0
and

1 1
< Ji”r}(.’h]/)(‘“ + ) o
n(e) - ny)
This inequality, (11) and (2) imply

Bu(x,y)i(e.y) <2(1+2-37)e; +

£ 5 galthalsias] / (“ —6.ro| i 17(-7\1/)(1 25 |t — T?‘))]U.n“)’”-

jedn i n(t) y-e

Observing that |t — x| < 2|t — s|, |t — 20| < y — @ whenever t € I\,
@ < & <y, we obtain, on account of (4) and (9) (with p =n),

B, y)iz,y) <2(1+2-37)ey +

21 o i) f C oo [lt=s
iyl o il B2 /(Z%.nm‘,x.«)l[/ =

171,71([)(1[) ds <
J€JIn

2 v
<2142+ — |
y—.]'

i

cypkes

w(s)

ds |

Thus
Bz, y)w(e, y)ila,y) <200 4+2-37)e|lw]| 4+ 2¢2 + 4e5, B

Remark 1. For many known operators the functions r¢(z) = 0 on
I, the quantities

par(x) = 3" (Ek — ) pia()

FI
. R . o
are finite at every @ € I and positive in [: moreover,

() pzi(@) = pix() (€ — ) (12)
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o

for every x €] and every k € N. In view of identity (12) and the
Cauchy-Schwartz inequality the left-hand side of (4) can be estimated
from above by (Jizx(x)/pas(x))'/?, where

Fon(z) = Y- ualpia(a)] [0 = 2P pis0)t
J€Jk T

Therefore, in this case, assumption (4) can be replaced by

4

call zef, keN.
o k() — wi(r) fowwll, sty Tt (13)

N

Analogously, the left-hand side of (9) can be estimated by

1 (}mm T il k(f)/il,,.k(t)(1t>l/z
pra () S PR () )

J€Jk

Hence, if

pik(t) a
kDi() (€ — )? dt < 14
/’“( JZ-I:A @Pik(2)(E;, ) J n2(t) P (x) (14)

for all @ 67. k € N, then (9) holds with ¢5 = ¢ - ¢cs.

Remark 2. Let w € W, n € A. Define the weighted modulus
d,(f;6) and ®,.,(f:8) as in Section 1, replacing w(x,y) by

0 if w(x)=0 or w(y)=0,
w(x = 1
w(z,y) ( 1 i
w(r)  w(y)
and 4z, y) by 7z, y), respectively. Since w(x,y) < w(x.y) for ev-

ery pair of points v,y € I, Theorem 1 remains valid for &, (Lo f;6).
Further, in this case, inequality (7) becomes

1f(x) = F)lie,y) < 21+ [67 e = yl]) @yl f:6).

Consequently, under the assumptions of Theorem 2, the modulus
@, (L, f;8) and @,(f;8) satisfy inequality (10) with the constant
2c¢ instead of cg.

Note that, for the weight n(x) = (1 + [2|)7" with the parameter
o > 0, the modulus ®,(/;6) is equivalent to the one introduced in
[10], p. 331 (see also [12]).

=
) otherwise,
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3. APPROXIMATION PROPERTIES

Considering still the functions f as in Section 2 we first estimate
the ordinary weighted norm of the difference L, f — f.

Theorem 4. Let condition (2) be satisfied and let

nr )i (_13( e ](o forall 21, keN, (15)
n NT
p(@)jizn(x) < cron(z)é} foral zel, keN, (16)

where (64)7° is a sequence of posilive numbers, 1 is a positive function
on I and p is a non-negative one such that p <n. Then

IZnf = fllo < et1 (3 8a) + Il limal, (17
where 1y = ¢ + (c1¢9)7% + (coci0)/? + c1o.
Proof. Start with the obvious identity
Laf(@) = J(2) = 3 i) [(F10) = FDpin®)dt + f(@)ra(@)

§€EJn 7
and take a positive numbu 5 In view of (7) and the inequality
(M, )™ < (p(@))™t + (n(t))~" we have
[Laf(x) = f(x)] < 7,1(.7')Qn(f;6) + 1 @)1 llrall,

where

Yol(z) := Z GinPjn(T / 1+ [6 ltt - T” (

It.
i€Un s U(T) n(t) )1]' (£)d

Further, by (2), (15) and (16) and the Cauchy-Schwartz inequality we
obtain

plx)
()

pm(t)(li <

Wn(@)p(x) € e + La(~ - ( Jo(x) + 672 =iy () +

-
+p(x)é~ G Z qJnPJ,n(T /I

J€Jn

<o+ (c,L,, (7]—2)(1)) p(.r) + 1067262 +

= 1 1/2
No—L( 5 2))1/2 el
()87 (ian(@) " (La (15) (@) <
< et (F1C9)1/2 + c1067262 + (69010)1/25_15n~
Choosing & = é,, we get (17) at once. @
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Remark 3. In the case when y(x) = 1 for all € I, the constant ¢1y
in (17) is equal to ¢; + ¢jp. If we use the modulus ®,(f:6) (defined in
Remark 2) instead of Q,(f;8), the constant cyy should be multiplied
by 2.

Passing to approximation in the Holder-type norm we note that, for
an arbitrary v, € (0,1],

Eaf = 1125 < (14 o) NEf = Tl +

] (1)

+sup{ Sy (el 6)+ Qua(f:8)) : 0<5<wm)

(see, for example, [11], [12]). This inequality, Theorem 4 and the
estimates obtained in Section 2 allow us o state a few standard results.
We will formulate only one of them. Namely, combining inequality
(18) with Theorems 1 and 2 gives

Theorem 5. Let conditions (2), (4) be satisfied and let ()5 be a
sequence of numbers from (0,1] for which (16) holds with p = w and
n=1onl. Then

w(f;6)
»(6)

where ¢12 = 3¢ + 2¢3 4 3ero + (1 + 2¢)||w]| and
A‘o)— 3\|7all/9(8n) + sup{w(ra; 6)/(8 1 0< 6 < 6.}

Lof = 1S < cuosup {2 s 0o <o+ 1M1

Remark 4. Clearly, if the assumptions of Theorems 1 — 5 hold for
positive integers k belonging to a certain subset Ny of N, then the
corresponding assertions remain valid only if n € Ny.

4. EXAMPLES
1) The Bernstein polynomials By f = Li.f are defined by (1) with
. k
&k = J/k, pis = (J) 2i(1 — )k, I = [0,1], Jp = {0,1,2,... ,k}.

The (onospondmg Bernstein-Durrmeyer pol\nomlals Lif = L[ are
of the form (3) in which ¢jx = k + 1 for all j € Ji, k€ N. In
this case ri(z) = 0 for all z € I, the constant ¢; in (2) equals 1,
pax(z) = 2(1 — x)/k and equality (12) is true. Since

2¢(1—a)(k=3)+2

ity ol ke ol

fiak(x) =

VZ
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(see [l] ), we casily state that condition (13) is satisfied with ¢; = 1,
w(x) (1 — 1))’/2. Hence, in view of Theorem 1 (and Remark 1),
for e\(x) f € C(I) and everyn € N,

Qu(B.f:6) < 3w(f:6) (6>0)

Further, fizx(x) < 3 for all v €l, ke N (see [4], p. 327). Therefore
(16) holds with p(z) = n(z) = L forallz € 1,8 = k™% and ¢j0 = 1/2.
Thus Theorem 4 gives

H]}f—ﬂ]< W(fin~V?) forall neN

(cf. [4], Theorem 11.2). Also, Theorem 5 applies with w(x) = (r(1 —
z))V2, 6, =n"1? ¢j; =8 and AW = 0.
2) The Meier-Konig an(l Zeller operators My = Lj are defined by

- k+j—1
Gk =7/ + k), pia(a) = < +j ) I(1—a), zel=[01),
Jn = No, No := {0,1,...}. Their Durrmeyer modification M=1L
are of the form (3) in which ¢;x = (k4 j)(k+j +1)/k. Condition (2)
holds with ¢; = 1. Since

7 z(l —x)? J e

Il_z,k(l')T = I’J,k+1(-17)<m = -T) (0<a<l),

the left-hand side of (4) can be estimated from above by

}\. 20 y 5
m ({ z <1\]Tj = -f)ZI’J,A-H(-F)} X
1 1/2
X{ ks (7 /1—2 m(f)t”}>
0

for all z € (0,1), k € N. If k > 3, Lh(-‘ vxprossion in the first curly
brackets is not greater than 2z(1 — 2)?/k (see [3]); straightforward
calculation shows that the expression in the second ones does not
exceed 7(1 —a)2/k. Thus, for the functions f € C'(/ )N Dom(A,) and
M,f (n > 3), inequality (5) applies with ¢ = 10, w(x) = 21?2 and
ra(z) =0 forall x € 1.

3) The Baskakov-Durrmeyer operators Uk,c =1 (with a parameter
¢ € Np) are defined by (3) in which I = [0,00), Jix = No, pjx(z) =
(1Y (@) 5L, drela) = € if e = 0, and Pye(z) = (1 +cx) ™"
ife>1, gjx=k—cfor L > ¢ (see [9]). Now ri(x) =0 for all x € I,

=0
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ke N.ep =1, pax(zx)=a(1+cx)/kforall z € I, k> c and condition
(12) holds with &% = j/k. Further,
~ 22(1 + cx)(k +3¢) +2
I e TR TR
(k= 2¢)(k = 3c¢)
Hence Theorem 1 (via Remarks 1, 1) applies for n > 3¢, with w(z) =
(2(/(1+ )2 5 = 21+ e2). c2 = (2(1 + 3)(1+ 6¢)/(1 + ¢))'/2.

4) The Szasz-Mirakyan-Durrmeyer operators Sy are the special case
of operators Uy, defined in 3), with ¢ = 0. From 3) we know that, for
these operators, conditions (2) and (13) hold with ¢ =1, ¢ = 91/2
and 11(1) /(l + 2))Y2. Counsider f € C,(I) with the weight
n(x) T where o € N. It is easy to see that, for k > 20,

for z€l, k>3ec

(a
+ )7
1 B kt
/ . pj,k(:)d,z:—/(wz)”z at
n ] o

RS D) !
< 220—1 (1_ T L/Lnﬂ ke ll) 5?71 1 (1 T (—U%j)'k_?a) <
kAo J k 3!

el il 20
<9 ;(1+(;+1) )

Consequently, the left-hand side of (14) is not greater than

(=) (1427 (a0 + (5 -2)7)) =
20-1 oo "
/‘mzo (- pisto) <
<es(ltz)®
(see [10], p. 334). Applying Theorem 3 (together with Remarks 1, 4),
we get the estimate
(50 f36) < 1a(f58) (6§20, n=>20). (19)

Since ﬁgyk(k x) S 2(1 4 x)/k, conditions (15) and (16) are satisfied with
p(z) = (1+2)77" and & = k™ /2, Consequently, Theorem 4 gives

15af = fll, < sy (f;n7/%) forall n € N.

Combining this result and (19) with the general inequality (18), we
easily verify that, for n > 20,

I\S'nf—fllfiléfm%up{ Q,(f:6) : 0< 6 <}

20-1

2

fak() =0

Mz

- 22571 (] o 2‘2a—1(1 i (l‘)%\/ +
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5) The generalized Favard operators Fj = Ly are deefined by (1)
with §x = j/k, Jy = Z, I = (—o0,0) and

1 _sid 2
Pin(x) = pik(y;a) = (V2rky)™ "XI><—;7’;'(%*-'T)),

7 = ()7 being a positive null sequence satisfying

ot

k? /k> —r2loghk for k>2, 1> =1 % log?2

1
3"

8V

(see [6]). Denote by Fy their Durrmever modification of form (3) in
which ¢;x = k for all j € Z and k € N. As is known ([6], [12]), for all
z€land ke N,

I = (vl = | 3 paalrie) 1] <2
[ri{ys )| < Trop.

pak(x) = pax(vie) < 5192 moreover, w(rk(y;x)| < 1676 for every
& >0 (see [10]. p. 336). It is easy to see that

fiz () = fizk(v; @) = par(yi @) + v (1 + raly; ) < 5dyf.
Observing that
N et v R L e
Pl %) =i (; — 1) pis(r; )

and applying the Cauchy-Schwartz inequality, we estimate the left-
hand side of (4) by

A ;E_-’«'llb,k('ﬁm) / [t = lpju(y; t)dt <
=00 “co

< % (e @) P (i (3: )2,

i.e., w(x) =1 for all real x and ¢; = 52,5. Thus Theorem 1 yields the
estimate

w(F,f36) < 1lw(f36) + 1678]|f]] (8> 0)

for every n € N and every f € C(I). Clearly, this inequality is
interesting if f € C(/) is bounded on /.

1z
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Consider now [ € C,(I) where 5(z) = exp(—o2?) o > 0. If o9} >
3/32, then
1 i 2 1 _amy 2
sco(aat)exo (| — o2 (L= 5) Vel — ca2(L =
exp(oa )(\\p( 3% (k «L) )(,)\])( 5%k (k t) ) =
L. o 2 s 2
sxn(4oz?) e Wi .o [ — e AT .
< exp(4ox )«,xp( 8’”" (k 1) )(,_\p( qu (k' l) ),
whence -
Fe(1/n)(x) < 2(1 + r(27; 2)) exp(dox?).
Analogously, one can show that the left-hand side of (9) is not greater
than

1/2( 1/2

29 pan(7:2)) P (o n (27 ))'* exp(do2?).

provided that oy < 3/64. Further (see [12]),
re(2y;7) <2/15, pox(2y;7) < 2348

and

Thus Theorem 2 applies with w(z) = 1. p(a) = exp(—doa?). ¢y =
68/15, ¢s = 75 (i.e. ¢¢ = 271) and n such that 073 < 3/64. In the
same way one can show that Theorem 4 is true with p(z) = pi(z) :=
exp(—=To2?), 8, = 4n, 042 < . 61 and a positive absolute constant
c11. From these results the estimate of anf - f||(ﬂf) follows at once
via inequality (18).
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FRACTIONAL TYPE OPERATORS IN WEIGHTED
GENERALIZED HOLDER SPACES

S.G. SAMKO AND Z.U. MUSSALAEVA

ABsTrRACT. Weighted Zygmund type estimates are obtained for
the continuity modulus of some convolution type integrals. In
the case of fractional integrals this is strengthened to a result on
isomorphism between certain weighted generalized Holder type
spaces.

GIB0TA.  gofyggmeo bobols b 30nBols AFy50¢ b deoga-
gBobsogol g barmas Hogdmbal §ndab Fggaligdade. bongobay
Formoe@a 25@)36"@38{’[’ Fpduksgagedo @odEgngdames L:»er‘wa&:,
feobosbo asbtenaogdamo Jpeg@nl Eodol Logé3ggdeb chmdemh-
Femdob Fnlbobgd.

1. INTRODUCTION

A great number of results is known concerning boundedness of con-
volution type operators in spaces of summable functions, including the
weighted case. In the spaces of continuous functions such as Hg(p)
the convolution type operators are less investigated. The goal of this
paper is to fill a gap to a certain extent in investigations of such a
kind.

We consider here the Volterra convolution type operators

K¢ = /L'(.x —t)e(t)dt, a<z<b, (L.1)

in the weighted generalized Hélder spaces 1 (p) (see definitions in
Sec.2),—o00 < a < b < oo. The kernel k(z) is assumed to be close in a
sense to a power function.

The result of the type

K1 (p) — H2 (p) (1.2)

1991 Mathematics Subject Classification. 26A33, 26A16.
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for certain characteristic functions w(h) and w(h) was earlier known
in the case of the power kernel k(a) = 277" 0 < a < 1. and a powel
weight function p(1). We deal here with arbitrary kernels and weights,
i.e. not necessarily power ones.

We introduce a certain class 1y of kernels and the class w,, of weight
functions for which we manage to give the weighted Zygmund type
estimate, that is. to estimate the modulus of continuity w(ph ., h) by
the modulus of continuity w(pp, h). This estimate provides the general
result of the type (1.2).

In the case of purely power kernel, i.e. in the case of the fractional
integration operator

z

[ =~ tetyt, 0<a <1, (1.3)

the result (1.2) is extended to isomorphism:

I THG (p)] = Hy™(p) (1.4)

with wa(h) = h*w(h). This is achieved by the preliminary derivation
of Zygmund type estimate for fractional differentiation. The latter is
treated in a difference form due to A.Marchaud [9] and G.H.Hardy
and J.E.Littlewood [2] (see [17], Sec.13, in this connection):

! [l
D2, flx)= M0 4, (L5
24 (@) l‘(1~a)[(zw / } 0<a<l.(L5)

The paper is organized as follows. In Sec.2 we give necessary pre-
liminaries. Sec.3 contains Zygmund type estimates for the operator
(1.2) in the case of kernels in Vy in the non-weighted case first (Theo-
rem 1) and afterwards in the weighted case (Theorem 2). In Theorem
3 we give conditions of Zygmund-Bari-Stechkin type on a character-
istic function w(h) guaranteeing the result (1.2) for k(x) € W\ and
weighted functions in w,. The characteristic function wi(h) in (1.2)
proves to be equal to hk(h)w(h). We note corollary of I heorem 3 for
k(z) = z*YInv/2)?’, y > b—a.

In Sec.4 we establish the weighted Zygmund type estimate for D7, [
with a weight [unction in w, (Theorem 4). We prove the assertion
Dy, : Hg(p) — 1127 (p) with w_.(h) = h="w(h) under appropriate
assumptions on w(h) and p(x) (Theorem 5).

As a corollary of Theorems 3 and 5 we give conditions for validity of
the second index law of I2.R.Love within the framework of the spaces
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(%), Finally, in Sec.5 we prove the isomorphism (1.1) (Theorem
6).

Presented theorems generalize the results of the papers [10]-[12],[18].
where the power case for both k(x) = 2°7" and p(a) = (& — a)® was
considered. The presentation of the results of [10] in the non-weighted
case can be also found in [18]. Sec.13. Note that in [12] the case
pla) = (x —a)(b— x)" was also considered, not contained in the re-
sults of the present paper. The origin of the statement (1.4) is the
classical result by G.H.Hardy and J.E.Littlewood [2] for the fractional
integration concerning the case w(h) = h', p(x) = 1, a + A < 1. (As
for the case w(h) = [Tf_, | — x4|"*, see [13] and [17]. Sec.13.)

We also note the papers [4]-[5] where Zygmund type estimates are
given for the fractional integrodifferentiation in the case of L,-moduli
of continnity.

The question we finally note as open is whether 17, [Hg (p)] = Hg(p)
in the case of purely imaginary a, under the appropriate assumptions
on w(h) and p(r). We refer to the paper [7] by E.R.Love concerning
such fractional integrals (sce also [17], Sec.2, n®1).

2. PRELIMINARIES

We follow the papers [14]-[15] in the definitions below. Positive
constants which can be different at different places will be denoted by
&

Definition 1. We say that o (x) € W, =1V,([0, 0y il (x) e C([0.1]),
v(0)=0, ¢¥(x) > 0 for & > 0, v>(x) is almost increasing, while ¢ (a)/a*
is almost decreasing and there exists ¢ such that

P(r) — ¥ (y)
z—y

We remind that a non-negative function ¢(z), 0 <2 <1, 0 < 1 <
oo, is called almost increasing (decreasing) if ¥(x) < cy(y) for all
r <y (x> y. resp.), this notion being due to S.Bernstein.

™ = max(x,y). (2.1)

.SC

Definition 2. We say that '(x) € W il ¢ (x) € W, and (x)/a"~®
is almost increasing for all ¢ > 0.

We shall also need the following modification of the Definition 2.

Definition 3. We say that a non-negative function k(x) on [0, be-
longs to the class Vi, A > 0 if
i) k(x) # 0. 2 k(z) is almost increasing and .'c’\k(.r)l = 0;

if) there exists e, 0 < ¢ < A, such that @*~k(x) is almost decreasing;

0
101945
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1) there exists ¢ such that

{h(x) = k(u)\ o et

st = max(E,y): (2:2)
=Y

z*
Remark 1. 2*k(2) € Wi = k(x) € Vi and k(2) € Vi = k(z) € W,.

Remark 2. If the almost monotonicity in Definitions 1 and 3 is re-
placed by the usual monotonicity, then conditions (2.1) and (2.2) are
satisfied automatically.

Indeed, let us pw\e e.g. (2.1). following [14]. If o(2) /2" is decreas-
ing, so that 1 —g(2)/o(y) <1 —a*/y" for y > a, then o(y) —¢(x) <
y”y“—’”ga(y . Since y“ — a2 < ey — 2)y"!, we obtain (2.1).

Definition 4 ([1]). A non-negative function ¢(t) on [0, 1] belongs to
Zygmund class 7 = Z([0,1]) if

Definition 5 ([1]). A non-negative [unction p(f) belongs to Zyg-
mund class Z; = Z,([0,1]) if
) (h)
Pt wlh
/-TZ— dt < e
h
Definition 6. A function ¢ (2) belongs to the generalized Iolder spa-
ce HY = H*([a,b]) if

Wl h) % sup sup  Je(z +1) — ()] < cw(h), 123
0<t<h xx41€lab)
where w(h) is a given positive function on (0,1}, w(0) = 0; we set
el = liele + suplwte, b)/w(h)].

By Iy we denote the subspace of functions in [I* which vanish at
T =G
The function w(h) is called a characteristic of the space H*.

Definition 7. By Hg (p) we denote the space of functions f(x) such
that

plx)f(x) € HY, Hf“u;(p) = Hf)f“n;.

where p(2) is a non-negative weight function.
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In the sequel we shall use the following inequalities:
1) if w(p, &) is the continnity modulus (2.3), then

D] Hod) e (2.1)
z y
2)if 0 <« < 1, then
h
wle, h) wle ) 2.5
s < (r/ l:m dt; (2.5)
3) if v(x) € W, then
N\
Plz) < (‘(L) v(y), =>uy; (2.6)
Y.

1) if p(a) € W, with 0 < g < 1, then (2.1) holds with 2™ replaced
both by @ and y

(2:400)
(2.8)
and there exists ¢ > 0 such that
g\ e
k() £ <'<7> k@), 221 (2.9)
T
6) if A <1, then
ot =y S elw =)yt 22y >0, (2.10)
and if A >0, then
[ed =y < ele —y)et, x>y > 0. (2.11)

Lemma 1. Let k(z) € Vi, A > 0 and let w(x) > 0 he an almost
increasing function. Then
i

i

7(/{

Jor0 <z <12,

0
nrnass
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Proof. By (2.8) we have
L ]
w(t)k(t) \ di
S A & > cwlz)re k(zx
/ " dl > cw(z)w A(I)/

tl+.\ e

2
&
Nrsos Cdt .
> cw(x)z k(x) T cwo(x)bk(z). B
z
3. MAPPING PROPERTIES OF CONVOLUTION OPERATORS IN THE

SPACE Hg(p)

The following theorem provides a Zygmund type estimate for the
integral (1.1).

Theorem 1. Let k(x) € V\, 0 < A < 1 and ¢(a) € C([a,b]), p(a) =
0. Then

b—a o
W(Kp, h) < chk(h)e(e, h) + ch / “—”*’(*—‘”m. (3.1)
h

Proof. Let a = 0 for simplicity. We denote g(x) = ¢(a) — »(0) and

fla) = /A‘(.r — )g(t)dt.
For all w,x + h € [0.0] we have

‘f(.l:—.L/z)f‘f(.l"l:/[q(7fi\~(/ Ne(t+ h)dt —

—h

—/[_r/(.z‘—/)—g(;:ﬂ tydt + g(x) /Af+/1)(ll-/k (/l].
G h

So

0
(e +h) = f()] < | /L«(r — 1) = gla) k(1 + h)dt| +

'/q 2 — 1) = g(2)][k(t) — k(e + h)]de| +

r4h

+o(z) / k(t)di

=A;+ Ay + As.
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Taking (2.8) and increasing of w(p, t) into account, we have for Aq:

B i S
Ay < [w — < cw G ——— <
A / (P k(= 1)dt < cw(p, /)A(/y)J(h‘l) dt <
< chk(h)w(h). 32)
For A,. applying (2.2) and (2.9). we obtain in the case k > e
w(e Okt + h) \—e w(p,t)dt
Sl 2 T e = B oo
As / e dt S chk(h)h “M)H\ :
il ht)dt ; i dt
= ch " < chk(h)w(p. — <
r:A(}z)/ iy S chk(h)u(oh) | T
< chk(h)w(p, h). (3.3)

In the case h < & we write Ay < [§+[7 = By + B,. For B the
estimate (3.3) is valid. while for B3, we Lave

F ol k(1
B, < ch / ol U (3.4)
b i
As regards As, we have in the case h 2
s4h
Uy < (o k(e + i)+ 1) [ L <
Az S cw(p, h)k(x + h)(z + k) / xS
2
e
< cwl o MECWRY | = < (g, h)hEh) (3.5)
-
If h < 2, we use Lemma 1 to obtain
; wlp )k(t)dt
Aq < (g, m)hk(e) < oh [ i e Ot
;/ l.,_(,,
i(w

Gathering all the estimates for 4, i = 1,2.3, we arrive at (3.1). W

Theoxem 2. Letk(z) e Vi, 0 < A< L p(a) = (2 —a), (z) € W,
0 <y <2, Assume that

i) p(x)p(x) € C ([a.b]) and /J(J'),;Lr‘;]‘“ =
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i) Ub “tw(pp,t)dt < oo, v = max(l,u). Then the Jollowing
Zygmund type estimate holds:
h b—a
. w tyk(t
wlpKp, k) < k() / D gt 4 ch / &,)—”m (3.7
0 h

fo<pu<l+Xand

h b—a

Fw(pp.t w(pp,t

w(pKo,h) S(‘/z/ ‘P‘r,l(/,“/ “loet) (39

L t
0 h

fl+r<p<?2

Proof. Let po(x) = p(r)p(x) and @ = 0 for simplicity. We have

7 v(z) —w(t)

() (N p)(a //\1—/

wolt)dt =

—fl ) + fa(a).

Since o € C([0.0)) and po(0) = 0. the first term f,(1) is covered by
Theorem 1. To estimate w(fo, h) we represent the difference fy(z +
— fa(z) as
ath

e+ ) = folz) = / %wpo(i)k(a'«kh —1)dt +

(e +h) — Yla) . B
+!aﬁ'(0 co(O)k(a + h — t)dt +

¥(t)
=h+ DL+

+/M[k(1—l,+h) Ma-dllliids=
0

Estimate of 1. A) Let 0 < p < 1 at first. Taking (2.4), (2.7) and
(2.8) into account, we have

z+h
Il < / (a +h~t)/\(l+th‘l)a(yq,l‘)dt <

oth h
wi i ] (o,
< chk(h) / M < (/,;C(h)/“’(’/_ntt)dl_ (3.9)
-
® 0
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B) Il 1 < <2, then by (2.4),(2.6) and (2.8) we obtain

h
F(h—t)k(h —t)(x + ) w(pp.t
|[|[§f/(h tyk(h —t)(a + h) (0 )(

It <
] (x4 t)r-1 T+t -
h
} =1
< ohlEh) /[ lli;l (s L), (3.10)
0

In the case h < @ we derive from (3.10)

h h

ph= 1)dt w It
[l < chi(h) [ Zo ool oy [@lpotldt g
J Ha + 1) Tle )t J

In the case h > = the inequality (3.10) yields
h
1| < c/,A-(/,)hu"'/%')?f_’_"‘ <
h
< ch'h /” il (3.12)
0
So from (3.9), (3.11) and (3.12) there follows the estimate

T w(o, )i
TARS c/pk(/})/%

0

Estimate for I,. A) Let 0 < g < 1. By (2.6) and (2 .7) we have

, vy = max(1, ). (3.13)

‘12[<f/1/ e e & =)l dldt.

: (3.14)

)

In the case h < & we represent (3.14) as |1y < fJ +f(’+h /2+f(1+h =
L4104+ 13 1t is clear that

i )i
I, < chk(h) /h—‘ (3.15)
0

Since @ +h —t >t in I}, we obtain

b
(ol
Il'< M/L(;M. (3.16)
h
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Further, z + h —t <t in I}, so by (2.4
Y

k(x+ h —t)w(po,x +h — i)(lt

I" < ch

x4+ h—t
(z+h—t)/2
b
: (1
gw/ﬂﬁgﬂﬂ (3.17)
h

If h > x,then (3.14) immediately yields

7 it
[Ia] < chi( /‘””"’ < (3.18)
0

B) Let now 1 < o < 2. Taking (2.1) into account, we have

Il < ch j (x + h)" Th(x + h — t)w(po, t)dt
2| < .

- (3.19)

Hence

T (o, t)dt
wl(Po,
L] < c]l,“k(/z,)/—ﬂ;“—-

0
in the case h > x. If h < x, we represent (3.19) as

h (x+h)/2 F4
11.2|§/+ / i / =By + By + Bs.
0 h (z+h)/2

Taking into account that z + h < 2(z + h —t) in By, in the case
0 < p—1< A\ we obtain

Ry — -1k el
|Bll§fh/(l+h ) tk(z+ h t)u,(,o.f)dtS

Iz
0

h

'(k;(h{)(]t e

< chk(h) | ST (3.20)
! t”

by (2.9). If p — 1 > A, the function *~'k(t) is bounded. So
h
B < ch/M. (3.21)

t#
[
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Since © + h < 2(x + h — t) again, we have

(+h)/2
TA+h =)z +h—t
B, < ch el )tu b et L9
h
Here @ + h —t > ¢, so that
b
:()w (o, t)dt

B, SCII/M (3.22)

/ ]

by (2.9),if p =1 < A, If ¢ =1 > X, by boundedness of ¢#~ Tk(t) we
have

b
w(io, )dt
B, < ch/ l*‘;‘;)( (3.23)

To estimate By we notice that { > 2 4+ h — ¢ in Bs. So by (2.4) we
have

ke +h—t)w (Yo,r+hfi)(/l

Lt
Ba o r+h—t -
T+h—t/2
b
b(t)w 1t
< CII/M. (3.24)
Thus, I, admits the estimate
i 1)dt N or 1) di
L] < ch™k /wYU (4-// W*QO v
(3.25)
0
7= max(1, u),
if <14 Xand
h b
w(pg, t)dt w(po, t)dt ’
TARS ch/ 5 +ch/ - (3.26)
0 h

ifpu>1+A\
Estimate for I5. Let 0 < u < 1. By (2.2) and (2.4) we have

—tw
|15] < c/;/w

t
0



612 S. SAMKO AND Z. MUSSALAEVA

which coincides with the estimate in (3.14). If 1 < p < 2, we derive
from (2.1).(2.2) and (2.6):

r‘,u—l,“ sl
ilalsch/’ k(x4 b = Delgo, )t _

t b
0

u—1 —
SCh/(i,+/1) k(e + h — t)w(po )(/t
0 i

The latter coincides with (3.19). Gathering estimates for Iy, I, and
I3, we obtain (3.7)-(3.8). W

Theorem 3. Let p(a) = (x—a), P(a) € W,, 0 < pu <2, k(t) € Vi,
0 <A< 1. Assume that

Dp<A+1;

i) ¢~max0u-Uy(t) € Z  th(t)w(t) € Z1.
Then the operator K is bounded from Hg (p) into Hg*(p) with

wi(h) = hk(h)w(h).
Proof. Let f = K¢ with ¢ € Hf(p) and let a« = 0. To prove that

€ Hg* we remark at first that
o \p

/w([?’ d dt < 0o, 7 =max(1,p). (3.27)

Therefore Zygmund type estimate (3.27) concerning the case 0 < p <
1 + A holds which gives

h
wipf.h) { V=1
wlpf )
hk(h)w(h)y = lpellig . 0/
1 w()k(t )(H} -
PO 3.28
b A'(h)w(}l)h/ t (3.28)
Hence by the condition ii) we have
h
oL B < ol iy

hk(h)w(h) —
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It remains to prove that /1(.1‘).[(.1‘)‘ o 0. After the change of
2=
variable { = r — £x we have

1
) lo(x — 2€)|k(x€)dE
Ip() f(: 0/—1 e :
Since po(0) = 0, this yields
Ip(x)f( 7‘5<rwﬂ/ﬁﬁ. (3.30)

According to (2.6) and (2.8) we see that
[ w(go,1 — €)de
[p(2) ()] < cxk(s /“’ Wl Vﬁ I = cek(e) =0 (331)
o S \
as « — 0 in view of (3.27). So p(x )f(1)1[‘7U:0. | ]

Corollary 1. The operator (1.1) with the kernel k(t) = t*~'(In ;—')’7,
Y>b—a, 0<a<l, 32>0isbounded from g (p) into Hy™"(p),
where p(x) = (v —a), v(x) € W, and

af1. VP
war, A(h) = w(h)h? (In E)
under the assumption that 0 < y <2 — a and

pmmax@u=1),0p) € Z, /1”’(111 ;—'l)/j,u(h) € 7.
h

In the case ¥(x) = 2* and w(h) = h* the assertion of Corollary 1
was proved in [6] (see [17], Theorem 21.2).

Corollary 2. The operator of the form

/u-r 1)di

is bounded from MY (p) into I5*(p) under the assumptions of The-
orem 3 if the requirement pf| =0 in the definition of the space
Hy (p) is replaced by p/l T 0

lo=
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4. MAPPING PROPERTIES OF FRACTIONAL DIFFERENTIATION IN
THE SPACES H{(p)

Now we give Zygmund type estimate for the fractional derivative

(1.5).

Theorem 4. Let p(2) = (x —a), P(x) € W,, 0 < p < 2, and

b—a
/ wlpfit) 4 o 00, 7 =max(l,p).
0

t0+u
Then
[ «lpf.1)

w(pDy, f.h) < ch""l)/wl':‘,_:Y dt. (4.1)

Proof. According to (1.5) we have
p(a)f(z)
ple)(D5 f)(x) = TH—a)z=aF +
“f@) = flz—1) .
oa / = (4.2)

We set a = 0 and denote
() — f(z —1t
0(z) = ¢y(_p)/j~(—)?éé—)(lt.

To estimate the difference 6(z + h) — (z) we represent it in the form

8

O(z+h)—0(z) = Z Ag(z)

k=1

(as in [13] in the purely power case), where

N v(z) 1 [ele+h)—gly)
Aile) = [1 - u’)(r+h)]/ (¢ + h—y)t+e dy,

z+h

g 1
Aglm=ple+ ) —wial / (+ ;(i) e lp+h) #y)

dy,

RGO CR )
A=+ ) J rh—ye ™
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s gly) SR
A‘(”_Lmt/ Py ek

/[(/ g+ h—y) 7" = (z —y) "] dy,

/ 1 . e . e
u(r)o/g(y)[ *w(y)] {(H-h y) (x—y) ]dy»
Aole) = £ 8ot ) — ool = o4 )
As(z) = (l:u"(:r)g(:r) [:(—1—:——’1) — QP(]:L_)] [h_“ —(x+ h)“’].

Estimate for A;. By (2.1) we have

z+h x+h
h w(g,x+h—y) h w(g,t)
A< /_— = it (4
| l!‘(’;1',4—/1 J (.T+hfy)‘+“(y C.r+/1 / frra el
If h > a, it is obvious that
h
w(g, 1)
Ay < ¢ e dt. (4.4)
0

If h < x represent (4.3) as |Ay| < [& + [+ = A + AY. For A} the
estimate (4.4) holds. As regards AY, applying (2. 4) and (2.5), we have

zth o
M w(g,t) dt dt
Al < ch / o < cw(g,h) t1+u <
T h
(9:0) _  [elot)
w(y, w(g, -
< = < c/ pTEeS di. (4.5)
0

Estimate for A;. A) In the case 0 < p < 1, using (2.7), we obtain

5 z+h il hiZ  z4h
Mz|§cv+, / ﬁ%j‘—gd![:/+/ = Ay + A5,
z+h S oylet+h—y) s
Obviously,
h
) w(g,t)
A, <o 7y dt.
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Using (2.4) and (2.5), we derive the following estimate for Af:

Ay <e dt.

W T dy  wlgh) /”w(.a.,w
x+h J (x+h—y) ”(J'+/z)“ =) T

B) If 1 << 2—a, taking (2.1) and (2.6) into account, we obtain
for Ay:

I h ( )i h/2  axth
i wlg.y)dy
L] < ¢ « =[+[=bBi+B
[Aa] < C(I + h)2s u/ yie+ h—y) s pioby
It is obvious that
h
w1 [ (g ) .
B, < ¢l / 2 . (1.6)
0

As regards By, we apply (2.4) and obtain

r+h
w 1
B, < o 200 / |
(z + h)%-= . g+ h—y)
K

w(g, h) / w(g.h)
=i ;
Gty ) - '(17/ o by
Using then (2.5), we notice that the estimate for 3, is the same as in

(4.6).

Lstimate for As. Since i»(x) is almost increasing, we have

r+h h
w(g.ox +h— w(g.1)
| As] S(‘/ M——y)d!jzc/ (g ) dt.
(et h—y)te J {ita

Estimalc for Ay. Let 0 < g < 1 at first. In view of (2.7) we have

% o(gye 4 h—1)

w(g, —t

A e [ERTT " g, (+.7)
J te(e+h—1t)

In the case h < & we have t < a4 h—tin (4.7). So by (2.4) we obtain

fwlg.t)
VAl <[t
/

tlit+e
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If h >, we represent (4.7) as |A,] < f(f+h)/2+f“+,,/2 Since t <
r+h—t an(l f 2w+ h—tin the first and second terms, respectively,
by (2.4) we derive that

(r+h)/2

: w(g.t) w(g.x+h—1t)
A4l < ¢ / T dt + ¢ Wdt <
0 (x+h)/2

h
w(g.t)
e = dt.
/

tl+o

Let now 1 < u <2 —a. Using (2.1) and (2.6), we get
i (g, 2+ h—1t)

‘ /3
|f4|_(1+/11 “0 (z+ h —t)mt

dt.

If h < 2, by (2.4) we have
h
[Ad] < clz + 11)#*1/

0

w(g,t)dt 2 hw(g,t) i
(z 4 h — t)n-igite —c/ tra

If b > 2, then |A,] < f{=+0)/2 +f(1+h)/z We use (2.4) in the first term
and the inequality {* > (2 + h — t)* in the second. This yields

x+h)/2 h
s P s | ezsion,
0 (z+h)/2
h (a+h)/2
e [SL 9:0) gy 4 gt / ! “‘l(j’;‘f) dt < chv=! /h “—t(oﬂ:) n
0 z 0
Estimate for As. Applying (2.11), we have
i dy 7 w(g, t)dt
[4s] < C’lo/“"(!/sf” =) (x+h—y)(z—y)i+e =ch /t”“(t-}— h)
In the case h > x it is clear that
h
45| < c/'*'t(ﬂ:) dt. (4.8)
0
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If h <z, then |As] < foh + [ii = AL+ AY with the same estimate as in
(4.8) for AL. As regards A%, we have

) h
1t wl(yg, (g, t
AT o) et AT gc/‘”(g Dat (4.9)
0

by (2.4) and (2.5).
Estimate for Ag. A) Let 0 < ¢ < 1 at first. Applying (2.7) and
(2.11) we arrive at

z z/2 z
w(g.y)dy / "
A‘<l/———~—=/ /=X+A‘.
Mol TR e T et

0 0 z/2

For A} we have
Yd
/1;),<c1/ 1:’]:’ Heicll Lo oh (1.10)

If o<ty Ap < [h/Z I://z‘ = N, + N,. It is evident that K admits
the same estimate as in (4.9). For K3 the application of (2.3) provides
the same result:

3 h

Kz < (g h) [

If h > x, then immediately

h
AL < (;/”(”") d. (4.11)
0
To estimate Ay we remark that y > x —y so that

5 7 w(g,x —y)dy o w(g,t)dt
Ag < ch / =ch / ,
(z—y)*to(x+h—y) J tite(t + h)

which is the same as in (4.10) and so A{ admits the same estimates
as in (4.5).
B) Let 1 <y <2 —a. Using (2.1), (2.6) and (2.11), we have

ly
o x/#_ / / U
As = g yi(x +h—y)(x—1y) Y+l

z/2




=

“////

i ']
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If h < 2. weset Uy = h/2 + ff/zz = U} + U, whence easy calculations
yield the inequality

h
i 2 / J t)dt . w(g,t)dt .

{l+a tu+o
0
(g, t)dt
< c/z,""/%)ﬁ. (4.12)
For U, by (2.5) we have
) =R
w(g,y)dy dt
Uy < ch / I R / WL B
2= St h—y—y)r < aly l)omuh)—

w(g,h) / <wa(g.1,)(1l.
/’(1 E{‘l 1+£ J ll+:)

If h > 2, the estimation of U, and U, is easy and provides the same
as in (4.2). Gathering all the estimates, we obtain

h
o
|Ag| < ch™™ ’/ wlg )(/I, v = max(1, ).

fo+y
Estimate for As. Applying (2.5) and (2.10) and almost increasing
of ¥(z), we easily ol)(am
felo.t)
w(g, ’
| Ad] gr/ Lt (4.13)
0

Estimate for Ag. Using the inequalities (2.1) and (2.10) for0 < pu <
2 — a, we make sure of validity of the estimate (4.13) for As as well.
It remains to consider the first term
oy M) ale)
’ r(l-a)z—a) T1-a)z-a)®

in (4.2). Since g(x) € Hg, we have the estimate

|r(@+h) —r(z)| < e / %Jl, (4.14)

0

which is derived by direct calculations under the assumptions of the
theorem.
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Collecting all the estimates for A;, 7 = 1,...,8, and (4.14), we
obtain the required inequality (4.1). H

Theorem 5. Let p(z) = ¢Y(z —«a), ¥(z) € W, 0 < p <2 —a and
let
1) w(t)#0, t>0,
2) w(t)t=™ ][ ©=0 (4.15)
3) w()tl=*r e Z, 4 =max(l,p).
Then the operator D3, con'inuously maps Hg(p) into Hy™*(p) with
w_o(h) = h~%w(h).

Proof. Let f(x) € Hy(p) and p(x) = D, f(x). To show that

how(pp, h
sup —ﬁ——) =c <00
o<h<hb-a  w(h)
we observe thaf the inclusion w(t)t'==" € Z implies convergence of
the integral f “w(t)t=>=7dt, so Theorem 4 is applicable. Using the
estimate (4.1) of Theorem 4, we obtain

hew(pp, k) > ROHISL (o f D)o de
w(h) — (h)

It remains to show that p(a)¢(2)],=. = 0. By (4.2) we have

el fllmgr.  (4.16)

r—a

w(pf,z —a) a w(pf,t)dt
(1 —a)(z—a) i I'l-a) 0/ lte M

Ip(a)p(@)| <

/ "lo(x = a) = Ple —a —t)w(pf. rfu—I)rlt
I(l—a ttep(z —a—t)

=D, 4+ Dy + Ds. (4.17)
Here
w(x — a)
% HY(p)——
Dy < I 0 S
the condition (4.16) implies w(z)2™%|z=0 = 0. So lim,_, Dy = 0. The
equality lim,_, D, = 0 is obvious by the existence of the integral
in D,.

For the term D3 in the case 0 < p < 1 we have by (2.7)

J to(x —a—t)



]
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We evaluate this separately for v —a —t >t and 2 —a —t < t by
means of (2.4):

{x—a)/2 r—a 3
w(pf,t)dt w(pfiz —a—1t)
Dy <ec = ¢ Wdt,
(v-a)/2
whence lim,_, D3 =0
If1 <p<2—a,weuse (2.1) and (2.5) and obtain
z—a (z—a)/2 z—a
(pf,z—a=1)
iga] =t
. (x —a)l=#(x — a — L)t *
0 (z-a)/2
and similar to what we did above we have
(r-a)/2
(& = ap=lw(pf 1)
Di<e le -+
0
T (=) e r—a—1)
i (x —a) (pfix—a )(“S
(z —a—t)xts
(r=a)/2
r—a)/2
g oy (E2el2 s Fr s
< (z—a) —
so that lim,_, Dy = 0. Therefore, lim,_, p(x) ]

Corollary 1. Let o(z) € W, 0 < g < 2—«, and let w(t) be an
almost increasing function on [0,b — a] such that

1) w(0) =0, w(t)#0 forte (0,b—a];

2) w(t} 1" e Z, v = max(1,pu).

Then the operator DS, of fractional differentiation continuously
maps H*(p) into Hy with-p(a) = ¢(x — a), wa(h) = h%w(h).

Another corollary (of Theorems 5 and 3) will be related to the fol-
lowing Love’s index law [8]:

I I8, a7 152 f(x) = f(x), a+B+7=0 (4.18)

well known in fractional calculus. This corollary will provide condi-
tions guaranteeing validity of (4.18) for functions f € Hy(p). For sim-
plicity we restrict ourselves with the cases w(x) = 2" and p(z) = 2*.
The notation
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is used below.

Corollary 2. Relation  (4.18) is valid ~ for all  functions
f(x) € Hy(x*) and all o,B,y € R' such that o + 3 + q = 0; if
the number X € (0, 1] satisfies the conditions

A>—a,(A4+a)" +5>0 [(Ata)+8"+7>0

while the weight exponent yu satisfies the conditions

1) p<A+a) +1
2) p<[A+a)+8"+1
3) p<A{{A+a) Y+ + 1

5. A THEOREM ON ISOMORPHISM

In Theorem 3 and Corollary 1 of Theorem 5 it was proved that

I3, : HY(o) — H3(p), (5.1)
DY, ¢ Hy™(p) — H3(p) (52)

under the appropriate assumptions on w(h) and p(x). To derive the
assertion 12 [Hy(p)] = Hg*(p) it remains to show that any function
in Hg"(p) is representable by the fractional integral of a function in
Hg(p). This will be the goal o Theorem 6 below. Preliminarily we
state two auxiliary assertions we need.

Lemma 2 ([17], p.185; p.231 in English ed.). In order a function
f(x) to be representable as f = 18,0, ¢ € Ly(a,b), —0o < a < b< oo,
it is necessary and sufficient that

i) f(z)(z —a)™ € Ly(a,b);

it) |[Ye|lL, < ¢ < oo with ¢ not depending on e, where

D

forate<az<bandip.(z)=0fora<az<a+te.

A close version of Lemma 2 can be found in [16]. (See also [3]
for another version under additional sassumptions that f € L and
I p<l/2a):

Lemma 3. Letw(t)t™° € Z. There exists p > 1 such that w(t)t™'~% €
L,(0,1).

Iz
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Proof. 1t is known that the inclusion (t) € Z implies existence of ¢ €
(0,1) such that t7%¢(1) is almost increasing (see, e.g. [1]). Therefore,
there exists ¢ € (0, 1) such that t=57°w(#) is bounded. So w(t) < ct®*¢
and to have a ﬁmte L,-norm for w(t)/t'+* we must choose p < Tl——s ]

Theorem 6 (On isomorphism). Let p(x) € W,, 0 < pp <2 —a and
let w(t) be a continuous function such that w (T € Z, w(t)t™ € Zy,

s=maxl.p) ezl

Then the fractional integration operator I3, isomorphically maps the
weighted space H (p) with p(x) = v (x—a) onto the space H5*(p) with
the same weight and the characteristic w,(h) = h*w(h).

Proof. In view of (5.1)~(5.2) it is sufficient to prove the representability
of a function f € Hi*(p) by a fractional integral. Aiming to apply
Lemma 2 we shall prove that there exists p > 1 such that conditions
i)-ii) of Lemma 2 are satisfied.

The estimate

lf \ (l )
(@ —a}

is valid for any f(z) € H5*(p). Really, by (2.6) we have

V@I o))

(z —a)* = (x—a)p+e’

< el fllag

which immediately provides (5.3).
Since w(x)/2*~! € Z, from (5.3) and Lemma 3 we conclude that
there exists p > 1 such that the condition i) of Lemma 2 is satisfied.
For this p we shall show that a constant ¢ > 0 exists such that

» <ie < oo (5.5)

flee

We set g(z) = f(2) (2 — a) and have

1 7 lg(x) = g(0)]
"(a'-n) J (.r—r Ia

e L
+/ k(x a) 1+Z“_q)HdL

|the ()| < dt +

]
oYy
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To estimate Fy we use (2.6) and obtain

FISL/(—'(W—_-)-H<

(z — a)~ )
¢ felga-y) i
< m/mdt. (5.6)

Since g(x) € Hg"(p), it is easily proved that (5.6) yields

c
(@ —a)’

For [ in the case 0 <y < 1 we use (2.6) and (2.7) and obtain

r—a ( ' ) (zx—a)/2 r—a
¢ (g,x—t—a
Fis e )/”ljjv —a= [+ |
z—a)J iz a) J oy
Hence after simple calculations
(z=d)/2 o
. c i w(t)dt € T ow(@—t—a)dt
el PG T i
T —a t z—a T ~—1-=a
o (5-a)2
e rlw
c A / 1P (5.8)
r—a r-a i

Since the condition w(t)t'™# € Z with 0 < u < 1 implies w(t) € Z, we
derive from (5.8) the estimate F < cw(a — a)/(z — a).
Let now 1 < p < 2—a. We use inequalities (2.1) and (2.6) to obtain

<€ 7aw(g.1'~t—a) wr—f—u]di B
=gy to(x —t—a)r '_1—(/ t“i—i—a)““_
(z=a/2 z—a

= +
0 (z=a)/2

Calculations and arguments similar to those in the case 0 < p < 1
give the estimate
By cw‘(x — (1)'
T [g—a)p

2
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Therefore,
F,< c%%, y=mazil. 4. (5.9)
So, from (5.8) and (5.9) we obtain
w(x —a)
ho(a)| € e =22 .
|L‘(JH_"(‘F7")‘V i

Hence [[4[|r, <c. B
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COMPLEXITY OF THE DECIDABILITY OF THE
UNQUANTIFIED SET THEORY WITH A RANK OPERATOR

M. TETRUASHVILL

ABSTRACT. The unquantified set theory MLSR containing the
symbols U, \, =, €. R (I(x) is interpreted as a rank of 2)iis
considered. Tt is proved that there exists an algorithm which for
any formula @ of the MLSR theory decides whether Q is true or
not using the space c[Q (|Q] is the length of Q).

D030, 3 gogdemns. Gmd 26lgdedl smamondn, Gedgenngg
U \. = e R (R(a)=ols nE@Or‘vBFwae]ognaa & bngrﬁ\aa@nb r‘wogsn

b bgodobols Shew) binddengmengdols by 4396¢) bodagemg-

o5 MLSR wgrokond sogamn Q goibgenbiongad Gugneb shmbls-

bagrndol IGemdemadals ¢|QJ? Aodeougenee bofommon (drm(gmeomdob

ogeebitoboo: Q] 20boBbagh (Q-b bogdqb).

Let MLSR be an unquantified set theory whose language contains
the svimbols UL\ =. €, R, where R denotes a unary functional symbol
and [f(r) is interpreted as a rank of the set 2 in the sense of J.von
Nenmann. The decidability problem for the theory MLSR reduces
readily 1o testing the satisfiability of conjunctions of literals of the
following types:

(=) x=yUz, w=y\z (€) €y, (R 2=Ry)
(the literal = ¢ y is equivalent to the formula 2 € =&z = z\y, while
the literal @ # y to the formula uerkudylViueylug r]. where
Z. u are new variables). The conjunction Q of literals is sometimes
treated as a set of its literals.

Let, further. MLS be an unquantified set theory whose language
contains the symbols U, \, =, €.

Definition 1. The interpretation a of the MLS langnage is called
the singleton model of a formmula » of this langnage if it associates a
subset of the {@} with cach variable and ¢ is true in a.

1991 Mathematics Subject Classification. 03D15.
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Definition 2. The singleton model a of a set of all literals of the
type (=) of the formula @ of the language of MLSR theory is called
the place of the conjunction Q.

If o is the place of @ and y is the variable occurring in @, then y(a)
is the value of y in a.

Definition 3. Let y be the variable occurring in ). The place a of
the formula @ is called the place at y if

ol 1, when z € y occurs in Q,
8=
0, when v ¢ y occurs in Q.

D. Cantone et al. the following result have given in [1]:

Theorem 1. Let @ be the conjunction of literals of the lypes (=,
€, R)and yy,.... Ym be ils pairwise-distinct variables occurring in Q.
Then Q is satisfiable iff there exist

(i) a set Il = {ov,...,an} of pairwise-distinct places of Q;

(ii) a function F:{1,....m} — {1,...,n};

(iii) a set W C {1,...,m};

(iv) a sequence of integers 0 =ro <1y < -+ < 1y = n such that the
following conditions are fulfilled:

(a) arpgy is the place al y; for all i € {1.....m};

(b) UJ‘;.UJ (i.e., Ya € ll(yi(a) = y;(a))), then F(i) = F(5) (i,] €
{12 sm})s

(¢) If yi(a;) =1, then kj < kpgy (i € {1,....m}, j € {l.....n}),
where for every j € {1,...,n} k; denoles the number vy such that
Tomr <J S 1)

(d) Ify; = R(y:) is a literal of Q, then j € W;

(e) Ify; = R(y:) is aliteral of Q. then ki = kje, where ™ = = max{l:
yi(ar) =1}, 116{1 Lombs

(f) Vi e WV] el (yloauj = yi€y; V y,;€y:), where yi€y; denoles
yilarm) =

(g) Vie W Vj € W(y:€y; = yiCy;), where yiCy; denotes Yo € 11
(i(a) = 1= yjla) =1);

(h) If fori.j € W there exists h € {1,... ,n} such that yi(an) =0
and yj(an) = 1, then Vr € {1,... ;n}(yila,) =1 = k < kn).

The proof of the necessity of this theorem makes essential use of the
Venn diagram [2]. The construction of the set I1 is based on the Venn
diagram for m sets. Consequently the number n of places is, in gene-
ral, of order 2™. Therefore, despite the fact that Theorem 1 solves the

2]
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COMPLEXITY OF THE DECIDABILITY

decidability problem for the MLSR theory. the corresponding decision
procedure has an exponential computational complexity (by space).
Thus is of great interest to find an algorithm solving the decidability
problem for the MLSR theory with a polynomial computational com-
plexity (by space). The next theorem shows that such an algorithm
can really be constructed.

Theorem 2. Let the conjunction Q of literals of the types (=, €. R)
is salisfiable and yy.,... .y, be all pairwise-distinct variables of Q.
Then there erist:

(i) a set 1L = {B1,...,Ba} of pairwise-distinct places Q;

(1) a function F:{l,... .m} — {l,... n}:

(i) @ set W C {1,... ,m};

(iv) a sequence 0 = 7o < 7y < -+ < 7 = 7 of nalural numbers such
that all the conditions (a)-(h) of Theorem 1 are fulfilled and n < c|Q|?,
where |Q] is the length of Q.

Proof. Let Q be satisfiable. By virtue of Theorem 1 there exists: a set
IT={ar,...,a,}, alunction F7: {1,....m} — {1,...,n}, aset W
and a sequence ro,ry, ... ,r, satisfying the conditions (a)-(h) of this
theorem.

Denote by 11" a set {apgy :i=1.... ,m} of places of Q. 11" C IL.
Let < 4.1 >,...,< ir,j, > be pairs of numbers from {l,... ,m}
such that i, < j, and F(3,) # F(j,), v = 1,...,7. Then by the
condition (b) of Theorem 1 YiuTYius V = 1....,7. Therefore for each
BaIE € g 2 0 = 1008, I\h(‘re exists a place oy, € II with the
lowest index 1, such that y;,(a;,) # y;,(a,). Denote 1= {epiu=
1,...,7}. It is clear that 7 < m(m —1)/2.

For each variable y; of @ assume that ay, is a place from II with
the highest index such that y;(a,,) = 1 (if such a place exists in II).
Denote by 117 a set of all such places. Let 1o = IIF UTTU TR, It is
clear that card(llp) < (m? + m)/2.

Finally, denote by I1® a set of places from the set II which do
not belong to the set Ty but whose indices are the ends of intervals
(rs—1,7s) containing the indices of places from the Ilo. Let N=1I,uU
12, It is obvious that card(11®) < card(llp) and therefore card(1l) <
m? +m. Let n = card(IT).

Let us now construct a new sequence of integers 0 = 79 < 7y < +-+ <
i = n. Identify each place with its index i. From the set IT remove
the integers which are not the indices of places from the set {1,... ,n}

and enumerate the elements of the set II, preserving their order by the
natural numbers 1,2,... ;7. Clearly, in this case all numbers r; from
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the set 11 € 11 will acquire the corresponding values from the set
{1,...,n} which will form a new sequence 0 =g <ry <--- <rp=n
of natural numbers.

Finally define the function F: {1,... .m} — {l.... .n} as follows:
[°(i) is the natural number from [1.2] into which the number F(z)
turns during the new enumeration of elements of the set Il (F(2) is
the index of a place from 11). )

Let us check that the set 1T = {3,....,3a} of places of Q, the
function F. the set 1V and the sequence 0 = rfg < 7y < --- < rg=1n
satisfy all the conditions (a)-(h) of Theorem 1:

(a) Bpgy is a place at yi, 1= 1.... .m, since Bpg) = apg);

(b) If //,f;]/_,. then on account of 11 C Iy C 11, we shall also have
Yinys But in that case (i) = I'(j). Therefore FG) = F(j);

(c) Let #:(3;) = 1, ie, yilay) =1, where j =1,..., n. Then j and
['(i) belong to different intervals (Bt and (o =re izl respective-
ly, the first interval preceding the second one, and. since ap(;) € 1land
a; = 3; € 1L the ends of both intervals belong to the set of indices
of places from TI. But their order in the set {I1,... 1} has remained
unchanged during the new enumeration of elements of the set II, the
numbers j and (i) belong to different new intervals corresponding
to the sequence Fo,71,... i, Therefore k; < kpgy, 1 € {1,...,m},
F €41, e ymls

(d) It is obvious:

(e) Let y; = R(y;) be a literal of the conjunction (. Then by
Theorem 1 7% and j~ belong to the same interval (re=iyrs]ys < o
But 117 C Iy C I and the infervals were not subdivided during the
transformation. Therefore. after the new enumeration the equality
kie = kj. has also remained unchanged for the set TI;

(f) Let 1/,0[]«;/1. ie., 33 € l[yi(B) # y;(B)). Since 1T C 11, we have
Ja € Hly.(a) # y;(a)], ie. Yirel;- For example, y;€y, is true by virtue
of Theorem 1 (the case when y;€y; is true is considered in a similar
manner), i.e. yj(apy) = 1. But apg) € 11F C 11 and api) = Bra-
Therefore y;€y; is true in 1I;

(g) Let J/Léy] hold in I, ie. y;(8p;) = 1. But Briy = arFg, i-e.
y,(api) = 1. Therefore yi€y; is true in 11 Then y,é]/_,' is true in 1l
by virtue of Theorem 1. i.e. Ya € ll(yi(a) = 1 = yj(a) = 1). Since
II C 11, the more so Ya € H(y,(a) =1 = y;j(a) = 1), ie., yf_:yl is

e in I
(h) Let 7,7 € W and there exists h € {1,...,n} such that yi(3;) =0
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and y;(3;) = 1. But 3, = ay, for some h € {1,... n}oie yilay) =0,
and by Theorem 1 Vre {1,... .u}(yle,) = 1 = k. < k). Let
ref{l.o.. i} Then 3; = a, for some r € {1,... .n}. Therelore if

yil35) = 1, then yi(a,) = 1. Consequently. k., < k. ie. ap ap € 11,
and r and h belong to different intervals (g =y ] andl) (7 cne s
the first interval preceding the second one. The ends of these intervals
were not removed from the set {1.....n}. Therefore the inequality
ky < ky has preserved. B

Corrolary 1. There crists a Turing machine which for any Jormula
Q of the NILSR theory decides whether Q is truc or nol, using the
space ¢|Q|*.

Let MLSO, be an unquantified set theory whose language contains
the symbols U. \. =, € and a single-place predicate O, (Onlz) s
interpreted as follows: a is an ordinal). Since O, () iff © = R(x), we
have

Corrolary 2. There crists a Turing machine which for any formula

Q of the NILSO,, theory decides whether Q is Lrue or not, using the
space c|lQ*.
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ON PERFECT MAPPINGS FROM R TO R

I. TSERETELI

ABSTRACT. Perfect mappings from R to R and also mappings
close to perfect ones are considered. Some of their properties are
given.

&IB0T3D. 6‘>6“an33° bﬁﬁ@amﬂn@ [ °6‘<’3m53' l)t‘wa@:jmrgog«\a
slkgaens Aot sbkgBe Fob B-fh. Al by sbibigoms
Fmgoghon mgalbyde.

This paper deals with some properties of perfect mappings from the
space of real numbers with natural topology R to R. For example, it
is shown that no perfect mapping from R to R has finite partial limits
at +oo and —oo. that no bounded mapping from R to R is perfect,
and so on. We also consider mappings from R to R (not necessarily
continuous) with closed, compact and bounded fibers and mapppings
under which the image of any closed subset of R is closed in R.

Recall that a mapping f : X — Y of topological spaces is called
a closed mapping [1] if f is continuous and the following condition is
satisfied:

(CL ]) for every closed subset [ of the space X the image f(F) is
closed in Y.

Recall also that a mapping f: X — Y of topological spaces is said
to be perfect [1] if X is a Hausdorff space, f is a closed mapping and
f satisfies the following condition:

(CMY) for any point y € Y the fiber f~!(y) is compact.

Note that if f: X — Y is a mapping from the Hausdorff space X
to the space Y (not necessarily continuous), satisfying the conditions
(CL 1) and (C'M;') (see Example 1 below), then for every compact
subspace Z of the space Y the inverse image f~!(Z) is compact. (The
proof of this fact repeats the proof of Theorem 3.7.2 [11].) This implies
that every function f : X — R from the Hausdorff space X to R,
satisfying the conditions (C'L |) and (CM; "), is a Borel function.

1991 Mathematics Subject Classification. 54C10.
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In the sequel K will denote the class of mappings (not necessarily
continuous) from R to R. \

We shall define the following classes of mappings: i

K(C) = {f € K|/ is continuous };

K(CL |) = {f € K| for any closed subset F' of K the image f(F)
is closed in R};

KEeM?") =
compact };

K(CL;') = {f € K| for any point y € R the fiber f~!(y) is closed
in R};

K(B;') = {f € K| for any point y € R the fiber f~'(y) is a bounded
subset of R}.

{f € K| for any point y € R the fiber f~!(y) is

Theorem 1. Let f : R — R be a closed mapping and let
lim f(z)=a€R (lim f(z)=a€R).

T—+00
Then there exists a real number M such thal for any x > M (for any
z < M) we have f(z) =a.

Proof. Let limy— 4o f(2) = a € R (the other case is analogous). As-
sume that our assertion is not true. Then for any real number M
there must exist a real number xp > A such that f(zy) # a. In
particular, 3xy : @y > 1: f(a1) # a;322 > a2y + 1 : f(a2) # @ and so
on 3z s wpor + 10 fxx) # ;322 > 2+ 1 ¢ f(x2) # @ and so on.
Thus we have a sequence (z;)g>1 of real numbers such that a; > k
and f(ry) # a. for any natural number k.

It is obvious that limy_., xx = 400, the set {z4}72, is closed in R
and a € {f(xx)}32,. But, by assumption, lim,_;.., f(z) = a. Hence,
by virtue of the continuity of f, limy—, f(xx) = a. Therefore a be-
longs to the closure of the set {x4}72, in R. Since a € {f(xx)}72,, the
set {f(xk)}32, is not closed in R.

On the other hand, since the set {z;}72; is closed in R, the set
S({xx})iZ, must be closed too by the condition. This is the contra-
diction. W

Corollary 1. Let f: R — R be a closed mapping and let
lim flz)=a€R (lim f(z)=acR).
Then the set f~'(a) is not bounded.

Proof. Let limy— .y f{2) =a € R (limyuss f(z) =0 € R). Then, by r
the above theorem, there exists a real number Al such that f~(a) D
(M;+00)(f~"(a) D (—oc; M)). Therefore f~'(a) is not bounded. M
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Corollary 2. If f : R — R is a perfect mapping. then there are no
limits of the function f al +oc and —oo. In particular, no perfect
mapping f : R — R has asymptotes.

Proof. Let lim;_ 1, f(2) = a € R (limy—._o f(2) = a € R). Then, by
the previous rom]lan f‘ (a) is not bounded. But since [ is a perfect
mapping, the set f~'(a) must be compact and hence bounded. This
is the contradiction. M

Theorem 2. Lel [ € K(CL |)NK(CLY) (sce Example 2 below).
Assume that a € R. If there exists a left-hand limit limy—,_ f(z)
(respectively, if there exists a right-hand limit lim,—,4 f(x)), then

lim f(x) = f(a) (respectively, Iim flz) = fla)).
Proof. Let limy_—,_ f(2) = b € R. Assume that b # f(a). (The other

case is analogous.)

We have two possible cases:

1)36>0 (6€R):Vr€e (a—6b;a): f(z)=0b;

2)V6>0 (6 €R) Jas € (a—b;a): f(xs) #b.

Let us consider each of them separately.

Case 1. We have f~!(b) D (a — 8:a). By assumption. fla) # b.
Therefore a ¢ f~(b). On the other hand, since f (b) D (a — é;5a),
the point @ belongs to the closure of the set f~'(b). IHence the set
f71(b) is not closed. This is the contradiction. Therefore case 1 is
impossil)]e

Case 2. Denote I>—£M)I = ¢. Clearly, € > 0. Since lim,_,_ f(z)
there exists a positive real number § such that for f(r) € (fla)
€ f(a)+¢) for any @ € (a — 6;a). Therefore b ¢ (f(a) — (a) +

By the condition 3z; € (a — 6;a) : f(ay) # b.

Assume that z; = a—4§ and z, = max{a— o ;x1}. Then there exists
29 € (29;a) such that f(xy) #b.

Let the points ¢y, 22,... ,2x-1 be already constructed. Denote z; =
max{a — %;11._1}. According to the condition there exists a point
such that xy € (zx;a) and f(zy) # b.

Therefore for any natural & we have a point zx € R such that
a—% <ap<aand flag) # b

Since limy—o,(a — I) = a, we have limj_o, ) = a.

Since limy—q— f(x) = b, we have limy_o f(zr) = b.

The set {a} U {zx}72, is obviously closed in R.

Now let us consider the set f({a}U{xr}72;) = {f(a)}U{[(zx)}72;-
Since for any k& > 1 f(xx) # b and, by assumption, f(a) # b, we
obtain b ¢ f({a}U{ar}3Z;). On the other hand, since limy_o, f(zx) =

Y
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b, b belongs to the closure of the set f({a} U {24}52,) = {fla)} U
{f(x)}2;. Hence the set f({a} U {xx}32,) is not closed in R.

But the set {a}U{2,}72, is closed in R and, by the condition, the set
f({a} U {xx}72,) must be closed in R. This is the contradiction. M

Corollary 3. Let f € K(C'L [)n K(CL;Y). Then any point of dis-
continuity of the mapping [ must be only of the second kind.

Theorem 3. Let f € K(CL |)n K(B;") (see Example 3 below).
Then the function f does not have finite partial limits at +oo and
—oo0.

Proof. Assume, conversely, that there is a sequence of real numbers
21,22« ,Tp, ... such that lim,—, 2, = 400 and limp—a f(z,) ex-
ists. Let lim,_« f(2,) = a € R. (The case concerning —oo is analo-
gous.) Here we have two possible cases:

(a) the set { n | f(z,) = a } is empty or finite;

(b) the set { n | f(x,) = a } is infinite.

Consider each of them separately.

Case (a). There exists a natural number ny such that flws) #
a for any n > ng. Then a # Fzakels) = {f(za)}2,,. But
lim,_o f(z,) = a. Therefore the set F({#a}%s,) is not closed in
R. On the other hand, since lim,_.. 7, = +00, the set {.T,,}’;“:no is
closed in R and, hence, by the condition, the set f({za}52,,) must be
closed in R. This is the contradiction.

Case (b). There exists a subsequence (x,,); > 1 of the sequence
(¥n)n>1 such that f(x,) = a for any i > 1. Since limy—_.o 2, = +o00,
we have lim_., ., = +oco. Hence the set {@,,}52, is not bounded.
On the other hand, f='(a) D {,,}2, and therefore the set f='(a)
will not be bounded. This is the contradiction. W

Remark 1. Corollary 2 is a consequence of Theorem 3.

Corollary 4. No perfect mapping from R to R has finile partial lim-
its at 400 and —ooc.

Corollary 5. Let f: R — R be a function such that at least one of
the following two conditions is satisfied:

1) 3M, LeR:Vz> M:|f(z)| < L;

2)3M, LeR:Va< M :|f(z)| < L.

Then the function f is not perfect. in particular, no bounded func-
tion from R to R is perfet.
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Proof. 1f f : R — R, satisfies for example, the first condition, then
there exist at least two (possibly equal to each other) partial limits
of fat +oc: Timy—yno f(2) and lim, 4 f(x). But this contradicts
Corollary 4. ® )

Corollary 6. If f : R — R is a perfect mapping, then for any posi-
tive real numbers M and L there exist points 2y < —M and 2y > M
such that |f(2%,)| > L and | f(xy)] > L.

Theorem 4. Let f € K(CL |) N K(CL;") (see Example 2 below).
Assume that « € R and lct (x,)n31 be a sequence of real numbers such
that limp—.co @, = a. Assume also that the limit lim,_, f(x,) exists.

Then lim . flza) = fla):

Proof. Assume that lim,_., f(z,) = b € R and b # f(a). The follow-
ing two cases are possible:
1) 3ng:¥n > ng f(xa) =b;
2) Vn 3m(n) > n: (lm(,, ) # b,
Case 1. Clearly, f7! b D s} no and since, by assumption,
f(a)#b, we have a g f7(b). From f~'(b) D{an}5L,, and limn_oo Tn =
a it follows that the l)omt a belong to the closure of the set f~(b).
hence the set f~1(b) is not closed in R. This is the contradiction.
Case 2. There exists a subsequence (2, )i>1 of the sequence (2,)n>1
such IhdL for any natural i > 1 we have f(x,,) # 0. Clearly,
lifil f(zw:)=1b:
im0
Since limp—eo @, = @, we have lim;_. 2, = a. Hence the set {a} U
{@n, 322, is closed in R. Consider the image

{a} U {an}i2)) = {fl@)} U {f(en)}i2

Since f(zn,) # b and f(a) # b for any i > 1, we obtain b ¢ {fla)}U
{f(z,)}22,. On the other hand, since lim;_o f(x,,) = b, b belongs
to the closure of the set {f(a)} U {f(xn,)}:2;. Hence this set is not
closed. This is the contradiction. W

We shall conclude the paper with several examples:

Example 1. Let f; : R — R be a function defined by the formula

el log%lz\, for  #0,
h@) = {O, for z =0.

i}
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We shall show that f, € K(CL l)ﬁIC(C]\l,P“I) but f; € K(C). Indeed,
it is obvious that f, € K(('A\Ip") and fy € K(C). Therefore it remains
to show that f, € K(CL ).

Let I be a closed subset of R and a be an accumulation point of
the set f(F). Then there exists a sequence of real numbers (yx)i>1
such that for every & > 1 we have yx € f(F), yx # a, yx # 0, and
limg—oo yx = @. Clearly, for every k > 1 there exists a point z € F
such that f(xy) = y. We have

. o . ; I8\
= Jim e = fim f(e0) = Jim logy loxl > Jm bl = (5

Then either there exists a subsequence (2, )i>; of the sequence (2, )1
such that Limy .. 24, = (;)" or there exists a subsequence (-’L’n,)ng of

the sequence (,),>1 such that lim;_. x,, = —(%)”.
Let (z, );>1 be a subsequence of the sequence (z,)n,>1 such that
23> | 1 >1
iMoo Tn; = —(%)”. (If such a subsequence does not exist, one

may consider a subsequence (x,, )i>1 of the sequence (z,),>1 with
= Thei= (%)“)

Since F is closed and for z,, € F, —(%)2 € F for each j > 1. But
J(=(3)") = a. Therefore a € f(F). Hence the set f(F7) is closed in R.

Example 2. Let the mapping f; : R — R be defined as follows:

1; for = <0,
Fz) = {log% z,; forz >0

We shall show that f € K(CL [)NK(CL;") but f; ¢ K(C) and
f2 é ’\(B;I

It is obvious that f, & K(C) and f, € K(CL;").

Since /(1) = (—o030]U {3} . /o ¢ K(B;Y).

Now let us prove that f, € K(CL |). Assume that F' C R is a closed
subset of R and @ € R is an accumulation point of the set f(F'). Then
there exists a sequence of real numbers (yx)i»1 such that for any k > 1
we have yx € f(F), yx # a, yr # 1, and limp_o yx = a.

Since for any k > 1 we have yx # 1 and yi € f(F'), there exists,
for each k& > 1, a positive real number z; such that zx € F and
flzp) = log% Zy, = yg. Thus

TR L R
Jim g =a = Jim (5)" = (3) = Jim = (3)"




ON PERFECT MAPPINGS FROM R TO R 639

Since F is closed and for each k& > 1, we have z € F, (%)“ e F.
But f((3)") = a. Hence a € f(F). Therefore the set f(F) is closed in
R.

Example 3. Let the mapping f3 : R — R be determined by the
formula

Fafay i {;L‘, for & € (—o00;0] U [1;400),

0, for z € (0;1).

We shall show that f3 € K(CL |)NK(B;!) but fs ¢ K(C) and
fs € K(CL;'). That fs & K(C) and fs € K(B;!) is obvious.

Since f3'(0) = [0;1), we have f3 ¢ K(CL;"). Let us show that
f3 € K(CL |). For this take any closed subset F of R and consider
an accumulation point a of the set f(F). Since f(F) C f(R) =
(—00;0] U [1;400), we have a € (—o00; 0] U [1; +00).

If a € (—o0;0] (if @ € [1;+00)), then there exists a sequence of real
numbers (yx)k>1 such that for every k > 1 we have yx € f(F), yx # a,
yr < 0 (respectively, y; > 1) and limg— yx = a.

Since each yi € f(F). for every k > 1 there exists x € F' such that
yr = f(xx) = 2. Therefore a = limy—oo Y = limg—co k. Since F is
closed, a € F. But, clearly, f(a) = a.

Hence a € f(F). Therefore f(F) is a closed subset of R.
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