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ON THE CORRECTNESS OF LINEAR BOUNDARY VALUE
PROBLEMS FOR SYSTEMS OF GENERALIZED ORDINARY
DIFFERENTIAL EQUATIONS

M. ASHORDIA

ABSTRACT. The sufficient conditions are established for the cor-
rectness of the linear boundary value problem

de(t) = dA(t) - (t) + df (1), I(z) = co,

where A : [a,b]) — R®*" and f : [a,b] — R" are matrix- and
vector-functions of bounded variation, ¢g € R™ and [ is a lin-
ear continuous operator from the space of n-dimentional vector-
functions of bounded variation into R™.
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Let matrix- and vector-functions, 4 : [a,b — R™*" and f : [a,b] —
R", respectively, be of bounded variation, ¢¢ € R, and let
[ : BV,(a,b) — R™ be a linear continuous operator such that the
boundary value problem

da(t) = dA(t) - z(t) + df (2), 1)
I(z) =co 2

has the unique solution zg.
Consider the sequences of matrix- and vector-functions of bounded

variation Ay : [a,b] — R™" (k = 1,2,...) and f; : [a,b] - R®
(k= 1,2,...), respectively, the sequence of constant vectors ¢, € R"
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386 M. ASHORDIA

(k = 1,2,...) and the sequence of linear continuous operators I :
BV,(a,b) = R™ (k=1,2,...).
In this paper the sufficient conditions are given for the problem

da(t) = dAW(E) - 2(t) + dfi(2), 3)
li(z) = e 4)

to have the unique solution 4 for any sufficiently large & and

lim zx(t) = 2o(t) uniformly on [a,b]. (5)
k—+c0

An analogous question is studied in [2-4] for the boundary value
problem for a system of ordinary differential equations.

The theory of generalized ordinary differential equations enables one
to investigate ordinary differential and difference equations from the
common standpoint. Moreover, the convergence conditions for differ-
ence schemes corresponding to boundary value problems for systems
of ordinary differential equations can be deduced from the correct-
ness results for aprropriate boundary value problems for systems of
generalized ordinary differential equations [1, 5, 6].

The following notations and definitions will be used throughout the
paper:

R =] — 00, 4-00f;

R" is a space of real column n-vectors x = (;)%,; with the norm

lell = 3 Jail

=1

R™*™ is a space of real n x n-matrices X = (z;;);=; with the norm
n
i — oL
X1l = ]211?')(,7;; |zij;

If X € R™", then X~! and det(X) are the matrix inverse to X and
the determinant of X, respectively; E is the identity n x n-matrix;

b b

Vz and VX are the sums of total variations of components of vector-

a a
and matrix-functions, z : [¢,b] = R™ and X : [a,b] — R™*", respec-
tively;

BV,(a,b) is a space of all vector-functions of bounded variation

b
z:[a,b] = R" (i.e,, such that Vo < +00) with the norm
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lzllsup = sup{llz(t)]| : € [a,B]};

z(t—) and z(t+) (2(a—) = 2(a), x(b+) = (b)) are the left and the
right limit of the vector-function z : [a,b] — R™ at the point ¢;

diz(t) = z(t) — a(t—), dax(t) = x(t+) — x(t);

BVpxn(a,b) is a set of all matrix-functions of bounded variation
X :[a,b] = R™" i.e., such that i/X < 400;

diX(t) = X(t) = X(1=), 2 X(t) = X(t+) — X(1);

IfX = (2i;)}j=1 € BVpxala,b), then V(X) : [a,b] — R™ " is defined
by

V(X)(a) =0, V(X){t)= (gz,j):‘j:l (a<t<b)

If a € BVi(a,b), 2 : [a,b] - Rand a < s <t <D, then
t

/x(-r)da(r) = z(t)dia(t) + x(s)dra(s) + / a(7) da(T),

s Jodl

where [, 2(7)da(7) is the Lebesgue-Stieltjes integral over the open
interval ]s, ¢[ (if s = ¢, then [!2(7)da(r) = 0);

IfA= (aij)?,j=1 € BVaxn(a,b), X = (zij)} ij=1 : a0 —» R™™,
= (z:)L, ¢ [a, b]——»R"anda<s<t<b then

/(1 \(r) (Z/% ) da(r ),]:1’
/dA @G= (é:ls/“(ﬂ da,-k(T)):l:l;

|I7]| is the norm of the linear continuous operator [ : BV, (a,b) — R™;

If X € BV,xn(a,b) is the matrix-function with columns zy,...,an,
then {(X) is the matrix with columns I(zy),...,{(z,).

A function z € BV,(a,b) is said to be a solution of problem (1), (2)
if it satisfies condition (2) and

+/dA 4 (&)= f(s) for a<s<t<b.

Alongside with (1) and (3), we shall consider the corresponding
homogeneous systems

dx(t) = dA(t) - o(t) (10)

1BV,.(a,b) is not the Banach space with respect to this norm.



388 M. ASHORDIA
and
dz(t) = dAk(t) - z(t), (30)

respectively.
A matrix-function Y € BV,xn(a,b) is said to be a fundamental
matrix of the homogeneous system (1o) if

Y(t):Y(s)+/dA(‘r)~Y(-r) for a<s<t<b

and
det (Y (1)) #0 for t € [a,b].

Theorem 1. Let the conditions

det (E + (—1)d;A(t)) #£0 for t € [a,b] (j =1,2), (6)
Jm L(y) = (y) for y € BVa(a,b), U]
kli»r-:loo = Coy ®
Jmsup [l < +oo, )
kEinw sup\:/A;c < 400 ‘ (10)
be satisfied and let the conditions
Jim_ [4k(t) — Aw(a)] = A(t) - Ala), (11)
Jim [fu(0) = fi(@)] = £2) = f(a) (12)

be fulfilled uniformly on [a,b]. Then for any sufficiently large k problem
(3), (4) has the unique solution ) and (5) is valid.

To prove the theorem we shall use the following lemmas.

Lemma 1. Let oy, B € BVi(a,b) (k=0,1...),

kE+mw 8% = Bollswp = 0, (13)
r=sup{\2ak:k=0,l,...}v<+oo (14)

and the condition

Jim [o(t) — ax(@)] = o(t) — ao(a) (15)
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be fulfilled uniformly on [a,b]. Then

t

kEijﬂk(T)flak(T) = /ﬂO(T)dOIO(T)

uniformly on [a,b].

Proof. Let ¢ be an arbitrary positive number. We denote

Dj(a,b,e59) = {t € [a,8] : djg(t) > e} (i=12)
where
9(t) = V(Bo)(t) for 1 € [a,b].
By Lemma 1.1.1 from [5] there exists a finite subdivision
{ao, 71,01, .., T, n} of [a, 8] such that
)a—ao<al<-~-<am=b,a0§nSals-ng'rmSam;
b) If 7; & Dy (a, b,e; g), then g(r;) — g(ai_ 1) <¢
I 7. € Di(a,b,¢;9), then oy < 7; and g(r;— ) —g(ai1) < g
¢) If 7; € Dy(a,b,¢;9), then g(ew) — g(7:) < &3
If 7 € Da(a, b,¢59), then 7 < a; and g(o) — g(ri+) < e.
We set
Bo(t)  for t € {ao, 1,1, .., Ty O}
Bo(ri—) for t €lai_1, 7, 7 € Di(a,b,¢;9);
- Bo(ri)  for t €laiy, 7, 7 & Di(a,b,e;9) or
for ¢ €], cif, 7; & Da(a,b,59);
Bo(ri+) for t €], e, 7 € Dy(a, b, ¢;9);
=1, sym);
It can be easily shown that n € BVj(«,b) and

[Bo(t) = n(t)| < 2¢ for t € [a, ). (16)
For every natural k and t € [a,b] we assume
= jﬂk(T)dak(t)—jﬂO(T)dQO(T)
and ) , a
= [ n(t) dioa() = )]
I¢ follows from (15) fhat

i 6lap = 0. an



390 M. ASHORDIA
On the other hand, by (14) and (16) we have
el < 4re + 7118 = Bollan + Wl (£ =1,2,...).
Hence in view of (13) and (17)
Jm s = 0

since ¢ is arbitrary. H

Lemma 2. Let condition (6) be fulfilled and

kEToo Yi(t) = Y(t) uniformly on [a,b], (18)

where Y and Yy are the fundamental matrices of the homogeneous
systems (1g) and (3¢), respectively. Then

inf {|det(Y'(¢))| : ¢ € [a,8]} > 0, (19)
inf {|det(Y (1)) : t € [a, 8]} > 0 (20)

and
kEIPoo Yo (t) = Y7U(t) uniformly on [a,b). (21)

Proof. Tt is known ([6], Theorem II1.2.10) that
d;Y(t) = d;jA(t)- Y(t) for t€[a,b] (j =1,2).
Therefore (6) implies

det (Y (t=) - Y (t+)) = [det(Y(8)?] - f[ det (E + (—1)d;A(t)) #£0
for te [a,];] (22)

Let us show that (19) is valid. Assume the contrary. Then it can
be easily shown that there exists a point ¢, € [a, b] such that

det (Y (to—) - Y (to+)) = 0.

But this equality contradicts (22). Inequality (19) is proved.
The proof of inequality (20) is analogous.
In view of (18) and (19) there exists a positive number ¢ such that

inf {| det(Yi(t))| : ¢ € [a, 8]} > ¢ > 0
for any sufficiently large k. From this and (18) we obtain (21). ®
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Proof of the Theorem. Let us show that
det (E+ (=17 A(t)) #0 for t€[a,b] (j=1,2) (23)

for any sufficiently large k.
By (11)

Jim diAw(t) = ;A1) (G =1,2) (24)
uniformly on [a,b]. Since i/A‘ < +o0, the series Y,e(,y lld; A(1)]|
(7 = 1,2) converge. Thus for any j € {1,2} the inequality

1
lld; AN = 5

may hold only for some finite number of points Liiyen vy timg In [ay 8]
Therefore

1
;AN < 5 for t €a,b], t#t; (i=1,...,m;). (25)

2
It follows from (6), (24) and (25) that for any sufficiently large k and
for j € {1,2}
det (E + (—1)d; A(t;)) #0 (i =1,...,m;) (26)

and
I Al < 5 for e [a8], t# b (= 1,cmy).  (27)

The latter inequality implies that the matrices £ +( 1)7d; Ax(t)
(j = 1,2) are invertible for ¢ € [a,b], t # t;; (i = 1,. .,m;) too.
Therefore (23) is proved.

Besides, by (26) and (27) there exists a positive number ry such
that for any sufficiently large k

I[E+ (=1yd;Au)] H<r0 for t€a,b] (j=1,2). (28)

Let k be a sufficiently large natural number. In view of (6) and (23)
there exist ([6], Theorem I11.2.10) fundamental matrices Y and Y} of
systems (1o) and (3o), respectively, satisfying

Y(a) = Yi(a) =
Moreover,
Yk_l € BVixn(a,b).
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Let us prove (18). We set

Zi(t) = Yi(t) = Y(t) for t € [a,b]
and
By (t) = Ax(t—) for t € [a,b].
Obviously, for every t € [a,b]
dy[Bi(t) — Ax(t)] = —da[Bi(t) - Au(t)] = =1 Aw(t)

and

t

[ d[Bu(r) = Au()] - Z(r) = —dh Au() - Z4(0).

2
Consequently,
t

Zu(t) = [E—dl_Ak(t)]_l[ / d[am) - A@)] Y+ [ dBk(T).zk(T)]‘

From this and (28) we get

124 < ro(en + [ dIVBIOI-I1ZN) for ¢ € [a)

where

e =sup{| j dA(r) - A7) - Y(7)

‘tela b]}.

Hence, according to the Gronwall inequality ([6], Theorem 1.4.30),

IZe(t)]l < roex exp (ro ¥ Bx) < rocxexp (roV Ax) for t€a,8]

By (10), (11) and Lemma 1 this inequality implies (18).

It is known ([6], Theorem II1.2.13) that if z) is the solution of (3),

then

ax(t) = Ye(t)zi(a) + fi(t) — fi(a) = Yi(t) /dYk_l(T) () = ful@)].

Thus problem (3), (4) has the unique solution if and only if
det (Ix(Y4)) # 0.

Since problem (1), (2) has the unique solution o, we have

det (I(Y)) #0.
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Besides, by (7), (9) and (18)
Jim G(Ye) = 1(Y).
Therefore, in view of (30), there exists a natural number ko such that
condition (29) is fulfilled for every k > ko. Thus problem (3), (4) has
the unique solution z for k > ko and
-1
2(t) = () (V)] [ex — W(F(f)] + U0, (3D
where
t
Fuf)(0) = fu(t) = fula) = Ya(t) [ ¥ )« [fulr) = fela)].
According to Lemma 2 condition (21) is fulfilled and
p=sup {7 (O + [¥e(0)] 1 € [o, B, k2 ko} < +o0. (32)
The equality
¥ = Y (e) = YO [ dAun) - Hal) %)
t
implies
IV — Y @I € 2V Ak for a <s<t<b (k2 ko).
This inequality, together with (10) and (32) yields
. b
kEToosuP YYI‘ < +00:
By this, (12) and (21) it follows from Lemma 1 that

Jim [av ) [ - )] =

= [ar7i()- 1) - f(@)] (33)

uniformly on [a, b].
Using (7)-(9), (12), (18), (29), (30) and. (33), from (31) we get

klil_:l zx(t) = 2(t) uniformly on [a,],
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where

() = YO 1)) [eo = 1(E ()] + F(N)(W),
F(A)®) = f() = f@) =Y () [aY ()« [£(r) - f(@)]-

It is easy to verify that the vector-function z : [a,b] — R is the
solution of problem (1), (2). Therefore

xo(t) = 2(t) for t € [a,b]. ®
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OPTIMAL TRANSMISSION OF GAUSSIAN SIGNALS
THROUGH A FEEDBACK CHANNEL

O.GLONTI

ABSTRACT. Using the methodology and results of the theory of
filtering of conditionally Gaussian processes, the optimal schemes
of transmission of Gaussian signals through the noisy feedback
channel are constructed under the new power conditions.

GIB0TBI.  opgamas pouols bn Bobs g gorfoteocbo bBmbo-
do oo goroa3gdels m3®na gaaaan dbom asatﬁmnm
SodeBBo somzsfm a»‘n'*‘é gaﬂb BoepHoels ent
Bgomgmgmmgedbs @3 Gyegagdab g

In the present paper, in contrast to our previous work (1], the prob-
lem of transmission of Gaussian signals through the noisy feedback
channel under new power conditions (see conditions (15),(38) and
(40)) is investigated. The obtained results, in our opinion, imply sig-
nificant simplification and more clearness.

In §1 the optimal (in the sense of mean square criterion) linear
schemes of transmission in the case of the discrete time are con-
structed. In §2 the optimal linear schemes of transmission in the case
of continuous time are investigated and it is proved that these schemes
are also optimal in the general class of transmission schemes.

§ 1. OPTIMAL TRANSMISSION IN A DISCRETE CASE
1. Let the signal 0 = (6;,F;), t € S = {0,A,2A,...,T}, A >0,

be a discrete Gaussian process given on the basic probability space
(9, F, P) with the nondecreasing family of o-algebras (%), t € S,
Fi C F, t < s, satisfying the following finite difference equation

A, = a(t)0A + b(t) Avy, )

where v = (v, F), t € S, is a Gaussian random sequence (G.R.S.)
N(0,t) with independent increments independent of 6y, which is a
Gaussian N(m,~),y > 0, random variable; a(t) and b(t) are the known

1991 Mathematics Subject Classification. 60G35,93E20,94A40.
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396 O.GLONTI

functions on S, for every t |a(t)| < k, |b(t)| < k where k is some con-
stant.

Suppose that 0 is transmitted according to the scheme
At = [Ao(t, €) + Ai(t, €)0)A + Awy, &0 =0, (2)

where w = (w;, F7), t € S is a G.R.S. N(0,t) with independent incre-
ments which is independent of 6, and v. Nonanticipating with respect
to ¢ functionals Ag(t,&) and A(t,€) define the coding.

The transmission performed according to the scheme (2) is a trans-
mission of a Gaussian message # through a noiseless feedback channel
which is an analogue of the additive ”White noise” channel in the dis-
crete time case. No instantaneous feedback is required here (which is
essential in the continuous time), but we assume that the quantization
step A is equal to the time of signal return.

Suppose that the coding functionals Ao and A, satisfy the condition

E[Ao(t, &) + A4, 000 < p, (3)

where p is a constant characterizing the energetic potential of the
transmitter.
Consider the decoding 0 = §,(¢) satisfying for every ¢ the condition

Ef? < oo. (4)

Such kind of [(Ao, A1),6] form a class of admissible codings and
decodings.

The problem is to find the codings (A7, A7) and the decodings 6~
optimal in the sense of the criterion

§(t)= inf E[6,— 0,(6) (5)

Ao, A1,0

where inf is taken in the class of all admissible [(Ao, A1), 6.

Theorem 1. During the transmission a discrete Gaussian process
described by the finite difference equation (1) according to the trans-
mission scheme (2) under conditions (3),(4) and the optimal coding
functionals Ay and A3, have the form

Aj(t) = \/g(l +pA)TE, At €)= —Aj(H)m], (6)
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where the optimal decoding 0; = m; = E[0FE] and the transmitted
signal are defined by the relations

" i (1+a(t B
Am; = a(t)m;A +\/py; i+p A A{,, mg=m, (7)
Agr= %(0,—711:‘)A+Aw¢, & =0. S ®
t

The minimal error of message reproduction has the following form

t—A

8(t) =7 =7 [T (1 +a(k)A)?) (1 + pA)"% +

t—A

t—A
+ k):(V(k)A)( II (1 +a(s)a)?)(+pa) =5
=0

s=k+4A

ik 38 k=24

Proof. For the given Ag and A, it is known that é, =my= E(9,|_’Ff)
Hence
§(t)= inf E(0,—m)?= inf E
= (Fi eyt =l S

In order to find m, and v, = E[(6; — m,) )?|Ff] we shall use filtering
equations for the conditionally Gaussian random sequence (see [1] or
[2)).

The rest of the proof is similar to that of the theorem on the optimal
scheme for the transmission of Gaussian processes through a noiseless
feedback channel in continuous time (see [2]). B

2. It is natural to investigate the case of Gaussian signal transmis-
sion when white noise is imposed on the back signal, i.e. the message
is transmitted according to the scheme

A& = A(t,0,6)A + a(t)Awy, & =0, 9

where the back signal £, has the form, say, & =&+n or & =T1(t,6)+
i, where TI(t, £) is some nonanticipating functional and 7, is the noise
in the back channel.

We shall specify the problem under consideration.

Let the signal § = (0;,F,), t € S, be a discrete Gaussian process
described by the equation (1).

Assume that 6 is transmitted according to the scheme

A& = [Ao(H)& + Ar(1)0)A + o(t)Aw,, & =0, (10)

where the functions Ag and A, define the coding.
The back signal has the form

& =T(t,6) +ne. (11)
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Here I1(t,€) is a transformator of the back message and 7, is the noise
in the back channel governed by the finite difference equation
An = c(t)mA + d(t)Awy, (12)

where w = (w;,Fi), t € S, is a G.R.S. N(0,¢) with independent
increments, for every ¢ |¢(t)| < L and |d(t)| < L, where L is some
constant.

Denote

mf = mq = EOJF, m® = E[m|f‘1
A =y = Bl(0 = m|F), A = Elne—mi®) A,
2D = 4 = B[(8: — mo)(me — m?)| 7],

2
!( »2) | ,n(m)
V=W o, W= .

Tt

Tt

The problem is to find the codings (Aj, A7), decodings 0~ = (0;(¢7)),
t € S, and the transformator II* optimal in the sense of the square
criterion

§(t)=  inf E[B— 0e)1, (13)

where inf is taken in the class of admissible Ag, Ay, H,é for which the
following power condition®

E[Ao(t)E + Ax(t)0.)* < p(t), (14)
AG(1)F: 2 q(t) (15)
holds where p(t) and ¢(t) are summable functions on S characterizing

the changes of the energetic transmitter potential, and ¢(t) < p(t), t €
S. Let

Ef? < co. (16)

Theorem 2. When Gaussian random sequence 0 = (0, F;), t € S,
governed by the finite difference equation (1) is transmitted accord-
ing to the scheme of transmission (10)~(12) through a noisy feedback
«channel under conditions (14)~(16), then the optimal in the sense of

1The fact that condition (15) is the power one indeed will be shown at the end
of the section.
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square criterion (13) coding functions Aj, Aj, decoding functional 6
and transformator of the back message 11* have the form

A1) = ("%ﬁ’) ,

An) = — (’Stt))%;y +( (t);-q(t))%v
@ _ A .
m(t, &) = —m;@ ~ e
0;(€7) = m}, 7

Am; = a(t)ymiA + (1+ a(®)A); (1) = a®))F
X(@*(1) + POA) AL, my=m.
The optimal transmission has the following form
a(t)\ 3 «(2) q(t)\4 5 p(t) —a(t)y4
ag ={(ED - mi®) + s + (B 2B)9]
&= {(7;)(7“ o) [ (%*) 't ( N )]
x(0, —m;)}A + o(t)dwi, € =0, (18)
where m:m satisfies the finite difference equation
Am'm = (t)m,mA + (1 + ¢(t)A)
x {7 i (p(t) — a(0)}F + lat )‘n]*} %
x(o2(t) + p(1)A) ' Ag, my® =m® = Enf?

and 7} = 7 (—‘:—2)—2 and 47 = —ii:—z) are defined by the filtering

equations (19)~(23) given below, where Ay and AT are substituted from

(7).
The minimal message reproduction error §(t) has the form

)= =7 H(l +a(k)AP (0P () + g(k)A)(@ (k) + p(K)A) ™" +
t-A = A

+35 80 TT (1 +a(m)A) (e m) +a(m)A)(e*(m) +p(m)A) ™)
k=0 m=k+A

Corollary. Let a(t) = b(t) =0, i.e. according to the scheme (10)-
(12), a Gaussian N(m,7), v > 0, random variable 0 is transmitted.
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Then the reproduction error é(t) is

t-A
B a(k) p(k) \-1
_7}}0( Uz(k)A>(1+az(k)A) .
In this case 77 and 4} satisfy the following finite difference equations
A% . S e
TE — (1) + 5l (0) - a0 + a0, T =0,

Sk {mc(t)ﬁ( )~ (t)m‘ ¥ q(t)(l +e(t)A)] -

a(t)\} o
(L4 e)a) (T )’( P dl)ha) «
o) HOAI, 5= 0.
Proof of the theorem. It can be easily seen that

§(1)= inf Ev,= inf
() = (W5 oy B = (0L gy

Rewrite (10) in the following form
Afy = [Ao(O)TI(E,€) + Ao(t)ne + A1(D)0)A + o (t) Awy, Eo = 0.

Then one can see that the equation of optimal filtering of a partially
observable conditionally Gaussian process (0;,&;), t € S, with an un-
observable component 8; = (8, 7:) (see [1] or [2]) leads to the following
closed system of finite difference equations:

YAt + Ao()r?) x
7:1'2) + Ao(t 72(2) A]_l X

(
x[o?(t) + (A7 ()7 + 241(t) Ao(t)
N+ Ay(t)m)Al, me=m, (19)
)
)

X[AE, — (Ao(t)(TI(t, €) + m{?
Am® = ()ymPA + (1 + () A) (A ()7 + Ao(t)r) x
[0%(8) + (A2t + 241 () Ao(t)r"?) + A7) A" x
x[A& — (Ao(t)(TI(t, €) + m{P)) + As(t)m,)A], m® =m, (20)
Ay

Amy = a(t)mA + (1 + a(t)A
)A

= B(t) + a(t)r A + 2a(t)1") -

~(1+ a(t)A) (Ax(t)r" + Ao(t)r" D) [0%(t) +
HAAOY + 241(1) Ao + AY()4)A],
% =7, (1)
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@
A% _ (1) + DA + 2e(t)® —

—(1+ c(t)A)(A(t)y 12)+A0(t)7(2))2[‘72(t)+

H(AK L + 245 (1) Aoty + Ay P)AL T,
73” =, (22)
7(1 ,2)
L = a("™ + et -

—(1+a()A)(1 + A A" + Ao()7i"?) x

x (A 4 Ao )t )+ Aﬁ( D 4 24, (8) Aoty +
+AX ()AL (23)

Equation (21) can be reduced to the form

t—A

v = (TL(1 + a(k)A)2(a?(k) + AZ(K)TR) (k) +

k=0
(A3 (kY + 241 (k) Ao(k)r? + A3(k)y{)AL ) x
t—A 1

x [ 2 PO ( T A+ a(m)A)X(o(m) + Aj(m)Fnd) x

=0 m=0
x[o3(m) + (A3 )y + 21 (m) Ao(m)71? +

+AYmND)AI) ™ 4], (24)

Using inequality (15) and the resulting from (14) inequality
Aty + 240 (D) Ao(D)f" + AFORD < p (25)

we obtain from (24)

E(0, = my)* =7 2 $(1)
where

t—A
(1) = (TLQ + a(k)A)(?(K) + a(k)A)(0* (k) + p(K)A) ™) x
k=0
t—A 1
x [ 3 82)( I+ a(m)A)*(o*(m) + g(m)A) x
=0 m=

x(0*(m) + p(m)A)™) ™ +4]

and since () is a known function, we have

6(t) = 9(t) (26)
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forallt € S.
The equality in (26) is obtained when
Ao(t)Fe = ¢(t) (27)
and
A2()y+ 241 (D) Aot + AFO® = p(0). (28)
Since

p(t) 2 E(Ao()& + Au(1)0)* = E[A(DTI(L,€) +
FA(O)m® + Ar(t)md? + A+ 24 (D) Ao + AL %(2),
(28) implies (P-a.s.)

Ao(OII(L, €) + Ao(t)m{P + Ay(t)me = 0. (29)

Consequently, (27),(28) and (29) are the relations from which op-
timal codings (A3, A}) and the transformator II* are obtained. This
completes the proof of the theorem. &

Remark. As it can be seen from relation (17), the optimal transfor-
mator of the back message ITj is constructed in such a way that the
back message is multiplied by the value of some deterministic function
of time at the moment ¢ and mgz) with a negative sign, i.e. the noise 7
is compensated by the best (in the sense of square criterion) estimate
m{? = E[|FE] (see optimal transmission scheme (18)).

To conclude this section we can show that condition (15) is indeed
a power-type one.

It can be easily seen that
E(Ao(t)E, + A1(1)0,)* = E[A(D)II(L,€) + Ao(t)ym®? +
+A (M + A0 + 2460 A + AL =
= E[A(D)TI(1,€) + Ao(t)m{? + As(t)md)* + AG(t)3e +
+(Ag(t)’72(1'2) + Au(t)n) ! (30)
and since
AR = q(t)
(30) implies
E[Ao(t)E + Ar(1)6.) = q(t). (31)
Consequently (15) implies power condition (31).
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§2 ) OPTIMAL TRANSMISSION IN A CONTINUOUS CASE

Consider the following problem. A Gaussian message 0 is transmit-
ted through an additive white noise instantaneous feedback channel
described by the following stochastic differential equation

dé, = A(t,0,8)dt + o(t)dw, (32)
where w = (w;, F;) is a Wiener process. In contrast to the traditional
schemes (see, e.g. [2]-[6]), the feedback here is not assumed to be
noiseless. N

The functional A in (32) defines the coding, and the back signal £
has the following form

& = 10(t,€) + me 33)

where II is the transformator of the back signal, 7 is a noise in the
back channel.

In this section optimal transmission schemes are constructed under
certain power restrictions in a linear case when

A(t,0,€) = Ao()E + Ai(1)0:
and it is proved that these particular linear schemes are also optimal
in the general class given by (32),(33).

1. Let the transmitted message 0 = (0;, F;), t € [0,T], be a Gaus-
sian process described by the stochastic differential equation

db; = a(t)6,dt + b(t)dv, (34)
where v = (v, F;) is a Wiener process independent of the Gaussian
N(m,5), v > 0, random variable o, |a(t)| < k, |b(t)| < k, k is some
constant.

Suppose that 6 is transmitted according to the following linear
scheme

dE, = [Ao()E + AL(1)0,)dt + o(t)dwi, & =0, (35)

where w = (wy, F;) is a Wiener process independent of v; Ao(t) and
A, (t) are the coding functions, o(t) > 0. The back signal £ has the
form (33). The noise in the back channel 7 admits the stochastic
differential

dne = a(t)ndt + b(t)dw, (39)

where @ = (w,, F;) is a Wiener process independent of w and v and
of the Gaussian N(my,72), 72 > 0, random variable 7o, [a(t)] <
k, [b(t)] < k.
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A class of admissible codings, transformator and decodings is formed
by such [(Ao, A1), 11, 0] for which the following conditions are satisfied:

1) stochastic dlﬂ'erentlal equation (35) has a unique strong solution,
supeo.7) | Ail ~)| < oo, 1=0,1;

2) E[Ao(t)& + A1(1)0.)* < p(t), (37)

AR (e > q(8), (38)
where p(t) and q(t) are some functions integrable on [0,7] and for
every t
q(t) < p(t)-
Let

" A(t) = inf E[f, — 0,(6)], (39)
where inf is taken in a class of admissible [(Ao, Ay), 11, 4).

Theorew: 3. When « Gaussian random process 0, governed by a
stochastic differential equation (34) is transmitted through a noisy feed-
back channel (35),(33),(36) under conditions 1) and 2) optimal in the
sense of the square criterion (39), the coding functions Ag, A} and the
transformator of the back message I1* have the following form

oy _ (2N
430 = (57)"
AL(t) = _('I(t))sﬁﬂ_l_ (P(i) —Q(t))f

= *

)

H Tt
*(4,6%) = —m *“Wﬁxﬁg mi

where 47 is equal to the minimal message reproduction error

Ay =7 = vexpf2 [ a(s)ds — [ %jf—s”ds} "

+/0t b(s) exp{2 Lla(u)ds - /sl (—p%idu}ds,

and 37 and 4; are defined by the following equations

BE _ go(e) + 257 (alt) - L5 +37(8(0) + 2a(000),

“ )
o = Y2

th' =4; [a) - jz((tt)) — B(t) - 2a(t);] — AI(t)Ag(’)o;/(tt)’
¥ = 0.

2The notation of §1 is used.
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The optimal decoding m} satisfies the following stochastic differen-
tial equation

dm} = a(tymidt + [ (p(t) — q())]Fe 2 (1)dE;, m; = m.

The optimal transmission

. \i DAL t) —q(t)\%
g = {(S)hg; o [ (L) hse e (=L o) +
+o(t)dw,

Tt

or

& = {(S) - mi® + - () 57+ -
+(M)%](a, —m))}dt + o(t)dw,, € =0,

Tt

where m, is defined by the equation

dm;® = a(tym;Pdt + {30 (1) — a()))F +
+HatFN o2 (t)dg, mp® = ma.

The proof of the theorem is similar to that of an analogous theorem
(Theorem 2, §1) for the discrete case, and the equations of nonlinear
filtering of conditionally Gaussian type processes (see [2]) are used.

Corollary. When a Gaussian N(m,7), v > 0, random variable 0 is
transmitted through the channel (35),(33),(36), the minimal message
reproduction error is

A(t)z"eXp[_/otMa;z((yi}

Now we shall consider the simplest case of a Gaussian N(m,y)
random variable 0 transmission through a noisy feedback channel
(32),(33) with A(t,0,€) = & + A(t)0. Let o(t) = 1.

For simplicity we assume that 7, = bw(t), where b is some constant.
Then the optimization problem is simplified and instead of obtaining
optimal Ao, Ay, II, 6 as in Part 1 of Section 1 we must find optimal
A 1L 6.

The necessity of condition (38) is eliminated but it should be re-
quired that

p(0)2 7 1€0,T]
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Optimal A*, IT* and 6* will have the following form

Ay = —5¢ + (L=,

x

e
m(,e7) = —mi® + (5 - ( ;;.7')%]777;,

07 = 0;(€7) = m},

where m] admits the representation
* * LD *
dmy; = [v; (p(t) = 7)]2d€;, mog=m
and 7, and 4; are found from the relations

i

W:P_:ﬁ’ Yo =0, .
A tp(s) = Vs\7~
qo=— [ (LT b g,
0 Vs

while m;m is found from the stochastic differential equation

dm;® = (371 (p(t) = F))F + Fdder, mp® = 0.

The minimal message reproduction error is

A =exp [~ [ (0ls) - 7)ds].

In the case b = 1 we have
o1
o = T Tl
and
t
A(t) = yexp [ - / p(s)ds} cht,
o
where cht is a hyperbolic cosine.
In the case b = 0, i.e. when the noise 7 in the back channel is
absent, we have

At) = yexp (- /otp(S)dS),

which coincides with the transmission through a feedback noiseless
channel (see [2]) and our optimal II and A coincide with the optimal
codings Ao and A; by using the notation of [2], i.e. in this case the
transformator IT can be placed in the coding device by virtue of a
noiseless feedback.
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9. Consider the transmission of the Gaussian process described by
stochastic differential equation (34) through the channel (32),(33). Let

At 0,€) = E[A(t, 0, )| FF), F¢=0{0i€s <1}

and
A(t,€) = E[A(t,6,,6)| 7).

Assume that the following conditions are satisfied:
1) Equation (1) has a unique strong solution,

& 2) BAX(t,0,,6) < p(0),
N

E[A(t,0,,€) — A(t,0,,€))” 2 4(t) (40)
here p(t) and g(t) are some functions integrable on [0,7] and for
every t
p(t) = q(t).

Let Ir(6,€) be mutual information of signals 0 and ¢ and let Ir(é,f)
be mutual information of 6 = (0;,7:) and &,t € 1057

Lemma 1. Mutual informations Ir(0,€) and I7(0,€) have the fol-
lowing forms (see [T])

10,6 = 5 [ B0, - A2, ()
I(8,€) - In(0,¢) =
1 /T L
+5 [ BlAG0,8) - Al 0, O O (42)
2 Jo
Corollary. Under conditions 1) and 2) we have

1 (T p(t)
2Jo ot)

@6 -10.02 5 [ S

I11(0,6) <

Let
I, = sup I,(0,€)
where sup is taken in the class of all admissible transmission schemes

(32),(33), i.e. schemes for which conditions 1) and 2) are satisfied.
Then from the corollary of the lemma we have

1t p(s) —a(s)
L's 5/0 st.
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For the linear case A(t,(),,g) = Ao(t)E, + A;(t)0y, since A(t,6) =0

we have

11 =
B0, 6= l/ EA(s,0,,€")ds =

2/ pS)—qs)

Hence the following theorem is true.

Theorem 4. Optimal codings Ay, A}, the decoding m; and the trans-
formator TI* constructed in Theorem 3 are also optimal in the sense
of mazimum of mutual information.

3. Finally we shall prove the following

Theorem 5. When a Gaussian N(m,7), v > 0, random variable 0
is transmitted according to the transmission scheme (32),(33) under
conditions 1) and 2), the minimal reproduction error

§(t)= inf_ E(0—0,(¢))
(AI1,0)

has the following form
60) = (1) = yexp { - [[((s) = a(s)o~as},

where A(t) is the minimal message reproduction error for the optimal
linear transformation constructed in Theorem 3, i.e. among all admis-
sible schemes the transmission constricted in Theorem 3 is optimal in
the sense of the square criterion.

Proof. Since 6(t) < A(t), the theorem will be proved if we show that
5(t) > 'yexp{ / (p(s) — q(s 'zds}. (43)

*Let = 0,(¢) be some decoding. Then by Lemma 16.8 from [2] we
have

E(0 — 8,(6))? > 7e 21 CHO),
But 1(0,0,(¢)) < L,(0,¢£), and according to Theorem 4
L(0,€) < 1(6,€) / Po*(s)ds.

Hence inequality (43) takes place and Theorem 5 is true. ®
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TWO-WEIGHTED L,-INEQUALITIES FOR SINGULAR
INTEGRAL OPERATORS ON HEISENBERG GROUPS

V.S. GULIEV

ABSTRACT. Some sufficient conditions are found for a pair of
weight functions, providing the validity of two-weighted inequali-
ties for singular integrals defined on Heisenberg groups.

GOBITE. 63l Badergos Brgoghonn iyfiotholso dodheds froboos
Fygormolssogols, Gedeadogs iéabggemyme mfjmbosbo g@meamby-
Bals 3@33‘3@&[’ lm‘hsﬁ%a@vbob xaﬂcdaa%a 605\»%{3 o lob-
Fmegme obgadaragobimgob.

Estimates for singular integrals of the Calderon-Zygmund type in
various spaces (including weighted spaces and the anisotropic case)
have attracted = great deal of attention on the part of researchers.
In this paper we will deal with singular integral operators T on the
Heisenberg group H™ which have an essentially different character as
compared with operators of the Calderon-Zygmund type. We have
obtained the two-weighted L,-inequality with monotone weights for
singular integral operators T on H™. Applications are given.

Let H™ be the Heisenberg group (see [1], [2]) realized as a set of
points & = (g, Z1, .- . ,T2n) = (z0,2’) € R¥*1 with the multiplication

1 n
y = (20 + 3o + 3 S (@inri = Tasiti)y 2 )
i=1

The corresponding Lie algebra is generated by the left-invariant
vector fields

9 d A a
Xo—a—xo, Xi—&_i+23n+iax 3
b [N R B T S

1991 Mathematics Subject Classification. 42B20,42B25,42B30.
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which satisfy the commutation relation

1
(X, Xopi] = ZXO’
[X()} Xx'] = [X(Jy)(n-}-i] = [X;,X]] = [Xn+iaXn+j] = [Xz-,XnH'] =0,
Vg = lseinsfl 4 £

The dilation &, : 8,z = (t*z¢,ta’), t > 0, is defined on H". The Haar
measure on this group coincides with the Lebesgue measure dz =
dzodzy - - - dzo,. The identity element in H™ is e = 0 € R**!| while
the element 2~ inverse to z is (—2).

The function f defined in H™ is said to be H-homogeneous of degree
mion. H®, if

FOm) =2 f )y ¢ >0

We also deiine the norm on H™

% i [13 B (izf)z]l/q

which is H-homogeneous of degree one. This also yields the distance
function, namely, the distance

d(z,y) = d(y™'z,e) = [y 'z|n,

ly"eln = [(Io — Yo — %i(wiyn+; - In+iyi))2 +

2n

+ ( Z(x,' = yi)z)z] 1/4-
i=1
d is left-invariant in the sense that d(z,y) remains unchanged when z
and y are both left-translated by some fixed vector in H™. Further-
more, d satisfies the triangle inequality
d(z,z) < d(z,y) +d(y,2), x,y,z€ H"

For r > 0 and z € H™ let

B(z,r)={y € H"; ly"'z|u <}

(S(z,r)={y € H"; ly'eln =r})
be the H-ball (H-sphere) with centre z and radius r.

The number @ = 2n + 2 is called the homogeneous dimension of
H™. Clearly,
d(6,z) = t9dz.
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Given functions f(z) and g(z) defined in H", the Heisenberg con-
volution (H-convolution) is obtained by

(o)) = [ oty a)dy = /f =y )g(y)dy,
where dy is the Haar measure on H™.
The kernel K'(z) admitting the estimate

K ()] < Clele

is summable in the neighbourhood of € for a > 0 and in that case K *g
is defined for the function g with bounded support. If however the
kernel K (z) has a singularity of order Q at zero, i.e. |K(z)| ~ |z|;°
near e, then there arises a singular integral on H™.

Let w(z) be a positive measurable function on H™. Denote by
L,(H™,w) a set of measurable functions f(z), = € H", with the fi-
nite norm

1/
1 llpiina = ( [ 17@)Pu@)dz) ", 1<p< oo
A

We say that a locally integrable function w : H™ — (0, c0) satisfies
Muckenhoupt’s condition A, = A,(H™) (briefly, w € A,), 1 < p < oo,
if there is a constant C' = C'(w, p) such that for any H-ball B C H"

1.1
1 1 -7 < SO
(|B| et dx)(|B| Lo )_C, =
where the second factor on the left is replaced by esssup{w™!(z) :
z€B}ifp=1.

Let K(z) be a singular kernel defined on H™\{e} and satisfying the
conditions: K(z) is an H-homogeneous function of degree —(Q, i.e.
K(&,z) =t"%K(z) for any ¢ > 0 and Js, K(z)do(z) = 0, where do(z)
is a measure element on Sy = S(e, 1).

Denote by wg (8) the modulus of continuity of the kernel on Sy

wi(6) = sup{|K(z) = K(y)| : 2,9 € S, ly~'alu < 8).
It is assumed that

1
/ u);\'(t)ﬁ < o0.
0 t

We consider the singular integral operator T":

= [ K@y ™y = lim [ K@)
A

e—0+
ley=1n>e
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As known, T acts boundedly in L,(H"),1 < p < oo (see [3], [4]). For
singular integrals with Cauchy-Szegd kernels the weighted estimates
were established in the norms of L,(H™,w) with weights w satisfying
the condition A, [5]. These results extend to the more general kernels
considered above [4].

Theorem 1 [4]. Let 1 < p < 0o and w € A,, then T is bounded in
L,(H",w).

In the sequel we will use

Theorem 2. Let1 < p < ¢ < co and U(t), V(t) be positive functions
on (0,00).

1) The inequality

(/ow U(t)‘ /Otcp(r)d‘r th)l/q <
<k [ eopona)”

with the constant K, not depending on ¢ holds iff the condition

(o (oo <

1s fulfilled;
2) The inequality

(vl [ ewarra)” < g ["pwpvom)”

with the constant K, not depending on ¢ holds iff the condition

stlig (/: U(7')d7')p/q(/too V(T)l_”'d'r)p_1 < oo

is fulfilled.

Note that Theorem 2 was proved by G.Talenti, G.Tomaselli, B.Mu-
ckenhoupt (7] for 1 < p = ¢ < 00, and by J.S.Bradley [8], V.M.Koki-
lashvili [9], V.G.Maz’ya [10] for p < q. R

We say that the weight pair (w,w;) belongs to the class Apq(7),
~ > 0, if either of the following conditions is fulfilled:

a) w(t) and w;(t) are increasing functions on (0, 00) and

=3 ’ »/q /2 , p=1
sup (/ w(r)rmimse d‘r) (/ w(r)'? T"’_ld‘r) < 00;
t o

t>0
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b) w(t) and w; (t) are decreasing functions on (0, c0) and

/2 p/e oo ” , p-1
sup (] wi(r )'r'*"dr) (/ st =inae /"dT) <00
>0 0

3 Theorem 3. Let 1 < p < oo and the weight pair (w,w:) € AP(Q) =
App(Q). Then for f € Ly(H",w(|z|n)) there exists T f(x) for almost
allz € H™ and

/ITf )I”wl(\ |#r)da <c/ 2)Pw(|z])ar)dz, (1)

Hn

where the constant C does not depend on f.

Corollary. If w(t), t > 0 is increasing (decreasing) and the func-
tion w(t)t™? is decreasing (increasing) for some B € 0,Q(p — 1))
(B € (=Q,0)), then T is bounded on Ly(H",w(|z|n))

Proof. Let f € Ly(H",w(|z|n)) and w, w; be positive increasing func-
tions on (0,00). We will prove that T f(z) exists for almost allz € H™.
We take any fixed 7 > 0 and represent the function f in the norm of
the sum f; + fa, where

_J @), ifleln > /2 _ 0
fl(z)"{o’ if|I|HST/2’ fa(z) = f(z) = fil).

Let w(t) be a positive increasing function on (0,00) and
f € L,(H",w(|x|x)). Then fi € L,(H") and therefore T fi(z) exists
for almost all z € H". Now we will show that T'f, converges abso-
lutely for all z : |z|y > 7. Note that C(K) = sup,esy, |K ()| < oo.
Hence

IT fo(2)| < C(K) / 1oL,

Wligrra 17Y- “”

2e ;1 k(slnb i
<()F [ Uwkint,

T
wagre  “(Wln)?

since |y~ > |z|i — |yln = 7/2. Thus, by the Holder inequality we
can estimate (2) as

0

/2 , 1/p
(T (o)) < Cr9N gm0 197 at)
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Therefore T fy(x) converges absolutely for all z : |z|p > 7 and thus

T f(x) exists for almost all @ € H". Assume w;(t) to be an ar-

bitrary continuous increasing function on (0,00) such that w;(¢) <

wi1(t),@1(0) = wi(04) and @, (t) = ff @(1)dr + @ (0), t € (0,00) (it is

obvious that such @, (t) exists; for example, @, (t) = fg w}(T)dr+wi(t)).
We observe that the condition a) implies

3C; >0, Vi>0, w(t) <Ciw(t/2). (3)
Indeed, from

30 >0, >0,
0 t/2 ’ ~1 4
(/ QD(T)T_Q(”_”([T)(/ w(r)™? TQ_ldT)P < C; )
¢ o

we obtain (3), since
o
J7 n(r)ri=260dr 2 Cun(t)t=2¢-D,
t

t/2 . p-1
(/ w(r)'? TQ_ldT) < Cw(t/?)_‘tQ(”_l)
o

and, besides,

1 00 oo o
PHEE P -Qr-1) g, — -1-Q(p-1) 7} —
o= 1)/1 o(r)r dr /t. L,o('r)d‘r/r A d\

00 v A
=f /\“‘Q“"”dk/ w(r)dr g/mwl(‘r)r"‘"m”’”d‘r.
t t t
We have

T fllLpan(imy < |T f(z)[Pdx
An o

leln

ewit)” +

+(wl(0) / le(x)|de>‘/p A,
<

If w(0+) > 0, then L,(H™,w(|z|n)) C L,(H™), and if w(0+) = 0,
then @(t) < w;(t) < Cw(t/2) implies @1(0) = 0. Therefore in the case
w(0+) = 0 we have A, = 0.

If w(0) > 0, then f €, &n) and we have

1/p

a <000 [ era)” <o [u@Ppadne)” <
Hn Fn

< Cl S Nepm el )
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Now we can write

A< (/Ox o(t)dt / [Tf(x)l’dx) L

|zl g >t

where

ay=[Tewa [ | [ Kes @],
lela>t lyla>t/2
00 P
A= [Tewa [ | [ Ky .
’ lelg>t lylu<t/2
The rglation
1 | )
Wy < s [ wIdulndy

lyla>t/2 lula>t/2

implies f € L,({y € H™ : |y|y > t}) for any t > 0.
Hence, on account of (3), we have

An SC.(\/Owtp(t)dt f If(z)|”dac)1/p:

|zlu>t/2

- C(/ f (2P da /02'1"” @(t)dt)l/p <

HE .
s C(/ lf(z)lf’wl(2|x|,,)dz)””
#in

<Clfle

IN

(H").

Pw(lzlg)

Obviously, if |e|x > t, |yln < t/2, then I|z|y < [y~'eln < Yaln.
Therefore

Koy 1 l)dy| do <

lela>t |ylu<t/2

<o) [ ([ Rl d <

lela>t  lylu<t/2

<o) [ llia( [ Vwi).

lela>t Iyl <t/2
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Taking the H-polar coordinates z = 6,2, ¢ = |z|y, T € Sy we can
write

[ elade = [ do@) [ o971-9rde = 10"
|z| >t Sy <

For a > Q(1 + I%), by virtue of the Holder inequality, we have

Fala=a f d@ [ el [ # =
Su N )

lulu<t/2

—o["smas [ Il <

s<|y|lu<t/2

t/2 ) 1/p
< [Pentas( [ rwPbEa)
s<|ylm<t/2

1/
(Dl
x / lyli? °)”dy) <
s<lylu<t/2

2 5.9 = 1/p
<o [T [ Pty s

s<|ylu<t/2

Consequently
Angc{/o p(20)0)
t 1/p 1p y1/p
<[ [P ([ ) i)

lylu2s

By (4) and Theorem 2

< Qp(1+d) »
ap<o[ [T ([ iswrx
|yl >s
><|y|_Q”dy)w(s)s_(Q_l)(p_l)ds]

([Tt [ orwEa) " =

lyl>s

- C(/ |f(y)|p|y|;{Qp/‘)|y(H w(s)s‘l‘erds)‘/p <
fn

1/p
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<o [ irwretsima)”
Y

Hence we obtain (1) for w(t) = ©(t). Now, by the Fatou theorem,
the inequality (1) is fulfilled. =
Theorem 3 was earlier announced in [11].

A similar reasoning can be used to prove the analogue of Theorem
3 for the operator Ty : f — T, f where

Tsf(z) = /]ucy_‘a fy)dy, 0<a<@.

Namely, we have

o

=5 and the weights
. Then the inequality

Theorem 4. Let0 <a<Q,1<p< %, 1}’—5
(w,wq) be monotone positive functions on (0,00)

([ s renteine) " <

H»
<¢( [ r@relieln)ic)
H»

holds if and only if (w,w1) € Apy(Q).

Remark. In ‘le case of a homogeneous group the analogue of The-
orem 4 is also valid (see [12]).

1/p

For monotone weights one can find the weighted L,-estimates for a
Calderon-Zygmund operator in [13] and [14], and for the anisotropic
case in [15].

As known [16], if f € C§°(H™), then the function

=Cu [ lay' 7" (0)dy
o

is a solution of the equation Log = f, where Ly = — ¥ X?. In
particular, our results lead to

Theorem 5. Let 1 < p < o0, (w,wy) € A(Q), f € L,(H",w(|z|x))
and Lo(g) = f. Then
1 X0l (17 wor ety < el FlLp(an wotiotan) s
X X591 Lytrm i (e ar)) < CHFN Lo wielm))s
ii=12... .
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Theorem 6. Let 1 < p < ¢ < oo, %— 1= é, (w,w1) € Ap(Q),

f € Ly(H",w(|2|n)) and Log = . Then

1 Xigllzoqrm et < ClALpm iy, i=1,2,-..,2n.
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SINGULAR INTEGRAL OPERATORS ON MANIFOLDS
WITH A BOUNDARY

R. KAPANADZE

ABSTRACT. The paper deals with the questions of singular inte-
gral operators being bounded, completely continuous and Noethe-
rian on manifolds with a boundary in weighted Holder spaces.

G0B0T0. 63680 FbFagmommos bstioghosh dhogorlbobigmbnBlsy ao-
369mgben bobgmstmme obggahoman m3ghugmAgdes Sgdm-

bobeogearmBobs, bagbgdon figgemobe @ Bygphelgmmmbal bogo-
akigBo Jproxagfhols Frobosk bogthggo.

We shall investigate the matrix singular operator

Aw)(@) = a@)u(@)+ [ f(=, oyl )y,

zeD, DCR™,

in weighted Holder spaces and develop the results obtained in [1] for
one-dimensional singular operators and in [2-8] for multidimensional
singular operators in Lebesgue spaces.

The paper consists of two sections. In Section I we shall prove the
theorems of integral operators being bounded and completely conti-
nuous in Holder spaces with weight. Section II will contain the proof
of the theorem of factorization of matrix-functions and present the
theorem of singular operators being Noetherian in weighted spaces.

1. Let R™ (m > 2) be an m-dimensional Euclidean space, z =
(1, ,Zm), ¥ = (Y1,--- ,Ym) be points of the space R™,

|z] = (ixf)%’ [ ={z: z€ R® o, = 0},
i=1

Ri={z: 2z€R™, 2, >0}, «’'=(21,...,%m-1),
B(z,a)={y: yeR™, |y —z|[ < a},

1991 Mathematics Subject Classification. 45F15.



424 R. KAPANADZE
S(zya)={y: y€R™, [y —z| =a}.
Definition 1. A function u defined on R™\I' belongs to the space
H(R™T) (0<v,a<1,20,a+ 8 <m)if
(i) Ve € R™I |u(@)] < clen|™(1+ |2])7,
(i) Vee R™\I', Vye B(w,%]xmn
Ju(e) — u(y)] < eleml"I(1 + [2) e =yl
The norm in the space HY 5(R™\I') is defined by the equality

llull = sup |2|(1 + |zl)°Ju(2)] +
z€R™\I"

u(z) —u
+  sup  Jen*T(14+ |xt)ﬂ——| ) (Vy)l
z€R™\ |z =yl
yeB (x5 |zml)

The space HY 5(R7Y) is defined similarly.
Note that if y € B(z, §|zm|), then

3 1 1
IS Sl W2 3l ol S Slenls lml 2 3oml (1)

Thus for y € B(z, 3xm) we have |z] ~ |y|, [zm| ~ |ym|-
Let 2,y € R™\I' and [z—y| > J min(|¢n], |ym|). Then the condition

(1) implies
[u(z) = u(y)| < e(min(jem], lym])) ™ (min(1 + |z|, 1+ |y]) ™ <
< cle — y|*(min(lem], lym|) ™ (min(L + |21, 1 + [y]) 75
and therefore the condition (ii) can be replaced by the condition
Vz,y € R™\T
[u(z) = u(y)| < ele = y|(min(|en], [ym|) " (min(1 + |2|, 1+ |y]) 7.

One can easily prove that the space HY 5(R™\I')[HY 5(R7)] is the
Banach one.
Consider the singular integral operator

o(e) = Aw)(e) = [ K(ew = y)u(s)dy,
where

K(z,2) = (=, lj—i)|z|-mi
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Theorem 1. Let the characteristic f defined on (R™\I')x(S(0,1)\I")
satisfy the conditions

(a) VeeR™T /Sm) f(z,2)d.S = 0;
(b) Yz e R™T, Vze S(0,1\I |f(z,2)| <clzm|™ (0< 0 < a);
(c) Va,y € R™\I, Vz,0,we S(0,1)\I

[f(z,2) = f(y, 2)| < el —y|*(min(|em], lym]) ™ |2m|™

1/(2,0) = f(z, )] < el = w|” (min(|f], lwm]) ™7
n>v, n+o<l

Then the operator A is bounded in the space Hy z(R™\T').

Proof. In the first place note that the second inequality of the condi-
tion (c) yields the inequality

Vz,y,z € R™\I'
rleny) - sle )l s -t (o + L)

lym|1¥ " |zm|2

Set

Dy = B(z,5lzml), D2 = Blz, 5(1 + [z)\ D,
D; = B(0, %(1 + [z)\(D1 U D), D4 =R"™\(D1UD,U D3), (3)
D={y: (¥,ym) €R™, |ym| < 2(ly'| +1)}.
We have

we)= [ Klae—ylul) - u@ldy + Y [ K,z - yu)dy =

L
By virtue of the condition (ii) and the inequalities (1)
I(z)] < elam| (1 + |2|)~* / jf ||z —yl "yl <

< cleml =@+ [ )Id Sl @)
If y & Dy, then

Im—y|> (12" =¥’ + l2m] + lym])
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and if y € Dy, then 1 + |y| > 1+ |z| = |z —y| > lizlﬂ Therefore due
to the conditions (i) and (b)

) < ol + o) | e,

After performing the spherical transformation of 3’ — z', we obtain

Lo < o1+ le)? [~ rm2dr [ Joml2Em =gl
)| < (14 fa)® [~ [~ e e dymul

The transformation of 7 = |2x|F, Ym = |Tm|Jm leads to
| = -8 0 = s s
|I2(2)] < clom| (1 + |2]) /_Oo [Ym| ™% |ym — sign @m| " dym x
[+ gl + 1772l < cleml (04 ) x
X [ gl lym = sign e = (1 + lyn) P dymlell:  (5)

The term I4(z) is evaluated in the same manner, since in that case,
too,

1
14+l 2 5(0el +1).

Represent I3(z) in the form
I :/ Ko,z — d
a(z) Dms(o,aw}(@ @ —y)uly)dy +

K B dy = J, 2
o @7 = 90y = @) + )

If y € Ds, then |z —y| > 3(1 + |z]) 2 lyl; if ¥ & B(0, 3|zm|), then
ly| > IIT'"l and hence |y| > 3(|y'|+|€m|+|ym|). Therefore, in evaluating
Ja(z), we shall have

[ a(2)] < (1 + [2)) 7 x

x ml " |Tm = Ym| (Y] + [2m| + 7" dy|full.
St oyt~ 1 = 977 51+ em] + lyml)* " dl

After performing the spherical transformation of y’, we obtain, as in
the case of evaluating I3(z),

[J2(2)] < elem|™(1 + |2))|lu}. (6)
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Write Ji(z) in the form

J; = Kz, z— d,
= [ ot (®2 ~ 9@y +

K - =J] ().
0 R (CEN LR ORRAC!

Ify € B(0,2|zm|), then |&m — ym| 2 |Zm| — |ym| = jlom|. We have

Wi(@)] < et + e ™™ fem| ™ [

WIS E+e)

[Ym | dym||ul| <

(L+ 1) Pdy’ x

)
lum<2(v'1+1)

<clzm|™(1 + |z "_"'/
lom 7 (1 + [=) 1< 5 (1 +el)

Sefaml ™ (14 ]2))Plzm 0 (L]~ (- (L+al) ™) flull <
< clzml (1 + 2 ) Plull, ™

(14 ly'D'P=ody|lu]| <

since o < o, a+ < m.
Ify € R™\D, then 1+ |y| < 1+ |y| + |ym| < 3|ym|. Therefore

Y ()] < elom|™7(1+ |I|)"""/ (1 + |y~ dylull <

<3 (1+iz)
< om0 (1 + |2]) P lull. ®
From the estimates (4)—(8) we obtain
[o(@)] < elzm|™(1 + |2]) P Jull- )
Let us evaluate the difference v(z)—v(z). It is assumed that |z—z| <
§lzml. Then |2| ~ |a], |zm| ~ |2m|-
We introduce the set
D, = B(z,2|z—z|), Di=B(z,3lz—z|), Ds= B(z,lem|—|z—2|).

Clearly,
D, ¢ D; ¢ Ds € B(z, i|eml) = D1
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We have the representation
v@)—o(z) = [ K@z —y) = K(z,z = y)u)dy =
= [ K2 —y) = K(z,z = p)uu)dy +
+ [K e =) = Koz = yu()dy =
= Li(z,2) + Lz, 2).
By virtue of the first inequality of the condition (c) the term I;(z, z)

is evaluated exactly in the same manner as v(z) and we obtain the
estimate

IL(z,9)] < elzm |~ (1 + |2]) e = 2| |lull (10)
Rewrite the term I5(z, z) in the form
I(z,2) = /D‘[K(z,z—— y) — K(z,z — y)u(y)dy +
t Jemp, H (0% — ) = K22 = y)luly)dy =
= [, Kz —n)luto) = u(@ldy = [ 5 1K(z = y)ul)dy -
= i, K amlatn)—u(@ly = [ Kz z=p)luts) ()l +
+/ [K z,@ —y) = K(z,2 — y)lu(y)dy =

i </52 s /D,\E)3 )K(z’z —y)[u(y) — u(z)]dy —

o /~ K(z,2 = y)luly) — u(z)ldy —

= Ji\5, K 5= 9) = K,z = )lluty) - u()ldy -
o K(z,2 = y)uly)dy +
+/RM\D, [K(z,2 —y) — K(z,2 — y)Ju(y)dy = 1Z;J,»(z,z).

In evaluating Ji(z, z), note that

Dy C B(z,4|z — 2|), B(z,en| — 2|z — 2|) C Ds.




SINGULAR INTEGRAL OPERATORS ON MANIFOLDS 4

Therefore by virtue of the condition (b) and the inequalities (1) we
obtain

li(z,2) < [ K (2,2 — )llu(y) — u(e)ldy +

JB(z4(z-2))

+ K(z,x2 — u(y) — u(z)|dy <
Fonste o teny 2 = 91) = o)y

< clam| "L+ Je]) Pl — 2 lull, (11)
since
(%|zm‘)u - (%Izm| —2|z — z|)p <clz - z|".
Similarly, if y € Dy, then

y— 2 < 3le - o < 2ol <

7|zm[.
Therefore
[a(2, 2)] < elam] (1 + o)) |z — 2| |lull (12)

It is clear that B(z, }|zm|) C B(z,|wm| + & — z[) and hence

[Ja(z,2)| < elem|™ (L + |¢|)"5/ < |K(z,2 = y)ldyllull <
|xm] + 2|z —
i e ||| ul| <

|z — 2]
mllu\l <

< clam| @1+ J2) e — 2 |lu]l. (13)

< ezl (1 4+ |2) 7 In

< clam|™(1 + |2~

Note that if y ¢ Dy, then
le—yl>2lz -z, |e—yl>3lz-2l
4 3
lz—yl<le—zl+lz—yl<3lz—yl, le-yl< gle -yl

Taking these inequalities into account, the inequality (2) readily im-
plies that for y & D,
|K(z,2 —y) — K(z,2—y)| <

ETLIVE E Bl R
[ —y|msw |Tm = ym|2to |2m = Ym|2te d

<ec
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using which we obtain

(2, 2)| < elam| "L+ J2]) Plz — 2 x

1 |y — yjr1¥o _ ylnte
></~ ( lz =yl o |z =y )dy||u||§

Da\D2 |w = y|m+u1—u ]Im = yml"”‘" |Zm = ym|u1+a
< ezl + Jal) Pz — 2 x

M
X o dy +
(/Dl\Dl |z = y|mt1-v \|zm — ym| =

i e
+ fos ( Jir)
Ba\Da |z — y|™ 1= \|zm — ym] .

Passing to the spherical coordinates and keeping in mind that ’—I';—Eﬁ"—,
Zm=¥m o not depend on the radius, we have

B
|Js(z, 2)| <
< elam @1+ [2)) Pz = 2" (Joml ™ + |2 = 27 Jull <
< clom|" @I + f2]) Pz — 2 |Jull- (15)

In deriving the estimate, we took into account that v < vy, vy +0 < 1.
By virtue of the inequality (14)

Ws(e, 2 < clz =2t (o =yl lom = vl fu(w)ldy +

+/ 2= y|" " zm - Yym| T July dy)~
Rm\a(z,ngmnl | m | [u(y)l

We evaluate the obtained integral expression by the same technique
as was used to evaluate the integral expression

S, VE @2 = )l )y
(see the estimates (5)~(8)) and finally obtain
Vs(z,2)| < elenl * (1 4 [e) e =l (16)
The estimates (10)-(13), (15), (16) show that
Io(2) = v(2)] < elaz (1 + fel) Pl - 2I*|ull

which, with the equality (9) taken into account, proves the theorem.
| ]
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Corollary 1. In the conditions of Theorem 1 the operator

L K@z = p)u(w)dy

RY

is bounded, when acting from the space HY (RT) into the space
HY 5(R™\T).

Definition 2. Let M be a closed set in R™. The set M is called an
(m — 1)-dimensional manifold without a boundary of the class C**
(0 <8 < 1), if for each € M there exist a positive number ;. and a
neighbourhood @Q(z) of the point « in R™, which is mapped by means
of the orthogonal transform 7 onto the cylinder

Q={{:£€R™, lf/‘ < 1oy [€m| < 72}
and if the following conditions are fulfilled:
T.(z) = 0, the set T,(M NQ(z)) is given by the equation &, = ¢.(¢'),
|€¢'] < rz; @r € CY in the domain |¢'| < r; and Jgp.(0) = 0, 1 =
lyivo sm—1.

Clearly, Q(z) is the cylinder to be denoted by C(z,72).
In what follows the manifold M will be assumed compact.
We introduce the notation

d(z) =d(z,M) = ig]{l |z —y|, M(r)={zeR"d(z)<T}.
Y
Note some properties of the function d(z):
d(z) < o1 % Jal), |d(e) - dy)] < el — yl;
Yz € R™\M, Vy € B(z, }d(z))
3
d(y) < 5d(z) < 3d(y), 1+ e[~ 1+]yl;
Vz € M, Vy € C(z,1r:)
d(y,M) = d(y, M N C(z,r;)) andif y=7T7'(n), then
d(y) < lmm — @2(n)] £ 2(1 + a2)d(y), (18)
where a, is the Lipshitz constant of the function ¢,.
Definition 3. A function u defined on R™\ M belongs to the space
v s(R™MM) (0<v,a<l1, 20, a+p<m)ifl:
(i) Ve eR™M |u(z)| < ed™(z)(1+ )7,
(i) Yz € R™\M, Vy€ B(z,1d(z))
lu(2) = u(y)| < e+ (2)(1 + |2)) |z — yI".
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The norm in the space HY ;(R™\ M) is defined by the equality

lull = sup d*(z)(1 + |a)’|u(z)] +
z€RM\M

o sup dV+a(I)(1+ |I|)ﬂ|u(z)‘u(y)|
sER™M\M le =yl
yGB(z,%d(I))
The space HY ;(R™\M) is the Banach one.

Theorem 2. Let M € CY¥, the characteristic f of the singular ope-
rator A be defined on (R™\M) x S(0,1) and satisfy the conditions:

(a) Yo eR™M, Vze S(0,1)
= =0;
Uealse [ s =0
(b) Va,y € R™\M, V0,0 € 5(0,1)
1£(2,0) = f(3,0)] < clz — y|*( min(d(x), d(y))) ",
|F(@,8) — flz,w)| < b —wl?, v <u.
Then the operator A is bounded in the space HY s(R™\M).

Proof. Let M C B(0,79) and ¢; be an infinitely differentiable function
such that e;(z) = 1 for |2| < ro+1, e1(x) = 0 for |z| > ro+2. Setting
ea =1 — ey, we have

v@)= [ Koo —yelu)dy +
+ [ Ko = pesly)uv)dy = v(e) + va(a):
Let us evaluate the integral
vi(z) = /Rm K(z,2 — y)uly)dy (u = ew).

C.hoose a constant r* (0 < r* < 1) such that the system {C(;:, }r')}ﬁzl
(#,i=1,... e, are points of the manifold M) cover the manifold M

and C(é, 4r*),1=1,... e, be again the coordinate neighbourhoods.
We introduce the sets

Dy = B(z,3d(z)), Dy = (B(z,r")\D1) N B(0,7 + 2)

D3 = B(0,ro+2)\(D1UD;), Di={y: yeR™ d(y)<ir}
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Now

A /D; K(z,2 —y)[w(y) — w()ldy +
+ Z/D K(z,z —y)uy(y)dy = Z I(x).

By virtue of the inequality (17) and the condition (ii) we obtain

[(2)] < ed™(2)(1+ [e))Pllal| < ed™ (@)(1+ |e]) |l (19)

Next,
@) < [ (e = y)llul)ld +
+f o 1K (o0~ a0l = Be) + Ee)
If y € Dy, then
Tt |2[~ 14yl ~e

Moreover, d(y) < 1r* for y € Dy N Dy and therefore there exists 7 (i =
1,...,€) such that z,y € C(z, %r*) Let y = T (n), = = T71(¢).

By virtue of the inequality (18)
[ =, (1] < 2(1+a,)d(y),  [&n = @:(€)] < 2(1 +a;)d(2).

Taking into account that |z — y| > 1d(z), we therefore obtain

le =yl =€ =0l = (€ = 0|+ [bm — | + d(2)) >
%(1 a7 (40 + @l =1+ [ = Tl + 401+ a,)d(2)) >
2160 4a) 7 (1€ = 1+ In — 0, ()] + @), (20)
since

[&m = 1| = 1m — @ ()] = ls(n) = @2 (€)] = 1m — 0:(€)]-
Thus
m@i<e [ d [ ooyl x

[¢'=n'|<4re

x (1€ = nl + nm = @s ()] + d(2)) ™" dn ]
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Using the transform 5, — ¢.(n’) = fm, we obtain
E

< e [ mzde [ gl (4 ol + d) "l

which, upon applying the transform r = d(z)F, 0, = d(z)7n gives

[13(2)] < ed™(x) ||U|| < ed™()(1+ |z))ull. (21)
If y € D;\Dy, then d(y) > ld(z) < |o —y| < 3" by virtue of
which :

d(z) 2 d(y) — |z —y| 2 i, |z —y| 247
Therefore

113(2)] < ellull < ed™*(@)(1 + |2])~7|fu]l. (22)
Finally, if y € Ds, then 14 |z| < 1+ |y|+ | —y| < ¢|lz —y|. Therefore
Is(2)] < (1 + [e)™™|lull < ed*(@)(1 + e Jlull.  (23)

The inequalities (19), (21)—(23) show that
|o1(2)] < ed™*(2)(1 + |2)||u]. (24)

In evaluating the difference vy(z) — v1(z), it will be assumed that
|z — 2| < id(z). Then 1+ |z| ~ 1 + |z, d(x) ~ d(y).
We introduce the set )

Dy = B(z,2lc—yl), Da=B(z3lz~z]), Ds=B(z jd(z)~lz—z|).
Proceeding as in the case of proving Theorem 1, we obtain
or(2) — v1(2)] < ed™ @)1+ [e))Ple — 2 flull.  (25)

To evaluate the integral
vo(z) = /n; K(z,z — y)ua(y)dy (uz = equ)

note that the function u, is defined on R™ and satisfies the conditions
of Definition 3, if the function d(z) is replaced by the function 1+ |z].
Therefore, after introducing the sets

Dy = B(x,3(1+|z])), D2 = B(0,2z|+1)\D1, D3 =R"™\(D;UD),
we readily obtain the estimate

lva(2)] < ed™*(@)(1 + [a]) ]l (26)
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Now, considering the sets
Dy = B(z,2|z — 2|), D, = B(z,3|z — z),
D3 = B(z,1(1 + |z]) - |z — ).
it is easy to show that
va(2) = va(2)] < ed™ ) (@)(1 + |a])Ple — 2 [lull.  (27)
The estimates (24)—(27) prove the theorem. B

The result close to the one presented here is obtained in [9] (see also
[10]).

Definition 4. A function u defined on R™ belongs to the space
H{(R™) (v,A > 0), if

[u(@)] < e(1+ )™, |u(z) - u(y)| < cle —y|pze ™,
where
pey = min(l + [z[, 1 + |y|).

Theorem 3. Let the characteristic f of the singular operator A sa-
tisfy the conditions of Theorem 1, assuming that o < a and the first
inequality of the condition (c) is fulfilled in the strong form

1S,z = [(y,2)] < ela = 2] (min(|zm], [ym]))" |2m] 77
It is also assumed that a € C(R™) (R™ = R™ U c0) and (a — a(c0)) €
H*(R™). Then the integral operator

v(e) = B(u)(z) = /n;m[a(f) —a(y)IK(z,z - y)u(y)dy
is completely continuous in the space HY ;(R™\TI').

Proof. From the proof of Theorem 1 it follows that B is the bounded
operator from the space HY 5(R™\I') into the space H7 (R™\I),

a=,B+2y
where ~ is an arbitrary positive number satisfying the condition

y <min{\, vy —v,a — 0, 3(m - B —a)}.

Indeed, it is clear that

[v(z)] < Ja(@) = a@IIK (@7~ y)l|u(y)ldy +

DyUD,U.
it /Da(la(z) - a(co)| + la(y) - a(OO)I)IK(Zﬁ = y)llu(y)ldy.
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Taking into account that (¢ — a(c0)) € H)(R™) and repeating the

proof of Theorem 1, we obtain

o(@)] < clem"= (1 + |2]) 77> Jull.

Let us now assume that |z —z| < %[1m| and evaluate the difference

v(z) — v(z). We have
o)) < [ la(e) = aIIE (. = o)l ) ldy +
+ [ 1a(2) = a@IK (2.2 = w)lluto)ldy +
+ [z, 10(@) = aEE = plluty)ldy +

+ fo s, 182) = a1 (2,2 =) = K (.2 = )lluty)ldy =

Li(z, 2).

1

i

Hence
(2, 2)| < elam|™ (1 + [2))7P(1+ |e]) ™ Mz = 2 |lull <
Selan| (L4 l2l) PP ull (= 1,2).
Write the term I3 in the form

a(a,2) = la(e) = () ( ) o 1Kz = llu)ldy +

+ _|K z,r— d )
R\ By | ‘( T y)Hu(y)l Y
This representation gives

[a(z, 2)| <

[zm|

< e = 2(1 + Jal) ™ el (1 + o) (1n 22 4 e )l <

|z — 2|
< elem| 1+ [2) Pz = 24 ul|.

To evaluate the integral term I, note that for y ¢ Dy we have

q ) T — z|" _ z—qyl°
|K(z,z —y) — K(2,2—y)| < C||z = yllmlz'"l " |¢| _z| o -
m = Ym
o |z — 2| ( |z — y|ate B, |z — y|nte )
|z =yt \|zm — ym 117 |2m — ym|1 *
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Using this estimate in the same manner as in proving Theorem 1, we
obtain

a(z, 2)| < el |7 (14 )72 — 27| fu]l. (1)
The estimates (28)-(31) show that the operator B is bounded from

the space H% ;(R™\T') into the space H 1Y R™\TI'). The validity
a,B a=y,B+2y

of the theorem now follows from the complete continuity of the ope-

rator of the embedding of the space H**” R™\TI') into the space
a=,0+2y P

HY 5(R™T). m

In a similar manner we prove

Theorem 4. Let m € C'¥, the characteristic f of the operator A
satisfy the conditions of Theorem 2, the first inequality of the condition
(b) being replaced by a stronger inequality

vi

1£(2.0) = £(4,0)] < el -y (min(d(a), d(y))) ™",

and the function a satisfy the conditions of Theorem 3. Then the
operator B is completely continuous in the space H 5(R™\M).

2. We shall consider the matrix-function A(€) = ||Ai;(€)|/nxn- Let
A = A(€) (A>0), Ay € CP(R™0), detA€)#0 (£#0).
We set

Ao = AT0,...,0,—1)A(0,...,0,+1).

It is assumed that \; (j = 1,...,s) is the eigenvalue of the matrix Ay
and r; is its multiplicity (T3, r; = n).
We introduce the matrices B,(a) = ||B,x(a)||-x- where

0, v ky
Bii(a) =15 : sk
h, vk

B(ri; @) = diag [B,,.,(a), 2 ool ,Br_p‘(a)]
(ra+: -+ rp=mn).
By the Jordan theorem the matrix Ay is representable in the form
Ao =gBy™",
where det g # 0, B is the modified Jordan form of the matrix Ao,
B = diag[A1B(ry;1),... ,AB(rs; 1))
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We introduce the notation

1 k=1 e
6;=?ln)\1, 8 =% for Y m<i< Y omyy g=1, in;
v=1 =1

as(®) = 0 =L (€= 6ot

by Inz we denote a logarithm branch which is real on the positive
semi-axis, i.e., —m < argz < T,

(ﬁm E‘Ié’l)ﬁ kit [(ﬁm E'TKII)M"“ ’ (ém E'Tlill>6n]’
By(€) = diag [B(ri; ax(6),... , B(rs; ax(6))].

Theorem 5. Let the matriz A be strongly elliptic. Then A admits
the factorization ’

A(€) = cgA-(€,€n) D(E)AL(E  em)g ™",

where

e=A(0,...,+1), D(&) = B-()(&m — i€ (ém + il B (),
A+(A) = 4x() (A >0), det Ax(€) #0.

For |€'] # 0 the matrices Ay, A7 (accordinly, A_, AZ') admit ana-
lytic continuations with respect to &,, into the upper (lower) complex
half-plane and these continuations are bounded.

Moreover, for any natural number k the matriz Ay admits the ex-
pansion

A€ 6n) =T+
LD e E ) e el fn e

cpq
X St

>k
) HA©, (32
where
k k k
@1 e C®(R™MN0), AN = A(€) (A>0) A€ CHR™\0).
The similar expansions hold for the inverse matrices A7' too.

Let us outline a scheme for proving the theorem.
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We set
A8 = (fll_{,iﬂ)_&B:l(f)g“A“(O,m ,0,41) x
«aggByo) (D)’

= {z =21 +1i22,22> 0}, Z_={z=a1+i23 T2 < 0}

Consider the homogeneous Hilbert problem: Find an analytic in the
domain Z, U Z_ matrix-function ®(¢’, z), which is left and right con-
tinuously extendable on R, by the boundary condition

@7 (€,1) = A€, )PF(E 1),
lim ®(¢,z)=1, _lim &¢,z)=1.

243200 23200

The solution is to be sought in the form

1 eleh2)

=l cdt+ 1.
2miJR t—2z F

¢(£I’z) =

To define the matrix ¢ we obtain the system of singular integral equa-
tions

(A€ t0) + 1)l€'r ) + = (Aul€t0) = T) [ B2 AL
22(1— ‘(f,io))- (33)

One can prove that the system (33) is unconditionally and uniquely
solvable and obtain, after a rather sophisticated reasoning, the desired
result.

Remark 1. The fact that partial indices of the strongly elliptic ma-
trix A are equal to zero is proved in [5]. An expansion of the form
(32) when A is a scalar function is also obtained therein.

Let D be a finite or infinite domain in R™ bounded by the compact
manifold without a boundary M from the class C'*.
Consider the matrix singular operator

AW(@) = ale)u(@) + [ £ (o mip)le sl uwds, - (39
a(z) = lai; (@) llnxn, flz,2) = ”fu (2, 2)|lnxn,

u= (U1, ,Un)
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in the spaces [HY 5(D)]" (0 < o, v <1, v < 1/1, B>0,a+ < m)and
[Lp(D, (L + [z))]" (p > 1, =2 <y < 5, p' = 55), w € Ly(D, (1 +
) & fp lu(@)?(1 + |z[)P"dz < oo.

Taking into account the character of the linear bounded operator
acting in the spaces with two norms (see [11]), the proved theorems
enable us to prove

Theorem 6. Leta€ HY' (D), f(z,-) € C®(R™\0), [50,1) f(2,2)d:5 =
0; O#f(-,z) € HP (D), |p| = 0,1,..., if the domain D is bounded;
limg o f(z,2) = f(00, 2) and (f(-,2)—f(co,z)) € H{ (D), if the do-
main is unbounded. The determinant of the symbol matriz ®(A)(z,§)
of the integral operator (34) is different from zero and cither of the
following two conditions is fulfilled:

(i) Ya € M the matriz ®(A)(x,€) is strongly elliptic and Hermitian;
(ii) V& € M the matriz ®(A)(z,£) is strongly elliptic and odd with
respect to the variable €.

Then the operator A is the Noether operator both in the space [L,(D
(14 |z])")]" and in the space [HY 5(D)]". Any solution of the equation

Au)(e) = g(e), g € [Ly(D,(1+ |z NIHL (D))" (35)

from the space [Ly(D, (1 + |z])")]" belongs to the space [Ly(D,(1 +
le))I"N[HY 5(D)]". For the equation (35) to be solvable it is necessary
and sujﬁczent that (g,v) = 0 where v is an arbitrary solution of the
/ormally conjugate equatwn A'(v) = 0 from the space [Ly(D,(1 +
[z])=)|™ into [HY 4( 3 D)]™.
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ON THE BOUNDEDNESS OF CAUCHY SINGULAR
OPERATOR FROM
THE SPACE L, TO L, p>g>1

G. KHUSKIVADZE AND V. PAATASHVILI

ABSTRACT. It is proved that for a Cauchy type singular operator,
given by equality (1), to be bounded from the Lebesgue space
Ly(T) to Ly(T), as T = UiTn, Ta = {2 : 2] = ra}, it is
necessary and sufficient that either condition (4) or (5) be fulfilled.

&0B0D8D. Fgbfogmagnas (1) Gmmmboo asblstoghnmo gmdols bnSavz]-
M'\E’c S( m33t‘x)®mf‘mb Qaagaob bnaf‘veaaaﬂn 'Ha&n&q‘

bagooto 03 Fndolgygede, Gmis T = URL IF" n= 1z |z| = 7',.}
goAosgbrienos, md 3 mdpboprbel Fnldh

Ly(T') bog@zoms Lg(T) boggde. K’"’Qﬂl” P> q = 1 G"Q&
Bgmoo @3 bagdaoba (4) %6 (5) Bann&xmbcs gfo=-ghools 'Salﬁn(:

1. Let T be a plane rectifiable Jordan curve, L,(T'), p > 1, a class of
functions summable to the p-th degree on I, and Sr a Cauchy singular
operator

s == [ 0% jer,m, ter. (1)
r

Numerous studies have been devoted to problems of the existence
of Sp(f)(t) and boundedness of the operator Sp : f — Sr(f) in the
space L,(I') (see, e.g., [1-3]). The final solution of these problems is
given in [4,5]. It was proved by G.David that for the operator Sr to
be bounded in L,(T), it is necessary and sufficient that the condition

l(t,r) < Cr, (2)

be fulfilled, where [(¢,7) is a length of the part of I' is contained in the
circle with center at ¢ € T' and radius 7, and C is a constant.!

1991 Mathematics Subject Classification. 47TB38.
!Following [7,8], the necessity of condition (2) is shown also in {6] In the same
work its sufficiency is proved for special classes of curves.
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The present paper is devoted to the problem of boundedness of the
operator St from L,(I') to L,(T'), p > ¢ > 1 (see also [6-9]).

2. Throughout the rest of this paper under {r,}32, is meant a
strictly decreasing sequence of positive numbers satisfying the condi-
tion 3";_; rx < oo and under I' the family of concentric circumferences
on a complex plane I', = {z: |z| =1}, n =1,2,....

It has been shown in [10,11] that for the operator St to be bounded
in L,(T'), p > 1, it is necessary and sufficient that the conditions

Y <Cm, n=12..., @)
k=n
be fulfilled, where C' is an absolute constant.
We shall prove

Theorem. Let p > ¢ > 1 and o = pq/(p — q). Then the following
statements are equivalent:
(A) operator Sr is bounded from L,(T') to Ly(T);

® 3 (Fe) 1 < oo (1
n=1 e
(C) Z BTy <.00; (5)

Remark. A family of concentric circumferences with finite a sum
of their lengths, as a set of integration, principally, ”simulates” rec-
tifiable curves with isolated singularities. Analogy of conditions (2)
and (3) also indicates this fact. Taking into account the above-said,
we assume that the following statement (an analogue of the theorem
from Subsection 2) is valid: for the operator St to be bounded from
Ly(T') to Ly(T'), where T is an arbitrary rectifiable curve, p > ¢ > 1,
it is necessary and sufficient that the condition

Jix@peojdr < oo
B

be fulfilled, where

fl
x(t) = sup (t;T), el

3. In proving this theorem, use will often be made of the well-known
Abel equality (see, e.g., [12], p.307)

i(iuk>vn=iu"(ivk), (6)

n=1 "k=1 n=1 k=n
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where {u,} and {v,} are sequences of positive numbers and
Yoy Uk < 00, as well as of its particular case

i nvj = i ‘Z V. (7

n=1 k=n
We shall also need

Lemma. Let p > 0. If f is a function analytic in the circle |z| <1,
then forr < R < 1,

[ @ria <% [ e ®)

lz|=r |z|=R

If f is a function analytic in the domain |z| > 1 and f(oco) = 0 then
forl<R<r

R\P=!
[u@rEs () [ 1rerds. ®)
|z|=r |z|=R
If, in addition, f belongs to the Hardy class H, in the domains
|z < 1 or|z| > 1, ie. sup, [5" |f(pe”)|PdY < oo (in particular, if f
is represented by a Cauchy type integral), then we can take R =1 in
inequalities (8) and (9).

Proof. Since |dz| = |dpe’| = pdd, inequality (8) follows from the fact
that the mean value 2= [37 | f(pe™)[Pdd of | f(pe')|? is a nondecreasing
function of p (see, e.g., [13], p.9).

Under the conditions of the lemma, if |z| > 1, then the function
9(¢) = %f(%) is analytic in the circle |¢| < 1. Using inequality (8) for

| L |f(%)|p ld¢| < <§>Ml L |f(%)|f'|d(|.

Applying the transformation of ¢ = -1-, the latter inequality reduces to
(9).
If f € H,, then by the Riesz theorem

2r 2
tim [ 1£(pe*)Pad = [ 1f()Pdd
0 0

(see, e.g., [13], p.21), which enables us to suppose that R =1. B
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4. Let us prove the equivalence of conditions (B) and (C). This
follows from equality (7) for o = 1 and therefore we shall assume that
a>1.

(C) follows from (B). We use Abel-Dini’s theorem (see, e.g., [12], p.
292): if a series with positive terms Y52, a, diverges and S, means
its n-th partial sum, then the series 352, g also diverges, while the

)

series 3202, <14 (€ > 0) converges. Assume that the series Y oo, n7r,

diverges. Then, setting a, = n°r, and w, = 1/22:1 k°ri, we shall
see by this theorem that the series 302, w,nr, diverges while the
series Y00, w2 r,n’ converges, where o' = ~£ > 1.

Using equality (6) and the Holder inequality, we obtain

iwnn”rn < in,.(}j:k"'l)rn <2 i (z":wkk"_l)rn =
= k=1 n=1 “k=1

n=1 n=1
o o
=23 w,n’? (——Zk”‘ Tk)rn <
n=1 Tn
° (70 p 4 /e , « , 1/0’
<2 [Z (h—"> rn] (Zw: n"r") < oo.
n=1 Tn n=1

The obtained contradiction shows that (C) follows from (B).
Let us now show that (B) follows from (C). If m < n, then

 YhemTk _TmtTmirt o+ 7Tha

Anm = +
Tm Tin
+M5(n_m)+m. (10)
Tm

Let 1 < s < 0. Using equality (6) and inequality (10), we get

0 o 0
z ns—lAz:L—s+lrn - Z ns—lAz—s Z Ty =
= n=1 k=

n=1

— i (g:‘ ks—xAg—a) T < Z:l (ks—l (A + (n - k)]”_’r,,) .

n=1

<ry (i KA + (n - k)""])rn <

n=1 “k=1

<7 A (52 5 (B 0 <
-n=1

k=1 n=1"“k=1

o oo
<27 E Al + 27 Z nra. (11)

n=1 n=1
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Let [0] be the integer part of o and a = g—[a]. Using inequality (11)

successively [o] times for s = 1,2,...,[g], we arrive at the inequality
S A, <O Y Al + o, (12)
n=1 n=1

where the constants C; and C; depend on o only.

If o is an integer, then a = 0, and consequently the proof is com-
pleted. Let a > 0. Then making use of the Holder inequality and
equality (7), we obtain

o 0
b Anllr, = N Aspele-Dpeli-a)r <

n=1 n=1
sl a s 1-o
< (Zann) (Zrem) -
n=1 n=1
ot 1-a 20 20 o
= (Zn”rn) (Zn"_l Zrk) <
n=1 n=1 k=n
00 1-a ;60 o
=(Zrm) (R 2w -
a1 n=1 k=n
- . o o
(Zn”rn) (Zn(n” 17'")) =Y nfr, <o,
n=1 n=1 n=1

which completes the proof.

5. Let us show that (A) follows from (B) or (C
case when ¢ = 1 and show that if p> 1 and o =
Sr is bounded from S,(I') to Ly(T).

Let ¢ and ¢! be the functions determined respectively in IntT'y
and ExtI', by the Cauchy type integral

&l on(t)dt
27t t—z
'y

n

). Consider first the
p'=p/(p—1), then

, ¢n € Lp(rn)v p>21, 2¢Ta. (13)

Using the Sokhotsky-Plemelj formula
G(1) — 65(t) = @alt), Snlt) + 85(t) = Sr(pa) (D)
and the Cauchy formula

il / Si(1) — ¢ () #i(z), z€Intly,
27rir t -2 2mi t -z ¢2(z); z€Extly,
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we obtain by direct calculations

n—1 o
1) =23 i) +[gh(t) + S5 (1)] +2 Y ¢i(t)  (14)
k=1

k=n+1

for t € T,
Let us evaluate the integrals of the sums

-22@ VAW, SO=E0+2 Y HO
k=n+1

Using the lemma from Subsection 3 and the Holder inequality, we
can write

r{|sl(t)|ds < 2kzr/ l64 (1)1 ds sz};i/wz(tnds <

< 200y 2 ( Je ras)”,

_lk

where @} is a limiting function of the Cauchy type integral (13) on I'y,
k=12 a5

Next, changing the order of summation and using the Riesz’s in-
equality for the Cauchy singular operator in the case of the circle as
well as the Holder inequality, we get

/|Sl(t |ds~2/151 Nds <

n"ll—-

2(2m) - Zi 1/p</|¢k |pd5) 4 =

n=1k=1 Tk
= 2(2m)1 Z Zkf/"p”‘( / I (t |pds) e
g P
)G, ZZkI,,f*( I oras)” <
L Tn

< 2(2m)PC, [Z (EM ) g n}w( / W);vds)‘/", (15)
I&

n=1

where C, is the constant from the Riesz inequality (which depends on
p only).
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The integral of Sy(t) can be evaluated analogously. Using inequality
(9), as well as the Holder and Riesz inequalities, we obtain

[1sa(t 1dt<22/|¢e(t lds <2(2m) 7' 3 (/w |”ds) Pl <

T k=np_

2(27r)”" ( ) (/we |Pds> r,ll/’”IS
220G, 3k ( r/ er(opas)”

Next, changing the order of summation and using the Holder in-
equality, we can write

/|Sg(t|dt Z/m Jlds < 228 7C, 30 30 7l

n=1p n=1k=n

«( [1ocoras)” = 22n0, S nett ( [Ieapas)” <
T L i

Rl (an r") [i (/ |<»°n(t)l”ds>%-p1% =

2(2m)7'C, (Z n? rn) /pl(/ |Lp(t)|pds)1/P. (16)
L

n=1

It follows from (14),(15) and (16) that if conditions (B) and (C) are
fulfilled for ¢ = p/, then the operator St is bounded from L,(T') to
Ly(T).

Let us now consider the general case. Let conditions (B) and (C)
be fulfilled for p > ¢ > 1 and ¢ = pg/(p — ¢). Then, by virtue of the
above arguments, Sr is continuous from L (F) o' = £, to L1(T).
But then St is also continuous from Le(T') to L (I') (Loo(l") is a class
of functions essentially bounded on I'). This statement can be proved
by the well-known method using the Riesz equality

/¢5F¢ dt = —/¢sr¢dt, ¢ € Lo(D), € Loo(T),
i 2] L

whose validity in our case can be immediately verified.
Further, since Sr is bounded from Ly/(T') and Loo(I) to Ly(T) and
L, (), respectively, according to Riesz-Torin’s theorem on interpola-
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tion of linear operators (see, e.g., [14], p.144), it follows that Sr is
bounded from L, (T), ¢/ < a < 00, t0 Lag/(ata)(I'). Letting a = p,
we get that Sr is bounded from L,(T') to L,(T").

6. Let us now show that (C) and consequently (B) i llow from
(A). Let for a pair p and ¢, p > ¢ > 1, 0 = pg/(p — ¢), the series
%, n°r, diverge. Then, according to the above-mentioned Abel-
Dini’s theorem, if w, = (S, k7r)~/7, then

o
Zu),’;n”rn— E i < 00, Sg= Zkam
n=1

Sp/ q

o
> windn = Z Brw_

n=1

Consider, on T', the function ¢(t) = wnn”/” fort€ Panni= 1525 o
Then

/[np t)l”{dt|—2/|<,a V’ds—?wa"n R SR )
=1

Next, by equality (14) we have

n—1 n
Sr(e)(t) =2 Zwkk”/p +w,n?? > Zwkk"/”
k=1 k=1

for t € T',,. Consequently,

J1se@)0r = 3 [ 180G l"ldt|>27r2(i:wkko/p)qrn>
r k=i

n“lr n=1

0 . o i
=27 Z w? ( Z k"/”> a2 2% Z wzn(F“)qrn =
n=1 k=1

n=1
=21 Y win’r, = 0. (18)
n=1
It follows from (17) and (18) that if condition (C) is not fulfilled
for p > ¢ > 1, then there exists a function ¢ € L,(T') for which

Sr(p) ¢ Ly(T). Consequently, for condition (A) to be fulfilied, it is
necessary that condition (C) (and hence (B)) be fulfilled.
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ON SOME GENERALIZATIONS OF THE VANDERMONDE
MATRIX AND THEIR RELATIONS WITH THE EULER
BETA-FUNCTION

1. LOMIDZE

ABSTRACT. Multiple Vandermonde matrix which, besides the po-
wers of variables, also contains their derivatives is introduced and
an explicit expression of its determinant is obtained. For the
case of arbitrary real powers, when the variables are positive, it is
proved that such generalized multiple Vandermonde matrix is pos-
itive definite for appropriate enumerations of rows and columns.
As an application of these results, some relations are obtained
which in the one-dimensional case give the well-known formula
for the Euler beta-function.

0B0TBI. 3gdmegdagmos ySqupamSan R0 oo, Gogme

o, Grodamog Ggrggiel babobligensd ghoup Fpageds doen
aaa@ Vo"amaﬁ&w‘% o focgbaens dbo @yagtlobiberd gl

o 333"*5 3. G ggeargdo gaggdo-
mno bm l)bnls 3.)?»3%5?» 653 (830000, ©3E o=
33 oo, Ama by, @ bggndol boowbopm Bemdg@ogo-

"3"’5@‘* d *‘”m Bre gy dxpoge @aggbocages
6.)5[» 0. doggdaemo %Qﬂbaanb 393369800 6o3mgbnd cobo-
gotgrmbydo HUQW Jfodn g geemyterls gnéidm Bge-
O'd‘ﬂsi}nn
It is known from the classical problem of multiple interpolation (cf.
[1], pp. 104-106; [2], pp. 13-16) that there exists the unique polyno-
mial Py_; of degree N — 1 which satisfies the conditions

PED @) =y, k=T, j=Tn, (1)

where z;, y;vk_”
j#lLrij>1land N = Er]. Hence the determinant of the N x N
=1

matrix V(zy,71;.." ;Tn,7n) € My(F) is nonzero. Here by M;(F) with

are given elements of an arbitrary field F'; z; # x; if
n
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natural { we denote the set of all [ x [ matrices with elements from F
and by V(zy,71;... ;@,,7,) the N x N block-matrix

V(@y,rs;ee 5 2n,m) = [wi(e)lwalea)] - woazn)],  (2)
where wj, j = I,n, stand for the rectangular matrices
wj(z) = [(zi"l)(k_l)] 1IN - (3)
12K<r;

There are other cases when one has to deal with matrices of the
form (2). For instance, the determinant of such a matrix can be effec-
tively used when proving the proposition on functional independence
of elements from the complete set of invariants of operators (no mat-
ter whether they are Hermitian or not) in an N-dimensional unitary
space if these operators have r;-dimensional eigenspaces, r; > 1 (this
prorosition will be published in the forthcoming paper of the author).
The case r; = 1 has been investigated in [3].

For ry =--- =7, =1 we have N = n and (2) becomes the Vander-
monde matrix V = V(x1,...,z,) € My(F)

n

Vilzndisee i@l = [Ié—l]l

with the determinant
det [z;i-‘]:‘ = II (&;—ax). (4)
1<k<j<n

1. In what follows N = {1,2,..}, F' stands for the field of real
numbers R or that of complex numbers C and we shall call (2) the
(r1,...,m)-tiple Vandermonde matriz. For ry=---=r, =r this mat-
rix is said to be the r-tiple Vandermonde matriz and we denote it by g
Vi1, ooy ZnyT)-

Theorem 1. For arbitraryry,ra,... ,ry € N the (r1,ra,... ,1,)-tiple
Vandermonde matriz (2) with z4,...,x, € F satisfies the identity
n -1
detVigur o gunma) = (1L TEED)  T1 G-, (&)
i=1 k=0 1<i<k<n
In particular,
r—1
detVi(zg, ooy Trsr) = ( H(k')) I (@- 1;)’2. (51)
k=0 1<i<k<n

Before proving Theorem 1 we need a certain preparation.
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Lemma 1. Letn, N € N, 1 <n < N and ¢, fi : F — F be such
that

bk € Ckﬁl(F»F)’ k:rr;v j=Tn,

[ €CTYFF), r=max{r]j=Tn}, i=LN, N=3Yr;,

i=1
and let U € Mn(F) be the square N x N block-matriz
U = [ur(@)] -+ un(a)], (6)
where
= [ filx)di(x)) = ]1<«<N,I€F (7)
Then we have o
det U = det [vl(xl - vn(zn) ] ﬁ 1 (CEN)) (8)

with

Proof of Lemma 1. Let us denote by [k]; the column having number
k in the matrix uj, k = I,7;, j = I,n. It is clear that (8) is trivial if
$i1(z;) = 0 for some j,1 < j < n. Now if ¢;1(z;) # 0 for each j = T, n,
then it is sufficient to show that by elementary transformations of the
columns of (7) it is possible to reduce them to the form

[K]; = B = [(f)* ()], ©)

This will be proved by induction. The column [1]; in (7) already
has the desired form (9)

[1]; = (1); = [fi=)$1(2)i<icn, § = T

Let us assume that the columns {[k];|k = T,m}, 1 <
also have the desired form (9) for each j, j = T, n. If now
for some k, 1 < k < m, then (8) is proved. Next, if

$ir(ei) # 0, (10)
for each j, k, j = I,n, k = T,m, then we add the sum

e E e SIONNE )q]J—ZC"( it (@) £7()

¢=1

&3
Il
(=7
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(which is correctly defined according to (10)) to the column [m + 1J;
written by virtue of the Leibniz formula as

(@ )]19'51\1'

[+ 1) = (i@ dsma@)™] = [qzzgczf!“’<x )8
Finally we obtain

[m+1]; — [n/z_ji—/l], = [fi(m](x)"sf’"“(z)]15@;' =

Proof of Theorem 1. Denote by {i} the row with the number ¢, 7 =
I, N, in the matrix (2). By adding the sum 371, ¢,{q + ¢ — 1} with
the coefficients ¢, € F' to the row {r; +i},i=1,N —ry, we get

wl(zl) | | @n(2n)
detV (2157150 - BnsTn) = det | -] —— |, (1)
)|

w0y (a1) )

where the matrix @;(z), j = T, n, is obtained from the matrix (3) after
eliminating the last N — r; rows, and the matrix @;(z), j = I, n, has
the form

#(z) = [(«1Q(2))* ”]1<.<N - (12)
Here
1
Qz) =™+ et
g=1
is a polynomial of degree ry.

Note that the matrix @;(z) = V(x,ry) is the ry x 7y Wronski matrix
of 7y functions {fi(z) = «'~'|i = 1,71} and therefore
=1
det V(z,m) = det [@y(z)] = [T K. (13)

k=0

Combining the coefficients ¢, € F', ¢ = I, N — n, in such a way that
@ has a ri-tiple root at ¢ = x4, we obtain

Qz) = (z —z)", (14)
QW(z;) =0, k=0,r -1, (15)
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and now the matrix @;(x;) vanishes by virtue of the Leibniz formula
and (12). Therefore

’ I( 2
(@) || (e |

which, taking into account (13) and the Laplace theorem on determi-
nant expansion, gives

det ViEn i idats)=de | ——

(1) { Wa(z2) |
0 | @

-1
det V(z1,713... Ty Tn) = ( H k') det U, (16)
k=0
where the matrix U € My_.,(F),
U = [a(a2)| -+ fin()]

satisfies the conditions of Lemma 1. Hence according to (8) and (3)
det U = det [U72(IQ - |wn(zn) ] T1(Q(z;))"”
j=2

and from (16) together with (2) and (14) we obtain a recurrence rela-
tion

det V(21,715 ..+ jTn,Tn) =

r1—1 n

(TL #) TL( = 2™ det Viga,raio jzam). (1)
k=0 j=2

The induction by n gives (5) from (17) and (13). W

2. Let the reals a;, 2;, i,j = I,n, be given. We introduce the
notation

a)n = {ailai £ o; if i#j, i=T,n}.
It is known that the generalized Vandermonde matrix
[x;"] = V(G)(zl, o T (a)n) = VO
O<z <+ <Tp; 1 <0<+ <)

is completely positive (cf.[4], p.372), i.e. all its minors are positive.
Let now 1 <n < N and ry,79,... ,7, € N. We shall call the matrix

VOO (zy,r1;... ;20,0 (@)N) = [wlm(rlﬂ |w$lG)(x")] (18)
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the (r1,72,... ,m,)-tiple generalized Vandermonde matrix. Here w;G),
j = 1,n, is the rectangular matrix
wi(@) = (@4 agicr, (19)
12k<r,
_on
(ri=1, j=TIn Z = N).
Theorem 2. the (ry,7s,. .. ,ra)-tiple generalized Vandermonde ma-
triz
V(21,715 - - 5207 (Q)N)

O<a < <Tpap << <)
is positively definite.

Lemma 2. For arbitrary simultaneously nonzero reals ¢; € R, 1 =

I,N, o; # oy if i # k, the function f: R — R

N
= Z cz®
i=1

has at most N — 1 positive zeros counted according to their multiplici-
ties:

n

f@) = [L(@ = z;)7d(zi (@n),

i=1

-

r; < N=1; ¢(z;(a)n) #0, z>0; z;>0, j=T,m, 1<n<N.

I

=1

Proof of Lemma 2. If f has only single zeros, i.e, ry =+ =ry =1,
then n = N, and the assertion of Lemma 2 follows from the inequality
det V(G £ 0 ([4], p. 372). Assume that the assertion of Lemma 2 is
trueforl1 <r; <r,j= T,n, and plove it for N power-summands also
in the case rjy = r +1 for certain j', 1 <j' < n.

Let the opposite be true: say, there exist reals ¢;, 1 = 1, I, N, at least
one of which is nonzero, such that

ZCI"‘_H(Z*M ¢(z; (@)n),

i=1

Yori2N; 1<rj<r+1, j=Tn, 1<n<N.
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Let m, } < m < n, be the number of multiple zeros of f and
zeros x;, , = 1,n, be arranged according to the decreasing of their
multiphsity. )hen [ satisfies the conditions

flz;)=0, j=Tpm, (20)
flay=-= o) =0, 2<r<r+1, j=Tm; (21)
here
m f
n—m+ 3y r; > N. (22)

i=1

B The Rolie theorem, together with (20), implies that the function
f:R->R

f(@) =) =) az¥ (23)

vanishes at the points ¢, 0 < z; < §; < Tj41,j = L,n—1, ie.
fey=0, j=Tn-1T
Besides, from (21) it follows that
](IJ/ = f’(Ij) = f(rl_n(xj) =0, j=1m,

i.e., f has the form

fl@) =:T:I e ﬁ 2= a7 9(w @) =
= Py(2)é(x; (@)n), (24)

all roots of the polynomial Py being positive and having the multi-
plicity < r. From (24) and (22) we find

_n—1+z i —1) —n—l+ZrJ—m>N—1
j=1 j=1

but this contradicts our assumption, since the function (23) is the sum
of N — 1 power-summands. H

Proof of Theorem 2. For a; =i—1,7 =1, N, we have

VO (21,715« ;20 7ni (@)N) = V(21,715 -+ 5ZnyTn)



=

@l

AN

]
nrnad

460 I. LOMIDZE

and, according to (5),

det V(G)(acl,rl; e DT (0))v)

>0
(O<izi< o<z, ay=1—1, 1=1,N)

It is possible to pass to arbitrary values a; < --- < ay starting from
the integers a; = i — 1,7 = 1, N, and changing them continuously, but
preserving the inequalities among them. In doing so, the determinant
det V@ (zy,7y;. .. ;20,70; (a)n) does not vanish according to Lemma
2 and therefore for all 0 < 77 < -+ < @p; 1 < @y < -+ < any we
have

det V(G)(zl,rl;..‘ YT, Tha)n) = 05
Since each principal minor of the matrix V(& (21,715 .. 5 n, a3 (a)N)
can be considered as a determinant of a certain (r1,7rs,... ,7)-tiple

generalized Vandermonde matrix, all such minors are positive. B

Corollary 1. It follows from det V(@ (xy,715... ;20,705 (a)n) # 0
that for arbitrary reals a;, a; # ax if t # k, 1,k = 1, N, there exists
the unique collection of reals ¢;, t =1, N — 1, such that

N-1
ST ca™ 4+ 2 = Pyoi(2)¢(; (@)n),
=

where Py_y is any given polynomial of degree N — 1, having only
positive roots and ¢(z; (a)n) # 0 for x > 0.

Note that for a; € N the above proposition is nothing but the Viete
theorem, since it enables us to determine the coefficients at power-
summands provided we know zeros of the sum.

3. Let n, N be integers, ] <n < N,and 0 < ar < @z < -+ < an,

z; > 0, j = I,n. Transform the determinant det VO (x1,715. .. 3

Ty Tn; (@)n), taking the factor oy, i = 1, N, out of the i-th row and
taking into account that

S e (b (o ot w1y (ke
a7 @)+ = r(a.+o)_ FE T =T, kL2
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Here we put

(%)) =f:dw.../0’dma - _L)Ar(x—t)q—lt“dt,

) I(q
g—tiple
a>0, ¢=12,...,
@szftw,azmz>m (25)
0

and I'(z) = (z — 1)! is the gamma-function. Taking into account the
corollary of Theorem 2, after proper transformations we get

det VO (24,715 .+ 5 Tn,Ta; (2)N) =
N
= (=1)" [ ci det VO (2, =15 5Tn,mn — L (@ — 1)n—n) det A,
i=1 (26)

where
o1 = Ej("j -1,
=1

(a =)y ={ai =i #a; if i#j,4,j=1N},
and A € M,,(F) is a square matrix of the form
A=lo)= [ [7 6= T -z a1
zj-1 p=1
Here we use the notation
N=N-n+1 (28)
and ¢i(t; (e — 1)) is defined by the formula

n

N-n
éi(t; (o — l)ﬁ) H(t = :l:p)"’" = Z c.-+qt°"+"_1, i=1,n, (29)
—0

p=1

the coefficients ¢;;, being defined according to the corollary of Theo-
rem 2.
Rearranging the columns of det V(@ (1,715 ... ; &5, 7a; (@) ) which
contain higher derivatives, we can reduce it to the form
det VO (zy,r1;. .. ;2. (@)) =

= (=1)7* det VO (z1,r1 = 1;... ;Tn,Ta — 15(@)N-n) det A, (30)
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where o = 2]_1(] —1)(r; — 1) and the matrix AeM, (F) is written
as
T L = - o\ =D
A= la;] = [(@i(l? (@)7) (@ =27 ‘)lx:lel =
p=1
= [t = 0!Bite )1‘[ — a7 (31)
p#]
Here, by definition,
n N-n e
a ﬁ) H(x = xp)TpAl = Z Ci+qxa'+qa i=1,n,
p=1 7=0
from which one can find
di(x; (@)5) = edi(a; (@ —1)5), i=Tn (32)

Equating the right-hand sides of (26) and (30) and taking into ac-
count (31) and (32), we get

det [ [77, ¢t (@ — Dy )H”‘-(z _T:p)rp—l(zj_t)rj—ldt]:

=1

det[gi(x;; (e 1)&)1"1'1 15
:ﬁ( ) Ha ; det‘:‘”(wn,n—l @t = Li(e)N)
= : det V@ (zy,m1 — L. ;20 7n — L (@ = 1)w)
i,j=1n).

(wp#rj if p#J; 20=0; 1
For the right-hand side ratio Lemma 1 ohviously gives
det VO(zy,r = 1. 580, n = 1 (0)N-n) H@T’_l

det V@ (z1,mr1 — 15... 520, — 1 (¢ —1)N=-n)

Hence we have the formula

det [.fr 6i(t; ( I)N)Hp—l (;szp_)rp—l(zj = t)”—ldt]:

-1

det[gi(z;; (a — D) = 27
Hp—l(rp 1!
N oo
(zp#z; if p#34; meEN, er=N, z5 >0,
p=1

Pty J = H? To = 0)7
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which can be rewritten as

det [ 1,0, (1= w)r= gufuajs (@ = 1)) Ip= (

p#i  Ti — Tp

det[oi(xj; (@ — 1))]}

Tju — Tp\Tp-1
g P) 2

[Tk L(re)

=== 33

o (33)

(e¢p#z; if p#J5 7 €N, erzN, 1p>0,P,i,j:1,_n; zo = 0).
p=1

In the particular case, when a; =1 — 141,70 > 0,7 =1,N, we

have
bilt; (a—1)5) = (f[(t~ )7 i IR
p=1 9=0
_ tm+i—2( ﬁ(t _ Zp)rp—l)_l Z Cipgl? = go+i=2 ;T N.
p=1 9=0

The latter equality is valid because, according to the Viete theorem,
there exist reals ¢y, such that

n

N-n
Zo Cigqt?! = (H(i - rp)rp_l)-

p=1

Besides,

N
TI(ro—1+7%) H a; =
i=1
and (33) transforms to the equality
det [I;—l 11—1/2 wroti= (1 = u)r,—1 np_ (u)‘f}z‘ldu]n
! ’ ] p#i Ei —%p L
det[5']2
_ n:=0 I(r,)

F(E;:a"p)
(ep#z; if p#j; M EN, 2, >0, p,i,j =T, @o=0, ro>0).

I(ro + N) = I(ro + E::l )
T(ro) T'(ro)

(34)

For the case n = 1 the formula (34) gives the well-known expression

N o YR
/0 w1 —u)" T du = T(ro + 1) = B(ro,m1), (35)

for the Euler integral of first kind.
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Now, we introduce the notation

Ba(r) = B(ro,r1,... y7a) =

1, n =0,
letl it i=1(1 =) TjU—Tk "‘”1 "/ detzi-1",
det 557§ i —wpmt (T (G20 ]/ gl

Mo (36)
n>1 (z,#z; it p#j, pj=0,n, xo=0)
for arbitrary {r;|r; >0, j =0,n} =r.
Since the Euler formula (35) is valid for arbitrary complex rg, 71,
Rero > 0, Rer; > 0, there arises a problem:
Problem. Is the equality

H?:o L(r;)
F(Z?:o Tj)
fulfilled for an arbitrary complex rj, j = 0,n, n > 2?7 (Note that this
case is not covered neither by (34) nor by (35)).

B,(r) = B(ro,m1,... ,Tn) = (37)

4. Put 2 < n < N and 1 < m < min{rj|j = I,n}. Transform the
determinant on the left-hand side of (a) taking the factor ['(s)/I'(i—m)

out of each row having the number ¢ > m + 1 and keeping in mind
that

LG =m) ;=1 I'(z—m :
( (F(i) L ‘> - [‘(i(—k+)1)xl PEm
(i=m+ LN, 1<m<min{r|j =Tn}, k=1,2,...).
After easy but rather long calculations, using (25) and (5) we get
the formula
det[BM]...|B™) o
det V(zy,... ,mn;m)_ H(F(N k+1)

TI0( — £+ 1), (39)

) =0
where BU), j =T n, is the rectangular matrix of the form

BO) = [bEJ)

hgicm
gk_m
, 1 jU — Tp\Tp—m
_ xx_—k/ 1 )k »\" du] )
[ ) amw I (20" " g
P#I
(wp# 2 il p#J; 20>0; j=Tn). (39)

In particular, for m = 1 (38) reduces to (34).
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5. Let us now apply the above results to the case n = 1, N = r,
2> 0. It is easy to show that for the determinant of the matrix

VO a,ri(a)) = [

1
which is nothing but the Wronski matrix for r functions {fi(z) =
2%|i = T,r;@ > 0}, one gets
det VO (z,r:(a)) =2 [ (a5 — ), (40)
1<k<j<r

where
N
B=Yai—r(r—1)/2.
i=1
Obviously, the formula (40) generalizes (13).
Using (40), one can find values of ¢(z;(a)y) and coefficients ¢; for
which

N-1
a2 = (x —a) (s (a)n).
=1
Namely, the Cramer formulae give

;= -2V " Li(an), 1= I,N -1,

é(a; (@)n) =

= (2 = 21) N2 ((2/2)™ = T (2/a1)" Lilan)),  (41)

where
N-1 .
LJa)-H(Z ‘2”), i=TN -1,
p=1 Qi »
p#L

is the Lagrange elementary interpolation polynomial. (41) gives
d(zr;(a—1)5) =
an-N

oz I(an) Al I'(a;) '
h (1\; —1)! (F(aN “N+1) ; T(o; — N + 1)L’("N))’ =)

an-N

B N-1
¢(uI1; (a - 1)1'\7) = ({L_l—l)(l—v——l)(ua"—l = Z uﬂ.—lL,'(OtN)).(43)

=1
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Substituting (42) and (43) in (33) forn =1, N=r, 22, N =N
and performing integration we obtain

T(an o
F(aN—N+1 ; N+1) Lo =

(Za i(an) “aN)HO‘k (44)
Finally, the substitution of (44) in (42) gives .
$(1; (a — ) =
an—-N

T N = -1 -1 a
=m(—1) (ga, Li(aN)_aN)‘gak' (45)
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ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL
DIFFERENTIAL SYSTEMS

V. SEDA AND J. ELIAS

ABSTRACT. For a system of functional differential equations of an
arbitrary order the conditions are established for the initial value
problem to be solvable on an infinite interval and the structure of
the set of solutions to this problem is studied.

EIB0TR0.  6ybbsBogfho fop g faorBerrmé-goggébrsrg® ash-
@m@a&xm lmls@aﬂnb&manb Q.)Qwﬁng:no 3o Uan Ozwagsgng a 6-
Fpeogmech bafjgobo sdrm(gsbols odmbbogmbuls bl BgomoeBo o
dmgamns 58 SBm(gsbols Sdrbibbbors Lodbogenb bty

INTRODUCTION

For the p-tl order functional differential system

() = f(t,an...,2"™V), b<t< +oo, (1)

we consider the initial value problem
P =yp® (k=0,...,p-1). (2)

The invesigation is based on Kubétek’s theorem [2] asserting that
under certain conditions the set of all fixed points of the compact
map in the Fréchet space is a compact Rs-set. It is shown that some
restrictions on the growth of the right-hand side of the functional
differential system imply that the set of all solutions of the initial
value problem for that system is a compact Rs-set in the Fréchet
space of CP~!-functions. The result extends a similar theorem for first
order functional differential systems proved in [2] and the theorem for
second order functional differential systems proved in [3].

In the sequel we shall use the following notations and assumptions:

1991 Mathematics Subject Classification. 34K05, 34K25.
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Let h>0,b€ R,d € N, and let |- | be a norm in R?. Further, let
H; = C'([~h,0], RY) be provided with the norm

!
el = max { 3~ e®(s) : =k < s <0}
k=0
for each € Hy and | = 0,...,p — 1. For brevity || - ||,—1 will be
denoted by || - ||
Let X = CP7!([b,00), R?) be equipped with a topology of locally
uniform convergence of the functions and of their p — 1 derivatives on
[b,00). In the Fréchet space X the topology is given by the metric
o 1 Pm(z —y)
d(z,y) = e
9= L Tepate )

where
p1
Pm(z) = sup { > le® (@) :b<t < b+m}, z,y€ X, m>1.
k=0

Let X* = CP~Y([b— h,0), R%) be a Fréchet space whose topology
is determined by seminorms

p1
ph(z)= S“P{Z le®(@)]:b—h<t< b+m}, ze€X,m21.
k=0

For z € C([b— h,o0), R?) we shall denote by x;, € Hy the function
z(s) = x(t +s), s € [=h,0], t > b. Clearly (z,)®(s) = (z¥),(s),
s €[=h,0,k=0,....,p—1,and z € X*, ¢t > b.

It is assumed throughout the paper that f € X([b,00) x H,—1 x

X Ho, R, € H,_;.

A solution z of (1), (2) is a function z € X* such that x|[b , €

C?([b,00), R?), = satisfies (2) and the functional differential system
(1) at each point ¢ > b.

§ 1. AUXILIARY PROPOSITIONS

Now Kubacek’s theorem in [2] will be stated as Lemma 1. In
that lemma the compact Rs-set in the metric space (E,p) means a
nonempty subset F' of E which is homeomorphic to the intersection
of a decreasing sequence of compact absolute retracts. By [1], p. 92,
a metric space (7 is called an absolute retract when each continuous
map f : K — G has a continuous extension g : H — G for each metric
space H and each closed K C H. For example, a nonempty convex
subset of the Fréchet space is an absolute retract.
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Lemma 1. Let M be a nonempty closed set in the Fréchet space
(E,p), T : M — E a compact map (i.c., T is continuous and T(M)
is a relatively compac set). Denote by S the map [ — T where I is the
identity map on E. Let there exist a sequence {U,} of closed convexr
sets in E fulfilling the conditions

(i) 0 € Uy, for eachn € N;

(i) lim diam U, =0,
and a sequence {T,} of maps T : M — E fulfilling the conditions

(iii) T(2) — Tnu(z) € U, for each x € M and each n € N;

(iv) the map S, = I — T, is a homeomorphism of the set S;'(Us)
onto U,.

Then the set I of all fired points of the map T'is a compact Rs-set.

In the special case E = X, p = d Lemma 1 implies

Lemma 2. Let (X,d) be the Fréchet space given above; let ¢, @, €
C([b,0),[0,00)) and let the following conditions be fulfilled:

(v) For each t € [b,c0) the sequence {@n(t)} is nonincreasing and
limp oo pn(t) = 0. Letr € R, k=0,...,p—1 and let

p—1
M= {x € X3 W) — ril < olt), t > b, ?B(b) = 4,
k=0

k:O,...,p—l},

It is assumed that T : M — X is a compact map with the property
(T(x))*)(b) =i, k=0,...,p— 1 for each x € M and there exists a
sequence {Ty} of compact maps T, : M — X such that (Tn(z)®(b) =
re, k=0,...,p—1 for each € M and

o) 3 |(1(0)) ) - (1) 0] S ), # € M, 128

(vii) for each n € N there exists a function @u, € C([b,00),[0,00))
such that
@un+on <@ on [boo)

and
el (*)
T |(Tu(@)" @) =] S unlt), zEM, 128
k=0

(viii) the map S, = I — T, is injective on M where I is the identity
on X.
Then the set F of all fired points of the map T is a compact Rs.
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Proof. The set,

p—1
= {I €X: Y [e®(t)] < ga(t), t 2 b, 2¥(8) = 0,
k=0

k:OV..,p—l}

is convex and closed on X for each n € N. We shall show that
the sequence {U, } satisfies all conditions of Kubé¢ek’s theorem when
E =X, p=dand thus Lemma 2 will follow from Lemma 1.

Clearly, (i) is fulfilled. As to the condition (ii), we choose an arbi-
trary € > 0. Then there is an my € N such that Zﬁ=m[+1(l/2m) <
€/2. The condition (v) and the Dini theorem imply that the sequence
{¢n} converges on [b,c0) locally uniformly to 0. Therefore for £ > 0
and mo € N there is an ng € N such that g, () = sup{|en(t)] : 6 <
t <b+m} < efdmg for n > ng and m = 1,2,...,mg. Hence for
n > ng and z,y € U, we have

o

dag)= 3 ootV B s 3 L
)= — < -y —<
m=1 2™ 14 pm(z —y) m=1 e m=mo+1 2m

i = 1 € e
< 2gm (on) + —<2mg—+ - =c¢.
mz=:1 G (¢n) mz%ﬂ = il

This implies that (ii) is satisfied. The assumption (iii) follows from
(vi) and from the definition of T, T,,n € N.

Now we show the inclusion U, C S,(4). The condition (viii) then
implies that S, is the bijection of S (U,) onto U, and is fulfilled,
since the continuity of S;IVU is the consequence of the compactness
of T "

Thus we have to prove that for each y € U, there is an zy € M such
that @, — T.(z,) = y. This means that the map P(z) = y + Tu()
has a fixed point for each y € U,. The condition (vii) implies

> 590 + (@) ) — i < 5 ¥+
k=0 k=0
3 (@) ™0 = 1] < n(t) + 9nlt) S (0, 125,
k=0

and (Pa(t))®)(b) = 1, k = 0,...,p— 1, for each z € M. Therefore
Po(M) C M. As M is a closed convex bounded set and P.(M)c M
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is a compact map, by Tikhonov’s fixed point theorem, P, has a fixed

point. M °

Now the function ¢ in Lemma 2 will be given as a solution of an
integral equation. The existence and some properties of the solution
to that equation will be discussed in the following two lemmas.

Lemma 3. Let ¢ € H,_y, w € C([b,00),[0,00)), g € C([0,0),[0,00))
be a nondecreasing function. Further, let

o(t)=0, b<t<oo, if p=1, and

P (k) 3

o(t) = Z (k§1 ‘gi _(?))!l(t _B b<t<oo, ifp2o O
P-—l )p—l =

=§ pyy gy b<s <1, (4)

Then the following statements hold:
1. A solution ¢ € C([b,0),[0,0)) of the integral equation

t

p(t) = o)+ [ K(t,slo(@)g(lb]l + () ds, b<t<oo, (5)
b

exists and satisfies
0<pt) SMD), bt<om, (6)
if and only if there exists a function X € C([b,00),[0,00)) such that

At) 2 o(t) +/K(t»8)w(5)g(ll¢ll +A(s))ds, b<t<oo, (7)
b

i.e., if and only if there exists an upper solution A of (5).

2. A solution ¢ of (5) (whenever it exists) is a nondecreasing func-
tion in [b,00).

3. If (5) has a solution ¢ and w; € C([b,00),(0,00)) satisfies 0 <
wi(t) Sw(t) for b <t < oo, then the equation

w(t) = o(t) + [ K(t,s)n(s)g(I¥]) +(s) ds ®)
b

has a solution ¢, such that

0< @(t) Sp(t), b<t<oo.
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Proof. 1. The necessity is clear. To prove the sufficiency we shall
proceed by the method of steps. Hence we prove by mathematical
induction that for each m =1,2,...:

(a) There exists a solution y,,, € C([b,b+m], [0, 00)) of (5) satisfying
the inequalities 0 < y,,,(¢t) < A(t), b <t < b+ m, and

(B) mss(t) =gm(®), bSt<btm.

Consider the partially ordered Banach space X; = C([b,b + 1], R)
with the sup-norm where z; < z, if and only if z,(t) < z(t) for each
t € [b,b+ 1] and each pair 21, 2, from that space. Then, by definition,
the interval (z1,2;) = {y € X;: z1(t) < y(t) < z(t), b<t < b+ 1}.
The operator Uy : X; — X; defined by

t

U(t) = o)+ [ K(t,)o(s)g(Ibl+ () ds, b<t<b1,
b

is completely continuous, nondecreasing and, in view of (7), maps
the interval (0, )‘|[bb o ) into itself. Hence by Schauder’s fixed point

theorem U, has a fixed point Y; satisfying (6) on [b, b+ 1].

Suppose now that there exists a solution y,, of (5) on [b, b+m]. Con-
sider the space X411 = C([b,b+m+1], R) with the sup-norm and with
the natural ordering. Let Uy, 41 be the operator given by the right-hand
side of (5) on [b, b+m+1]. Uy is completely continuous, nondecreas-
ing and maps the interval (0,)\’[!7 o +1]) ={y € X1 : 0 < y(t) <
A(t), b <t < b+m+ 1} into itself. Similarly, Uy,41 maps the closed
and convex set Ym+1 = {z € Xmg1 1 2(t) = ym(t), b <t < b+m}into
itself. Hence Um+1 n Ym+1) (0; /\l[b b+m+l]) N Yo

0 b+m+1]> 0 Y.
This is the searched function y,4; with the propertles (a) and (b)
Then the function () = yn(t) for b<t <b+m,m=1,2,...,isa
solution of (5) in [b, 00), satisfying (6).

2. The statement follows from (3), (4) and (5).

3. Since each solution ¢ of (5) is an upper solution of (8), Statement
1 implies Statement 3. W

l[b b+m+1]>
and there exists a fixed point ym41 of Upyy in (0, /\|

The existence of an upper solution A of (5) is provided by

Lemma 4. Let 1, 0 and K have the same meaning as in Lemma
3 and let g € C([0,00),(0,00)) be a nondecreasing function. Then
A € C([b;00,[0,00)) is an upper solution of (5) if there is a function
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p € C([b,00),[0,00)) such that
t
At) = o(t) +/K(z,s)p(s)d5, b<t< oo, )
b
and
(1)
0<w(t) L ———"——, b<t<oo. 10
O < Zl+ ) > e
Proof. By combining (9), (10) we get that A determined by (9) is an
upper solution of (5) in [b,c0). W

Remark 1. Similarly, the necessary and sufficient condition for A €
C([b,0,[0,00)) o be solution of (5) is that there exists a function
p € C([b,00,[0,00)) such that (9) is fulfilled and

p(t)
w(t) = ————"7, b<t<oo.
g2l + A1)
§ 2. THE MAIN THEOREM
The main theorem reads as follows.
Theorem 1. Let » € H,_y, f € C([b,00) X Hp—y % -+ x ho, R?).

Let, further, w € C([b,00),[0,,00)), g € C([0,00),[0,00)) be a non-
dereasing function and let

(i) 1£(t X0 xS w®)g(lxll)
for each (t,x) € [b,00) x M*, where

p—1
M*= {2 € X+ Y [W(t) — p¥(0)| < olt) for t2 b and
k=0 i
=y, k=0,..,p-1},
and ¢ is a solution of the equation (5) where the functions o and K
are determined by (3) and (4), respectively.

Then the problem (1), (2) has a solution x lying on M* and the set
F* is a compact Rs-set in the space X*.

Proof. Consider the set

M= {z ex :pi |2y — zp(k)(o)} < (t) for t>b and
k=0

29(8) = $(0), k=0,...,p=1}.




474 V. SEDA AND J. ELIAS

Clearly, the restriction P : X* — X determined by P(z) = z

|[b,oo)
is a homeomorphism of M* onto M. Let the map 7" : m — X be
determined by

1 yh(o)

T(e)(t)= X ——(t -8+
k=0 :
+/ t_s)“f[s Py, (P V]ds,  (11)
b
zeM, t>b,

where P~! is the inverse of P‘M‘. Then F* = P7(F), where F is the
set of all fixed points of the map T'. Since the homeomorpic image of
the compact Rs-set is again a compact Rs-set, it is sufficient to prove
that F'is a compact Rs-set in the space X. This will be done by using
Lemma 2 where we put rx = 1®)(0), k = 0,...,p— 1. Due to (ix) the
maps T}, : M — X determined by

r 1 SO0 (bt for b<t < b+ L,
STEeL MO )+f’"ir">_"“x

Tzt = k=0 "kt (p-1)! (12)
(=)() X fl8, (P718) 50 -y (P~ 12) B~V ds
forb+%§t<ooand.'c€1\1
are, together with 7', compact and, again by (ix),
p-1
(1) )
S |(T@)" 1) - (T@) 0] <
=0
-y =4 o
i i (tmpre(s)e(l(pa)ilds, b<t<bt s,
—L1 (4 _gp-1 1_ _1_gp-1-t _
< o { a2l s+

t—s)P~1

Iy B )l s, b+E <t < oo

By Lemma 3 ¢ is nondecreasing in [b, 00) and therefore ||(P~'z),|| <
¥ + ¢(s) for each b < s < 0o, x € M. Hence, using also (4), we get

zl (7)) - (7)) "0)] < ealt), 125, z€ M,
=t
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where
s\
[ B K@s)(s)g(lvl+e(s)ds, b<t<b+ T,
pult) = LK (5 s)e()g(I9ll + e()ds = 77 K(t = L, s)w(s)x
x(|l#]l + ¢(s))ds, b+ % <t<oo, ne€N.
Clearly, ¢, € C([b,00),[0,00)) and the relations @n41(t) < @a(t),
limy o0 ¢n(t) = 0 can be proved for each ¢t > b. Therefore these

functions satisfy the assumptipons (v), (vi) of Lemma 2.
Further,

p=1
() " (0) = 000 < punlt), t2 6, z€ M,
=0
where
o(t), b<t<b+1,
P =1 o(t) + fi 7 K(t— 1, shw(s)g(lell + p(s))ds,

b+1<t<oo,

n € N, o and K are the functions introduced by (3) and (4). The
functions ¢., are nonnegative continuous functions on [b,c0) and, by
virtue of (5) we obtain @n(t) + un(t) = (), t > b, n € N. Hence
the assumption (vii) of Lemma 2 is satisfied, too. Thus it remains for
us to show thai the assumption (viii) holds and then Lemma 2 will
imply the statement of Theorem 1.

Let n € N be arbitrary but fixed. If z,y € M, = # y, then there
exists a tg € [b,00) such that z(to) # y(te). If b < to < b+ %,
then, taking into account (12), we obtain z(to) — Tn(z)(to) # y(to) —
To(y)(to). In the other case thereisat; > b+2 such that t; = sup{r >
b:a(t) = y(t) for b <t < 7}. Then there exists to € (t1,¢1 + L) such
that x(t.) # y(to). By (12) we now have

IS O PP O B
Tt = & = to =9+ [ Sy
X fl5, (P2 (P10)0 s = 5 20 Oy — b+
k=0 °
tc_%(to s

”ﬁf (s, (P7'y)ay .., (PT'9)PVNds =
b
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and thus z(to) — Tn(z)(to) # y(to) — Tu(y)(to), which we were to
prove. W
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ON THE MODIFIED BOUNDARY VALUE PROBLEM OF
DE LA VALLEE-POUSSIN FOR NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS

G. TSKHOVREBADZE

ABSTRACT. The sufficient conditions of the existence, uniqueness
and correctness of the solution of the modified boundary value
problem of de la Vallée-Poussin have been found for a nonlinear
ordinary differential equation

o™ = f(t,u, o, ..., u*"D),

where the function f has nonitegrable singularities with respect
to the first argument.

@IB0V30.  aagbormnd goemg-3aligbol Béam%t‘vénwa\f'o olssten-
3¢<wv \)8("70\)50[5 3eo@omn J°G°°b 33mlslibagomdols, Gb@l»on lbogmdals
© goGgdemermdol bygdstabo 3obmdgdo

u® = fltu,uy ... ,u("'l))
stbsfjfecgogo Baygrgbéoge gogy "asewv":,:ﬂ‘m a%wa?m i
3 i csvas odls 30633@ 3336 303560 a\xﬁsm 5@3-
afgten gBlasgeigbnmgdte

§ 1. STATEMENT OF THE MAIN RESULTS
In this paper for an ordinary differential equation
u™ = f(tu,. .. u™Y) (L1)
we shall consider the boundary value problem
uFVE)=0 (k=1,...,n5i=1,...,m),! (1.2)
sup {(t — )N (b— ) [ul (@) s a < t < b} < oo, (1.27)
1991 Mathematics Subject Classification. 34B15.

THere u()(a) (u()(b)) denotes the right (left) limit of the function u(*) at the
point a (b).
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wheren > 2, 1€ {1,... ,n}, me {2,... ,n}, —c0o<a=1t <:-- <
tm = b < +oo,n; € {1,...,n=1} (i = 1,...,m), X2 n; = n,
A €ln =1, A2 €]nm — Linw[, Im = [a,0)\{t1,... ,tm} and the
function f : I, x R® — R satisfies the Caratheodori conditions on
each compactum contained in I, x R™.

Problem (1.1), (1.2;) is the well-known boundary value problem of
de la Vallée-Poussin and has been studied with sufficient thorough-
ness both when f is integrable with respect to the first argument on
[a,b] (see, for example, [2] and References from [5]) and when f has
nonintegrable singularities at the points t1,... ,n (see, for example,
[5]-[7]). However, in the works devoted to the study of problem (1.1),
(1.24) it is assumed that

b
/(t — N (b — R (4)dE < oo for 7> 0, (1.3)
where

frty=max | (& T 1t = tPe,... T - t,-|"-"zn)\:ki ol < 7},
=1 =1 =]

ni—k+1 for k < ny,
nig =
z 0 for k > n;.

This assumption is not casual. The matter is that if condition (1.3)
is not fulfilled, then problem (1.1), (1.2,) is not, generally speaking,
uniquely solvable even in the simplest case. For example, given the
boundary condition (1.2;), the equation

(=1)"s

(n) —
u = a)”u

has an infinite number of solutions for n; = 1 and any sufficiently
small § > 0.

Therefore to provide the solution uniqueness we have to introduce
an additional and, of course, natural condition such as, for exam-
ple, (1.2;). This condition is natural because if (1.3) is fulfilled, then
(1.2) yields (1.2,), i.e., problem (1.1), (1.21), (1.2;) coincides with the
problem of de la Vallée-Poussin (1.1), (1.2;). However, if (1.3) is not
fulfilled, then, as follows from the above example, this is not so.

Problem (1.1), (1.21), (1.2;) is the generalization of the boundary
value problem of de la Vallée-Poussin (1.1), (1.2,) and has been studied
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in [14]% for the linear differential equation

u™ = ipk(i)u(k_l) +q(t), (1.4)

where py : Iy, > R(k=1,...,1),q:]a,b[— R.

In this paper we shall establish the sufficient conditions for the ex-
istence, uniqueness and correctness of the solution of problem (1.1),
(1.21), (1.23). Note that the solution of this problem is sought for
in the class of functions u :]a,b[— R absolutely continuous with u(*
(k=1,...,n —1) inside ]a, b[.3

The following notation will be used
vg=|(k—=1=X)---(I=2=X) (k=1,...,0-1), w(N)=1;

m—1
T (t) = (8= @) ™¥H1 (b — )R T ¢ — ¢y

Tkn(t) = (t = a)"*(b— )" ﬁl It = il

R =] — 00, +00[; Ry = [0, +00];

R?, where p is a natural number, is a p-dimensional Euclidean space;

C;Lcl ]a b[; R) is a set of functions v :]a, bj{— R which are continuous,
with v®) (k = 1 ..,n—1), inside ]a, b[;

€' (Ja, b; R) is a set of functions v :)a, f{— R which are absolutely
continuous, with v®) (k=1,... ,n — 1) inside Ja, b];

L([a,b];I), where I C R, is a set of functions v : [a,b] — I which
are Lebesgue integrable on [a, b];

Lioe(Ja,b; I) is a set of functions v :]a,b[— I which are Lebesgue
integrable inside ]a, b[;

Lo s(Ja,b; ), where o > 0, 3 > 0, is a set of measurable functions
v :]a, b[— I satisfying the condition

o) lass = sup {(t = @)°(b = )] [ o(r)ir

:a<t<b}<+oo;

”E\.«

2See also [10]-[13].
3Le. sion each segment contained in ]a, b[.
k) e Lt — t;|"* will denote unity when m = 2.
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Koo (I x R?; R), where I €]a, b[ is a measurable set and p a natural
number, is a set, of functions ¢ : I xRP — R satisfying the Caratheodori
conditions on each compactum contained in I x R?;

K9 (I x R?;R) is a set of functions g : I x R? — R such that
g(-sz1(-)y- .. ,zp(+)) : I — R is a measurable function for any contin-
uous vector function (zy,...,z,): I = R?;

Dy, x,(u0;7), where r € Ry, uo € Cpi.'(Ja,b;R) is a set of vectors

(z1,...,21) € R! satisfying the condition
! (k=1)
: uy (1)
1nf{ zk—o_-':tel}gr
ké:l Tk (1) "

Wi, (t0;7) is a set of functions u € Cjy;'(Ja, b; R) satisfying the
condition

L () — uf )]

<r for a<t<b;
k=1 Tk ()

[a, 8] x Ry;Ry), where a < o < 8 < b, is a set of functions
w € Kpe([e, ] x Ry; Ry) which are nondecreasing with respect to the
second argument and satisfy the condition

w(t,0)=0 for a<t<B.
Throughout the paper it will be assurned that
f € Kipe(Im x R™;R)

and the solution of problem (1.1), (1.2;), (1.22) will be sought for in
the class C2'(Ja, b; R)
Some definitions will be given.

Definition 1.1. Let no € {1,...,n — 1} and X €]ng — 1,n0[. A vec-
tor function (hy,...,h;) with measurable components Ay Ja,b[— R
(k = 1,...,0) is said to belong to the set S*(a,b;n,no; A)
(S~ (a, b;n,n0; \)) if there exists a €]a,b[ such that we have the in-
equality

t— a)l 1-x 1 « S
li — )" =ktLIp dr < 1
imsup =3 / (r — a1y (r)|dr
b—t)H—A ] f A—k+1
limsup ———— / -7 he(T)|dr < 1
[timsup C 22 o / PR ()|
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in the case [ € {ng+ 1,...,n} and the inequality

(t _ a)l—l—A

L e e
xg Vkll()\)a/t(t_s)nn—l s/o(("'—S)H_HD_I(T—G)A_’C“|hk(-r)|d7-ds<1
[imae =y
XZ:I u“;(k) j(s»t)"o—la/s(s_T)n—ng—x(b‘T)A-kthk(T)ldes<1]

in the case [ € {1,... ,ng}.
Definition 1.2. Let
Tk ()Pik() € Liae(Ja,bGR) (7= 1,2 k=1,...,1),,
pie(t) < pak(t) for a<t<b (k=1,...,1),
(P55 »p}) € ST(a,b;m,m03 M) N S™(a, b1, 13 Aa),
where pi(t) = max{|pw(t)], |p2x(t)]} (k = 1,...,l) and, moreover,
under the boundary conditions (1.2;), (1.25) the differential equation

!
u™ =37 pi(t)ult (1.40)
k=1
have no nontrivial solution no matter what measurable functions py :
la,b[— R (k= 1,...,1) satisfying the inequalities
pik(t) < pr(t) < pu(t) for a<t<b (k=1,...,1) (1.5)

are. Then the vector function (pi1,... ,pu;pa1,--. ,pa) is said to be-
long to the class V(t1,... ,tming, ... snm; A1, A2).

1.1.EXISTENCE AND UNIQUENESS THEOREMS
The General Case.

Theorem 1.1. Let the following inequalities be fulfilled on |a, b[xR™:

1
£t 2. 2a) = Eopalti oy y2a)ee = aolt)] <
k=1

<oty ) (1.6)

’k=1 Tk (1)
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and
pik(t) S prlt, e, 2a) Spa(t) (k=1,...,0) (L.7)

where

(Pr1y -+ P P21y -+« »P2) € V(1y.eo s tminy e s Rms Ay A2), (18)
€K (I, xR%R) (k=1,... ,l), Q€ Ln_l—A,,nq_,\;(](l,b[; R),
the function q :)a,b[xRy — Ry is nondecreasing with respect to the
second argument, q(-,0) € Ln-1-xn-1-1,(Ja,b[;Ry) for any ¢ > 0,

and

lim 1!](‘, g)l"—l—h,vu—l—h
e—+ 0

=0 (1.9)
Then problem (1.1), (1.21), (1.22) is solvable.

Corollary 1.1. Let the following inequality be fulfilled:
1

It 21 2n) — qo()] < 3 pr(t)|erl +

k=1

+q( 3zl ) (1.10)

1 kA, /\'2

where

@0 € Ln—1-a m-1-1,(Ja, 0 R),
(=P1ye ey =PUPL - o P1) € V(1o ytmina, e s s My A2), (1111)

and the function q :Ja,b[xRy — Ry satisfy the conditions of Theorem
1. Then problem (1.1), (1.21), (1.2;) is solvable.

For the case when the right-hand side of equation (1.1) is indepen-
dent of the last n — [ arguments, i.e.,

uN= fits e yui ) (1.1)
we have
Theorem 1.2. Let

f(,0,... ,0) € Lﬂ—l-/\lﬂt—l—)\z(]av b{; R)
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and the function f have partial derivatives with respect to phase ar-
guments belonging to Kie(I, x R;R). Let, moreover, the following
inequalities be fulfilled on a,b[xR:

af(t,x1,..., 1)

<
pik(t) < iy

Sould) (k=1...,0, (112)
and
(P11s- - Pus P21y - s P2) € V(H, oo v s tmi R, e ey s AL, A2).
Then problem (1.1'), (1.21), (1.23) has the unique solution.
The case [ = 1.
In this subsection we shall consider the problem
u™ = f(t,u), (1.13)
uFDty=0 (k=1,...,n5i=1,...,m), (1.14;)
sup{(t —a)™M(b—t)u(t):a <t < b} < +oo  (1.145)
a.ssum‘ing that
[ € Kioe(In x R;R).

For any r € L,_1-),,n-1-,(]a, b[; R) we introduce the notation

t
sl = Vraimax{M At b},
01«\11/\2(0
where ug(r)(+) is the unique solution of the equation
u™ = r(t)

satisfying the boundary conditions (1.14;), (1.143) (see, for example,
Proposition 2.3).

Theorem 1.3. Let the following inequality be fulfilled on ]a, b[xR:

(1) e}
11(t2) = ao)] < S slal +a(t, o= ). (119)

T1,M1,02

where
90,7 € Lp—1-x n-1-1,(Ja, b[; R),
and the function q :)a,b[xR4y — Ry be nondecreasing with respect to
the second argument, q(+,0) € Ln—1-x,,n-1-2,(Ja,b; Ry) for any o >0
and
T 19(5 0)ln-1=21n-1-2,
o—+0o 0

=0.



484 G. TSKHOVREBADZE

Let, moreover,

g,\,,h(r) < 1. (1.16)
Then problem (1.13), (1.14;), (1.14;) is solvable.
Corollary 1.2. Let m = 2 and the following inequality be fulfilled on
Ja, b[xR:
To |z| )
— g I = Rl
OO e e e e

where the functions qo and q satisfy the conditions of Theorem 1.3,
and the number ry the inequality

ro < [nl!ngl(/\l —n1+1)(A2 = ng 4+ 1)(n1 — A)(ng — Ag)(b— a)"] %
X [2ny(As = nz + 1)(n1 — A) (A =g+ 140y — ) +
+2n3(A1 — 0y + 1)(ng — A)(Aa —ng + 1+ 0y — A7 1.17)
Then problem (1.13), (1.14;), (1.143) is solvable.
For the two-point boundary value problem
= ft,0), (1.18)
u(a) = u(b) =0, (1.19)
sup{(t — a) ™M (b—t)™u(t)] s a < t < b} < 400, (1.193)
where 0 < Aj, Ay < 1, and for the three-point boundary value problem
u" = f(t,u), (1.20)
u(a) = u(to) = u(b) =0, (1.214)
sup{(t —a) ™M (b—t)™u(t)| 1 a <t < b} < 400, (1.21,)
where a < 9 < b, 0 < A, Ay < 1, from Theorem 1.3 we obtain
Corollary 1.3. Let the following inequality be fulfilled on ]a,b[xR:
17, - )] < L Tty 2 e
o)
(t—a)M(b—t)»
where ro €]0,1[, and the functions qo and q satisfy the conditions of

Theorem 1.3 for n = m = 2, ny = ny = 1. Then problem (1.18),
(1.19y), (1.19;) is solvable. .
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Corollary 1.4. Let the following inequality be fulfilled on ]a,b[xR:
(L= A)(2=X\) 3M(1=\)

17t ) = qo(®)] < ro| =55 T T
Bde(l-X) 6A1); CBAA(1—))
(t—a)2(b—t) (t—a)(t—t)(b—1t) (t—a)(b—1)?

(1= 22) A(l=2)(2—X2)
T—t)b—t)r T (b1

=]+

|z )
t
+q(’(t_a)h|t-t0|(b—t)h 7
where ro €]0,1[, and the functions qo and q satisfy the conditions of

Theorem 1.3 forn =m =3, ny = ny = ng = 1. Then problem (1.20),
(1.214), (1.213) is solvable.

Theorem 1.4. Let
f(,0) € Ln—1-3, n-1-2,(Ja,b[; R)

and the following inequality be fulfilled on Ja, b[xR:
r(t)

ml” =~y (1.22)

[f(t,z) = f(t,y)| <

where the function 1 € Ln_i-) n-1-1,(]a, b; R) satisfies condition
(1.16). Then problem (1.13), (1.141), (1.143) has the unique solution
u and

ui(t) = u(?)]

:a<t<b}—»0 or j — 400, (1.23
() for j (1.23)

vrai max {

where ug(t) = 0, and for each natural number j the function u;j is a
solution of the equation

(1) = f(tuia(1), (1.24)
satisfying the boundary conditions (1.141), (1.145).
Corollary 1.5. Let m = 2,
f(0) € Ln—1-x,n-1-2,(Ja, b[;R)
and the following inequality be fulfilled on |a,b[xR:

[f(t,2) = ft,y)| <

To

=aorG=0r t)nlw -yl
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where o is a number satisfying (1.17). Then problem (1.13), (1.14y),
(1.14,) has the unique solution u and

[ui(t) = u(®]
(t—a)M(b—t)’
where ug(t) = 0, and for each natural number j the function u; is a
solution of problem (1.24), (1.14;), (1.14,).

vraimax{ a<t<b}—’0 for j — +oo,

Corollary 1.6. Let
J(,0) € Liox, 123, (Ja, b R)
and the following inequality be fulfilled on la,b[xR:
A1 = Ny) 2M1 A Ag(1 —)\2))
z)— < ],
L R L e e oy Ly |
where ro €]0,1[. Then problem (1.18), (1.191), (1.19;) has the unique

solution u and

[ (t) — ()]

(= apr(o- )™
where ug(t) = 0, and for each natural number Jj the function uj is a
solution of the equation

u;’(t) = f(t’ uj—l(t))v
satisfying the boundary conditions (1.191), (1.19;).

vraimax{ :a<t<b}—’0 for j — 400,

Corollary 1.7. Let
f(50) € Ly, 2-x,(]a, 6 R)
and the following inequality be fulfilled on ]a,b[xR:

Ml =A)(2=X) 31— \)
f(t2) = FE )l < | = ~ et — 1)
3N A (L= Xy) 61, O 3MA( - )
(t—a)2b—t) (t—a)t—to)(b—1t) (t—a)(b—1t)?
L 3(1=d)  ha(l= )2 )
(t —to)(b—t)? (b—1)®
where ro €]0,1[. Then problem (1.20), (1.21y), (1.212) has the unique
solution u and

|z —yl,

Ju;(t) — u(®)]
(t = a)M]t = to|(b— 1)

vraimax{ :a<t<b}—»0 for 3 — 400,
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where ug(t) = 0, and for each natural number j the function u; is a
solution of the equation

uf'(t) = f(t,451(1)),

satisfying the boundary conditions (1.21;), (1.21,).

Remark 1.1. In Corollaries 1.3, 1.4, 1.6 and 1.7 the condition
o €]0, 1] (1.25)
cannot be replaced by the equality

ro=1. (1.26)

1.2.CONTINUOUS DEPENDENCE OF SOLUTIONS
OF THE RIGHT-HAND SIDE OF THE EQUATION

In this subsection we shall consider the boundary value problem

W = F(tth e 00, (L1)
u(k_”(t,-):O (E=1us st =100, 10); (1.19)
sup {(t —a) PP —nF B e it < b} < 400, (1.23)

assuminmg that
1 20 € Kioe(In x R5R) (k=1,...,1)
oz

and give the sufficient conditions for its solutions to be stable with
respect to small perturbations of the right-hand side of the equation
(L1h):

Definition 1.3. Let ug be a solution of problem (1.1'), (1.2;), (1.2;)
and r be a positive number. It will be said that ug is r-stable with
respect to small perturbations of the right-hand side of equation (1.1’)
if for any & €]0,7[, a €]a, taf, B E€Jtm-1,b[, (z10,--- s T10) € D, r,(u0;7)
and w € M([e, B] x R4;R4) there exists § > 0 such that for any

=
i

S
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function 7 € Kioe(In x RS R) satisfying the conditions

‘/W(Tyal,)\y,/\y(T)Ih--~ O (T)z)dr| <6

for a<t<B, (21,...,31) € Di p,(uoir),
[n(ts o100 (D)1, - 010 2 (H)T1) —

=0t 017 0By, o (Ow)] < w( Z |2k — yx )
for a <t < B, (z1,...,2) and (w1,... ,y;) € D;,,AZ(uO, 7l
3 a
(G a)n~l—/\l [/WL«\:(T;U‘O;T) dr + 1/770(7')(17'
t t

fora<t<a,

B

<

t
(b= t)n—l—/\z [/";"M(T;uo;r)dr + ‘/no(‘r)dr
B B

for B <t < b,
where
no(t) = n(t, o130 (1) T10, - -+, 01A 2 (E)200),

M3, 0 (B os m) =sup{[n(t, o1, 0, (D)1, oun a (D21) = n0(t)] ¢
(%1, ,21)Dx, 2, (u0,7)},

the equation
u™ = f(t,u,... ) + n(t,u, ... ul=Y)

has at the least one solution in Wi, 2, (uo;7) and every such solution
is also contained in W)\, (ug;¢).

Definition 1.4. It will be said that the solution g of problem (1.1’),
(1.21), (1.22) is stable with respect to small perturbations of the right-
hand side of equation (1.1') if it is r-stable for any r > 0.

Theorem 1.5. Let ug be a solution of problem (1.1'), (1.2), (1.2,),
r >0 and the following inequalities be fulfilled on |a,b[x Dy, ,(uo;T):

af(t D1, ... o1t
Binll) = f(E, o1 0( )xalxk T (H)T0) 2l

(1.27)
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where

(Pits--- s P P21y - - -, P2) € V(E, oo ytminay oo ynms Ay A2). (1.8)

Then g is r-stable with respect to small perturbations of the right-hand
side of equation (1.1").

Theorem 1.6. Let
FG50, 000 50) € Lacrangno1=3, (o, B; R)
and the following inequalities be fulfilled on la,b[xR':

Of ey
Plk(t)Sf(Ta—l‘EkI”‘)’

where pjx (7 = 1,2; k= 1,...,1) satisfy condition (1.8). Then prob-
lem (1.1"), (1.2y), (1.22) has the unique solution ug und, moreover, this
solution is stable with respect to small perturbations of the right-hand
side of equation {1.1').

<pult) (k=1,...,D,

§ 2.  AUXILIARY PROPOSITIONS
Proposition 2.1. Let
(P11, -+ s P1E P21s« -+ o P2) € V(t1ye oo s tmiBayen s o ALy A2)e

Then there exists a positive number po such that for any
q € Ln_1-x,n-1-2,(Ja,b[;R) and measurable functions py :la,b[— R
(k = 1,...,1) satisfying inequalities (1.5) an arbitrary solution u of
problem (1.4), (1.21), (1.2;) admits the estimate

[u® D ()] < 00k315 (D]g(ln-1-71m-1-x,
for a2t &b (R=1y.. .0
Proposition 2.2. Let
Tk (OPe() € Lioe(Ja, bGR) (k= 1,...,1) (2.1)
and
(P1y--- »p) € ST(a,byn,ny; M) N S™(a, by n,nm; A2). (2.2)

Then for problem (1.4), (1.2y), (1.2;) to be uniquely solvable for each
q € Ln_1-3, m-1-2,(Ja, b[; R) it is necessary and sufficient that the cor-
responding homogeneous problem (1.40), (1.21), (1.22) have the trivial
solution only.

14
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Proposition 2.3. Let
gult) . gu(t)

pe(t) = (t —a)F+1 T (= tyn-hel +rult) (k=1 ...7)
where
Okn(-)Pok(-) € L([a,0;R) (k=1,...,1),
and g1k, gax : [a,b] = R (k =1,...,1) are continuous functions satis-

fying the inequalities

lg1x(a)] =1 |g2x(b)]
= ve(A1)Ving (M) T A k(A2 (Xe)

Then for problem (1.4), (1.21), (1.22) to be uniquely solvable for each
q € Ln_1-x n-1-x,(]a, b[; R) it is necessary and sufficient that the cor-
responding homogeneous problem (1.4¢), (1.21), (1.22) have the trivial
solution only.

<l

In the rest of this paragraph it is assumed that py :]a,b(— R (k =
1,...,1) are the fixed functions satisfying conditions (2.1), (2.2) and
problem (1.49), (1.24), (1.2;) has the trivial solution only.
Then by Proposition 2.2 problem (1.4), (1.21), (1.2;) has the unique
solution for each ¢ € Lp_1-) n-1-1,(la,b;R). The operator G :
Ln—i-xm-1-2(Ja, b R) — éﬁ;l(]a, b[; R) that puts the solution u(t) =
G(q)(t) of problem (1.4), (1.2,), (1.2;) into the correspondence with
each ¢ € Ln_1_), n-1-,(]a, b[; R) will be called the Green operator of
problem (1.40), (1.21), (1.2;).

Proposition 2.4. There exists o positive number go such that for any
q € Ln_1-5 n-1-x,(]a, b[; R) we have the inequalities

dtst t
Tgk(_ql)”(—)] < 000k21, 22 (OIG()Inm1-21,n-1-1,

for a<t < (bi=ilyal)

and
"G(9)(t)  d"'G(e
P s 5 / i U PR
for a<s<t<b,
where

!
Pr() = 00lq()ln-1-nsm-1-22 2 [Pk (D)lor 00 (1)
k=1
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Proposition 2.5. Let

4,45 € Lnioam-1-x(Ja, BGR) (5 =1,2,...),

o q(t)dr  uniformly inside a, b
J—+oo

t
lim /qj(T)dT=
ﬁl'_b

“’E\m

and
“mfup 1g5(-) = ¢(-)ln-1-21,n-1-2 < F00.
j—too
Then
L dG(g)() A e
jbinoo i e uniformly inside )a, b[.

The proofs of Propositions 2.1-2.5 are given in [14] ® (see Lemma 1,
Theorems 1 and 5, Corollaries 1 and 4).

To conclude this paragraph let us consider a quasilinear differential
equation

1
u® = 3 p(Bu ) + oty u), (2:3)
k=1
where pi : I, — ® (k= 1,...,1) are measurable functions satisfying
(2.1), (2.2),
q € Kipe(Ja, b[xR™ R). (2.4)

Proposition 2.6. Let problem (1.4o), (1.21), (1.23) have the
trivial solution only. Let, moreover, there exist functions qo €
Ln-1-xm-1-2,(]a,b;R) and ¢* € Ln_1-3,n-1-3,(Ja, ;Ry) such that
the inequality

lg(t 21, ,20) — qo(t)] < ¢°(2) (2.5)
is fulfilled on ]a,b[xR™. Then problem (2.3), (1.21), (1.22) is solvable.
Proof. Let G be the Green operator of problem (1.4¢), (1.21), (1.22).
By Proposition 2.4 there exists go > 0 such that the inequalities
*19@®)

dtk-1

< 000k 21 22 (DG() Inm1-21,m-1-,

forai< t < b (ki=il;.inl)

(2.6)

5See also [12] and [13]
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and

dIG@) _ dG(@)(s)

= < \
div? dsn-1 i

/()d-r

Sel( )t / IPe(lonsnn(7)dr+

(2.7)

for a<s§t<b

are fulfilled for any § € L,_1-x, n-1-1,(]a, b; R).

Let C*~!(]a,b[; R) be a topologic space of n — 1 times continuously
differentiable functions u :Ja, b[— R, where under the convergence of
the sequence (u;); £ we mean the uniform convergence of the sequences
Wi (k=0,...,n— 1) inside ]a, b[.

It is assumed that

0=00 [|qo(-)|n_1_h SEWE [ O I
—QZ!Pk Mok () + lgo(t)] + ¢7(t)

and A is a set of all elements u of the space C"~*(]a, b[; R) satisfying
the inequalities

Iu(k_l)(t)| < 00k () for a<t<b (k=1,...,10),
t
[u=D () — u=V(s)| < /p*(T)d‘r for| @ <ig st <b

It is obvious that A is a convex set. On the other hand, by the Arcela—
Askoli lemma it immediately follows that A is a compactum.
The operator G is given on A as follows:

G)(t) = G(a(-u(), ... W™ D()(E) for € A.

According to (2.5)-(2.7), for any u € A the function u(-) = G(u)(-)
satisfies the inequalities

[@ ()] < golg(ul)y -+ 5w lnm1-rsmm1-32 0k 20 (8) <
S 00k a(t) a<t<b for a<t<b (k=1,..:50),

1 t
|ﬂ(n—l)(t) ~(nv1) Z/|Pk(T)|0k,A1,Az(T)dT+
t

‘f—‘/{q(‘r7 w(m) e ,u("_l)(r))dT

S/p’(r)dr fora<s<t<b.

s
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Therefore the operator G maps A into itself. On the other hand,
by Proposition 2.5 condition (2.4) guarantees the continuity of Lhe
operator G. According to the Chauder-Tikhonov theorem [4], G has
at the least one fixed point. Therefore there exists a function u such
that

u(t) = G(q(- u(-), .. ,u"D()))(t) for a<t<b.
Hence it is clear that u is the solution of problem (2.3), (1.2,),

(1.2;). ®

§ 3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Let po be a positive number for which Propo-
sition 2.1 is valid. According to (1.9) there exists p* > 0 such that

Ipola(cs P)lot-ru,n-1-30 + 18 ao1-as,nm1-0] <2

331
for p>p~. 31
Let
1 for 0. < si<.p,
s
x(s) =142~ ; for p* <.s < 2p%, (3.2)
0 for s > 2p*
and g = “%b. Assume that for each j
for t 2[U]b— =, b,
(1) = 0 for E]a,a+][]€ 2, b[ (3.3)
1 forte [a+5]‘.l,b— —]‘l],
L ail
Gt 2a) = 5O — ) At 2 -
= oian(t)
= Eplk ) — qo( )] + qo(t) (3.4)
and consider the differential equation
u™ = Zplk (k 14 qj (t,u,. (n—l)) (3.5)

for an arbitrary natural number j.
Taking into account inequalities (1.6), (1.7), from (3.2)-(3.4) we
obtain on Ja, b[xR"

lg;(t, @1,y 2n) = o(t)] < ¢5(2),
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where
q;(t) = €;(t)q(t,2p™) + 2p™¢;(t lezk ) = Pir(t)|orn 0 (2)-

By (1.8) and (3.3) it is easy to ascertain that
4; € L([a, b Ry).

Therefore, according to Proposition 2.6, Problem (3.5), (1.2;), (1.2;)
has a solution u;.
By (3.4) and (3.5) it is obvious that

ul™(¢ i u (1) + (1), (3.6)

where

] (i-1)
Pri(t) = p(t) + gj(t)x(z M) o«

= oinn(t)

x [Pt ui(8), w0 (1) = pua(®)],
u“ 1) '
%(t) = (ZL,X A(ft))l)[ft wj(t),. " (H)
- 2 pr(tyus(t), -, ul D (@)udV(2) = go(t)] + ao(2).

On the other hand, (1.6) and (1.7) imply
Pk(t) < Bii(t) < pa(t) for a<t<b (k=1,...,0) (37)
and
l(0) = ao()] < qlt,p;) for a<t<b, (3.8)

where

(i-1)
t
pj=vraimax{zlu Ul

i=1 TiANe (t)

ta<t< b}. (3.9)

In view of conditions (1.8), (3.7) and the choice of the number po
we have

()] < polGi () lnm1-rsimm1-20Tins e (2)
for a<t<b (1= 1,...,1).
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Hence, taking into account (3.8) and (3.9), we find
pi < 1P0[|QO(')|n—1_A,,n-1-A2 + |q(',Pj)|n-1-,\,,n—1-A2]~
Consequently, by (3.1)
pi S
According to this inequality, for each j (3.2), (3.6)-(3.9) imply

! (=1) ¢y
X( M) =1 for a<t<h, (3.10)
=1 T (t)
1q;(t) — qo(t)| < ¢(t,p") for a<t<b, (3.11)
(O] < porpn(t) fora<t<b (k=1,..,0)  (3.12)
and ‘
[uf(8) = qo(t)| < p°(1) for a <t <b, (3.13)
where

I
p(8) =Y (Il + [par(D]) ok (1) + a(t, p7)
k=1
belongs to the class Lic(]a, b[; Ry).

By virtue of (3.12) and (3.13) the sequences (u!*~ 1));“"" (k=1,...,n)
are uniformly bounded and equicontinuous inside ]a, b[. Therefore by
the Arcela-Askoli lemma it can be assumed without loss of generality
that they converge uniformly inside a, b[.

Let

u(t) = _ligrn uj(t) for a <t <b.
j—too
Then

W) = lim WV(8) for a<t<b (k=1,...,n). (3.14)

j—too
Taking into account (3.3), (3.6), (3.10) and (3.13), it readily follows
from (3.14) that u is a solution of equation (1.1).

On the other hand, since the sequences (u(-k l))J“"’ (b=Liucan)
are uniformly bounded inside ]a,b[ and on account of (1.8), 3 1),
(3.12) and the equalities

W) =0 (k=1,...,m), ¥ VO)=0 (k=1,...,nm),
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from (3.6) we find

atb

V() < m(t - a)™™ ’°+1+/ jo k/ (r = sy =(r) drds
b
for a <t < %, le{l,...,n} (k=1,...,n)
and

b s
001 <rafb = 27414 (s =ty [ (s = ryr=rmir) drds
t

atb
2

LT s L A

for s

where
p(t) = p™(t) = q(t, "),
and r; and ry are positive numbers not depending on j. Taking into
account these estimates together with (3.12) and (3.14), we ascertain
that u satisfies the boundary conditions (1.2;),(1.2).
Thus u is the solution of problem (1.1),(1.2;),(1.2;). H

Proof of Corollary 1.1. We set

V(s Biss o5 Tn) = {f(i,zl,. sl )— qg(t)] X

! [ o -1
<[+ S+ ot a'—'(t))]
and
Pt 21,005 20) = 4215000 2a)pe(@) signze (kK=1,...,0).
Then

flt, 21y ooy ®a) = ﬁ(t,xl,...,zn)zk+

WM~

+[1 + q(tﬂi Li[@)v(t,zn--.,xn) + qo(t)

i=1 TiAh

and

P € K2 (I, x R R). (3.15)
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On the other hand, according to (1.9) and (1.10), on ]a,b[xR"™ we
have

[7(timisesisza)l < 15

= 3.16
—n®) < Pultyone sz Sp®) (=10 31O
and
!
F 1 2a) = ) = o] <
=1
: il : 3.17
q\ = 1”1X1)\2(t)) ( )
where the function
qt,p) =1+q(t,p)
satisfies the condition
lim W('v/’)'n—l—/\x,n—l—Az =0 (3 18)
p—too P . )

By Theorem 1.1 from conditions (1.11), (3.15)—(3.18) we conclude
that problem (1.1),(1.24),(1.22) is solvable. &

Proof of Theorem 1.2. By inequalities (1.12), the equality

1
(b @ Z (@15 2Tk + qo(t),

where

1

[ Of(t, Lz, ET) _
pk(t,zl,,..,zl)-oj—~—axk & (k=1,...,0),

qO(t) = f(taov'-ao),

yields
!
ft 2, m) — 3 pelt, @, o z)ee — qo(t)| = 0

and

pik(t) < pr(t,z,. @) <par(t) (k=1,...,0).

Therefore by Theorem 1.1 problem (1.1),(1.21),(1.22) has a solution
Uo.
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Let us show that wug is the unique solution of this problem. Assume
that u; is an arbitrary solution of problem (1.1'),(1.2),(1.2,). Set

u(t) = uo(t) —wi(t), Prlt;zr,...,2i391,...,0) =
1

/c')ft o+ (1= Oy, + (1 —f)m)dé
dz
0 k
and
Pel) = Bultsuolt) ., w1 (0) .., ulD0).

By virtue of the equahty

!
ft 2 @) =y, om) = Z (Gzr @5y, y) (@h—yk)

and inequalities (1.12) u is a solution of the equation

u® = Zpk Julk=t, (3.19)

satisfying the boundary conditions (1.2),(1.2;) and
Pie(t) < pr(t) < par(t) for a<t<b (k=1,...,0). (3.20)

But by (1.8) and (3.20) problem (3.19),(1.2;),(1.2;) has the trivial
solution only, i.e. ui(t) = uo(t). B

Proof of Theorem 1.3 Set
r(t)

for a <t <b.
01,x,,A2(t)

p(t) =
Let us show that
(p) € S*(a,b;1i,n1; M) N S™(a, by, s Ag). (3.21)

By virtue of (1.14;) there exist points ton,,ton 41, --,fon-1 such
that

a <top <:+r <ton-1 < b (3.22)
and
uP () (tor) =0 (k=ny,...,n—1). (3.23)
At the same time,

u(F)(t) =r(t) 20 for a<t<b.
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Therefore by (3.22) it is obvious that for each k € {ny,...,n—1} the
function 1w, (r)(-) does not change its sign on ]a, tx[ and, taking into
account (3.23), we readily obtain

1 tony
(n—=mny —1)! /

for a <t <tow,s

u§(r)(0)] 2 (r =)™ r(r) dr

(3.24)

At the same time, by (1.14;) we have

t

el A e G

for a <t < min{t,ton, }-

[uo(r)(8)] =

Using (1.16), choose a €]a, to[ such that a < to,, and

(b = e IIZ5 Jo =
(= I o — ™

P (r) < (3.25)

By (3.24) the !atter equality yields

(b= 0 125" =t
(1 — )Y (n —ny —1)!

/t_smlj 0P — @) p(r) | drds

for a <t < a,

[uo(r) ()] 2

whence
; |uo(r) ()]
r) 2> limsup ———= >
pA\v\z( ) i P Ul,Al,/\;(t)
— )2 -1 — t—a)™
LG Imtamtp o (-a)

1 X
G5 la— i e’ (1= D)i(m—n; — 1)

t

" /(t =t /(T — )" (r — a)M[p(r)| drds.

a
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Therefore by virtue of (3.25) we obtain

limsu K X
t—»ap(nlvl)(n~n1~1)

/t—s”‘ l/'r—t" m-lr — g)M|p(r)|drds < 1.

’The inequality
(b—t)™

li T L | WL N =
S P T ——ET

s

b
x [(s =yt [(s =1t o = ) ip(r) drds < 1,
t B

where 3 €]t,,—1, b[, is proved in a similar manner. Thus (3.21) is valid.
Now let us show that

(=p,p) € V(t1y- s tm; N1y e ey Tims A1y Ag). (3.26)

Due to (3.21) it it is sufficient to verify that under the boundary
conditions (1.141),(1.14;) the equation

u™ = j(t)u (3.27)

has the trivial solution only for any function p :]a,b[— R satisfying
the conditions

al.A;,A;(')ﬁ(') € LIOC(]“? b[7 R)
and
—p(t) < p(t) < p(t) for a<t<b. (3.28)

Let u be an arbitrary solution of problem (3.27),(1.14),(1.14;) and
g(+,-) be the Green function of the equation

u™ = (3.29)

by the boundary conditions of de la Vallée-Poussin (1.141). According
to the Chichkin theorem [3]°

g, )t —t1)" - (t—ty)"™ >0 for a <t,7<b

Therefore
b
luo(r)(®)l = [ lg(t,7)Ir(r) dr. (3.30)

6See also [9], Lemma 4.2.
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On account of (3.28), (3.30) the equality

b
r

u(t) :jg(t,‘r)ﬁ(‘r)u(r)dr

a

yields
¥ < (T)s
where
¥= Vraimax{% Ha< b b}.

Hence, taking into account (1.16), we obtain v = 0, i.e. u(t) = 0.
Therefore (3.26) holds. Now by virtue of (1.15) we conclude that
all the conditions of Corollary 1.1 are fulfilled. Therefore problem
(1.13),(1.144),(1.142) is solvable. M

Proof of Corollary 1.2. We introduce the notation

n(a,b;ni, ny; Ay A) =
= [l = n1 + 1)z = nz + D) = Aa)(ma = Aa)(b — a)"] x
*[2n1 (A = nz + 1)1 = M)(h = m1 + 14y — X2) +
+2n2(A1 — n + 1)(n2 = Ag)(Ae — na + 1+ m1 — Al)]'l,
- To
r(t) = _———_(t —a (b - Y
Now condition (1.17) can be written as
ro < n(a, byni, na; A, Aa)- (3.31)

By Theorem 1.3, to prove the corollary it is sufficient to show that

Parg(T) = sup {(t——Lg—ET()IEt_zltW A<t b} <

where uo(r)(+) is the solution of the equation
u™ = r(t),

satisfying the boundary conditions (1.141) for m = 2
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As shown in [1], for m = 2 the Green function g(-,-) of problem
(3.29),(1.14;) admits the estimate

(t—ay" 1 (b—t)2Y(r — )2~ (b— 7)m"!
(m = 1)(nz = DI(b— a)n?
3 {L'_—a%@—ﬂ fort <t

lg(t,7) <

b=t)(7—a

fort <7’

Therefore from the equality

\

b

w(r)(t) = [ g(t,7)r(r)dr

a

we find

To
luo(r)(t)] < -

———————(t — )M (b t),
@bz )

whence by (3.31) we obtain

Pu(r)<1l. B

Proof of Corollary 1.3. Let

r(t) = rot — a)™ (b~ 1) [3’(51—_—)”
2019 Xa(1—2s)
+ t—a)b—1t) " (b=1)p ]

Clearly, r € Ly_y, 1-),(Ja,b[;Ry). On the other hand, it is not difficult
to verify that the function

uo(r)(t) = —ro(t — a)(b— 1)

is the solution of the problem

By condition (1.25) we obtain

)= ro<1:

Thus all the conditions of Theorem 1.3 are fulfilled. W
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Proof of Corollary 1.4. Let

r(t)=ro(t—a)x.(t0_t)(b_t)h[*1(1 (1)2)(1()23 Al)_(?—)-‘la()lz(tilt)o)

ha(l — M) 621 )z Pada(l= %)

(—aib-t) (-a)t-t)b-1t) (I-a)b-t?
Pal=Xa)  M(1-X)2- xz)]

(= to)(b— 17 CEDE—

Clearly, r € Ly—x, 2-1,(Ja,b[;R). On the other hand, it is not difficult

to verify that the function

wo(r)(t) = —rot — a)™ (t — to)(b — )
is the solution of the problem

u" =r(t), u(a)= u(to) = u(b) = 0.
By condition (1.25) we obtain

Pun(r)=ro< 1.
Thus all the conditions of Theorem 1.3 are fulfilled. ®
Proof of Theorem 1.4. As we have ascertained in proving Theorem

1.3, condition (1.16) guarantees the fulfilment of condition (3.26),
where
r(t)

01,,\1,)\2“).
Therefore, according to Theorem 1.2, problem (1.13),(1.14),(1.145)
has the unique solution u.

From the conditions of the theorem we have

FC () € Lno1-yyn-1-3(Ja B R)

for any @ € C'(Ja, b[; R) satisfying the boundary conditions (1.14;),
(1.14,). Therefore, by Proposition 2.3, for each natural number j
problem (1.24),(1.141),(1.142) has the unique solution u;.

It is assumed that for each j

v;(t) = u;(t) — u(t). (3.32)
Clearly, v; satisfies the boundary conditions (1.141), (1.145),

los(0)] '
01)\1-*2(")

p(t) =

¥i= vraimax{ gt < b} < 400 (3.33)
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and

o = f(twia(t)) ~ F(t,u(t)). (3:34)

Repeating the reasoning from the proof of Theorem 1.3 and using the
Chichkin theorem, by virtue of (1.22), (3.32)—(3.34) we obtain

% < Vi-1Pa (1),
Hence ]
7 < 'YIPJA:,I,\;(T) (] =12,... )
Therefore by (1.16), (3.32), (3.33) we obtain (1.23). M

Corollaries 1.5-1.7 are proved similarly to Corollaries 1.2-1.4, the
only difference being that Theorem 1.4 is used instead of Theorem
1.3

Remark 3.1. In Corollaries 1.3, 1.4, 1.6 and 1.7 condition (1.25)
cannot be replaced by equality (1.26), since for A\; €]3,1[ problem
(1.18),(1.191),(1.192), where

Al = A) N-2

f(t, )= —Wﬂt+(t—‘1) 5

and problem (1.20),(1.211),(1.213), where
M=M= -3
tya)= o T ARC T A — @),
ey = M2 4 o)

have no solutions though all the conditions of these corollaries are
fulfilled with an exception of condition (1.25) which is replaced by
(1.26).
Proof of Theorem 1.5. Let us assume that the theorem is not true.
Then there exist ¢ €]0,7r[, @ €la,t3[, B EJtm-1,b[, (z10,-..,%T0) €
Dy, 2 (uosr), w € M([a,B] x Ry;Ry) and a sequence of functions
0i € Kioe(In x R4 R) such that
2
T (3.35)
for a<t<pB, (x1,...,21) € Dy p(uoi7),

t
‘/T/z(ﬂt’l,h,xz(‘f)fl,u-101,,\,,,\2(7')361)117'
x

Ni(t, 010, 0, (1)1, -+, T 2, (P)T1) —

J
=7i(t, 71,0, (D)Y1, - -« »‘71,/\,,&(1)9!1 < W(E ey — yk|) (3.36)
k=1

for a <t <P (z1,...521) and (y1,...,4) € Dxyp,(uo;7),
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IS 7 1
(t —ay" N [/UA,,A,,i(TiUo?T)dT it 't/TIOn(T)’dT] < 7 (3.37)
for a<is @,
t t
1
_ p\n=l=X * A+ 3ne < -
(b—1) [ﬁ/nhﬂ\“(r,ug,r)dr + 'ﬂ/v]o,(r),dr] <7 3.39)

B<<t<h
where
noi(t) = it o100 (H)T10, - 0100 (1)20),
My rgi(f3 U0 T) =
= sup {ln,(l, Fia ()T, - 5 T 2 () — Noil :
(21,...,21) € D,\lvh(llg;f")},
and for each ¢ the equation
W™ = f(tu,. .. ul0) + milt ..., u™) (3.39)

either has no solution contained in W, 2, (uo;7) or has at least one
solution contained in W,\h)‘?(uo;r)\l/V,\,,M(uo;5).
It is assumed that

Af (1 uolt) + Exr, .. ub” ”(t)+€m

pelt .o m) = /
0

Bxk
(k=1,....0), (3~4°)
1 for0Ls<m
x(s)=492-% forr<s<2r,, (3.41)
0 for s > 2r,

i ]
Frlt, 21y ) =pults X E ) ax (B 7im)

=1

(k=1,...,0), (3.42)
! - 4
it o) e ;—‘J—m)‘l )+

te (Y — 2~ . (R T 1 (3.43)

=1 %M, A )
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Let us consider the equation
i
o™ = 3 Bty v,. o, oD (k0,00 (3.44)
k=1

for each 7. By (1.37), (3.40)-(3.43) ascertain that the following in-
equalities are fulfilled on Ja, b[xR':

pik(t) < pr(tyz, .. ya) < pa(t) (k=1,...,0) (3.45)

and
[t 21y ooy 21) = moit)] < i), (3.46)
where
M)
= o B S o) a5,
3,0, (t U0 ) for Ja, b[\[«, 8].

From (3.37), (3.38) we readily obtain
0is Gi € Lun-1-xm-1-2,(Ja, 0 R) (i =1,2,...).

However, since condition (1.8), by virtue of Theorem 1.1 equation
(3.44) has, for each natural number 7, at the least one solution satis-
fying (1.21),(1.2;).

Let v be an arbitrary solution of problem (3.44),(1.21),(1.2,). Then
either

=) 1

vraimax{ :a<t<b}>r,

=1 Tkaa(t)
or
1oy, (k=1)
t
vrai max{ > oo~ (0]

=1 Tk (t)

If the latter inequality is fulfilled, then in view of (3.40)-(3.43) and
the equality

Tt uo(t) + 21, . ul ™) + 21) = f(t uo(t), .., ud V() =

:a<t<b}§r‘

M-~

Dk(ti®5 0 212k
k

)

1

it is obvious that the function

u(t) = uo(t) + vo(t)
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is a solution of problem (3.39),(1.21),(1.2;) contained in Wy, x,(uo; 7).
However, by our assumption, in the case under consideration prob-
lem (3.39),(1.21),(1.22) has at the least one solution @ such that u €
Wi x, (wo; 1)\ Wi, 2, (u05 €)-
It is obvious that the function
o(t) = () - uo(t)

is a solution of problem (3.44),(1.21),(1.2;) satisfying the inequality

L o)
k=1 okaa(t)

Thus, for each natural number i problem (3.44),(1.21),(1.2;) has the
solution v; satisfying the condition

vraimax{ :a<t<b}>e.

LD
vraimax{zu:a<t<b}>6. (3.47)

21 Trkan(t)
Let po be the number from Proposition 2.1. Then in view of (1.8)
and (3.45) the inequality
(O] < pol(yvi(), -0 (Dlnt-rrin-1-2aTk 22 (1)
for @<t <b (b=1,:.:50) (3.48)
is fulfilled for cach 7.
By (3.37), (3.38) and (3.46) we have
7 = sup {70y s 0V Dlactorpoins 18 = L2} <
<sup {|7Ioi(')|n-1-x,,n41—x2 Hgi(Nn-1-rm-1-2, 1 1=1,2,. .0 } < +oo.

Using (3.45), (3.46), (3.48) and the latter inequality, from (3.44) we
have

!
LIS W@ SPO g )

for ast< B (G=1,2,...)

where

{:
p" = n"pomax { Yokt et < ﬂ},
k=1
]
p () =170 3 (Ipa()] + [p2x(O)]) ok 20 (2) +

k=1
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ug ™ (1)] )
t,r+ ( + |z ; )
( E e
and
€ L([a, Al R)

Moreover, since

max {’/no,’(T) dr

it follows from (3.49) that the sequences (vgk_l))f:;’ (k= 1t 45D
are uniformly bounded and equicontinuous on [a,3]. Therefore, by
Lemma 3.1 [8], conditions (3.35), (3.36), (3.41) and (3.43) imply

:aSsStSﬁ}—»O for ¢ — 400,

:aStSﬂ}-‘O

m:muﬂjmvwkuw%Wwwr
> (3.50)

for i — +oo.

In view of (3.37),(3.38),(3.46) and (3.50)

RO RS e[ TN
< (29i(b— @)™ N 4 %[(b - Nt (b—a) ) S0
for ¢ — +o0o

and now from (3.48) we find

L)

vraimax{z—— <f<b}—»0fori—»+oo.
k=1 Tk (1)

But this contradicts (3.47), which proves the theorem. H

Theorem 1.6 immediately follows from Theorems 1.2 and 1.5.
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