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SOME OPEN PROBLEMS ABOUT THE SOLUTIONS OF THE

£ 3,9

DELAY DIFFERENCE EQUATION z,4, = A/a2% +1/ah_,

M.ARCIERO, G.LADAS AND S.W.SCHULTZ

ABSTRACT. We discuss the dynamics of the positive solutions of
the delay difference equation in the title for some special values
of the parameters A, p and k and we pose a conjecture and two
open problems.

G0B0TBI.  6536m3Bo aobbommmos bscs@Bn myasbarmo sagesby-
Beymo LsgomBosbo sbgmmmadals @egdomn 3mbslllbgdols abadngs A.
p ok 306033@68&»'.\ Q[‘mbnaéum daédm erﬂasa@nanlsomanls. Bo=
Bergomodndamos ghmo dodmogbs @ @3LBamos ™o 3m(yobs.

1. Introduction. Consider the difference equation

A 1
Crople = it , n=01,..., (1)
n
where A € (0,00) and the initial conditions x_; and o are arbitrary
positive numbers. The following conjecture is predicted by computer
simulations.

2. Conjecture. Let T denote the unique positive equilibrium of Eq.

(1).

(a) Show that when
15
Fodge ()

the positive equilibrium of Eq. (1) is globally asymptotically stable.
(b) Show that when

15

— 3

; @

there exists a periodic cycle with period two which is asymptotically

stable.

_A>
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258 M.ARCIERO, G.LADAS AND S.W.SCHULTZ

With the use of a computer one can easily experiment with diffe-
rence equations and one can easily discover that such equations possess
fascinating properties with a great deal of structure and regularity. Of
course all computer observations and predictions must also be proven
analytically. Therefore this is a fertile area of research, still in its
infancy, with deep and important results which require our attention.

For some developments on the global behavior of solutions of delay
difference equations the reader is referred to the forthcoming mono-
graph by Kocic and Ladas [2]. See also [1] and [3].

Although we are unable to establish the above conjecture, we have
proven the following result.

Theorem 1. (a) Assume that (2) holds. Then the positive equilib-
rium @ of Eq. (1) is locally asymplotically stable. 4

(b) Assume that (3) holds. Then Eq. (1) has a periodic solution
with period two.

Proof. (a) Set o = \/Z. Then the linearized equation of Eq. (1) about
z is
24 1
y"+1+Fy"+ﬁy”_'=0’ n=0,1,.... (4)

From the well-known Schur-Cohn criterion, Eq. (4) is asymptotically
stable provided that ¢

24 1
F = 2—93 <208 (5)
Note that p satisfies the equation
Ac
oi= il (6)
< 4 4
Hence p > 1 and (5) is satisfied if and only if
1 3
. G e %5
2A< o +29 A+29,
that is,
2A\1/3
> (T) k (7)
Set

f@) =t -2 -4
and observe that
J@) =0k 0 tico
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and
) >0 it =Sp
1/3
Hence (7) is equivalent to f((%) ; ) < 0; that is
15
Ao
4
(b) Eq. (1) has a periodic solution of the form

{ra.p.q,---} or {g,pqp,.0}
if and only if
A 1 A 1
p:?+ﬁ and q=1?+7(7.
Set z = /p and y = \/g. Then the system of algebraic equations (8)
is equivalent to

®)

with 2,y > 0. 9)

Set
E=z+y, n==zy and (=1

Then = and y are the roots of the quadratic equation

N—E+n=0

and these roots are real, positive, and distinct if and only if
1
&n € (0,00) and < €% (10)
Cancel the denominators in (9), then multiply the first equation by z
and the second by y, equate the terms 2*y*, and divide by = —y. This

leads to

AE=n(& ~1). (1)

Cancel the denominators in (9), subtract and then divide by = — y.
This yields

7’ =—A+ (6 - 2n). (12)
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Subtract from the first equation in (9), the second, and use (12) to
obtain

e )
By substituting (13) into (11) we find

GO =C+ (A=) + A*(2-A)( - A*=0. (14)
Note that

G(z) <0 if z2<( and G(z)>0 if z>(. (15)

In view of (10) and (13) we obtain
4 < (A=1)2C +24%(A-1)( + A*
and so by using (14) we find
H(C) = (A+3)(A—1)* +24%3 — A)( —34* > 0.

The positive root of this quadratic equation is ( = 3A%/(A + 3) and
so H(¢) > 0 if and only if G(3A%/(A +3)) <0, that is
15
A e

The proof of the theorem is complete. &

3. Open problems. A related difference equation is

a it
T = =+
T

Dl (16)

 J
Tn—-1

where a € (0,00) and x_1, xo € (0,00).
One can show that the following result holds.

Theorem 2. The following statements are true:
(a) The unique positive equilibrium T of Eq. (16) is locally asymp-
totically stable if

a<2V3 (17)
and unstable if
a>2V3. (18)

(b) When (18) holds, Eq. (16) has a periodic cycle with period two,
{r,¢,p.q,-..}.
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Furthermore

a+y/a?+2—2V1+4a? ’ a—\Ja?+2-2/T+4da®
p= and ¢ = s

2 2

Open problem 1. (a) For what values of a is the positive equilib-
rium # of Eq. (16) globally asymptotically stable?

(b) For what values of a is the periodic cycle {p,q,p,q,.. .} of Eq.
(16) asymptotically stable? What is its basin of attraction?

Eqs. (1) and (16) are special cases of the delay difference equation

A 1
ﬂ*n+1.=zz+zz_k n=0,1,... (19)

where
A,p€(0,00) and ke {0,1,...}

and the initial conditions x_g, ..., are arbitrary positive numbers.

Open problem 2. (a) Obtain conditions on A, p and k under which
the positive equilibrium of Eq. (19) is globally asymptotically stable.

(b) Obtain conditions on A, p and k under which Eq. (19) has
periodic cycles of period twe. Under what conditions on A, p and &
are these periodic cycles stable? What is the basin of attraction?

(c) Do there exist periodic cycles of period greater than two?
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ON CONVERGENCE SUBSYSTEMS OF ORTHONORMAL
SYSTEMS

G. BARELADZE

ABSTRACT. It is proved that for any sequence {Rj}3%, of real
numbers satisfying

Ru>k (k1) and Ry = ofklogyk), & — oo,
there exists a orthonormal system {pn(2)}3%y, z € (0;1), such

that none of its subsystems {¢n, (2)}52, with ny < Ry, (k> 1) is
a convergence subsystem.

G0B0TBI. 3 jogds. Gmd 653g0em Kmebacm Umaaqm {Ri}2,
anngémanl»mSnb ‘WHJQOG odaoamcanmaa%
Rie>k (k>1) @ Ry =o(klog,k), k—»oo,
3r0dgdbgds  obgon mombemfdodgdammo babgads  {en(z)}e,
(=)} (f-mbnls

z € (0;1), ‘ma@b NG at‘xm {(p,,k @5&), [onG
np < R (k>1) 6 0‘»0% déﬂ&mm&»b d33bob®3 . '

Let {¢n(2)} be an orthonormal system (ONS) on (0;1). It is called a
convergence system if the series 3 ¢, () is convergent almost every-
where whenever the sequence {c, } of real numbers satisfies 3~ ¢2 < oo.

It is well-known [1] that not every ONS {¢,(z)} is a convergence
system. However (2], [3], each of them contains some convergence sub-
system {gy, (2)}. A question was formulated later [4] whether there
exists a common estimate of growth rate of numbers ny, in the class of
all ONS. B.S.Kashin [5] answered this question in the affirmative: one
can determine a sequence of positive numbers {R;} such that from
any ONS it is possible to choose a convergence subsystem {(,, } with
ng < Ry, 1 < k < oo. In the same paper [5] the problem of find-
ing {Rx} with a minimal admissible growth order is formulated and
the hypothesis Ry = k'* (¢ > 0) is conjectured. G.A.Karagulyan
[6] proved that one can take Ry = M, A > 1. However, this upper
estimate is rougher than the one expectcd in [5].

1991 Mathematics Subject Classification. 42C20.
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264 G. BARELADZE

In this paper we shall give the proof of the theorem providing the
lower estimate for {R;}.

Theorem. For any sequence { R}, of real numbers satisfying
R, >k (k>1) and Ry =o(klog,k), k— oo, (1)

there exists an ONS {pa(2)}32,, = € (0;1), such that none of ils
subsystems {on, (z)}7z, with np < Ry (k > 1) is a convergence sub-
system.

Several lemmas are needed to prove this theorem.

Lemma 1 (H.Rademacher [7]). For any ONS {1.(z) N ree(0;l),
and any collection of real numbers {ca}N_

1<5<N

2 N

/ ( max ’chlf’n D dz < clogd(N+1)3 2, 1< N <oo!
0 n=1
Lemma 2. For any N > 1 there exists an ONS

BN = @) ze ),

satisfying, for any collection of natural numbers 1 <mny <mny <--- <
nm <N (1 <m < N), the inequality

log, N

)|dz 2 c—— \/—N_

Ll

1
f max
0 1<j<m

Proof. We shall assure that the requirements of this lemma are satis—
fied by the ONS usually used in the proof of the Menshov-Rade.z “er
theorem. The functions ¥ (2), I < n < N, belonging to this k;I\S
(see [8], p.295) have, in particular, the following properties:

(@)

oN . ¢ ﬂ,z;q)’

2N 4N
W)= o, se (B ) 1SsSN s

IHere and in what follows ¢ denotes positive absolute constants which, in gene-
ral, may differ from one equality (inequality) to another.
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(ii) ¥ () is constant on each of the intervals

(s-l. S) 9N +1< s <4N:
IN-ANY o

1 "
/ VN (x)de = 0;
0

(iv) ¥ N(2) is extended from (0;1) onto (—oo;00) with period 1.

Denote é?. i (% 2:—}'), 1 < s < N. When z € §, because of (i)
we have ¢)Y(2) >0 for 1 <p < s and PpN(z) <0fors<p< N (1<
s < N). Therefore for fixed numbers 1 <y <ny <« <np < N
(1 <m < N) and for each z € § (1 < s < N) we obtain

}:::1-!=Z+Z 3 diia) s

(iii)

k= kingSs kg Lhinigs
+ 3 I’nk( v)| <3 max E d)nk
1</<m
king>s k=1

Hence

1 i ]
N N
i > 1 >
/0 Jnax Elwm(ﬂ da > ;/ nax. gwnk z)|de >
N
. 1
2= =
No=i i em, [k — s|
nr#Es
1 log, N
Z 5 >c8ly, m

%

VN i 1s:1<s<N, Ik —s| ~
s#rk
Remark 1. For any positive integer Q , {¥N(Qz)})_; is an ONS
on (0;1) also satisfying the inequality (2).

Remark 2. Let  No, N1, Qo, @i, p be positive integers. If
Qy = 4pNgQ0, then functions belonging to different collections
{1/)”“ Qoz)}Ye, and {1 (Qi2)}22; are mutually orthogonal and pair-
wise stochastically independent on (0;1).

0
NM0949
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Both conclusions follow readily from (i)-(iv).

Lemma 3. Suppose a function f € L:D;]) is not equivalent to zero
and

A= {ee@1) : f@I> 31l }

(
Then

mes A |Ifllg,, /4ll11E, - 3)
Proof. Indeed, we obtain (using Holder’s inequality)

Wl = [@Nde+ [ (@) de <

< (mes A)'2 || f]| a

(0:1) (1)’

1
+ 2l
which immediately implies (3). ®

Lemma 4. Let N,Q,m (1 < m < N) be positive integers. Then for
any collection of natural numbers 1 < ny < ny < -++ < ny, <N

J J m
N il s
T un@a|> 5}z g,
where PN (z) € $(N), 1 <n < N (see Lemma 2), and
: b
7= [ [ i@o)

Proof. By Lemmas 1 and 2 (see also Remark 1) we have

mes{x €(0;1) : max
1<5<m

dz.

1 e 2
/0 (@gﬂh&%(@wﬂ) de < emlogy(m + 1),

2
Jzzc%loggN; 1<m< N<oo.

Thus, applying Lemma 3 , we obtain

J J
e N £
mes{z € (0;1) : o k§=11/)nk(Qz) > 2} >
2
S log; N S o

=N logim+1) =N’
Proof of the theorem. If the conditions (1) are fulfilled, then Ry =
klog, k/e(k), 2 < k < oo, where (k) tends to infinity. Moreover,
without loss of generality, it can be assumed that
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a) Ry =1;

b) (k) is a nondecreasing sequence of positive integers;

c) the sets A, := {k : (k) = m} have the form (Vm-1;vm] NN
(m ="1,2,...), where 15 = 0, log, log, log, ¥m = pm (m 2 1)
and {p,,}2_, is some increasing sequence of positive integers.

In particular, for k € A, (m > 2) we have

log, k > log, -1 = 27" > 22" > m = e(k),
e(klogy k) < e(vim 108y Vm) < &(Vme1) = m + 1 < 2¢(k).

Denote

)

Ty =0, Ty:=2klsklalat <k <o, (5)

and
=k R =T 9 < <iico
(here [z] is the integer part of the number z).

Since the function ¢(z) = z¢(z)/ log, x increases on (e;00), taking
- into account (4) and (5), we have, for m >,

m={12}U{k23: Ri< T} =
klog, k
e(k)

:{1;2}u{k23;w(“°g2 ) ,,.)}:)
S {12} U{k23:2 < p(Tn)} =
={pz1:rs< So(T)}.

. Therefore for a large m (m>m > n)

= {12 u{k>38: T, =

il 1
= o) Sl s e 6
|l > () —12 3 2o O]

|E = 1 Ts16(Tnt1) = l Tt :
bl e R TR s T Ry =

Because of
S 1 "
vim logy Tk E5 [klog, klog, log, k]

1 1
> g(p",' —Pm-1) 2 g (m>2)
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we can select a subsequence Ty, = Ty (1 < k < o0; Ty=0,To=w)
such that

N
il 1 1 =1
and hence
se sl
karean 1082 T kgream 1082 Toe
€ 1 il
= k:qkiezam Eg(_j%k =m k:qkze:Am g T, Zo =) (9)
Let

No =T = Lo,
(10)
Qzi=1, Qmi1:=4NnQn, 2= m < xo.

Consider the orthonormal collections
{ph@uo)}, 5, 2Sm <o
and construct with their aid the desired ONS {@a(2)}5%, as
@n(@) = YR (Qme), (11)

where n € (Tm_l;fm], E —n— D0 << coemiie (03

(the orthonormality follows from (10) and Remark 2).
Let {nx}32, be a sequence of positive integers with & < nj < R,
1<k < oo Weset

G {k 2 qu < np< Tm},
M — Gl
Gy = ((1 + M) log, Tm)_ln for n € (Tm_l;Tm]; m>2.

On account of (8)
o o oo M
2 = 2 = e e
Zan =2 =X (1 4+ My)logy Trm

k=1 M=2 LT ng<Tm m=2

3
il
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It is thus sufficient to show that the series

Z Uy Py (T) (12)
k=1
diverges on some set of positive measure.
Note that
G = {k:np S Tu\{k:n < Ta} D
Sk Re= T N{Fikb= Taiiliemiz 2,
Consequently in view of (6) and (7)
Almzi{k:RkSTmH—Hk:kST al=
={k: R < Tp, )| = Ty >
1 1
= |Eq,,,| in §|Eqm—]+l| = Tz'lEqml =
ZEM, S (13)
6 log, T\
Hence by (11) and Lemma 2
= 1
Jb 3 :/ " max. Z ankcpnk(r)!da: =
S R
e 1 . -lOg?Nm-f\ImZ
Mg T ¥V
nlog, T =
>c M—IS&—ZC ) i 2 ma,
T,
and therefore
(14)

lim ' Jdyy =00,
m—s00

If A,, denotes the set

> amen(@)

ki1 <nk<j

{:t € (0;1): max |
T 252
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then by (11), Lemma 4, (13) and (9)

M, i m
mes A, > L = L > l 6(T~)
Nl B Sbilog 10,
i el L (T,)

o 0 6 gk >qmy log, Ty,
E(qu)

m=1+my kiqx€Am log, Ty,

y M2 my;

= 00, (15)

\%

&) =
5

|2
el | |
Il

| —

It is easy to verify (see (10),(11), Remark 2) that {A,,}2°_, is a
sequence of stochastically independent sets. Therefore by (15) and
the Borel-Cantelli lemma

mes ("!TL sup Am) = 5

Hence we conclude because of (14) and the definition of sets A,, that
the series (12) diverges almost everywhere on (0;1). ®
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\
A SECOND-ORDER NONLINEAR PROBLEM
WITH TWO-POINT AND INTEGRAL
BOUNDARY CONDITIONS

S.A.BRYKALOV

ABSTRACT. The paper gives sufficient copditions for the existence
and nonuniqueness of monotone solutions of a nonlinear ordinary
differential equation of the second order subject to two nonlinear
boundary conditions one of which is two-point and the other is
integral. The proof is based on an existence result for a problem
with functional boundary conditions obtained by the author in

©].

60380, dgemeng Gogob sfagoge Bagmemgdeego Q”'BJK“(]EG"‘)Q"JK’"
636@@3&7[»0)8& oBbognmemos gm0 babstigom o8en(3obo g
@)ansc:En © 05636‘\)(21] 304%33800». aaé)ménls 6 Bo0d330 oy~
Saemn ’ASQOBJM %03:;,%363300: 6‘)3'"J8"\'.’3 oo 2 aﬂm@sﬁnb deobeo-
e-,m[;"ﬂ‘m 23mbaklibols o a&v&\bo > 0] umgﬂémm&vb bodnu.vbn.

The present paper is concerned with the theory of nonlinear boun-
dary value problems for equations with ordinary derivatives, see ¢.g.
[1-4], and is closely related to 5. 6]. We deal here with the solvability
of a certain essentially nonlinear second-order problem.

The following notation is used:

R is the set of all real numbers:

[a,b] denotes a closed interval where a differential equation is con-
sidered, —oo < a < b < 4005

C° denotes the space of all continuous functions;

C is the space of all continuously differentiable functions;

L, denotes the space-of all Lebesgue measurable functions with
integrable absolute value;

AC stands for the space of all absolutely continuous functions;

CL? is the space of all'z(-) € C1 such that 2(-) € AC.

1991 Mathematics Subject Classification. 34B15, 34K10.
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274 S.A.BRYKALOV

We consider the existence of monotone solutions of the boundary
value problem

% = filtz )i te [a;b], (1)
w(x(a),z(b)) =0, (2)

[ etinar = . )

The solution @(-) € CL}([a,b],R) should satisfy equation (1) almost
everywhere. - Assume that the function [ : [a,b] x Rx R — R
satisfies the Carathéodory conditions, i.e. f(t,2o,1) is measurable in
t for any fixed numbers 29, z; and is continuous in zq, x; for almost
every fixed t. Assume also that |f(#,20,21)] < M for almost all ¢ and
all 29, 2y, the constant M is positive, the number ¢ € R is fixed, the
functions w : RxR — R, ¢: [0,00) — R are continuous, «(sy, s2) is
nondecreasing in each of the arguments sy, s and is strictly increasing
at least in one of the two arguments, the set of pairs sy, s, that satisfy
equality w(sy,s2) = 0 is nonempty, the function (z) strictly increases
and
L e

For example, if ¢(z) = z then the boundary condition (3) fixes
Li-norm of the derivative of the unknown function. And in the case
@(z) = V1 + 22 the equality (3) fixes the length of the curve which is
the graph of the solution x(t), t € [a,b]. Let us note also that the
equality @(a) = go, where go € R is a number, can be considered as
the simplest special case of (2). Thus, the boundary conditions (2),
(3) can describe, in particular, a curve with a fixed length emanating
from a given initial point.

Denote

b-a
A= /; @(MT)dr.

Theorem. Ify > A, then every solution of boundary value problem
(1)~(3) is strictly monotone, and there exist at least one increasing
and at least one decreasing solutions.

The above theorem was previously announced by the author, cf.
Proposition 2 in [5]. The proof will be given below.

Remark 1. 1f g < A, then problem (1)-(3) may have no monotone
solutions. This is the case, for example, if f = M > 0.
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Remark 2. A similar theorem is valid also for an equation with
deviating arguments and for condition (3) where g = g(x(:)) is a
nonlinear functional.

The proof of Theorem employs (and illustrates) the following exis-
tence result for a boundary value problem of the form

i(t) = F()0), 1€ [a,b], (4)
Bo(2()) = Bi(i()) = 0. )

The solution (-) € CL? = CL}([a,b], R) satisfies equation (4) almost
everywhere. The mappings

BeCr AT, B CL%——>RA B, : AC—R
are assumed to be continuous. Let us fix a closed set of functions

A C CL2. Denote A® = {a®W(.) : 2(-) € A}. Assume that the
family of functions A satisfies A®) = L.

Proposition 1. Let M, N be fized numbers. Consider the following
conditions:

a) if ||z(:) e £ N then ()] < M for almost all t,

b) if x(-) € A satisfies (5 ) (m(l | t)| < M almost everywhere then
flz()ller <N,

c) if 2(-) € A and almost everywhere |i(t)] < M then there exist a
unique number ¢o € R such that

Bo(z(-) + c0) =0, z(-)+co €4,
and a unique number ¢; € R that satisfies

Bi(#(-) +¢1) =0, #(-)+c€AM.

Conditions a), b), c¢) imply that problem (4), (5) has at least one
solution in A.

A more general version of Proposition 1 was proven by the author
in [6].
We need also the following simple auxiliary result.

Proposition 2. Let the above given assumptions on @ hold. If a
function u : [a,b] — R salisfies the Lipschitz condition with the
coefficient M and vanishes at least at one point then

/ e(|u(r)]) d‘r</ (Mt)d

S

it \
B
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Here the cquality holds only for the following four functions
u= M@ —a); u==Mb—t).

Proof of Proposition 2. Let u(s) = 0 for some s € [a,b]. Then
|u(t)] < M|t — s|. Thus

b
/ el u(r) (/T</ (M| —s|)d (6)

Denote the right-hand side of (6) by W(s). We have
s b
W(s) :/ G(M (s =)t / (M= 8) )dr =

/3— (Mr (IT+/ r)dr.
JO

And so, the derivative
A
ds

is negative for a < s < %(u + b) and positive for %(n +b) <s<b

= p(M(s —a)) —e(M(b—s))

b-a
Consequently, the value W(a) = W(b) = [ p(M7)dr is the maximum
0
of W(s) for s € [a,b], which is attained only at the ends of the interval.
The desired inequality is proven. If the right- and left-hand sides of
this inequality are equal then s equals either @ or b, and besides that
(6) turns to equality. Taking into account strict monotonicity of ¢ we

come to the conclusion that [u(t)| < M|t — s also turns to equality.
Thus, either u = £M(t —a),or u=+tM(b—-1t). B

Proof of Theorem. The boundary value problem (1)-(3) is a special
case of problem (4), (5). Really, it suffices to assume

Fe())(0) = (1. 2(1). (1),
Bo(z(+)) = w(a(a), 2(b)),

Bi(ut) = [ ella(r)dr —g

The mappings F : C' —» L, Bp: C° >R, Bi: C° - R
are continuous. Denote by A the set of all monotone nondecreasing
functions in C'L? and by A_ the set of all nonincreasing ones. The
sets Ay, A_ are closed in CL?, and 4(2) A® = L,. Condition
a) of Proposition 1 holds  obviously. LeL us verify condition b). Let
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1() € C'L} satisfy (2), (3), and | i(1) | < M be true almost everywhere.
Since ¢(z) — +00 as z — +oo there exists a number r that satisfies
@(r) > (b—a)~g. If we suppose that |&(1)| > r for all ¢ then

b
[ ellemlyar 2 6= a)g(r) > g,

which contradicts (3). Consequently, |i(s)| < r for at least one s.
Consider some [y, Iy such that w(ly,l;) = 0. Let us show that

min{h, o} < 2(0) < max{ly, ;) (7)

for some o. Really, if (7) does not hold for any o € [a,b] then due
to continuity of x(f) two cases are possible. Either a(¢) > max{l, 15}
for all £, or x(t) < min{l;,l;} for all t. Monotonicity of w implies that
w(x(a),z(b)) > w(li,2) = 0 in the first case, and w(x(a),x{b)) < 0
in the second case. It follows from (2) that neither of the two cases
can take place. The existence of the numbers r, s, o named above
and the inequality [#(¢)| < M imply boundedness of || 2(-)||c1. Let
us verify now condition c) for A = Ay and for A = A_. The function
2(+) being fixed, the number ¢q is defined uniquely by the equality
By(x(-) 4 co) = 0 due to the properties of the real function

Bo(a(+) + ¢) = w(x(a) + ¢, 2(b) + ¢)

of the argument c. Really, the function is continuous and strictly
increasing. It suffices to show that this function takes both positive
and negative values. As above, we fix /i,  for which w(l,l;) = 0.
Then for ¢ > max{l;, — @(a),l; — 2(b)} we have w(x(a) + ¢, x(b) +
¢) > w(l,lz) =0, and for ¢ < min{l; — x(a),l; — x(b)} we obtain
w(x(a) + ¢,x(b) + ¢) < w(li,l) = 0. So, the desired properties of
the function Bo(z(-) + ¢) are established. We have only to note that
2(+) 4 ¢ for a fixed ¢ is monotone in the same sense as 2(-). Consider
now ¢;. Assume that x(-) € C'L} and almost everywhere [ #(t) | < M.
Continuity of ¢ implies that the function

0(c) = [ e(é(r) + el )ir

is also continuous. With the help of Proposition 2 we obtain the
following. For ¢ € (—o00, —max, &(t)] we have &(t) + ¢ < 0, and the
function ®(c) strictly decreases taking values from +oo to a number
not larger than A,; and if ¢ € [—min, &(t),400) then @(t) + ¢ 2 0,
and the function ®(c) strictly increases taking values from a number
not larger than A, to 4+00. A conclusion follows that if 2(-) € ar?
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and almost everywhere
satisfies

t)] < M then there exists a unique ¢; that

Bi(a(-) +e1) =0, @(t)+e >0.

Similarly, conditions
Bi(#(:)+ ) =0, 2(t)+¢ <0

also define a unique ¢;. Thus, condition ¢) is valid. It follows from
Proposition 1 that boundary value problem (1)-(3) is solvable in Ay
and in A_. Now we have to show that every solution x(¢) of this prob-
lem is strictly monotone. If the derivative i(f) does not vanish then all
its values have the same sign, and so x(t) is obviously monotone. Let
now the derivative &(4) vanish at least at one point. Using Proposition
2 we obtain

/ﬂb S( |5(r)] )dr < A,. ($)

Taking into account the inequality A, < ¢ and boundary condition
(3) we see that the two values in (8) are equal. Employing again
Proposition 2 we conclude that either (1) = £M(t — a), or &(t) =
+M(b—t). And since M # 0 the function (1) is strictly monotone.
Theorem is proven. Let us note that Theorem can be proven also
basing on results of [7]. &

In conclusion we verify R(mml\ 1. Assume f =M >0, g < A,.
We need to show that problem (1)-(3) has no monotone solutions. The
equation (1) takes the form & = M. And since M # 0 we obtain &(1) =
M(t —~). Thus, 2(¢) can be monotone only if ¥ < a or v > b. Let us
consider these two cases separately. If ¥ < a then |z(7)| = M(1—7v) >
M(r—a)for 7 € [a,b],and (3) implies g > [ @(M(7—a))dr = A, > g.

a
This contradiction shows that the inequality v < a does not hold.
Similarly, if v > b then |@(7)] = M(y —7) > M(b—7) for 7 € [a,b]
and thus ¢ > fY (M(b—1))dr = A, > ¢g. And so, the case y > b is

not possible (111\(‘1 Remark 1 is \(nf’od.
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TWO-DIMENSIONAL PROBLEMS OF STATIONARY FLOW
OF A NONCOMPRESSIBLE VISCOUS FLUID IN THE CASE
OF OZEEN’S LINEARIZATION

T. BUCHUKURI AND R. CEICHINADZE

ABSTRACT. Two-dimensional boundary value problems of flow of
a viscous micropolar fluid are investigated in the case of lineariza-
tion by Ozeen’s method.

AIBTBI. Jeog)gbgoormobs @ nSéUa‘:oQﬂé 6>S®MQ33\>0» 3gomggdon
aAmggmmes Seoshyn ggile dnghrlngsrgenn ok obglol
méaaﬁ%m@o@gﬁnoﬁo boboqé(gar{'m oﬂmeoﬁng&n m‘haasol) 6‘)‘3“‘(8033%[)‘*‘

1. Basic Equations. A system of equations of motion of a noncom-
pressible micropolar fluid was obtained in 1964 by Condiff and Dahler
(1] and, independently, in 1966 by Eringen. It is a generalization of
the classical system of Navier-Stokes for micropolar fluids. In real
life we observe such properties in fluids containing polymer particles
as admixtures. When fluids of this kind flow along the body, surface
friction is 30 to 35% less than in the case of flow of fluids without
polymer admixtures [2]. Tt is impossible to predict such effects by the
classical theory of Navier-Stokes, but a fairly good explanation can
be found within the framework of the theory of micropolar fluids.
We consider a two-dimensional model of stationary flow of a mi-
cropolar fluid. A system of the basic equations then has the form

divyo =0,
- ) dp £ U
JAD; + 26— — +— F = e
(p+ a)Avy + an)“ B + pFy pg LA(,)”,
0w Op 2 0 (1)
Ny S E S s
(1 +@)AD, = 205 — 5~ + ol ﬂ;mmk

s ~ o (O am> <SR s
& — da 20 =— — 57— s =2 ="
~yA al + 0(5)11 s + ply sz

1991 Mathematics Subject Classification. T6A05, 35Q20.
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where ¥ = (94, 2) is the velocity vector, F= (Fy, F3) is the mass force,
p is the pressure, p is the density; p, a, v, I are positive constants. In
the two-dimensional case the microrotation and mass moment vectors
have one component each and are denoted by & and F3, respectively.

Since the system (1) is nonlinear, we come across certain difficulties
during its investigation. On the other hand, to solve many problems
of applied nature it is sufficient to consider a linearized variant of the
system (1). The equations of Navier-Stokes can be linearized by two
well-known methods: that of Stokes and that of Ozeen. When using
Stokes’ method of linearization, nonlinear terms are totally discarded.
This method yields satisfactory results for small ¥ and & (note that in
this case nonlinear terms are small values of higher order). However,
if the fluid flow velocity ¥ is not a small value, this model leads to
an essential error. In particular, the effects predicted by this method
when a fluid flows along a solid body do not agree with experimental
data.

A lesser error is obtained in the case of linearization by Ozeen’s
method consisting in the following;: it is assumed that fluid flow differs
but little from flow along the z;-axis with the constant velocity vo.
Then we set

g = vobp1 + vk, k=12, O=w,

where vi, k = 1,2, w are small values; é; is the Kronecker symbol.

On substituting these values in (1), we obtain an Ozeen-linearized
system of equations of stationary flow of a micropolar fluid in the
two-dimensional case:

divo =0,

(H+a)Av1+2a§_Z_;z +/’Fl‘7hg

(1 + @) v — (;9_“’_;71’”&:"!_3% @
e +20(g_1 i g—z) ks = nzg—:.

Here n1 = pvo, 12 = Zwo.
The system (2) can be rewritten in the matrix form if we introduce
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the notation

(1 + a@)A 0 2a58;2
M=l 0 laweh 52|
—20% 2(1367l YA — 4o
3_2_] m 0 0
Gy=| 2| n=)0 m o
0 0 0 n
! Uy /21
‘-. (v1,v2,w) = u = (ug,ug,u3) = || ug ||, F=(F,FpF)=|F
! Uz Fs
Now the system (2) takes the form
o
P G
; ®)
L(9,)u — G(Ox)p + pF = n—.
Oz,
Alongside with the system (3), we will also consider its conjugate
E;_ﬂ + gﬂ =
Ty 2 (4)

o
L(3y)u — G(3,)p+ pF = “”a_:;

which is obtained from (3) if we replace 7y and 7 by —m and —172,
respectively.

Let us formulate the boundary value problems for (2). Denote
by D* a finite domain in the Fuclidean two-dimensional space R?
bounded with a piecewise-smooth contour S. Let D~ = R2\(D*US).
Denote by n(y) = (n1(y),n2(y)) the unit normal at a point y € S,
external with respect to the domain D*. ;

The pair (u,p), where u = (v1,vs,w), will be called regular in D7 if
uECZ(D+)0(C‘(D+),1)€C‘(D*)ﬂC(Dﬂ. ¥

The pair (u, p) will be called regular in D~ if u € C(DHNCHDE),
p € C{(D~)NC(D~) and the conditions

u(@) = 0(|al ), ple) = o(1) ®)
are fulfilled in the neighbourhood of || = 0.
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The boundary value problems for the system (3) are formulate as
follows:

Problem (I)*. In the domain D* find a regular solution of the

system (3) by the boundary condition

u(e) = f(y)- (6)

lim
DE3r—yeS

Problem (II)%. In the domain D* find a regular solution of the
system (3) by the boundary condition

lim [P0 n()u() = gm()nute) = N)p(@)] = 1), (7

D3r—y€eS
where [ = (f1, f2, f2) is a given vector on S,

P(Ds,n(y)) = || Pij (9 2 (y)|]3x3s (8)

8

j—i2:
()TL J i

»‘) 2
1’;,(!‘)1-‘11(!/))=(ﬂ+")"j(1/),) (pta)é; Y il
k=1

Pis(0e,n(y)) = 2a(i = Dna(y) + 20(i = 2)na(y), = 1,2
P.’m(f)rv"'(.'/ =0, j=L2%
Pys(D 2 :
sa(0eyn(w)) = 7 o)z
Ni(y)=(Ni(y), Na(y), Na(y), Nily)=nily), i=1,2 Na(y)=0.

The boundary value problems (I)* and (IN)* for the conjugate sys-
tem (4) are formulated similarly. In that case the boundary condition
of Problem (I)* coincides with (6), while the boundary condition of
Problem (I1)* is obtained from (7) if we replace 7y and 7, by —n; and
—12, respectively.

Remark. Our previous thorough treatment of the boundary value
problems of stationary flow of a micropolar fluid under Ozeen’s lineari-
zation in the three-dimensional case is given in [3]. Since investigations
of the two-dimensional problems are mostly the same, we will dwell
on only the part differing from the three-dimensional case.
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9. On Fundamental solutions. The fundamental solutions of the sys-
tem (1) are found from the relations

0%, 0% _,
dxy Gig
m o (m
w 0% a0 8P
(pp+a)A (1')1 -1 e ~+—floz,—u'i — —£+ (‘1)1 §(z) =0,
dxy Oz, On )
o (m) (m) (m)
m) d v, dw 0P
N (m) s =97 S(z) =0
e e i e el
m (m) (m)
ow (Vi v,y
A D —40 @ —ppm— -2 2 §(z) =0,
£ iz Jxy 5 Jxy T 0y 4 0 dul
where §(x) is the Dirac distribution,
fod m
€= 20tm, b=0, k,m=12
3) (3)

dr=05 k=12 b =2
. m) () (m) () ;
Assume that the fundamental solutions (v 1, Vg, w, P),m=1,2,3,
satisfy the conditions

l‘in}m(('tnv)l () Uz (z), (m)(l) (x )) =0. (10)

ll—

o my (m) (m) (m) . 5 . o o .
Then vy, vg, w and P are gradually increasing distributions in R?,

and, on subjecting the system (9) to the Fourier transformation, we

obtain
51(%‘1 it 52@2 =0,
ifl@ —(p+ a)|§|2(i‘)1 + imfl@l - 2ia§;@+ (3)1: 0, (1)
e e e pati s Bi=1,
P - it S50k, By — 2iat,Bat T= 0.
Here |¢] = (£24€2)'/2, f denotes the Fourier transform of the gradually
increasing distribution f:

O = [ e f@yde, &= (&) €,
lel = (& + &)
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™

Solving the system (11) with respect to (5)1, vy, w, P, we have

(;) 7 (m)

P=—=Ca,
145
(%) P — bt 2iaby o
| = —

(¢) ‘179

e
§,- Wb tiag,  Heb (12
Sl
E i
@ %?@
+ 20 (B g-re), m=1,23

2(¢)

where

@(&) = v(u+ @)lE]* — ilmy + ma(p + Q))& € -
— mn2€} + 4palé]® — diami&.

m  m  (m . 5
Denote by vy, vq, w, P, m = 1,2,3, the inverse Fourier transforms
)

) () Y ;
of vy, vy, (w), P, respectively, and by I' and @ the matrices

T = ||Tik|lsx3, 3)
13
k
Ty =% i=1,2, £=1,2,3 Ta=0
Q S ||Qk113x17

(¥)
Qk=P, k:1,2§ Q3=0.

I and @ will be called the matrices of fundamental solutions of the
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system (1). Their Fourier transform is

£ 26y 26y )
=(=,=20 14
2© = (g e o
uo(-8) -0y —2B(©)¢
P =| 2042 240(-%) 280 S
2B(0)6s 25@6 gy ((slePimes)
where
YI€? — inabs + 4 2ia
Af) = Melseri i gy e
S ©=30
Calculating the inverse Fourier transform of (14), we get
s L a
%= (3 o 7 o 0)- o

Though the inverse transform of I is not expressed in terms of
elementary functions, we can nevertheless obtain asymptotic repre-
sentations of the fundamental matrix I' in the neighbourhood of the
points |z| = 0 and |z| = oo, which is convenient in investigating the
boundary value problems.

Represent T in the form

I(e) = TO(¢) + TM(e),

where
252‘ __26& 0
) (nta)lEl* (u;sg)lﬁl‘
— | = 2ge
b e e ()
’ H e

and the elements of I'") are written as

Big=. 5 ;:a|‘§|‘;+sa.](o T

3<2k—|a|<4

Here a}za are some constants, ;; are functions admitting, in the neigh-
bourhood of |z| = oo, the estimate

@ii(€) = O(I¢]™°)-

i
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Taking (18) into account, it can be proved [3] that, FS-) satisfies, in
the neighbourhood of |z| = 0, the conditions

rl) e ST g,
Li'(x)=0(1), i,j=1,23

(19)
TP (z) = 0|z " Infel), 4j=123
Performing the inverse Fourier transform of (17), we obtain
) 22 22y 0
© G M'*T(l"lzl+ !_rl%) EEUTOI
- 1 (=) P
0 0 ~Linla| (20)
Thus we have
Theorem 1. The fundamental matriz ' is represented as
r'=r© 410, (21)

where T is defined from (20), T € C*(R\{0}) and satisfies, in the
neighbourhood of the point |z| =0, the conditions (19).

To obtain the necessary representation of I' in the neighbourhood
of |z| = co we represent I' as the sum

yo ¢
: f'(e) = I=)(¢) + T?(g), (22)
e it
= 9 Tel? et e
Pl e | R &)
(WlEP —imé&) | K _q%
2 p 4p

Then, taking (15) into account, it can be proved that the components
of I'® satisfy the estimates

a"I”‘E?’(éMsm, el <1, lal <2, 6, =12
O] < e 1S L lel <2 i =120 20
PIO] < e KIS lol <2 i=123,
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from which we obtain the estimates of I'® in the neighbouhood of the

point |z| = oo [3]:

T (@) < o(jel™), lal 20, i,5=1,23,
|

TP (@) < oflz1™?), lel 21, j=1,2.3, (25)
T2 () <oflzI?), lol 21, i=1,23.

Let us now calculate the inverse Fourier transform of 1), We
obtain

(5 = 1] - -1 m. _1_1_1
()= Tp (Im(mlﬂ & II\ (m|$|)) e 2rmp |22’
ik T
e =TS ()= - 2K b
12 (z) =T3"(2) = 27\'It| [ (mlz()e 2rmy |z|?’
1 Ty

) (z) = — 5 (Ao (mlz]) + 1 (m|z|))e"”"’ i

2rmp W’

o0 o0, m_ I3 M
I =-TE =5 —| mlz|)e™, (26}
I{)(z) = -I'(z (Ao m|z|)+ I\O(m|1|))e’"’,
() AN o % mazy
@) =—1 (Iso(mltl) + ke (mlwl)) )

. where Kj is the MacDonald function of zero order:

Ko(t) = /0°° et gy
1
1

=

m =

|

o

The equalities (22)-(26) imply the validity of
Theorem 2. The fundamental matriz I' is represented in the form
L =Tl p@) (27)

where the components T are writlen as (26) and F(z) admits the
estimates (25) in the neighbourhood of the point |zl =

It is not difficult to obtain the following asymptotic representation
in the neighbourhood of the infinity of the MacDonald function and
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B \/_\/21;84(1 2 l) v O(ﬁ\t/>
- e o

i et
R (@ =£e (1+ )+O( )
o(t) Vo i
Hence we obtain the asymptotic representations of the components of
the matrix I'*) in the neighbourhood of the point |z| =

its derivative:

- i zl)e—m“ﬂ"rl) 1 :

L&) ()= (=] o) 3/2

@) = v~ g ol + O™
—m(lel-21) T

L) (z) = T (7) = 228 & 2 4 0(je|-2),

12 (z) 2 (z) 5 QemplzPl2 2rmp Jo? (IIl )

-m(le|-z1)
(Bl plel g P e B -3
I3 (x) Iy (2) = W T +0(|I| )7
(|z] = ;)e~mUl=21) . 1

2V 2xm|z[3/2 2rmp |av|2
(29 (g) = _[() () = _YMlle] = zr)emlelmn) -3/2
I3’ (2) = —I"(2) = SN +O(|$| )»
() v _ _ Mmy/m(|z| — 1 )emliel-=) -3/2
I3’ (z) = PN, ETRED +O(|x| )

In particular, (28) implies

Byt () =

+0(|z*?), (28)

e~mlzl-z1)
0 (@) <

SeamE +elz| 2, ki=1,2,3. (29)

In a similar manner we can obtain the estimates for the derivatives
of I} as well:
e-mizl-z1)
|I|1/2
=T e =123

0T (@) < e +eale|,

(30)

Remark. As follows from (25), (29), in the case of Ozeen’s linea-
rization the fundamental matrix has order O(|z|~'/2) at infinity, but,
as shown in [4], the fundamental matrix of the system obtained in
the case of Stokes’ linearization has order O(In |z|) at infinity, i.e. it
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is unbounded. Therefore the properties of solutions of the external
boundary value problems are different in the two cases.

We also note that no such difference between the fundamental solu-
tions is observed for Stokes’ and Ozeen’s linearizations. In that case
both fundamental solutions have order O(|z|™!) at infinity [3], [5].

F 3. Regular Solution Representation Formulas. The Uniqueness The-
orems. Let Dt be a finite domain in R? bounded by the piecewise-
smooth contour S; (u,p) and (u',p’) be regular pairs satisfying the
conditions

@_1+ Qug Bul 3u2 =

dzy 22 0z1 dxq
1If, besides, L(:)u — n% — G(0:)p € Li(DY), L(0:)' — nge —
G(8;)p' € Ly(D*), then the following identities of the Green formula
type are fulfilled:

/D+ [u(L(@,)u - n—g—u - G'((?I)p) + E(u,u)]dz =
= / SV %nlnu - )]t 4,8, (31)
/m [u'(L(a Yot — ng— - G(d:)p) -
—u(L(@:)u' + "a_ ~ G(8,)p) | dw =
—/ P'(9y,n) u——%nmu—Np)
—u(P(8y,n)u’ + §n]7]u' - Np')] d,S, (32)

where

Bluntd) = (s 0) 3 vt + () 35 vy + 7 i
i,j=1 fy=1

Jv; s Ow

St = S0 s

v = g + (G —iw, ,i=12 w 5

=

E(u,u') is an analogue of the energetic form. In particular,

B, o) = (1 + )0 + v2) + 24 — a)ouzom +
+ 2u(vly + vh) + (@] + w)). (33)
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One can easily verify that for the form (33) to be positive definite
with respect to v, w;, it is necessary and sufficient that the conditions

1>100 o >05 g >0 (34)
be fulfilled.
If we use the area potentials
UEa) =5 [ e - n)F @)
= - x — .
2) =3 | le—nF@)dy
il
q(Fe)=3 /D* pQ(z — y)F(y) dy,
where F = (Fy, F;, F3) € C**(D*),0 < h <1, and is the finite
vector in the case of D™, then the boundary value problems for the

systems (3) and (4) can be reduced to the corresponding problems for
the homogeneous systems [3]

fihg, e
6z1 81)2 MR
ou (35)
L(9:)u — G(0:)p — e 0
and
Qi o0
0F; & Ok
e (36)
L(:)u — G(9:)p + n5— =0

oy

Therefore in the sequel we will consider the boundary value problems
only for the homogeneous systems (35) and (36).

Like in the three-dimensional case [3], from (32) we can obtain the
following formula for representation of solutions of the system (3) in
the domain D*:

(@) = & [, 1@ = 9)[P@n)uls) = gramaly) = N@)] S =

—%/S [P(alﬁ ")F’(x s y) ot %'nﬂ]rl(a: - y) oo

—N(y) * Q(z — )] u* (1)dyS, D)
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o) = & [ Qe ~ ) [P0 mu(e) = grimu(y) - Nw)p(w)] S -

2 [ [P@nm@E =) + grnQe ~v) -

~-mQ(z — y)N)|ut (v)d,S. (38)

Here the prime above the matrix denotes the operation of transposition

and

ni(y)Qi(z) m(y)Qa(2)
N =

W)*QC) = | Q) malw)@a2)
Taking the properties (29) and (30) of the matrix of fundamental
solutions into account and repeating the reasoning from (3], one can
prove that the formulas (37), (38) are also valid for regular solutions

in the domain D~

Now let us prove that the equality

/D_ E(u,u)dz = ——/Su_ [P([’)y,n)u - %nmu - Np]_dyS (39)

is fulfilled for the regular solution (u,p) of the homogeneous system
(35) in D~

To this effect we have to use the formula (31) in the domain D~ N
B(0, R), where B(0,R) is the circle of radius R centred at z = 0
and containing the domain D*. Recalling that the pair (u,p) is the
solution of the system (35), we obtain

= 1 =
/D_nB(O,R)E(u,u) dzi= —/su [P(ay,n)u——inlnu—Np] d,S+ZI(R),

where

ﬂm=/

il
S u[P(8y,n)u — Fmnu = Np| d,S. (40)

Obviously, to prove (39) it is enough to prove
lim Z(R) = 0. (41)
From (16), (25), (29) and the formula of representation of regular

solutions in the domain D~ it follows that in the neighbourhood of
infinity

)
|1.|1/2
Ip(2)| = O(J2|™).

ou(@)| = & +0(zl™), lal 20,

i}
0345
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Taking these estimates into account in (40) and passing to the limit,
we obtain (41). The equality (39) is proved.

Let us turn to proving the uniqueness theorems. In particular, we
will prove

Theorem 3. Each solution of the homogeneous problem (I)§ has the
form

u=0, P = Po, (42)

where po is an arbitrary constant. The homogeneous Problems (g,
(D)g and (I1); can have only the trivial solutions u =0, p = 0.

Proof. Let (u,p) be a solution of anyone of the considered problems.
Then by virtue of (31) and (39)

/;)* E(u,u)dz = 0.
Therefore E(u,u) =0, z € Dt (z € D~). Hence on account of (34)

v e ow
T e

The general solution of the resulting system has the form

0, i,5=1,2.

v =azy+ b, vo=-—azri+b, w=a. (43)

Since for the external domain the regular solution must vanish at
infinity, the external homogeneous boundary value problems have tri-
vial solutions. In the case of Problem (I)§, (43) also implies that
v; = vy = w = 0; substituting these value in the equation (35) we
obtain

G op i dp
T 0,
whence it follows that p = const.

Next, let us consider Problem (II)§. By virtue of (43) and the
homogeneous boundary condition we have a = 0, i.e. v; = b;. Then
(35) yields p = po. Considering again the boundary condition, we
obtain

mnibg + 2ponk =0, k=1,2.

Since the boundary of Dt is not the straight line, we conclude that
by=by=p=0 H 5
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4. Reduction of the Boundary Value Problems to Integral Equa-

tions. Like in the three-dimensional case, we introduce the simple-
layer potentials

V(e)@) = [T - 0)e@)dS, a@)e)= [Q —v)e)dS

and the double-layer potentials

W(e)(@) = [ [P@mIFe = 9) + gmanle =) =
~ N()* Q(z - )] ¢ )d,S,

He)(a) = [, [PBnmQe — 1)+ grnle —9) =
— mQui(z — y)N®)|e)d, S.

Denote by V (), (), W (), b() the potential obtained from

V(e), a(@), W(p), b() after replacing m and 7y by —n; and —na,
respectively (note that @(p) coincides with a(p))-

We will seek for the solution of Problem (I)* [(D*] in the form of
double-layer potentials

u(e) = W(e)(e), (o) = bp))
) = W)@, #o) =)o) ]

and the solution of Problem (I[)* [(II)*] in the form of single-layer
potentials

u(z) = V)a), ple) = a®))
[ue) = P, #lo) = alp)@) |

Then, as was done in [3], we obtain, for the densities , 1, the singular
integral equations

Fo(e) + [ [POymI(e —9) + granle —0) =

— N(y)*Qu — 2)| p1)dS = f(2), (*
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9+ [L[POuIG—y) - gmn( - ) -

- N»)*Qy —z>]’so(y>dy3=f<z>, (0y*
£9(2) + [, [P@ymN(e = 9) - 3runlc = v) -
N(z)* Q(y — 2)|¥(y)dyS = f(2), (1ny*
£9(2)+ [ [P@ymIT = 9) + Granl'(z - ) =
— N(2) * Q(y — 2)|$(1)d, S = f(=). (T*

The investigation of these equations leads to the following result
3, 6]:

Theorem 4. If S € Lipi(h'), f € Co*(S), 0 < h < h' <1, k =
1,2,..., then the Fredholm theorems hold for the pairs of equations
(Dt and (ID)=, ()= and (11)*, (I* and (I)~, (1I)~ and (1)* in the
space CF(S).

5. Existence Theorems for the Boundary Value Problems. In this
paragraph we present the existence theorems for the boundary value
problems. Their proofs are left out because they repeat the ones given
in (3].

Theorem 5. If S € Ly(h'), f € CY*(S),0 < h < I <1, and f
satisfies the condition

/SNde ) (44)

then Problem (I)* has a regular solution. Moreover, if the condition

fpds =0
s
is fulfilled, then this solution is unique.

We observe that the condition (44):is not only sufficient, but also
necessary for the existence of a regular solution of Problem (I)*.

Theorem 6. If S € Ly(R), f € CH*(S), 0 < h < I < 1, then

Problem (1)~ has a unique regular solution.

Theorem 7. If S € Ly(k), f € C¥*(S), 0 < h < B < 1, then
Problem (I1)* has a unique regular solution.
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STURM’S THEOREM FOR EQUATIONS WITH DELAYED
ARGUMENT

A.DOMOSHNITSKY

ABSTRACT. Sturm’s type theorems on separation of zeros of solu-
tions are proved for the second order linear differential equations
with delayed argument.

6JIB0I30. Hamfva t‘me)nb [ 3“‘)63&'«'.]@ %6-833560050 V‘)%ngu o=
oo gl @6 agEaee Bgéid gt
ogegdgeo s3mbIslbgdols Bapmndals 396(35mgdols Bobolbsgd.

1. INTRODUCTION

In this article the distribution of zeros of solutions is investigated
for the following differential equation with delayed arguments

2(0) + 3 p(0a(h(t) =0, t€[0,+00), )

where p; are locally summable nonnegative functions and h; are non-
negative measurable functions for ¢ = 1,... ,m.

The classical result of Sturm is the following: if 24 and x, are linearly
independent solutions of the ordinary differential equation

2"(t) + p(t)2(t) =0, t € [0,+00),

then between two adjacent zeros of z; there is one and only one zero
of 5. This article deals with the extension of the Sturm’s theorem to
equation (1) with delayed argument.

The first result of this type was obtained by N.V.Azbelev [1]. Name-
ly, if for almost all ¢ € [0, +oc0) there is at most one zero of each non-
trivial solution of equation (1) on the interval [h(t), ], where h(t) =
’__rlninm hi(t), then Sturm’s theorem holds for equation (1), i.e. the

interval [A(t),#] must be "small enough”. The gencralization of this

299
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result of N.V.Azbelev to the "neutral” equation
a(t) = 3 qi(t)e"(g;(t)) + 2 pi(t)z(hi(t)) = 0, t € [0, +00),
=1 i=1

was obtained in [3]. Our approach assumes that [h1(t), hm(2)] is ”small
enough” for almost all ¢ € [0,+00) (note that we consider the case
hi(t) < -+ < hp(t) < tin this article). Namely, if a solution has zero
on [hy(t), him(t)], then its derivative has no zero on this interval.

Note the close result of S.M.Labovsky [10] for equation (1) in the
case m = 1 and another version of Sturm’s separation theorem pro-
posed by Yu.I.Domshlak [4,5]. |

It is known [1] that the space of solutions of equation (1) is two-
dimensional, the Wronskian

WO = wi) vie)

u(t) o(t) ‘

of a fundamental system u, v of the solution (1) can vanish, zeros of
W(t) do not depend on a fundamental system, W(0) is not equal to
zero. Nonvanishing of Wronskian selects the class of homogeneous
equations such that each of them is equivalent to a corresponding
ordinary differential equation. In this case each nontrivial solution of
equation (1) can have only finite number of zeros on any finite interval,
moreover, all zeros are simple. It is also known [1] that nonvanishing of
the Wronskian is equivalent to the validity of Sturm’s theorem about
separation of zeros.

The important part of this article concerns with estimates of the
distance between adjacent zeros. These results are usually connec-
ted with Sturm’s comparison theorem. Note in this connection the
following investigations [1,4-9,11,12].

We reduce the question about lower bounds for the distance between
adjacent zeros and between zero of a solution and zero of its derivative
to an estimation of the spectral radius of the corresponding completely
continuous operator in the space of continuous functions, i.e. to the
well-known problem of functional analysis.

Our interest in the lower bounds of this distance is connected with
the problem of existence and uniqueness of a solution of boundary
value problems. For example, if b—a is less than the distance between
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'~ adjacent zeros of solutions of (1), then the boundary value problem

#(0)+ 3 pe(hi(0) = 1(0), te (0, +o0),
z(a) = A, z(b)=B,
has for each A, B, f(t) the unique solution.

2. MAIN RESULTS

Let ), be the smallest positive characteristic number of the ope-
rator Flu ¢ Cpyg — Cpu (Cpp is the space of continuous functions
z: [v,u] — R) which is defined by

(Fuu)(t) = = [ Gunlts ) 3o p(s)ahi(s)) (v (o)),
where
(v hi(s)) =0 if hi(s) < v, y(»hi(s))=1 if hi(s) > v, (2)

) =e-t(s=v)/(p—v) for v<iss<t <L
G”““’s)‘{—(t—u)(n—smu—u) fr v<t<s<ph

G,,(t,s) is the Green’s function of the boundary value problem
x”(t) =f(t), te [Va ﬂ], z(v) =0, z(p) = 0.
It is clear that the operator F,, is positive.

Theorem 1. Let

1) the functions h; be nondecreasing and the inequalities hi(t) <
his1(t) hold fori=1,... ,m —1 and almost all t € [0, +00);

2) the functions piy1/pi be nondecreasing fora="1,. . im =1

3) at least one of the following inequalities be fulfilled

cosun: ST e Mhali)ie MG <2 (3)
s€[h1(t),hm (1)) i=1
() = (0] [ S piels <1, @

for almost all t € [0,+00).

Then

a) W(t) doesn’t vanish fort € [0,4+00);

b) if v and p are two zeros of some nontrivial solution z of equation
(1), then Ay <7
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c) there is one and only one zero of the derivative of a nontrivial
solution between any two adjacent zeros of this nontrivial solution.

Examples: the condition 2) of Theorem 1 is fulfilled for the following
cases:

1) if m = 2, p; is nonincreasing and p, is nondecreasing;

2) if pi(t) = a; f(t), where a; = const, i = 1,... ,m;

3) it pi(t)i=ait’, i =1, .. ,m;

4) if pi(t) = a;t + b; (a; > 0, b; > 0), where b;/a; are nonincreasing
fora=1,....,m.

The condition that the functions p;11/p; are nondecreasing for ¢ =
1,...,m is essential, as the following example shows.

Example 1. The function

1-12%, 0=t <2,
z(t) = 0,01#2 — 4,04t + 5,04, 2 <t <210,
2(t — 5239,5)?, 210 < t

has a multiple zero at the point ¢ = 5239,5. This function is the
solution of the equation

2" () + pi(t)z(ha(t)) + x(ha(t)) = 0,
where

0 it < 2 0 =t <2
hi(t) =14’ A ()i ok R
1®) {0,9, t =0 2(t) {1,1, 1.9,

b 0 <t <210,
PRI =\ @21 + 32/10059)/19, ¢ > 210,
It is clear that W (5239,5) = 0.
The following fact follows from Theorem 1.

Corollary. If m = 1 and hy is nondecreasing, then the assertions
a),b),c) of Theorem 1 are fulfilled.

The condition that the functions h; are nondecreasing is essential,
as the example of N.V.Azbelev [1] shows.

Let R,,(t,s), Quu(t,s) be Green’s functions of the boundary value
problems .

‘T”(t) =f@t), telyp, z(v)=0, II(ﬂ) =0,
a"(t) = f(t), tevp], o'(v)=0, a(n)=0
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respectively. It is clear that

Bt o) = v—3s MausSis <t < o)
SR AT s <

t—p ifly<s<st<iu
Quult,s) = . %
s—p - iy siti<is <,

Define the operators Ry, Quu : Cpyy) = Clu by the formulas

(B )(O) = [ Bunlt, ) 3o pi(o)ehi(s)) (0, (o)) ds,

i=1

" m
(Qua)(®) = [ Qualt,s) L pi(s)a(ai(s))ds,
Y i=1
here g; (i = 1,... ,m) are measurable functions such that » < g;(t) <
. Let 7, ¢, be the smallest positive characteristic numbers of the
operators R,,, @, respectively.

Theorem 2. Let the conditions 1), 2) of Theorem 1 be fulfilled,
Thy(t)hm(t) > 1 for almost all t € [0,+00), qh,t)hm(n) > 1 for almost all
t € [0,+00) and all possible functions g; such that gi(s) € [ha(t), hm(t)]
for s € [h(t),hm(t)], i = 1,... ,m. Then the assertions a),b),c) of
Theorem 1 are fulfilled.

Remark. The inequalities 7, ()hm(ty > 1 and ghy ()hm(t) > 1 fort €
[0, +00) guarantee that a solution of equation (1), having zero on the
interval [hy(t), hm(t)] has no zero of its derivative on this interval.

3. PROOFS

We start with some auxiliary results.

Lemma 1. Let o be a zero of the nontrivial solution x of equation
(1), B be a zero of its derivative such that z(t) > 0 for t € (a, B),
o < B. Then there exists a set e C (a,B) of positive measure such
that 31, pi(t)x(hi(t)) > 0 fort € e.

Proof of Lemma 1. Let we have on the contrary, s pi(t)z(hi(t) <0

for almost all ¢+ € [a,8]. By the theorem of Lagrange there exists

d € (a, B) such that a'(d) > 0. &'(8) = «'(d) + [ z"(s)ds = a'(d) —

4 i pi(s)x(hi(s))ds >0, that contrast the assumption: z'(8)=0. H
=1
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Lemma 2. Let
1) y be a nondecreasing function in the interval [a,b);

2) a < hy(t) < ho(t) < -+ < hy(t) < b for almost all t € [c,d] €
[a, 8], h; be nondecreasing forz =18 Sim;
3) the functions piy1/pi be nondecreasing fori=1,... ,m—1.

Then from the existence of a set e C [c1,di] C [c,d) such that
mes(e) > 0 and 37, pi(t)y(hi(t)) > 0 for t € e, it follows that
S pi()y(hi(t)) > 0 for almost all t € [dy,d].

Proof of Lemma 2. Let k be a number such that y(h;(t )) Ofort €e,
i > k. By the condition we have the inequality — Y521 pi(t)y(hi(t)) <
S p(Oy(hi(t)) for t € c.

For all i = 1,... ,m y(hi(t)) are nondecreasing since y and h; are
nondecreasing. Using the condition 3) we obtain for ¢ € e and r such
that t +r € [dy,d):

k-1
=L pilt+n)y(hilt+1) Z(zh t+1)/pi(t)pi()y(hi(t + 7)) <
k-1
—(pr=1(t +7)/pe-1(t)) Ep-(t)y(hi(t +7)) <
< (pr=1(t +7)/Pr=1( ipl hi(t +71)) <
=k

< S pilt 4 ry(hi(t + 7). ®
=k

Lemma 3. Let (o, ] C [v,p]. Then
DA > 1ithan \ae =11
A <1, then )y, < 1;
2) iy thening g Sl
tfrag%l, thenr,, = 1;

3) if g, > 1 for each collection of functions such that gi(t) € [v, u],
t€lv,pul,i=1,...,m, then qop > 1 each collection of functions such
that gi(t) € [, B), t € o, 8], e =1,...,m;

if there exists a collection of functzons such that gi(t) € [e,f],
i=1,...,m, and gup < 1, then there exists a collection of functions
gi(t) € v,p), t € [v,p), i =1,... ,m, such that ¢, < 1.

Proof of Lemma 3. Assertion 1) is proved in [1] and the proof of
Assertion 2) is analogous, therefore we prove only Assertion 3).
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Let us take an arbitrary collection of functions g;(t) € [a, 8], t €
le; 8,2 =1,.. , 1% and denote

o Jat) forté€[a,f],
g(t) = {a for t € [a, B].

By condition ¢y, > 1 for this collection g;, ¢ = 1,... ,m, the equa-
tion = @Q,,x + 1 has a positive solution v = hm Z,, where 2o =1,
Tnyr = Quuzn + 1. Since Quu(t,s) > Qaslt, s) Tor t,s € [a, ], then
v > Qupv + 1. Now, by the theorem about mtegral inequalities [1], we
have gog > 1 for this collection g;, i = 1,... ,m. The first part of the
assertion 3) is proved.

The second part of the assertion 2) can be deduced from the first
part. B

Proof of Theorem 2. Let @ be a nontrivial solution of the equation
(1). Let us consider the case z(0) > 0; 2'(0) > 0 (the case z(0) > 0,
#'(0) < 0 can be considered analogously).

Denote by f; the first zero of the solution’s derivative, by a; the
first zero of the solution z (81 < ay by our assumption). If 3, or aq
doesn’t exist, then the theorem is trivial.

Let us show that there exists a collection g;(t), i = 1,... ,m, such
that ¢s,a, < 1. Really, z satisfies the following equation

. Qa,akfs)zpl ))1(B5, h(5))ds -
- /5 Qo (t,3) S P2l = 7085, i)l

for t € [, ], where k = j = 1 and 7 is defined by @)
Rewrite the equality (4) in the following form

/ Qﬁml t 8 Zl’t dsv

where the functions g; such that g;(t) € [y, eu].

Existence of these functions gi, 7 = 1,... ,m, follows from the next
arguments. Since z”(t) = — L7, pi(t)z(hi(t)) < 0, then &’ is not
increasing. Therefore z(f;) = tn[loax]:c(t) and the set of values of

€[0,
function z on the interval [0, 3] is included in the set of values of

the function « on the interval [31, ], hence the solution g; of the
functional equation z(hi(t)) = 2(gi(t)), t € [B1, 1] exists.

Ay
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It is obvious that for this collection of functions g;,i = 1,... ,m, we
have go,5, < 1.

We show that 2'(a) < 0. Indeed, by the theorem of Lagrange there
exists d € (S, 1) such that z(a;) — z(81) = 2/(d)(a1 — B1). From
here z'(d) < 0 and @'(a;) = a'(d) + [§* 2"(t)dt < 0.

Let 3, be the first zero of the solution z after a;. By Lemma 1
there exists a set e € [ay,$1] with mes(e) > 0 such that z"(t) =
— 2 pi(t)z(hi(t)) > 0for t € e. From here it follows that k., (¢) > ay
for almost all ¢ > (5. Since gh,(t)hn(e) > 1, independently of collection
of functions g;, ¢ = 1,... ,m we obtain by Lemma 3 that h(t) >
for almost all ¢ > f,.

Next, show that r,,3, < 1. Indeed, on the interval [aq, 3;] the

solution & of equation (1) satisfies the following integral equation

[ R 1,9 ims)x(h.»(sm(ak, hi(s))ds -
*/ R"‘kﬁ;(t S)Z[), [1 oo 7(ak’h (5 )]d‘sv

=1

where k=1,j5=2.

Taking v(t) = —x(t), we obtain the inequality v(t) < (Ra,p,v)(t)
for k =1, j = 2. By the theorem about the integral inequalities (see,
for example, [1]) we obtain rq,p, < 1.

Denote a; the first zero of the solution z after 3, (if the solution z
hasn’t a second zero a,, then Theorem 2 is trivial).

If there exist d € (2, az) such that hy(t) > a; for almost all ¢ > d,
then z(h;(t)) <0 for almost all ¢ € [d, @3], hence 2”(t) > 0 for almost
all t € [d, o).

If 81 < hi(t) < a1, then by Lemma 2, with the use of the condition
Thy()hm(ty > 1 and Lemma 3, we can conclude that z”(t) > 0 for
t € [B2,d]

By the theorem of Lagrange, there exists ¢ € (S, 3) such that
z(ay) — z(B2) = a'(c)(az — B2), this implies 2’(c) > 0 and z'(az) =
z'(c) + [222"(t)dt > 0. It means that a; < B3 (we denote 3 the
first zero of derivative of the solution z after a;). Now we show that
4ya; < 1 for some collection g;, i = 1,... ,m: On the interval [3;, a3)
the solution z of equation (1) satisfies equation (4) for j = k = 2.
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Rewrite this equation in the following form:
; . %
2(t) = = [ Qajent:9) 1 pi)a(ails)) (e, hils))ds =

—/ Qpjen(t s)Zp, s)z( M1 — y(r=1, hi(s))]ds

where k = j = 2, gi(t) € [B2, 2] such that y(a, hi(t)) = (g:i(t)) for
t € [B2,a2). The collection gi, ¢ = 1,...,m exists since z"(t) > 0
for t € [B,as]. For, since ' isn’t decreasing on the interval [3;, ],
therefore |z(83,)| = Joax |z(t)| and the set of values of the function

z on the interval [ay, 8] is included in the set of values of z on the
interval [, ).

It follows from [1] that ggqe, < 1.

The inequality Au o, < 1 is proved analogously to rq,s, < 1.

If o, is the last zero of the nontrivial solution, then repeating the
arguments for j, k = 3,4,5,... ,m, we obtain the proof of the theorem.
If the solution z has an infinite number of zeros, then the sequence ax
of zeros is unbounded. Indeed, we have proved that Ag,q,,, <1, this
implies that [1] (ars1 — o) for+! T, pi(t)dt > 4 and, consequently,
the increasing sequence ay cannot be bounded from above.

It is clear that all zeros of the solution z belong to this sequence
aj. In this case the repetition of our arguments completes the proof
of the assertions a) and b) of Theorem 2.

The assertion c¢) follows from the following argument. For each j
we have proved that sign 2(t) = sign 7%, pi(t)z(hi(t)) for t € (B35, a;j),
this implies 2'(t) = 2'(8;) — fg] S, pi(s)x(hi(s))ds # 0 for t €
(ﬂjiaj)' L

Proof of Theorem 1. Theorem 1 can be obtained as a corollary of
Theorem 2.

Indeed, from the theorem about the integral inequalities [1] we have
the following. If there exists a continuous positive function v such
that v(t) > Quuv)(t) (v(t) > (Ruuww)(t)) for t € (v, p1), then gy, > 1
(ru > 1). Substituting v = 1, we obtain that the condition (4)
‘guarantees the inequalities T4, (t)hm(1) > 1, qhy()hm(t) > 1-

If there exists a positive function v such that

plt) = (1) + Lo n (O, k() <0, [ g0yt <,

i=1

V'(v) =0, v(u) =0 (v(r) =0, v'(g)=0),

Iz
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then g,, > 1 (r,, > 1) [2]. Substituting v(t) = (¢ — 2v + p)(g — ¢t)
(v(t) = (t — v)(2p — v — t)), we conclude that inequality (3) implies
the inequality qn, () > 1 (Phy (O hm(ey > 1). B
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ON THE CARDINALITY OF A SEMI-ALGEBRAIC SET

G. KHIMSHIASHVILI

ABSTRACT. It is shown that the cardinality of a finite semi-al-
gebraic subset over a real closed field can be computed in terms
of signatures of effectively constructed quadratic forms.

G0B0TBD. bhggbios, 6 By P;ég%@ ety amagav%fn

babthgemo bbgatg mw“w daa boddrogg Bgodc
aoamw afs%ﬂm"a‘w PP JPRAEe Grddgdel lma-
Ea@vgt‘um

1. The problem under consideration may be described as follows.
Let X be a semi-algebraic set over an ordered field K [1]

X={fi=0,¢;>0,icl, jeJ} CK", (1)

where I and J are some finite sets of indices, and suppose we are a
priori guaranteed that X is finite (e.g. it is a part of the zero-set of a
non-degenerate polynomial endomorphism). Now the problem is how
to estimate its cardinality in some reasonable way without solving any
equations.

More formally, there are given f;, g; belonging to the ring K, of
polynomials in n variables with coefficients from K and we want to
find effectively (by means of some algebraic operations over coefficients
~ of these polynomials) the cardinality #X, i.e. the number of elements
- in X (geometrically distinct or counted with the multiplicities).

Similar problems for the case when K = R is the usual field of reals
often arise in applications [2] and they are well-studied [3]. We will
show below that a number of general results may be formulated in
terms which are valid in the context of real closed fields. We will not
treat the problem in full even for reals preferring to exclude variuos
possible degenerations. In fact, cases considered below are principal in
 the sense that most of reasonable situations may be reduced to them.
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311




312 G. KHIMSHIASHVILI

From now on we always suppose K to be a real closed field and all
points of X to be simple in the sense of the algebraic geometry (i.e.
having the multiplicity 1). Thus we are going to deal, in fact, with
the number of geometrically distinct points.

We will consider two important cases: when X is the zero-set of a
non-degenerate endomorphism (i.e. #I = n and f; define a proper
endomorphism of K", where K = K(y/=1) is the algebraic closure of
K), and when one has no inequalities (i.e. J = @).

In the first case the solution may be obtained by means of a suitable
modification of the classical signature method going back to Hermite
and Jacobi [3] which was outlined in [4] and then thoroughly studied
in the Candidate Dissertation of T.Aliashvili for the field of reals (see
[5]). The proposed generalisation is based on the existence of a purely
algebraic definition of the Grothendieck residue symbol [6].

The same approach is also valid in the second case but better results
may be obtained by means of more sophisticated algebraical tools
used by G.Khimshiashvili [7], also by D.Eisenbud and H.Levine [8],
and developed later in [9] and [10]. This enables us to get rid of the
multiplicity one assumption, which seems impossible in the framework
of the signature method.

In fact, some other approaches, e.g., the so-called Newton polygon
method developed in the works of A.G.Khovansky [11], are possible,
but the author has never seen any published results of that kind.
Moreover, it seems that the named method does not in principle enable
one to consider the case when inequalities are really present in the
definition of X.

2. Consider now a set X of the type (1) and let f; define a nonde-
generate polynomial endomorphism f : K* — K™ with simple roots.
Nondegeneracy here means as usual the absence of "roots at the infn-
ity”, that is, the ”leaders” (homogeneous forms of the highest deg.ce
deg f;) fr have no nontrivial common roots in K™ [2] (for K = R this
is equivalent to f being proper).

The Bezout theorem for real closed fields [12] implies that f has
exactly N = [] deg f; roots in K™ so that we have

FL0) = {z0,21...,2nv-1)} with 2z £z for i#j.

Without loss of generality we may assume that the first coordi-
nates of roots are pairwise distinct and in such a case we say that the
endomorphism is separable. This condition may always be verified ef-
fectively in terms of resultants and one can always reduce the problem
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to this case by performing not more than N(N-1)/2 rotations of the
coordinate system.

Write now every root in the form z; = (u;, 2}) with the first coor-
dinate singled out and introduce an auxiliary quadratic form on Jre
which depends on an arbitrary g € K, :

N-1 .
Q) = X 9= (& + ujba + -+ + +u7 Hv)" ©)
j=0

It is easy to verify that all coefficients of this form belong to K
because here we have a complete analogy with the case of reals. More
precisely, the roots which do not belong to K™ appear in conjugated
pairs with respect to the natural ”complex conjugation” operation in
K, which implies the assertion.

Recall that one can define as usual the rank rk Q% and the signature
sig Q% of the form Q% [1].

The following result provides a multidimensional analogue of the
Sturm algorithm [1] and enables one to solve the problem for #J =1,
i.e. for domains of the type {g > 0}.

Theorem 1. If f : K™ — K™ is a separable polynomial endomor-
phism over a real closed field K and g € K, then the rank and signa-
ture of the form (2) satisfy the relations:

N =1k Q% = #(f(0)ng™'(0)), (3)
sg Q) = #[(0)n{g >0} - #[On{g<0}]. @

Denoting by Q; the form (2) for g = 1, we are able to derive some
corollaries.

Corollary 1. Under conditions of the theorem the form Q; is non-
degenerate and one has:

sigQr = #/7'(0) (%)

Corollary 2. Under the same conditions for X = f~'(0) N {g > 0}
one has:

#X = (sigQ; +sigQ) +1k Q) — N) /2 (6)

Using some simple combinatorics we may also increase the number
of inequalities determining X.
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Corollary 3. If besides f~(0) N g;*(0) = @ holds for every j € J,

then
=T (zﬁ: o Q;‘) J2#,

where a runs through all multiindices of the form a = (eu, . .., ax) with
l<k<#Janda; <--- <oy, and Q% = Twith gd = qaii g

For the sake of simplicity we have excluded here degenerations con-
nected with the presence of roots on boundaries of domains {g; > 0}.

Before presenting the proof of the theorem let us explain why it gives
a solution of our problem. It suffices to show that coefficients of the
form (2) may be computed by a finite sequence of rational operations
over coefficients of f; and g.

After trivial modifications of the formula (2) it is easy to see that
the coefficients c;; in the standard presentation of the form Q) =
Y- cij€i€; are expressed algebraically in terms of the so-called mxxed
Newton sums of roots

N-1

Salf) = T (D)™ oo (1), )

i=0

where a € (Z4)", 2; = (2},...,2}),5=0,1,...,N— L.

In fact, certain sums S, may be easily computed using iterated re-
sultants. For example, this is so for small |a| and for ”pure” Newton
sums with only one nonzero a; and this enables one already to provide
the separation of roots, which was the original classical problem [3].
There are some hints in [3] about such a possibility but without any
details and with a remark that this is not a universal method. For
n = 2 the storage of easily computable Newton sums was described
by T.Aliashvili who has also shown using the Hilbert theorem on in-
variants that all Newton sums may be computed algebraically in this
case [4], [5]. Unfortunately, this approach is not constructive and it
meets with serious difficulties for arbitrary n.

For K = R a radical tool for suppressing this difficulties is provid-
ed by an ingenious algebraic device called the Grothendieck residue
symbol [6, 13]. It was shown in [7] and [8] how this residue serves to
compute the topological degree of a smooth map-germ and so we nat-
urally used it in our situation. In fact, here we need the global variant
of this notion which was outlined in [6] and further investigated in [13].

For the sake of completeness we recall that the global residue of a
polynomial ¢ € R, with respect to a nondegenerate endomorphism
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f € (R,)" is defined by the integral

1 9(2)
@iy ra B) - D ®)

where the cycle Tp = {z € C* : |f;(z)] = R for j = 1,...,n} is
. defined for sufficiently large R > 0, its orientation is induced by the
differential form d(arg fi) A --- A d(arg f,) and the integral is taken
~ with respect to the usual Lebesque measure.

This integral doesn’t depend on R and vanishes on the ideal (f)
generated by the components of f in R, [13]. Moreover, if all roots of
f are simple, one has the relation '

Ressg =

9(2) 9
im0 J1(2)] 3

where Jy(z) = det(0f;/0z)(z) is the Jacobian of f.

Now it is clear that in the situation of Theorem 1 we have

Sﬂ(f) = Res,(era), (10)

where o € (Z4)", eq = 2 ... 25" is a monomial in Rp.

Consequently, it remains to show that Resyg itself can be computed
by the coefficients of f and g. This circumstance should not seem
strange because the global residue is the sum of local residues [13] and
the latter are known to be algebraically computable but, of course, a
technical difficulty arises here because we cannot assume the positions
z;j of local residues are known.

Nevertheless, it turns out that the situation can be saved by means
of a clever use of the transformation formula for global residues [13].
In fact, one may always reduce the problem to the case of the so-called
"pure powers” f; = zf’, where it is trivialized. The necessary trans-
formation can be obtained from the so-called Hefer decomposition of
polynomials f; and all the procedures rise up to algorithms. We have
10 space here for presenting details which may be borrowed from [13],
but for future generalizations it is important to notice that the main
point was just the transformation formula. Thus we conclude that
- the Newton sums can be also computed algebraically, which gives a
principal solution of our problem.

Now we observe that the same arguments can be used also for an
arbitrary real closed field K because there exists a pure algebraic def-
inition of the Grothendieck residue symbol [6] which generalizes (8)
and possesses the same functorial properties.

Ressg =
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As was already mentioned, a straightforward analysis of the residue
computation in [13] shows that it uses, in fact, only the formal prop-
erties of residues and therefore also extends to the general case.

Thus we arrive to the following conclusion which complements The-
orem 1 and completes the desired solution.

Theorem 2. Under the conditions of Theorem 1 coefficients of the
form Q% may be algebraically expressed through coefficients of given
polynomials.

Now it is time to return to the proof of Theorem 1 which proceeds
as follows. Write first f~1(0) in the form

fi(0) = At e R o e s T
where z1,...,2, € K", 2 ¢ K", r + 2k = N, which is always possible
in virtue of the observation following the formula (2).
Define now a linear transformation 7' in KV by the formulas

ni =& +buj+-+enaul T, j=1,..,m
Mrti = Re(bo+ -+ + &nvaqulFh),  j=1,...,k
Neakes = Im(&o + -+ Evoqul)), G=1,...,k.

Evidently, this transformation diagonalizes our form, this immedi-
ately implying (3) and (4). It remains to verify that this is a genuine
change of coordinates, that is its determinant is nonzero. Anyone who
is fond of linear algebra can easily compute it by reducing it to a
Vandermonde of the first coordinates which is nonzero due to the sep-
arability of f. Another way is to observe that the form Q; becomes
nondegenerate; hence rk 7' > N, which again finishes the proof. B

All corollaries become immediate now. We have only to introduce
numbers m, of roots belonging to U, = N{gs, > 0} and to sum up
all relations (4) for functions g,, which terminates all the numbers m
except the required my, ., = #X.

Turning again to the proof of Theorem 2 we shall also point out
that there were two nearly equivalent possibilities of deducing the
general case from the case of real numbers. Firstly, one can mimic the
algorithm from [13] referring to the properties of the general notion
from [6]. Secondly, one can directly define the global residue Res;g by
the formula presented in [13], page 60, and verify that it possesses all
necessary properties forcing it to coincide with the residue from [6].

In both cases details are routine and we have omitted them. In
fact, the shortest though a little mistifying way is concerned with
the Zaidenberg-Tarski principle [12], which makes all these troubles
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unnecessary as soon as a formula for Res; is proven for reals so that
the proof of our generalization becomes complete.

Nevertheless, we preferred to recall the analytical formula for the
global residue having in mind an effective algorithm for dealing with
the problem in practice, which is by no means available by the Zai-
denberg-Tarski yoga.

A number of curious questions arise here. For example, one can try
to estimate the computational complexity of corresponding algorithms
and compare it with that of the cylindrical decomposition method from
[14]. When g = J; and we are dealing with the topological degree of f
necessary estimates were obtained by T.Aliashvili [5] and they witness
in favour of the approach outlined above.

3. Let now X be an affine algebraic subset of K™, that is a set of the
type (1) with J = @. We are going to describe an ano ther solution
of our problem also valid without assuming that all points of X are
simple.

As is well known, every such subset may be represented as a hyper-
surface X = {F = 0} with F = fZ +---+ f}; so that we may assume
that X is a hypersurface consisting of a finite number of points. At
first glance such an object may seem unusual but the point is that for
a hypersurface one can always compute its Euler characteristic in a
pure algebraic form as in [7, 9, 10]. In our situation the Euler charac-
teristic simply reduces to the number of geometrically distinct points
so that we become able to give a very concise solution of our problem.

The discussion below can be adapted for arbitrary real closed fields,
but this requires some caution and additional work so that we consider
here only the case when K = R.

Recall that we deal with the usual Euler characteristic x(X) which
is the alternated sum of homology groups ranks (Betti numbers) of
a topological space X under consideration. We write deg, f for the
local degree of an endomorphism f : R* — R™ in an isolated preimage
of the origin p € F71(0) which is defined as the topological degree of
a mapping f = f/||fll: S;7'(p) — S77'(0) = $".

All the results below are based on the following formulas obtained
by the author in [7].

Theorem 3. Let F : R* — R be a polynomial with an isolated sin-
gularity at the origin. Then for a sufficiently small enough A > 0 one
has :

X({F <2} N B}) = 14 (=1)"" dego(grad F), (11)

o

AN

0101945
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where B} is a ball of the small radius é.

If the polynomial F' is homogeneous then for sufficiently small
A,6 > 0 one has also the equality

X({F 20} N 537) =1+ (=1)"" dego(grad F). (12)

These results are local but there is a natural link with the global
ones provided by the projectivization.

With this in mind, suppose that fi,..., f, are homogeneous poly-
nomials of the degrees d; < d; < --- < d, , respectively. Then,
besides X, they also define a projective algebraic variety V; in RP™~*
which can also be determined by a single homogeneous polynomial
f =3 f2||lz|*=%) of the degree 2d,, where ||z|| is the usual eu-
clidean norm of * € R™ Now it is not difficult to tie together the
invariants of X with those of its projectivization using the following
lemma established in [10].

Lemma. Under these conditions for all A\ # 0 the polynomial Fy =
=2 x?d”) has an isolated singularity at 0 and for a sufficiently
small |\| the real hypersurface {F) = 0} does not have singularities
inside small balls and is transversal to their boundaries . Moreover,
denoting

Z = {z'c 5173 fle) =0} By = {=z € ST M ab(2) < 0},

one has that Z\\Z is diffeomorphic to Y x (0,)], where YA = {z €
Syt ihh(z) =0}

Collecting together these observations, we are able to obtain the
final  result.

Theorem 4. Let fi,...,f, € Ry be real polynomials of degrees not
exceeding d. Suppose that they have only a finite number M of real
common zeroes. Set

hi(zo, @1y .- ,In) = wé“f.’(m/ro,u-,xn/zo),
» n
H=) B =3 o,
=1 k=0

Then H has an algebraically isolated critical point at the origin and
the following equality holds:

M = [(=1)" — dego(grad H)] /2. L (13)
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Proof. Evidently, all polynomials h; are homogeneous of the degree
- d+1, which enables us to transplant considerations on the unit sphere
$* ¢ R™! and use the lemma.

With this purpose we introduce a subset Y = S* N {h; = ---

h, = 0} and observe that Y =Y, UY_ U S™ ! with Y, = {z € S" :
o> 0,5, (x) =+ = hy(z) =0}.

Evidently, Y, and Y_ are homeomorphic to X so that we obtain
X(Y) = 2x(X) — x(S™?) or, equivalently, x(X) = [x(¥) +x(5""")]/2
and it remains to compute x(Y), which is already possible using (11)
for H.

Working with homology with integer coefficients, in virtue of the
- Lefshetz duality [2] we obtain

X(S\Y) = Y2 (=1)*tk Hi(S\Y) = 3 (—1)F tk Hyoia (S, Y) =
= (=1)""'x(5,Y) = (=1)"" [x(8) = x(V)] =
(= L)P(0)+ (140,
On the other hand, applying the lemma to H instead of F' one gets
S\Y = (Sn{R<0})u(Sn{F<0}).

The first set is fibred in virtue of the lemma and the second one
cannot contain any points of ¥ because there we have Ew““ >0,
Consequently, we obtain

X(S\Y)=x({Fx=0} N 8) +x({FA 20} n §) —x ({F=0} N §) =

=x({FA = 0}) =14 (=1)""" dego(grad F).

This naturally implies
X(Y) = (=1)"[(=1)" + (~1)"*" dego(grad F})] = 1 - dego(grad F}).

Now, our lemma yields that the family F' provides an admissible
homotopy with F; = H so that we may put A = 1 and get

x(Y) =1 — dego(grad H),
which immediately gives (13) and finishes the proof. &

Granted formula (13) we have only to observe that the local topo-
logical degree is algebraically computable being, in fact, equal to the
signature of an effectively constructible quadratic form on the coor-
dinate algebra of a given mapping [7, 8]. Thus, we obtain another

way of computing #X, which turns out to be more convenient and
effective than the method of §2.
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One could now combine our results with those on algorithmic com-
putation of the local degree in order to estimate the computational
complexity of this method. We shall not pursue this topic here but
rather make several remarks in conclusion.

An interesting open problem is to generalize all these things for
arbitrary real closed fields. In fact, most of necessary algebraical and
topological notions are also available in the general case. One has
only to obtain a formula expressing the local Euler characteristic in
terms of the local topological degree as in [7]. The author feels that a
portion of the semi-algebraic topology in the spirit of [15] should be
helpful here. One could also try to combine this with the discussion
of real singularities in [16].

Some concrete results become more or less immediate now. For
example, one can directly verify a result of R.Thom stating that the
number of cusps of a stable smooth mapping from the real projective
plane into real plane is always odd because such maps may be approx-
imated by rational ones given by ratios of polynomials of even degrees
for which the result follows directly from the formula (11). Perhaps,
some other "oddity results” may be obtained in a similar manner.

One can also give a closed algebraical formula for the number of
cusps of a polynomial Whitney mapping (stable mapping of R? in
itself) which complements recent results of K.Aoki and T.Fukuda [17]
and provides sharp estimates for such numbers.
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ON SOME PROPERTIES OF MULTIPLE CONJUGATE
TRIGONOMETRIC SERIES

D. LELADZE

ABSTRACT. We have obtained the estimate in the terms of par-
tial and mixed moduli of continuity of deviation of Ceséro (C, a)
means (@ = (a1,...,a), @ € R, &; > —1, i = T,n) of the
sequence of rectangular partial sums of n-multiple (n > 1) con-
jugate trigonometric series from n-multiple truncated conjugate
function. This estimate implies the result on the my-convergence
(A >1) of (C, @) means (a;' > 0,1 = T,n), provided that the es-
sential conditions are imposed on the partial moduli of continuity.
Finally, it is shown, that the mx-convergence cannot be replaced
by ordinary convergence.

GOB0TBI.  igogsdo doggdemos n-xg::Qn (n>1) 'iagmabw
o "'5"’38@) 3%‘ d‘maab 3060 d‘r]rﬁdm xoaa 3<>3Q35-
o F:OMfEJ(QmC,a) wﬂwﬂ&fxﬂ(a =Y(a1,..-an). @ ER,
i >~ i=Tn) gf. n-ggbeen Fayggmorn Byaeegdaee grb-
&300“5;‘1 ab@mbagoaw‘:g&g ﬂ(?i&“ 5 '33;’3"3@ Qﬁ%’:ﬁ" e
QI ¢ Bosb gfiyggembed g STing
Qaa'bg oéba m%nt‘m%ﬂ&)ls QoQaanb Ba‘gubaaa\ﬂﬂ 6"3'“8@5‘%
GSQ o (C,a) lso'&ﬂ 3&-).; (a,— 0 i:m m*'d" Boggemdols
sgui%a. Qoammu.?gmsaam. 6B - ydoerBs of %Onam&
3ol Rygamgdege ggbogmbon.

1. Let f € L([~m;7]"), n € N, n > 1, be a function, 27-periodic

in each variable, o,,[f] its n-multiple trigonometric Fourier series, and
a[f] its conjugate series with respect to n variables (see, e.g., [1]).
We set

m=(my,...,ma) (m €N, i=Tn)
x =T, s @) (2 ER E=Tim);
a=(ay,...,an) (@€R, a;>—1,i=Tn); M={1,2,...,n}.

1991 Mathematics Subject Classification. 42B08.
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By M; we denote the set of all subsets of M with j elements, by
M@ aset M\A (A C M), and by M) the set of all subsets of M
with j elements.

For B = {is...,ix} C M we define m(B) = IV E0h sl i by
and the truncated conjugate function with respect to the correspond-
ing variables

Fu(py(x) =
1 B 1r
L)
k o " 5
2 H ctg jdsi; .o dsiy, fm(x) = fm(M)(x)v
j=1
where
Aci(fx) = fleiyie . Bim1y @it By T, o5 Bn) —
= i@ T T BTt 5Tk — T
For f € Li([-m;7]*), 1 < ¢ < +oo (L® = C), we consider its
mixed modulus of continuity
wB(m(B‘Hf)Lq =

A?(Akj(.“(AT(ﬁx».”))

= su

s p )
Ry [<1/miy ol ikl <1 /miy

La

where
AM(f3%) = (@1, ic1, i 4 Ry Tigt, o, Tn) — fl@1;5-,2n):

Let 5%(x; f) be Ceséro means of 7,[f].

In the sequel by A, B, A1, By,C(a),C(B),C(e, B), etc. we will de-
note, in general, different positive constants.

Finally, we set

kf, el
ME,B8) ={In(k+1), B=0,
il B0 (k=120

In the present paper we give the estimate of the deviation of n-
multiple Ceséro means of the sequence of rectangular partial sums of
n[f] from fr in the norm of L7, g € [1;+00] (L% = C), in terms of
partial and mixed moduli of continuity of f. This result generalizes
the corresponding result of L.Zhizhiashvili (see [1]).
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From this estimate ensues the result on the Cesiro summability
of the sequence of rectangular partial sums of &,[f] and then the
correctness of this result is shown.

2. The following is true:

Theorem 1. If f € LI([—m;7]"), q € [1;+00] (L = C), then

n-1
lom(x;.f) = fm(¥)llLe < C(ex) {Z > wa(m(B); f)rax
k=1 BEMj,

n—1n—i

R
x JI AMmipa)+ 23 Y Y ws(m(B); fngay)ie X

i=1 k=1 AEM; ge (4

X 11 Ay, o)) + T Amas ai)wnr (m(M); f)Lq} = ()
=1 =1
{t1,--sta}eMD

Proof. For simplicity, we will prove the theorem in the case n = 2
which is typical. We will use the method of L.Zhizhiashvili (1] ps
160-191), this method proving to be true for n > 3.

Let w(é1, 82; f)» be the mixed modulus of continuity of the function
f(z,y), z,y € R, with respect to two variables. By wi(8; f)ra (¢ €
N, § € R*), as usual, we denote the modulus of continuity of fin L?
with respect to the corresponding variable. Let m,n € N, o, p €R,
o,8 > —1, fna(z,y) be the two-dimensional truncated conjugate
function and 5%5(x, y; f) be the Cesdro means of the double conjugate
series G[ f].

We have ([1], p.187-188):

x/m  pr/n S
o2l f) =1 [ [ dealosts NRGKT (D drds +
n/m 1.
+1/(2x) [ A/n Yol ti £ ctg 5 Kin(s) deds +
w/m pm 2
w1/ [ ot DRGHI O deds +
T/m i
w1fat [ [ el ts DRG()HLa(E) deds +

x  r/n S
i 1/(2,r2)/"/m/0 oyl t; ) ctg 5Kfj(t)dtds+
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150 [0 [ el D HS ()RS s +
#1/50 [0 o 6 DHE AR s +
s 1/(4#)/; /:ﬂ Vel ctg%ctg%dt ds +
+1/(2r%) / jm / / o8, ) cig %Hf,,(t)dt ds +
+1/er) [ :m [ eatosti f)cte SHR (0 de ds +
#1105 [ [ u(siti et 5Ha(s)deds +
F1/5° [0 [ en(ont D () HE (1) deds +
s ¢,,,,(s,t;f)H;,l(smf,z(t)dtds+
+1/(21%) / / bouls, ; f)ctg o (s)dtds +
+1/x? /ﬂ/m/ (s, 85 D) HE (s HE, () dt ds +
e /// ay(5:1; F)HE () HE o (1) dt ds =

Z ROl ) 2
where

Yoy(s,ti f) = flz+s,y+1) — flz— s,y +1) —
—flztsy—t)+ flz—s,y—1t) (3)

and Hy (s), Hy, o(s) are the summands of the conjugate Fejér kernel
K2 (s) (see [2], pp.157-160)

Ko (s) = Ectg + H 1 (s) + Hy (), (4)

Cos((m+§+ )s—"T")

B e e ®)
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Besides,
K5 ()l < Cla)m, |s| < (6)
C(Of)
|Hi2(s)] < —= oro a/m<|s| <7, o m> 1. (7)

The estimate (7) is more precise than the estimate (2.1.14) in [1] and
it can be proved by arguments analogous to those in [2], pp.157-160.
From (2) we obtain

Bre(E. i F) — Fnz, y) Gme(@,y: ) = PElz,y: ) =
z PO e,33 1), ®)
where ’ indicates that the eighth member is omitted (the replacement

of 1/m (1/n) in fmn(z,y) by m/m (7/n) does not matter).
In the sequel we will use the inequality (see [3], p.179)

{_/:’/Cdf(a:,y’)dy qdz}llqsfcd{/as ]f(w,y)|"dz}l/qdy, o

1< ¢ < +oo.
Taking into account (6) and (9), we obtain

IPSA (95 f)llze < C(a B)fun( (Ufm: )i +wa(1/n; faa}. (10)

It is easy to see, that

SAERTIES ——/ [P+ 5,9) = FD(a — 5,9)| Ka(s) ds,
POy ) =~ [ [0y + ) - O,y - 0] REW e,

where
W) ==3- [ Ule+sn)-fa-sulessas, (1)
=g [ ey +)-Sy-laggi  (2)

Hence, using again (6) and (9), we obtain:

P2 @33 Fllen < Ca Bos(1/ms; )1 5
1B, 33 F)llze < C, Boa(1/n3 FD)ra. (14

Az

B4

Nrna45
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Now, it is easy to see that for estimation of P{3)(x,y; f) it suffices
to estimate the integral

x/m .
Homym) =072 [T [7 (s, G (Shoslt) cosnt dt ds,
0 w/n

where

cos M[

wp(t) = m
We have
2I(m,n) =
e
UL [kt N =beator /i )] %
x K% (s)wp(t) cos nt dt ds—i-/’r/m/7r 1[)r,y(s,t+7r/n;f)[w,3(t)_
—wg(t+7/n) ]I s) cos nt dt ds+
n/m
+/ / d)zy(s t+ 7 /n; f)K2(s)ws(t + 7 /n) cosnt dt ds —
e /7'/"L / Puy(s, t + /05 YKo (s)wp(t + 7/n) cosnt dtds}.
0 o
Now we note that (see [1], p.56, (2.1.18))
lwp(t) = walt + 7/m)| < CAY (), T<t<w  (19)
(6) and (15) yield
11(m,n)llze < C(a, B)A(, B)wa(1/n; fLa

and hence
P2 (2,3 f)llze < Clay BIAR, Blwa(1/n; fLa. (16)
Analogously
IPE)(z,y; f)llze < Cla, BN, a)wr(1/m; f)r (17)

Furthermore, using (6),(7) and (9), we obtain

1P @, y; Fllze < Clav B){wr(1/ms re +wa(L/m; e}

(k = 4,7,16). (18)
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Analogously, taking into account that

i pE e P
POy f) = —— L (7@, + 1) = [P,y - O] HY (1) dt,
1

o [0+ 5y) = [P - 5, y)| H3 i (s) ds,

POV (@,y; f) =
we can prove

I1PE(a, y; )llze < Clay, B)A(n, Bwn(1/ms f)ies (19)
1P (2,55 Nllize < Clay BA(m, @) (1/m; FP)re. (20)

- Using the same arguments and applying (6), (7) and (9), we can
~ prove

18O (@, y; f)llze < Cla, Bwa(1/n; F) s (21)
NP (@, y; F)llpe < Clay, B)wi(1/m; FP)ra. (22)

Now we observe that the following lemma holds true (see [1], p.160,
Lemma 10):

Lemma 1. Let f € LI([~-m;7]?), 1 < ¢ < +00, and

$oy(s,t; ) = fle+s,y+ )+ fz—s,y+ 1)+ fle +s,y - )+
+ f(z = s,y —t) - 4f(2,y). (23)

’

Then

s sin sin
Hm e /;r/m/; Dy (8,8 flwa(s)wp(t) Lo ntdtds -
= O{A(m, @)A(n, B)w(1/m, 1/n; f)ze + Am, @)en (1/m; f)re +
+/\(",ﬂ)“’2(1/"?f)m}'
There is another lemma in [1] (see p.171, Lemma 11), which can be
corrected by means of (7) as follows:

10
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Lemma 2. For f € L([—m;7]?), 1 < ¢ < +oo, we have
sin

S o : a
- -/7; [f/n bry(8, 8 flwa(s) Hy s (1) S Ui dtds

/m

= O{A(m, @ior (1/m; f)ra +wa(1/m; Nre i
WO [0 sl P05 o(s) o mtdtds
= O{A(n, B)wn(1/n; f)za +wn(1/m; f)pa}.
The lemmas and (3), (5), (7) and (23) yield
|BS2(2, 3 £) + PEz v £) + BSH 23 £, <
< C(a, B){A(m, @) A(n, B)w(1/m, 1{n; f)ra + A(m, @i (1/m; [ +
+A(n, B)wa(1/7; ) }- (24)
Finally, (2)-(24) yield
loat @,y £) = Fan(z,9)] ,, <
< C(a, B){A(m, a3\ (, B)w(1/m, 1/n; fre + A(m, @) (1/m; [ +
+A(n, B)wa(1/n5 f)a + A(m, @) (1/m; FP) o +
+A(n, B)n(1/n; FD)1a}, (25)
which is the formula (1) in the case n =2. B
Corollary. If f € C([-m;7]") (n > 2) and
wi(8; fo = o(1/ ™ (1/8)) (i =T,n) (26)
as § — 0+, then
m 1550 ) = Fm(®)lle =0,

o= (o, -enan)y 0> 01 (G=10n) N> 10

La

Now we will prove that the my-summability in the corollary is es-
sential. Namely, the following result holds true:

Theorem 2. There exists a function f € C([—m;x]") which satisfies
(26) and

Tm 15505 f) = fu(0)] = +oo, @7
a = (o, han), o> 0 G =1Tn)0=(0,0..,0):
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Proof. We will prove the theorem for n = 2, this case being quite
typical. First, let ar, B € (0;1). We set

mpy
k ik
mp =22 mp=mpr | (k € N); (28)
In® 2 =1Inin z, In® g =nlnk- Lyke Nk >3-
1 T < Adir
In(1/(z=m/(6m))) I (1/(z—r/(6my))) * le;k <TS Gomy
s T
9(2) = § ROGT G- T =) Goms < @ < 5aps
0, z € (O;w)\(#; #)
Furthermore,
h(z) = 3" gi(2);
=1
1 e I
p(y) = {h(zw/ynn”’(h/u)’ v € (05,
i 1 Ly Y
Rer /-Gy Y € [5i);

_ Jh@p(y), (z,y) € (0;7)?,
Joiie {0, (z,9) € [=m; 72\ (0; )2

Finally, outside the square [=m;7]?, we extend the function f by
periodicity with the period 27 in each variable. It is easy to see that
[ satisfies (26).

From now on we set m = 2mg, n = ni + 1. We have

59800 0. f\ _ F T o () B =
52 (0.0:0) = Jun(0,0) = 1/* [ [ f(a, ) K (2) K8 (y) dy d
o 2\ St -

) [ [ fanes g b ay e
1/m 1/n 2 o
=y [ I 0) Ky (2) K2 () dy do +

o (]
g [Um fm s
+/7* [ [ f @@ R dyde +

/et [0 [ fle ) K@) K8 dy dot
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. T[T gal g ¢y :
+1/7 /l/m /1/" f(x,y)([sm(x)l\n(y) 1/4ctg 5 ctg 2) dy dz

4
=3 Ry(m,n). (29)
j=1
Obviously,
Ri(m,n) =o(1) (m,n — o). (30)
Then,

Ry(m,n) = 1/7° / / f(z,y) K () —ctg dyd:v—

< 1/#/0 A/nf(z,y)K; 2)HP(y) dy do =

= Ry(m,n) + R4(m,n), (31)
where
Bl o ;OA& ! COZ‘TI:,IT}%)_ (32)
The following estimates hold true (see [2], (5:12)):
K2 <n, < (33)
(@IS Clan ™™, Yn<i < (34)

Now we have

/2 1 y
/1/ (y)—ctg dy = // (y)§cts§dy+

+ [ o) gets g dy = Vi) + o). (35)
Now,
= 20 @Gl e o B
gl ~ /;/n 27y In(27y) In|In(27y)| ~ £ n
< Cymy Inmy; (36)
[Ua(n)] £ M. (37

(31) and (35)—(37) yield
(6]

= In mgs1 In® mpp

Ry(m,n my lnmy. (38)
2 \
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As to Rj(m,n), we have

C(ﬁ) 1/m
B —_ dydz <
|Ry(m,n)| < o mk+1ln(z)mk+1/ /l/n i L

c(v)
= Inmegr In® mpyy

(31), (38) and (39) yield
c(8)

Ry(m,n)| £ ————————m; 1 :
|Ry(m,n)| < i mm+11n(2) mkﬂmk nmg
Analogously
Ra(m,n) = Ry(m,n) + R5(m,n).
Now,
/
|Ry(m,n)| < e Inm,
" C(a)
Rl Al

(41)-(43) yield

|Rs(m,n)| = o(1) (m,n — oo).

333

(39)

(40)

(41)

(42)

(43)

(44)

Now let us consider Ry(m,n). We break it into 4 parts as follows

m n) (/ll/m /;I/nf /11/m /l/nr /;/mr /;l/n
+/1/m' /1/nr>1/7r2f(x’y )(Ka(2) K (y) -

1
—-4—ctg§ctg )dydz—ZI m,n)

 where 1/2 <7< 1.
~ We have

1
1/m™ J1/n7 (m"z"‘*ly

dy dz.

[y(m,n)| < C(a, B)

1
: )
nByfHig | menPgotlyf+l

It is easy to see that
[u(m,n)| = o(1) (m,n — o0).

’

(45)

(46)




)
X

0
001943
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Now we estimate I,(m )

(m,n) ZQA(W n) (47)
1Qa(m, )] = |1/ [ ot J’(—(/;)dydx
nhr
< C(ﬂ)max[ﬂlnmn—ﬂ
and
|Q2(m,n)| = o(1) (m,n — o0); (48)
|Qs(m,n)| =

= [T e Ha@H ) dyds] = o) (19)

(m,n — o).
Next we w1ll show that 1Q1( m n)| = 400 as m,n — co.
We have i oap 5=~ = Lherefore

me,= Smk

Erlmn)— 1 //::‘ Al (H= )
g 1 ) )
% e PO 37735 0 = A ()@ ) (50)

Since m = 2my, we have cos(i 4+ 1/2)z > 0 for i = =0,1,...,m and
zie [F2y 5or]- Hence (—H2(z)) < 0 (see (32)) Therefore we have

QW(m)| = 1/x / (z)dz >
237/120my, ™ cos 2&
> %/Mmm i=0A, 1S s
237 /120m;,
2 A% zmélw/:ﬂ‘}mk (ft_z 2 Inmy lcrtlm my (o)
As to QP(n n), we have (analogously to (36))
QP (n) > Cmxlnm,. (52)

(50)-(52) imply

c
|Q1(m,n)| > mmk In my. (53)
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(28), (40) and (53) yield
|Q1(m,n)| — Ry(m,n) — +o0 (54)

as m,n — oo (for m = 2my, n = ng + 1).
From (47)-(49) and (54) we obtain

|I2(m,n)| — R2(m,n) = 400 (m,n — o). (55)
Now let us consider I3(m,n). As in the case of Iy(m,n), we have
Ii(m,n) =3 J,(m,n). (56)

Then

[Jy(m,n)| = 1/x*

: 1 p(y) ‘
hMaz)(—Hp(z))d = dyl £
S MO @ e [ ° 5B ] <
meT " Cla (Z)nr

SC(Q)—(IH(B)H —In®n)= fl )7) In®n

h(z)

(57)

o)l = 1/ [ el / /’ o) HIw) o] <
st = (1727 [ [ honto) Hi o) H20) dy e <
SC(a,ﬂ)Z—j?;. (59)
(56)~(59) yield
Iy(m,n) = o(1) (m,n = o). (60)

Now we consider I1(m,n). As above,

Ii(m,n) X_:T(m n (61)
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We have
1fm® plfnT
|Ty(m,n)| = 1/x* (—HA@))E ctg L dy def <
1ym J1/ 2 2
Ci(a) Cz( o)l
) 5 62
~ lnmy In® my ]nnkln(r") ng M ol (62)
1/m"™ r1/n” i T
T = HP(y))= ctg = dy dz| <
|To(m,n)| = 1/x* fl /1 2)p(y)(—Hu(y))5 ctg 5 dy do| <
Ci(B) Co(B) 0
B 63
= Inmi In® my Inng In® ny n? il (63}
1m™ /a7
Ts(m,n)| = 1/7* / / (y) HE (2) HE (y) dy dx| <
1 1
Ci(a,B). Cyle,f) menf

~ lnmy In® my In nk In® ny men?’
(61)—-(64) yield
Ii(m,n) = 5(1) (m,n — o) (65)

(we remind once more that m = 2my, n = nj + s
Finally, (29), (30), (44)-(46), (55) (60) and (65) prove the Theorem |

2 in the case n =2 and o, 8 € (0;
For a = 1 we have

sin(n + 1)t

H.0) = ) @en Iy

(66)

and an estimate analogous to (34) holds true.
Now we consider the case when o > 1. Using the method repre-
sented in [4], p.507, we obtain

. 1 ei(n+1/2): 1 d
= A22sin i {(1 —e—it) g Z: e
Z Azt emitm=n=1/2t(] _ ¢=it) } (67)
m=nt1
where d = [a].

Taking the real part we obtain that the first term of the finite sur
is 0. Therefore if [a] = 1 we apply once more the Abel transformation
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~ to the infinite sum in (67) and obtain

cos((n+ 3+ %) —5) (1 — @)arcos(t/2)

Ho(l e = =
~ () A°(2sm it 8(n + 1)(n + a)(sin £)?
3 sin(m — 1)t
— A‘,’{ mz_: Am+"+1 (2sin 5)3 : (65)

Then, again, we have an estimate analogous to (34), which enables us
to fulfil the proof. Namely,

%

Cy(a 5(a)
notatl il B2

|Hz (1) <

(69)

If [a] = 2 without further transformation we obtain

e cos((n+l+“) ) (a —1)arcos(t/2)
il (t)= A2(2sin L)+ - 8(n +a —1)(n+ a)(sin §)?
12 s cos(m —3/2)¢
T mZI e L (70)

and, again, (69) holds true.

Analogous equations may be obtained if [a] > 3.

Now, when @ = 1 and 8 = 1, we use (66). If @ =1 and < 1 (or
vice versa), we use (34) and (66). If « = 1 and 3 > 1 (or vice versa),
we use (66) and (67) (for the corresponding d). If @ > 1 and 3 <1
(or vice versa), we use again (67) (for the corresponding d) and (34).

In the n-dimensional case we define f as follows. We set

mp =27, (keN)

| gx(z) =
3 { 1 m e Tl
In"~1(1/(z=7/(6my))) ™ (1/(z~n/(6my)))’  6mk — 60my’
ire o i
=\ " (1/(x/(5my)=2)) D (1/(r/ (5my)—=))*  60my = T = 5mi’

0, z € O\ (i)

Again
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Then

p(z2, ..., 2a) =
= - il
_]nn—l LI ) e e (1)
[T (x/2=1x/2=2:]) T, /2=1x/2-zil)

for (o n) € (0im)ia
And, finally

oy {bERER ey (B ) € O,
e {0, (21, - a) € [ 1]\ (05 m)"

Outside [—7; 7|* we extend the function f by periodicity with the
period 27 in each variable.

We observe, that functions of the p(zs,...,x,)-type were for the
first time introduced and applied in the works of L.Zhizhiashvili (see
(1], [5]). =

Remark 1. For the function f(zy,...,z,) a stronger condition than
(26) holds true, namely,
S et
In""%(1/6) In™(1/6)

Remark 2. Results analogous to Theorem 1, the corollary and The-
orem 2 hold true for the n-multiple Abel-Poisson summability method.
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ON SOME TWO-POINT BOUNDARY VALUE PROBLEMS
FOR TWO-DIMENSIONAL SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS

A.LOMTATIDZE

ABSTRACT. Sufficient conditions for the solvability of two-point
boundary value problems for the system z! = f;(t,z1,22) (i =
1,2) are given, where f and f; : [a1, as] x R? — R are continuous
functions.

FOBBI. gompghormes mifgboramash bbb smboms -
BlBocgerBols Lol Sobemdgdo” o :y[;f;(t,zl,zz) (i =1,2) bo-

Bob ooy gebemasbons bobggabsogb. bgag fi @
foifan,az] x R? = R qfigose gobingtes

1. STATEMENT OF THE PROBLEMS AND FORMULATION OF THE
MAIN RESULTS .

Consider the system of ordinary differential equations

Ti= Ltz (=1,2) (@)
with boundary conditions
Aiz1(ai) + Xaza(ai) + gi(er, @) =0 (i =1,2) (1.2)

or

Ainz1(a:) + Nigwa(@i) + hi(er(ai), 22(ai)) =0 (1=1,2), (1.3)
where —00 < @y < a3 < +00, Aij € R (i,j = 1,2), the functions
fi : [ay,a2) x R* — R, hi : R* — R (i = 1,2) are continuous and
gi : C([a1,a2]; R*) — R (i = 1,2) are the continuous functionals.

The problems of the forms (1.1),(1.2) and (1.1),(1.3) have been stu-
died earlier in [1-10]. In the present paper new criteria for solvability
of these problems are established which have the nature of one-sided
restrictions imposed on fy and f.

We use the following notation:

1991 Mathematics Subject Classification. 34B15.
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R is the set of all real numbers; Ry = [0, +oof,
D = [a1,a;] x R?,
Dy = [ay,a5] x (R\{0}) x R; Dy = [a1,0a5] x R x (R\{0}),
C(A, B) is the set of continuous maps from A to B.

A solution of the system (1.1) is sought in the class of continuously
differentiable vector-functions (z1,25) : [a1, as] — R?.

1.1. Problem (1.1), (1.2). We shall study the problem (1.1),(1.2) in
the case when
(L)' X2 >0 (6=1,2),

and the functionals g; and g, satisfy the inequality

[91(z, )| + lga(2,9)] < 1,

on C([ay, az); R?), where 0 € {—1,1} and [ € R,.
Theorem 1.1. Suppose that

olfilt,z,y) = pult,z,y)z — pia(t, 2,y)y]sgny > —qo
for (t,z,y) € Dy, (1.4)
olfa(t, z,y) — pu(t, z,y)z — poa(t, @, y)ylsgnz > —qo
for (t,z,y) € Dy,
ofi(t,0,y)sgny >0 for a1 <t <ay |yl > 1o, (1.6)
ofyt,z,0)sgnz >0 for a3y <t<ap |z|>ro, (@)

—
=
(54

where p1y : Dy — R, po : Dy — R, p1a and psy : D — R are
continuous bounded functions and qo, ro are positive constants. Then
the problem (1.1.), (1.2) has at least one solution.

Corollary 1.1. Let the inequalities

afi(t,x,y)sgny > po(ly| — |z]) — g, (1.8)
afg(t,x,y)sgn12p9(|x|—|y|)—qo, (19)

hold on D, where py and qo are positive constants. Then the problem
(1.1), (1.2) is solvable.
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Theorem 1.2. Suppose that

olfi(t,z,y) — pu(t, z, y)z]sgny > 0

Jor a1 €E< gy, pry >0, (1.10)
olfilt,z,y) — pu(t,2,9)r — pra(t, z,y)ylsgny > —qo
for ay <t < ay pay <0, (1.11)
o[fa(t, z,y) = paa(t, x,y)ylsgna > —q(x)
for a1 <t <a; pzy >0, {1.12)
olfa(t,2,y) = palt, 2, y)r — palt, 2, y)ylsgnz > —qo
Jor a; <t <ay pry<0 (@13

and the inequality (1.7) holds, where p1y : Dy — R, pya : Dy — R,
P2, pa1 © D — R are continuous bounded functions, ¢ € C(R; Ry),
n € {=1,1} and qo, ro are positive constants. Then the problem (1.1),
(1.2) has at least one solution.

Theorem 1.3. Suppose that

olfilt,x,y) — pult,x, y)alsgny > —qo

for a1 <t<ay pry<0, (1.14)
olfa(t,z,y) — paa(t, 2, y)y]sgna > —q(x)
for (t,x,y) € D, (1.15)

and the inequalities (1.7) and (1.10) hold, where pyy-: Dy — R, poa :
Dy — R are continuous bounded functions, ¢ € C(R, Ry), p € {—1,1}
and rq, qo are positive constants. Then the problem (1.1), (1.2) has at
least one solution.

1.2. The Problem (1.1), (1.3). We shall study the problem (1.1),(1.3)
in the case when
(=D)'oXadia >0, Xal+Xal#0 (i=1,2)
and
sup{|hi(z,y)| : (=1)'oxy > 0} < 400 (i =1,2),

where 0 € {-1,1}.

Theorem 1.4. Let the inequalities (1.4)~(1.7) hold, where pyy : Dy —
R, pa2 : Dy — R, p1a, pa1 : D — R ave continuous bounded functions

and qo, ro are positive constants. Then the problem (1.1), (1.3) has at
least one solution.

0
001949
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Corollary 1.2. Let the inequalities (1.8) and (1.9) hold on D, where
po and qo are positive constants. Then the problem (1.1), (1.3) has
one solution. 4

Consider as an example the boundary value problem

zy = pu(t)zr + pra(t)z2 + gu()z ! +
+g2(t)|z [ 23" + i (2),

1.16

@y = pu(t)z1 + pat)za + g (t)27 " + e
+g22(t) 22|23t + ga(2),

z3(ar) = hi(z1(ar)), w2(as) = ho(z1(az)), (Lel7)

where n;, ki, m; € {1,2,3,...} (i = 1,2), pij, gij» @ € C([a1,a2]; R)
(i,5 = 1,2), hi € C(R; R) (i = 1,2). It follows from Corollary 1.2 that
if for some o € {—1,1} and r € Ry the inequalities

agia(t) >0, 0gia(t) >0 for ay <t <ap (i=1,2)
and
(=1)'hi(z)sgnz <0 for |a| 27 (i=1,2) (1.18)

hold, then the problem (1.16),(1.17) has at least one solution. There-
fore, the problem (1.16),(1.17) is solvable in the resonance case, i.e. in
the case when the corresponding homogeneous problem

@) = pu(t)z1 + pra(t)ze

3 za(a1) =0, 32a3) =0
'y = pa1(t)z1 + pa2(t)z2 0] iy

has a nontrivial solution.

Theorem 1.5. Let the inequalities (1.7), and (1.10)-(1.13) hold, where
pi: Dy — R, paz : D1 — R, pia, pa1 : D — R are continuous bounded
functions, ¢ € C(R, Ry), p € {—1,1} and ro, go are positive constants.
Then the problem (1.1), (1.3) has at least one solution.

 Theorem 1.6. Let the inequalities (1.7), (1.10), (1.14) and (1.15)
hold, where py; : Dy — R, pyp : Dy — R are continuous bounded
functions, ¢. € C(R; Ry), p € {—1,1} and ro, go are positive constants.
Then the problem (1.1), (1.3) has at least one solution.
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Consider as an example the system
& = pu(t)ay + pra(t)z2 — op(|a1a] — parza) 2t +
|z122| — ;t;c,mg]”
lenl = et 1.19)
R q(t), (
ah = pu(t)zy + pu(t)ze + fi(e1) - fo(22),
& where 4 € {—1,1}, m, n, k € {1,2,3,...}, pij, ¢ € C(lay, az); R)
(i, = 1,2), fi : R — R is a continuous function and fo: R— Risa

continuous bounded function. It follows from Theorem 1.6 that if for
some o € {—1,1} and € Ry the inequalities (1.18) and

opiz(t) >0, opu(t) >0 for ay <t <ap

hold, then the problem (1.19),(1.17) is solvable.

2. SOME AUXILIARY STATEMENTS

In this section we shall give some lemmas on a priori estimates of
the solutions of the system

@) = pa(t, @1, x2)a1 + pia(t, 1, @2) T2 + Gi(t, 71, 22)
(¢=1,2), (2.1

where ¢y : D; — R, ¢z : Dy — R are continuous functions and
py: Dy = R, pr2: D1 = R, pu3, pn : D — R are continuous
functions bounded by a positive number po.

Lemma 2.1. Suppose that

q(t,z,y)sgny > —qgo, @(t,T,y)sgnT 2 —go

for (t;z,y) €D, (2:2)
a1(t,0,y) sgny > —pia(t, 0,) 1yl
for a; <t <ag, |z| >0, (2.3)
@ (t,z,0)sgnx > —pu(t,,0)|z|
for a; <t <as, |yl > o, (2.4)

where ro and qo are positive constants. Suppose, moreover, that an
absolutely continuous vector-function (z1,x2) la1,a2) — R satisfies
the system (2.1) almost everywhere and the conditions
either (—1)'z1(a;)z2(a;) <0
or |oy(a)| + |z2(a)l S e (1=1,2). (2.5)
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Then the estimate
21 ()] + |22(t)] < (e + ro + 2g0(az — 1)) expldpo(az — a1)]
ifortta) < ti<ia; (2.6)
holds.

Proof. Let to €]ay,as[. Suppose that (—1)5z(to)x2(to) > 0, where
k € {1,2}. Then either

(—1)k11(t)x2(i) >0 for minfto,ax} <t < max{to,ax},
le1(ai)] + lo2(ar)] < ¢
or ty € [min{to, ax}, max{to, ax}] can be found such that
(—1)f21(t)zo(t) > 0 for min{io,t;} < t < max{to, t,},
2y (ty)aa(ty) = 0. (2.7)
In the case when (2.7) holds, the inequality
zy(t)za(t) + 2h(t)zi(th) < 0
together with (2.3) and (2.4) implies
[e1 ()] + [2(t1)] < ro.

Therefore, if (—1)kz1(to)a2(to) >0, then t; € [min{to, ax}, max{to, ax}]
can be found such that

(=1)*z1(t)zo(t) > 0 for min{te,t} <t < max{to, 1},
[z1(t)] + l22(t2)] < e+ ro. (28)
Integrating the sum a(t) + (—1)*2(t) from ¢; to ¢ and taking into
consideration (2.1),(2.2) and (2.8) we easily see that
a0+ laa(8)| S ok 2ao(a2 =)~ 1) o [ lea(r) +fes(r) e
for min{t,t1} <t < max{to,t;}.

Applying the Gronwall-Bellman lemma, we obtain that the estimate
(2.6) holds for ¢ = t,.

Suppose now that z(to)x2(to) = 0. Then either a sequence (¢,)}23,
t, €lay,az[ n € {1,2,3,...} can be found such that

Lt =to, @i(ta)aa(ta) #0 ne€{1,2,...} (2.9)
or for some ¢ €]0, min(b — to, o — a)[

zl(t)xz(tj =0 for to—e<t<tyte. (2.10)
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If (2.9) is true, then as it already was shown above, the estimate (2.6)
holds for t = ¢, n € {1,2,... }. Hence (2.6) holds for ¢ = ¢, also. And
if (2.10) is true, then according to (2.3) and (2.4) we obtain from the
equality

&4 (to)2(to) + @) (to)1(to) = 0
that |zy(to)] + |z2(to)] < 7o. ®

Lemma 2.2. Suppose that

alt,,y)sgny > —pia(t, 2, y)|y|

Jor ay<t<ay, zy>0, (2.11)

a(t,x,y)sgny > —qo for a; <t < ay, zy <0, (2:12)

01(a1,0,y) sgny > pia(ar,0,y)ly| for |y| > ro, (2.13)
w(t,z,y)sgnz > —q(z) — pu(t, ,y)|z|

for ay <t<as axy>0, (2.14)

@t z,y)sgna > —qo for a; <t < ay, zy <0 (2:15)

and (2.4) holds, where q € C(R; Ry) and 7o and qo are positive con-
stants. Then for any absolutely continuous vector-function (zq, ;) :
[a1,a5] — R satisfying the system (2.1) and the conditions (2.5), the
estimate

21(8)] + |22()] < 2(c + ro + 2g0(az — a1) + max{q(z) : || <
< (e + ro) explpolas — a1)]}) expldpo(az — an)]
for a3 <t<ay (2.16)
holds.
Proof. Let to €lay, az[. Suppose first z1(to)a(to) > 0. Then either
z1(t)z2(t) >0 for to<t<ay |z1(az)] + |22(ag)| < ¢
or t; €llo, as[ can be found such that
zi(t)aa(t) > 0 for to <t <ty Ti(t)za(t) = 0. (2.17)
If (2.17) is true, then according to (2.11) from (2.1) we have
[z1(t)]" > —polzi(t)] for to <t <t,. (2.18)

Therefore if 24(t;) = 0, then 21(t) = 0forty < t < t; which contradicts
(2.17). So @3(t;) = 0, and hence z5(t1)sgna1(t) < 0. From this
according to (2.4) we see that |2;(t;)| < ro.

Thus if 21 (to)z(to) > 0, then ¢, €]to, ay] can be found such that

z1(t)zy(t) >0 for to<t<ty, [21(t)] + |z2(t1)] < ¢+ ro.
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By virtue of the above-said and from (2.18) we easily find that
|z (1)] < (e + o) explpo(az — ar)] for to <t <t (2.19)

According to (2.11),(2.14) and (2.19) the second of the equalities
(2.1) implies

l25(1)] > —polea(t)] — q(x1(t)) for to <t <ty
and
Je2(t)] < (¢ + 7o +max{q(z) : |z| < (¢ + 7o)} explpo(az — a1)})) X
x explpo(az — a1)] for to <t <ty

Therefore the estimate (2.16) holds for t = to.
Suppose now that @1(to)z2(te) < 0. Then either

wi(t)2a(t) S0, 2p(t) #0 for @ <t <to, |ar(a)|+ |z2(ar)] < e
or
@y ()aa(t) 0, zo(t) #0 for ay <t<to, x1(ar)=0, (2.20)
or t; € [a1,to can be found such that
@ (t)za(t) 0, a5(t)#0 for t <t<to, x2(t)=0. (2.21)

If (2.20) ((2.21)) is true, then according to (2.13) ((2.4)) we obtain '
from the inequality z}(a1)sgna2(ar) < 0 (ah(t1)sgn21(t1) < 0) that
[z2(a1)] < 7o (l21(t)] < ro).

Thus if z1(1o)z2(to) < 0, then #; € [ay, o[ can be found such that

z1(t)z2(t) <0, z2(t) #0 for ¢ <t <to,
|z1(t1)] + |z2(t1)] < ¢+ 0. (2.22)

Integrating the difference of the equalities (2.1) from ¢, to ¢, taking
into consideration (2.12),(2.15) and applying the Gronwall-Bellman
lemma, we see that the estimate (2.16) holds for ¢ = to.

Consider, at least, the case when x1(to)z2(to) = 0. Then either a
sequence (£,)F%3, t, €]ay, asf, n € {1,2,3,...} can be found such that
(2.9) holds or for some ¢ €]0, min(b—to, to—a)[ (2.10) is valid. Suppose
that (2.10) is true. Then either z1(to) = a(to) = 0 or

21(te) £0, z2(to) =0 (2.23)

or

z2(to) #0, w1(to) =0. (2.24)
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Let (2.23) be fulfilled. Then ¢, €]0,¢[ can be found such that
() £0, x3(t)=0 for tp—e1 <1< to.

According to (2.4) from the equality @(t) sgn @1(to) = 0 we have that
|z1(20)| < ro. Therefore, the estimate (2.16) is true for ¢ = t,.
Let (2.24) be fulfilled. Then &, €]0,¢] can be found such that
zo(t) #0, 1(t) =0 for to—e; <t <o

Put
a =inf{7 €]ay, to[: z1(t) =0, x3(t) #0 for 7 <t <o}
If @ = ay, then according to (2.13) from the equality r;(a,)sgﬁ z2(ay) =
0 we find that |z2(a1)| < ro. And if @ > a4, then either
z1(a) = z2(a) =0
or €9 €]0, @ — a;[ can be found such that
z1(t)z2(t) <0 for a—g<t<a.

Since z1(ar — e0)za(a — o) < 0, as it was already shown above, t; €
la1, @ — go[ can be found such that (2.22) holds.

Thus, if (2.24) is valid, then ¢; € [a1,to[ can be found such that
(2.22) is true.

Integrating the difference of the equalities (2.1) from ¢ to ¢, taking
into consideration (2.12),(2.15) and applying the Gronwall-Bellman
lemma, we see that the estimate (2.16) is true for t =¢,. H

The proof of the following lemma is quite analogous.

Lemma 2.3. Suppose that

a(t,z,y)seny 2 —pia(t, @, y)lyl = qo for ax <t <az ay<0,
0t z,y)sgnz 2 —q(z) — pu(t, z,y)lz| for (t,2,y) €D,

and the conditions (2.4), (2.11) and (2.13) hold, where ¢ € C(R; Ry)
and ro, qo are positive constants. Then for any absolutely continuous
vector-function (x1,a2) : [a1,az) — R satisfying the system (2.1) and
conditions (2.5), the estimate (2.16) holds.
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3. PROOF OF THE MAIN RESULTS

We shall carry out the proof only in the case ¢ = pu = 1, since the
general case by the thange of variables

1=
Ty (t) = —opay (a’pt + 20/[>,

T
To(t) = -—a’.v:g(apt + 20”>

can be reduced to this one.
Proof of Theorem 1.1. Assume first that instead of (1.6) and (1.7) the
conditions

Ni(t,0,y)sgny >0 for a; <t <ag |yl =7,
fa(t,z,0)sgnz >0 for a; <t < a3 |z[ =7,

are fulfilled.
Put

n= Z X517 po = sup{lpii(t,z,9)| : §,5 = 1,2, (¢,2,y) € D},

ij=1
ry =1+ (pl 4 ro + 2qo(az — a1)) exp[dpo(az — a1)), 3.1)
1 for 0i<izi<m
x(r)=4¢2- S ot G Only (3:2)
X 0 for 7 >2r;
ai(t.z,y) = x(lz| + ly)[fi(t, 2, y) — pa(t 2, y)T — pia(t, 2, 9)y]
(i=1,2) for (t,2,9)€D, (3.3)

at,z,y) = x(lz| + [yt 2, y) —y] for (t,z,y) € D,
Bt z,y) = X |Tl+ lyDlfa(t,z,y) — 2] for (t,2,y) € D,
Gi(z,y) = x(llzlle + lylle)gi(z,y) (i=1,2)
for z,y € C([a1,az); R), (3.4)

where ||p|lc = max{|p(t)| : ¢ € [a1,a;]}, and consider the boundary
value problem

2] = 22+ @u(t, 21, 22),
T = &1 + Gt T1, T2),

Anz1(ai) + Aiaza(ai) + Gi(er,72) =0 (1=1,2). (3.6)

(3.5)
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According to Theorem 2.1 from [2]. the problem (3.5),(3.6) has at
least one solution (a1,2,). It is easy to see that (21, 22) is a solution
of the system

@} = pa(t, e, @e)ar + Pty ar, @2)2s + gi(t, 21, 22) (1= 1,2),

(3.7
where
Pii(t ) = 1+ (pi(t,a,9) — Dx(l2] 4+ lyl) G5 =1,2, i #j),
pii(t, 2, y) = pa(t, z, y)x (2| + ly]) (= 1,2). (3.8)

In view of (3.2),(3.4) and (3.6) we have
2
Z [Aizi(as)| + |Npwa(a)| < L
=t

from which we get that the solution (21, z5) of the system (3.7) satisfies
the conditions

either @1(a;)zy(a1) >0 or |v1(a)| + |z2(ar)| < 7l

- and

either @(ay)za(az) <0 or |v1(as)| + |za(as)| < 7l

According to Lemma 2.1 and (3.1) we have
[z1(t)] + |xa(t)| < 7y for oy <t < ay. (3.9)

This estimate together with (3.2)-(3.4) and (3.6)-(3.8) implies that
(1, 22) is a solution of the problem (3.1),(3.2). Moreover, (3.9) holds.

Consider now the case when (1.6) and (1.7) are fulfilled. According
to what has been proved above, fer any natural n the system of the
differential equations

7 T
zy = fi(t,x1,22) + i +2‘12')
&
zh = fo(t, 21, 2) + m

has the solution (z1,,%,,) satisfying the boundary conditions (@2}
and the inequality

[21n ()] + |z2a(t)| < 71 for a1 <t < ay.

It is clear that the sequences of functions (2, )% (i = 1,2) are
uniformly bounded and equicontinuous on [ay, a,]. Therefore, without
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loss of generality, we can assume that they are uniformly convergent.
Putting

Zi ()= liT Tin(t) for @y <t<ay (1= 1.2)

it is casy to see that (z1,22) is a solution of the problem (1.1),(1:-2)8
[ ]

The proofs of the other theorems are quite analogous to the one of
Theorem 1.1. The difference is that instead of Lemma 2.1 one has
to apply Lemma 2.2 in proving Theprems 1.2, 1.5 and Lemma 2.3 in
proving Theorems 1.3, 1.6.

Applying Theorems 1.1 and 1.4 in the case when

_ [put)sen(zy) for x#0
Pn(t,xvy)—{p“(” T
)

pn(t)sgn(zy) for y#0
g —
paa(t,2,y) {pn(t) for y =0

one can easily be convinced in the validity of Corollaries 1.1 and 1.2.
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LIMIT BEHAVIOR OF SOLUTIONS OF ORDINARY LINEAR
DIFFERENTIAL EQUATIONS

FRANTISEK NEUMAN

ABSTRACT. A classification of classes of equivalent linear diffe-
rential equations with respect to w-limit sets of their canonical
representatives is introduced. Some consequences of this classifi-
cation to the oscillatory behavior of sclution spaces are presented.

©IB0330. 'SGHmQS&UQn VK}%(\SO © ‘:Jseoogﬂr‘m b -
Bobs gomabioggngogzes oma w-Temgry Q:B(] bodeogemggdols Sibagan?naagob
l)oca-:];aaaQqnaq ao3m 33 E0S 53mboblsbo b"ﬁ"@aa&‘b mlsen@cnﬂ(m
ogolgdgdo.

1. INTRODUCTION

Many authors ‘dealt with the behavior of solutions of differential
equations to the (mostly right) end of the interval of definition —
the limit behavior (often considered for the independent variable ten-
ding to 00). Asymptotic, oscillatory and other qualitative properties
of solutions of linear differential equations were intensively studied
e.g. by N.V.Azbelev and Z.B.Caljuk [1], J.H.Barrett [2], G.D.Birkhoff
[3], O.Boruvka [4], W.A.Coppel [5], M.Gregus [6], G.B.Gustafson [7],
M.Hanan [8],.I.T.Kiguradze and T.A.Chanturia [9], G.Sansone [14],
C.A.Swanson [15], and many others.

The aim of this paper is to introduce a certain classification of the
limit behavior of solutions of linear differential equations, a classifi-
cation which is invariant with respect to the most general pointwise
transformations of these equations. This classification has natural
consequences to the oscillatory and asymptotic behavior of solutions.
The main tool is based on the geometric approach introduced in [11]
which enables us to convert some "non-compact” problems into ”com-
pact” ones. This method was applied for solving some open problems

1991 Mathematics Subject Classification. 34A26, 34A30, 34C05, 34C10, 34C11,
34C20.
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[12], and it has recently been explained systematically in detail to-
gether with other methods and results concerning linear differential
equations in the monograph [13].

2. BACKGROUND AND PRELIMINARY RESULTS

Let C™(I) denote the set of all functions defined on an open interval
I € R with continuous derivatives up to and including the order n.
For n > 2, let £, stand for all ordinary linear differential equations of
the form

Po=y™ +pua(@)y® 4+ po(a)y =0 on I,
I being an open interval of the reals, p; are real continuous functions
defined on [ for i =0,1,... ,n—1,i.e. p; € C°(I), pi: I = R.
Consider Q,, € L,,
Qn=2" 4 g )zt 4 go(t)z2=0 on J.

We say that the equation P, is globally equivalent to the equation @,
if there exist two functions, :

fec™(J), f(t)#0 foreach teJ, and
heC™(J), h'(t)#£0 foreach t€J, and h(J)=1,

such that whenever y : I — R is a solution of P, then

2 d R, #(1) = (1) y(h(t)), ted, (1)
is a solution of Q.
Let y(z) = (y1(2), ... ,ya(2))7 denote an n-tuple of linearly inde-

pendent solutions of the equation P, considered as a column vector
function or as a curve in n-dimensional euclidean space E, with the
independent variable x as the parameter and y(z),... ,ya(2) as its
coordinate functions; M7 denotes the transpose of the matrix M.

If z(t) = (21(t),. . , 2a(t))7 denotes an n-tuple of linearly indepen-
dent solutions of the equation @, then the global transformation (1)
can be equivalently written as

z(t) = f(t) - y(h(z)) ()
or, for an arbitrary regular constant n x n matrix A,
z(t) = Af(t) - y(h(x)) (")

expressing only that another n-tuple of linearly independent solutions
of the same equation @, is taken.




LIMIT BEHAVIOR OF SOLUTIONS 357

Denote the n-tuple v = (vy,... ,v,)7,

v(z) :=y(a)/lly()ll,

where ||y ()| := (y?(2) + - -+ + y2(x))"/? is the euclidean norm of y in
E,. It was shown (see [11] or [13]) that v € C"(I), v : I — E", and
the Wronski determinant of v is different from zero on I. Of course,
[lv(z)]l = 1,i.e. v € S,_1, where S,_; is the unit sphere in E,. Denote
by T, the differential equation from £, which has this v as its n-tuple
of linearly independent solutions. Evidently 75, is globally equivalent
to P,. Moreover (see again [11] or [13]), if

u(s) = v(g(s)),
where the function g satisfies
9(s):J = ICR, g(J)=1, [(g7'(2))| = V(=)

for the inverse ¢! to ¢, and hence g € C"(J), ¢’(s) # 0 on J, we have
[lu’(s)]] =1, i.e. this u is the length reparametrization of the curve
v. Of course, ||u(s)|| = ||v(g(s))|| = 1. If R, denotes the differential
equation admitting u as its n-tuple of linearly independent solutions
on J C R, then the above considered equation P, is globally equivalent
both to equation T}, and to R,; equation R, is also called the canonical
equation of the whole class of equations from £, globally equivalent
to P,. Canonical equations are characterized by admitting n-tuples of
linearly independent solutions u satisfying

lu@)ll =1, ')l =15
for more details see [13].
The following result describes the connection between the behavior
of curves y, v and u and the zeros of solutions of the corresponding
equations P,, T, and R,, see [11] or [13].

Proposition 1. Let P,, T, and R, be equations from L,, and let y,
v and u denote their n-tuples of linearly independent solutions defined
as above. For an arbitrary nonzero constant vector ¢ = (ci,... ,¢,)7,
the solution cTy(z) of the equation P, has the zero at xo if and only
if the hyperplane

He)=abi+:-+caén=0 in E,

intersects the curve y at the point of the parameter zo.

Moreover, the solution cTv(z) of the equation T, has the zero at xo
if and only if the great circle H(c) N Sp—q intersects the curve v at the
point of the parameter xo. And the solution cTu(s) of the equation R,

Nrmass
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has the zero at so = g~ (o) if and only if the great circle H(c) NSn_1
intersects the curve u at the point of the parameter so.

In each of the above cases, the order of contact corresponds to the
multiplicity of zero.

3. CLASSIFICATION OF w-LIMIT BEHAVIOR

We have seen that a class of globally equivalent equations from L,
is characterized by curve v € S,_;, having coordinates in C" with
the nonvanishing wronskian. Since the sphere S,_; is compact, the
w-limit set of v, denoted by w(Vv), is nonempty, closed and connected,
see e.g. [10]. Exactly one from the following cases occurs:

a; :: w(v)is a point p € S,_1, i.e. a connected subset of the
intersection of a 1-dimensional subspace with S,_1;

ay 1t w(v) C (Sao1 N Ey), where E; is a 2-dimensional sub-
space of E,, and the case a; is not valid;

a; 12 w(v) € (Su-1 N E;), where E; is an i-dimensional sub-
space of E,, and neither from the above cases is valid;

tnoy t W(V) C (Sp-1 N En_y), and neither from the above
cases holds;
a, : : neither from the above cases is valid.
We will consider also the following subcases of the cases a; for i =
fsesin:
a? : 1 if the case a; is valid and w(v) C §5_;, where SO s
an open hemisphere of S,_1.

Evidently the case a; coincides with af.

4. MAIN RESULT

Theorem. Consider an equation P, from L,; let T, and R, be
equations defined as in §2, and y, v and u denote their n-tuples of
linearly independent solutions. Let w(v) and w(u) be the w-limit sets
of v and u, respectively. If, for some i, the case a; is valid for v (or
for u), then the same case holds for every equation globally equivalent
to P,. Moreover, if the subcase a? is valid for some i, then the same
subcase is true for every equation globally equivalent to P,.

Proof. Suppose first that the case a; is valid for P, € L,. First it
means that w(v) € Sy NE; for v := y/|ly||. Then for each z,

z(t) = Af(t) - y(h(?)),
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obtained by a global transformation (1”), we have

w(z/||z]]) = w(Af - y(W)/NAS - y(R)I) € Sn1 0 (AE:),
where AE; is again an i-dimensional subspace of E,. Moreover, if
w(z/|z|) € Sp—1N(AE;) for some j < i, we would get the contradiction
to our supposition. Hence the case a; is valid for every equation from
L, globally equivalent to P,.

Now suppose that the subcase a? is valid for P, that means that
w(v) €8, NE; for v := y/|ly|l. Then for each z, z(t) := Af(?) -
y(h(t)), we have w(z/||zl]) € $°_, N (AE:), where 50, =1{s; s =
Ar/||Ar||, r € S°_,} is again an open hemisphere-in E, and AE; is
an i-dimensional subspace of E,. Hence the case a} is valid for every
equation from L, globally equivalent to P,. &

Remark 1. This theorem also shows that we may speak about the
above cases and subcases with respect to a given equation and not only
with respect to a particular n-tuple of its solutions, because, due to an
arbitrary matrix A in (1), these cases and subcases are characterized
by the properties which are invariant with respect to a choice of an
n-tuple of linearly independent solutions of the considered equation.

5. CONSEQUENCES

Oscillation or nonoscillation will be always considered with respect
to the right end of the definition interval of a considered equation.

Corollary 1. (Oscillatory behavior of solutions). If the case a; is
valid for P, € L,, then there do not exist n linearly independent os-
cillatory solutions (fort — b_) of P,. Moreover, there exist n linearly
independent nonoscillatory solutions of P, as (t — b-).

Proof. Let P, be a given equation, and y denote an n-tuple of its
linearly independent solutions. Suppose that there exist n linearly
independent oscillatory solutions of P,. Then, due to Proposition 1,
there are n great circles on S,_;, not containing a common point,
each of them being intersected by v = y/|ly||, or equivalently, by u
(see notation in §2) at points with infinitely many parameters to the
right end of the interval of definition. Hence on each of these great
circles there is at least one point belonging to w(v) (w(u)). Under our
assumption, the case a; is valid for P, i.e. w(v) is a single point, say
p on S,_;. Thus this point must be common to n considered circles,
which is a contradiction to the linear independence of the solutions.
Hence there do not exist n linearly independent oscillatory solutions
of P,.

1z
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Now choose n independent vectors cy,...,c, in E, such that the
hyperplanes H(c;),7=1,... ,n do not go through the point p. Then
each solution ¢! - y(z) is nonoscillatory. In fact, if ¢ - y(z) were
oscillatory, then y/|ly|| N H(c;) would be an infinite sequence on the
great circle S,_; N H(c;) that should have an accumulation point in

w(y/ll¥ll) = p, contrary to our choice of the hyperplanes. @&

Corollary 2. (Asymptlotic behavior of solutions). If the case a;
is valid for equation P, from L,, then P, admits an n-tuple y* =
¥y, y2)T of linearly independent solutions such that

lim # —1
R e ()

and "

lim 4%—~—~—=0 forti =250 i

Eon (i) Eetat (yn)?
Proof. In the case a; we have lim,—,_y(z)/|ly(z)|| = p, p being a
point on S,_;. Choose an n-tuple of orthonormal vectors cy, ... ,c,,

where ¢; := p, otherwise arbitra,u Denote by C the orthogonal
matrix (cy,... ,¢,). Define yf :=c7 -y, i.e. y*=C7T.y. Then

hmy y —L _ —cT. lim y/|ly|| =
Iyl = Jip o = o i v/l
cf~p=cT‘61=l
and fore=2... .0
el
in = it T. L =
im yi/lly"ll = lim S TCCTyl =c; - lim y/|ly|l

C»T~p=cx ccp=0 W

Corollary 3. If the second order equation
¥ +p(z)y +po(z)y =0 on I=(a,b), —0<a<b<oo (2

is nonoscillatory (for x — b_), then the case ay is valid for (2). If
the equation (2) is oscillatory (for  — b_), then the case ay holds for
(2). The subcase ay cannot occur.

Proof. For two linearly independent solutions y1, y» of equation (2),
¥ = (y1,42)7, the curve v = y/|ly| is an arc on the unit circle S;
in the plane E,. Due to Proposition 1, if equation (2) is oscillatory
for £ — b_, then this arc v infinitely many times encircles the origin
(without turning points, see [13]), and hence w(v) is exactly S;. If
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equation (2) is nonoscillatory for  — b_, then the arc v ends by
approaching a point on Sy, exactly its w-limit set, and the case a;
holds for (2). H

Corollary 4. If the case aj is valid for an equation P, for some
j > 1, then there exist n linearly independent oscillatory solutions of

P

Proof. In the case a; for some j > 1, the set w(v) contains two different
points on S,_;, say p; and py. Evidently, there exist n hyperplanes
H(c;),i =1,...,n,in E, with linearly independent vectors ci,... , cy,
each of them separating points p; and p; into opposite open halfspaces
of E,, i.e. ¢fp; > 0 and cipz < 0 for each ¢'= 1,... 0. Hence, due
to Proposition 1, each solution ¢!y (z) oscillates for x — b_, because
the curve v intersects infinitely many times the hyperplane H(c;) as
z—b.. B

Remark 1. As an immediate consequence of this corollary we may
state:

If equation L, does not admit n linearly independent oscillatory
solutions, then the case a, is valid for it. In particular, if each solution
of equation P, is nonoscillatory, then the case a; takes place for L,.

Corollary 5. If, for some i = 1,... ,n, the case a? is valid for equ-
ation P,, then there exist n linearly independent nonoscillatory solu-
tions of P,.

Proof. Let y denote an n-tuple of linearly independent solutions of
P,. Under our assumption, w(y/||y||) lies inside an open hemisphere
_of Sp_; determined by a hyperplane H(p). Evidently pTy(z) is a
nonoscillatory solution. Moreover, w(y/|ly||) is closed, and hence there
exists an neighbourhood N of the point p € S,_; such that H(q) N
w(y/llyll) = 0 for each g € N. If we take n linearly independent
vectors (points) q, ... ,q, from N, then

Ve =iy, p=ler i,

are required nonoscillatory solutions. In fact, if one of these solutions
were oscillatory, then, again due to Proposition 1, the corresponding
hyperplane would intersect the curve y (or equivalently y/|lyll) in-
finitely many times. Hence this hyperplane would contain at least one
point in w(y/|ly|l), contrary to our choice of the above hyperplanes.
]

14
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Remark 2. Comparing Corollaries 4 and 5 we see that in the case af
with ¢ > 1 for L,, this equation admits both an n-tuple of oscillatory
solutions and, at the same time, another n-tuple of nonoscillatory
solutions.

Remark 3. Also other (e.g. topological) properties of w(v) that
are invariant with respect to the centroaffine transformations can be
considered for introducing other, more detailed classifications of the
classes of equivalent linear differential equations from L,.

6. EXAMPLES
1. The differential equation
y™ =0 on (0,00)

has n linearly independent solutions: z"~!,z"~2,... ,1. For this equa-
tion the case a; holds, no solution is oscillatory and

zlim
=
n—2
lim ————==0,...
z—oo / ;l;a 227
in accordance with Corollary 2 and Remark 1.
2. The equation

y" +2y" +2y' =0 on (0,00)

admits the solutions: 1, e~%sinz, e™® cosz. For this equation the case
ay is valid. There are two linearly independent oscillatory solutions
as © — 00, there are no three linearly independent oscillatory solu-
tions. This equation admits three linearly independent nonoscillatory
solutions, and
N 1 S e ?sinz S e *cosz 0
a:g{olo VAT +e—-2:: T zltngo‘/l_{_e—h T zlvrg:: /1+e—2z: ey
as Corollaries 1 and 2 state.
3. However, the equation

y" —2y" +2y'=0 on (0,00)

admits the solutions: 1, e”sin, e cos z; the corresponding w-limit
set is a great circle on the sphere S; in E; and hence the case a; is
valid for it. However, the subcase aJ does not take place. Except of
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the constant solutions, each other solution is oscillatory (as @ — o0),
see Corollaries 4,5 and Remark 2.

REFERENCES

1. N.V.Azbelev and Z.B.Caljuk, To the question of distribution of
zeros solutions of third order linear differential equation. (Russian)
Mat. Sb. (N.S.) 51(1960), 475-436.

2. J.H.Barrett, Oscillation theory of ordinary differential equations.
Adv. in Math. 3(1969), 451-509.

3. G.D.Birkhoff, On the solutions of ordinary linear homogeneous
differential equations of the third order. Ann. of Math. 12(1910/11),
103-127.

1. O.Bortvka, Linear differential transformations of the second or-
der. The English Univ. Press, London, 1971.

5. W.A.Coppel, Disconjugacy. Lecture Notes in Math. 220, Sprin-
ger, Berlin, 1971.

6. M.Gregus, Linear differential equations of the third order. North
Holland, Reidel Co,. Dordrechi-Boston—Lancaster, 1936.

7. G.B.Gustafson, Higher order separation and comparison theo-
rems, with applications to solution space ploblems Ann. Mat. Pura
Appl. (4) 95(1973), 245-254.

8. M.Hanan, Oscillation criteria for third 01(1(‘1 linear differential
equations. Pacific J. Math. 11(1961), 919-944.

9. I.T.Kiguradze and T.A.Chanturia, Asymptotic properties of so-
lutions of nonautonomous ordinary differential equations. (Russian)
"Nauka”, Moscow, 1990.

10. V.V.Nemytskii and V.V.Stepanov, Qualitative theory of differ-
ential equations. (Russian) "Gostekhizdat”, Moscow-Leningrad, 1949.

11. F.Neuman, Geometrical approach to linear differential equa-
tions of the n-th order. Rend. Mat. 5(1972), 579-602.

12. F.Neuman, On two problems about oscillation of linear dif-
ferential equations of the third order. J. Diff. Equations 15(1974),
589-596.

13. F.Neuman, Global properties of linear differential equatiol(s‘
Klvwer Acad. Publ. (Mathematics and Its Applications, East Eu-
ropean Series 52) & Academia, Dordrecht-Boston-London & Praha,
1991.

14. G.Sansone, Equazioni differenziali nel campo reale. Zanichelli,
Bologna, 1948.

il
JIJJJJJJ



364 FRANTISEK NEUMAN

15. C.A.Swanson, Comparison and oscillation theory of linear dif-
ferential equations. Academic Press, New York-London, 1968.

(Received 06.04.1993)

Author’s address:

Mathematical Institute,

Academy of Sciences of the Czech Republik,
Mendelovo nam. 1, CR-66 282 Brno,

Czech Republik



~ //%/

HEAYE]

Proceedings of the Georgian Academy of Sciences. Mathematics
1(1993), No. 3, 365-382

101945

CONTACT PROBLEMS FOR TWO ANISOTROPIC
HALF-PLANES WITH SLITS

SH. ZAZASHVILI

ABSTRACT. The problem of a stressed state in a nonhomogeneous
infinite plane consisting of two different anisotropic half-planes
and having slits of the finite number on the interface line is inves-
tigated. It is assumed that a difference between the displacement
and stress vector values is given on interface line segments; on the
edges of slits we have the following data: boundary values of the
stress vector (problem of stress) or displacement vector values on
the one side of slits, and stress vector values on the other side
(mixed problem). Solutions are constructed in quadratures.
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§03oroeb By Bedbenmds dynéy oo (Byfggee sdn-
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In this paper, employing the methods of the potential theory and
of systems of singular integral equations, we investigate problems of
a stressed state in a nonhomogeneous infinite plane consisting of two
anisotropic half-planes with different elastic constants and having slits
on the interface line between the half-planes. The stressed state is de-
termined giving displacement and stress vector jumps on the interface
line segments, and boundary values of either the stress vector or of the
displacement vector on the one side of slits, and stress vector values
on the other side.
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The difficulty of solving the problems lies, in particular, in lengthy
calculations one has to perform in order to verify certain conditions,
but it can be overcome using the constants introduced by of M.O.
Basheleishvili [1]. The solutions obtained are constructed in quadra-
tures.

It should be observed that, when the half-planes are welded to eacfx
other along the interface line segments, the problem of stress was stu-
died on the basis of the theory of functions of a complex variable in [2],
where the problem is reduced to the solution of four problems of linear
conjugation. The solution of the problem is not, however, simple and
demands some refinement.

Formulation of Problems. Let the real z-axis be the interface line
between two different anisotropic materials filling up the upper (y > 0)
and the lower (y < 0) half-planes and having Hook’s coefficients

\

0 0
a0 Al WE

and
1 1 1 1 1 1
AR, AR, AQ, AR, AR, AY
respectively.
It is assumed that slits are located on the segments I, = ayb,, p =
1,2,...,n, of the z-axis. Let I = Uj_;l, and L be the remainder part

of the real axis outside slits. Denote the domain y > 0 by Do, and the
domain y < 0 by D;.

As is known, in the absence of mass force the system of differential
equations of equilibrium of an anisotropic elastic body in the domain
D;, j = 0,1, looks like [3]

& (D P 8
11 15 520y g 13 5.z
) %0
AY) =0,
dzdy s dy?
%) (5 Puld) (591
i I YRR e
ol) )
@O O
B 500y + Az 3y

+
‘ + (AR + AD)

AP
L

+ (A8 + ASh

+2A b
where 1) and v\ are the Cartesian coordinates of the displacement
vector.

The stressed state in the anisotropic body occupying the domain
D; is determined by three stress components o), cr!(f), ‘rx({]), which, in
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turn, are expressed by means of the strain components €9, e(yj), egjy)
as follows:

o) = AQeY) + ARl + AR<Y),
o) = Al + AR + ARG, @)
) = AR + AReD) + ADCY),

where

Gl Sl B Bu BV
= o B dy ox

We will consider the following boundary-contact problems:

In the domain Dj, j = 0,1, find a regular solution of system (1),
i.e., determine the displacement components ul?), v0) and the stress
components o), o), 7)) when on L a difference is given between
boundary values of the displacement and stress vectors'

40\ AN O \* M\~
(mc) =) =0 gﬁn 3 05{) ==, (3)

while on the edges of slits we have either boundary values of the stress

vectors
© \* @WEN=
i T
(B)-= ($)-= o
- or boundary values of the stress vector from Do and of the dis;‘)la‘ce-
ment vector from Dy

‘rz(o) i u® \~
( a;%) ) = ( L) = 9. (5)

The regularity of the solution of system (1) implies that: 1) this
solution has continuous partial derivatives of second order in the do-
main D;, j = 0,1; 2) it can be continuously extended onto the whole
real axis; 3) stress components o{f), o), 1) which by (2) correspond
to it can be continuously extended onto the whole real axis except
perhaps the end points of slits in whose neighbourhoods they have an
integrable singularity.

dx

1All the vectors considered are columns but they will sometimes be written
as rows. To make the formulas shorter, the commonly used notations %C and
bC with numbers a # 0, b and vector or matrix C are often replaced by % and
Cb, respectively. The superscript +(—) denotes that the boundary value of the
function is taken from Dg (Dy).
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In the sequel the problem with the boundary conditions (3), (4) will
be called the problem of stress, while the problem with the boundary
conditions (3), (5) the mixed problem. We will investigate each of these
problems separately.

Problem of Stress. It is assumed that the known vectors f, o, F
and @ satisfy the following conditions:

a) when |z| — oo

|z|*t(z) — B, e p(z) = v (>0, 6> 0), (6)

where 3, 7o are the constant vectors;

b) f belongs to the Holder class on L (including the neighbourhood
of the point at infinity);

c) f', ¢, F and ® belong to the class H* [4];

d) the vector f satisfies the conditions

f(a,) =f(b,) =0, p=12,...,m; (7)

e) stress and rotation vanish at infinity.

Like in [5], the displacement vector (u9,v) in the domain Dj,
j = 0,1, will be sought as a combination of simple- and double-layer
potentials

2

: (Z:Z; ) o8 %Im ZE(j)(k){(A(j) _H-B(J))(/L

k=1

f(t)dt
HOLNE

t— zj
+oo
+ [ttt - zkj)dz) — (9 4iD) [ h(t)In(t = zk,-)dt} Bt
i 2 X :
—=Im 3 AD(B)XYP In(z; + (1)), (8)
T
where g = (g1,92) and h = (hy, hy) are the unknown vectors which ,

in view of the fact that the logarithmic function is many-valued, must
satisfy the conditions

[e®a=0, p=1,2...n (©)
/_M h(t)dt = 0; (10)

P denotes the principal vector of external force

voo (7 \T [ 7@ \F
(B (3]s o
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i = /=1 is the complex unity; zx; = t+axy, k = 1,2, j = 0,1, where
agj = agj + 1bgj (be; > 0) is the root of the characteristic equation
corresponding to system (1) (as known [3], the latter equation is a
fourth-degree equation with real coefflicients of the form
a(l],’(\‘; - '2‘1(1]3)(’? + (208 + a$) )(1 — )(1(2]3)0] + u(]) =0

and has complex roots only, aw are the coefficients at o/, rr;j) and
T(‘) when the strain components from (2) are expressed in terms of
suess components); the constant two-dimensional matrices AU (k)
and EU)(k), k = 1,2, j = 0,1, occur in [1 ] when constructing the
matrix of fundamental solutions of system (1) and the double-layer
potential, respectively, and are written as

Au)(,\.):” g‘é’) ?éjz E‘“(L-):—%Agil _BAJ *C{':j :
el o

AP = —ﬁ{ AR a2, + 248 o + A Y,

el o ){/1(3]3) v, + 24D 0u; + AD Vi,

o ngw«a (A + AD)au; + A Y,

NMW=MMw~mm
(ll_Jl = (a1 — aj)(onj — azj)(enj — Qzj),

d3} = () — auj)(ag; — @1j)(az; — @),

)

AU is the determinant of system (2) whose positiveness follows from
the positiveness of potential energy; A;, Bj, Cj, wj‘ m;, %5\,) are the
above-mentioned Basheleishvili’s Comtants ]38z

2 2 2
Aj=2Y diyy, Bj=3iY ofdy, Cj=2i) aiydy,
k=1 k=1 k=1

“g]"s) (J) 2 2
w; = byjbyj — agjasz; + ;;(T), =0 [1 —wj(B;C; — 4] )],
11
G) w;(B,C; = A?)

2N )
m;
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they satisfy the conditions

ImAJ':O, B,>0, Cj>0, BjC]—A?>0,

my =0 K%)>0, w,a(ﬂ)>0, j=015

the constant matrices AW, B, €U, DV, X0) in (8) ensure the
fulfilment of the contact conditions (3) and have the form [5]

T e {(———BICI = 4 + */t,(»g)%}«}))EJr
A Tn‘(lu)

1 BiCo — AgA;  AoCi — A1Co
momy | AoB1 — A1Bo BoCh — AoAs ;
go_ L[] 4 ~Co s
A mo || Bo —4o my || B = ,

)

0 1
o Al
A

0 1
140

po L[1)C Al 1§C A
Almo| Ao Bo m || A B ¢

<0>=__l’11_._{ E

X s e

L
BoCo— A2

BoCy — AgAr Ay Bo — AoBy }
ACo — AgC1 BiCo — AdAy || J°

where

_ BoCo= A} BiCi- A}

A +
moa(l? mlaglx)
BoCy — 2A0A
i B,Co + BoCy e 2){5\(]))”%) =
moemy
T i

Yy R L
momy(B1Co + BoCh — 2A0A1)
(BoCo — A2)(B1C1 — A2)

>0,

the matrices A, BM, Cc® DM X are obtained from A©@ BO),
CO©, DO, X© permuting the indices 0 and 1.
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It is easy to obtain

AL A E, X0 4 x() — E,

C A
A By

m

Gol A
BiC = A2

Ao Bo

Xs e el L
BoCo — A2

X©,

By virtue of conditions (7) the stress components ‘rg) and a;j) will
have the form

i 2

™\ = L S B9 ) { (40 4 igony( 8D _
(7) 0

%y T UE

1t — 25
me) (i [+ ht)dt
= (@Y1 5pW) el bid
/Lt—zk]‘ ( e )/—oo t**lkj i
+11 X.Z:N“)(k)XmL i =0,1 ({12)
= n'] = ij+l.(__1)j7 J =0,

where for k'=1,2,7 =0,1

Ei,“(k):—LN“)(k)H Byt =

m; -4; C; |°
Gl Gy B A )
N (’»)—(%N 10 “ ool [0 (R AY(k),
2 4
; 0 =1 e A
EYV (k) = ;@ I_ g i,
LEB=wlly sl < 0
2 3 — 5
Y NOGE) =B +iwy | 0 B
k=1 d |

It is easy to show that the vector (u?),v0)) given by formula (8)
satisfies the first of the contact conditions (3).

If we now calculate the boundary values of the vector (Tg),oy)),
J =0,1, by formula (12), then we readily obtain that at points of the
real axis, except perhaps points a,, by, p = 1,2,...,n,

AN el B NS

2 0)( 1.
+lImZk=1 N : (A)X(O)P’ (13)
™ SlsEn
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N ) g
oD a®
is known due to conditions (3) and (4), the vector h will be known,
too. One can easily verify that h defined by equality (13) will satisfy
condition (10).
Therefore the unknown vector h is defined by equality (13) and
there remains for us to define the vector g.
By summing up the boundary values of the vector (‘r}}y‘),oy‘) from
Do and D at points belonging to [, except perhaps end points, we
obtain the following system of integral equations for the vector g [6]:

B* t)dt
Ag(z)+ — §Q~=Q
A B A

Since the difference

@) sel; (14)

where

Ar— (“S)(BOCD - ABC - A?)) ” (1) “01 ‘|

moa? myall |’
0diy 1811
pr_BC-A| By —Ao |, BoCo—AR| B -A, ”
moml(tﬂ) —Ao  Co momlugll) e 10
A B [ f(t)dt 1
Lo i 22 S Chi
a(x) = 5 (F@) + 0()) + — [ 525 - 5Ch(@)
i /”" h(t) dt +31m22=1 N“")(k)x(g)P_‘_
T Jaco T 2r T+
2 (M)
o élmZk=IN : (’*)me
27 T—1
ByCo— A2 B,C, — A?
o o (BO A, BO
moay, myay,
1 BoCy — CoBy  2(A1By — AoBy)
mom; || 2(A1Co — AeC1)  B1Co — BoCh d
D= |~ =B |, N | 40 —Bo
my G A mo Co Ao

The properties of the boundary data enable us to conclude that
Q = (2,,Q,) is a vector of the class H*. The solution of system (14)
should be sought for in the same class.
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System (14) is of the normal type, since

A2 A2
Ak L) — UG A0 )

(0)
MmoMmydyy dyy

A<O0.

As known, in construction the solution of system (14) we encounter
certain difficulties and hence we have to seek for its solution by reduc-
ing it to a singular integral equation for some scalar function [7].

To this end, multiplying the first equation of system (14) by the
constant M and adding to the second equation, we obtain

M 3 t .M 2 t
$ (o)~ Moato)) o - [P+ BRIOCIH BT DS =
i t—-x
= y(z) + MQy(z), (15)

where Bj;, k=1,2, j = 1,2, are the elements of the matrix B* and

A (BoCo — AY) N (BiC1 — A3)

moaly miafy)
Next we choose a constant M such that
B;,M + Bj, = —M(B;;M + B
The latter relation gives, for M, the quadratic equation

(BO(BICI - A} i Bi(BoCo — A?)))MQ 2

) ©
0M1ayy momiayy
B,C, — A? Ay(BoCo — A3
_2(140( 1Ch “)Al) iy 1(BoCo o "))JW +
Momyayy Momidyy
ColBiCy — AD) | Cr(BoCo = AB) _
v e O e
momiay; momyayy
whose discriminant is equal to —T%, where
g2 _ (BCo— AYBLC = )\

(0) (1)

moMmydyy dyg

+(x£}’(Boco — A7) A(BO— A2>)2 24

(0)
Moy miayy

Therefore the equation has complex roots. Let us choose M such
that

AoB1C1=4) | Ay(BoCo=A3) _ o

T
momia: momya
M= 11 11

Bo(B:1C1-A?) i Bi1(BoCo—A2)
0

1
memiayy memya;;

=20
01949
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Introducing the notations w = g; — Mgz and Qo = 2 + MQ,, we
obtain, for w, a singular integral equation of the normal type

T jw(t)dt _
mht—z

Sw(z) + No(z), z€l (16)

Let us define a character of the end points of the integration segment
using the results from [4]. We have the equation

ey =g 2 —momya{Pal} (S - T)? T
y=—In -=—1In = =3 —1h,
2mi S+7T 2mi  (BoCo — A3)(B1C1 — ADA 2
1 7n0mla§(i)a(lll)(5 =10k

A= o P TBC - B0~ A

Therefore all end points are nonsingular. The solution of (16) is
sought for in the class of unbounded functions at the end points.

A canonical solution of the corresponding Hilbert problem in the
class of unbounded solutions will have the form

n
X =TIz a)2E= bl 2 =x tu1;
p=1
where we mean the branch defined by the conditions z"X(2) — 1 as
z — 00.

Since the order of the canonical solution at infinity is equal to —n,
the index of the class of unbounded solutions is s = n. Henceit follows
that equation (16) is always solvable in this class and the solution will
be written as

e TXH(x) Qo(t) dt
w(z) = Z—mle) = ST [x+(t)(t =)
+ gi—TX"'(:v)Pn-l(z), z€el, (17)

where X*(z) is the boundary value of the canonical solution X(z) on
[ from Do; P._1(x) is the polynomial of degree n — 1 with arbitrary
complex coefficients, Pn—1(z) = Koz"™" + Kiz" 24+ 4+ Kpy.
Obviously, having defined w, we thereby define the vector g which
will be unbounded near points a,, by, p = 1,2,...,7, and will lin-
early depend on 2n arbitrary real constants Re K and ImKj, j =

Gl
! Im(wM)
€= "ImM ( Imw ) £
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Let us choose these arbitrary real constants such that the vector
g satisfy condition (9). The latter condition gives, for the unknown
constants, a system of 2n algebraic equations with the same num-
ber of unknowns. This system is always solvable. Indeed, the ho-
mogeneous system obtained in the case of the boundary functions
f =@ =F =& = 0 cannot have nontrivial solutions. Then, as one
can easily establish by the uniqueness theorem, the original problem
has only the trivial solution. Therefore the nonhomogeneous problem
is always solvable uniquely.

We have thus proved

Theorem 1. If the conditions a), b), c), d), e) are fulfilled, then the
stress problem with the boundary-contact conditions (3) and (4) always
has the unique solution to within an additive constant. The solution
is given by formula (8), where the vector h is defined by equality (13)
and the vector g by equalities (18) and (17).

Taking into account the behaviour of Cauchy-type integrals near the
ends of integration lines one can easily obtain the asymptotics of stress
components at the vertices of slits in the case of concrete boundary
data.

Mixed Problem. Let, the vectors f, o, F,® satisfy the conditions
a),b),d) of the stress problem and the conditions

') £/, ¢, F belong to the class H*, and ® belongs to the Holder class
and has a derivative from the class H*;

e’) the resultant vector of force applied to the lower slit edges is
given and there are no stress and rotation at infinity.

Since the boundary values of Tig) and ag") are given on the upper slit
edges, it is obvious that the resultant vector of external force applied
to the real axis will also be known in this problem and represantable
by formula (11).

The displacement vector (u(),v1)) in the domain D;, 3 =10;1; will
again be sought for in form (8), where the unknown vectors g and h
satisfy conditons (9) and (10). It is obvious that the stress components
74 and o{f) are represented by formula (12).

Like in the stress problem, the vector (w9, v()) here also satisfies
the first of conditions (3), whereas the vector h will be known on L
by virtue of equality (13) and gonditions (3).

Therefore it remains for us to define the vectors g and h on . To
this end let us calculate the boundary value of the vector ({9, 0{?)

Iz
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on | except perhaps points ap, by, p = 1,2,...,n. We shall have

O B /1 (f(0)dt 1 pg(t)dt
zy =——A"g(a — e e L) MPh(z)—
(a;f”) AA g(l)+A(7r/Lt—x w/xgt—z ) i

D* o h(t)dt 1 Yi_ NO®K)
(D N ) I
m/ e Bxop, zel, (19

—og il s i o
where
M" = 1_{(50_65‘_/‘_3+,{<1),((\(]>))E+ t
A moa(le) n 7
1 BoCy — AgAr A1Bo — AoBy
molny AICO e AOCVI BICO e AOAl '

Calculating now on ! the boundary value of the derivative of the
vector (ul?), v(1)) with respect to x we obtain that for every x except

perhaps points a,, by, p = e SR

N W INNE T w(L f'(t)dt 1 rg(t)dt
(ax(vm)> =& naed (;/;t—l‘ _;zt—m)_
D oo h(t)dt
el e sl ek S
€ e il /_oo t—z

i mi G Al xmp_ 2 .
w(Blcl—A%)‘\ A B ”X PaT e

By virtue of the boundary conditions (5) relations (19) and (20) give
for the vecters g and h a system of singular integral equations

BW rg(t)dt

AWg(z) — CDh(z) — — g(t)dt

L e

(1)
D /h(t) dt ol Q(”(z),
T ISl (21)

- B
(m)+Mh(m)+E it —z

TR
AL t—x)cn il s

-
~E
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where

QW(z) = ¢'(x)

_BW ﬂmmigg/hmw
L

e el T ™ t—x
my Ch A ) z
_— X'P
B (BiCi — A} | Av B ” 2241’

B [ f()dt D" rh)dt

O
L F(JC)-i—WA Lt—z 7AJL t—2z

1 2 NO(k
it #]m&l_.#)x(ﬂ)p.
™ @ =t

Note that due to the properties of the boundary data the vectors
QW and Q2 will belong to the class H* on I.
If we introduce the partitioned matrices

AzHAm _duw B%

A-1A* M-
w = (1,01, ks ha), Q= (@Y, 00,
then system (21) takes the form

SRM: PO
AZIBE ASIDE

and denote

Aw(e) + B (o0

o — Q) zicl (22)

It is obvious that system (22) is a characteristic system of singular
integral equations for the real vector w with its right-hand side from
the class H™.

The condition

eh %

det(A +:B) =
) mgaﬁ)A

>0
implies that system (22) is of the normal type.

Thus the theory of systems of singular integral equations in the case
of open arcs [6] can be used for system (22).

According to this theory it is required to define the roots of the
equation

det{G™'(t+ 0)G(t —0) — \E} =0 (23)

at end points ap, by, p = 1,2,...,n, where G = (A +:B) (A —iB)
and E denotes the unit matrix of order 4.

16
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After long and cumbersome calculations we ascertain that equation
(23) has the same form at all points a,, b,, p=1,2,...,n,

Myd—a)®+20b+a—1)A+(b—a)d+1=0, (24)

where
_ 4 ©_ (1)\2BoCo — A
a= Z(1+W0011”N) Taﬁ)>0’ (25)
4(B.Cy — ADaf)
A (0‘))"“ > 0. (26)
Amgmy

It can be easily verified that equation (24) reduces to the following
equation:

12 1
(A +3) +C-a)(A+3) +2b+a-2)=0. @7
Let us investigate the roots of this equation. Note that the inequal-
ity
a—b—4=—[1-w}(BoCo— A)|b— [1 - wi(B:iC1 — A})]b—

_ 4 BoC1 + BiCo — 2A0A, o

0
A momy

yields a < b+ 4.

Consider all possible cases: @ = b, a < b and a > b. In the first case
equation (27) has only complex roots; in the second case either it has
only complex roots if b < 4 or it has no positive roots if b > 4; and,
finally, in the third case it has no positive roots if a < 4 and has only
complex roots if a > 4.

Thus in all three cases the equation has not only positive roots.
Therefore all end points a,, b,, p=1,2,...,n, are nonsingular.

A solution of system (22) is to be sought for in the class functions
unbounded at end peints a,, b,, p = 1,2,...,n. Whenever equation
(27) has simple complex roots, one can easily construct the solution of
system (22), having first constructed the matrix of canonical solutions
of the corresponding homogeneous Hilbert problem in the class of
unbounded functions.

Indeed, introducing a piecewise holomorphic vector

1 qw(t)d
bl sty K v

g=1u 41y,

NS
AN

(15
Nrmass
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system (22) becomes equivalent in a certain sense to the nonhomoge-
neous Hilbert problem

W*(z) = GW™(2) + R(z), z €], (28)
where R(z) = (A +B)~'Q(z). :

Since we are considering the case when equation (27) has only sim-
ple complex roots A1, Az, A3, A4, it is always possible to construct a
nonsingular matrix S such that the equality ST*GS = A be fulfilled,
where A is a diagonal matrix with the elements Ay , A2, A3, A4 on the
main diagonal

A= diag{)m )\2, )\3, /\4}

Using the constructed matrix S we rewrite the Hilbert problem (28)

as

Ut(z) = AU~ (z) + ST'R{z), z€l, (29)

where ¥(z) = ST'W(2).
Since A is a diagonal matrix, we conclude that in the class of func-
tions unbounded at end points a,, b,, p = 1,2,...,n, the matrix of

canonical solutions corresponding to the homogeneous Hilbert prob-
lem (29) has the form

X(z) = diag{Xi(2), Xa(2), X3(2), Xa(2)}, (30)
where )
1
e *ra e Yo—1 S
H(z a )= (2 bl gy, ez InA,, (31)
0=1,2,3,4.

By X,(z), 0 =1,2,3,4, we mean the branch defined by the condi-
tion .
zlin;{z"X,,(z) =1

Since we seek for an unbounded solution at end points a,, b,, p =
1,2,...,n, the numbers 7,, ¢ = 1,2,3,4, have to be chosen so that’
B<Rey, <l,0=1,2,3,4.

In the particular case when the upper and lower half-planes are filled
with materials for which the conditions

@ =al), Bo=Bi, Co=0Ci, A=A, wo=uw
are satisfied, equation (24) takes the form
1+ wl(BoCo — A2)

4
A e,

M41=0,
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<A2 oA 1 + woy/BoCo — A%) (AZ i 1 — woy/BoCo — A?,) o
B AL T

Hence it is clear that in this particular case equation (24) has purely
imaginary roots
i 7
= )
NED NED
where 1

1+ wm/B()Co - A%
o =
1 —woy/BoCo — A3

and the numbers v,, 0 = 1,2,3,4, have the form

Mo=ivim, M= iV, o=

e R i = 1
m==—if, m=7- B=N U= Bo = — In 0.
4 4 4m

By the general theory of systems of singular integral equations (6],
from (30) and (31) it follows that the partial indices from the class of
unbounded at end points solutions of the homogeneous Hilbert prob-
lem satisfy the equations s = 3p = 53 = >4 =1 and the total index
» =4n.

Therefore the nonhomogeneous Hilbert problem (29) will always be
solvable in the class of solutions unbounded at end points, and the
solution will depend on 4n arbitrary constants

X(z) [[X*T(@)]ISTIR(Y)dt
¥(z) = ’257) ,L—(L]t—sz LX()P(),  (32)
where P(z) = (Py(2), Pa(z), Ps(2), Pa(2)) and P,(2), 0 = 1,2,3,4, is
a polynomial of degree n — 1 with arbitrary real coefficients.

After finding the vector ¥, the vector W is defined by the equality
W = SU and, finally, the solution of system (22), unbounded at end 4
points ap, by, p = 1,2,...,7, is given by the formula w = W+ —W~. i

Thus we have found the solution of system (22) which will depend ‘
on 4n arbitrary real constants. x

It is obvious that the vectors g and h and, accordingly, the displace-
ment vectors will depend linearly on the same 4n constants.

To define these constants we have the following conditions. In the
first place, the found vectors g and h should satisfy conditions (9)
and (10), which gives 2n + 2 linear equations. On the other hand,
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from the above arguments it is clear that on the lower slit edges the
displacement vector will satisfy the conditions

AN
o) =®(z)+m, on L, p=12,...,n,

where 1y,m,,...,7, are arbitrary real constant vectors.

We obtain more 2n — 2 linear algebraic equations provided that
M =1, =--n, =1, where 7 is an arbitrary real constant vector.

Thus we have the system of 4n algebraic equations for defining
4n unknowns and, by virtue of the uniqueness theorem, we readily
conclude that this system is always solvable uniquely.

Finally, we observe that the vector

ul® g
(v(,') -7, j=0,1,

is the solution of the mixed problem.
Thus we have proved

Theorem 2. If conditions a), b), '), d), €') are fulfilled, then under
the boundary-contact conditions the mized problem (3) and (5) has the
unique solution which is represented by formula (8), where the vector
h is defined on L by equality (13) and the vectors g and h are defined
on [ by the solution of system (22).
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