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ON THE STABILITY OF SOLUTIONS OF LINEAR
BOUNDARY VALUE PROBLEMS FOR THE SYSTEM OF
ORDINARY DIFFERENTIAL EQUATIONS

M.ASHORDIA

ABSTRACT. Linear boundary value problem for the system of or-
dinary differential equations is considered. The question on the
stability of the solution with respect to small perturbations of
coefficients and boundary values is investigated.
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Let Py : [a,b] — R™™ and qo : [a.b] — R™ be integrable matrix- and
vector-functions, respectively, co € R™ and let [y : C([a, b];R™) — R™
be a linear continuous operator such that the boundary value problem

& o0z + 0o, )
lo(z) = co (2

has the unique solution zo. Consider the sequences of integrable
matrix- and vector-functions, Py : [a,b] — R"™" (k = 1,2,...) and
g : [a,b] = R™ (k = 1,2,...), respectively, the sequence of constant
vectors ¢ € R™ (k = 1,2,...) and the sequence of linear continuous
operators I : C([a,b);R") = R™ (k = 1,2,...). In [1,2] the sufficient
conditions are given for the problem

& Pz + att), 3)
i) = o )
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130 M.ASHORDIA
to have the unique solution z for any sufficiently large k and
klixfm zk(t) = zo(t) uniformly on [a,b]. (5)

In the present paper the necessary and sufficient conditions are es-
tablished for the sequence of boundary value problems of the form
(3),(4) to have the above-mentioned property.

Throughout the paper the following notations and definitions will
be used:

R =] — o0, +00[;
R™ is a space of real column n-vectors & = (z;)}—, with the norm

n
ll2l = 3 |l
i=1
R™*" is a space of real n x n matrices X = (i;);=; with the norm

n
X1 =32 leih;
ij=1

if X = (i;)}j-; € R™, then diag X is a diagonal matrix with
diagonal components 11, ..., Tnn} X! is an inverse matrix to X; I/
is an identity n X n matrix;

C([a, b); R™) is a space of continuous vector-functions z : [a,b] = R™
with the norm

llelle = max{llz(t)l| : a < ¢ < b3

C([a,b);R") and C([a, b); R"™*™) are the sets of absolutely continuous
vector- and matrix- functions, respectively;

L([a,b]; R") and L([a,b];R™*") are the sets of vector- and matrix-
functions ¢ : [a,b] — R™ and X : [a,b] — R™", respectively, whose
components are Lebesgue-integrable;

lZ]| is the norm of the linear continuous operator l: C([a,b;R™)
— R™.

The vector-function z : [a,b] — R™ is said to be a solution of the
problem (1),(2) if it belongs to C([a, b); R™) and satisfies the condition
(2) and the system (1) a.e. on [a,d].

Definition 1. We shall say that the sequence (Pk,qx, k)
(k= 1,2,...) belongs to S(Po, o, lo) if for every co € R™ and ¢x € R™
(k = 1,2,...) satisfying the condition

lim Cr = Co (6)

—+o0




ON THE STABILITY OF SOLUTIONS

the problem (3),(4) has the unique solution zj for any sufficiently large
k and (5) holds.

Along with (1),(2) and (3),(4) we shall consider the corresponding
homogeneous problems

dz
e Po(t)z, (lo)
lo(z) = (20)
and
dx
&~ P, (30
li(z) = 0. (40)
Theorem 1. Let
Jim L(y) = lo(y) for y € C([a, B R") (7
and
Jim_sup ] < +oo. ®)
Then
((Pr s 1)) - € S(Poy oy lo) )

if and only if there exist sequences of matriz- and_vector- functwns,
o, € C(la,b;R™™) (k = 1,2,...) and ¢ € C([a,b;R)
1,2,...), respectively, such that

b
Jim sup [Pl dr < +oo (10)
and
Jim_@,(1) =0, (1)
kllTw ex(t) =0, (12)
t
kEi“m/., P,'C‘('r)d1'=/a Po(r) dr, (13)
t t
Jim [ gi(rydr = [ aor)ds (14)
uniformly on [a,b], where
Pi(t) = [E - ®4(t)] - Pi(t) — B4(t), (15)

Gi(t) = [E — @()][Pe(t)er(t) + ax(t) — #rft)]. (16)
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Theorem 1. Let (7)and (8) be satisfied. The (9) holds if and
only if there exist sequences of matriz- and vector-functions, ®) €
C(la,b); R™™) (k = 1,2,...) and v € C([a,b;R?) (k. = 1,2,...);
respectively, such that

b
klig(n(>° sup/ ||Pe(7) — diag Pi(7)|| dr < +o0 (17)
and the conditions (11)-(13) and
t %
lim exp ( ——/ diag ’P;(s)ds> cqi(r)dr =

k—too Ja
t -
=/ exp(—/ diagPo(s)ds) - qo(7) dr (18)
are fulfilled uniformly on [a,b], where
Pi(t) = [Pu(t) — u(t)Pu(t) — @4(1)) - [E - 2x(t)] " (19)
and qi(t) is the vector-function defined by (16).

Before proving this theorems, we shall give a theorem from [1] and
some of its generalizations.

Theorem 2. Let the conditions (6)—(8),

b
kginw sup/a |Px(7)|| dT < +o0 (20)
hold and let the following conditions
t 1
kETooL Pr(r)dr =/a Po(r)dr, (21)
t ¢
k-l—i»r-;{loo s qk(T)dr =/‘z qo(7)dr - (22)

hold uniformly on [a,b]. Then (9) is satisfied".

Theorem 2. Let there exist sequences of matriz- and vector-func-
tions, ®; € C([a,b];R™") (k =1,2,...) and ¢ € C([a,b;R™) (k =
1,2,...), respectively, such that the conditions (10),

kliogloo[Ck — l(ek)] = co (23)

hold and let the conditions (11),(13),(14) be fulfilled uniformly on [a, b],
where P(t) and qj(t) are the matriz- and vector-functions defined by
(15) and (16), respectively. Let, moreover, conditions (7),(8) hold.

1See [1], Theorem 1.2.
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Then for any sufficiently large k the problem (3),(4) has the unique
solution zy and

Jm ek — or — ol = 0.

Proof. The transformation z = = — ¢ reduces the problem (3),(4) to
dz

i Pi(t)z + ri(t), (24)
lk(2) = cras (25)
where (1) = Pe()ei(t) + ar(t) — k(1) i = & — b(n) (b =

IEOS):

Let us show that for any sufficiently large k the homogeneous prob-
lem (3),(40) has only trivial solution.

Suppose this proposition is invalid. It can be assumed without loss
of generality that for every natural k the problem (30),(40) has the
solution zj for which

llzklle = 1. (26)

Moreover, it is evident that the vector-function zy is the solution of
the system

& P+ 0u(0) w0 (1)

According to (11) and (26)
Jim [@(t) - 2i(t)] = 0

uniformly on [a, b]. Therefore the conditions of Theorem 2 are fulfilled
for the sequence of problems (27),(40). Hence

Jdm_ el =0,

which contradicts (26). This proves that the problem (30),(49) has
only trivial solution.

From this fact it follows that for any sufficiently large k the problem
(24),(25) has the unique solution zj.

It can easily be shown that the vector-function zj satisfies the sys-
tem

& P+ it (29)

where 75 (t) = [®k(2) - 2:(t)] + G(t).
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* Show that
kﬁglw sup || 2kl < +oo. (29)
Let this proposal be invalid. Assume without loss of generality that

Jim_ [l = +oo. (30)

Put

wr(t) = |zl z(t) for te€fa,b] (k=1,2,...).

Then in view of (25) and (28), for every natural k the vector-function
u(t) will be the solution of the boundary value problem

du b
= Piu+ (1),

l(u) = [|2llZ" - eaa,
where si(t) = ||2¢/|71 - r3(¢). (11),(14),(23) and (30) imply
[l ] =0

and
t
kk+moo L sk(r)dr =0
uniformly on [a,b]. Hence, according to (10) and (13) the conditions
of Theorem 2 are fulfilled for the sequence of the last boundary value
problems. Therefore

Jim, ke =0

This equality contradicts the conditions ||ui|. =1 (k =1,2,...). The
inequality (29) is proved.
In view of (11),(14) and (29)

t ¢
lim r:(r)dr:/ qo(7) dr

k=400 Ja
uniformly on [a, b].
Applying Theorem 2, to the sequence of the problems (28),(25), we
again convince ourselves that

il =zl =0 @
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Corollary 1. Let (6)-(8),

b
Jim sup [7I[Pu(r) = @u(r)Pulr) = O4(r)l| dr < +oo
hold and let the conditions (11),(21),(22),

t t
kﬁi“w/a d)k(r)'Pk(‘r)d'r:/a P(r)dr

¢ ¢

Jim [ @(r)gu(r) dr = [awr
be fulfilled uniformly on [a,b), where & € C([a,b;R™™) (k=1,2,...),
P* € L([a,b];R™"), ¢* € L([a,b); R™). Let, moreover, the system

d :
d—’ = Pi(t)e + g3,

where Py(t) = Po(t) —P*(t), ¢3(t) = qo(t) —¢*(t) have unique solution
satisfying the condition (2) Then

((Perain ), € S(P3, 45, o).

Proof. Tt suffices to assume in Theorem 2 that () = 0 and to notice
that

and

5 £ et
Jim (B - @) Pu(r)dr = [ Pir)ar
and : 7
Jim [1B - () au(r)dr = [ gy(r)dr
uniformly on [a,b]. M

Corollary 2. Let (6)-(8) hold and let there exist a natural number
m and matriz-functions Po; € L([a,b],R™") (j = 1,...,m) such that

Jim [Pen(t) = Pu(0)] = 0,
im['1B + Pun(r) = Pu)] - Pulr) dr = [ Potr)ar
Jim [1B 4+ Pan(r) = Pu(] - ) b = [l
uniformly on [a,b] where
Pa) = Pul), Prin(t)=Pu®) = [ [Pus(r) = Ps(r)ldr
(=t am)
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Let, moreover,

L it /: IE + Pim(r) = Pe(r)] - P(r) +
+[Pim (1) = Pr(t)]||dT < +o00.
Then (9) holds.

Theorem 2'. Let there exist sequences of matriz- and vector-func-
tions, ®, € C([a,b;R™") (k = 1,2,...) and ¢ € C([a,b];R™)
(k=1,2,...), respectively such that the conditions (17),(23) hold and
let the conditions (11),(13) and (18) be fulfilled uniformly on [a,b].
Here Pi(t) and g;(t) are the matriz- and vector-functions defined by
(19) and (16), respectively. Then the conclusion of Theorem 2 is true.

Proof. In view of (14), we may assume without loss of generality that
for every natural k the matrix E — ®,(t) is invertible for t € [a, b].
For every k € {0,1,...} and t € [a,b] assume
7’3(0 o Pg(t), ‘IS(t) = qo(t), ¢O(t) =0, ‘/’U(t) =0,
cin = ek — l(pr), Qu(t) = Hi(t) - [Pi(t) — diag Pi(t)] - H™ (1),
ri(t) = Hi(t) - qx (1),
where
t
Hit) = exp ( - [ diagPi(r) d‘r).
Moreover, assume
li(z) = l(z) for z € C([a,b;R"),

where z(t) = [E — ®(t)] - H7' (1) - 2(1).

From (13) it follows that I} : C([a,b;R*) = R (k=10,1,...)is a
sequence of linear continuous operators for which conditions (7) and
(8) are satisfied.

For every k € {0,1,...} the transformation

2(t) = Hi(t) - [E — @4(t)] - [2(t) — or(t)] for t € [a,8]  (31)
reduces the problém (3),(4) to

&~ Que +relt), (32)

(z) =cen (33)
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and the problem (1),(2) to

o = Qult)s + (), (34)
5 = o (33)

In view of (13) and (17) from Lemma 1.1 ([1], p.9) it follows that

lim /ﬂtQk(T)d‘rzfut Qolr) dr

k—+0o

uniformly on [a,b]. According to Theorem 2, from the above and
from (7),(8),(17),(18),(23) it follows that the problem (32),(33) has
the unique solution z; for any sufficiently large k, and

Jim_ e = 2ol =0,

where zg is the unique solution of the problem (34),(35). Therefore
(11),(13) and (31) show that the statement of the theorem is true. W

Corollary 3. Let the conditions (6)—(8),

b
kEToo sup/a ||Pr() — diag Pi(7)|| dr < +o0

R¥

hold and let (21) and

lim texp ( = /: diag 'Pk(s)ds> cqr(t)dr =

k—+00 Ja

= /: exp ( — /aT diag ’Po(s)ds) - qo(T) dr

be fulfilled uniformly on [a,b]. Then (9) holds.

Remark. As compared with Theorem 2, and the results of [2], it is
not assumed in Theorems 2 and 2’ that the equalities (21) and (22)
hold uniformly on [a, b]. Below we will give an example of a sequence
of boundary value problems for linear systems for which (9) holds but
(21) is not fulfilled uniformly on [a, b].
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Example. Let a = 0, b = 2m, n = 2 and for every natural k£ and
t € [0,2n]

na=( 5 hatg) mo=(55):

(\/_+ \/_)smkt for t € I,
pr(t) =
VEsin kt for ¢ € [0,27]\Ix;
—af(t) - [1 —ax(t)]™ fort € I,
t)—
pa(?) {0 for ¢ € [0,27)\Jx;

Bu(t) = [ 1= aulr)]- paa(r)

4=V (VE+1)"sinkt fort € Iy,

Ti=
a(t) 0 for t € [0, 27\ Ik

where I, = UK ]12mk='x, (2m + 1)k~'x[. Let, moreover, for every
k € {0,1,...} Yi(t) be the fundamental matrix of the system (3o)
satisfying
Yi(a) =
It can easily be shown that for every natural k we have

G =B, B)= ((1) lfkii)(t)) for t € [0, 27]

and
Jim Yi(t) = Yo()
uniformly on [0, 27], since
Jim_floxll = Jim 134l = 0.
Note that
2T
1 A
kh‘fm o pu(t)dt = QkBinoo Vk = +eo.
Therefore neither the conditions of Theorem 2, nor the results of

[2] are fulfilled.
On the other hand, if we assume that

®.(t) = E-Y(t) for tel0,2a] (k=1,2,...),
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then the conditions of Theorems 2 and 2 will be fulfilled, and if we
put

Bu(t) = ("ko(‘) mé” ) for t € [0,27) (k=1,2,...),

then in this case only the conditions of Theorem 2 will be fulfilled,
since

© e
kEl;nmsup/o |pr2(t)| dt = +o0.

Proof of Theorem 1. The sufficiency follows from Theorem 2, since in
view of (6),(8) and (12), condition (23) holds.

Let us show the necessity. Let ¢; € R* (k= 0,1,...) be an arbitrary
sequence satisfying (6) and let ¢; = (65)y (j = 1,...,n) where
§;=1ifi=jand §; =0if i #j.

In view of (9), we may assume without loss of generality that for
every natural k the problem (3),(4) has the unique solution .

For any k € {0,1,. }and]é{l...,m}assume

yki(t) = zi(t) — 2xi(t) (¢ € [a,0)),

where z,; and xx; (k= 1,2,...) are the unique solutions of (1) and
(3) satisfying

lo(z) = co—€; and li(z)=ck—e¢j,

respectively. Moreover, for every k € {0,1,...} by Yi(t) denote the
matrix-function whose columns are yg1(t), - . ., Ykn(t)-

It can easily be shown that y,; and yx; satisfy (1o) and (30), respec-
tively, and

lk(ykj)zej (j:l,...,n; k:O,l,...). (36)
If for some k and a; ER (j = 1,...,n)

i%‘yw(t) =0 (t€lab]),

=1

then using (36)
n
Z aj;e; = 0
=1

and therefore
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i.e. Yy and Y; are the fundamental matrices of the systems (1) and
(30), respectively. Hence, (5) implies

klir+n Y7} (t) = Yy '(t) uniformly on [a,b]. (37)

Let for every natural k and t € [a, 0]
®x(t) = E - Yo(t)Y; ' (1), (38)
o(t) = 4(t) — ao(0). (39)

Let us show (10)-(14). (11) and (12) are evident. Moreover, using
equality

Yo @) = —Y (P for tefab](k=1,2,...),
it can be easily shown that
Pr(t) = Po(t)Yo(t)Yi 2 (t) for t€[a,b] (k=1,2,...)

and
[ a1 dr = Yol 2)aolt) — Yo()¥i @)a(a) -
—/:'PO(T)%(T)Yk_l(T)Q:O(T)dT for ¢ € [agbf(F =152} . ):

Therefore, according to (37) the conditions (10),(13) and (14) are ful-
filled uniformly on [a,b]. This completes the proof. W

The proof of Theorem 1’ is analogous. We note only that @ and
ok are defined as in above.

The problem about the behaviour at & — 400 of the solution of
the Cauchy problem (Ix(z) = z(to), to € [a,b]) and of the Cauchy-
Nicoletti problem (Ix(z) = (i(t:))i;, ti € [a,b]) are considered in
[3-5]. Besides, in [6] the necessary conditions for the stability of the
Cauchy problem are investigated.
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ON THE UNIQUENESS THEOREMS FOR THE EXTERNAL
PROBLEMS OF THE COUPLE-STRESS THEORY OF
ELASTICITY

T. BUCHUKURI, T. GEGELIA

ABSTRACT. A formula is obtained for the asymptotic representa-
tion of solutions of the basic equations of the couple-stress theory
of elasticity. The formula is used in proving the uniqueness theo-
rems of the external boundary value problems.

EOBITR0. Bocygagerans b grBols Amdgfigyeo oxgtools gbopgsther-
36 36EmenBomo Lol g8al s3mbalblbols sbod3gm e Fokdmpanbols
@rdgms gl Bognme Fahormob Sogsdrd. 93 gé-
Saeb geyyofiBon @odngdymos gy bbb SdmgbyBel
53mbaslsbano 9 gomdals ogeédgdo.

0. Let QF be a bounded domain in the three-dimensional Euclidean
space R3, and Q= a complement of O to the entire space R*:Q~ =
R®\ Q. The boundary value problems formulated for the domain
Q~ are called external. The uniqueness theorems for the external
boundary value problems are valid only under some restrictions of
the class of solutions at infinity ([1], [2]). These restrictions arose
naturally from the Green formulas and consist in the requirement that
both the solution and its derivatives vanish at infinity. The weakening
of the restrictions is important from both theoretical and practical
standpoints (for example, in constructing effective solutions). This
question is discussed in the monograph [1] specially devoted to uni-
queness theorems of the elasticity theory.

In recent years new results have been obtained for the external sta-
tic problems of the classical elasticity theory [3]-[7]. In these works
the authors have succeeded in weakening essentially the restrictions
at infinity imposed on the class of solutions in which the uniqueness
theorems are proved. The results were obtained by two different me-
thods: in [4], [5] the proof was based on Korn’s inequality, whereas in
[3], [6], [7] use was made of the asymptotic representation of solutions

S
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in the neighbourhood of an isolated singular point (in particular, in
the neighbourhood of the point at infinity). However, both methods
were applied to the system of equations containing only derivatives of
higher (second) order. The system of static equations of the classical
elasticity theory is also such a system.

In this paper we show that the method of asymptotic representa-
tions of solutions in the neighbourhood of an isolated singular point
(see [3], [6], [7]) can be as well applied to systems of equations contai-
ning derivatives of both higher and lower orders. This is exemplified
by the system of static equations of the couple-stress theory of elas-
ticity for a homogeneous anisotropic medium containing derivatives of
second order, as well as derivatives of first and zero orders. Here we
have derived the asymptotic representation of the solution of the said
system in the neighbourhood of the point at infinity, which has en-
abled us to prove new uniqueness theorems for the external boundary
value problems of the couple-stress theory of elasticity.

The derivation of asymptotic representations largely rests on the
behaviour of the fundamental solution of the considered system at
infinity.

1. A homogeneous system of the couple-stress theory of a homoge-
neous anisotropic micropolar elastic medium is written in the form [2],

9]

0%y Owy,
Cijlk a7~ — Cjilm€kim 7 = U,
Ox ;0 Oz; )
;o Ofug

Uk 2
CimtkSism gy + itk g = CimipSiimEkpk = 0, i=12,3,
J

where u = (u,uz,u3) is the displacement vector, w = (w1, w2,ws) is
the rotation vector, €;jx is the Levy-Civita symbol, cjuk, iy (2,5, 1,k =
1,2,3) are the elastic constants. Here and in what follows the repeti-
tion of the index in the product means summation over this index.

It is assumed that the elastic coefficients ciju and ¢y, satisfy the
symmetry conditions

! !
Cijkl = Cklijs Cijkl = Cklij (2)
and the energetic form is positive-definite

Ciinbii€u + Cypmigma > 0 for &€ +nijmi; # 0- (3)
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Let

A(02) = || Ain(8z)llexe,

02
Air(0z)

=ciilhn e, 5, E=1,2,3;
cjlk[‘)mjf)m( ! d

0 ;
Aiky3(0z) = ‘CjilmEklmgg;a i,k=1,2,3;

7] "
Aipar(0:) = ijrk&]ma—l"» i,k=1,2,3;
02

Sl ! x
Aiarys(0:) = i G By Cimip€ijmEklpy &k =1,2,3.
5 |

Denote by U = (Uh,...,Us) the six-component vector U; = u; and
Uiys = wi (i = 1,2,3). Then the system (1) is written in the matrix
form

A0 =0 (A(0:)Ui =0). (4)

2. Let us establish the properties of the fundamental matrix ® =
||®:;l6xe of the operator A(J;) in the neighbourhood of the point at
infinity. By virtue of the definition of the fundamental matrix we have

Aik(0:)@xi(2) = 6i58(z), i,j=1,...,6,

where §;; is the Kronecker symbol, é is the Dirac function. Using the
Fourier transiorm

3(6) = Flel(©) = [ e=o(e) da,

R®

from this equality we obtain

—Air(€) B (€) = 65,

FACT

where

A(€) = | Air () lloxss

Ai(€) = cjini&,  Aigss(§) = 1Cjamerm&,
Aipar(€) = —icimi€ijmél, (5)

Airaiia(€) = kil + Cimip€ijmEnips
b= 1523
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The matrix A(€) is the invertible one if |¢] = (& 1/2 2£ 0. Indeed,
if |€] # 0 and n; = &/€], then

det A(€) = [¢]° det B(n, [€]),

B(n,p) = || Bix(n, p)llexs, ©)
Bi(n,p) = Aaln), i<3 or k<3

Biyas(m, p) = P2Ciunim + Cimip€ijmEitpy 1< 3, k<3

Now we will prove that det B(n, p) # 0 for n # 0. Consider the
expression &

Bix(n, p)UiUx = ciapnymuiti + p>CapliMwitds + Cimip€ijmERpwi-
By virtue of (3) we have the estimates
ciarmmuiur > co(njus)(nyui) = Inlcowins,
pmimeiwr > co(njwi)(mjw:) = |n|? cowicws,
CimipEijmERPWiWk = co(Eijmwi)(Exjmwi) = 2cowiwi
for some positive number co. Therefore
Bik(n, p)UiUx > |7]2|c0u,-u, s ln12p2c0wiw; + 2cowiw; > 0

if U # 0 and n # 0. Therefore det B(n, p) #0 for n # 0.
Let us represent det B(n,r) as follows:

6
det B(n, p) Eak n)p",
k=0

where ax(y) are homogeneous polynomials of 7 of order k +6. In
particular,
ao(y) = det B(n,0)-

A proved abisve,
ory éamw £0 for n#0. )
Write det A(€) in the e
det A(E) = I¢F z ax(m)lEP. ®)
By virtue of (7) A(€) is the s vertible matei for |E| 2 0. Therefore

B(6) = —AZ(§), Hk=1,....6
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Let us now estimate the elements of the matrix ®(¢). First we will
prove the validity of the representation

Pa(€) = 8)(6) + (©), ©)
ik=1 6

where <I>( )(E) are homogeneous functions of order —2 for i,k = 1,2,3,
ofmderAl for s = 1,2,3 and k = 4,5,6, andfoxz_456and

k=1,2,3; of order 0 for 7,k = 4,5,6; <I>(2)(§) admits the estimates
1022 (€)] < calé| 11, i <3, k<3

10°8P(€)] < calé] ™, i<3, k>2doriz4, k<3 (10)
10°8P(€)] < caleH, i34, k24,

\a
R
A
Q
oy

|é] # 0, and « is an arbitrary multiindex, ¢, = const.
Let F = (Fy,...,Fg) be some vector and V; = A !Fy. Repeating
the above arguments for the matrix B(n,r), we can readlly prove

4
Ar(E)ViVi 2 col€*ViVi + 2c0 y_ V2. (11)
=1
Let us fix the index p. If Fx = &, k = 1,...,6, then V; =
A1 O)éky = AZ'(E) (i =1,...,6). The substitution of the obtained
value of V; in (11) leads to

6 2
ANE) 2 colél® Z(A,w ) +2e0 Y (A5 (9) - (12)
k=4

Hence
T (A7)’ < Z o <= = (A-‘(é))z)m
= 5|2 el eTante ;
1451(6)| < alél™2, e = const, k,p=1,...,6. a4y

From (12) and (13) yield

g 2 il G

> (45(0) < gAn© < 5l

A (O] € cal€]™, k=4,56; p=1,...,6.

J Since Aix(€) = Ari(=¢) (i,k =1,...,6), from (14) we have
|A;p1(£)| < €™, @1 =const, k=1,...,6; p=4,56. (14)

A O—— —
DSBS EOBOT Ml ‘
BHMIEITD
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Considering (12) for p > 4, we obtain
6 6 N 2 1/2
Y (45©) <5 ZAW sa( T (40))
k,p=4 0 p. k,p=4
Therefore
4G (O S e, k,p=14,5,6. (15)
Now we will prove the representation (9). Let < 3 and k < 3.
Write ®;(¢) in the form

where M;;(€) is the cofactor of the element A;(€) in the matrix
A(€). Therefore M;(€) is the polynomial of & Since det A(E) = |
|€16 det B(n, |€|) and |®ix(€)] < €l¢]72, it is obvious that Mix(€) is rep-
resented in the form

6
M (€) = €I" 3 bF(m)ler,
j=0

where b;(n) is the homogeneous polynomial of 7 of order j +4 (j =
1;...56). Thus

135 b ()l
TP T ai(m)lel

o

aw(€) =
Setting

sy o _ L @ _ L ()
)= TR o) ~ TEF ()

1 23 (ao(m)bi(n )"bi)k(ﬁ) i(m)IgP!
Tl ao(1) Lo 4;(n) 1€V

we obtain the required representation (9), since <I>,‘,c (€) is a homoge-
neous function of ¢ of order —2 and 3@ (¢) satisfies the condition (10)
forizitk =12,3"

In a similar manner one can prove the validity of the representation
(9) for the rest of i and k.

Let us now estimate the matrix ®(z). From the equality (9) we
have

(16)

(o) =

)

du(z) = 0 (2) + 0P (2), i,k=1,...,6. (17)
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The first term in (17) is the inverse Fourier transform of the homoge-

neous function ®{)(¢), and therefore ®})(¢) is a homogeneous func-

tion of order —3 — ¢, where ¢ is the order of the homogeneous function
@E,‘C)(f) Thus for @51)(5) we have the estimates
1078 (2)| < ele| T,
i<3, k<3
1079 (2)] < elal 2,
1€3, k24 o 123 k<4
10°8{)(2)| < ele| ™,

i, k > 4, c¢= const.

(18)

Next we will estimate the second term in (17). It will be shown that
in the neighbourhood of the point at infinity
9*@(z) = of|z[~1),
3 < 3 k<3
0 (@) = ofja] 1),
JB SIS oy ) B L S
72 (2) = of|2| 1),
i>4, k>4

(19)

We introduce the functions wy and w;, where w; = 1 — wy and wo
possesses the following properties:

wo € C*(R®), suppwo C B(0,1), wo(z)=1 if || < %
Here B(0,1) is the ball with centre 0 and radius 1 in R®. Obviously,
(&) = 3R (Owo(§) + B (E)n (©),
oD (@) =8P (@)+ o2 (2),
where
$D(@) = F 8 Pwol(x), oP(e) = F (8] o).

F~'is the inverse Fourier transform operator.
Let ¢ <3, k <3 and |B| < a+2. Then by virtue of (10) the function
Oﬁ(f"@le(ﬁ)wo(ﬁ)) is absolutely integrable on R® and therefore the
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inverse Fourier transform of this function tends to zero at infinity, but
P 0
FP(E 3R (Ewo(©))(x) = (-1 0% o) (x).

Thus, if |8] = |a| + 1, then

lim z°9* C(I))fz)('v) =)

|z|—00

and therefore
Ao 2@) e —ja-1 ’
% @y () = of|] )- (20)
Let us estimate &)52)(1') If n > |a| + 2, then
AMEBP(E)wr(€)) € Li(R)
and the Fourier transform of this expression tends to zero at infinity:
1
(=1)"[2"0" @ (2) = o(1).
Therefore for any n > |a| + 2
1
0" o () = of|2 ). (21)

(20) and (21) imply the first estimate in (19). The rest of the

estimates are proved in the same manner.

3. The derivation of the asymptotic representation formula for the
solution of the system (1) in the neighbourhood of the point at infinity
is based on the Green formulas. We will give these formulas.

Let Q be a bounded domain in R® with a piecewise-smooth bo-
undary 8Q, U = (Uy,...,Us), V = (Vi,...,Vs), U € C*Q) and
V € C*(). Then

/ﬂ (Vi(2) AaUi() — Uk(z) Ai(8:)Vi(z))da =

= [ (Vi) a0 )ULly) = U T Vi) S, (22)
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where T'(9y,v) = ||Tix(9y)||6xe is the boundary stress operator defined
on 99 by the relations

J
IOy ) — Cjilk‘/]a_yly

T k43(0ys ¥) = —CjitmV;€kim, (23)
Ti+3,k(ay7 ”) =0,

7] ;
Titap43(0y, v) = C;‘ilk”ja_ylv i,k=1,2,3.

Here v = (11, vz, v3) is the unit normal to 99 at the point y, external
with respect to 2.
If U= (Uy,...,Us) is the solution of the system (1) in the domain

), belonging to the class C2(2) N C'(R), then Vo € Q:

wi(@) = [ (Ui Tal@y ) us(y = 2) -
=®x(y — 2)T0i( By, v)Uily))dy 5. (24)

The formulas (22) and (24) are proved by the standard techniques

(21, (6], [8]

4. Let us formulate the theorem of the asymptotic representation
of a solution of the system (1) in the neighbourhood of the point at
infinity.

Theorem 1. Let Q be a domain from R® containing the neighbour-
hood of the point at infinity, U be a solution of the system (1) in Q
of the class C*(Q), and

Ui (2= ol|z|2%), i =126 (25)

in the neighbourhood of the point at infinity, where p is a nonnegative
integer number. Then the representation

Uslz) = E cga)x"‘ + > (lff;)f)g@jk(z) + ()
lal<p 181<q (26)
el

holds in the neigbourhood of the point at infinity. Here cga) and diﬂ)
are the constants, a = (o, a2, a3) and B = (1, P2, B3) are the multiin-
dexes, q is an arbitrary nonnegative integer number, and the function
¥; admits the estimate

i) = O(le|>M9), j=1,...,6 27)
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in the neighbourhood of |z| = oo, where ¥ = (y1,72,73) is an arbitrary
multiindez.

Moreover, each of three terms on the right-hand side of (26) is the
solution of the system (1) in the neighbourhood of |z| =

Proof. Let z € Q and a positive number r be chosen such that

z € B(0,r/8) and R3\B(0,r/8) C Q. Write the formula (24) for the
domain Q, = B(0,7) N Q. We will have

Ui(e) = [ (U)Tal@y, )2y = ) -
~®;(y — 2) By, ) Uily))dy S +
oy (G0 T(00, )15ty — 2) ~
—®;(y — ©)Tki(3,, 1)Uily))d, S. (28)

Represent ®4;(y — x), in the neighbourhood of the point y, by the
Taylor’s formula

(=1)le

iy —x) = Y, ——0®u(y) + Rii(,y),
'“'9’“1 ol (29)
Ry(z,y)= 3 (;)—,I—a%k](y —0z), 0<0<1.
lo|<p+2

By virtue of (18) and (19) we readily ascertain that the estimates
18] Ri; (2,y)| < a®P(r)ly| ™2,
kg <35
18y Rij(,y)| < aP(r)|y| P71,
k<3,j24o0r k>4, j<3;
[ Ry (m, )] £ PPr)ip™ P,
k,j>4

(30)

are fulfilled for any @ and y satisfying the conditions |z| < r/8 and
r/4 < |y| < r. Taking into account (29), from (28) we obtain

o ( ) (o) + Z 1)Ia| (a)( ) e (p = x)
j ——‘-‘I ] b Sl | b
J e a! 4 (31)

i=1....6

Nrn9ss
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where

U@ = [ (U) a0y, ) usty - 2) -

= ®4i(y — 2)Twi(B,, v)Ui(y) ) dy S, (32)
&) = [ (U0, 1) 01(0) -

= 0°®4;(y) Tl By, v)Ui(y)) d, S, (33)
i) = [ () Tul0, ) Rig(a,y) -

= Rij(2,9)Tui(D,, v)Ui(y) ) d, . (34)

It is not difficult to prove (cf. [6]) that cﬁa)(r) does not depend on
r, and, introducing the notation

)

ohe 1
c§~ ) = 1 cg- )(r)

we obtain the equality
Ui(@)=U@)+ 3 o+ Ii(p,r,2),
le|<p+1

from which we conclude that I;(p,r,2) does not depend on r either.
Thus, if we prove

lim Ii(p,r,x) =0,
we will obtain
Uj(z) = U;OJ(E) + X cg-a)z". (35)
laf<p+1

Let the function w:R®— R, we Cg°(R?), suppw C B(0,3)\B(0,1/3),
w(y) =1for 1/2 < |y| < 2. Then the estimate

|6“w“)(y)| < ple)p=lel (36)

holds for the function w(™(y) = w(y/r).
Rewriting the formula (22) for the domain B(0, r)\B(0,7/4), in
which V is replaced by the function

V= (&)=, )., B (2, ),
R)(2,9) = " (y) Ris(z,y),
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we obtain

I = () Au(0:) RE) (2, 2) dz,
5 2) = [ onge U AROIRE 2,2) d= o

o= i <

On account of (30) we have the estimates

[Aik(:) Ry (2, 2)| < af)|2| ™75, i <3, j <3;
[Air(0:) Rij(z, 2)| < a(x)lzl_p_sv <3, 5
|Ai(9:) Ris (2, 2)| < af2)=| 7774, @24, 5
[Air(0:) Rij (2, 2)| < a(e)|=[ 7% 24, j 2

Taking these estimates and restrictions (25) into account, we obtain
lim Lp,r,z) =0.

The representation (35) is thus derived. Note that, due to (25), in
the formula (35) the constants c{*)

7 =0if @ =p+1, and therefore we
have the representation

Uj(z) = UO(e) + 3 Mz

lal<p

Let us transform this representation in the form (26). To this effect,
in the formula (32) we will represent ®4;(y—z) by the Taylor’s formula.
Since Agj(€) = Aji(=£), we have A;]-l(f) = AJ-_kl(—f), and therefore
®yi(y — z) = ®ji(z — y). Choose a positive number rq such that
R3\B(0,70) C . Then, if y € 9Q and z € R*\ B(0, 2rq), we will have
the expansion

Dy —2) = Cj(e —y) =

S = A

e P
S (A B AT
Pri(e,y) = Z (—l)a'—y(aaq)jk)(x —0y),
lol=g+1 s

0<dxl.
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Applying the estimates (18), (19), we show

102%5e(z, y)| < P (y)]e| 07112,
] =3 k <3;

102ia(z, )] < R (y)|x|~77181-2,

: (39)

Ji<3, k>4 or g 24, k<3

10245, y)| < R ()27,
j24, k=4

The substitution of (38) in (32) gives
UO(z) = 3 d9°® () + ;(2), (40)
lal<q
bi(e) = (1 5 [ Vi) T02,0)(@°@50)(2)dy S -

lal=q
- / (Usw)Tin( D, ) a(,y) = el 9) Ty, 1)Uy dy S.
Now, due to (18), (19) and (39), we obtain
107;(2)] < el "M=27, j=1,....6. &

Remark. Theorem 1 can also be proved when the condition (25) is
replaced by the conditions of Theorem 2 from [6].

5. Theorem 1 can be used, in particular, to prove uniqueness the-
orems for the external boundary value problems of the couple-stress
theory of elasticity, and to weaken the restrictions imposed on the
class of solutions. As an example, let us consider the first external
problem:

In the domain Q= with the piecewise-smooth boundary 99, find a
solution U of the system (1) of the class C1(Q) N C?(Q), satisfying the
boundary condition

Yy € 00 : hm U(z) = o(y)

Ty

and the condition at infinity

lim U(z) =

|—c0

Theorem 2. The first external problem of the couple-stress theory of
elasticity has one solution at most.
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Proof. Let U be a solution of the first external problem. Then the
expansion (26) holds for U. Setting p = 0, ¢ = 0 in (26), we obtain
the equality

Uj(z) = & + d0®u(z) + ¥i(x), j=1,...,6.

All terms on the right-hand side of this equality, except c&o), tend to

zero as || — oco. Therefore cgo) =0,5=1,...,6. Now we conclude
from (18), (19), (27) that

8 Us(=) = O(l=|=7Y), j=1,2,3;
&°U;(z) = O(|z|1°1-2), j =4,5,6.

Now repeating the arguments, say, from [2], we readily obtain the
proof of Theorem 2. W

The uniqueness theorems for the other external boundary value
problems of the couple-stress elasticity are proved in a quite similar
manner.
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ON THE CORRECT FORMULATION OF ONE
MULTIDIMENSIONAL PROBLEM FOR STRICTLY
HYPERBOLIC EQUATIONS OF HIGHER ORDER

S. KHARIBEGASHVILI

ABSTRACT. A theorem of the unique solvability of the first bound-
ary value problem in the Sobolev weighted spaces is proved for
higher order strictly hyperbolic systems in the conic domain with
special orientation.

GOBITR. Boparmo Gogol Ao JodnGdmmmnbo abememgdobsagds
Sy f“"“ﬂ35®°eﬂ°l> aémsa ng’ﬂl’ﬂ" fgde @odtgopgrmes
otgamo  babistimg@m  s8m(3bols (3ommbabiogy 83mbblbopmbals mgmegds
beodenoggols Geoboon b 30880

In the space R™, n > 2, let us consider a strictly hyperbolic equation
of the form

p(z, d)u(z) = f(z), 1)

where 0 = (0y,...,0,), 0; = 9/dz;, p(z,€) is a real polynomial of
order 2m, m > 1, with respect to § = (é1,...,&), f is the known
and u is the unknown function. It is assumed that in the equation
(1) the coefficients at higher derivatives are constant and the other
coefficients are finite and infinitely differentiable in R™.

Let D be a conic domain in R", i.e. D together with a point z € D
contains the entire beam tz, 0 < t < oo. Denote by T' the cone
dD. 1t is assumed that D is homeomorphic onto the conic domain
i+ +a22_ —22 <0,z,>0and IY=T\O is a connected (n — 1)-
dimensional manifold of the class C*, where O is the vertex of the
cone I'.

Consider the problem: Find in the domain D the solution u(z) of

1991 Mathematics Subject Classification. 35L35.
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the equation (1) by the boundary conditions
O'u

0l/i I =

where v = v(z) is the outward normal to I at a point z € I, g¢;,
1=0,...,m—1, are the known real functions.

Note that the problem (1), (2) is considered in [1-6] for one hyper-
bolic-type equation of second order when T is a characteristic conoid.
In [7] this problem is considered for a wave equation when the conic
surface I' is not characteristic at any point and has a time-type orien-
taton. A multidimensional analogue of the problem is treated in [8-10]
for the case when one part of the cone I is characteristic and the other
part is a time-type hyperplane. Other multidimensional analogues of
the Goursat problem for hyperbolic systems of first and second order
are investigated in [11-15].

In this paper we consider the question whether the problem (1), (2)
can be correctly formulated in special weighted spaces W*(D) when
the cone T' is assumed not to be characteristic but having a quite
definite orientation.

Denote by po(€) the characteristic polynomial of the equation (1),
i.e. the higher homogeneous part of the polynomial p(z,£). The strict
hyperbolicity of the equation (1) implies the existence of a vector
¢ € R" such that the straight line ¢ = A{ + 7, where n € R" is an
arbitrarily chosen vector not parallel to ¢ and A is the real parameter,
intersects the cone of normals K : po(£) = 0 of the equation (1) at
2m different real points. In other words, the equation po(A¢ +7) =0
with respect to A has 2m different real roots. The vector ¢ is called a
spatial-type normal. As is well-known, a set of all spatial-type normals
form two connected centrally-symmetric convex conic domains whose
boundaries K; and K3, give the internal cavity of the cone of normals
K [3]. The surface S C R™ is called characteristic at a point = € S if
the normal to S at the point & belongs to the cone K.

Let the vector ¢ be a spatial-type normal and the vector n # 0
change in the plane orthogonal to (. Then for A the roots of the char-
acteristic polynomial po(A( + 7) can renumerated so that Aym(n) <
Aam—1(n) < +++ < Ai(n). It is obvious that the vectors Ai(n)¢ 41 cover
the cavities K; of K when the n changes on the plane othogonal to (.
Since Am—;(n) = —Amyj+1(—7), 0 < j < m — 1, the cones Ky,_; and
Komyjs1 are centrally symmetric with respect to the point (0,...,0).
As is well-known, by the bicharacteristics of the equation (1) we un-
derstand straight beams whose orthogonal planes are tangential planes
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to one of the cavities K; at the point different from the vertex.

Assume that there exists a plane g such that 7N K, = {(0,. .. ,0)}.
This means that the cones Kj, ..., K, are located on one side of 7,
and the cones Kp41,...,Kam on the other. Set K7 = N,ex.{¢ €
R : & -n < 0}, where £ - n is the scalar product of ¢ and 5. Since
mo N K = {(0,...,0)}, K7 is a conic domain and K% C K2_, C
o C Ky, Ky C Ky Cooo C K3, Tt is easy to verify that 9(K )
is a convex cone whose generatrices are bicharacteristics; note that in
this case none of the bicharacteristics of the equation (1) comes from
the point (0,...,0) into the cone (K7,) or A(K7,,,) [3].

Let us consider

Condition 1. The surface I is characteristic at none of its points

and each generatrix of the cone I' has the direction of a spatial-type
normal; moreover, I' C K} UOor ' C IO

Denote by WX(D), k > 2m, —co < a < oo, the functional space
with the norm [16]

2 “ 20—2(k—i) F'u?
ull3y = SR i ’ —| dz
etz =X [, | dz.
where
O'u d'u | .
r=(af 4o +ad)}, i=d14 -+ iy,

95 om
dz' dai - dain

The space WX(T) is defined in a similar manner.
Consider the space

m—1
V= W) o T] Wemi (o)
1=0

Assume that to the problem (1), (2) there corresponsponds the un-
bounded operator
T:WED)>V

with the definition domain Q7 = W+(D) ¢ WX(D), acting by the

formula
g ly
A -
u p(z, d)u,u . T u € Qr

It is obvious that the operator 7" admits the closure 7.

The function u is called a strong solution of the problem (1)5(2)
of the class WE(D) if u € Qf, Tu = (f,905---+gm-1) € V, which
is equivalent to the existence of a sequence u; € Qp = WXL (D)

d'u
s

Y
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such that w; — w in W5(D) and (p(a',i))u,-,ul[r:..‘.,%':—;‘:'%L]F/) —
(590 - 1) DV

Below, by a solution of the problem (1), (2) of the class WX(D) we
will mean a strong solution of this problem in the sense as indicated
above.

We will prove

Theorem. Let condition 1 be fulfilled. Then there exists a real
number ag = ao(k) > 0 such that for « > ao the problem (1), (2)
is uniquely solvable in the class W5(D) for any f € Wisl=2r(n)
gi € l’V::i(F), i=0,...,m—1, and to obtain the solution u we have
the estimate

m-1
[lullwe (o) < C( > ||gi||ur'*-'%(r) o “f”w:ji‘?'"(D))a (3)
=1 x=
where ¢ is a positive constant not depending on f, gi, ¢ =0,...,m—1.

Proof. First we will show that the corollaries of condition 1 are the
conditions as follows: Take any point P € I and choose a Cartesian
system 29, ..., 2% connected with this point and having vertex at P
such that the 2%-axis be directed along the generatrix of I' passing
through P and the 2_,-axis be directed along the inward normal to
T at this point.

Condition 2. The surface I" is characteristic at none of its points.
Each generatrix of the cone I' has the direction of a spatial-type nor-
mal. and exactly m characteristic planes of the equation (1) pass
through the (n — 2)-dimensional plane 29 = 2},_; = 0 connected with
an arbitrary point P € T into the angle 2% > 0, 220 510

Denote by po(€) the characteristic polynomial of the equation (1)
written in terms of the coordinate system z9,..., 2%, connected with
an arbitrarily chosen point P € I'.

Condition 3. The surface I is characteristic at none of its point.
Fach generatrix of the cone I' has the direction of a spatial-type normal
and for Res > 0 the number of roots \;(£1,. .. ,&n-2,9), if we take
into account the multiplicity of the polynomial po(is, ... ,i€n-2, A, )
with Re \; < 0, is equal to m, ¢ = V=1

When condition 3 is fulfilled, the polynomial po(ifi,. .. ,i€n-2, A, 3)
can be written as the product A_(A\)A4(X), where for Res > 0 the
roots of the polynomials A_(\) and A4()) lie, respectively, to the
left and to the right of the imaginary axis, while the coefficients are
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continuous for s, Res > 0, (&1,...,6n-2) € R"2, &4+ €2_, +
[s|* = 1 [17]. On the left side of the boundary conditions (2) to the
differential operator b;(x,d), 0 < j < m — 1, written in terms of the
coordinate system af,... .29 connected with the point P € I”, there
corresponds the characteristic polynomial b;(¢) = ¢._,. Therefore,
since the degree of the polynomial A_()) is equal to m, the following
condition will be fulfilled:

Condition 4. For any point P € I" and any s, Res > 0, and
(1. ,€n—2) € R*? such that €2 + - + €2_, + s[> = 1, the poly-
nomials b;(i€y,... ,i,-2,A,8) = M, § =0,...,m — 1, are linearly
independent like the polynomials of A modulo A_ ().

We will now show that condition 1 implies condition 2, while the
latter implies condition 3. Let us consider the case I' C k:  U0.
The second case I' C K7, U O is treated similarly.

Let P € I'" and 29,... 2% be the coordinate system connected with
this point. Since the generatrix 7 of the cone I' passing through this
point is a spatial-type normal, the plane 2% = 0 passing through the
point I’ is a spatial-type plane. Denote by K the boundary of the
convex shell of the set ij and by K+ the set which is the union of all
bicharacteristics corresponding to the cone K; and coming out of the
point O along the outward normal to Kj, 1 <j <2m. It is obvious
that (K7)* = K7, O(K;) = (K2)*. We will show that the plane 7,
parallel to the plane 2% = 0 and passing through the point (0,...,0),
is the plane of support to the cone A7 at the point (0, ... ,0). Indeed,
it is obvioius that the plane N - ¢ =0, N € REN(0,2--50)s € € REis
the plane of support to K2 at the point (0,... , 0) iff the normal vector
N to this plane taken with the sign + or — belongs to the conic domain
closure (K})* = K7,. Now it remains for us to note that the conic
domains K7 and K7,y are centrally symmetric with respect to the
point (0,...,0), and the generatrix I' passing through the point P is
perpendicular to the plane 7y and, by the condition, belongs to the set
K541 UO. Since 2% = 0 is a spatial-type plane, the two-dimensional
plane o : af = --. = 2%_, = 0 passing through the generatrix v which
is directed along the spatial-type normal intersects the cone of normals
K, of the equation (1) with vertex at the point P by 2m different real
straight lines [3]. The planes orthogonal to these straight lines and

passing through (n — 2)-dimensional plane 29 = 29_, = 0, give all
2m characteric planes passing through the (n — 2)-dimensional plane
@y = @y_, = 0. The straight lines 2% = 0 and 2%_, = 0 divide the
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two-dimensional plane o into four right angles

o1y 05 2> 00 g Ty <0, 20 >0

o3: 20, <0,22<0; 6422 . >0, 22 <0.

One can readily see that exactly m characteristic planes of the equa-
tion (1) pass through the (n — 2)-dimensional plane 2% = 29_, =0
into the angle 2% > 0, 29_, iff exactly m straight lines from the in-
tersection of oy with the two-dimensional plane & pass into the angle
Kp. The latter fact really occurs, since: 1) the plane 2% = 0 is the
plane of support to K2 and therefore to all K1, ... , Kan; 2) the planes
2% =0, 2%_, = 0 are not characteristic because the generatrices of I'
have a spatial-type direction and I' is not characteristic at the point
Iek

Now it will be shown that condition 2 implies condition 3. By virtue
of condition 2 the plane 2%_; = 0 is not characteristic and therefore for

A the polynomial po(iéy,... ,i€n—2, A, s) has exactly 2m roots. In this
case, if Re s > 0, the number of roots )\ i(€1,.. . €nma, s), with the mul-
tiplicity of the polynomial po(iéy,. .. ,ifn_z,/\, s) taken into account,

will be equal to m provided that Re \; < 0. Indeed, recalling that the
equation (1) is hyperbolic, the equation po(ify, . .. ,#€a—2, A, ) = 0 has
no purely imaginary roots with respect to A. Since the roots \; are
continuous functions of s, we can determine the number of roots A;
with Re); < 0 by passing to the limits as Res — +oo. Since the
equality

Fo(it1,- - - ibaz),8) = $™™ 0 (§l gt & 1)
s

holds, it is clear that the ratios \;/s , where \; are the roots of the
equation po(i€1, . .. ,i€n_2,A,8) = 0, tend to the roots y; of the equa-
tion po(0,...0,,1) = 0 as Res — +oo. The latter roots are real and
different becau%c the equation (1) is hyperbolic. If s taken positive
and sufficiently large, thcn for pj # 0 we have \; = su; + o(s). But
uj # 0, since the plane 2 = 0 is not characteristic. Therefore the
number of roots A; with Re \; < 0 coincides with the number of roots
p; with p; < 0. Slnce the chdracteustlc planes of the equation (1),
passing through the (n — 2)- dlmenﬂonal plane 2% = 29_, =0, are de-
termined by the equalities p;ad_; +2a% =0, j = 1 ,2m, condition
2 implies that for Re \; <0 Lhe numbel of roots )\ is equal to m.

We will another equivalent description of the space W(D). On
the unit sphere gely T% 4+ 4 :cz = 1 choose a coordinate system
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(wi,... ,wp—1) such that in the domain D the transformation
I:o7mi—logr, W, — wi(Z1,--nTa)y Ji=l;on—1;
be one-to-one, nondegenerate and infinitely differentiable. Since the
cone I' = 0D is strictly convex at the point O(0,...,0), such coor-
dinates evidently exist. As a result of the above transformation, the
domain D will become the infinite cylinder GG bounded by the infinitely

differentiable surface G = I(I”).
Introduce the functional space HX(G), —oo < 4 < oo, with the

norm
k oirtiy |2
2 297 v
V|| zxg) = / e - -|| dw dT
o = 3 [ |orma
where
Pirtiy Oirtiy 3 ;
; i = ; =n+ Y
om0t gridut - dwiy g

As shown in [16], a function u(z) € WX(D) iff & = u(I7'(r,w)) €
H(‘LM)‘%(G), and the estimates

Cl'lﬁ”H(’“aH)_%(G) < Nlullwgpy < Czﬂﬂnll("”k)f%(G)

hold, where 77! is the inverse transformation of I and the positive
constants ¢; and ¢; do not depend on w.

It can be easily verified that the condition v € HX(() is equivalent
to the condition e~""v € W¥(G), where W¥(G) is the Sobolev space.
Denote by H¥(9G) a set of ¥ such that e™7% € Wk(9G), and by
WE (') a set of all ¢ for which ¢ = o(I7(7,w)) € H(’°0+k)7%(aG).
Assume that

||<P||w§_%(r) = ||¢||H(ka+k)—'2l(aa)'

Spaces W¥(D) possess the following simple properties:
1) if u € WX(D), then 2% € WE(D), 0<i<k;
2) WitH(D) C WE(D);
3) if u € WX*1(D), then by the well-known embedding theorems we
have utr eWE (D), &  eWwr i), i=1,...,m—1;
0 I a=3

) 3ot
4) if u € WHY(D), then f = p(z,0)u € WEH=™(D).
In what follows we will need, in spaces W%(D), Wc';_%(l‘) other

norms depending on the parameter y = (a4 k) — 5 and equivalent to
the original norms.
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Set
R ={-0<r<o, —0<w <00, i=1,...;n—1},
R, = A@m)ie Re. vwny >0k, W= (W15 e Wha)s
Rt ={—co <7 <00, —0o<uw;<ooy t=1,...,n—2):

Denote by v(é1,. .. ,€n—2,€n-1,€n — ©7) the Fourier transform of the
function e v(w, 7), i.e

i o = ) (gﬂ-)—§ /u(w, T)eviws’wrénxﬂdw dr,
i=+/—1, &=(t,...,tu),

and by 0(¢,... ,€—2,wn-1,&n — 7y) the partial Fourier transform of
the function e™"v(w, 7) with respect to w',7.
We can introduce the following equivalent norms

Mol = [, 07 + M e o — i),
- k
2 et 2 112\k—J
Mol = [, 207 €T
97 N
x| 5560 oz ionn o = i) e,
awn—l

in the above-considered spaces HX(R: ) and HE(R. ).

Let ¢1,...,pn be the partitioning of unity into G/ = G N {r =
0}, where G = I(D), ie., =N, p;(w) = 1 in G',p; € @=(G ), the
supports of functions ¢y,...,¢on—; lie in the boundary half-neigh-
bourhoods, while the support of function ¢y inside G'. Then for
7 = (a+ k) — 5 the equalities

[1fu]

N-1
2 i = 2 Mgl + llowellln s
j=1 i

(4)

N-1
MeelllBe iy = 32 Mllpjull[fn-s
j=1 wlrk,y

define equivalent norms in the spaces W(D) and VVj_l(F), where the
norms on the right sides of these equalities are taken in the terms of
local coordinates [17].

First we assume that the equation (1) contains only higher terms,
ie. p(x,€) = po(€). The equation (1) and the boundary conditions



ON THE CORRECT FORMULATION
(2) written in terms of the coordinates w, T have the form
e A(w, Q)u = f,
e_iTBl(u,a)u
G

mg, t=20,...,m=1,

or

Aw, Du = f, (5)
00 50—y (6)

where A(w,d) and B;(w, ) are respectively the differential operators
of orders 2m and i, with infinitely differentiable coefficients depending
only on w, while f = €™ f and §; = ¢'"¢;, i =0,1,... ,m— 1.

Thus, for the transformation / : D — (, the unbounded operator
T of the problem (1), (2) transforms to the unbounded operator

m—1
T: HYG) — HE1-™(G) x ] HE(86)

=0

with the definition domain H**'((), acting by the formula

BG)

where v = (a + k) — 5. Note that written in terms of the coordinates

w, 7 the functions f = (w,7) € HXP™(G), giw,T) € Hfj:f(aG),

i=0,...,m—1,if f(z) € WHI-™(D), gi(z) € W*i(D), i =
2

fa
0,...,m — 1. Therefore the functions f = €™ f € HEnL0 (G
Gi=¢€"g; € H*(0G),i=0,... ,m—1.

Since by condition 1 each generatrix of the cone I' has the direction
of a spatial-type normal, due to the convexity of K, each beam coming
from the vertex O into the conic domain D also has the direction of a
spatial-type normal. Therefore the equation (4) is strictly hyperbolic
with respect the 7-axis. It was asown above that the fulfilment of
condition 1 implies the fulfilment of condition 4. Therefore, according
to the results of [17], for ¥ > 7o , where 7o is a sufficiently large

s sl B0, 0
aG

Tu= (A(w, d)u, Bo(w, d)u

number, the operator T has the bounded right inverse operator 7
Thus for any f € HH'=*™(G), §; € HA(0G),i =0,... ,m—1, when
v = 7o, the problem (5), (6) is uniquely solvable in the space H,’j(G)

2y
1101335



168 S. KHARIBEGASHVILI

and for the solution u we have the estimate

mel T
s < €( X Wallagsoso + Sl lloss-ans) ()
i=0
with the positive constant C not depending on 7, f and g, ¢ =
08t m—1.
Hence it immediately follows that the theorem and the estimate (3)
are valid in the case p(z,£) = po(€). H

Remark. The estimate (7) with the coefficient f—y at Hllecka_gmm
obtained in the appropriately chosen norms (4), enables one to prove
the theorem also when the equation (1) contains lower terms, since
the latter give arbitrarily small perturbations for sufficiently large 7.
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ON COHOMOTOPY-TYPE FUNCTORS

S. KHAZHOMIA

ABSTRACT. The paper deals with Chogoshvili cohomotopy func-
tors which are defined by extending a cohomology functor given on
some special auxiliary subcategories of the category of topological
spaces. The question of choosing these subcategories is discussed.
In particular, it is shown that in the singular case to define abso-
lute groups it is sufficient that auxiliary subcategories should have
as objects only spheres S, Moore spaces P"(t) = S"~! U, e” and
one-point unions of these spaces.
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e";g*a‘ e B060 oS Jgi%?’mmmzsmb gagad@”“"
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bmxmgnu ByeRgaels uﬁi« g, m%“%*“s;h Pt e
e 3303309633303" Bsgrogyzeo :xa“?gzaaﬂ By holsools
@336y Jngeearcogia eBogfgbo bapebos begpmgdo 57,
Bvﬂénb boaé@aa&u Po{t) = 8 Uye? @ 33 hn3603m\> m&ﬂ@ﬂ&“

In [2, 3] for any cohomology theory H = {H"} given on some cate-
gory K of pairs of topological spaces the sequence

O={I"}, n=0,1,2,...

of contravariant functors II" is constructed from K into the category
of abelian groups with the coboundary operator §# which commutes
with the induced homomorphisms ¢#, ¢ € K. Functors II" possess
the properties of semi-exactness and homotopy and are connected with
H by the natural transformations

di: Ht o 11°

which are the natural equivalences on a certain subcategory K, of K.
Constructing of such functors is reduced to the problem of extending
the functor given on an auxiliary subcategory K, to the whole category

1991 Mathematics Subject Classification. 55Q55.
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K. The problem is solved by means of the theory of inverse systems of
groups with sets of homomorphisms of Hurewiz, Dugundji and Dowker
(4].

Functors II" are dual to the homotopy functors associated in the
sense of Bauer [1] with a given homological structure. It should be
noted that functors II" have some of the basic properties of the Borsuk
cohomotopy, but they differ from the latter.

In [5-7] functors II" were investigated under the assumption that
K is the category of pairs of topological spaces with a base point and
base point preserving maps, and H is the singular integral theory of
cohomology. We will adhere to the same assumption throughout this
paper (base points are not indicated here). To define functors 1" we
need auxiliary subcategories K,. We have to consider a problem of
choosing these subcategories.

For convenience we recall the definition of a limit of the inverse
system of groups with sets of homomorphisms (see [4]). Let w be a
partially ordered set, and {G,} a system of abelian groups indexed
by the elements of w. Besides, let for each pair p < o sets H,, C
Hom (G,,G,) be given such that if p < 0 < 7 and @1 € H,,, @2 €
H:o, then the composition @10 € H,,. Then, by definition, lim G,
is a subgroup of the group I, and its elements are elements g =
{9,} € TG, such that for each pair p < o and ¢ € H,, we have
#(95) = g,

It should be noted that this theory of [4] essentialy is Kan’s ex-
tension theory on it’s early stage, however quite sufficicient for our
purpose.

The results of this paper earlier were announced in [6,7]

1. PRELIMINARIES

In this section we will give the definitions of subcategories K, and
functors II" and discuss some of their properties.

Let €™ be the unit m-cell of the m-dimensional euclidean space R™.
By €° we denote some fixed point (base point). Let K be the small
full subcategory of K whose objects are all finite CW-complexes X for
which X° = ¢° and X* is the adjunction space obtained by adjoining
a finite number of €¥ to X*~1, k > 0. We denote by K the small full
subcategory of K whose objects are all CW-pairs (X, X’) for which
X and X' are the objects of K.

Now we shall define auxiliary subcategories K,, n > 3, by the fol-
lowing two conditions (cf. [2, 5]):
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1) K, is an arbitrary small full subcategory of K; each object of
K, is a pair (X, X’) of linearly- and simply-connected spaces, satis-
fing the conditions that m(X, X’) = 1, the homology modules H.(X)
and H,(X’) are of finite type, H'(X,X’) =0, i < n, and H'(X) =
H(X)=0,0<i<n-—1;

2) K, contains all possible objects of K.

We denote by F an auxiliary subcategory of objects only of 7\?

If n = 3 we assume that K3 is an arbitrary (containing all possible
objects of K') small full subcategory of K whose all objects are linearly-
and simply-connected spaces X for which H.(X) is a module of finite
type and H*(X) = 0.

Let (R, R') be an object of K. Consider a set of indices w(R, R';n)
of all pairs a = (X, X’; f), where (X, X’) is an object of K, and

[+ (XX) = (R R)
is a continuous map of K. Let w(R, R';n) be ordered as follows: a < f3,
where g = (Y,Y’; g) if there is a map

e (X,X) = (YY)
of K, such that

gp =1/ (1)
Assume that to every a € w(R, R';n) there corresponds the n-dimen-
sional cohomology group H, = H"(X,X’) and to every ordered pair
a < f3 there corresponds the set of homomorphisms {¢*}, where

o CHE YY) = HA (X, X)
are the induced homomorphisms in the H theory.
We have obtained the inverse system of the group H, with sets of

homomorphisms. Cohomotopic groups of Chogoshvili are determined
by the formula

I (R.R:IG,) = lim H.
We denote by II"(R; K,,) the absolute group II"(R,*; K,,), where
* is a base point, and by p, the a-coordinate of an element p €
II"(R, R'; K,). Note that for n = 3 we have determined the absolute
groups only.
Let

a= (X, X5 f), B= (X, X}qg),
o,B €w(R,Rin), pell"(R,R;K,)
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and let the maps f and g be homotopic, i.e., f ~ g. Let I be the unit
segment.

Lemma 1.1. If the subcategory K, contains, alongside with (X, X"),
the pair (X x I, X' x I), then p, = pg.

Proof. See [5], p. 83. H
Let

a=(X,X;f), B=(Y,Y'g),
o, €w(R,R;n), pell*(R,R;K,)

Moreover, let us have a map
¢ (X, X') = (V,Y")
from K, such that the maps g¢ and f are homotopic, i.e.,
g~ f. (2)

Lemma 1.2. If the subcategory K, contains, alongside with (X, X"),
the pair (X x I, X' x I), then ©*(pg) = pa-

Proof. Consider the index (X, X’;g¢) = a1 < 8 and apply Lemma
ll1toa;anda. W

Let a= (X, X’; f), where f is null-homotopic, and pe II"(R, R’; K,).

Corollary 1.3. If the subcategory K, contains, alongside with
(X, X"), the pair (X x I, X' x I), then p, = 0.

Proof. Apply Lemma 1.2 to the homotopy commutative diagram

(R, R')

b e g 2 4 8

where o denotes the constant map. W



ON COHOMOTOPY-TYPE FUNCTORS

2. MAIN RESULTS

Let K7 be a subcategory of K/, where K, and K are two auxiliary
subcategories, and let (R, R') € K, p € II"(R, R'; K),

a € 'w(R, R';n) C"w(R, R';n).

Then, as one can easily verify, the formula [A(p)]la = pa defines the
restriction homomorphism

AR, R K)) — TR, R K.
In Section 3 we will prove

Theorem 2.1. The homomorphism X defines the natural equivalence

of the functors II"(—,—; K!) and 11"(—,—; K'), n > 3. In particu-
lar, all functors TI"(—, —; K,,) are naturally equivalent to the functor
"(—,  F).

Remark 2.2. Theorem 2.1 shows that in choosing a subcategory K,
we can restrict ourselves only to the finite C'W-pairs. On the other
hand, from Theorem 2.1 it follows that for the convenience of con-
struction and proof we can regard an arbitrary admissible pair as an
object of K,.

Remark 2.3. One can easily show that Theorem 2.1 holds for the ab-
solute groups when n > 2. Moreover, in defining the absolute groups,
to choose the subcategory K, we can restrict ourselves to the absolute
pairs (X, ), i.e., X’ = « (see the definition of K, and [5]).

In the remainder of this section we will consider the absolute groups
only. Therefore to define the functors 11", n > 2, we can use auxiliary
subcategories F? consisting of finite CW-complexes. More exactly,
F2 is a full subcategory I whose objects are all spaces X for which
m(X)=1and H¥(X)=--- = H"(X) = 0.

We intend here to study the problem dealing with a possibility of
further reducing subcategories K, provided that groups II*(R; K,,)
and the results from [5-7] remain unchanged. To this effect, relying
on Lemma 1.2, in the definition of II"(R; K,,) we replace condition (1)
by condition (2) (see Section 1). We will stick to this definition in the
sequel.

Let S™ denote the n-dimensional unit sphere of the euclidean space
R and e* the unit disk. Denote by P"(¢), t > 1, n > 2 the Moore
space S™™! Uy ™. Also assume that P"(1) = S™.
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Consider now the full subcategory F? of F2 whose objects are all
finite one-point unions of spaces P"(t), t > 1. The subcategory s
will be regarded as an auxiliary subcategory.

The following theorem will be proved in Section 4.

Theorem 2.4. The restriction homomorphism defines the natural
equivalence of the functors II*(—; F%) and I"(—; FY), n > 2.

We introduce the notations:

1) PP(t) = P"(t), where j is a positive integer, n > o\ >

9Ky = vkl vk B

3) Q" = lim X (by inclusion maps Xp— X))

Let @, be the full subcategory of K consisting of one object Q",
n > 2. The subcategory will also be regarded as an auxiliary subcate-

gory. Note that the module H.(Q") is not obviously of the finite type.

Therefore none of the above-defined auxiliary subcategories contains
n

The following theorem will be proved in Section 5.

Theorem 2.5. The functors [1"(—; FY) and II"(—; Q,) are naturally
equivalent, n > 2.

3. PROOF OF THEOREM 2.1
Let us prove that A is natural. Assume
f:(S,8)— (R, R)
to be an arbitrary map of K. Consider the diagram

A

(R, R'; K") (R, R'; K1)

i i
(5, 5 K?)

(s, §' K%)
Let

a = (X, X'sg) € 'w(S,§,n) € "w(S, ),
B = fla) = (X,X'; fg) € 'w(R, R';n) C "w(R, R';n)
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and let p € II"(R, R'; K}!). We have
D)), = [ 0)], = ps,
[*0@)], = M), = pa,

which proves that A is natural.

Let (X, X’) be an arbitrary object of some auxiliary subcategory
K,. Using the standard technique of the homotopy theory, we can
construct a CW-pair (A, B) from the subcategory K, and a map

¢:(4,B) = (X,X')

such that homomorphisms ¢* induced by ¢ in the H theory will be iso-
morphisms up to any pregiven dimension. Let now p € II"(R, R'; K,,)
and

a=(X,X';f) € w(R,R';n).
Consider the index

B = (A, B; fo) € w(R, R';n).

Then # < a and therefore ps = ¢*(pa). Hence p, = ¢*~'(ps). From
the above reasoning and the definition of auxiliary subcategories it
now follows that if p € II*(R, R'; K!) and A(p) = 0, then p = 0. Thus
A is a monomorphism.

Let L, n > 3, be a full subcategory of the category K whose objects
are all pairs (X, X’) for which X and X’ are linearly- and simply-
connected spaces, m3(X, X’) = 1, the homology modules H.(X) and
H.(X') are of the finite type, H'(X,X') = 0, i < n, and H'(X) =
Hi{(X")=0,0<i<n-1.

Consider some full subcategories of L,:

1) LY are CW-pairs;

2) L?) are CW-pairs with a finite number of cells in all demensions;

3) L) are finite CW-pairs;

4 LW =KnLP =F;.

Wewill gradually extend the thread defining element p € I1"(R, R'; F;)
from the category L) onto L{, then onto L?), L() and, finally, onto
L. Such an extension already implies that A is epimorphic.

Let (M, M’) be an arbitrary object of L{); also let

f+(M,M") - (R, R)

be an arbitrary ‘map. Consider the diagram
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(R, R

i) fo!

[

(M, M") (N,N")

where (N, N') € L) and ¢ is a homeomorphism. Let a = (M, M'; f)
and 8 = (N,N'; fo'). It is assumed that p, = ¢*(ps). We will
show that p, does not depend on a choice of the homeomorphism ¢.
Consider the diagram

(R, )
fer? (Mtj{l,) fezt

)%gm

where ¢, and ¢, are two different homeomorphisms and g = w207
The indices 3, and 3, will be defined similarly to 3. We have

(fez')g = foi'api’ = for'.
Therefore 8; < 2. Then

@3(p,) = (9901)7(p3,) = #1(9"(Ps)) = #1(Psy)-

Consider the commutative diagram

(N, N

(N,N")

(R, R)
ettt e
(M, M) . (Mo, M)
’ .
(N, N) = (No, N3)

where ¢ and ¢ are homeomorphisms, go = wogp L.
Let

o — (M,M';f), Qo = (MO’M{); fn),
B=(N,N;fo™), Bo=(No,Ng; fowg")-
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We have

(forg")g0 = fors poge™ = foge™ = fo .

Therefore 8 < 5. Then

9" (Pao) = 9" (¢5(Pa)) = (209)" (Pso) = (909)"(P) =
= ¢*(95(pso)) = ©(P5) = Pa-
We have thus extended the thread of the element p onto the category
Lo,

Let, now, (M, M') € L® and f : (M, M') — (R, R') be an arbitrary
map. By i: Xy — X we denote here the standard embedding, where
X} is the k-skeleton of the CW-complex X. Let Ny > N >n+1 be
arbitrary integers.

Consider the commutative diagram

(B, R)

I i ifi

(M, My)

(My,, My,)

(M, M)

!
where fy, = fi; and fy = fn,i. Also consider the indices
a=(My,My; fn), B=(Mn,,My;fn), 7= (M,M;f).
Assume p, = i}~ '(pg). We have
(018)" 7 (pe) = 137 (57 (pa)) = 77 (o),

where the last equality evidently follows from the fact that o < 8.
Therefore p, does not depend on a choice of the number N;.
Now consider the diagram

(R,R)
s
(M, M) 4 Vi
| & -

(My, My)

(Tn, Ty)

where ¢ : (M,M') — (T,T’) is a map such that fip = f, G is a
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cellular approximation of ¢ and @1 = @|(My, My). We have f ~ fi$
and

(fin)er = (@) ~ fi.
Also consider the indices
a=(My, M1’v§ o)y B= (TN»T;\/: friy).
Applying Lemma 1.2, we have
@ (117(pp)) = (2" ) (ps) = (@17 (pp)) = ¢ (pa)-
We have thus extended the thread of the element p onto the category
Lo,
Let now (M, M’) be an arbitrary object of L{}) and let
g: (M, M") - (R,R))
be an arbitrary map. Using the standard technique of the homotopy
theory, we can, under our assumptions, construct a map
o (M, M) — (M, M)
such that (M, M’) € L'? and ¢ is a homotopy equivalence. Let g =
gp. Assume
Pa = ¢ (ps),
where a = (M, M';g), B = (M, M'; g). We will show that p, does not
depend on a choice of . Consider the diagram

(R’ R’)

(M, M)
where (1\7 M ) SLL . cp and ¢; are homotopy equivalences and ¢ ~
G et B =(M,M';§3). Then
9 =g~ §@p1 = (§@)e1-
Applying Lemma 1.2, we have

*

& Upp) = & Hei () = ¢* 7 (pp)-
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Consider now an arbitrary map
wo: (M, M) = (T,T")

from the category L{!) and the diagram

(R, R)
(1, i) Ll (T, )
l ¥ N 9’1\ l 51
(M, M) $o @, 7)

where § = Gipo, ¢ and ¢, are homotopy eqivalences, ¢; is the ho-
motopy inverse of 1, $o = @ipop and (M, M"),(T,T") € L?. We
have

(9191)%0 = 19181009 ~ GipoP = gip-
Also consider the indices

B =(M,M";g0), b= (1,1 g1p1)-
Then, applying Lemma 1.2, we have

eo(i 7 (1s)) = (0321 )(Pa) = (#7107 () = " (ps)-
Let, finally, (X, X’) be an arbitrary object of L, and let
wx : (S(X), S(X") = (X, X')
be the natural projection of the singular complex S(X) onto X. Let
fo(X,X)— (R R)
be an arbitrary map. Also consider the indices
a=(X,Xf), B=(8(X),S(X); fwx).

Assume

P = wy " (pg)

and consider the commutative diagram
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(R, R)
Wt e O
(X, X") : (¥,Y")
lwx ]wy

@

(S (), 5(V)
where gy = f and @ is the cellular map induced by ¢. We have

(gwy )7 = gpwx = fwx.

Also consider the indices

Bx = (S(X),S(X"); fwx), By = (S(Y),S(Y"); gwy).
Then
0" (w3 (psy)) = wi ™ (" (pay)) = Wi (Pax)-
This completes the proof of Theorem 2.1. W

4. PROOF OF THEOREM 2.4

Consider some full subcategories of F? (see Section 2):

0) K = Fp;

1) K{-objects are CW-complexes with one vertex and without cells
of dimensions 1,2,...,n —2;

2) K{)-objects are CW-complexes with one vertex and cells of di-
mensions n — 1, n and n + 1 only;

3) K®-objects are CW-complexes with one vertex and cells of di-
mensions n — 1 and n only;

4) KW = F?.

Let R = (R,*) be an arbitrary space from K. All subcategories
KM, 0 < <4, will be regarded as auxiliary ones.

Let

X IR KO — TIM(R; K*Y), 0<4 <3,
be the natural restriction homomorphisms.

Let L, and L” be two small full subcategories of the category K
consisting of the spaces (X,#), and L/, C L!. It is assumed that the
following condition is satisfied: for each X € L thereis Y € L}, such
that Y has the same homotopy type as X. Consider L and L) as
auxiliary subcategories. Let

X IM(R; L") — II*(R; L)

be the natural restriction homomorphism.
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Lemma 4.1. )\ is a natural isomorphism.

Proof. We prove first that the homomorphism X is a monomorphism.

Let p € II"(R; LY), A(p) = 0 and
a=(X;f) €"w(Rn)

be an arbitrary index. Let Y € L! and the map ¢ : Y — X be a
homotopy equivalence. Consider the index

B=(Y;fp) € w(Rn) C"w(R;n).
We have 3 < a. Then

¢"(pa) = ps = A(p)]s = 0.
Therefore p, = 0 and p = 0. )
Let us now prove that the homomorphism A is an epimorphism. Let
q € I"(R; L) and
a=(X;f) €"w(R;n)
be an arbitrary index. Let ¥ € L/ and the map ¢ : Y — X be a
homotopy equivalence. Consider the index
B=(Y;fp) € w(R;n)
and assume
Pa =" (4p)-

We will show that p, does not depend on a choice of ¢. Consider the
diagram

R
‘19 h_ﬁ__—
hig X Yi
&1
d ‘ ud
Y [ 284 Y:

where Y,Y; € L., ¢ and ¢; are homotopy equivalences, @; is the
homotopy inverse of ¢;. Consider the index

7 = (Y1; for1) € 'w(R;n).
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Then (fe1)(@1¢) ~ fe and therefore B < 4. In this case
i (#"(g8) = 23 (6" ((B10)"(a)) =

= (p1e 0" () = (#181)(0) = ¢
Hence
¢ (g8) = 217 (49)-
We will show that the set {p,} defines an element of the group
II"(R; L}). Consider the diagram

R
y X
Xo i D¢}
%o 1| @1
Y, Lo Y,

where fip = fo, wo and ¢; are homotopy equivalences, @; is the
homotopy inverse of ¢y, Xo, Xy € L, and Y5,Y; € L;,. Then

(fie1)(@rp90) ~ fiewo = foro.
Also consider the indices
a=(Xo; fo), B=(X1;f1), @B € w(Rin),
ar = (Yo; fowo), 1= (Yi; fivn), 1B € ‘w(Ryn) C "w(Rin).
Then a < 3, a3 < 51 and we have
©*(ps) = " (17 (5)) = 257 (Br90)"(481)) = 957" (deu) = Pa-
Finally, let us prove that A\(p) = ¢. Assume that X € L, C L and
a=(X;f) € 'w(R;n) C "w(R;n).
Define p, by taking ¢ =id: X — X. then
[;\(p)]a =Po) = id'_l(qa) = Ga-
This completes the proof of Lemma 4.1. W
As a consequence of the foregoing lemma we have

Proposition 4.2. )\ is a natural isomorphism.
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Proof. Every CW-complex from K is homotopically equivalent to
some C'W-complex from K. ®

Proposition 4.3. \; is a natural isomorphism.

Proof. We will prove in the first place that A; is a monomorphism.
Let peII*(R; K(V) and A\i(p) = 0. Consider the index

a=(X;f) € Dw(R;n), XeK,

and the diagram
R
fix S

X+ e X

where X"t! is the (n + 1)-skeleton of X and ix is the standard em-
bedding. Let

B=(X";fix) € @y (Ryn) € Vw(R;n).
Then 8 < « and we have
X (pa) = ps = [Ma(p)]s = 0.

Therefore p = 0.
Assume now that p € II*(R; K(?)) and

a = (X;f) € Wu(R;n).
Consider the diagram (3), the index 3 and assume that
@ = 1% (po)-

We will show that the set {q,} defines an element of II"(R; K{V).
Consider the diagram

R
/ K
]
X Y
@
ix l lzy
i 71 Yt

where g ~ f, & is a cellular approximation of ¢ and ¢y = @[X"+!.



186 S. KHAZHOMIA
Then
(giy)er = g@ix ~ fix.
Also consider the indices
a1 = (Y;9) € Dw(B;n),
B = (Y™; giv) € Du(R;n).
We have 8 < ; and
0 (ga) = 7 (0e) = 7 (i5(00)) = i (¢i(0m)) = % (45) = G

Finally, let us prove that A;(¢q) = p.
Consider the index

a=(X;f) € Quw(R;n),
where

X =x"1c k@ c kY
and the diagram

o

Xl X X

where iy = id. Then
M(@))a = 5 (Pa) = Pa-
This completes the proof of Proposition 4.3. M
Proposition 4.4. \, is a natural isomorphism.
Proof. Let ¢ € TI*(R; K(?)) and Ay(¢) = 0. Consider the index
a = (Puyr; f) € Pw(R;n),
where P41 € Kf). Let P,(Li)l be the n-skeleton of P,y and
i:Pn(i)l = Po

be the standanrd embedding. We have the commutative diagram

R
fi f
/ ' \ .

B : P
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Also consider the index

=( n+1vfl) € ®w(Rin) C Pw(R;n).
We have 3 < a. Let

o H"(Pn+1,P,E+1) H"(Pny1) 5 H"(P,Ei),) —

be a part of the cohomological exact sequence for the pair (P41, P,Ei),)A
Since H™( P41, P,E}_)l) =0, :* is a monomorphism. Then

i"(ga) = g5 = [Na(q)]s = 0.

Therefore g, = 0 and ¢ = 0. Hence ), is a monomorphism.

Let now ¢ € II"(R; K{Y). Consider again the commutative diagram
(4) and the corresponding indices o and 3. We will prove below that
qg € Imi*. Therefore

Pa =1""(gp)

is the correct definition. Let us show that the set {p,} defines an
element p € II"(R; K(?). Consider the diagram

f/' X
£ n
P S P
@
2L e PG

where fip ~ f, @ is a cellular approximation of ¢ and ¢; = ‘511’5:21-
Consider the indices

a1 = (Pa; f1) € Pw(Rin), B = (A frir) € Pw(R;n).
Since
(fir)er = fpi ~ fi,
we obtain # < f; and therefore ¢}(qs ) = ¢5. We have
7 eilas) = (57 (4m))
and

©"(Pay) = F(Por) = 7 (177 (g8,)) = "7} (a5,)) = i (g5) = Par-
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Finally, we will prove that Az(p) = ¢. Let
a = (Puys; f) € Quw(Bin) € Po(R;n)

be an arbitrary index, Poy1 € K(¥. Thus P,Ei)l = P,41. Then the
map

it P S Py
is the identity map: ¢ = id. Therefore for § = (P,E'_:,)l;fi) we have
B = o. In this case

Pa(p)]a = Pa = i} (gp) = id" 7 (ga) = da-

It remains to prove that gs € Imi*. Consider the characteristic
map of the CW-complex P41

& : (C(vS™),VE") = (Pays, PIL),

where C/(VS™) denotes the cone over V.S™ and V denotes the finite one-
point union of spaces. Let ¢ = ®|(V.S™). Consider the commutative

diagram
R

£ Pr(zi)l : P

Vst

Since i ~ 0, we obtain fip ~ 0. Let
5 = (V8™ fip) € Puo(Bim).
We have v < 8 and ¢, = 0 (see the proof of Corollary 1.3). In this
case
©"(q8) = ¢ = 0.
Now consider the commutative diagram

0——H"(Pos1) - jln(Prf—T:»)l)AL. Hn+1(Pn+lvP151)l)

*

@ %"

0 —=Ho(VS™)—& g1 (C(vSm), VST — 0

where ®* is an isomorphism. Then, since ¢*(gg) = 0, we have é(gg) =

0. Therefore gz € Imi*. This completes the proof of Proposition
44. W1
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Lemma 4.5. For each CW -complex P from the category Ky ©) there
is a CW-complex P from the category K (4) such that P has the ho-
motopy type of P.

Proof. By the condition H;(P) =0,i # 0,n—1,n; Hura(P) & il B)
are finite abelian groups and H,(P) is a finitely generated free abelian
group. Thus the group m,_1(P) can be represented in the form

Toct(P) R 2o, © Z0y ® -+ @ 2,

where Z,,, i = 1,2,. , are cyclic groups of order r;. Consider the
corresponding system

&:5"1 > P 1<i<t,

of generators in the group m,—1(P) and define, by means of &, the
map

foVi_ P(r;) — P

Then f induces isomorphisms in homotopy and homology in dimen-
sions < n — 1. Now consider a system hy, ha, .. , hs of generators in
the group H,(P). The Hurewicz homommphlqm 7rn(P) — H,(P) for
the space P is an epimorphism. In this case we can consider maps

or ST Py ki =11,2,. 1,8,
such that ¢k.(1) = hy, where 1 € H,(S™). Assume
P= (Vi Pr) V (Vi PEQ)),

where PP(1) = P*(1) = S™, and define by means of the maps f and
@k the map

o=fV(Ver): P> P.
Then ¢ induces isomorphisms of all homology groups. Therefore, un-
der our assumptions, the map ¢ is a homotopy equivalence. This

proves Lemma 4.5. B

Lemmas 4.1 and 4.5 imply
Proposition 4.6. \; is a natural isomorphism.

Propositions 4.2 - 4.4 and 4.6 imply Theorem 2.4.

0101945




190 S. KHAZHOMIA

5. PROOF OF THEOREM 2.5
Let h € H*(Q") and

1 PM(t) - Q"
be standard embeddings. Assume
e(h) = {i; ()} € TTH*(P}(®))-
it
Obviously, we have

Lemma 5.1. The correspondence

e: HNQ") — [T H"(Pr()

Jt

is an isomorphism.

In the sequel, for convenience, the subcategories F® and @, will be
denoted by K and K{®). Let R = (R, ) be an arbitrary space from
K. Let ¢ € I"(R; K¥) and

a=(Q%f) € Pw(R;n)
be an arbitrary index. Assume f;; = fi;, and consider the indices
e = (P"(); fie) € Weo(Rsn).
Let
po = Pal@)le = € {{ges, })-

We will show that the set {p,} defines an element of the group
IM*(R; K{») and the natural isomorphism

Ao IR KW - (R K©).

By V we will denote the symbol of finite one-point union of spaces.
Consider the commutative diagram
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R
fk,l~ If 'f
P(t) Ukl Vj,sz"(i) Vi

Qn
where a,; and Vij, are standard embeddings, and the indices
a=(Q%f) € Pw(R;n),
B = (V]’,Pj"(t);f) € (4)“’(R§ n),
agt = (P(1); frr) € Duo(Rym).
We have
(Vij),)’{k’l = ik,l-
Therefore oy < 3. Then
70((Vi3e)*(pa)) = ih4(Pa) = Gar-
Since this is true for arbitrary k& and [, we have
(Vi)™ (Pa) = - ()

Now consider the diagram

where fo ~ g, F = f(Vij:) and (Vij1)p1 = ¢ (since P*(t) is a
compact space and ¢ is a contunuous map, it follows that there exists
a map ¢1). Then

Foy = f( Vit ij,t)#’l =fo~g.
Consider the indices

B

= (P"(t),9) € Vw(R;n),
Bt

(
Vi PR(); F) € Ww(R;n).
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Then 8 < B4, and by (5) we have

@*(pa) = 23 ((V5)"(Pa)) = 93(45,) = g5-
Thus

#"(pa) = g5- (6)
Finally, consider the diagram
R

¥ h
i

Lt 14

pr(t) Q" Q"

where fio ~ f and fi;, = ¢;. Consider the indices
a = (Q% /i) € Pw(Rin),
aje = (P () 1) € Wo(R;n).

Thus o < . Therefore by (6) we have

5u(#° (o)) = (150)"(Pon) = o
Since this equality is true for arbitrary j and ¢, we obtain

©"(Pay) = Pa-

Therefore the set {p,} defines an element p € II*(R; K{»)). The map

A4 is now defined by setting M\y(g) = p, where ¢ € II"(R; KV).
Let q1,¢2 € I*(R; KY). Then we have

(M@ + @) = (@0 + @y = (@)t (@) = 5 (Nalg0)]e) +
+i3 (M(@)la) = 35 (Ma@)]e + Pa(@2))a) = 85 (Dalar) + Aa(g2)la).-
Since this equality holds for arbitrary j and ¢, we have

(@1 + ¢2) = Malqr) + Aalg2)-

Let now ¢ : S — R be an arbitrary map. Consider the diagram
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TS (E; K ) I (R; K1)

ot o
Ay
" (S; K(W) ————J1*($; K®) ,
element ¢ € II*(R; K(*), indices a, o, and
B =p(a) = (Q"; g) € ®w(R;n),
Bis = (P"(t); gj1) € (A)W(R?")q
where g = ¢f, gj+ = gtj:. Then ﬂjg = ¢(aj¢) and we have

[o* (@), = Da(@)ls = e ({gs,..})-

On the other hand, we have

[ate*a], = ({e*@le,}) = e ({tees0}) = 7 ({an}).

Thus A4 is a natural homomorphism.
We will prove that A is a monomorphism. Let ¢ € II"(R; K{V)) and
A4(g) = 0. Consider an arbitrary index

B=(Vi¢ P}(t);g) € Ww(R;n)
and define the map f : Q™ — R by taking
F((vVis)(@) = g(2), = € ViP}(),
F(@" = (Vi) (Vi PP (1)) = *.
Consider the index
a=(Q" f) € PDw(R;n)

and the commutative diagram

/\

Vi
VigPr(t) ——

then by (5) we have
g5 = (Vieise) (Ma@la) = (Vieise) (0) = 0.

Therefore ¢ = 0 and A4 is a monomorphism.
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Further, we will prove that A4 is an epimorphism. Let p € II"(R; K,(f‘))
and

= (X;f) € Wuo(Rsn)

be an arbitrary index, X € K(". Therefore the space X can be
represented in the form

X = Vi Pr(t)

where j is the index indicating a certain arrangement of the identical
subspaces of X. Then we have natural embedding 7 : X — Q™. Define
the map [ : Q™ — X by taking

(i(z)) =z, z€X;
Q" —i(X)) =
Let g = fI. We have gi = f. Let
B=(Q"%g) € Dw(Rin)
Assume that
4o =1"(pp)- (7)

Consider a different arrangement of subspaces of X. Let the map 7
and the index 3 = (Q";§) be defined in the same way as 7 and /3,
respectively. Consider the commutative diagram

where the map k can be defined by a certain permutation of subspaces
of Q™. Then 3 < 3 and we have

T (pg) = (K (pz) = 7"(ps)-

Thus definition (7) is correct.
Consider the diagram

UJ‘JL‘JLJ
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Q" Q"
where X;, X; € 1\',(;‘), fap ~ f1, @ = iaph, fi = ir, f2 = g2ia. Thgn
Fiy = iaplis = iz

923 = fabizpl = faph ~ filh = g1.
Consider the indices

ac= (X f) € Ww(Rin), t=12

Be=(Q"9) € Pw(Rin), t=1,2.
Then oy < g, B1 < B2 and we have

¢ (o) = #" (i3(p)) = 1 (7" (P)) = 1(P51) = den-
Therefore the set {¢a} defines an element ¢ € II"(R; K{V).
Finally, let us prove that A;(¢) = p. Consider an arbitrary index
a=(Q%f) € Pw(Rin)
and the index
aje = (P"(1); fise) € De(Bsn).

Then i, = ¢ and we have
i3, (M(@)]a) = daye = Ge(Pa)-
Since this equality is true for arbitrary j and ¢, we have [Ae(@)]a = Pa-
Therefore As(q) = p. This completes the proof of Theorem 25. W
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A SELFADJOINT ”SIMULTANEOUS CROSSING OF THE
AXIS”

KURT KREITH

ABSTRACT. By constructing the corresponding Green’s function
in a trapezoidal domain, we establish the existence of selfadjoint
realizations of A = (%2,- - L%z,- incorporating boundary conditions
of the form u(s,0) = u(s,T) = 0. Such operators correspond to
the historically important concept of a ”simultaneous crossing of
the axis” for vibrating strings.

ST il gl Sl ol ol o

Bob WBcmgboo apgforzes. A= i fy g gooy-

Aeemgdammds u(s,0) = u(s,T) = 0 bobﬁx:waf‘m Bnﬁxna‘r]wn obgan
@@ magdo '333[)08.}83&) L)6dol gémmdrmoge asayggemel, sdm-
(3b3b @Bg5000 bodgBobamgols

1. Introduction. Given Poisson’s equation

At = uge +uyy = f(z,y) in R, -
u=0._on R (L

in a rectangle
B={(my):0cc<h 0<y<kl
separation of variables leads to Fourier series solution

mrr . nwy
Z(lmﬂslll S —— 7

with

mrr . nwEy
£ . 9
U = /1k7r2("'2 ”2 / flx,y)sin sin — e dy. (1.2)

The validity of this formal solutmn is related to the fact that A has a
selfadjoint realization in L?(R) corresponding to the boundary condi-
tion & = 0 on OR.

1991 Mathematics Subject Classification. 35L20.
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If one naively attempts the same approach to
Au = upy —uyy = f(z,y) in R,
u=0 on IR,

(1.3)

separation of variables again provides the same form of series solution.
However, now

S hw’n—’_ﬁ //f”’ sin-

and the fact that the Dirichlet problem is not well posed for (1.3)
is reflected by the sign change in going from (1.2) to (1.4). While
the series solution for u(z,y) makes formal sense for irrational values
of h/k, its instability precludes the existence of a Green’s function
G(z,y;€,m) and a corresponding representation of this "solution” in
the form

* sin wdl dy, (1.4)

u(z,y) = /RG(lxy;éw).f(&nﬁ% dn.

One therefore would not expect to find a selfadjoint realization of A
in L%(R) corresponding to u =0 on JR.

The fact remains, however, that problems such as (1.3) have a cer-
tain appeal. Replacing = by a spatial variable s and y by a temporal
variable ¢, it is natural, in the theory of vibrating strings, to consider

Au = uy — ugs = f(s,t),
u(s,0) = u(s,T') = 0.

Here the boundary conditions can be interpreted as calling for a ”si-
multaneous crossing of the axis” at ¢ = 0 and ¢ = T'. As described by
Cannon and Dostrovski [1], the physical concept played an important
role in early attempts by both Brook Taylor and Johann Bernoulli to
model vibrating strings.

Also, if one interprets the classical Sturmian theory for (py') +qy =
0 in terms of the motion of a mass p(t) subject to a linear restoring
force —¢(t)y, then it becomes very attractive to consider (1.5) as part
of an effort to generalize Sturmian theory to hyperbolic PDEs (see
for example [4]). While one would not expect to find a selfadjoint
realization of A corresponding to (1.3), there do exist both historical
and mathematical reasons for seeking selfadjoint realizations which
incorporate (1.5).

The purpose of this paper is to show that, by considering (1.5) on
a trapezoid

R={(s,t):t<s<L—-40<t<T} (1.6)
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with L > 2T > 0, it becomes possible to establish selfadjoint rea-
lizations of (1.5) in terms of additional boundary conditions on the
characteristics

s—t=0 and s+t=L (0<t<T).

In case L = 27", these results are related to ones obtained by Kalmenov
[2], albeit by very different techniques.

2. Fundamental Singularities. If one seeks a representation of solu-
tions of y” = f(x) in the form

v= [ T o+ [ T orede,
two applications of Leibniz’s rule readily lead to the conditions
Te =0 for z#¢ T(z,27)—T(z,2%)=0,
and
To(z,a7) — Ta(z,2t) =1

P . . 2 - . e
as characterizing a fundamental singularity for (;11_2 In [3] this familiar
idea is extended to obtain a characterization of a fundamental singu-

larity for =2=—. Representing a solution of u,, = f(x,y) in the form
¥ Fzdy 1 8 v y

wen= [ [T eniendes [ Tayensend|as
s [L] Tamemsende + [Ty ns e,

repeated applications of Leibniz’s rule lead to the following characte-
rization of a fundamental singularity for

)iay'
(i) Tpy=0 for 2#€ and y#n,
(i) Tala,y;6,y7) = Tala,yin,y%),
Ty(z,y;27,n) = Ty(,y32%,n),
(ii}) T(e,y;27,y7) = Dz, y;27,y") = Tole,y52%97) +
+T(z,y;2%,y") =1
Transforming such singularities into the (s,t)-plane by t = y + @,
T, Y )
.|

2= 1), one

= y — « (and taking note of the fact that |J( 2

obtains, as a special case, the following
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Lemma 2.1. If G(s,t;0,7) satisfies

for |t —7|>|s—o]|

1
G’(s,t;a,‘r)={8 Gl (2.1)

or
==y - |lg — i
PR e O e (2.2)
0 f0r|t—T|>lS—0|,
then G is a fundamental singularity for A = 3%2; - %. Furthermore,
G is symmetric in the sense that G(s,t;0,7) = G(0,7,5,t).

Proof. Transforming back into the (£,7)-plane, the above values for
G yield

P(z,y;27,y7)-T(z,y;07,y")-T(z,y;27, 97 )4 (e, g0t 9%) = 1. &
Lemma 2.2. If v is a real constant and G(s,t;0,7) satisfies
0 for|t—71|>|s—o|
G(s,t;o,1) =<y fors—o>|t—7|

—y forlo—s|> [t=rl,

then G is "nonsingular” in the sense that
A// G(s,t;0,7)f(0,7)dodr = 0
R

for R a neighborhood of (s,t) in the (o, 7)-plane.

Proof. Transforming back into the (&,7)-plane, the above values for |
G yield |

D(z,y;27,97) = Dla,y527,y%) = D@, ;2% 7)) + Dz, ys2*,yh) = 0.

in place of (iii).

Figure 1
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3. Construction of Green’s Functions. To construct symmetric
Green’s functions corresponding to (1.5), we shall apply the method
of images to symmetric fundamental singularities of the form (250
In order to satisfy u(s,0) = 0, we consider a pair of fundamental
singularities to form

H(s,t;0,7) = G(s,t;0,7) — G(s,—t;0,7).
Restricting H(s,t;0,7) to the strip 0 <t < T', we have

Bl tio - {0 . for |t — 7| > |s — o]
—3 for |1 +t| > |o—s| > |t — 7]
(see Figure 1). Since H is composed of symmetric singularities, it is
again symmetric.
Noting that H (s, T;0,7) # 0, we now reflect about ¢ = T to consider
H(s,t;0,7) — H(s,2T — t;0,7) as depicted in Figure 2.

Pk

r=2T

(5,2t
=T

0 0

0 1 0 0 0
+3 U

0 0 0

r=0
(5,7

Figure 2

As confirmed by Lemmas 1.1 and 1.2, this again yields a symmetric
fundamental singularity for A, one which corresponds to u(s,0) = 0.
While this construction does not, in general, correspond to u(s,7') = 0,
continued reflections about 7 = 0 and 7 = T do eventually achieve
this condition for bounded domains. This fact is evident from the
fundamental singularity depicted in Figure 3, which vanishes except
in rectangular regions defined by characteristics emanating from (s, t)
and reflected by 7 =0 and 7 =T

10
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Since all these rectangular regions approach the empty set as t — 0
ort — T, we see that

uls,t) = A f —/ H(s,t;0,7)f(0,7)do dr
does satisfy u(s,0) = u(s,T) = 0. Since H(s,t;0,7) = H(o,7;s,1),

A7! is a completely continuous selfadjoint operator in L?(R) whose
range manifests ”a simultaneous crossing of the axis”.

/ =

Figure 3

4. The Space like Boundary. Given a domain R contained in the
rectangle 0 <s< S, O <t <T the construction of §3 yields a selfadjoint
realization of A = 012 - % whose domain satisfies u(s,0) = u(s,7) =
0. What this construction fails in general to do is to characterize the
domain of A in terms of boundary conditions for which

// (vAu — uAv)dsdt = 0.

It is here that the geometry of the problem enters in an essential way.
We consider a trapezoidal region

R(k,0) = {(s,8): 0<t<s<2%kT+0—-t;0<t<T},

where k is a positive integer and 0 < 6 < 27'. In this case it will be
possible to determine boundary conditions on the characteristics

t—s=0 and t+s=2kT+90

which, together with u(s,0) = u(s,T") = 0, characterize selfadjoint
realizations of A.

In case @ = 0, the broken characteristic connecting (7,7") with
((2k = 1)T,T') divides R into 2k — 1 congruent triangles (see Figure 4
for'ki=2):
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(I E) (37,7T)
B 0 @ e
2T 4T
Figure 4

Corresponding to a = (s,s) on the characteristic t — s = 0 there is
a point b(a) = ((2k—1)T 4 s, T — s) on the characteristic t +s = 2kT".
The pairs of parallel lines

t—s=vT and t—s=vl+2s,
t+s=vT+2s and t+s=2(v+1)T

define a sequence of 2k — 1 rectangles in R in which the fundamen-
tal singularity H(s,t;0,7) of §3 assumes the values £+)v for p =
1,...,2k—1. However, this is the same function H(s,t; o, 7) obtained
by locating the fundamental singularity at b(a). These observations
establish the following.

Theorem 4.1. Given a trapezoidal domain
R(k,0) = {(s;t) : 0t < s <2kT—; 0<t < T},
the boundary conditions

u(s,0) =0 for 0<s < 2kT,
u(s,T) =0 for T < s< 2k =1)T,
u(s,s) =u((2k = 1)T +s,T —s) for 0<s<T,

correspond to a selfadjoint realization of A = 3—; - % in L*(R).

Remark. For k = 1, the trapezoid becomes a characteristic triangle
and we obtain the selfadjoint operator studied by Kalmenov [2].
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There remains the problem of a general trapezoid with 0 < 6 < 2T
for which selfadjoint boundary conditions will involve four points:

a— (s,8) Hfor' Oic s < T
(k-1)T +84s, T+E—5) for s>
(@)= : 2

[SIENSIES

((2kT+%+s, %—s) for s<

00 S0
c= (5,5),(1: (247 + 5,5).
Here a and b(a) can be connected by broken characteristics reflected
by the lines t = 0 and ¢t = T. There is a similar relationship between
cand ((2k = 1)T + 0,T) and between d and (7, 7).

Our principal result is the following

Theorem 4.2. Given a trapezoidal domain
R(k,0) = {(s,1):0<t<s<2kT —t+0; 0< ¢t < T},
the boundary conditions

u(s5,0)=0 for 0<s<2kT+9,
u(s,P) =0, for T < s<(2k—1)TH0,
1 1
u(a) + Eu(c) = u(b) + ;z—u(d),
correspond to a selfadjoint realization of A = % - % in L*(R).

Proof. 'The proof consists of applying the construction of §3 to
(s,t) = a,b,c and d and noting the rectangles in which this construc-
tion assigns the values £1. In the figures below (for k = 2) we denote
the value +7 resulting from point a by +a, etc.

Figure 5

4 I

I EER——————, - PP — — ———
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A rather tedious calculation shows that this construction always
decomposes R into rectangles in which [/ assumes one of the following
values

+ (a+ D),
+ (a+c—d),
+(b—c+d).
Since all of these expressions are made to vanish by choosing
1 1 1 1
A ST
SRy e 8

it follows that the composite singularity corresponding to

u(a) — u(b) — éu(c) + %u(d)

vanishes identically in R x R. Therefore all functions in the range of

AT = //R H(s,t;o,7)f(0,7)dodr

will satisfy

u(d) — u(c)

2

u(a) — u(b) + =0
Remarks.
1. Other selfadjoint boundary conditions can be obtained by choos-
ing a = i, b= —,1—‘, c arbitrary, and d = ¢ + %.

2. By way of physical interpretation of these results, it seems that
a simultancous crossing of the axis is an unreasonable requirement
for a driven string tied down at both end points. If, however, one is
willing to shorten the string by moving in from both ends at the speed
of propagation, then it is possible to manipulate these ends so as to
achieve a simultaneous crossing of the axis for arbitrary 7' > 0.
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STABILIZATION OF FUNCTIONS AND ITS APPLICATION

L.

L.D. KUDRYAVTSEV

ABSTRACT. The concepts of polynomial stabilization, strong po-
lynomial stabilization and strong stabilization are introduced for
a fundamental system of solutions of linear differential equations.
Some criteria of such kind stabilizations and applications to the
theory of existence and uniqueness of solutions of ordinary diffe-
rential equations are given. An abstract scheme of the obtained
results is presented for Banach spaces.

GOBITR0. Brfergogbegons Smenobendzyho bgsBocadbagoo, pyéo 3
cobendzyo bgBodbaganbs @ fhaege @eayégfgesrmbo abem-
bl BeobsBlbors qrbredgheyhe bobggieh Aedatso Ao 3%
Bogmatiozools 053683&1. @aygbormns digon bgyoBogmatiozagdel -
Gglrgipe. gb Symgarpe giegpgbycns Foraebhag coqyéch-
(3030 26Emmn3gBabomgals babshegm 8rn(3BgBols gmnsBo
oo s Bobobsols bogth 390 Ao gl SBlfrodymenn bgds.

POLYNOMIAL AND STRONG POLYNOMIAL STABILIZATION

Let us introduce concepts of stabilization and strong stabilization
of functions. We begin by considering stabilization as { — +oc of a
function to a polynomial

n—1

IR (1)

m=0

of degree at most n — 1, where n is a fixed natural number.

Definition 1. An n — 1 times differentiable function x(t) on the infi-
nite half-interval [{o, +00), to € R (R is the real line) is said to stabilize
as t — oo to the polynomial (1) if

lim (2(t) - P@®)” =0, j=0,1,...,n—1 )

t—+oo

1991 Mathematics Subject Classification. 34D05.
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Let us write in this case z(t) ~ P(t).
If such a polynomial exists (for a given function), then it is unique.
We introduce the notation

+00 +oo +oo
(Im.t)(t):/ dzl/ dt2~-~/ (tm)dtm, meN.
it t tm—1
It is possible to obtain a good enough description of functions sta-

bilizing to polynomials in the class of functions having n and not n—1
derivatives as assumed by Definition 1.

Theorem 1. A function x(t) having a locally integrable derivative
of order n on the half-interval [to, +00) stabilizes as t — +oo to a
polynomial of degree at most n — 1 iff the integral

+00 +oo +oo
(™) (to) =/ dtl/ (u,,.'./ () dte (3)
to ty Ty
converges.
Theorem 2. [f the integral (3) converges, then the function x(t) sta-
bilizes as t — +o0) to the the given polynomial (1) iff
2(t) = P(t) + (=1)"(Znz™)(2). (4)
The property (2) of the polynomial P(t) is analogous to that of the
Taylor polynomial of a function for the finite point to when ¢ — to.
However, in contrast to the latter polynomial, the polynomial with
the property (2) for a given function x(t) exists only for one number
n.

The conditions of Theorem 1 are fulfilled if
400
/ t™ ™M) Pdt < 00, 1<p<+oo, mEN, m>pn.
to
This case was considered by S.L. Sobolev [1]. V.N. Sedov [)] an(l the
author [3] obtained some generalizations when the integral f e(t

x|z ()|P dt is finite for a nonnegative function @. The g(’Il(’ld] case,
i.e. Theorems 1 and 2, is treated in [4, 5].

The coefficients of the polynomial (1) to which the function x(t)
stabilizes as { — +oc, can be calculated (see [4]) by the formula

m ym=
e (n—m) [Z sl ”(’ to it

= m—])'
n=1 gk

—0 Ll kr(”))(tu)] , o m=1.2.. .0
k=0 1”

0
101945
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If the function z(t) is n — 1 times differentiable on [to, +00), then
there exists its one and only one representation

n—1

o(t) = 2 yam(B)" ()

m=0

such that
W (t) = f B e d g S A SR
2 tm— Y= » s, 2

i.e., the behaviour of the coefficients y, ..(t) is that as if they were
constants by n — 1 times differentiation of the expression occurring
on the right-hand side of the equality (5). Such representations of
functions will be called polynomial Lagrange representations. Rep-
resentations of this kind emerge when we use Lagrange’s method of
variation of constants for solving linear nonhomogeneous ordinary dif-
ferential equations.

Definition 2. An n—1 times differentiable function 2(t) on the half-
interval [to, +00) is said to strongly stabilize as ¢ — +oo to the poly-
nomial (1) if

t—l}inooy""‘(t)zc’"’ m=01,....n~1, (7)

where y, . (t) are the coefficients of the polynomial Lagrange repre-
sentation of z(t).

In this case let us write z(t) &~ P(t).
If the function xz(¢) has n derivatives, then for derivatives of the

coefficients of its polynomial Lagrange representation we have the for-
mula

Ui ()= im(")(t)tk’l, k=128

00 (n—k)(k—1)! 2
Theorem 3. A function x(t) having a locally integrable derivative of

order n on the half-interval [to, +00) strongly stabilizes as t — 400 to

the polynomial (1) iff the integral

400
/ =1200() dt )
to

converges.

11
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We observe that if the inegral (8) converges, then so does the in-
tegral (3), but some examples show that the converse statement is
wrong [4]. Thus if some function strongly stabilizes as { — 400 to a
polynomial, then it stabilizes to a polynomial too, but not conversely.
More exactly, the following theorem is valid.

Theorem 4. If the integral (8) converges, then a function x(t) sta-
bilizes as t — +oo lo the polynomial (1) iff this function strongly
stabilizes as t — 400 to the same polynomial.

We would like to indicate a special role of polynomials

Q,(t) = Z (__f)j G =010,

=0 e

for the polynomial Lagrange representation of functions.

Theorem 5. The cocfficients y, (1) of the polynomial Lagrange rep-
resentation of an n — 1 times differentiable function x(t) on [to, +o0)
can be calculated by the formula

1 (l”)
ﬁQ”‘"‘" (tlltT)l'(l). =0 1500: n—1.

The following criterion plays an important role for strong stabiliza-
tion to polynomials.

Yo (t) =

Theorem 6. If the integral (8) converges, then a function x(1), hav-
ing a locally integrable devivative of ordern on [to, +00), strongly sta-
bilizes to the polynomial (1) iff the identity
n—1 _1\n—m o

__(_l—)__tm/ s (5)ds (9)
ml(n —m — 1)! ¢

m=0
holds.

We introduce some Banach spaces for stabilized and strongly stabi-
lized functions.

Let X, be a set of all n—1 times continuously differentiable functions
on the half-interval [t,4+o00)m t > to which stabilize as { — 400 to
polynomilas of degree at most n — 1, i.e.,

X, = {C"_l[i,%—oo) SEPI> \r}.

We shall use the notation

n—1
Pot) =Y comt™ (10)

m=0
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for the polynomial to which the given function x(t) stabilizes as t —
400 and assume that
€ = (€2,0,Ca 1y -+ s Crynt)- (11)
Theorem 7. The set X; is a Banach space with the norm
llzlle = llz = Pellen-1it4c0) + I€al- (12)
The polynomial stabilization is continuous with respect to the norm

(12).

Let X, be a set of all n — 1 times continuously differentiable on the
half-interval [t,+00), t > to, functions strongly stabilized as ¢t — +o00
to polynomials of degree at most n — 1, i.e.,

X = {.’(‘ €C" Nt +e) : AP = .r}
and let
Yo = (Y20, Yo 15 -5 Yon-1)s
where y,.m» = yzm(t) are the coeflicients of the polynomial Lagrange

representation of the given function x(t). Thus, if x(t) = P(t), then

Lﬁgnm Ya(t)=c (13)

Theorem 8. The set X, is a Banach space with the norm

HET ll?/r“('n[ld")o)v

where C,lt,+00) is a Banach space of all continuous and bounded
on the half-interval [t,+00) n-dimensional vector functions with the
uniform norm.

2. SOME APPLICATIONS OF POLYNOMIAL AND STRONG
POLYNOMIAL STABILIZATIONS TO THE EXISTENCE AND
UNIQUENESS OF SOLUTIONS OF ORDINARY DIFFERENTIAL
EQUATIONS

Let us consider a differential equation
#M(t) = f(t,z,2,...,2"), (14)

where [ : [tg, +00) x R* — R is a continuous function.
First we shall study the problem of stabilization of solutions of the
equation (14) to the given polynomial (1):

a(t) ~ P(t). (15)

)

13

N
AN

101945
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Note that we do not obtain simpler problems by the change of the

variables t = 1/s or z = 1, ' = Zg,. .. ToBE =

Theorem 9. A solution x(t) of the equation (14) stabilizes as t —
+00 Lo the polynomial (1) iff it is a solution of the integral equation

a(t) = P(t) + (=) (IS (2,2, e, (16)

It is useful to note that in the case of strong stabilization of solutions
of the equation (14) we naturally obtain another integral equation
which is equivalent to the differential equation (14) (see Theorem 11
below).

Definition 3. Let ¢ be a function such that g : [to, +00) x R* — R
and let ¥ be a set of some functions n — 1 times differentiable on the
half-interval [to, +00).

The integral (I,g(-,x,2,..., 2("=1))(1,) is called strongly uniformly
convergent (on the n-dimensional half-interval [to, +00)™) with respect
to the set Y if for every ¢ > 0 there exists t. > to such that for all
functions x(t) € ¥ and for all £ > f. we have the inequalities

‘(I,nﬂ(',~l‘.-l'l,...,J',(n‘l)))(f,)l =)
We introduce the notation
Xr(0) = {2 € Xp s a~0), Xp(P)=Xr(0)+ P,
Qr(Pr)={a: Xp(P) : o= Pllz <}, T 2to,
x=(z,a';...,z1), in particular, P=(P, P’,..., P 1), (A7)
) = fhime i)

Theorem 10. If the polynomial (1) is given, if for every r > 0 the
integral
(Inf(* "'))('0)
is strongly uniformly convergent with respect to the ball @10(1), o)y i
for every r > 0 there exists a function ¢, : [to, +00) — [0, +00) such
that

(Inr)(to) < o0
and for all t > 1o, £ €R", n € R™, €] <7, || <7 the inequality

I7(t, P +m) — F(£,P +E)] < @ (1)lm — €] (18)
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holds, then there exists a T > to such that on the half-interval [T, +00)
there exists one and only one solution of the equation (14) which sta-
bilizes as t — +oo to the given polynomial (1).

An equation of the type @’ = f(z)/(1 + t?), where for every r > 0
the function f(x) is bounded on the set of all functions z(t) € Xy,
belonging to the ball [[2|lcf,400) < 7, is an example of equations
satisfying the conditions of Theorem 10.

Note that solutions of the equation (14), for which the conditions of
Theorem 10 are fulfilled, can have no absolutely integrable derivatives.
The simplest example of such an equation is 2’ = sint/t.

Let us now consider the case of strong stabilization of solutions as
t — 400 to a polynomial.

Theorem 11. A solution x(t) of the equation (14) strongly stabilizes
as t — 400 to the polynomial (1) iff il is a solution of the integral
equation

=

n—1 _1)rm pee
%—)ﬁ])‘t’” / SEEISL (il el .x:("_l)) ds.
Zmlin—m—1)! t

=P+

n=1 =
Setting now £ = (60 &1, £a-1) € R", P(1,6) = 'S &, Gr(r) =
{z € A\’; [l|z|||7 < 7} and using the notation (17), we obtain
Pt &) =(Bt,0), B8 B 6))

Theorem 12. If the polynomial (1) is given, if for every r > 0 the
integral

+o0
/ th=h flc) di

to

uniformly converges with respect to the ball (?,0(1*). if for every r >0
there exists a function ¥, : [to, +00) — [0, 400) such that

+50
/ 1" Y (t) dt < +o0 (19)
to

and for all t > to, € € R", n € R, [£] < r, In| < 7, we have the
inequality

|£(t,P(t,m)) = (1, P(t,€))] < ¥r(t)lm — &l (20)

N
2
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then there exists a T > o such that on the half-interval [T, 4oc) there
exists one and only one solution of (14) which strongly stabilizes as
t — 400 to the given polynomial (1).

It is obvious that, in contrast to simple stabilization, in the case of
strong stabilization we need some other generalization of the Lipschitz

condition (compare the relations (18) and (20)).

The theorem about continuous dependence of solutions of the equa-
tion (14) on the stabilization data holds in the space j‘?to.

Theorem 13. Lel the polynomials P((t,a;), a; € R*j = 1,2 of
degree at most n — 1 be given. If the solution x;(t) of the equation
(14) is defined on the half-interval [to, +00), if it strongly stabilizes as
t — +oo to the polynomial P(t,a;), j = 1,2, and if for some r >
maxj— 2 |||;|||¢, there exists ¥, (t) a function satisfying the conditions
(19), (20), then the inequality

+o00
ez = 21]|ls < laz — ar|nexp n/ " Yep,(t) dt
to
is valid.

3. GENERAL CASE OF THE STRONG STABILIZATION PROBLEM

Let the equation

T i a1, (1)
be given, where
dn n—1 (lm
L = m 2z
: din I Z H (/i’” 0

Pm(t) are continuous functions on the interval (a,b), m = 0,1,...,n—
1, —0o<a<b< +oo.

In the case of polynomial stabilization we have L = d‘,,, a=1t €eR
and b = +oo. For an arbitrarily chosen linear operator L it is possible
to write the equation (14) in the form (21), and conversely. Of course
the right-hand sides of the equations will be different. So the equation
(21) is not an equation of a new type but only a new notation.

Assume that

V1,02,...,Un (23)
in some fundamental system of solutions of the equation

Lz =0. (24)
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Let (1) be an n — 1 times differentiable function on the interval
(a,b) and

= iy,r“,([)vj(l), a<ti<b, (25)

be its Lagrange representation with respect to the system (23), i.e. a
representation such that

Mt ZJJ,, (M (1), m=0,1;...,n—1, a<t<b. (26)

For every n — 1 times differentiable on the interval (a,b) function
there exists its one and only one Lagrange representation (25), since
the determinant of the system of linear equations (26) with respect to
the variables y,.;, j = 1,2,...,n, is the Wronskian of the system (23).

Let now v(t) € ker L; therefore

vfi) = En:cjzv](t), (27)
i=1

where ¢; are some constants, j = 1,2,...,n; also let k, [ be some
nonnegative integers, 1 < k41 <n.

Definition 4. An n — 1 times differentiable function on the interval
(a,b) is said to strongly (k,!)-stabilize to the function (27) if

}imyJ..J([) = e S0 sl
lt‘mgyl.,](t) =ci =kt Lk 2 kel

In this case let us write

The general problem is to find solutions of the equation (21) which
strongly (k, [)-stabilize to a given function v(t) € ker L. Let us briefly
discuss this problem. It includes the classical boundary problems on
finite segments, the Cauchy problem and some new problems.
Indeed, if all coefficients pn(t), m = 0,1,...,n — 1, of the operator

2) are continuous on the half-interval (a,b], b € R, then all functions

22
23) with all their derivatives up to order n inclusive are continuous

(
(

]
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at the point ¢ = b. Therefore the system of identities (26) implies as
t — b that

z(m)(b) = Zcﬂ)}m)(l)), m=0,1,...,n—1,
=1

From this we conclude that to give the function v(t) € ker L, i.e., to
give the coefficients ¢y, ¢z, . . . , ¢n, is equivalent to give the Cauchy data
z(b), &'(b), ...,z (b). Therefore in this case the problem of strong
(0,n)-stabilization of solutions of the equation (21) is equivalent to
the Cauchy problem.

In the case when k > 1,1 > 1 and —oco < a < b < +00, it is possible
to see (when the coefficients p,(t), m =0,1,... ,n—1, are continuous
at t = a and t = b) that the problem of strong (k,[)-stabilization of
solutions to a given v € ker L is equivalent to a classical boundary
value problem of the type when x(a), 2'(a), ... 2*=D(a), z(b), 2'(b),
.oy 27D(b) are given.

An example of the new problem is given in [6]. There the Euler
equation (i

Le+f=0 (28)

with L as a quadratic integral functional depending on a function
and its derivatives up to order n inclusive is considered. Under some
restrictions imposed on the coefficients of the integrand of the given
functional the existence and uniqueness of a generalized solution on
the half-interval [to, +00) are proved when the following stabilization
data are given:

1) the solution stabilizes as ¢ — +o0 to some polynomial (1);

2) the values x()(to), ... ,2(#)(to) and the coefficients ¢;,, ¢jys - - -, €y
of the polynomial (1) are given.

Some conditions are established for the indices

lolEe e (29)

when one and only one generalized solution exists.

Let the indices (29) be increasing sequences of integers belonging to
the set
{0,1,... ,n—1}:

0Sh ch<igipsn=1, 1<k<n,
0<S i< racppen=1; 1<l<n




)
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If k41 = n, we introduce the notation {7, }*=! for the complement of
the set of indices {7,} to the set {0,1,... ,n — 1}. Assume that
B << e < s
If k£ + 1 = n, then the conditions
R RS TS

are called the Pdlya ones. When one of the sets {i, ﬁzf or g5} =) s
empty, the system (29) is also said to satisfy the Pélya conditions.

These conditions were introduced by Pélya. He proved (see [7]) that
there exists one and only one polynomial (1) with the given values

PU), PO y=12... .k v=1,2,...,1, k+1=n,

iff the system of indices (29) satisfies the Pélya conditions. It is
evidently a purely algebraic problem.

In the general case, i.c., when k + [ < 2n, the system (29) is called
complete if it contains some subsystem satisfying the Pélya conditions.
For the complete system (29) we evidently have n < k + [ < 2n.

If the system (29) is complete, then there exists one and only one
generalized solution x(t) of the Euler equation (28) with the given
values (¥ (1o), ¢j, p=1,2,... kv =1,2,...,1 where ¢j, are some
coeflicients of the polynomial (1) to which the solution z(t) stabilizes
as ¢ — +oo. It is interesting to note that in contrast to the Pélya
case it is a purely analytic problem. If the system of indices (29) is
not complete, then there exist examples for which the problem under
consideration has more than one solution.

One can prove that the n times continuously differentiable on the
interval (a, b) function strongly (k,n—k)-stabilizes (k = 0,1, ... , n—1)
to the function v(t) € ker L iff the identity

b
J:(t):v(t)+/ Gty s)La(s)ds (30)

holds.

Here G(t, s) is the generalized Green function. This function stron-
gly (k,n — k)-stabilizes to zero (at the ends of the interval (a,b)), but
it and its appropriate derivatives do not in general tend to zero as
t — a and t — b, as it should be if Gy(t,s) were the ordinary Green
function.

Let us assume now that the solution of the equation (21) strongly
(0,n)-stabilizes to a function v(t) € ker L. Then the standard change
of variables

z=a, 2’ =2,,...,2" V= iy

10194
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is very advisable. We obtain a system of the type

Lx = f(t,x), x= (21,22, %),

d (31)
= o + A,

where A is a continuous matrix of order n x n on the interval (a,b),
and f: (a,b) x R* - R™.
Let
SOTE CTOPTRERIE R (32)
be a fundamental system of the homogeneous equation Lx = 0,
Y=, 30=132.... % (33)

be a fundamental matrix of the system (32), x(¢) be a differentiable
function on the interval (a,b),

x(t) = Zn:yf..(l)vl(/) (34)
=1

(by analogy with scalar functions this representation of the vector
function x(¢) will be called the Lagrange representation); also let
Yx(t) = (yx1 (1), yx2(1), - - o s yxalt))- (35)

The vector function x(1) is called strongly stabilized as t — b to the
function

v(t) = Z cioi(t) € kerl (36)

{in]lyx(l) —leavci=\(ci ol 0 ) (37)

The function x(¢) strongly stabilizes to the function (35) iff the
identity

b
x(t) = Ve— V/ V1 (s)Lx(s)ds
Jt
holds.

The problem of strongly (0, n)-stabilized solutions of the equation
(21) is reduced to the problem of strongly stabilized solutions of the
equation (31). The formula (31) implies x = Vy and for the vector
function y we obtain the equation (see [8])

y' =Vt Vy)




=
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thereby the condition (37) has to be fulfilled.

Like in the case of strong stabilization to polynomials, one can ob-
tain the existence and uniqueness theorem for solutions of the system
(31) in a neighbourhood of the point ¢ = b only if these solutions
strongly stabilize as t — b to some function v € ker L (see [9]).

4. ABSRACT SCHEME

The main idea of this paper is to establish (under some restrictions)
that for every given solution v(t) of the linear homogeneous equation
La = 0 there exists one and only one solution 2(t) of the nonhomoge-
neous equation Lo = f(t,2) if only this solution x(t) stabilizes to the
solution v(1).

The first question in the case of abstract spaces is connected with
defining the concept of stabilization, since in the function case this
concept is based on the concept of the limit of functions. It is very ad-
visable to use for this purpose the generalization of the representations
of functions (4), (9) and (30).

Let X and Y be linear spaces, L: X - Y, F: X =Y, 5:Y - X,
Y = L(X), where L and S are linear operators, and F is in general a
nonlinear operator; also let

LS i=ild

where [d is the identity operator of the space Y onto itself. Then the
following decomposition in the direct sum holds:

X = ker L @ S(Y).

Definition 5. An element x € X is called S-stabilized to an element
v € ker L if

z=v+SLz.

In this case we can write 2 ~ v.
s

Under the above-given assumptions, for every element v € ker L the
equations Lx = Fa and @ = v + SFa are equivalent on the set of all
elements of the space X which are S-stabilized to the given element
v € ker L.

If X, Y are Banach spaces and SF is a contracting operator, then
for any v € ker L there exists one and only one solution x ~r in the

space X.

LS |
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LIMIT DISTRIBUTION OF THE INTEGRATED SQUARED
ERROR OF TRIGONOMETRIC SERIES REGRESSION
ESTIMATOR

E. NADARAYA

ABSTRACT. Limit distribution is studied for the integrated squa-
red error of the projection regression estimator (2) constructed
on the basis of independent observations (1). By means of the
obtained limit theorems the test is given for verifying the hypoth-
esis about the regression and the power of this test is calculated
in the case of Pitman alternatives.

JIB0I30. gﬂl’V‘)SQnQ“ éga(vgbnnlm o (1 Qoﬂmﬁ % QUBSQ Q"JS”‘"
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@00l 330 ‘)Un ol @aa 00 G000 463 or 0. oaogemo
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Jo3morgols Fgbadefdgdarmo @b ©o gedmagmomes 3obio boddemagrg
3o dghols @@3650®n3330bau»3§ﬂ -

Let observations Yi, Ya, ..., Y, be represented as
Y = ule) +e, i=Tom, (1)

where p(x), @ € [—7, 7], is the unknown regression function to be
estimated by observations Yi; w;, i = 1,n, are the known numbers,
and =T = 2o < 21 < -+ < @, < 7, &, i = L,n, are independent
equidistributed random variables; Ee; = 0, Ee? = 0% and Ee} < o0.

The problem of nonparametric estimation of the regression function
u(z) for the model (1) has a recent history and has been treated only in
few papers. In particular, a kernel estimator of the Rosenblatt—Parzen
type for u(z) was proposed for the first time in [1].

Assume that j(z) is representable as a converging series in Ly(—#, )
with respect to the orthonormal trigonometric system

o
{(2#)_1/2, 2 cos iz, 12 smz.r} :
i=

1991 Mathematics Subject Classification. 62G07.
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Consider the estimator of the function yu(x) constructed by the pro-
jection method of N.N. Chentsov [2]

N
pan () = a‘% +Zain cos tx + b sinix, (2)
=1

where N = N(n) — oo for n — oo and

5=

Qin =
W=

n s
’ 2 - i
ZY_,AJCOM.L], b = wZ:)_,/_\Jsmm],

=

>

i — iy = 1m, 1= 0N

j

The estimator (2) can be rewritten in a more compact way as

= Z Y, 8, Kple—2;),

=1

where KNy(u) = &= 5 ¢ is the Dirichlet kernel.
27 v

In (3], p.347, N.V. Smirnov considered estimators of the type (2)
for a specially chosen class of functions p(a) in the case of equidis-
tant points ; € [=x. 7] and of independent and normally distributed
observation errors &;. In [4] an estimator of the type (2) is obtained,
which is asymptotically equivalent to projection estimators which are
optimal in the sense of some accuracy criterion. The asymptotics of
the mean value of the integrated squared error of the estimator (2) is
considered in [5].

It is of interest to investigate the limit distribution of the integrated
squared error

A/lT [ttan () = /l(-l')]z(/;z',

which is the goal pursued in this paper. The metod used to prove the
theorems below is based on the functional limit theorem for a sequence
of semimartingales [6].
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Denote

n us 2
U = gy L, lete) = Eww)] o,

N AT 2 5
Qin = A Kn(es =), ohn = o er“ZIQJ,,
n

(2N + l)anv

G=0, &3 n, k=Dm, =l K>n,

gickQik,

Nik =

and assume that Fj is o-algebra generated by random variables €y, 4,

ek Fo=(4,Q).

Lemma 1 ([7], p.179). The stochastic scquence (&, Fi)ks1 is a mar-
tingale-difference.

Lemma 2. Let p(x) be the known positive continuously differentiable
zllclubutmn density on [—w, 7], and points x; be chosen from the rela-
tion [Tt p(u)du = ,'T ki

If ‘VIT‘;“\’ — 0 for n — oo, then

n

NInN 2 4
EUn =0+ 0 ( = ) , = ~U—/ pH () du, (3)
: 27)2 Jox
W 2 fi7s .
(2N +1)o2y — 8, = 17_3/ 27 () el (1)

Proof. From the definition of z; we easily obtain

ol

where O(v‘—l) is uniform with respect to ¢ = 1, n.
Hence it follows that

1 1
e
@ 71.7]1(mi)])(.1',)]\‘~(r z) [ i n (5)
Taking into account the relation
may |I\\ u)| = O(N) (6)

and (5), we find

1 n

2 1 1 e
oin= WZZI\N(.rf«vj)[p—.'———2+()(_). (7)

i=1j=1 (Lx)l’(”j)}
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Let F(z) be a distribution function with density p(z) and F,(z) be
an empirical distribution function of the "sample” @1, z3,... , Ty, i.e.
Fo(z) = n7' $0_, [(—oox)(k), Where I4(-) is the indicator of the set
A. Then the right side of (7) can be written as the integral

= : Fo(t)dF,(s) 1
2y e K2(t —s)—221 == O(—).
TN T 9x2N £ 1)2 [w /_,« =) wper T \n

Further we have

iRt dF,( t) dF (s) (lr(t)dF( s)
-/—1[ —nl\‘ i e [p(t) /_ﬂ ‘w[ [p(t)p(s ]2 <
< 11 i ]2

' / / Kt - o) ey o [dr (t)—dF ()|,
dF( )
L _WI\N Vi) P[zr( 5) - dF(s))|-

By integration by parts in the internal integral in I; we readily obtain
T dEu(s) [T » -
i 2/‘ 1,2((,;) /_ dF(1) = dF ()| | (Kt = 9)p(t) =

—Kn(t—s)p'(t ))[\v (t —s)/p( i)‘(lt (8)

Since sup_, <p<r |Fo(2)=F(2)] = O(;) and the following relations [8]'
max |Ki(u)| = O(N?), /’T K% (u)du=2N +1,
—ru<m e )
/ |Kn(u)|du = O(In N)
are fulfilled, from (8) we have the estimate

i <N2]11N> :
n

In the same manner we show that

TR <1\fZ In N) .
n
Therefore

dl(lc NInN
CN+1)rty =1 [ [ anle—0- O( - ),(10)

1See p. 115 in the Russian version of [8]: ”Mir”, Moscow, 1965.
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where Oy (u) = 1311 K% (u) is the Fejér kernel.

We shall complete the definition of the function p~' outside [—, 7]
as regards its periodicity and also note that Ky(u) and ®x(u) are
periodic functions with the period 27. The continued function will be
denoted by g(x). Then

dt d T
[ o= [ e 43

Nl < [ low(e) = glalde,

= / O (u)g(a — u)du.

Hence, on account of the theorem on convergence of the Fejér inte-
gral ox(x) to g(a) in the norm of the space Ly(—m, ) (see [9], p.481),
we have \, — 0 for n — oo.

1

where

Therefore
gt 7
(2N + D)oy — F/ p () de.

Now we shall prove (3). We have

Dpnn(z) = 0° Z 'l*’l'j)[l—!—()(%)]'

2(
=

Applying the same reasoning as in deriving (10), we find
ds NZIn N
D (a / Ki(z—s )M-u)(n—)). (11)
Therefore
o T dsdt NInN
El,y = / o ( >:
) {2x)? ./ﬁﬂ‘_w(b_\([ )/1(5) e n

o i _/Nln A\')
= s)ds —.
(27r)? /_:[I (e)e +0( n

Denote by the symbol < the convergence in distribution, and let €
be a random variable having normal distribution with the zero mean
and variance 1.

L ; N2In N
Theorem 1. Let x; ¢ = 1, n be the same as in Lemma 2 and LI':J— —
0 for n — oo. Then as n increases

V2N F 1(Unn — 61)03%% 5 ¢,



226 E. NADARAYA
Proof. We have
Uusn — EUnn
== g B

where

HY =3¢,
j=1

n L

e 0
272N + D)ony L€l — Be)Qs

=1

HE =

H® converges to zero in probability. Indeed,

n?Ee}

TN T P

N i=1

DH® <

4
Eej

= S ] 3
e e
1

Q
P
Si
N
IN

n

whence H(? 2 0. Here and in what follows C is the positive constant
varying from one formula to another and the letter P above the arrow
denotes convergence in probability.

We will prove now that HY 4 €. To this end we will verify the
validity of Corollaries 2 and 6 of Theorem 2 from [6]. We have to
show whether the the conditions contained in these statements are
fulfilled for asymptotic normality of the square-integrable martingale-
difference, which, by Lemma 1, is our sequence {&k, Filir-

A direct calculation shows that Y7, E& = 1. Asymptotic normal-
itv will take place if for n — oo

SE[EE - 1(1Ed 2 )| Fic] = 0 (12)
k=1

and

25 (13)
=1

It is shown in [6] that the fulfillment of (13) and the condition sup |&]
1<k<n

20 implies the validy of (12) as well.
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Since for e > 0
/2 sup 2 Se 4 E ‘?,
{1<kl<nlék[ i } o ,CE:_, &

=

to prove H() 4 & we have to verify only (13) by the relation (15) to
be given below.

We will establich °7_, €2 B 1. Tor this it suffices to make sure that
E(Cro & —1))? > 0for n — o0, i.e. due to Nk, FE2 =1

n b 4 n
E(Z&Z)=;Eét+2 T EEE oL (19

1<k <kp<n

k=

In the first place we find that Y"p_, & — 0 for n — co. By virtue
of the definitions of & and 75;; we write

> Bt =L0+19,

where

nd n k-1

T Ty Pl ~ 3 - 3

k=2 j=1

LW =

3ntot Eef z

(21___,____ — 0?2
L (2N + 1)iotyr 22(1.:210”‘) ’

From (5) and (6) we obtain

nok=1grd oo o
IL(nl)l e '1 Ky(z; J,;‘.)Iil +O(-]—)] >

wINtoly (5 = I()p(e)) n/l=

2
S@nrios— ()((]—\i) )
n
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and also

-

n ~

. 2
(t, e y[w(m) g

n k=1 2
L Ui Ki(z;—z =
= =0 \H(, 4 Z o k)

k=1 =l

K3 (ey —u) <
e g n? \‘ nENAgt (/ 1)1 ) W) s

N k=2

< ”2\4 e Z{[[\{ Tp — )] '(u)(/u]

nN

nz\'

+
+[ ;r K2 () — 11)1)_2(11)(/(#‘,,( }

Ience, taking into account the relation (9) and the formula of inte-

gration by parts, we have
; 1
L) = ()(-).
n

Z EE — 0 for n— oo. ; (15)
k=1

Therefore

Let us now establish that 2Y ¢, <k, <n BELE, — 1 for n — co.
The definition of & implies

i ky—1 kil o
et ) ;
Eilff'z o ( Z ’1;1-.)( z ’IfL,) * ( Z ’M,)( Z "kz’]sk))
i=1 =1 =1 ie=1
k=l i s e
+( > ’7:21:2)< Y Mok 'I:A-.) & ( D Uk 'Irm)( 2 'lkkﬂl:-k;) =
i=1 s#EL=1 s#t=1 k#r=1
=BY +B% +BS +BY
= Bk, + By, + A|k2 i k,kz
Therefore
1
g 3 BRG =D 4l
1<k <k <n i=1
where

AQI—ol SR B = T

1<k <ky<n
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In the first place we consider A®). By the definition of 7;; we obtain
Ent o, =0, s#t, ki <k
Thus

A® = . (16)

Let us derive an estimate of A(?). Divide the sum [;'BL"Z)M into two
parts:

k=1 Kk k=1 ky—1
5 2
EBL, = Y Entonee i #0000 B0l thwiioeg
i=1 rzs=1 =1 r#s=k;+1

The second term is equal to zero, since 7 cannot coincide with r or
with s and r # s; in this case [fl]fklrl,.g.Qr/st =0, and Ifl]fkl NrksMsk, =0
also in the first term each time except the case s = ky or r = ky.
Thus
2) =
aple) (2
EB, =2 o /z(r/,»kJ ’]’k2’,kl,\'1)'
i=1
Hence, using the definition of 7;; and the inequality |Q,;| < (% ob-
tained from (5) and (6), we find

k=1

<"————— 3 & (17)

|/1m1_ N T Doty &

Next, taking into account statement (4) of Lemma 2 and the defi-
nition of o, from (17) we have

n k-1
AP < O 3 X @k s O =0(2)
N 71(7 n

n\ ky=2 i=1 aN

Consider now AM. By the definition of 7;; we obtain

8 4
AD = = S

n'(lA\ + 1)ionn s<t<ky <kz

= €5 N 4 ‘, [ S [;A’ Qi/u()ak;(zlk](gth
¥ G \ 3 Qk,tQ.ﬂQk,st,] :
Ky st e
=40 \: [ Al (19)

<N
T

~
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According to (5) and (6) we write

Ei=n"" Z Kn(zs — zry ) Kn (g — T2y) X

s,t,ky
L4 2
x [ Ky =) (an = w) dFu(u) + O(NT)‘

Hence, integrating by parts and taking into account (9), we obtain

E =n"" /” Z Kn(xs — ar ) Wn (2 — 2y ) X

e

in N
Ntln] ) (20)

n’

Kn(xs — w)Kn(xy — u)p(u) du + O(

Applying the same operations three times, we represent (20) in the
form

E = "_4/n /j /VT /j Kn(z —u)Kn(z = ) Kn(y —u)Kn(y — 1) x

NilnN
xp(y)p(u)p(z)p(t) dudt dz dy + O( - ) =
r

%

= 0(‘\’111? ;\') 4 O(N" ]171 N).
n 7>

N N2InN
. |:()('“ )+o( i ) (21)
Nio n
Further, it is not difficult to show

;zv, i 0(£>’

N ”\, n

N2

\4 1“1 & (T)

Therefore (19), (21) and (22) n‘nply

N2 i 3N
A = O(l—'"—[\—) i 0(1”\,‘\ ) (23)
n 4

Finally, we will show that A — 1 for n — oo. For this represent
AWM in the form

Thus

Lo Q(,” o Q(;Z)s
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where
ki—1 k-1
1 i 2
=23 (X &)L o),
ki<ky N i=1 =1
) k-1 ko—1
2 5
Q=2 ¥ e8l - ¥ (T k) (T Bka))-
k1 <kz ky<ky N i=1 j=1

From the definition of o2 it follows that

o =1-3 (S o),

where
b ():L'm> < O E(Z%) <
k=2 N i=1 NN k=2
N2
o =0(=)-
nouN n
Therefore
QW =1+0(N?*/n). (24)
Let us now show that Q) — 0. Q) can be written as
#i-1
Z {Z ((0\ ’M. ,? )+ cov(n 1A1~’7£,k2))]-
ky<ks b i=1
But
Enk n2e <10 n' (
Miky Niky S (/j\:-_g—.‘Q.k, i <
o 1 p L 1
5 :rﬂ\"‘a;’h\.(»lwnél‘,‘é HHn( ”)l) i (,,;l(,iN)‘
Similarly,
En} = )(n“za;%).
Therefore
: 2 1
oV (i, Mk, ) = O( ) (25)
% niod

Further, since ¥y <y, <k, <n(ks — 1) = ()(113). (25) implies

o =o(X). (26)
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Thus, according to (24) and (26)
AD =14 0(N?/n). (27)

Combining the relations (16), (18), (23) and (27), we finally obtain

n 2
E(fo71> — 0 for n — oo.
k=1

Therefore
Bai =Bk
AN Uy 4, e
TnN
Purther, due to Lemma 2, U, x = 0, +()(‘\"/%\') and (2N +1)o2y —
0,, and hence we obtain

QN4+ DM U= 005" 5 ¢ =

Denote

Ton = Zr(l—z%'—l) /jﬁ [/lﬂ,\-(.z') - /1(.:-)]2 dx.

Theorem 2. Let v, i = Ln, be the same as in Lemma 2 and the
Junction p(x) with period 2 have bounded derivatives up to the second
order. Morcover, if N*In N/n — 0 and n In? N/N? = 0 forn — oo,
then

VI (B = )02 2 S e
Before we proceed to proving the theorem, we have to show
x
/ [K% ()|du = O(N In ). (28)

Denote 5,,(11.) = 3%_, sin ku. Then by virtue of the Abel transforma-
tion we have

N-1

Ky(u) = ZI\\mAuAZI) u) +\I)\

It is well-known [8] that 7, = (Inv)~ L \D,, (u)|du — 1 for v — oo.
Denote by = S¥5' Inw. Then by Toeplitz lemma

N—-1

Ry = — Z Iny-n, — 1.
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Therefore

/ [ Ky (w)|du < Z/ [du+N/ | Dy (u)|du =
it N/ [Dy(w)]|du = O(N In N).
Let us return to the proof of the theorem. We have

Tan = Unn + Atn + Ags,

A el ! [ (@) = Erin(@)] [Bra () = ()] da

n 7' 2
Asgp = '2_7.'_(2‘\'—4»1)/‘” [EpnN(z) - /I,(I)] dz.
It is not difficult to find
2 n 2
V2N + FIA‘"|<—W+_<2=: ][/ Ko(y — ) X
1/2
x (Eptan () *ﬂ(z))dy] ) .

But

Eunw(y)=/_ p(z )(L)AN y — z)dFa(e )<1+0(%))

and
/7r w@)pH(z)Kn(y — x) dFy(z) =
—/ ) Kn y—x)+0( /:]1\';\,(u){rlu)

It is well-known ([10], p.22) that
e 5 In N
[ w@Enty - 2)de = utv) +0(57)

uniformly in y € [—m, 7). By virtue of (28) this gives us

Ep.n(z) :/t(:c)+0(lnN12V) +O(N1;]N>. (29)
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Therefore

niln®? N\/2In N
VIN F1E|Anal < CK'NsT) e

+(1\721n/v>1/21n3/2]\f] o
—
VN

(30)

n

Further, from (29) we have

nln®?N N?In*N
VAN ¥ 1As < O (e + — ﬁ) 00
Finally, the statement of Theorem 2 directly follows from Theorem 1,
(30) and (31).

Using Theorems 1 and 2, it is easy to solve the question concerning
testing the hypothesis about p(z). Given o2, it is required to ver-
ify the hypothesis Ho : p(z) = po(a). The critical region is defined
approximately by the inequality

Unn > da(a) or Tan 2 dn(a),

where

da(a) = o* (L + (2N + 1)"2L2) M

= 1 = 1/2
Ly = ((27)2 ./‘1r p Y z)de, L2= (Z;rg /_ﬂp_z(z) da:) o

and )\, is the quantile of level a of standard normal distribution.
Let now o2 be unknown. We call an V/N-consistent estimate of
variance o2, for instance,

1w 2
Si—c (% = pma()
i=1
: = 4 b Nin? A
where A = A(n) — oo is a sequence such that § — 0, M52 — 0 and

NT” — 0 for n — oo.
Indeed, using the expressions (11) and (29), we easily find

VFs: - =o(((2)) +o(F2). @

n A2

Denote

Z;=Y; - R,

<

R]' = Z YkAk]\'A(Ej Lk Ik).
k=
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Then
n’DS? = ZDZZ+ Zcov 72 Z2
iiy
Simple calculations show that

Therefore

cov(Z2,2}) = O(%q-)
)-

4
Ds? = o(i
n
This and (32) imply
VN(S2-o?) B0

Corollary. Let the conditions of Theorem 2 be fulfilled. Moreover,
letA OTﬁOand%—vO. Then

820 AN F (U = 2Ly 8,
SN (T = S2Th) i &

This corollary enables one to construct a test for verifying Hy :
w(x) = po(z). The critical region is defined approximately by the
inequality

Unn 2> dn(a) or Ton > dn(a),

where d,(a) is obtained from d,(a) by using S? instead of o2.
Consider now the local behaviour of the test power in the case when

the critical region is of the form {z € R', 2 > d,(a)}. More exactly,

find a distribution of the quadratic functional U,y under a sequence of

alternatives close to the hypothesis Hy : p(z) = po(z). The sequence
is written as

Hy s () = po(a) + mep(a) + o(va), (33)
where v, — 0 appropriately and o(v,) is uniform in z € [—7, 7).

Theorem 3. Let ji, () satisfy the conditions of Theorem 2. If 2N +

1 =nf, 4, = n~1/2H/4 2 < 6 < 1, then under the alternative Hy

the statistic (2N + 1)1/2(U"N — 0,) is distributed in the limit normally

(& 7, o2 (u)du, VBy).
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Proof. Let us represent U,y as the sum
B = #/" (o) :
N = or@N 1) Js (o (@) = Enpns (@) e +

n 4 e
+ gy L o) = By ds +
n

o m‘ri /_n Fa(z) dz = Ai(n) + Az(n) + As(n),

where Fy(+) denotes the mathematical expectation under the hypoth-
esis Hy,

Fale) = 3o (@) A Knlz — 7).
j=1
Due to Theorem 1 one can readily make sure that V2N + 1 —0,)
is distributed asymptotically normal (0,V05).
By analogy with the proof of Lemma 2 we find

N?InN
R A = —f (/ DKo —y)dy) i +0(%).
Hence, by virtue of theorem 2 from [9], p.474, we have
V2N + 1A43(n) — {)L/1r <,92(u)(lu.
2r J-x

Further, for our choice of N and 7, we can show by simple calculations
that

r_—2N+1E|A2 |<C(ln n+ ln_n ) -

s[4 T p1-76/4

Thus the local behaviou of the power Py, (Unn > dn(a)) is

Pry (Uny 2 dn(0)) = 1 - @(Aa s 0;‘“517; /_ vz(u)du). (34)

Since [, ¢*(u)du > 0 and is equal to zero iff (z) = 0, from (34)
we concludc that the test for the hypothesis Ho : p(x) = po(x) against
alternatives of the form (33) is asymptotically strictly unbiased.

[i’( mark. Similar results can be obtained by the same method for
‘Lo kernel estimator of Priestley and Chao [1].
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ON THE INTEGRAL BERNSTEIN OPERATORS IN SOME
CLASSES OF MEASURABLE BIVARIATE FUNCTIONS*

ROMAN TABERSKI

ABSTRACT. The main two theorems cencern the approximations
of (complex-valued) functions on the real plane by the sums of
Bernstein pseudoentire functions. They are formulated and proved
in Section 4, after the prior determination of the suitable integral
operators. Analogous results for pseudopolynomial approxima-
tions were obtained by Brudnyi, Gonska and Jetter ([2],[3]).

60B0TD. b336mdBo glifagumacmns Jmdrmpgdsmo 860356mmmdels 3jmby
o0 (33morol ggbgses Baﬁ%‘@anﬁn{) caqxaanamaQo ubdaegdon
Boobemmadols byjoabsgdo.

1. Preliminaries. Let Lj.(R) [resp. ACi..(R)] be the set of all
univariate (complex-valued) functions Lebesgue-integrable (absolutely
continuous) on every compact subinterval of R := (—o0,00). De-
note by L} (R?), 1 < p < oo the set of all measurable bivariate
(complex-valued) functions Lebesgue-integrable with p-th power (es-
sentially bounded when p = co) on every finite two-dimensional inte-
gral lying on the plane R? = R x R; write Lioc(R?) instead of L}, (R?).
Denote by C(R) [resp. C(R?)] the set of all (complex-valued) func-
tions continuous on R [R?].

Given any bivariate (complex-valued) function f = f(-,-) measur-
able on R?%, the quantity

g
I1fllp == (ffm |f(u,v)Pdu dv) P if1<p<oo,
! esssup(, yyene | f(w,v)]  ifp=o0

is finite or infinite. In case | f||, < oo the function f is said to be of
class L? = LP(R?), in symbols f(-,-) € L?. Analogous meanings have
the notation: f(-,-) € L}, (R?), g(-,v) € Lioc(R), etc.

1)

1991 Mathematics Subject Classification. 41A25, 41A35.
*Research supported by KBN grant 2 1079 91 01.
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240 ROMAN TABERSKI

Let f = f(-,-) be a (complex-valued) function defined on R? and
let k,1 € No = {0,1,2,...}. Determine the partial differences of f at
a point (z,y) € R?, i.e.

: b Uk
i) = -0 () e h),
u=0
1AL " I l
S fGa) = 30 () ) oy o),
v=0
with the real increments A, 7. Introduce also the mixed difference

L i W e

It is easy to see that i

ath = Ry (1) () e wa o

#=0 v=0 Lo
In particular, Ag"?lf(x,y) = f(z,y) and
AV f(y) = fla+ Ay +n0) = [+ Ay) = f@y+0)+ f(2,9)
Further,
ALLIAY fa,p)) = AL (e, ).
The first (weak) derivative of f at (z,y) is given by
: ol
fO(a,y) = lim 5 AL (2,9)

whenever the right-hand side exists. The (weak) derivatives of f of
higher orders are defined successively:

f9(@,y) = () ap) for j=2,3,....

Moreover, by convention, f®(z,y) = f(x,y) and

§r ) = oo (2 fa,0)) for min € No
dx™ \Qy"

Considering any (complex-valued) function f measurable on R?, one
can define its mixed LP-modulus of smoothness:

Wkt(81, 823 )y = sup { AL fll, -0 S A < 6, 0 < < &}
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This quantity, with fixed p > 1 and k,! € Ny, may be finite or infinite
for positive numbers 6y, 6,. If there exist three non-negative numbers

M, a, 3 such that
Wi t(81,82; f)p < ME285 for all 6,6, € (0,1]

we say that f belongs to the Holder class Hik[;)p More generally, if

(R p—Stlp{——IIA pinielinaa) <o, (@)

where ¢, 1 mean positive non-decreasing functlons on (0,1] and (1) =
(1) = 1, the function f is said to be of class H*}) owpe I case p(6) = 6%,
¥(8) = 6° for § € (0,1], the left-hand side of identity (2) will be
signified by || f]|%7),.

Denote by E, [resp. E, ;| the set of all univariate (bivariate) entire
functions of exponential type of order o [(c,7)] at most. Clearly, if
F(.,-) € E;;(a,7 > 0) then F(-,v) € E, and F(u,-) € E, for all
u,v € R. Moreover, F(-,-) € C(R?). In the case when (I>( v) € E,
(resp \P(u -) € E;) for almost every v € R [u € R], ®(z,-) € Li,.(R)
[¥(-,2) € Lio.(R?)] for every complex number z, and (I>( ) € Lio.(R?)
(-, ) € Li,c(R?)], we call ® [¥] the pseudoentire function of class
w2 (W,

The aim of this paper is to present the Jackson type theorems, in
LP-norms (1) and seminorms (2), for some (complex-valued) functions
defined and measurable on R%. We begin with auxiliary results about
the mixed differences and Bernstein’s singular integrals used in our
approximation problems.

2. Estimates for the mixed differences and moduli of smooth-
ness. Consider a (complex-valued) function f = f(-,-) defined and
measurable on the plane R2. Denote by k, [ two non-negative integers.
Take an arbitrary p satisfying the condition: 1 < p < oo

Proposition 1. If \,n € R andn € N = {1,2,3,...} then
AR o flls < mEn' | AKS £l 3)
Proof. Given arbitrary z,y € R, let
glz,y)i=2AL f(z,0).
By identity (5) of [5], p.116,
n—1 n—1
g(zy) =D -+ D A f(a,y +vn + -+ vim)

n=0 =0

AN
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and
1AL(a,y) = Z Z 'Afg(@ + A+ 4 e, y).
=0 uk=0
Hence
m— m-1 n-1
AL )= Z Z
1=0 £=0 vy=0

n—-1
A f@ At ey an+ e+ i),

n=0
Applying Minkowski’s inequality, we get at once estimate (3). H
From (3) it follows that

wi(mby,nby; f), < mkn wkl(51,521 f)p (m,n € N) (4)
for all non-negative numbers é,, §;, whence , in case a,b > 0
wi(ad1, 665 )y < ([a] + DF (0] + D'ora(61, 82 - (5)

Clearly, the estimates (3)-(5) are useful only with the finite right-
hand sides.

Proposition 2. Let f have the partial derivatives
FON(w,),..., fm 1) (4, ) € Lio(R) (m,n € N)

for every uw € R, and let f"='" (- v) € ACie(R) for almost every
v € R. Further, given any ¢ > 0, suppose the existence of positive
number M. such that

esssup | f™™) (u,v)| < M,
—c<uge

for almost every v € [—c,c]. Then, in case k > m and \,n € R,
il (6)

Proof. By our assumption, the (Lebesgue) integrals

n 2
/ /77 F9 (w4 by + -+ t)dty - dt, = Fj(u,w)
o 0

(7=0,1,....m)

exist for all u,w € R if j < m and for almost every u and every w € R
fi=m
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Given u,w € R, one has

1 h
7—/ f(""")(u + 8,0+t + -+ 1,)ds| < M,
h Jo

uniformly in & € [—1,1]

(h # 0) for almost every point (¢, - - ,1,) of the n-dimensional interval
[=Inls In|]™ whenever ¢ > max(|u| + 1, |w| + n|y|). Moreover,

]nn—/ f("'") (uts,w+ty 4 +t,)ds =
h—0 h

= fr (w,w g+ L)

for almost every u. lence
11m ~{Fm 1(u+ h,w) — Fm_l(u,w)} =

=/”-~/ f(""") Uy w by 4 ty)dty - dt
0 0

R 01)(1141:) = F,(u,w) for a.e. u € R and every w € R,
by the Lebesgue dominated convergence theorem.
Next, when m > 2, (u,w) € R? and 0 < |h] <1,

1
7{ o(u+ hyw) — Fm_g(u,w)} =
= { j(’" W (w4 s, w4t -+ t,l)ds}(lt, <o dty,

f(m‘”) (u+ 8,0+t 4+ t,)ds| =

= ll—{/ S (A zyw b+ e+ ta)dz +
v 0

+f(m_1'")(u, wHty 4+ tn)}(ls <

1
< ‘ﬂf(m'”)(u +zw At e+ ) |de| +

HFTI w1

and

llm—/ f('" 1")(u-i—s Wty 4+ t,)ds =
h—0 h

= fmIn) (w4 -+ 1)

1Z
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V for almost all (ty,...,t,) € [—|n], |n]]*. Therefore, as previously,
FU)(u,0) = Fry(u,w) for all (u,w) € R?
Analogously, when m > 3,
F (uyw) = Fr_a(u,w) for all (u,w) € R?, ete.
Consequently, if m > 1,
Fém_l‘o)(u,w) = F_i(u,w) for all (u,w) € R?,
and
F{™)(u,w) = Fp(u,w) for ae. v € R and every w € R
Further, in case —¢c < a < b< cand |w|+nlp| < ¢,
[Frcy(byw) — Fry(a, w)| =
{/ F (5w 4 8 4 - tn)ds}dt1-~~dt,. <
< Mc(b— a)ln|™.

Hence
Froi(-,w) € ACjo(R) for every w € R.
By identity (4) of [5], p.116,

ATe e, y) ="B7 (A (=,y)) = A2 Fo(wy) =
A 5 Y
=/ "'/ F™ (@ 4 o1+ -+ + 8myy)dsy - dsp =

_/ / m(T+ 81+ - ot S, y)dsy - dsy,

for arbitrary z,y,\,n € R. Thus

gt = [ [ { [
"/onf(m'")(l'l'sl-}-"'+sm,y+t1+-~-+tn)dt1..dtn}dsl...dsm.
Observing that
AL (e.y) = Ak"”"’"(AT’ﬂ"f(x y)) =

L et

xf(m'”)(z+sl+~--+sm,y+t1+"'+tn)dt1"'dtn}d~91“'dsm
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and applying the generalized Minkowski’s inequality, we obtain (6). W
Estimate (6) immediately implies

Wi (61,823 )p < 8765wk _my—n (61,625 f™™), for 6,6, > 0. (7)

Proposition 3. Let (fo, f1,...,f,) be a system of (compler-valued)
functions of two real variables, such that f, € Li,.(R?) (p € N) and,
forj=1,....p,

fﬂ—](l'sy) = fp-j(zao) ot fp—](ovy) Y fﬁ—j(ov 0) o
+ [ [ fomsmitu ) dude ifz,y #0,

Fots (@000 f ](0 y) are defined for all real z,y and, when j < p,
fo-i(5,0), fo=3(0,) € Lioc(R). Suppose that the integer k is greater
than or equal to p Then, for all \,n € R

A% folls < AnlPIAS* follp- ®)
Proof. Given arbitrary z,y,\,n € R, we have

y+n

T4y
Aoty = [ [ AGstydsdt =
Ao
:/ / filz + s1,y + t1) dsy diy,
AR fo(e,) = [ [ AYAAG o0y ) dssdty =

:/0 /0 {/0 /0 foz+s1+s0,y+1 --}-t;)dszdtg}dsldtl, etc.

Therefore
AR fol,y) = DS (A% folz,y)) =
A Ao n
Y O N
Xfo@ 4814+ 8py+ti4- - +t,)ds - ds,dty - dt,
This immediately implies estimate (8). W
From (8) it follows that
Wk k(61,625 fo)p < (8182) wi—p k- (61, 823 f)p 9

for all non-negative numbers 6, 8,.
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3. Basic properties of the Bernstein singular integrals. Consider
the entire functions g,, Gk of exponential type of positive order o,
with positive integer parameters r, k given by

so(@)i= (L )7 Gustr= S0 (oo

=1 IV

2r=1 oo /a] 2r
o :/ya(t)dt:‘l(i) / (S”w) dv.
R 2r 0 v

Suppose that f = f(-,+) is a (complex-valued) function defined and
measurable on R?, such that

é).

It

| f(u,v)] !
I(f) = //m ) 1+U2r)du(lb<oo. (10)

Take arbitrary 7 > 0, [ € N and complex numbers z; = @1 + iy1,
23 = &3 + iy2 (T, ym € R). Introduce the singular integrals

Tomlfl (et 2) = l7a00 )7 //Rz T(w,0)Gop(z1 — 1) x

X Gory(z2 —v) dudv, (11)
JHSfz1,0) =" /Rf(u,v)(%'a,k(z, —u))du (veR), (12)
J2f) (e, 22) := 75t /ﬁf(u,l')Gy,z(z: —v)dv (ueR), (13)

which are due to S.Bernstein ([1], pp.421-432).

The double integral (11) exists in the Lebesgue sense for all complex
21, 22; the single (Lebesgue) integrals (12) and (13) exist for every
complex z; [resp. zp] and almost every real v [resp. u]. More precise
assertions will be presented below.

Proposition 4. The relation

ol Alzn, 22) = O((1 +23)(L +=P)ermbinlE(g)) - (19)

holds uniformly in 1, y1,T2,y2 € R; moreover, J,;[f] coincides with
some bivariate entire function.

Proof. Putting

223) = // (u,0) g0 (21 — w)g-(z2 — v) dudv,

7
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we can, formally, write

] 2141 oyl o oo
(21,22) = (/ / i / +
#y=1 Jupt @141 241

S

00 ra2+1

+/ / i +~--)f(u,u)g‘,(z1 —u)gr(z2 —v)dudv =
T1+1 Jzo—

1
o(21,22) + Ti(z1,22) + Ta(z1,22) + - - .

In view of (10), f € Lic)R?). Hence the term Ty(zy,2;) exists
because g, € F,, g, € E,. Furthermore,

el 2r 2r
|To( 1,~2)|</ / | f(u,v ( ) e”ly‘l(%) e’lm(ludvﬁ

< (ﬂ) elltrhal [7F /”*‘_’f“Ldu(h,.
— \4r? -1 Jo 14 u?)(1 4 v?)

{1+ (ol + )7 H1+ (el + 1)} <

= 4(;7’_";) feam|+f|yz|1(f)(|xl} + 1) (Joa] + 1)

Next
o

[T1(21,22)| < i /No [_/'(u,v)|e”]y”(xl—u)_zreﬂy’l(zg—v)_zr(ludvg
r1+1J72+1
< e+l / I/ (u, U)|
il il 1+u2r )(1 +v?)
L1+ (ol + 07 H1 4+ (2o + 1)) <
AWML (J2y] + 1) (Jea] + 1),

dudv -

00 2r
!T_(;l.zg)]S/ /oo |f(u,1:)|e"|y‘|(x1—u)_2'(1—) el dy dv <
£ -1 2r

1+
<a() et ) 4 17 (el 4 177, et
Thus
S(z1,2) = O((l +27)(1 + Igr)evlyxlwlyyll(f)) (15)

uniformly in @1,y1, 22,92 € R.
Evidently, the left-hand side of (15) can be replaced by

Su(zn,22) ¢ // Sf(u,v) ( 1_u)g (22 v)dudv (u,v € N).
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Further,

Toolfln ) = == 3= Sty () (D) Z stz

V7 p=1v=1 m) \v

Therefore, the uniform relation (14) is established. Applying the
Lebesgue dominated convergence theorem, it can easily be proved that
the function J, -[f] is continuous at every point belonging to the space
of pairs of complex numbers.

The (Lebesgue) integrals

/ / f(u,v)g (1_u)g,<22 )dudv (p,v,n € N)

define some entire functions F,,,, of two complex variables z;, 21, be-
cause they have the partial derivatives

oF = 1 n n L
()= [ _nf(u,v)gf,(z‘” or (22 dua

and

IR . C Lorpn 2 —u ,(22;v>
e (zl,pz)-”/_"/_nf(u,v)g,,( w )g, v duiy

An easy calculation shows that

Nm Fun(21,22) = S (21, 22)

uniformly in 2y, z; belonging to two arbitrary bounded sets of complex
numbers. Hence the well-known Weierstrass theorem ensures that all
S, are entire functions of two variables. Consequently, J,.[f] is a
bivariate entire function for every ﬁxed pair (o, 7) of positive numbers.
Obviously, in view of (14), J,.[f](:,) € E,.. R

Proposition 5. The singular integral (12), with a positive parameter
o, has the following basic properties:

i) JSI(-,v) € E, for almost every v € R,

(i1) J2f](=1,") € Lioc(R) for every complex z,

(i) B> ) € Lin( ).

Proof of (i). By Fubini’s theorem, condition (10) implies

‘/ ‘ d/wlfuvl<oo
w1+u2r o 1+

for almost every v € R. Hence, for these v and 2, = z; + 1y,

pulero) = [ |fa o), (22)

du< con(pp="155 k)
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and

Y(z,0 / F(u,0)Go (21 — u)du =

X:: (;L> /oo (u,v)go(zl;u>(lu.

Writing

Pulz1,0) = (/:‘+/:+/_m-l> Sy, UMO(;I;U)

and proceeding as in the proof of Proposition 4, we obtain

eulzn,) = O((L4 1)1 [ £, 0)](1 + ) ) (16)

uniformly in @1,y;,v. This immediately implies the O-relation for
Y (z1,v), in which the right side is as in (16) with x = 1.

Further, Y'(-,v) are entire functions, by Weierstrass theorem. Con-
sequently, Y'(-,v) € E, for almost every v. Thus the assertion (i) is
obtained. =

Proof of (ii). Given p,n € N and any complex number z, = 2, + w,

we have
/oo /n . v)ga(ZI = u)
—c0 J=n I
z1+1  pn 2r
S/ 1 / f.f(u,l’)l(i) e?llndy dv +
21-1 2r
(/ o / / / ) f(u,v) ( e ) eV gy dy < 0.

“n degdi Ty —u

Applying Fubini’s theorem we conclude that Y(z,-) € Lie(R),
which implies (ii). m

Proof of (iii). Let u,n € N, xy € R. By Tonelli’s theorem,

dudv <

00

(u,v)g, (m = u)‘(lu dvdxy =
n
{ o n flu v)|J,,<T u)du dv}(l.‘cl. (17)
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The inner double integral of the right-hand side of (17) does not exceed

/::1 /_nn !f(u,v)l(g;)zrdu dv +
(L[ L rwen(22) e <

< (21)2 / i / If (u, 0)ldu dv + 24* (1 + n)*7)(1 + n*7)I(f).

-n-1

Thus the left-hand side of (17) is finite.

Now, the Fubini theorem ensures that Y (-,-) € Lj,.(R?), and (iii)
follows. m

Analogous properties of the singular integral (13) can easily be for-
mulated. They also will be used in the sequel.

4. Approximations by the sums of pseudoentire functions. Let f
and the operators J, -, J}, JZ be as in Section 3. Putting

®(21,v) = _Juyf[f](zlv v) — Jc}[f](zlv v),
U(u, 25) = J2[f)(u, 22),
where z; = z14+1yy, 22 = 223412 (¢},y; € R) and u,v € R, it can easily
be observed (see Propositions 4,5) that ®(-,-) € W}, ¥(-,-) € W2.
Introduce the approximant

Qo[ f(21,22) 1= ®(21,22) + ¥(21, 72),

which is defined almost everywhere on R? and Q,.[f] € Lic(R?).
Assuming that k,! < 2r — 2 (k,l,r € N) and 1 < p < oo, we will
present some Jackson type estimates.

In considerations the symbols C;j(g, . .. ) will mean positive constants
depending on the indicated parameters g, ..., only.

Theorem 1. Under the restriction 0 < 0,7 < oo,

If = Qorlfllly < 2 Cr(r)wra(1/0,1/7; £

Proof. Take into account the real numbers 1, x5 for which J2[f](-,z2) €
E,, J}[f)(z1,) € E,. In this case,

f(z1,22) = Qo[ f)(21,22) =

_1\k+H
2 71)77 / 3 A0 (21, 22)00 ()9 (1) ds dt. (18)
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Hence, by Minkowski’s inequality and (5),
Yoo llf = Qo[ Al <
< wrd1/2,1/73 )y [ (@15l + DAt + 1)'g0 (s)ga (2) ds .
Further,

2 /
%/R(a'].ﬂ +1)*g,(s)ds < 7—0{2"/ 2

1

A 9o(s)ds +
0o 9 00

+2"a‘°/ skg,(s)d’s} = 2"{1 + —ok/ sk_zrds} <
1/o Voo Jifo
521:{1+3027—1}_ .
Yo
Observing that

o \2r=1 /2 9N\ 2r o \2r-1
> — - = —_
= 2(21‘) /o (’H’) 4 2(7rr) !

':_U/R("lsl +1)rg,(s)ds < 21:{1 . (ﬂ.r)%*—l}.

we obtain

Thus
2
If = Qerlflly < wia(1/e,1/75 )y - 241 + (rr) 1},
and the proof is complete. W

Corollary 1. Let f satisfy all conditions of Proposition 2, with some
positive integers m < k, n < 1. Then

I = @eelAlls < 2 Cilr)o s tppu gL fer, Ui £

This estimate is an immediate consequence of Theorem 1 and in-
equality (7).

Corollary 2. Consider the bivariate functions fo, f1,..., f, defined
in Proposition 3, with fo(+0), fo(0,) € Lioc(R) and f,_;(+0), f,—;(0,7) €
C(R) when 1 < j < p—1. Suppose that for some non-negative numbers
a,b<2r—p—1and forj=1,...,p the relations

fo(@ ) = O((L+ [2*)(1 + Iul")).

Frmi(2,0) = O(1 4+ [21**),  f,;(0,5) = O(1 + lyI"+))
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hold uniformly in x,y € R. Then if k =1 > p, the function f = fo and
its approzimant Q, ;[ f] have weak derivatives of order p—1 everywhere
on R? and

179 = QU SIll, < Calk, r)(ET)*Pwicpiuk m( fﬁ)

for pw =0,...,p— 1. Under the additional assumption fp € C(RY),
also the derivatives f) and QL"l[f] exist on R? and the last inequality
remains valid for p = p. '

Indeed, an easy calculation shows that
f¥(2,y) = fu(z,y) and QW[f(w,y) = Quslful(z,y)
for all (x,y) € R?, whenever 0 < u < p—1or u=pand f, € C(R?).
By Theorem 1 and the suitable estimate analogous to (9),
1fu = Qo [flllp < Colk,r)wrp(L/o,1/7; fu)p <
= Cz(kv 7')(0'7)“_pwk—9+u.k-p+u(1/‘75 1/T§ fp)p if 0 < wEp.
The conclusion is now evident.

Theorem 2. Let f € HWM where @, are as in Section 1. Denote
by o and B two non-negative numbers such that t=*p(t), t=P(t) are
non-decreasing on (0,1]. Then, for o,7 > 1,

I = QorlFINED, < Calk, LA, {o%0(1/0) + TPu(1/7)}.
Proof. Write

D‘,YT(.‘(‘,, y) = fla,y) — Qa.r[f](ftv y) (z,y € R)
In view of (18),

AM D, (a,y) = x
ki D (,9) = —
UGN
o [APSCYRUS 2 E “*"()(V)Aiszwﬂu,y+un)dsdt
u=0v=0

for all \,7 € R and almost all (x,y) € R?, whence, by Minkowski’s
inequality,

kel < 2 // 90(5)9- (VN1 A%l dt
Proceeding now as in the ploof of Theorem 1, we obtain

A% Dorll, < A OLIAIL, 0 /o) (1 /7). (19)

A
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On the other hand, equality (18) leads to

A} Do (z,y) = x

Yo rr

x/mya ZZ lw"( ><1)A“f(r+/tb y + vt)dsdt

n=0v=0

for almost all (z,y) € R?, which implies

AN Dorlly < 2, 0(\)ib(n) when A, € (0,1). (20)
Next,
1Der %8, = sup {Q(A,m) : 0 < A,n <1},
where
QA n) = A2 A% Dy |l
If 1/o <A <1and1/7 <n <1 then, by (19),
QA7) < 4O FlIS0% 0 (1) (1 /7).

From (20) it follows that

QA7) < 2|l

wlp
ap(1/a)rPp(1/7) if0< A< 1/o,0<n<1/T,
X aga(l/a) if Oi< N< /o ll/m <ipi <l
Pp(1/71) fljo<Aslil<n<l/r

Hence
1D 185, < 211G {2 Cr(r)o e (1/0) (1 /) +
+op(1/0) TP ( 1/r>+a%a<1/a>+r%(1/r)},
and the proof is completed (cf. [4], Th.2). W
Corollary 3. If
0(6) =6, »(8) =8 forall §€(0,1]
then, in case o/ > a >0 and 3’ > >0,

If- Qa,-r[f]”ixk,al),, = O( got p Tﬁ_’al) uniformly in o,7 > 1.
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