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ON CONJUGACY OF HIGH ORDER LINEAR ORDINARY
DIFFERENTIAL EQUATIONS

T.CHANTURIA {

ABSTRACT. It is shown that the differential equation
u™ = p(t)u

where n > 2 and p : [a,b] — R is a summable function, is not
conjugate in the segment [a; b], if for some l € {1,...,n-1}, c €
Ja, b and B €]a, b the following inequalities

n22+%(1+(—1)"")< (=1)"'p(t) > 0 for te€ [a,b],

B ; " b— )t
/“ (t = )" =2(b = 1" [p(O)ldt > i(n — 1)!(7(#—5;8’—_7),

hold.
IB0J30. 505836830), end Qn(gg‘rgﬁoob@«a‘m 6‘)66"’?:36‘}
™ = p(t)y,

J bagog 1 > 2, b p: la,b] — R gsdgdse gabdo 3ol [a, b
K Lgadabetg mben@env&‘m, o Geody L€ {1,...,n=1}, a€lab]
© B SN "”GBSQB"’[’W’S"b ©(37ed vﬂ@mq:m%aﬁn

W2 24 S ), PO 20, boge L€ [at]

/:(z —a)" (b — )" p(t)ld > (n - 1)!(_’7%‘2:_:})A

Consider the differential equation

ul™ = p(t)u, (1)

where n > 2, p € Lio.(I) and I C R is an interval.
The following definitions will be used below.

1991 Mathematics Subject Classification. 34C10.
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2 T.CHANTURIA

Equation (1) is said to be conjugate in I if there exists a nontrivial
solution of this equation with at least n zeroes (each zero counted
accordingly to its multiplicity) in I.

Let l € {1,...,n—1}. Equation (1) is said to be (I,n—1) conjugate
in I if there exists a nontrivial solution u of this equation satisfying

W) =0 (G=0,...,1-1),
uW(t)=0 (i=0,...,n=1-1),
with t;, t; € I and t; < t,.

Suppose first that —co < a < b < +oo and p € L([a,d]).

Lemma.Let a < a < 3 < b. Then the Green’s function G of the
problem

u™ () =0 for t € [a,b],
(])() 0 (j=0,..‘,l—1),
uB)y=0 (j=0,...,n-1-1),
satisfies the inequality
DGt 8) >
(b= B)(a —a)(s — a)""1(b— s)'"!(t — a)"1(b— t)" ! E

5 (b—a)+1

Bel e
XZ—(——L)—— for a<t<s<p. (2)

= = Dliin—1)!

Proof. The function GG can be written in the form

n

» (1) zi()zn_ir1(s) for a<s<t<b,

Ol i=n— 1+1
Z( 1yite (Henna(3) ) forll Paisiti= s <0b)
i=1
where
t— a)=i(b— )1
oy < Lm0

G- D=y
It is easy to verify that for any fixed s €]a, b[ the function
(=)"'G(ys)

Tni(-)T141(5)
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decreases on ]a, b[ and the function
(=1)"G(.,s)
Tn-r41(")21(s)

increases on Ja, b[. Thus

(—1)”"G(t,s)2(~1)""G(s,s)% for ¢<s. (3)

Taking into account that

(=1)""'G(s,s) i IZ 8)Tn—ita(s) =

(s = (l)n l(b_ S)n—l n l)n—t i

S (b—a)™1 Z

=1

(i —1){(n —2)!
and
tacalt) _ (8= a)(b= 1)
oo i(s) (s —a)l(b—s)r==1’
from the inequality (3) we deduce
(-1)"'G(t,8) 2
g (s T a)"‘"l(b 58 S)I(t ol a)’(b g l)”_[_l n—l (__1)nAl—i

z B—a) e
B sl W S5 l_l(i— - l(b_t)n—l—l
e = x
al (Cpynetd
x%m for a<t<s<p =m
Theorem 1. Let l € {1,... ,n — 1},
n>2+ w and (=1)""'p(t) >0 for t€a,b]. (4)

If, in addition, there exist a, B €]a,b] such that a < a < B < b and

g n— S \n— (b_a)n—l
/a(t—a) 2(p— 1) 2|p(t)|dt21!(n—l)!m-:a—),

then the equation (1) is (I,n — 1) conjugate in [a,b].

(5)

Note that in the case when n = 2 the analogous results are given in
3,5].



4 T.CHANTURIA

Proof. Put p(t) = 0 for ¢ > b and consider equation (1) in the interval
[a,4oo[. For any v > a let u, be the solution of (1) satisfying

u(a) =0 sy L1y,
u,(:)(y):() Ln—=1-2),

n—1
Z |u$)(a)| = max{u‘v(t) tasts< 7} =0
1=0

Suppose now that in spite of the statement of the theorem equation
(1) is not (I,n — I) conjugate in [a, b].

Note that if y €]a,b], then w,(t) > 0 for t €]a,~[ and (—1)""""1x
xu{==1(y) > 0. Indeed, if it is not so, there exists to €]a, [ such
that w,(to) = 0. Let yo = inf{y >
> a:uy(t) =0 for a certain t €]a,¥[}. Then u,,(t) > 0 for t €]a, o
and

u(a) =0 (1=0,...,01— 1),7
u®(y0) =0 (i=0,...,n—1-1),

which contradicts our assumption.
Let 4° = sup{y > b: u,(t) >0 for t €la,y[}. Consider first the
case when 7° = +o0. There exists the sequence {7 }/25 such that

kEToo Qe kEg—noo (1) = uo(t)
where ug is the solution of equation (1). Show that
up(t) >0 for t>a. (6)

1t is clear that ug(t) > 0 for ¢t > a. If now ug(t.) = 0 for some t. > a,
then for any k large enough the function ), will have at least one
zero in Ja,yx[. Taking into account the multiplicities of zeroes of u.,
in a and 7, it is easy to show that ufy':“) has at least two zeroes in
Ja, (. Hence u{") changes sign in this interval and this is impossible.

Thus inequality (6) is proved. This inequality and the results of [1]
imply that there exist lo € {1,... ,n} (I —lo is even) and ¢; > b such
that

WW#)>0 for t>t (i=0,...,0—1),

__1)it+o,, () B M
(-D)*ou(t) >0 for t>t (i=1lo,...,n).

Bs
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Clearly,

(=1)*ould(t) 20 for t>a (i=1lo...,n),

(=1)*°u (@) > 0 i S

Hence I € {1,...,lo}.

Suppose that [ < lo. Then for any k large enough we have v; >
ty, uld(ty) >0
(i=0,...,lo—1). This means that the function u(” has at least one
zero in ]tl,fyk[ Taking into account the mult]phclty of zero in 4, it
is easy to see that u(" 1 has at least two zeroes in |t;,vk[, and u(")
changes sign in this mtelval But this is impossible. Thus I = lo.

Asl = [0, inequalities (7) and (8) imply

(8)

( 1)ithy, (1)()>0 for 't >a (=1 n),
W >0 for t>a (1=0,...,01-1).

Let
n-1 il
== 1) ) j-l41, (3)
e Ug (t—a ug ' (1),
= g J—l+1) Y g (8)
then
o) = EV ) 20 for t2a
T ol
Hence
- - j— ()
2 B Y P = ay )
(e lera)!

(9)

—aa) =1 { 00
> (i(—yz)f——l;')——/g+ (s —a)" " 'p(s)uo(s)ds for t> a.

Denote
pi(t) = il ) (= Qud™@) for t>a (i=0,1,....,0).
Then

pi{t) = piza(t) for t>a (1= ).
Since po(t) = —(t — a)ul*™(t) > 0 for t > a and pi(a) = 0 (1 =

1,...,1), we have

i) =20 for st =ia (=000 0t




6 T.CHANTURIA
This implies

uo(t) > %uff—”(t). (10)

From (9) and (10) we obtain

l—l%z_——al))! /tﬁ(s —a)"?|p(s)|ds for t>a,

1=
which contradicts (5). The case 4° = +o0 is thus eliminated.
Now consider the case when 7° < +00. As we have already noted,
7% > b, uye(t) >0 for ¢ €la,+°[ and

wae) =0  (i=0,..,1-1), i
w3 =0 (=0,....,n—1-1).

Hence
3

up(t) = /: G(t,3)p(s)uqo(s)ds

where G is the Green’s function of the boundary value problem (11)
for the equation u(™ = 0.

Let to €]a, 8] be such that P
() - u~0(to)
(= @) 1(10 — 1)1 = (g — a)—1(1° — to)"='-1
for t € [e, B]. (22)

Then from the Lemma and the inequality (12) it follows that

o ) n=l ( l)nd—i
uy(to) 2 (" = B)(a — l)z Py T X
(s —a)"*(7° — s)
X/a —%ﬁ-ls—lp(s)ldww(to) > -

(b—B)(a—a) ot (4])""[”

> Thoay DDy gy e
)

y /a(s~a)"'z(b—s)"'2|p(s)|dsu_,o(t0)A

Since Tg (fh—;;,:—nl—%)‘ > ,,(n i the inequality (13) contradicts (5). M
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Denote

py; = min{l!(n — 1)! :lefl,...,n—1}, n—1 odd},
gt =min{li(n-0:1e{l,...,n—1}, n—I even}.

It is clear that

(g = 1)!(% +1)! for n=0 (mod4),
Vi [(%)!]2 for n =2 (mod 4),
CoIEED for a1 (mod 2),
[(G)* for n=0 (mod 4),
pt={ G-DIG+D! for n=2 (mod 4),
EI N for n=1 (mod 2)

Corollary 1. Let eithern > 2, fin = iy and p(t) <0 fort € la,b] or
n>3, pn = pt and p(t) > 0 fort € [a,b]. Let, moreover, a, B €la, b
exist such that a < o < < b and

Then equation (1) is conjugate in [a,b].
Note that
max{l!(n —)!: 1€ {1,... ,n=1}}=(n— 1L
Thus from Theorem 1 easily follows

Corollary 2. Let | € {1,...,n — 1}, the conditions (4) be fulfilled
and let  «a,
B €la,b] exist such that a < a < B <b and

b—a )n—-l (14)

: t)|dt > Wrrar——
[ w2 - G=pE=g

Then equation (1) is (I,n — 1) conjugate in [a,b].
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Note that in the inequality (14) the factor (n—1)! cannot be replaced
by (n — 1)! — & with € €]0,1[. This is shown by the following

Example. Let ¢ €]0,1] be given beforehand and we choose a €]a, ]
and B €]a, b[ such that

(n—l)!(z:Z) (:#i)n : >(n—-1)—c¢ (15)

Put

t—a for t€ [a,ql,

=+ 1
o(t) = a2ﬂ_a_m(t"g)2 for 2 =lalb,
a;ﬂ—a for te[B,b].
uo(t) = - 3)' /(t — s)"3u(s)ds for t€la,b], n >3,
uo(t v(t) for t € [a,b], n =2,
and ")
v
p(t) = b for ai<t<b.

Then the function wug is non-decreasing for ¢ € [a, 8], and the following
inequality

1

8 o e (B - a)"!
uo(t) < up(B) < m/a (8 —3s)""3(s — a)ds = —"—

(n—1)!
is valid. Takfitg into account the inequality (15), we obtain

8 Ll B y(lt (n—1)!
/a pitlat = B - o/a uo(t) (B—a)! e

el A — ﬂ(fm(f_—a))w'

On the other hand, in the case considered, equation (1) is not con-

jugate in [a,b] because it has the solution uo satisfying the following
conditions

(@) =0 =0,... ,;n—2),u ™ a) =1, wo(t) >0 fora <t <b.

This example shows that in Corollary 2 inequality (14) cannot be
replaced by the inequality

‘/j Ip(t)ldt > ((n - 1) = 5) (Zb‘—z)—h)n_l
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no matter how small ¢ > 0 is.
Now consider equation (1) on the whole axis R with p € Lj.(R).
From Corollary 2 easily follows

Corollary 3. Let | € {1,...,n—1}, p is not zero on the set of the
positive measure and
L (—1)"_l
AT

n>2+ (=)™ 'pt) >0 for teR.

Then equation (1) is (I,n — 1) conjugate in R.
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CRITERIA OF GENERAL WEAK TYPE INEQUALITIES
FOR INTEGRAL TRANSFORMS WITH POSITIVE KERNELS

LGENEBASHVILI, A.GOGATISHVILI, V.KOKILASHVILI

ABSTRACT. The necessary and sufficient conditions are derived
in order that an inequality of the form

CONB(B{(2,1) € X x [0,00) : K(fdv)(z,8) > A}) <

sefv (g—gﬁ) o(a)dv(z)

be fulfilled for some positive ¢ independent of A and a v-measu-
rable nonnegative function f: X — R! | where

K(fdv)(z,0) = /X F@)k(e, g, 0)dw(y), 120,

‘ kX x X x [0,00) — R! is a nonnegative measurable kernel,

(X,d, n) is a homogeneous type space, ¢n and ¥ are quasiconvex
functions, ¥ € Ay , and ¢t~*6(t) is a decreasing function for some
o i< <<l

A similar problem was solved in Lorentz spaces with weights.

©JIb0I30. Sﬂ»méaoémﬁo 0 ool bogh3ggdhy asblsbmgémmo obgg-
aGorGo 26@3J8bgdalacngel @agmBoma gmemgdon ageormos b=
390 bobals bagligo 3ol Frobosbo w@mmmdgdols shogg@omdndo mb-
eobol ©o emégbzol bogh3ngddo.

1. INTRODUCTION

This paper presents the characterization of those weight functions
and kernels for which we have general weight weak type inequalities
for integral transforms of the form

K(fdv)(a,t) = [ fly)k(a.y.0dv(y), (1.1)

where X is a homogeneous type space, and & : X x X x [0,00) — R!
b . nonnegative measurable kernel.

1991 Mathematics Subject Classification. 42B25,26D15,46E30.
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The homogeneous type space (X,d,p) is a space with measure u
such that the class of compactly supported continuous functions is
dense in the space L'(X, ). Besides, it is also assumed that there
is a nonnegative real-valued function d : X x X — R! satisfying the
following conditions:

(i) d(z,z) = 0 for all z € X;

(i1) d(z,y) > 0 for all x # y in X;

(iii) There is a constant ao such that d(x,y) < apd(y, ) for all z,y
m X

(iv) There is a constant a; such that d(z,y) < ai(d(z,z) + d(z,y))
for all =y, z in X

(v) For each neighbourhood V of z in X there is an r > 0 such that
the ball B(z,r) = {y € X : d(x,y) < r} is contained in V ;

(vi) The balls B(z,r) are measurable for all ¢ and r >0 ;

(vii) There is a constant b such that

wuB(z,2r) < buB(z,r)

for all z € X and r > 0 (see [1], p. 2).

In the sequel B(z,r) will denote the set B(w,r) x [0,2r) for r >0
and the one-point set {z} for r = 0 . The set B(x,0) will be assumed
to be empty. 3 will be a measure defined on the product of o-algebras
generated by balls in X and by intervals from [0, c0).

Let ¢, ¢, and 7 are nonnegative nondecreasing functions on [0, 00).
For our further discussion we will also need the following basic de-
finitions of quasiconvex functions. We call w a Young function if it
is a nonnegative increasing convex function on [0,00) with w(0) =
0,w(c0) = oo and not identically zero or co on (0,00); it may have a
jump up to oo at some point ¢ > 0, but in that case it should be left
continuous at ¢ (see [2]).

The function ¥ is called quasiconvex if there exist a Young function
w and a constant ¢ > 1 such that

w(t) < B(t) S wlet), 120, (12)

Clearly, ¥(0) = 0 , and for s < t we have ¥(s) < ¢(ct) . To the quasi-
convex function ¥ we can put into correspondence its complementary
function 1 defined by

h(t) = sup(st = 9(s))-

The subadditivity of supremum easily implies that ¢ is always a
Young function and (1) < 1. The equality holds if ¢ is itself a Young
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function. If 1, < 1y, then 1[;2 < 1/;1 , and if

Pa(t) = app(bt),
@)

5(2) b <o), (1.3)

then

e

1[)1(t) =a

Hence and from (1.2) we have

Now from the definition of 7 we obtain Young’s inequality
st < (s)+P(t), s,t>0. (1.4)

It should be noted that unlike ¢ the function 4 may jump to oo at
some point ¢ > 0. For example, if () = ¢, then ¥(t) = oo - X(1:00)(t)
. Throughout the paper we take 0 oo to be zero.

We use the convention that ¢ denotes the absolute constant which
may change line to line.

The function i satisfies the (global) A, condition (i) € A,) if there
exists ¢ > 0 such that

B(2t) < ev(t), t > 0.

Some properties of quasiconvex functions and also of functions sat-
isfying the A, condition will be presented in Section 2.

Now we are ready to formulate the main results of this paper.

Ih the sequel # will always be a positive nondecreasing function.

Theorem 1.1. Let k : X x X x [0,00) — R! be any measurable
nonnegative kernel, 1 € A, , and the function t=°0(t) decrease for
some o € (0,1) . Let, further, v be a finite measure on X , o :
X — R! be an alsmost everywhere positive function which is locally
summable with respect to measure v.

Assume that there exist positive constants ¢ and ¢ such that

J (egp(.\')q(s)O(ﬁé(a,No(‘Zr e ”))k(a i t)> sl =
. o(y) i g

X\B(a,r)
< ()03 B(a, No(2r + 1)) (15)
foranys>0,7r>0,a€ X andt >0 , where Ny = a;(1 + 2ao) .
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Then there exists a positive constant c; such that for any A > 0 and
any nonnegative v-measurable function f : X — R! the inequality

P(N)O(B{(x,t) € X x [0,00) : K(fdv)(z,t) > A}) <

< z/w( ) a)d(z) (1.6)

Assume now that the nonnegative measurable kernel k satisfies the
following additional condition: there exist numbers N > No, No =
a1(1 + 2ap) and ¢’ such that

k(a,y,t) < k(z,y,7) (1.7)

when y € X \ B(a,r), (z,7) € B(a,N(r +t)) for any @« € X, r >
05t = 0.

Theorem 1.2. Let pn and 3 be quasiconvex functions, 1 € Ay, the
function t=*0(t) decrease for some o € (0,1) and k satisfy the condi-
tion (1.7).

Then the inequality (1.6) is equivalent to anyone of the following
conditions:

(i) there exist positive constants € and c3 such that

. (e¢<s>n<s)0<ﬁ3(a.r +1))
s a(y)

k(u’yJ)) o(y)dv(y) <
X\B(a,r)
< cap(s)0(BB(a,r +1)) (1.8)
for arbitrary s >0, 7 >0, a € X andt >0 ;
(il) there exist positive constants ¢ and cq such that

J.# (Mﬁ@%ﬂ_%(th o(y)duly) <

< eap(s)0(BBa, 1)) (1.9)

foranys>0,a€ X andt >0 ;
(iii) there exists a positive constant cs such that for any a € X |
Z 0,t >0 and for any nonnegative v-measurable functions I :
— R1 , suppF C X \ B(a,r) we have

o (K(Fdv)(a, ) 0(8B(a,r +1)) <

o
o /x ¥ (n(;c(pd,,)(a,t)> o(y)dv(y). (1.10)

el
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Let k : X x X — R! be a nonnegative measurable function satisfying
the following condition: there exist number N > Ny and ¢ > 0 such
that

k(a,y) < 'k(z,y)
for any ¢ € X, y € X \ B(a,r) , and « € B(a,Nr) .

For any positive, locally summable with respect to measure v, func-

tion p: X — R! it will be assumed below that

o = [ ola)iv(a)

for any v-measurable set £ C X .
We have

Theorem 1.3. Let the functions ¢, n , and v satisfy the conditions
of Theorem 1.2. Then the following statements are equivalent:

(i) there exists a positive constant cg such that for any A > 0 and
for any measurable nonnegative function f

o0 (ofz € X [ Ken)fw)dvty) > M) <

f)
<o f 0 (48) rtnty

for any A >0 and for any measurable nonnegative function f: X — R';
(i1) there exist positive numbers & and c7 such that

7 (M”—("%T”uu)) ool =

X\B(a,r)
< cop(s)0(2Bla,r)
foranys>0,a€ X ,andr >0 .

The above-formulated results contain the solutions of problems of
description of a set of weights ensuring in Orlicz spaces the validity
of both weak and extra-weak weighted inequalities for transform (1.1)
which are natural analogies of inequalities of the weak type (p, ). In-
deed, for ¢ = 1, n = 1 (1.6) becomes a weak type weighted inequality,
while for ¢ = 1, n()\) = X we obtain an extra-weak type weighted in-
equality. It is understood that an inequality of the weak type (¢, ) is
essentially stronger than an inequality of the extra-weak type (¢,¢).

The solutions of similar problems in Lorentz spaces are derived in
Section 3. Section 4 contains a discussion of the interesting corollaries
of Theorems 1.2 and 1.3 for integral operators such as potentials and
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their generalizations, Poisson integrals and their generalizations, the
Hardy operators and others. Here we would like to give a very brief
survey only of the results preceding this paper.

The solution of a weak type two weight problem for Riesz potentials
in Lebesgue spaces was obtained in [3], [4], the criterion found in [4]
being more easily verifiable. The latter result was extended to the
intergrals on homogeneous type spaces in [5]. A similar problem was
treated in [6] (see also [7], Theorems 6.1.1 and 6.1.2) in Lorentz spaces
over R” for integral transforms

Kf(@) = [ en)f)

Subsequently in [8] generalizations were obtained for transforms of
type (1.1) when X = R",dv(y) = dy. More particular cases of gene-
ralized potentials and Poisson integrals were considered in [8] and [9],
respectively. The latter deals with Lorentz spaces and the former with
Lebesgue spaces. In Orlicz classes the problem of description of a set
of weight ensuring the validity of weak type weighted inequalities was
previously studied mainly for maximal functions [10], (11], [12] and

_the Hardy operator [13], [14].

2. PROOF OF THE MAIN THEOREMS

In this section use will be made of some properties of quasiconvex
functions satisfying the A, condition, also of the covering lemma in
homogeneous type spaces.

Lemma 2.1 ([11] , p. 4). The following statements are equaivalent:
(1) ¢ s a quasiconver function;
(i1) there exists ¢ > 1 such that

w(s) _ plet)

<
e

2.1)
Jors <t

Hence for quasiconvex functions ¢ we immediately obtain the esti-
mates
Sp(t) S p(cst), 20, 6>1, (2.2)
p(6t) < bplet), 20, <1 (2.3)
For convex functions the inequalities to be given above are valid
whenec=1.

K\.z [v
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Lemma 2.2. If w is a Young function, then

w (“—’(t—t)) <o), t>0. (2.4)

Proof. By virtue of the equality (@) = w we have

o (2) - upe (2 -20) <

o(t i
< sup s-—(—) < @(t).
o<s<t b
since the expression in the brackets is negative when t <s. W

Lemma 2.3 ([11], p.17). Let 1 satisfy the Ay-condition. Then there
exist p > 1 and ¢ > 1 such that

PY(s) < et () (25)
for0 <t <s.

Lemma 2.4. Let E be a bounded set in X and for each point x € E
a ball B, = B(z,r;) be given such that
suprad B,y < 0o.
z€E
Then from the family {By}.er we can choose a (finite or infinite)
sequence of pairwise disjoint balls (B;); for which E C Uj»1NoBj,
lo = a1(1 + 2a0), and for each By € {B:}zck there exists a ball Bj,
such that x € NoBj, and rad B, < 2rad Bj,.

Proof. Set

R, = suprad B,.
z€E

There obviously exists a ball B; = By, from the family {B.;}.er pro-
vided that rad By > 27'R;. If # € NoBy N E, then B, N B, = @.
Indeed, making the opposite assumption that there exists a point
y € B, N By, we will have

d(zr,) < an(d(zn,y) + Ay, 2)) < ax(rad B, + aod(z,1)) <
< ay(rad By + agrad B;) < ai(1 + 2a0) rad By = Norad By,
which leads to the contradiction.
Obviously, rad B, < 2rad B; for an arbitrary point = € NoB; N E.
Assuming now that

Ry= sup radB,,
z€E\NoBy

M
LSS AT AN,
Q\‘)(Qa 5% {{nl,:;

BULRAMM gy I
A ——— 1

.
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we can find a ball B, = B,, from the family {B.;}.cp\n,B, provided
that B, N By = &, rad B, > 27'R; and rad B, < 2rad B, for each
point @ € (NoB, N E)\NoBy. Proceeding in this way, we arrive at the
sequence {B;};>1 of nonintersecting balls. If this sequence is finite,
then it will be the one we wanted to obtain.

Let the sequence be infinite. If we show that for each point z € F
there exists a ball B; for which & € NoBj, then setting jo to be equal to
the minimal value among similar j’s, we obtain the desired covering.

Assume the opposite. Let in £ there exists a point g € E such that
2o NoBj for every j. Then we will have

B«To e {Br}reE\u;’:,.\’ch 5
for any natural number n and hence
rad' B, < R, <2rad B,

for each n.

On the other hand, it is obvious that U,epB, is a bounded set,
i.e. it is contained within some ball By. It therefore turns out that
(Bj);>1 is an infinite sequence of nonintersecting balls contained in
By. Therefore rad B, — 0 (see, for example, [L7], p. 68). The latter
result leads to the contradiction rad B, = 0.

The lemma is proved. W

Proof of Theorem 1.1. Fix the function f > 0 and A > 0. Without
loss of generality it can be assumed that

. ) £f(£) x)dv
e e e (e <. @9l

Otherwise we would have
PON(BL(2,1) : K(fdv)(,1) > A}) < p(WIB(X x [0,00))) <

L (da (@)
*a x’*( c q(A))”(‘”)‘l"

and, since 1) € Ay, the proof would be completed.
Assume (z,t) € Ey, where E\ = {(2',1')€ X x[0,00) : K(fdv)(a' 1)
> A}. By virtue of (2.6) for (z,) there exists a finite » > 0 such that

1 &‘@ og\z v
T T

a8
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If the greatest lower bound of r is positive, then there exists a
positive number rg = ro(x,t) such that the inequalities

1 e f() - 97
lo(ﬁE;(x,No(ru+t)))¢(A)/X”(* (A))"(‘I)d"Z Lo e

il dey f(2) i :
0(BB(z, No(2ro + £)))e(A) /ﬁz( c n(/\)>0(‘ el

are simultaneously fulfilled.
For such rg we would have by virtue of inequality (1.4) and condi-

tion (1.5)
A

y)k(z,y;1)dy = — -
oy T = BB, Nol2ro 1))

o1 f(y), o) OBB, Noro+ )y, o
Bt 9k A a(y) s —
)‘ dey f()
h 2)d,
=k A =
4erp(N)0(BB(z, No(2ro+1))

(20 a(/sB(.z,NO(er+f)))k(1,y’i))g(y)dyS

x
A o
X\B(z,70) ()

<S4i=

| >
N
[

But since (2,t) € E\, the latter estimate implies
A
f)k(z,y,t)dv > 3. (2.9)
B(x,m0) it

When the measure v is concentrated at the point z, the above-
mentioned greatest lower bound may turn out to be equal to zero.
Then instead of (2.9) we have

k(z,z,t)f(z)v{z} > % (2.10)
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Therefore due to (1.4) and (1.5)

(NO(BB(z, Not))) < %w(%f—(z—)—)o(z)u{z} i

3 n(})
~ A)n(A) 0 o
T ETULU N WERR P
<o [ (Lot + 5e00(EBE, M),

B(x,t)

Hence

S(V)O(BB(z, Not)) < 4—1;3(/” w(%%)amdu(y). (2.11)

Let us now consider the case when v is not concentrated at the point
z. Let n be the greatest nonnegative integer for which

b lim BB(r + 1)) < 27" B B(x, No(ro + 1))
n may be equal to co if b= 0. For each k, 0 < k < n we set
Ty = sup{r: BB(x, No(r +1)) < 27%BB(z, No(ro + 1))}
Then (rg) is a decreasing (finite or infinite) sequence and
BB(z, No(rk +1)) < 27*8B(, No(ro +1)) <
< BB(x, No(2ri + 1)) (2:12)
Let By = B(z,r), 0 < k < n and Bnyy = {z}. Since by the
condition of the theorem u=*0(u) decreases, we have
o = BB No(ru + 1) 0(BB(z No(ro + 1) _
* = 0(BB(x, No(ri + 1)) BB(x, No(ro + 1))
_ BB(z, No(rx + 1)) 0(8B(x, No(ro + t)))
0(BB(x, No(rx + 1)) (BB(x, No(ro + 1)))1=(BB(x, No(ro +1)))* ~

w el 1\1-a
SC(ﬂB(z,l\/'o(ro+t))) = (f)k) .

Because of this
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(2.9) can now be rewritten as

L=l
Tnesy [ Hewtfow

=0B\Bis1

whence it follows there exists ko, 0 < ko < n, such that

=|,.
-

S K, 0) ()
a
Big\Brkg +1
Therefore
¢(MO(BB(x, No(2rip41 +1))) <
< 1 daey f(y) eNn(A) 8(BB(w, No(2rkes1 + 1))
— R X
2¢, ag, N(A) A a(y)
Bku\Bko+1

k(e Do) < 5= | w(éZ—?%}o(u)dH
Bl 2

oL / J)(é?(*)ﬁ(}‘) 0(BB(x, No(2rkos1 + 1)) 3
2, A o(y)
Big\Brg 41

o . o5
k 0

+§¢(A)9(BB(J>,N0(’ZW+1 +1)))

and as a result we have

S(NO(BB(x, No(2rigsr +1))) < cai? / w(%ﬁ—g—;)a(y)dw

B(2rk)
Next, taking into account (2.12), we obtain the estimate
= ) 4eq f(2
PNO(BB(e, N +1) < cai? [ w(f’&—ﬁ))a(ywv.
Bl ) Ul (2.13)
which by the definition of the number ay, takes the form

P(N)BB(x, No(ri, +1)) <

BBz, No(ro +1)) dafly) o
Sca(ﬂfz(l-,No(roJr:)))B(Iim w( en(X) )o(y)d - (2.14)
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Rewrite now (2.7) as

toy ! 4 £(y) :
03B, Noro + ) € o=y |, (2 n(A))amdu. (2.15)

If 0! is defined by
07 (u) = sup{r : 0(7) < u},

then
67" (u)) <u and 0207 (v)) > u,
e,
u e
3 <007 (u)) < u.
Moreover,

071 (0(u)) = sup{r : 0(7) < O(u)} = u.
Therefore (2.15) will yield the estimate

BB(x, No(ro + 1)) < 071 (0(BB(x, No(ro + 1)))) <

o (o
<

Thus

(i)

RC

c1p(A)

which by virtue of the fact that —:l decreases yields the estimate

BB(z, No(ro +t
(;33(1 No(ro +

/\
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After all foregoing manipulations condition (2.14) can be formulated
as follows: for each (z,t) € E) there exists a ball B, such that x is
its centre, t < rad B, , and

de1 f(y)

PNB(NoBus) < cl(,3) [ ¢(7m—))a(y)du. (2.16)
Bzt

Now fix a ball By and consider the sets
BynEy, and Byn {z : K(fdv)(z,0) > A} = By N B

It is obvious that latter set is contained in the former. For each
z € EY we set

d(z) = sup{t : (z,t) € By N Ez}.

It is easy to verify that d(z) < 2rad By. Tor each @ € By N EY there
exist t;, > %l such that (z,1;) € Bo N E\(No > 2), consequently for
(z,t,) (2.16) is valid.

As a result we have the following situation: for each = € By N B
there exists a ball B, with centre at the point @ such that rad B, > d,(\,—z
and (2.16) is fulfilled for By = By

It

sup rad B, = oo,
2€BoNEY
then, clearly, there exists a ball By € {Br}zeEgnBu such that Ey N
B, @ By

If sup rad B, < co, then, due to Lemma 2.4, from the family {Bx}meEﬂ
N By covering the bounded set ES N By we can choose a sequence (B;)
of nonintersecting balls for which U;>1 NoB; D E{ N By and (2.16)
holds.

1t will be shown that (Z\TOE)]EI covers the set £\ N By. To this end
we prove that each (z,d(x)) € szllm, Indeed, if @ is centre of some
ball B;, then there is nothing to prove. Let x not be centre of Bj;
then by Lemma 2.4 for B, there exists a ball B; such that x € NoB;
and

rad B, < 2rad B;.
Therefore

d(z) < Norad B, < 2Nprad B;

or, which is the same, (z,d(z)) GJVU-E]-.

NN
3

11013

49
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On account of the foregoing reasoning we can derive estimates
(NB{(z,t)€ By : K(fdv)(z,t) > A} < Z (MBNoB; <

< l(f,0) z:/B o(2lu )(y)dus

<el(f,) (4“ )) o(y)dv <

< cw(x)o-‘(m:m /)(¢(4§1 %;)a(y)d,,)

which yield
0(B{(x,t) € Bo : K(fdv)(z,t) > \}) <
il e f(2)Y
<o(o (oo e (20 )7 @)

Taking into account ¥ € Ay and u™*y(u) |, from the latter estimate
we obtain the ine: quallty

0(B{(x,t) € By : K(fdv)(z,t) > \}) <

<eofo <wl(A) fLoo(2 ﬁi)) Jo@ar)) <
<o o

If we now assume that rad By tends to infinity, we obtain (1.6).
Theorem 1.1 is proved. W

Consider the case d = pdv @ 8, where &, is the Dirac measure
supported at the origin and

ezt — 0,
k(”’y"):{o.( o t> 0.

In that case due to Theorem 1.1 we have

Corollary 2.1. Let the functions ¢, n and 1 satisfy the conditions -
of Theorem 1.1. It is further assumed that there exist positive € and
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¢, such that

~(_p(s)n(s) 0(eB(a,2Nor))

(2 k

X\B(a,r) ( 4 o(v)
c1¢(8)0(0B(a,2Nor))

for any s >0, >0 and a€X.
In that case there exists c; > 0 such that the inequality

(a,9) )oly)dv <

pN0(elee X s [ kla,y)fw)dv(y) > A}) <

f(ﬂ?))

< — d

'62/;(¢<n(x) Flalsy

holds for any A > 0 and any nonnegative measurable function f :

X — RL.

It is time to make some remarks. Taking a closer look at the proof
of Theorem 1.1, we readily find that if ﬁﬁ(z,r) is continuous with
respect to r for each & € X, the factor 2 in condition (1.5) can be
omitted.

Moreover, if the space (X, d, ) possesses the Besicovitch property
(consisting in that for every bounded set E any family {B(y,r(y))}wer
of balls contains a countable (or finite) subfamily { By} = {B(yn.r(yx)},
n€N, such that E C UB, and ¥ x5, <c, where xp, is the character-
istic function of the set By, then in Corollary 2.1 we can set No = 1.

Finally we remark that for p(\) = ¥()) = W, n = 1, 0(u) = us,
X = R Corollary 2.1 becomes the particular case of theorem 6.1.1
from [7], p- 171.

The proof of Theorem 1.2 rests on a number of lemmas.

Lemma 2.5. Let 0 be any increasing function and the kernel k sat-
isfy condition (1.7). If condition (1.6) is fulfilled, then there exists a
constant ¢ > 0 such that for any a€ X, r >0, t >0 and any
nonnegative measurable function F: X —R',
suppF C X\B(a,r) we have the inequality

(K (Fdv)(a,1))0(8B(a, N(r +1))) <
e F(z)
s C/X v (n()C(Fdl/)((L,t)))a(z)d”’

where N and ¢ are the constants from condition (1.7).

(2.17)
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Proof. Fix a€ X, r >0, t >0, and F : X — R! assuming that

suppF C X\B(a,r). Inequality (2.17) is obtained if in (1.6) we set

f=dF and A = K(Fdv)(a,t). ]
It is sufficient only to note that the inclusion

B(a,N(r +1t)) C {(z,7) : K({Fdv)(z,7) > K(Fdv)(a,t)}

holds by virtue of condition (1.7).
The lemma is proved. B

Lemma 2.6. Let oy and i are quasiconvex functions and k is a
nonnegative kernel. Then condition (2.17) with the constants c, ¢,
and N implies the existence of ¢ and ¢y such that the inequality

-0 () 0(8Bla, N(r + 1))
ple
A a(y)
< ep(MO(BB(a, N(r + 1))
holds for any A >0, r >0, ¢t >0, and a€ X.

K1) )oly)dvly) < .

19)

X\B(a,r)

: ™o

(S

Proof. Tt is obvious that (2.17) is fulfilled for oy = o + 6, too, if
§>0. Let a€ X, r>0,¢t>0, A > 0 be the fixed constants. Due to
(1.8) it can be assumed without loss of generality that the function ¢
is a convex. For M > 0 we define the value

(2NN 0(BB(a, N(r + 1))
[7./131'/}(6 A a1(y)

k(a,yi))d,(y)du,
where
D = B(a, R\B(a,r) N {yeX : k(a,y,t) < M},

R > r, while the constant ¢ will be appropriately chosen later.
We introduce the notation

Tyly) = Ev(ki\n(A) O(HB((ZIJ(\"U()T s VY
9(y) = %enu)mm
allowing us to write
1= o0 B(a, NG + 1)y LNGD (5 99)

Our next step is to show that for sufficiently small ¢ ’s the value T
is finite.
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"’5’ = 00, then 1 is finite everywhere and thus

‘ Il

i i(g#’()‘))\ﬁ(/\)o(ﬂB(a’/;’(T+t)))ju) el s

B(a,R)

for any ¢ > 0.
Let now (t) < At, A > 0. Then from the condition (2.17) we

obtain

go(Kf(F(ll/)(a,t))n(lC(F(lz/)(a,t))O(ﬂB(a, N(r+1t))) <
< c/ F(z)o(z)dw.
X

Set
k(a,-,t)

l= }X.X\B(H,T)U—
1

Lo
From the definition of the norm in L™ it follows that there exists a
measurable set £ C X\B(a,r), vE > 0 such that

kla,u,t). 1
s
o1(y) 2
. for ye E.
J Set in (2.20)

Fy) = m,\’E(U)-

Recall that a and t are fixed. Obviously,
K(Fdv)(a,t) =X\
and hence by virtue of (2.20) we obtain the estimate

p(Mn(A)
A

which yields

o c o(y) 2c
Ghettle, a4 Sl S vE g k(a,y,t)du < I

e(Mn(A) k(a,y.t)

A o1(y)

where the constant does not depend on A, r, t and a.
Thus we conclude that

0(8B(a, N(r + 1)) X x\B(ar) <

D 1<) [ iy
B(a,r)
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If now € is so small that §(ce) < oo, then the value I will be finite
for the respective ¢. v
Now it will be shown that

1< bap(A)&(ﬂE’(a,N(r+t)))+cb/x'¢~(c;g(()\y))>aldu, (2.22)

where the constants b, ¢ and ¢’ do not depend on A, r and t.
Let a€ X and t > 0 be such that
K(gdv)(a,t) < bA,
where a constant b is such that

ps)n(s) . pelwn(v) (2.23)
Sl u §

for bs < u (see Lemma 2.1).

Then evidently (2.19) will yield

1 < bp(NB(BB(a, N(r +1))).
Let now
K(gdv)(a,t) > bA.

Using (2.22) and condition (2.17), from (2.19) we obtain the esti-
mate
K(gdv)(a,t) = 1
L VIR
0(BB(a, N(r +1))) <

1= (M08
»(K(gdv)(a,t)

a, N(r+1)))
K(gdv)(a,t))

5

B(
In(K(
(A
n(K(gdv)(a,t)) Solial
n(A) /le( ()C(gd,,)(a’t)))al(z)du,

Since the function 1 is convex, estimating the right-hand part of
the latter inequality by means of (2.2) we conclude that

= cb/ (c’g I)>al(z)du.

Thus we have shown that inequality (2.21) is valid.
Rewrite (2.21) as

< bw(x)o(ﬁé(a N(r+1))) +
+cb/ ( TB(?/ ))a'l(y)d'/- (2.24) 3

< ¢b
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Let ¢ be chosen so small that ¢’e < 1. Then, by virtue of the
assumption that the function 3 is convex and taking into account
(2.3) and (2.4), from (2.23) we have

[, 3(150)ew)iv < b(N)O(BBLa, N+ ) +

+cc’b5/DJ(T5(y))01(y)dV<

If € is so small that
ccbs < 1,
then the latter inequality implies

/D 5(Tu(y)) ra(w)dv < ep(NO(BBla, NG+ 1))-

Passing here to the limit when R — 0o, M — oo, and é6 — 0, we
obtain the desired inequality (2.18).
The lemma is proved. W

Lemma 2.7. Let the kernel k satisfy condition (1.7) and inequality
(1.9) be fulfilled. Then (1.5) is valid.

Proof. Replace t by No(2r + t) in condition (1.9) and take into con-
sideration that by virtue of condition (1.7) we have

k(a,y,t) < 'k(a,y, No(2r + t)).

for any y € X\B(a,r).
The lemma is proved. W

Proof of Theorem 2.2. The proof is accomplished by the diagram
(1.6) = (1.10)

f U
(19) « (1.8)

By Lemma 2.5 (1.6) = (1.10). Then by Lemma 2.6 (1.10) = (1.8).
When r = 0 condition (1.8) yields (1.9). Next, by Lemma 2.7 we
obtain (1.5). Finally, using Theorem 1.1, we ascertain that the impli-
cation (1.5) = (1.6) is valid.

The theorem is proved. H

We would like to make some remarks connected with the proof of
Theorem 1.3. If k(z,y,t) = k(z,y), df = odp @ 8o Lemmas 2.5 and
2.6 can be reformulated in the respective. Further, proceeding from
Corollary 2.1 and following the proof of Theorem 2.2, we ascertain
that Theorem 1.3 is valid.
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3. CRITERIA OF GENERAL WEAK TYPE WEIGHTED

INEQUALITIES IN LORENTZ SPACES
Let (Y,v) be a space with a positive o-additive measure v. When

1 <p< oo, 1< s < oo, the Lorentz space LE* is a space of all
v-measurable functions f for which || f||Lrs(v,) < o0, where
- N

M llzrar = (s [ (ly € ¥ 5 15@)] > rh)re=tar)

H 1ep<os, lss<ey,
and
. 9%

A llLrevay =supr({y € Y : |f(y)| > 7})7 if 1<p<oo, s=o0.

Hlcp<ooandl <s< o0, orp=3s=10rp=35= o0, then
LP*(Y, v) is the Banach space with a norm equivalent to || - || Lrs(y,)-

In the sequel X will denote a homogeneous type space, 3 - a positive
measure given on the product of o-algebras generated by balls from
X and by intervals from [0,00), v - a finite positive measure on X.

Theorem 3.1. Let 1 <s<p<g<ooandk: X xXx[0,00) = R!
be an arbitrarily chosen nonnegative kernel. In that case if there exists
a number ¢; > 0 such that the inequality

- k(a ,
(8B(a, No(2r +1))° mewi—uwwgdu)<q, (3.1)

holds for any a € X, r > 0, t > 0, then there exists a positive
constant ¢y such that we have
B{(z,t) € X x[0,00) : K(fdv)(z,t) > A} <
= CZ)‘—qu“qus(_\',.,)' (3.2)

for any measurable nonnegative f: X — R and X > 0.

Theorem 3.2. Let 1 < s < p < q < oo and the kernel k satisfies
condition (1.7). Then the folowing statements are equivalent:

(i) (3.2) is fulfilled;

(ii) there exists a positive constant ¢ such that

= k(a,
(8B(a, 2r +1))° ||XA\B(ar)—(—~||Lv' HXod) S

foranyae X, r>0, t>0;
(iii) there exists a number ¢y > 0 such that

(8B( )‘ Moy i
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The proofs of these theorems are accomplished in the manner de-
scribed in section 2 using the technique from (7], Chapter 6, and we
therefore leave them out. Note that the solution of the two weight
problem in the sense of [3] was previously derived in [19] in Lebesgue
spaces for a fractional integral over a homogenous type space.

4. GENERAL WEAK TYPE INEQUALITIES FOR CLASSICAL
OPERATORS

In this section we are going to discuss some specific examples for
which the results of the previous sections are valid.
Consider the kernel

k(z,y,t) = (B(z,d(z,y) +1))°, 6>0.

It is easy to verify that it satisfies condition (1.7). Let y € X\B(a,r)
and (z,7)€
€ B(a, N(r+t1)), where N is an arbitrary positive number. It sufficient
to show the inclusion

B(z,d(z,y) + 1) C B(a,c(d(a,y) +1)).
Indeed, assuming that z € B(z,d(z,y) + 7), we obtain a chain of
inequalities

d(a,z) < ar(d(a,z) + d(z,2)) < ay(N(r +1t) + d(x, 2
< aiN(r +t) + ayd(z,y) + a17 < 3 N(r + 1) +
+ai(d(z,a) + d(a,y)) < 3a;N(r + t) + dlagd(a, x) +

+aid(a,y) < (a1 + alag)N(r +1)+ afd(a,y) <

< (3ay + a2ag) Nt + ((3a1 + aao) N + a)d(a,y) <
< ((3ay + alag)N + a})(d(a,y) + 1)

) <

Thus condition (1.7) is fulfilled. For such kernels we have Theorems
2.2 and 3.2 and hence we obtain the solution of the general weak type
weight problem in Orlicz and Lorentz spaces for classical operators
such as Riesz potentials, Poisson integrals and others.

Let X = R", d be a Euclidean distance, j a Lebesgue measure and

fy)
T f(md) = — _dy, 0<y<n
2f(z,t) pn (Jx — y| + 1) 7
a generalized potential. Theorem 2.2 yields a solution of the general
weak-type weight problem for T, in Orlicz spaces. It was previously
solved in Lorentz spaces in [6] (see also [7], Theorem 6.5.1).

1101945
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Now consider the Poisson integral in the upper half-space
Pf(a.y) = [, )P — v.1)dy,

where P(z,t) = cul(t? + |2[2)~"#" is the Poisson kernel for R7+!.
The criterion of a two weight inequality of the weak type (p,q) was
established in [10]. From Theorem 2.2 we obtain

Corollary 4.1. Let pn and ¥ be quasiconvez functions, 1 € Ay and
the function t=*0(t) decrease for some a € (0,1). Then the following
statements are equivalent:

(i) there exists a constant ¢; > 0 such that

o(NOB{(x, )€ B x [0,00) : TBf(z,1) > \}) <

c /;%7/’(%)0(«?)61”

or any A > 0 and any nonnegative measurable function f : R* — RY;
Y Y g
(ii) there exist positive constants ¢ and ¢y such that

o)) 0(BB(a,r + 1) 1
¢<5 A e

R™\B(a,r)

a=y,0))oly)dy <

< ep(NO(BB(a,r +1))
forany A>0, aeR*, r>0,t2>0;
(iii) there exists positive constants e and cs such that

[, (2R ABOD )iy <
< cap(MO(BB(a. 1))
for any A >0, a€R" and t > 0.

Let now X = [0,00), d be a Euclidean distance, y a Lebesgue

measure and
! L fer aisry,
el { 0 for z<y.
Then for the Hardy transform f — [§ f(y)dv Theorem 2.3 yields

the criterion of validity of the weak-type inequality figuring in this
theorem. This criterion is written in the form
e(Mn(A) 0(e(x, o))

J o (BRI o g1 < oMol o))
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ON THE TWO-POINT BOUNDARY VALUE PROBLEMS FOR
SYSTEMS OF HIGHER-ORDER ORDINARY DIFFERENTIAL
EQUATIONS WITH SINGULARITIES

I. KIGURADZE AND G. TSKHOVREBADZE

ABsTRACT. The sufficient conditions of solvability and unique
solvability of the two-point boundary value problems of Vallée-
Poussin and Cauchy-Niccoletti have been found for a system of
ordinary differential equations of the form

u™ = f(t,u,o,... ,u("_l))»

where the vector function f :]a,b[x®" — R has nonintegrable
singularities with respect to the first argument at the points a
and b.

COB0TR.  morpgormns Gog-dgliobs @ grBo-Boymzyyc -
T K»ﬁanqm 960 bobibonée oSmGoﬁaanb oSmbonQm&:ho @ Gog?bobog
bgmb Gogm%nb bo‘jﬁoﬁmgn 3otmdgdo

u™ = f(t,u, o, ..., uD)
lsksols Bgymemgdthog @ogg@abEosma® PR bolyggdoboangols,

bowog f Ja, b[xRM — R! 30d& 9 caﬂsaenoh ohggmo oy
33bnl odston 3oohbo> aﬁvmﬁé%ﬁsa&tg\ aoEbadﬁMQBﬂQSBaGo a ©>

b VGﬂv@nQGB'an,

§ 1. STATEMENT OF THE MAIN RESULTS

In this paper for an [-dimensional system of differential equations
u™ = f(t,u,0,... i) (1.1)
we consider the boundary value problem of Vallee-Poussin
uw(at) = - = u™V(at) =0,
u(b=) =--- = um I (b=) =0

1991 Mathematics Subject Classification. 34B15



36 I. KIGURADZE AND G. TSKHOVREBADZE
and that of Cauchy-Niccoletti

u(at) = - = u"D(at) =0,
w™p=)=--- = u D (b—) = 0,

(1.3)

where [ > 1, n > 2, m is an integer part of the number %, —co <
a < b < 400, and the vector function f :Ja,b[xR™ — R' satisfies
the Caratheodori conditions on each compact contained in ]a, b[xR™.
We are interested mainly in the singular case when f is nonintegrable
with respect to the first argument on [a, 8], having singularities at the
ends of this interval. The above problems were investigated for [ =1
in [2-6].
The following notations will be used:

fi.5 = la,b[ for n=2m )
B Ja,b] for n=2m+1’

1 for n=2m
,u,.:{ % for n=2m+1;
min{(t — a)?™, (b— t)>"~}
(m = Dl(m - i)h/2m —1)2m -2 + 1)

(i =1,...,m);

/\,‘m({l, b; t) =

R is a set of real numbers, Ry = [0, +00(;

£= (&) €R and A = (ak;)k j=1 € R'™! are respectively an I-
dimensional column vector and an [ x [ matrix with real components
&(G=1,...,0) and ayj (k,j=1,....,0),

i 1
1€l = (I&D5=1>  liEll = 21 &1 Al = kz_;l laksl,

sign &1 0 0
o
0 0 e mgn

r(A) is the spectral radius of the matrix A;

R, and RY! are sets of l-dimensional vectors and 1 x | matrices with
nonnegative components; o

the inequalities £ < € and A < A, where ¢ and £ € R! and A and
A € R, imply respectively & — ¢ € RY, and A—AeRY,
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Lipe(I;Ry), where I C R is an interval, is a set of functions z :
I — R, which are Lebesgue integrable on each segment contained
in I;

Ki,o(I x RP;R"), where p is a natural number, is a set of vector
functions mapping I x R? into R' and satisfying the Caratheodori
conditions on each compact contained in I x R?;

é,’;c(I;R’) is a set of vector functions u : I — R' which are ab-
solutely continuous together with all their derivatives up to order p
inclusive on each segment contained in I;

Cn=1m(I;RY) is a set of vector functions u € Cpig ' (I3 RY) satisfying
the condition

/||u(m)(r)\}2d'r < too.

i

As mentioned above, throughout this paper it is assumed that
fe I(IOC(]a,b[X]R"l;R’).

Theorem 1.1. Let the following inequalities be fulfilled on |a, b[xR™:

(1) S ) ) 23 Hi( Ol = h(O) (14)

and
G el Saltan o) 3 () B, (1.5)
where
4 € Kuolln(a,8) x R™GRy), (16)

and H; :)a,b[— R’f’ (i=1,...,m) and h :]a,b[— Rﬂr are respectively
measurable matriz and vector functions satisfying the conditions

/a"(f — @)= (b r)™H[h(r)lldr < 4o, (w7
/:(T—-a)”_i(b—‘r)zm_i||H,(‘r)||dr<+oo T

r(i/ﬂb(r - (t)”—?m)\im(a,b;T)H,(T)d‘r) < (1.9)

i=1

Then the problem (1.1),(1.2) is solvable in the class Crm(I(a,b);RY).
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Theorem 1.2. Let on Ja,b[xR™ the inequalities (1.4) and (1.5) be
Sulfilled, where
q € Kipe(]a, 8] x R™:Ry),
and H; :)a,b) — R (i =1,...,m) and h :]a,b] — RY, are respectively
measurable matriz and vector functions satisfying the conditions

/b('r — )= H||h(r)lldr < +oo, (1.10)

/ab(r — )" || Hy()||dr < o0 (i=1,...,m), (1.11)
o 1
T(§ (m — 1)!(m — i)1y/(2m — 1)(2m — 2 + 1) ;
b
></a (r = (z)"“'H;(T)dT) % o (1.12)

Then the problem (1.1), (1.3) is solvable in the class Cr=tm(]a, b]; RY).

For a differential system
u® = TGt ,u(m"l)), (1.1

not containing intermediate derivatives of order higher than (m — 1),
Theorems 1.1 and 1.2 can be formulated as follows:

Theorem 1.1'. Let
[ € Kioe(In(a,b) x R™; R
and on la,b[xR™

(=D S () @ miee - y@m) > Z x| —h(t), (1.4")

where H; :la,b[— R (i = 1,...,m) and h :]a,b[— R! are measu-
rable mairiz and vector functions satisfying the conditions (1.7)-(1.9).
Then the problem (1.1'), (1.2) is solvable in the class Crtm(I(a, b);RY).

Theorem 1.2'. Let
f € Kie(la, b] x R™: R")

and on Ja,b[xR™ the inequality (1. 4) be fulfilled, where H; :Ja,b] —
R (i=1,...,m) and h :]a,b] — R!, are measurable matriz and vec-
tor functions satisfying the conditions (1.10)-(1.12). Then the problem
(1.1"), (1.3)is solvable in the class Cr-1m(la,b]; Y.
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Theorem 1.3. Let
f € Kioe(I(a,b) x R™; R,

b 3 " (L:13)
J o= b= A0, 0)lldr < 4oo

and on Ja,b[xR™

(=18 = )l @) = Sl g )] 2
= _ZH.(t)la'.'~yi|, (1.14)

where H; :]a,b[— R’f’ (i =1,...,m) are measurable matriz functions
satisfying the conditions (1.8) and (1.9). Then the problem (1.1}, (1.2)
is uniquely solvable in the class C""V™(I,(a,b); RY).

Theorem 1.4. Let
b
J € Kioella, ) x R™RY, - [ (7 = @)™ ™Hf(7,0,... ,0)ldr < +o0

and on Ja,b[xR™ the incquality (1.14) be fulfilled, where H; :]a,b] —
Rff’ (i = 1,...,m) are measurable matriz functions satisfying the
conditions (1.11) and (1.12). Then the problem (1.1"), (1.3) is uniquely
solvable in the class C"=™(Ja, b]; RY).

§ 2. AUXILIARY PROPOSITIONS

Lemma 2.1. Let I C R be some interval, k be a natural number,
po €]0,4+o0[ and
# € Lioe(I;Ry). (21)

Then there exists a continuous function p: I — Ry such that for any
vector function v € CF (I;RY) satisfying almost everywhere on I the
differential inequality

k
o0 < o)1+ 100 (22)
and the condition
Stz ar <o}, (23)
the estimates :
||1)(i)(t)|| < plt) Jortel (3= 05.5k) (2.4)

hold.
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Proof. In the case I = [a,b] it is not difficult to verify by Lemma 2.2
from [6] that there exists a positive constant p such that the estimates

o)) <p for a<t<b (i=0,...,k)

hold for any vector function v € Cf (I;R) satisfying the conditions
(2.2) and (2.3); in other words, we have (2.4), where p(t) = p.
Now consider the case I =]a,b]. Choose any decreasing sequence
€la,b] (j =0,1,2,...) such that ap = b and

lim a; =a.
j—+oo

Then, by virtue of the above reasoning, for any natural number j
there exists a positive constant p; such that any vector function v €
CE(I;R!) satisfying the conditions (2.2) and (2.3) admits the esti-
mates

@) < p; for a; <t<b (i=0,...,k). (2.5)
Without loss of generality the sequence (pj) %) can be assumed to be
nondecreasing. Then (2.5) yields the estimates (2.4), where

t—a;y

p(t) = p; + (pjs1 = pj) for aj<t<a; (j=12,...)

a;j — aj-1

with p: I — Ry being continuous and independent of v.
The cases I = [a,b and I =]a,b[ are considered similarly. H

Lemma 2.2. Let H; :Ja,b[— R (i = 1,... ,m) and h :]a,b[— R}
be measurable matriz and vector functions satisfying the conditions
(1.7)-(1.9) and

mop
He Z/ (r = @)™ Xow(a, by 7)Hi(7) dr. (2.6)
=1

Then for any vector function w € C="™(Ja,b;R!) satisfying a system
of differential inequalities

(=" S (u())u™(t) > - 211 (O|uD@)| =h(t)  (2.7)
for (1<t<b

and the boundary conditions (1.2) we have the estimates

[ b < g4 es)
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and
NuC V@) < pooim(a,bjt) for a<t<b (i=1,...,m), (2.9)
where
min{(¢ — )™=, (b— t)m=i+})
(m-—-i)'vV2m—21+1
po = ViI||(k B = H)'|| x

X /b(T —a)" oy (a, by )| h(T)|| dT (2.10)

oim(a, b;t) =

)

and E is the unit | X | matriz.
To prove this lemma we need

Lemma 2.3. Let
n— n-m
d (o™ P (1)pli- (),
k=

3

i

where
v € C™ ™ (la, b[;R),
o Va4) =0 (i=1,...,m), v0D-)=0 (2.11)
(1=l sn—m)

and each cix : [a,b] — R is a (n — k — 1 + 1)-times continuously
differentiable function; in that case there exists a positive constant cg
such that

lei(t)] < co(t = a)"™*" for a<t<b e
(L=t =)
Then
thﬂ inf |w(t)] = 0, tl_]}ﬂ inf [w(t)| = 0.
Proof. In the first place it will be shown that
hm inf [w(t)| = 0. : (2.13)

Let the opposite be true. Then without loss of generality one may
assume that the inequality

w(t)>6 for a <t<a+2e
is fulfilled for some & €]0,400[ and ¢o € ]0, "‘T“[O]O, 1[.

162001945
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Therefore

n—

3

n—

3

qir(t; €)™ F ()oD(1) > §(t —a — )" (a + 26 — )"
i (2.14)
for a+e<t<a+2, 0<e<eo,

i
Eod
i

where
qir(t;e) = (t —a—e)"(a+ 2 —t)"ci(t).
After integrating the latter inequality from a + ¢ to a + 2¢ according

to Lemma 4.1 from (7], we obtain

n—m n—m mix at2e o .
V:k]/ g (7 ) o () dr >
e e

a+2e
26/ (r —a—e)"(a+2 —7)"dr, (2.15)
a+e

.

where mj is the mteger part of the number ~(n —k—141) and vi;
G= k=4 ;3 =0,...,mg) are the positive
constants mtependent of a, e and .

If ke {i+1,...,n—m}, then we have

itj—1<m-1, 2n—(n—k—i—2+1)>2+2j+n

for any j € {0,...,mi}.
Therefore, taking into account (2.11) and (2.14), we find

2

WP = [y [ | <
< afe)e?™H-HH for a <t <a+2 (2.16)
and
| 5 (4 6)] € 0 U for a <t < a2,
where

a+2e
ale) = 22m_1/ : ™ ()2 dr = 0 for ¢ =0 (2.17)

a

and «; is a positive constant independent of e. Therefore

a+2e
L7 o )] dr| < anale)etmH <
-

< enae)e®™1.
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Consider now the case k = i. By virtue of (2.12) and (2.14) we have
—h—i=2j —2i=9; = i+2j—
I ™ k)| = (gl " 56)] < agetn-ma
for a <t <a+ 2,
where o is a positive constant independent of e. Therefore if i+j—1 =
m, then

a+2e S :
Lo a0 s ) o) ar

= 2n+1
= )

< aza(e)e

at+2e
[ autm o™ dr
a+te

if however i + j — 1 < m, then, taking into account (2.16), we obtain

a+t2e ; o )
/ ql(tn—zz—wﬂ)(r;5)[v(;+]—1)(7_)]zd_r < aza(€)52n+l.
ate
Thus
atle ki uy) (+i-1) 7 _\12 2n+1
/ ik (3 )" 7))2 dr| £ ava(e)e’™ ™, (2:18)
ate

U=L..,a=m k=i . 0-m j=0,... my),

where ag = max{ay, az}.
On the other hand,

a+2e en oty
/ (r—a—¢)(a+2s—71)"dr > -/ (r—a—¢)tdr =
Jate 21 Jase
1

2n+1

T 9ati(n + 1)5
Due to (2.18) and the latter inequality we find from (2.15) that
a(e) 2 b for 0 <e <L e,

where &y is a positive constant independent of €. But the latter in-
equality contradicts the condition (2.17). This contradiction proves
that (2.13) holds.
The equality
11_1,Ibn_ inf [w(t)] =0

is proved similarly, the only difference being that for n = 2m + 1
instead of (2.12) the condition
o™ (=) =0

isused. W

Ay

11013

49
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Proof of Lemma 2.2. For each component u, (j = 1,...,1) of the so-
lution u of the problem (2.7), (1.2) we have

|u§"‘1)(t)| = ‘(71_-—5—!/:(15 — 7)™y (m)( )dr| <

_*._1— _ gyt bu(m)TQT
= e wor o i (/ﬂ[; ()ld>

for a<iti<ibr (i=15om)

and
(i-1) 1 b s ()
u=V(t)] = ‘(777——1)'[ (r = ty™ul™(r) dr| <
e i)!\/le = = (L i (/ b d’) 7
forsa <<t <ebii(si—F- = an).
Therefore
[S0(t)] < oimla,bit)p; for a<t<b (i=1,...,m), (2.19)
where §
o= ([urera)
Let

Hi(t) = (hian(®),,_, (= Lccom) h(®) = (h(0)mn-
Rewrite (2.7) in terms of components as

(=1 () sign uj(t) >
m

> -3 Y ki@ =ki() G=1,...,D.  (27)

i=1 k=1
After multiplying both sides of (2.7') by (t — a)"~*"|u;(t)| and in-
tegrating from s to ¢, we obtain

(1= [ (= ay ey dr <
sl i
<33 [ =@ b)) dr +

i=1k=1"%

+ ['(r = )y hy(r)lus(r)| dr for a<s<t<b (2.20)
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By virtue of (2.19)
B .
> [ = ar i ()] dr <
k=12
! ¢
< p; Z pk/ (r — a)"“z"‘m,“(a, b; 7)oim(a, by ) hije(T) dT =

L ka/ (1 — @) P \in(a, b hiju(r) dr (2.21)

E=1y. o)
[ = ay iyl dr <
< pj /:(T — )" ™ gy (a; by )hi(7) dr- (2:22)

On the other hand, by Lemma 4.1 from [7]

/:(T = a)"_z'"u}")(‘r)uj(r) dr =
= wi(t) = wis) + (<1 [P, (223)

where

n—m

> (—1)”_1u§-n<p)(t)u§p_”(t) for n =2m,
N TR O
PO+ for n=2m+1.

3
|

Tess -

U}j(t) =

As one may readily verify, the functions w; (j = 1,... 1) satisfy the
conditions of Lemma 2.3 and therefore

lizri inf |w;(s)| = 0, tlirbn inf|w;(2)| =0 (7 =L,
Taking into account latter equalities and conditions (1.7) and (1.8)

frem (2.20)-(2.23) we obtain

pnp; < /)JZ Zl’k/ ™= @) Nim (@, by 7)haje()dr +

=1 k=1

+p]~/‘l (r = a)" M orm(a,biT)hy(r)dr (G =1,...,1).
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Hence by virtue of (2.6) we have
b
pnp < Hp+ [ (7 =@y o, (a,bir)h(r)dr,

where p = (/1]-)5:1‘ In view of (1.9) and the notation (2.10) from the
latter inequality we find

b
p < (unE—H)™ / (1 — )" ™0 1m(a, b; T)R(7)dT
and

loll < W2 = 71 7 = @ =orm(a, ) h(o)ldr = 1o

Hence
[ WP < ol <
On the other hand, i; view of (2.19)
=D ()| € im(a, b5 0)|lpll < pooim(a,bjt) for a<t<b
(@= 150 ym).

Therefore, the estimates (2.8) and (2.9) hold. B

We prove quite similarly

Lemma 2.4. Let H; :]a,b] —» R (i =1,... ,m) and h :]a,b] — R,
be measurable matriz and vector functions satisfying the conditions
(1.10)-(1.12). Then for any solution u € C"~1™(la,bl;R') of the prob-
lem (2.7), (1.3) we have the estimates

b 9
[l mirdr < g

and
lu=D(t)|| < polt — a,)m'"'v+1§ for w<t<b(i=1_..,m),
where
Vi -1 o n-m-%
o= B = 7 [ (7 = H b dr,

m 1 b :
e —a)" " Hy(7)dr,
Z‘: (m=1)l(m—i)L/(2m—1)(2m—2i+1) / b=l S

and E is the unit | x | matriz.
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§ 3. PROOF OF THE MAIN RESULTS
Proof of Theorem 1.1. Let po and oin(a,b;t) (i = 1,...,m) be re-
spectively the number and functions from Lemma 2.2 and
@(t) = 4"sup{q(t,z1,...,2m) ¢ |l2ill < pooim(a, bst)
(=1 )]s (3.1)
Than due to (1.6), (2.1) holds with I = I,(a,b).
For k = n —m — 1, po and ¢ by virtue of Lemma 2.1 there exists
a continuous function p : I,(a,b) — Ry such that estimates (2.4)
are valid for any vector function v € Cf (I.(a,b); R') satisfying the

conditions (2.2) and (2.3).
Let

- {pgaim(a,b;t) for i€ {l,...,m} (3.2)

T et) for i€e{m+1,...,n}
and
Fr@) = sup{llf(t, 21,2l 5 Il S pit) (E=1,...,n)}
For any i € {1,... ,n} and £ = (§,)!_, we set

p=1

e for 16,1 < (1)
i {pi(t)signfp fr 161>5(0)" ()

xi(t,€) = (xin(t, 6))

Let j be an arbitrary natural number,

!
p=1"

b=a b=a o
il 1 ] i
i la+ 52, 8] for n=2m+1’
filt, 21, 20) =
= ftxa(t,21), ., xn(t, 20)) for  t € Ij(a,b) (3.4)

0 for ¢ € [a,b\Inj(a,b)’
£ = f*(t) for te€ ILj(a,b) :
d 0 for t € [a,b]\I,;j(a,b)

Clearly, that fr : [a,b] — R, is the Lebesgue integrable function
and on the [a,b] x R™ the inequality

”fj(twl'lﬁ'“vzn)” < f;(t)

\\““///’/

20
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holds. On the other hand the homogeneous differential system
u™ =0
by boundary conditions (1.2) has only the trivial solution. Therefore
by virtue of the Conti theorem [1] ! the differential system
u® = Filtas . ,u(”“”)

has a solution u; € Ci=Y(la, b); R') satisfying the boundary conditions
(1.2). It is obvious that u; € C*"([a,b];R’). Simultaneously, from
(1.4), (3.3) and (3.4) follows that u; is the solution of the system of
the differential inequalities (2.7). Therefore by virtue of Lemma 2.2

b
[P dr < g (3:5)
and
[u$ Ol < povim(a,bit) for a<t<b (i=1,...,m). (3.6)

From conditions (1.5) and (3.1)-(3.6) is clear that the vector function
vi(t) = ug-m)(t) satifies the inequalities (2.2) and (2.3). Hence by
Lemma 2.1

1$@)) < p(t) for t € In(a,b) (i=m+1,...,n).
Therefore
u$ ™M@l < pilt) for a<t<b (i=1,..,n) (3.7)
and
(@O < £7(t) for a<t<b (3.8)
Moreover, in view of (3.3),(3.4) and (3.7) it is clear that
u(t) = f(t,4i(0),... ,u"(@) for t € Inj(a,b).  (3.9)

Since f* € Lioe(In(a,b);Ry), the estimates (3.7) and (3.8) imply
that the sequences (uf"”)fj{ (4 = 1....,n) are uniformly bounded
and equicontinuous on each segment contained in I.(a,b). Therefore,
by virtue of the Arcela-Ascoli lemma these sequences can be regarded
without loss of generality as uniformly converging on each segment

from I,(a,b).

Lalso see [8], corollary 2.1




ON THE TWO-POINT BOUNDARY VALUE PROBLEMS 49

If we set
ligl u;(t) = u(t) for t € I (a,b),
j—+oo

then
Jim W) = u0(@) for t € Ln(a,b) (i = 1,...,n) (3.10)
J—+oo

uniformly on each segment contained in I,(a,b). Therefore from (3.5)
and (3.6) we obtain

b
[ i dr < o, (3.11)
=D (@)|| < pooim(a,b;t) for t € L(a,b) (3.12)
(=1 )

In view of (3.9) for arbitrary fixed s and t € I,,(a,b) there exists a
natural number jo such that

t
u§-n'l)(t) — ugn_l)(s) = / flowi@) s ,u(J"‘”(T))(lr
(4 =Josjo+1,...)
and
st € Ly(a,b) for j 2 jo.

Passing to the limit in the latter equality by j — 400, we obtain

u("“l)(t) - u("“”(s) = /t F@uln) ,u("‘l)(r))dr.

Therefore u is the solutign of the system (1.1). Simultaneously, (3.10)-
(3.12) imply that u € C"~V™(I,(a,b);R") and satisfies the boundary
conditions (1.2). W

Theorem 1.1" immediately follows from Theorem 1.1, since in the
case when

Flmne )= o)
and f € Kp.(I.(a,b) x R™;R!), the inequality (1.5) is fulfilled auto-
matically and the function ¢(t,z1,... ,@m) = || f(t,21,... ,2)| satis-
fies the condition (1.6).

Proof of Theorem 1.3. (1.13) and (1.14) yield the conditions (1.4’) and
(1.7), where

h(t) = |£(t,0,...,0)|.

\\i“///;/

152001945
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Therefore by virtue of Theorem 1.1’ the problem (1.1’), (1.2) is solvable
in the class C"=1™(1,(a, b); RY).

To complete the proof of the theorem it remains for us to verify that
the problem under consideration has at most one solution in the class
Cr=tm(Iu(a, b); RY).

Let u,i € C™='™(I,(a,b);R!) be two arbitrary solutions of the
problem (1.1'), (1.2). We set

v(t) =wu(t) —u(t) for t€ I(a,b).
It is clear that =
v € G (I,(a, b RY)

and
v(at) =+ =™ V(at) =0, v(b=)= - =™ V(=) =0.
On the other hand, by the condition (1.14) from the equality

o) = f(tu(t),... ") = ft (), .., ut(1))

we have

m

(1S @O0 2 -3 HOR)

Therefore due to Lemma 2.2

o afl) =alt) =

Theorems 1.2 and 1.2 are proved similarly to Theorems 1.1 and 1.1,
while Theorem 1.4 similarly to Theorem 1.3 with the only difference
consisting in that Lemma 2.4 is used instead of Lemma 2.2.

REFERENCES

1. R. Conti, Equazioni differenziali oridinarie quasilineari con con-
dizioni lineari. Ann. mat. pura ed appl. 57(1962), 49-61.

2. I.T. Kiguradze, Some singular boundary value problems for ordi-
nary differential equations. (Russian) Tbilisi University Press, Tbilisi,
1975.

3. —, On some singular boundary value problems for ordinary dif-
ferential equations. Equadiff, 5. Proc. Czech. Conf. Diff. Fquations
and Applications, 174-178, Teubner Verlag, Leipzig, 1982.




d
ON THE TWO-POINT BOUNDARY VALUE PROBLEMS 51

4. L.T. Kiguradze, On solvability of boundary value problem of de
la Vallee Poussin. (Russian) Differentsial’nie Uravneniya 21(1985),
No. 3, 391-398.

5. , On boundary value problems for high order ordinary dif-
ferential equations with singularities. (Russian) Uspekhi Mat. Nauk.
41(1986), No. 4, 166-167.

6. , On two-point singular boundary value problems for non-
linear ordinary differential equations. (Russian) Proceedings of All-
Union symposium on current problems of mathematical phisics, vol. 1
(Russian), 276-279, Tbilisi University Press, Tbilisi, 1987.

7. LT. Kiguradze and T.A. Chanturia, Asymptotic properties of
solutions of nonautonomous ordinary differential equations. (Russian)
"Nauka”, Moscow, 1990.

8. LT. Kiguradze, The boundary value problems for systems of ordi-
nary differential equations. (Russian) Current problems in mathemat-
ics. Newest results, vol. 30 (Russian), 3-103, Itogi nauki i tekhniki,
Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Techn. Inform.,
Moscow, 1987.

(Received 23.09.1992)

Authors’ address:

A.Razmadze Mathematical Institute
Georgian Academy of Sciences

1 Rukhadze St., Thilisi 380093
Republic of Georgia




Proceedings of the Georgian Academy of Sciences. Mathematics
1(1993), No. 1, 53-59

MEASURES OF CONTROLLABILITY

J.L.LIONS

ABSTRACT. We introduce here a new notion, the measure of con-
trollability aimed at expressing that one system is more control-
lable” than another one. First estimates are given.

GOBTR. Brirogaybrgros skogmo (5B - Asthorgmols tends, oo
oQVUKJJ, o MQU&)Q ”"J%"m aoémmno” %c:mn bnls@)aao Saméabq»s
gabyBee. Bomgdrrmns dofhggeme Bgpeligbyde.

1. INTRODUCTION

Let ©Q be an open set in R”, bounded or not, with boundary T,
smooth or not.

In the domain © and for ¢ > 0, we consider the system whose state
y :y(z,t) = y(z,t;v) is given as follows:

%Z— + Ay =v(z,t)x, in Qx{t>0}, (1.1)

where A = second order elliptic operator in € (its coefficients are not
necessarily smooth and they may depend on t),

O = open set C Q,
Xo = characteristic function of O,
v = v(z,t) = control function.

We add to (1.1) the initial and boundary conditions respectively
given by

y(z,0) =y°(z) in Q, y°givenin L*(Q), (1.2)

1991 Mathematics Subject Classification. 49J20.



54 J.L.LIONS
and
y =0 on Tt >0} (1.3)
Under reasonable conditions on the coefficients of A (cf.for instance
J.L.Lions (3]), and assuming that
v € L*(O x (0,T)), (1.4)
equations (1.1),(1.2),(1.3) admit a unique solution y, which is such
that
ay
Y, 5
This defines the state of the system, with distributed control with
support in O. W

€ L*(Q x (0,T)). (1.5)

Remark 1.1. Boundary condition (1.3) is taken here to fiz ideas.
What follows readily applies to other situations corresponding to other
boundary conditions. ®

Remark 1.2. All what follows readily extends to higher order para-
bolic equations, to systems of parabolic equations and actually to all
evolution equations, provided they are linear. This will be reported
elsewhere. Cf. also the Remarks of the last section of this paper. ®

Remark 1.3. One knows that (J.L.Lions [3]) after a possible change
on a set of 0 measure, the function ¢ — y(t) = y(-,) is continuous
from [0,7] — L*(R2). =

Approzimate controllability is defined as follows (cf. for instance
J.L.Lions [4]). We are given T and y' € L*(Q). Let B denote the unit
ball in L2(Q) and let 3 be a positive number arbitrarily small.

It is known (J.L.Lions [5]) that, when v spans L*(O x (0,T)), the
functions y(-, T; v) describe an affine space in L*(2) which is dense in
L?*(©). Therefore one can always find functions v (controls) such that

y(T;v) €y' + BB (1.6)

and there are infinitely many v’s such that (1.6) takes place. One says
that the system is approzimately controllable. It is natural to look for
the (actually unique) element v such that

1 : : :
- odt = 1.7
2//@)(((”)1) dz dt = min (1.7)

where v is restricted to those elements such that (1.6) takes place.
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The question we want to address here is the following: when can we
say that a system is more controllable than another one?

In this question we assume that Q and that O do not change. Then
the min in (1.7) is a quantity which depends on A, y°, y' and A and
T. We write

infl// vidz dt = M(A,3°, 4", 8,T),
v 2 JJox(0,1)
y(T;v) € y' + BB.

We have to introduce a quantity which is independent of y° and of 3!
but which only depends on the sets described by y° and by y!.
We shall assume

(1.8)

¥’ € B, y'ewB (1.9)
and we introduce as a "measure of controllability” the quantity
M(A,a0,01,8,T) = sup M(A,y%y",B,T). (1.10)
y’€aoB
y'€nB

Remark 1.4. This quantity seems to be introduced here for the first
time. The study of the function

A— M(A a0,4,5,T) (1)
leads to many seemingly interesting open questions. We shall return

to these questions in other occasions. ™

Remark 1.5. It is not obvious that the quantity introduced in (1.9)
is always finite. Indeed this quantity is finite iff 3 > a;. =

Remark 1.6. We shall give below a number of simple formulas re-
ducing the number of variables ag, ay, 3 to actually one variable. ®

We are now going to give a formula for M (A, ag, a1, 3,T) which is
based on duality arguments.

2. DuALITY FORMULA FOR THE MEASURE OF CONTROLLABILITY
We introduce the decomposition
y(z,t;0) = y(v) = yo + 2(v) (2.1)
where
Jyo

T o=l (2.2)

¥0(0) =% wo=0 on I'x(0,T)
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and
0z
2 T A= %0 (2.3)
2(0)=0, z=0 on T x(0,T).
Then
il
M (= Sy 24
(Ay%y%8,T) mf2 .//m(o,’r)v i (2.4)

#(T;v) € y' = yo(T) + BB.

We introduce the convex functions defined by

- 2 ) -
Fo(v) = 2//0><(0,T)v dedt, ve IO x(0,T), (2.5

o
Rt e
We define the linear operator L by
Lv = 2(T;v). (2.7)
One has
L € L(L}(O x (0,T)); L*()). (2.8)

With those notations (this is only a matter of definition)

M(A, %y, 8,T) =

= el oz o) + Fi(Lo). w0 (29)

The next step is to use Fenchel-Rockafellar duality (cf. T.R.Rockafellar
[6] and the presentation made in I.Ekeland and R.Temam [1]).
In general, the conjugate function F of F; is defined by

F7(f) = sup[(f, ) — Fi(])].
i
With these definitions, one has
F3(v) = Fo(v),
Fi(f) = (£y" = wo(D) + B 1l (2.10)
where | f|| € (/szdx)i‘
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Let L* denote the adjoint of L. Then (T.R.Rockafellar, loc.cit.)
ueL2(lcr7‘>{(u T))FO(UHFI(LU):

e

(2.11)

The operator L* is given as follows. If f is given in L*(Q), we solve

%—wa—o <
(@, T) = fz) in @, (2.12)
=0 on T'x{t<T},

where A* = adjoint of A.
This problem admits a unique solution ¥ (z,t) = ¥(z,t; f) = ¥(f).
Then one easily verifies that

L*f = ¢x,. (2.13)
Using this result, (2.11), and (2.10), we obtain

1
M40 3. == int = ] 2y dt —
(4,49, 8.T) reide) 2 0><(0,T)w i (2.14)
= (5" = yo(T)) + BISI-
If we multiply (2.12) by yo, we obtain after integration by parts

—(£,50(T)) + ($(0),5°) = (2.15)
so that (2.14) can be written
M(A,y°y",B,T) =
: 1 2
- = = 2
je]l??f(n) 2//;))((01)1) dx dt (2.16)

=Ly + @0, + /). =
By definition
M(A, a0, 1,8, T) =
= sup M(A,y°,y", 3, T) = (using (2.16)) =
yP€agBylea B (2.17)
i yoeaoB,yliercleB,/eLQ(ﬂ) % //m(o,r) Vindt =
= (fu") + ((0),5%) + B £l
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A’[(Aval)valwﬂvT) =

= inf [% //Ox((m Widedt + (2.18)
+ (8= an)llfl = aoll (O]
In summary:
the measure of controllability is given by formula (2.18),

where P = Y(f) is given by (2.12). W (2.19)

Remark 2.1. One can show that the ir}f in (2.18) is finite iff

B>a;. ®
One has

M(A, a0, 01, 8,T) = M(A,0,0,8 — 01, T), B> aq. (2:20)

Therefore it suffices to consider the following situation:

il
sup inf - vidzdt = Mo(A,q,3,T),

D //m,m ol (2.21)

y(Tsv) € BB

(Then M(A,ao,a1,8,T) = Mo(A, g, 8 — a1, T)).
One verifies directly that
My(A,a,B,T) = o> Mo(A, 1, E,T), (2.22)
@
0 for 3 large enough, :

My(A,a,B8,T)={. 2.23
o(4,08,T) {mcreases to 400 as 3 decreases to 0. ( )

Remark 2.2. Formula (2.18) is constructive. One can deduce from
it numerical algorithms for the approximation of M. Cf. R.Glowinski
and J.L.Lions [2]. m
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ON SOME ENTIRE MODULAR FORMS OF WEIGHTS 5
AND 6 FOR THE CONGRUENCE GROUP To(4N)

G.LOMADZE

ABSTRACT. Two entire modular forms of weight 5 and two of
weight 6 for the congruence subgroup Io(4N) are constructed,
which will be useful for revealing the arithmetical sense of addi-
tional terms in the formulae for the number of representations of
positive integers by the quadratic forms in 10 and 12 variables.

A0B0TBA. spgbaemos To(4N ) Bpohgdoms Jaoxaagb 30dsth0r 5 o
8 Geobols mer-afho dongyemo 3o gmed, oy bebagadenm
oJogd0s6 Bnbedadobog 10 @ 12 (33mendbo JPRGog o cam%gabnm
Bog@ermo (330l Fot3mmygboo engbmdols 33mdlssggemo
famgaagmaob s gBomo fggtgdel sthomdgdaymee ol P8mbog-
QPR

In this paper N, a, k, n, v, s, t denote positive integers; u are
odd positive integers; H, ¢, g, h, j, m, a, B, 7, 6, €, n are integers;
A, B, C, D are complex numbers and z, 7 (Im 7 > 0) complex vari-
7;' ) a binomial
coefficient, (k) Euler’s function, e(z) = exp2wiz, n(y)=1ify >0
and n(y) = —1if v <0.

Let

ables. Further, (%) is the generalized Jacobi symbol, (

F:{ar+[3
T+ 6

oF .
To(4N) = {‘;: +§ el

‘aé—ﬂ7=1},

= 0(mod 4N)}.

Definition. We shall say that a function F defined on H = {r €
C| Im7 > 0} is an entire modular form of weight 7 and character x(&)
for the congruence subgroup To(4N) if

1) F is regular on H,

1991 Mathematics Subject Classification. 11F11,11F03,11F27.
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2) for all substitutions from I'((4N) and all 7 € H
ar + 3 .
"(Sris) = X©O)ar+ 8 F(r),
3) in the neighbourhood of the point 7 = ‘0o

o

E(r) = Z Ane(mr),

m=0

4) for all substitutions from T', in the neighbourhood of each rational
point 7= —£(y#£0, (1,8) =1)

e nm+ﬂ>
G EF = O Ame(m yT+8)

m=0

For n #0, &, g, h, N with g +nh +€énN =0 (mod 2), put

: = 4 9\?

Sh(ﬁ;c,N>: D (=1t C)/Ne(—m+— )

S\ mmodN|n| QN( C)
m=c (mod N)

It is known ([2] p. 323, formulae (2.4)-(2.6)) that

Sg+2ih (f, ;CJV) = Sgn ( f’ ;c+J}N),
sg,w,-(fy;c,N):gh(g;c,N), (1)

Sgh ( g je+ ;'\Q,N) = (=1)" 8, ( f] e, N) :
Let
D n(zlTiic, N =
= X (I mt ) )e((m 4 5)), @)

m=c (mod N) 2
hence

Ion(zlrie, N) = (xi)* 35 (=1 (2m + g)" x
oz m=c (mod N)

ol + 9 )l 32 g
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Put

I (e, N) = — e, N
gh(T7C7 ) 9o (2|75 ¢ )2:07 (4)
90, N) = 9u(75¢, N) = dga(0l7; ¢, N).

It is known ([2], p.318, form.(1.3); p. 321, form.(1.12); p.327, for-

mulae (3.9), (3.5), (3.3), (3.7); p.324, form.(2.16); p.327, form.(3.10),
(3.11)) that

Vomasi(elric Ny=a i (z|rie; N); (5)
2 1 iT\1/2 (N2?
Oa(E] - e d) = (- ) (5] %

h
R TSP S

z |aT+ B, —i(yT +6)sgny\z [ Nrz?
(57 an) = ( ) (zrrs)
o yr+6 7T+t5 Nly| e 2(yt +6) 2
x 3 egale, i NYgw(zlr; HN) (v#0),  (7)
HmodN
where
g =ag+vh+ayN, h'=pBg+h+ASN, (8)
. B B g q
@grgn(c, H; N) :e( (H+ ) )e(ﬁ(c+ 5)(H+ 5)> X
ng-sgr,Wgr( % e SH,N); ©)
9 o il (e, N
welr + Bie, N) = e 5 (c+ 2)" ) Dunssgran(elrsc, W),
Vgn(—z|r = B5¢,N) = (10)

B 2
- e( - m(c + g) )ﬂ_g‘_h+59,gN(z|‘r; —c, N).
From (5) and (10), according to the notations (4), it follows that

l9g,h+2j('r? ¢, N) =dg(r;¢, N),

. . (11)
98 5756, N) = 95 (7;¢, N);
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95+ BieaN) = e( (et D))o ppuan(ric. N,
957 — B, N) = (12)
= (_1)"‘3(_ %(c%— 2) )ﬂw h+Bg— (T3 Fale

From (2) and (3), according to the notations (4), in particular, it
follows that

i 2
I,(r;0, N) 2 (—1)me ( N(N1n+‘%) T),

I (r;0,N) = (13)
=(m) i (=)™ (2Nm + g)nc(%(Nm - %)27’).

m=—0co

Lemma 1. Forn >0

iT)(ZnH}/z @

N
1 q h
x e(—*:c+— 11+_)><
lIn%N A'( 2)< 2)
n t
{0 Ny + 3 o= A g BN,
=1 k=L ©l=0

where

0 if t#2
(b= 100 ooy = 1,200 ,T). (1)

:{ ({2 o 4=2%

Proof. From (6), by Leibnitz’s formula, we obtain
ik z iT\1/2 O Nz*
52—"ﬁgh(;|_ el ( N ) 8z"{e( 2r ) &

T e~ e D+ 5)) et BN =

HmodN

—ZT)(27L+1)/2
X

= Wiy (5
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XngNe(- %(C+ g) (H+ %)){C(Nz )aaznn"hg( \T$HaN)} +

n n a JVZ j'n, t - ;
+§( 3 )(72” ( )()zn pg(z|r; H, N). (1.2)

According to formulae (a) and (b) of [1], p. 37

gt ;Nz* N A N2z? Ay (N2?
2 o2) = el + 40 ) o Bl
(t=1,2...,8)
where

A!k:i‘t(Nm'ﬂ) WL<N7“Z) att( N ‘J)k_] i
9z T Ee -

+k(k—1 (Nmz )2 o (Nmz)

2!
Nr7iz?\*-1 8¢ (Nr7iz
o (e (R ) E=1,2,... 1),
et =1 T 9zt T ( )
hence
Cr)t ]\72‘2 : Atk‘
el =y = Pl h 1.3
9zt ( 27 ) 2=0 ,; :! quo ( d ") Pt
and
8t (Nmiz?
Awl _, 8z‘( T ) 2=0 (it Gt (14)

Thus, in view of notations (4), the lemma follows from (1.2)-(1.4). ®

Lemma 2. Ify #0, then forn >0

ﬂn)(m’—kﬂ

sgn "/)(Zn+1)/2
T+ 6’

Ny

> eaen(e, H; N){ﬂ;?,l,(T; H,N)+
HmodN

E /n\ A
B
2

IP. 75 in the Russian version of [1] published in 1933

¢ N) = (N|y|isgn 'y)"( —i(yT +6)

(7, M)
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where ' ' and pygn(c, H; N) are defined by the formulas (8) and (9),
_ e =

2=0 0 if t+2k

(& =125 ety ki=15 2 i)

Ak

Proof. From (7), according to Leibnitz’s formula, we obtain
o 2 ar+f sgny\1/2
9yh( 5 J K
P blyr+ 6 Ny

¥

Nyz?

{( WM)) S euile s 0t |THN}
HmodN

= (Nlisga ) (= iam +6)
Nyz? N\ o°
X S ognlc, H; N){e(m) 5;199%:(:47'; H,N)+

HmodN . A
+Z( ) 7 (m)ﬁ e [TH]\/} (15)

3
’\;i ), we have

C,N) = (7T+6)"(7i(7'r+6)

am

Sgn,y)(ZrH-l)/Z
Ny

As in Lemma 1, but with e(M) instead of e(

2(v7+9)
o Nyz2? L
=l = - =il2 sl
az”(z(ww))‘z:o ;;: W ik B e
and
9'  Nymizy2k
X = — = : i
Auk 2=0 821(7T+6) 2=0 ( 18t} (L.7)

Thus, according to the notations (4), the lemma follows from (1.5)-
(1.7). m

Lemma 3. If g is even, then for n > 0 and all substitutions from
I'o(4N) we have

19;’,?(07 i 5 2N) =

= (sgn 8" i+ (sen5-1)/2 012 (251‘;‘;!5“ 5) v

" ar62h2 B6g? d12¢(2N)-2 o
x(r + )i o - ST (PG AT Nyt (s 0,2M).
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Proof.
1) Let v # 0. In [4] (p.18, form.(5.1)) it is shown that

S'go< g ;O,QN) =

= E(@ w>i<1~|5l)/2(2ﬂ_1\’_55ﬂ> 16[12.
4 4N 9]

Replacing a, 8, v, 6, 7, ¢, N by B, —a, §, —v, 7/, 0, 2N in Lemma
2, we obtain

(1.8)

v‘"’(i*l ~%.0,2N) = (2|6l sgn 6)"( - i(67" — 7)2513\;;)‘2"“’”
x 3 wgh(o,H;2N){o§;1,g(f’;11,:zzv)+
Hmod2N
+Z( )Z’:‘f R miC ’;H,ZN)}, (1.9)
where by (8),(9),(11) and (1)
I = Bg + 6k + 286N, (1.10)

@ngn(0, H; 2N) =

h/?
=e(_“&w)e( 2+ )) ( O,QN), (L11)
_ em(ze)* i e—ok
Tl o0 i t#2k
(k=1,2,...,1). (1.12)

Ak

2=0

Writing —+ instead of 7/ in (1.9) and (1.12), according to (1.11), we
obtain

AN (2n+1)/2
ot + B @ ( J&= ’Y)Sgn’s)
(7T+6 ,~N) 2N7)"(|6]sgn é)" — N
e(— oz'yh/Z) (ﬂ6g2 62‘”21\’)—2)i“_lsl)ﬂ(Qﬁngn 6)|6|1/2><
16N :+ AN H

K 1
= e ——=(H ){Wl, — = H2N) +
Xllnéfmve( 4N( i ) L g( T )

A

71,1L
S5

W ”(— = H 2N)} (1.13)

k' ag
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where

Ak

1 (2NsmiT\F e o
_ | Rz i ¢ =2k TS )
0 if t#2k

2=0

Writing ag, &', =1, 0, 2N instead of g, h, 7, ¢, N in Lemma 1, we
obtain

94,,(r;0,2N) = (2Ni)" (=) &7

h
e( e )
2NT Hmod2N 4N( 2)
1
i (= S o
X{‘h ag( = ,21 ) +
n n A L gn= 1'H 9N
+Z t Z THl h'(x_q(_;v ,4), (1.14)
=1 k=1 & Ny
where
{ (2k)(—2Nmir)t if ¢ =2k
Ay =
2=0

k=1,2....:1)
0. af L2k ( )
From (1.14) it follows that

n 1
Hn%zwe( Zf/ (H & 2)){1}2')@(— ;;H,ZN) i

+Z( )EIA"‘ o 05,',‘0‘;)(——H2N)}

= (271)""(—2Nir) 2"*'”/219&';)‘”(7';0, 2N).
From (1.13) and (1.15) we obtain

W)(M ig 0,2N) = (=2Nir)@"+D/2(|5| sgn 8)" x

(1.15)

—i(—% —7)sgnéd 6)(2"“)/2 ;(1-16D/2 ayh”?
X( 2N 3| i e(- 55w
ﬂ592 62w(2N)—2 QﬂN sgn F i) 5
Xe( 4 T) (T)w/z % Vo (73 0,2N). (1.16)

In [2] (p.85, form.(6.16) with 2NV instead of N) it is shown that

_i(—%“'Y)Sg“‘S)‘ﬂ o N
( NG| (—2Nir)'/? =

_ jssnv(sens- 1)/2(‘77 an 5)1/7

m (1.17)




ON SOME ENTIRE MODULAR FORMS 69

From (1.16) and (1.17) it follows that

ﬂ(n)<ar+3 0 2N> &
i
+ &y (2n+1)/2.
= (|6| sga §)" (1% (eens-n T T2 0-18D/2 o
(161sgn 8)" (i A )
a‘,hlz (ﬂ592 52w(21v)—2> (QﬂN sgn&) Ti2n(n) 2
- —_— ) —]]¢ (75 05 20N0)
xe( 16N)c 4 4N g )8 Pean(ri 0,2 )
Thus, in view of (1.10) and (1.11), the lemma is proved for v # 0.
2) Let y = 0. Then a = 6§ =1or a = § = —1 in (12). Putting
¢=0in (12) and writing 2N instead of N, by (11), we obtain

(n) e e e
90 (7 + ;0,2N) = e 6N)19gh (7;0,2N),
= " B n
95 (r — B;0,2N) = (~1)"e( - wg;v)v&;,h(r;o;zzv),

i.e. the lemma is also proved for v =0. W

Lemma 4. If v # 0, then forn >0

(y7 + 8)mH V29 (0,2N) =

= ¢((2n +1)sgn7/8) @N 1)) (—isgny)"

x T wyenl0,H; 21\1){19",‘),("’:? H 2N) " ‘
= .

Hmod2N
(n-ty(oT +8
ks ( +6,H2N)

A

+,§(7)§W,=

where

A

| @R -2Nymi(yr + 8)) i t=2k
so ) 0L e £2k
(t=1,2. 08 Ok =02 S (1.18)

Remark. From (1.18) it follows that

z': Z{A—’lgﬁifﬂt

Au
=k 0 if 21t

(1.19)
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Proof. Replacing a, 8, 7, 6, 7, ¢, N by é, =B, —v,a, 7,0,2N in
Lemma 2, we obtain

ét'—p

)

o0 (7—+— 0, 2N)
= (=2N]ylisgn 1) (i(=77' + @)

sgny )(2n+1)/2 .

2Ny
£ 5 WM(O,}1;21\/){03'};,(7';11,21\1)+
Hmod2N
A
+Z( )Z w| geahman),  (L20)
k=1

where
g =6g—~h—2ySN, k' = —Bg+ ah —2afN, (1.21)

sentvtiam) =< =g+ 8))e( - i3 1+ 5) -

xsg_ag,,h_ﬂg,( _57 ;—a11,~21v>, (1.22)
(2N \E ey o
PR Lt (21&)..(7#7“) if t =2k, (1.23)
2=0 0 if ¢#2k.

In [2, p.87, form.(6.23)] (with 2N instead of N) it is shown that

( isgny e(sgnv/8) (1.24)

1/2
P e

Taking "‘T"'B instead of 7' in (1.20) and (1.23) and using (1.24), we
complete the proof of the lemma. M

Lemma 5. For a given N let
Wy(7) = Wi(73 91, 92, b, hay €1, €2, N1, N2) =

1
N_ .Z;'H (@ 21V1)19'92h2

(73 ¢2,2N2) —

R 19”;h2(7' cz,2N2)ﬂg‘h‘(T;cl,2N1) (2.1)



ON SOME ENTIRE MODULAR FORMS i
and
Uy(1) = Uy(7; 91,92, k1, hayc1, €2, Ny, No) =
& mﬂgl)hl(r; €1, 2N1)0 gy, (73 €2, 2N3) +
1

+N2 9‘“”2(7-;62’2]\/2)19!11’»1 (@ e12Dy)i=

6 "

——m T c1,2N)9”

0aha (T3 €2, 2N2), (2.2)

where

h h
2|g1,2|g2, N1| N, No| N, 4|N(f' + 72) (2.3)

For all substitutions fromT" in the neighbourhood of each rational point
T — —% (v #0,(7,6) = 1), we then have

(yr + 5)5‘11 (7591592, b1, h2,0,0, Ny, N;) =

e
"ZC“’ Aoy L (2.4)

Proof.

I. From Lemma 4 for n = 3 (with g1, h1, Ni, ¢i. ki, Hy instead of
g, hy N, ¢, I', H) and n = 1 (with g, ha, Na, g, hy, Hy instead of
g,h, N, ¢, b, H), according to (1.19), it follows that

1
N, —(y7 +6)° oy (750,2N0)97, 5, (73 0,2N5) =
S5 =
- Ee(;sgm)(2|v|uvuvz>‘“> ok
at + ﬂ

1Mo 1

3.2
+—2! A : HhQNl)}
art +ﬂ
XS a0 Ha Moy (T
Hymod2N,
5 A 12\
= ¢($ s8n7) (211(M M) %)

x Z Paigrh (0’H1;2N1)“P!J£g2h2(07H2;2N2)><
Hjymod2N;
H;mod2N;

 Hi, 2N) +

3 ar +f
:o.ﬂg;hl( T+6’

H2,2N2) =
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e e N e e e
x{mvgw‘ (m Hy 2N 8l (;’:—6; Ha,2M) —

ar +f
—12vy7mi(yr + 5)0’,h, (77_ 5 Hl,’.ZNl) X

q/ +
xug,hé(%;uz,zm)}. (2.5)

Replacing Ny, g1, hy, Hy, g}, b} by Na, ga, ha, Ha, g3, 4 in (2.5)

and vice versa, we obtain

1
N —(y7 +6)° ﬁ/'fh,(r 0,2N2)041 s (750,2N1) =

5
= e(7 sgn ) IV M) /2!
XX Pataana(0, Hyy 2No) gt g0, (730, Hy; 21Ny x

HmoN:
{2 8 ) st )
—12ymi(y7 + 8)dly (j:—i? H2,2Ny) x
X (":if,yl,m\n)}. (2.6)

Subtracting (2.6) from (2.5), according to (2.1), we obtain
(47 + 8)°Wi(7; g1, g2, ha, ha, 0,0, Ny, No) =
= (2 ogn2) 1NN x
X Z Pgigihs (0 111;2N1)<,og£52h2(0, Hy;2N;) x

Hymod2N;

Hamod2N,
T+ B ; -
x\yl(7 +6,g{,gz,hl,h’z,Hl.,Hz,Nl,Ag). (2.7)

In (2.7) let v be even. Then, by (1.21) and (2.3), g and ¢} are also
even. Therefore, according to (3) and the notations (4), we have

ar + 3

" aT+ﬂ
ﬂg’rh’r( r46' r4b’
& an/N ar + 3 Nny/Nsar + 8y
= 3 Bue( AN 7r+5)ZB"26( 4N ’Yr+6)7

n1=0

H,,QN)ﬂ’,h,( 2N =
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i B ( n ar +ﬂ)
=0 "\IN T+ 6

for r=1,5=2 and r=2,s=1. (2.8)

Hence, for even 7, (2.4) follows from (2.1), (2.7) and (2.8) if j = 1.
In (2.7) now let 7 be odd. If hy and h, are both even, then by (1.21)

and (2.3), ¢, and g} are also even, and we obtain the same result. But

if h, is odd, then by (1.21), ¢/ will also be odd and in (3) we shall

have
(m+ %)2 = (m+50el = 1)+ (m + Sl =) +

hence

+ 3 . 1 ar+p

19/1: ; at < H, € e 3

grhr(—yr_{,.é’H’ZN) i€ (161\’T77'+5)><
NI R

m=H, (mod 2N;)
1 , - 1o a‘r+/3}_
xe{ gz ((m + 50t = D + (m+ 506t = D) S5 =

I hT ar BN 2, ny ar +f
_6(16NT 'y‘r+6) Z e (ﬁjm)’

since by (5) we can imply that h, = 1. Analogously,

' (‘””’ H,,2N,) = o i 50 bl f(”_““‘”*ﬁ)
na=0

9ahs +6° 16N, y7 + 6 "2 \UN, y7 + 67

where we can imply that h, = 1 if A, is odd and h, = 0 if h, is even.
Thus, if among h; and hy at least one is odd, then we shall have for
r=ilygi= 2 and r=2ys—/1

o, (aT +§,H,,2N)19 o (‘;H; 115,2/\/)
e N/4(h,/1\/r+/15/Ns)ar+,3 Jom or B
= AN 7r+5)ZB (4N 7T+5)X

ny ar + 3 o n ar+f £
< Z B, (4N 'yT+6) ;;;B" (4N 7r+5) e

since, by (2.3), 3 (NI: L ) is an integer. Hence for odd v (2.4) follows
from (2.1),(2.7) and (2. 9) ifj=1.
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II. From Lemma 4 for n = 4 and n = 0, as in [, it follows that
1 5.9(4)
IW(’YT +8)°0, 1, (750, 2N1)0 gy, (75 0,2N;) =
1
(NyNp)H/2)~1

= NL (2 e )

+58
x i 0, Hy; 2N, {9(11)1 ar .
H,n%m,%'g'h'( i 2N1)( I, (’7T+6 1,21 )+
-3 Vi oTet
+TA21 5 0 (‘71' - H1,2N)+
Ap ar + 3 5
Rt (S Hin2) |

. ar + 3
R o Ilz;21\'2)z)g;,,;( 5 2N) =

H;mod2N, fl

) (‘ll‘/l(r\"ﬂ“‘z)'”)—l A

XY Putann (0, His 2N )@g00,1, (0, Hay 2N7) X
Himod2N;
Hy;mod2N,

1 @ m‘+13. .
X{WUH;,L;(7T+27<}[|,2A\1)><
Zl,m

OT+/

T + 3 o
S (r+5)),,ﬁ(n

xﬂg;hz( G
ar -I-,J
’( T+6

i Hy, 2Ny) — s Hy, 2N x

; Ha, 2N, — .187‘% (47 + 6)gn, (W:; s Hy,2N;) x

) ar + ; ;
xugé,l,_,(vﬂr:s;//_,,zNz)}. (2.10)

Replacing Ny, g1, h1, Hi, ¢}, hy by N2, g2, Ha, g, by in (2.10) and vice
versa, we obtain

1
N7+ 8000 (730, 2N2) 0y, (750,2M1) =

5
= S(Isgn"/) 2 N2
XD Pusgaa (0, Has 2N3 )6,y (0, Hys 2IVp )

Hymod2N,
Hymod2N;
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ol (1) ar 4+ 3. ’
X{N—Zz by g M 20) x
ar + 3 244 ar +f3
X0 gyt (ﬁ;HX,QM) - = (ar +4)8 ”3"'(77 =  Hy,2N;) x
+ﬂ Hl,ZN) - 48'727r2(‘y7'+6)20%%(7T15;H%2N2) %

ar +
ke (T;]II,ZNI)}. (2.11)

*Dging (

Analogously, from Lemma 4 for n = 2 it follows that

———(y7 + 5) ﬂgm.("?O’ZA )ﬂ;’zhz(T;O,ZNz) =

5
= e(Z sgn7)(2|'yl(N1N2)1/2)‘1 %

Z ‘rogiglhl(oﬂ H1;2N1)5095g2h2(07H2§2N2) X

Hjymod2N;
H;mod2N;
+8

6 g QT+,‘3_ " «a .

X{;NIN”Q 9ih, (—A/T+6yH1,2N1)ﬂg5h;( s
ar +f

( f Hy,2N,) —

6
NiN,

X

Hy,2N,) —

2473 T+,3 9
~=, 7+ 80 ](7 = s Hy 2Np )0 —
24~mi o (ot +p . (at+f
= (7T+é)l;gglz,( 61H17“‘\ )I}Jﬁh (,7T+5 HQ"“NZ) i
+

Ny

" ; ar +f .
—96727r2(71'+6)217g;h;(7r +6;Hl,21\71) X

P 5. m,2v,) ). (212)

Xlggéh +5,

Subtracting (2.12) from the sum of (2.10) and (2.11), according to

(2.2), we obtain

(Y7 + 6)°Ua(7; g1, 2, h1, h2,0,0, N1, No) =
5 -1
= (3 s8n7) (21N N)'7)

> e (0, Hy; 2N1)9g 0,1, (0, Ha; 2N2)

Hymod2N;
H;mod2N,

X
ﬂ et ' T
0, Gy B, By, Hy, Ha, Ny, No). (2.13)

%( T+6
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Further, reasoning as in I, from (2.2) and (2.13) we obtain (2.4) if
Jj=2 1

Theorem 1. For a given N the functions U1(7) and Wy(7) are entire
modular forms of weight 5 and character x(6) = sgn 5(%) (A is the
determinant of an arbitrary positive quadratic form in 5 variables) for
the congruence group Lo(4N) if the following conditions hold:

1) 2|g1,2|g2, NN, No|N, (2.14)
h? h2 g2 g2
2) 4lN(Z+2) 4+ 2 2.15
) ’ (N1+N2)’ 4Nl+4Ng7 ( )
3) for all & and § with a =§ =1 (mod 4N)
NiN.
( |1§1 2)‘I’j("'? agi, gz, hi, he, 0,0, Ny, No) =
A
:(B")‘I’j(";ghgmhlqhzao,o»Nl,Nz) (7=1,2). (2.16)

Proof.

L. It is well-known that the theta-series (2)-(3) are regular on H,
hence the functions Wy(7) and Wp(7) satisfy the condition 1) of the
definition.

I1. From (2.15), since § =1 (mod 4), it follows that

hZ h'z g2 s 92
Al Va2 | D2y 4) 91 grean)-2 92_g2002N-1) (917
Ve (F + &,): liy; N, (247

By Lemma 3 for n = 3 and n = 1 (with g, h,, N, and gs, hs, Ns
instead of g, h, N), according to (2.14) and (2.17), for each substitution
from I'g(4N), we have

e ors onap) L) Gense = o]
9 (——W+6,0,2Nr)ﬂg,h,(w+5,0,2N,) =i 17181 5
N,N,
(v +6)°( b 2Y 920 e (730,2N: )00, (730,2N,) =
—N,N,
= sgné( ol )(’yr+6)5 x
x4 (130,2N)94, 4, (750,2N,) (2.18)

forr=1,s=2andr=2,s=1.
Analogously, by Lemma 3, we have:
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1l)forn=4and n=0

et O 3 = g0 o111
grhr( +670 QN)ﬂg:hs( T+6,0,2N3)»z"" 7 2 X
N,N,
X7 + 8)° (57 9 (750, 2N ), (750,2N,) =
—N,N,
= sgn é(T)(Tr +68)® x
XV 1, (730, 2N, 4 (730,2N,) (2.19)
ifir— 1. s =92and n=2 si—1:
2) forn =2
ar + f3 ar + .
;’,h,(WM,O 2N, )1 m( 502N =
=N,
= sna(Tr ) om 487 x
XY gy (730, 2N1)0, 1, (750,21;). (2.20)

Hence, according to (2.16), for all & and § with ad =1 (mod 4N),
we have

ar
v, (,7 +§7911y2,hlsh2,0 0, NI’N2) =

—N; N,
= sgné(T)(w + 8)°U;(7; agr, aga, by, ha, 0,0, Ny, Ny) =

= sgn6( H ) 37+ 8)°W; (73 91, g2, b1, ha, 0,0, Ny, Ny)

for j = 1, by (2.1) and (2.16), and for j = 2, by (2.2),(2.19) and
(2.20). Thus the functions Wi(7) and W,(7) satisfy the condition 2)
of the definition.
II1. From (13) it follows for r =1, s=2and r=2, s=1
o0
(02N W (0N BB (1) e e
X (4N, m, + gr)3(4N,m_, + gs)e(AT),

(702N, 0,0, 0,2N) =nt )T (Sl)hmrtheman

mr,ms=—00

x (4N, m, + g-)'e(AT) (2:21)

94

grhr




NZ

~J

BRI
1101945
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and also
Y (F 02N 80 (750,2N) = nt . 30 (CL)frmthema g

my,my=—0c0

X (ANymy + 1)} (4Namgy + g5)%e(AT),

where
1 2
A= Z N (2Npmy, +gk/2 Z N;Cm,c + mygr/2) + = Z‘]k/’h’v;”
k=1 *Vk k=1

by (2.14) and (2.15), is an integer. Thus, the functions ¥;(7) and
W, (7) satisfy the condition 3) of the definition.

IV. By Lemma 5 the functions Wi(7) and Wy(7) also satisfy the
condition 4) of the definition. W i

Lemma 6. For a given N let

Q1 (%) =1@1 (T 0nsses 5 Gas nse s s 00 i 0SNG o NG) =
4

1 1 5
=% Do (T3 €1, 2N )0, (75 €2, 2N2) T Vg (75 ¢y 2Ni) —
I k=3
4
o 032};2(7 2, 2N))0y 4, (75 61,2V, ) TI Yaune(75 cx,2N,) (3.1)
k=3
and
Do(7) = Po(7501, -+ 190, ks hay 0,0 O, Ny, Ny =
1 4
= \,21991,“(T;cl,2;’\7,)1992;,2(7';(:2,21\'2) Hﬂgkhk(r;ck,QNk)«{—
k=3
1 @ L
+m19“h2(ﬂ€272“2)0g,m i1 20N H guni (Ti 0k, 2N3) —
2 k=3
L NI, (73 ¢2,2Nz) TT Poun, (3 chy 2N5),(3.2
‘NlN gxhx(T €1, 4 ) QOz(TvC% 4 2)};‘[? yk/lk(Tvckv k)-, 3.2)
where
= k
2lgk, Ne|N (k=1,2,3,4), 4 NZA_&' (3.3)

k=1
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For a// substitutions from T in the neighbourhood of each rational point
7'——— (v #0, (v,6) = 1), we then have

(7 +6)°®;(T;91,- .+ ,gas b1y, ha,0,. .. 0Ny Ny =

—ZD”’ (& ‘;:i?) G =1,2) (3.4)

Proof. rlom Lemma 4 for n =3, n =1 and n = 0, as in the proof
of Lemma 5, it follows that

4

il
V(’)’T +6)° 19”:,1 (r;0,2N,; )ﬂg hal730,21N5) H Dgiohs (751025 k=
s k=3

3 e =l 4
= e(; sgn 7) (/172( H Nk)]/z) Z H ‘r’ngkhk(Oa Hyi 2Ny ) x
. k=1

Hypmod2Ny k=1

(k=1,2,3,4)
l " aTt + ﬂ
x{<ﬁﬂg;,Ll( = L Hy,2N) —

—12ymi(yr + 6 19’,h, (OT-H; 1[1,21\/1)) X

! at + 3 Ichs ; ar + f3 o
xd', (T—M;nz,z;\z)gu]w( — 5 2N )} (3.5)

95h4

and

1
E(VT +6)%05,

3 : / -
= e(; sgn 'y) (472( H Nk-)l 2) Z H ‘ngLgkhk(Oa Hy; 2Ny x
2 k=1

Himod2Ny k=1

(750,2N,)9! oini (750,20:) H’gykhu (750,2N;) =

(k=1,2,3,4)
1 g at + :
X{(NZU% 2(77 H,HQ,JNZ) i
‘ ; art + 3
_127m(7r+5)v9;;h:( +6,H2,2N2)>
i ar + . H,, 2N, 9 ar + 8 T -
gihﬁ( e ey 1)Hzg;‘h'( ek k) (3.6)

As in the proof of Lemma 5, from Lemma 4 it follows that
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1) forn=4andn=20

1 4
Tz + 6900, (750, 2N0) T] D (750, 2N:) =
1 k=2

3 . 4 1/2\ 1 4
= 6(5 sgn -y) (47 (H Nk) ) z H o (0, Hk;‘ZN;,.) X

i [
{ w e :Zig Hy,2N,) —
24 Mrz( '9”, (ar i/; H1,2N1) i
—48927%(y7 + 6)% 0 ( ig Hy,2 wl))
x :1;[20%(‘;::? Hy,2 NA)} (3.7)

and

4
(750,2N3)9g, 5, (7 0,2N7) H Dgpn (730,2N;) =
k=3

3 4 1/2\ -1 4
= 6(5 sgn 7) (472( H Nk) ) Z H Pylarhs (0, Hk;QNk-) %

k= Hymod2 Ny, k=1
(k=1,2,3,4)

1 (4) ar+5. :
{ g (S He2Ma) =

(y7 +6) l?”r ,(

1
(4)
O+ 805,

2477rz ar+

T+6’

Vi 2N2))

T+ 8.

(”TH’ Hy,2M,) Hﬂgw( e 2N -

XDging

+
—4892 7% (y7 + 6)? H o ( +§ Hy, 2Nx )} (3.8)
k=1

2)forn=2andn=0

4
— (7T + 6)619;'1,”(7 0,2N1)0;,4,(750,2N3) H Dgeni (730,2N;) =
k=3

6
NN,
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= w (TN 0, H: 2N,
—6(§sgn'y)( L (kl;[l k) ) 2 ‘rggkgkhk(v k3 k)><

Himod2Ny
(k=1,2,3,4)
B ar +
x{<N1N219gl ‘(7T+6,HI,2N1) el
24y7i ar +
S+ 0 (T H,2M) ) x
ar + . ar+ 3
xﬂ'g;h,(v T Hz,zm)[[vgk k( = i i, 2Ny) —
24mi , ; aT+[3
~ (RO + a0, (S M2 +
+967272(y7 + )% (‘”“a it 2N))
g1hs s 1 1
4
T4+
xgﬁthk( i Hk,2Nk)} (3.9)

Subtracting (3.6) from (3.5), and (3.9) from the sum of (3.7) and
(3.8), according to (3.1) and (3.2) respectively, we obtain

(amt6)°05 (75 g1 o 0dy Py oy iy Ot N S VN =

3 3 1/2y -1
= G (W)™ 5 g2

k=1 Himod2Nj
(k=1,2,3,4)

xqs](w

g b b0 0 N )

(j=1,2). (3.10)

Further, reasoning just as in Lemma 5, from (3.10) we obtain
(34). =

Theorem 2. For a given N the functions ®(7) and ®y(7) are en-
tire modular forms of weight 6 and character x(8§) = (I%I) (A is the
determinant of an arbitrary positive quadratic form in 6 variables) for
1

20F0195
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the congruence group To(4N) if the following conditions hold:

1) g, NiN  (k=1,2,3,4), (3.11)
hk
2) 4|NE - ,4}24N’C (3.12)
3) for all @ and § with a6 =1 (mod 4N)
4 N
(ka$| A)ij(ﬂﬂ'gh-u 3 0G0 Ragesn s has 05 e 50, Nasos o 5 V) =

A
= (m)%(r;yl,..‘ (G4 B,y O S0, Ve V)
(G=12). (3.13)

Proof.

I. As in the case of Theorem 1, the functions ®(7) and ®,(7) sa-
tisfy the condition 1) and, by Lemma 6, also the condition 4) of the
definition.

I1. From (3.12), since § =1 (mod 4), it follows that

2 hk L g 26(2Nk) -2 2
4|N5§j 4\;_;1?@5 . (3.14)

By Lemma 3, for n = 3, n = 1 and n = 0, according to (3.11) and
(3.14), for each substitution from I'((4N), we have

e (9T B , qar+p
g’h'('“r+6 0,2N, )9, ( g 02 x
ar +
: xlc].;[sﬂykhk( ==, N =
k=1 Nk o .
L (77+5)6(Hk|—é}| )0 (73 0.2N)00, 1, (730,2.)
4
% TT Yeagun (750, 2N%) (3.15)
k=3

forr=1,s=2andr=2 s=1
Analogously, by Lemma 3, we have:
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1) forn=4and n=0

949, (‘;T+f,o 2N,) 9,1, (“ +f,o 2N,) x
+5
xgﬂgkhk(%;ﬂﬂNk) =

4]_ N
ifonad 5)5<H"|-(;| k)w;;, o (730,28, )00, . (73 0,2,) x

4
X [T Pugi e (7:0,2N:) (3.16)
k=3

forir=1, s=2and r=2,8=1,
2)forn=2and n=0

ar + 3 = ar +f3
I;[ gkhk( PR ;072Nk) gﬂgkhk(——,w - 50 2N,c) =

Moy N 2
= (yr +9) ( k|51| k)pﬂagk hi\ T3 072N‘€)“Hﬂﬂgkyhk(T;O"z‘]vk)'
=1 c=3

Hence, according to (3.13), for all & and 6§ with aé =1 (mod 4N),
we have

DTG0 = 104 Bl O e N s sVg)i=

- (oo

XD (50, s 5 0Ggy Bay o o5 Bay 05s 6y 05 Ny v, N) =

A
(|5|) Y6 B (righ v o s G Brgsve b 0 e s Nayo oo Ni)

for j =1, by (3.1) and (3.15), and for j = 2, by (3.2),(3.16) and (3.17).
Thus the functions ®,(7) and ®,(7) satisfy the conditions 2) of the
definition.
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III. From (13) it follows for r =1, s =2 and r =2, s =1 that

4
17;’:,,'(7‘;0,2]\7,)19' hs(ﬂo’?NS) H Dguni (15 0,2N)) =

s

k=3
=7t > (=1)ymrtmetmatmi (AN m, + g,)3(4N,m, + g,)e(AT),
Mr,Mg,M3,M4=—00

4
) (730,2N,)0g,n,(750,2N,) TT Pgyn, (730,2N4) =
k=3

=t Z (=1)mrtmetmatmi (4N m, + g, ) e(AT),

My,ms,m3,mg=—00

and also

4
'g"hl(T;O,?Nl) " 5:(730,2N5) H Bn, (730,2N;) =

g2h2
k=3
4 = ¢ b
=r' Y (=)D M (ANymy 4 g0)2(4N2mg + g2)2e(AT),
Miioss A =—00
where
4 4 4 3
1 gK\2 1 1 g
A=Y —(2N =) = Nim} + = -y =k
;41\’1:( kmk+2) ];( Arnk+2mkflk)+4kz=:l4]vkv

by (3.11) and (3.12), is an integer. Thus the functions ®;(7) and ®o(7)
satisfy the condition 3) of the definition. M
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WEIGHTED ESTIMATES FOR THE HILBERT TRANSFORM
OF ODD FUNCTIONS

LUBOS PICK

ABSTRACT. The aim of the present paper is to characterize the
clases of weights which ensure the validity of one weighted strong,
weak or extra-weak type estimates in Orlicz clases for the integral
operator

Hof(z) = 2/ e sy, 2 € (0,00).

EOB0T0. 636 By g o8 g gl o
eaBagny 0BT migtgmbangl
< i)
ofw) =2 [* HWay, 2e 0,00
ﬁM Bgaemregc ool gomslydBo aam\;msmso dogn bl
%6 g @%o :E)ﬁb@o @ig:l: %an

1. Introduction. The Hilbert transform is given for any function f
satisfying
oo
[ @1 @ +1a)™ do < o0
—00
by the Cauchy principal value integral
e LG fy)
Hile=g ey Wl
R\(c—e,z4¢)

If f is an odd function, then H f is even, and H f(z) = H,f(|z|), where

Hpe) =2 [ W00 e 0,00,

e ==Y

1991 Mathematics Subject Classification. 42B20,42B25,46E30.
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1101545
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The Hilbert transform is closely related to the Hardy-Littlewood max-
imal operator

1
M f(z) = sup 1 I/ £ () dy.

If o is a weight (measurable and nonnegative function) and 1 < p
< o0, strong type inequalities

[1r@Pe@)de < C [1f@F ol@)da, . (L)
Q

Q

as well as weak type inequalities
o{ITf1> 0D < €A [1f(@)F ola) de, (12)
Q

have been widely studied by many authors. The pioneering result of
Muckenhoupt [13] stated that (1.1) holds with @ = R, T' = M and
p > 1if and only if p € A, that is,

sup o; (et <,

and (1.2) holds with @=R,T =M and p>1if and only if 0 € A,,
where p € A; means g; < Cess inf;p. Hunt, Muckenhoupt and Whee-
den [10] proved the same result for @ = R and 7' = H. The class of
good weights for (1.1) or (1.2) with © = (0,00) and T' = H, appears to
be strictly larger than A,. This result is due to Andersen who showed
that (1.1) with Q = (0,00), p > 1, and T = H, holds if and only if
0 € Ay, that is,

b

o(a,b) (/ 0 (@)e? de)’ T S CW - a?P,  (ab)CR,(13)
and (1.2) with Q = (0,00), p > 1, and T' = H, holds if and only if
0 € Ay, where p € A] means

o(a, b)

b2_a2

< Cess inf(u,b)g—(I*).

T
Our aim is to study analogous inequalities where the power function
t? is replaced by a general convex function ®(¢). More precisely, we
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shall study the inequalities

/<I>(]Tf(;r)l)g(:r)(lz / (C1f(2)]) ol<) dz, (1.4)
Q

o({ITf1>\}) - o)) < C / Clf @) e(e)dz,  (1.5)
and
o <C [S(CA/(@)]) ola) de. (1.6)
Q

We call (1.4) strong type inequality, (1.5) weak type inequality, and
(1.6) extra-weak type inequality. While (1.4) is an analogue of (1.1).
(1.5) and (1.6) are two different analogues of (1.2). It is always true
that (1.4)=(1.5)=(1.6), and none of these implications is reversible
in general. The interest in these types of inequalities stems from their
use in various problems of Fourier analysis. For example, extra-weak
type inequalities have interesting interpolation applications (see [2]).

We throughout assume that @ is a convex nondecreasing function
on (0,00), ®(0) = 0. In fact, it is not hard to prove that for all the
above operators the inequalities (1.4) or (1.5) always imply at least
quasiconvexity of ®. For more discussion we refer to [9].

Weak and extra-weak type inequalities together were apparently
firstly studied in [14] for 7 = M and Q = R". In [9] the following
results were obtained (for definitions see Section 2 below):

Theorem A. The inequality (1.5) holds with T = H and Q = R if
and only if ® € Ay and p € Ag.

Theorem B. Let & € A). Then (1.6) holds with T = H and Q = R
if and only if p € Eg.

The main aim of the present paper is to characterize the classes of
weights for which the inequalities (1.4-6) hold with Q = (0,00) and
T = H, (Theorems 3-5 in Section 4). Moreover, we get a characteriza-
tion for the strong type inequality (1.4) with Q = R and T = H. This
is given in Section 3 (Theorem 2) as well as the similar assertion for
T = M (Theorem 1). However, in the case T = M we do not obtain
a full characterization but we are left with a small but significant gap
between the necessary and the sufficient condition.

It should be mentioned that Andersen obtained in [1] LP-results
12



90 LUBOS PICK

also for the operator

T =4
@ = [ HW a, (17
o
the Hilbert transform for even functions. However, our methods do
not provide analogous results for He with 7 replaced by ®(t).

Let us finally mention that the result of Andersen was generalized
to the case of multiple Hilbert transform in [17]. For other related
results we refer also to [15], [16]. Some of the results of this paper
were taken over to the comprehensive monograph [18].

2. Preliminaries. Let ® be a convex nondecreasing function on
[0,00), ®(0) = 0, which does not vanish identically on [0, c0), but it
is allowed that ® = 0 on [0,a] and/or ® = oo on (a,00) for some
a > 0 provided that ®(a—) is finite. The complementary function to
®, ®(t) = sup(st — ®(s)), has the same properties as ® (for example,

>0

convexity of @ follows easily from the subadditivity of supremum).
Moreover, the Young inequality

st < ®(s) + B(t) (2.1)

holds for all s,¢ positive. Both ® and $ are invertible on (0,00) and
it follows immediately from (2.1) that

g O () o T ) (2.2)
We say that ® satisfics the Ay condition, (® € Ay),if ®(21) < CP(t).

If this estimate holds mereiv near 0 (near co), we write ® € A
(® € AF). We recall that ¢ €A, is equivalent to 207" (1) < o=(C).
The functions

Re(t) = ®(1)/t,  Sa(t)=®(1)/1,

will play crucial role in the sequel. Clearly, Rg and S are nonde-
creasing on [0,00). It is known [14], [9] that

B(Sa(t) < CO(1),  t20, (2.3)
and, by convexity,
®(ASe(1)) < CAB(t), t>0,A€(0,1). (2.4)

We say that @ is of bounded type near zero (near infinity), and write
® € By (® € B) if Ro(t) > a>0 (or Re(t) < a < o) for all £ > 0.
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This classification was introduced in [9]. It was proved in [9] that

Re(t)>a, t>0 & o@)=0, telo,d,
a, t>0 & (1) = oo, t € (a,00),
0, t€[0,d] & Se(t) > a, >0,
D(t) = oo, t € (a,00) & Se(t) < a, >0

The functions Rg and S need not be injective. However, thanks to
convexity of @, they can be constant on intervals only in a few special
cases (this is the main difference between R¢ and ®'), namely, if Rg
is equal to a constant on an interval (a,b), then it must be a = 0 (b
may be c0). On the rest of its domain Rg is strictly increasing and
thus invertible. Of course, the same holds for Sg.

It follows easily from (2.3) that

R (t) < 53'(Ct) (2.5)

holds for admissible ¢ (that is, for ¢ such that C't belongs to the range
of the invertible part of Sg). We shall also make use of the (converse)
estimate

S3'(t) < 2Re(2t), admissible t. (2.6)

To prove (2.6) substitute in (2.2) t—®(t) to get B(t) < ®(254(2)).
The complementary version of the last inequality reads as ®(t) <
®(2R4(t)), which yields ¢ < 2S¢(2Re(t)). Putting now ¢ — 2¢ and
assuming that 2t is admissible we get (2.6).

Let us introduce a notion of index of a nondecreasing function.

Putting h(A) = supy,o ®(A)/®(t), A > 0, we define the lower index
of ® as i(®) = Ali_‘r(§1+logh()\)/log/\ and the upper index of ® as
1(®) = AILH:O log h(X)/log A.

It follows easily from the definitions that for every ¢ > 0 there exists
C¢ > 1 such that

B(M) < Ce max{N®=2, ML §z), ¢>0, A>0, (27)
and
min {g/®=¢, IO} 0(t) < C@(ut), 120, p20. (28)

Let us recall that ® € A, is equivalent to [(®) < oo, and deAis
equivalent to 7(®) > 1.
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We define the weighted modular by m,(f.®) = (If( e(x) de.

then the weighted Orlicz space Lg, is the set of all fllh(?l()ll\ f for
which m,(f/A, ®) is finite for some A > 0. This space can be equipped
with the Orlicz norm

1 1lo.e = sup { [ f90. mita,8) < x} .

and also with the Luzemburg norm
1flle.e = inf{A > 0,m,(f/A, &) < 1}.

The norms are equivalent, and the unit ball in Lg , with respect to the
Luxemburg norm coincides with the set of all functions f such that
my(f,®) < 1. The Hélder inequality

[ fsedz <111l liglla,

holds, and is saturated in the sense that

||f||«>,g=sup{/fjodr lglla,, < }
l1£llo.e = 1{ [ s90dz,lglls,, < 1}-

The norm topology is stronger than the modular one, whence the mod-
ular inequality [ ®(T'f)o < C [ ®(C|f])o implies its norm counterpart
IT flle.e < C|lfll®,0. where T is any positive homogeneous operator.

As usual, given measurable functions /,g and a measurable set
E, |E| means [pdx, h(E) means [ph, hp means |E|~'h(E). and
h({g > A}) means fiep g)ry h(1)dL.

I'he letter I will always denote an interval in R, and if I = (a,b),
we put ' = (b.2b—a), I* = (a,2b—a), and oI, a > 0, is the interval
concentric with I and « times as long.

If o(21) < Co(I) for all I, we say that g is a doubling weight.

We say that ¢ € Ag if either ® ¢ ByU By and there exist (', ¢ such

that i
bup sup agIRq,(lIl / (cyg(m)) da') <,

or ® € ByU B, and p € A;.

and
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We say that p € Eg if there exist C,e > 0 such that

<
sup \ll/ (l'l C.

3. Strong type inequalities for the maximal operator and the
Hilbert transform. We start by considering the strong type inequality
for the operator M. As known [6], the non-weighted inequality

Jewin<c [o(

holds if and only if ® € A,. Kerman and Torchinsky [11] proved that
under the assumption that both ® and ) satisfy the Ak condition the
weighted inequality

/(b(Mf)@ <c /‘b(lfi)g

is equivalent to the condition

wp (i [ oo (i [+ (i) ) <

where ¢ = @',
As we shall see, the assumption ® € A, can be removed. On the
other hand, the assumption ® € A,, at least near infinity, is necessary.

Theorem 1. Assume that o and ® are such that o € Ag and ® € A,.
Then there exists C so that for every f the inequality

)

[ (M f(a))ola)de < © /<D(|f Me(z) de (3.1)

holds.

_ Conversely, if (3.1) holds with C' independent of f, then o € As and
® e AP.

We shall need the following two observations:
Lemma 1. [f
Ml < €N Mllos (3.2)
then ® € AF.

Lemma 2. If ® € A, and p € Aa, then there exists a function @
i(®

Ag
such that o € Ag, and i(Do) < (D).
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Proof of Theorem 1. Necessily. As mentioned above, the modular
inequality (3.1) implies (3.2). Necessity of ® € A5® thus follows from
Lemma 1. As proved in [14], o € Ag is necessary even for the weak
type inequality, the more so for (3.1).

Sufficiency. Let ® be the function from Lemma 2. Put p = #(®o)
and F,(t) = ®(t'/?). Then i(F,) = :;i(q)) > 1, whence the weighted
maximal operator M,f = sup o(1)~! [;|f|o is bounded on Lg,, [6].
Moreover, g € Ag, implies o € Ap, and (M f)P < CM,(f?) [11]. Thus,

[one= [ F 1570 < [ B0 €U e
<C [RClPe=C [o(Cli)e

Proof of Lemma 1. Fix a K > 0 such that the set £ = { K~! <
o(z)< K} has positive measure. Let x be a density point of F, with
no loss of generality let z = 0. Fix ag such that |[EN[0,a)| > 3a for
all @ < aq. Then, for such a,

1
|[En (47 a,a)| > 5a- (3.3)
Indeed, it is

1
|EN (@ a,a)| = |EN(0,0)] = [EN (0,47 a)| > %a Sl

From this we obtain the following observation to be used below: Since
% is a decreasing function, we have for every a € (0,ao)

Pd
AU (3.4)
x T
En(4—1a,a) 2-la

Moreover, for every a € (0, ag),
|EN(0,a)] < a=47|(0,4"a)| < 374" EN(0.47"a)],

and so, by the definition of E,

o(EN(0,a)) < K|EN(0,a)] < K374™HEN (0,47 ™a)|
< K237 14" o(E N (0,4 ™a)). ’ (3.5)

For m € N and a fixed b € (0, a0) put fm(z) = XEn,a-ms)(z). Then,
by (3.5),
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15 =y 1
Wnllos = o(E0 04770 - 67 (i)

[\'23—14m+1
o(E£ N (0, b)))'

Moreover, for x € (47™b,b), M fn(x) > 271 |EN(0,47™b)|. Therefore,
setting

< K|EN (0,47mb)]- &7 ( (3.6)

= 1
g(z) = o7 (m) * XEn@p)(T),
we get [ ®(g)o = 1, and thus

M fullioe 2 [ Mn(@)g(e)o(z) dz

T 1 o(z)
> |EN(0,47™b)|07! (———) = dzx
FERICD)) S

- 1 i dx

> |EN (0,475 (——) K =
|En( )l o(E N (0,0)) ;En(”b/rm“ ,1:

> by (3.4)

i 1
> |E 470)|0 7 | o | Kt 23 37
> |EN(0,47™b)|® ( (Eﬂ(U,b))) K~™'mlog2 (3.7)

“ombining (3.2), (3.6) and (3.7), we arrive at

= 1 e G o e L
b (g(Eﬂ(O,b))) BE T o(EN(0,6)) )

Choose m = 2CK?/log?2. Since m does not depend on b, the last
inequality can be rewritten as

2071 (8) <0l (Got)y L >t
with Co = 3714™*1 K2 and to = (o(E N (0,a0)))”". In other words,
PeAy. ®
Proof of Lemma 2. Fix a > 0 aml I and define v = Sg(1/ap). We
claim that v € A, that is, there exist o and A independent of T such
that the set
Bp = {z € Lio(z) > ur}
satisfies |Eg| > all|.
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We have to distinguish several cases. First assume that /(®) = oco.
Since o € Ag always implies 0 € A [9], and o € A, always implies
0 € A, for certain p < oo, in this case the assertion of the lemma is
easily satisfied.

Suppose i(®) < oo. Since & € Ay, ® cannot be of any bounded
type. However, this is not true for ®, so it can be either

(i) S(0,00) = (0, 00);

(i) So(0, 00) = (0,a);

(iii) Se(0,00) = (a,0); or

(iv) Se(0,00) = [a,00);

with some positive a. Note that in the case (ii) Sg is invertible on
(0,a), in the cases (iii) and (iv) Sg is invertible on (a,00). Choose
v € (1,i(®)) arbitrarily. Then, by (2.7),

B(M)<C, - N -B(1), t20, Ae(0,1). (3.8)

Let ¢ be the constant from Ag. Choose 3 < ¢/2 in order that

ol
oo = <= 9
G, 2.0 (E> £z (3.9)

where (', is an Ag constant for the weight o. Given fixed I, suppose
that B is admissible for S3'. We then may conclude from Ag that

C, 1 dz |I\Eg| 1 :
______ R o : ; 3.10
Faleur) = ] ,/ = I aeD

Hence, by (3.10), (2.6), (3.8) and (3.9),
NEs| Sg'(Bvr) Ro(2Bvr) _ Coe ®(2evy)
6 < 2C = £
|I| Gl R(p(é‘l']) = 2 R(p(&l)[) s ‘I’(CU[)
- ﬂ A=l 1
<SC20(7) <5 (3.11)

or, |Eg| > %11|

Now suppose that Sv; is not admissible for Sz'. This is possible
only in the case (iii) or (iv) if Sv; < a. But then, of course, £y = I,
and the desired estimate is trivial. Therefore, v € Ax.

Now, as known [5], v satisfies the reverse Holder inequality, that is,
there are positive C' and é such that

1/(146)
1 c
<m/v1+6(a:)daf) < m/v(m) da (3:12)
i 1

Iz

i
01943
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for all I.
We define the function ® by means of its complementary function:
put

Se, = 83, thatis,  Bo(t) =t [Sa(t)]"*.
Then, obviously,

I(®) = 1(®) + 6(1() - 1).

The case I(®) = 1 (that is, i(®) = 0), was already excluded at the

beginning. On the other hand, I(®) cannot be 0o, since ® € A,. Con-

sequently, I(®o)>I(®), which is of course equivalent to i(®o) < i(P).
It remains to prove g € Ag,. We start with rewriting (3.12) as

1 1/(1+6)
o 146 < Lok
= (‘”I/v (z)dz) < 37 o(z)dz.  (3.13)
Suppose first that everything is admissible for Sz'. Then, as Sg' is
nondecreasing,
3 1/(1+4)
Lo 145 :
Set ( <|I!/ ($)dl) )
o ). :
<5 (21”/0(1)(1@) (3.14)

Note that Sg) (t) = Sz (t"/0+9) for admissible ¢. So, (3. 14) gives

146
Sa ((%) I}—ll v‘”(z)dz)
< g3 (ﬁ/v(x) dz) , (3.15)

which by means of (2.5) and (2.6) yields

e ((20)“6 |}|/S“’° (an (z) ) d‘”)

< 2Ry (I%/s@ (a—g(ac_)> dz) : (3.16)
; T
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Now assume that it was not possible to apply Sz' in (3.13). This
can happen only in the case (iii) or (iv) and

i 1/(1+6)
e k -
20 <|I|/U (.T)dl) £ 8 (3:17)

i

Note that in the cases (iii) or (iv) it is for all ¢ Sg(t) > a, that is,
S, (t) > a'*®, which is equivalent to Ra,(t) = 0 for t < a't®. Thus,
in this case (3.16) trivially holds. It is clear that from Ag and (3.16)
already follows Ag,. The proof is finished. M

The method of the proof of Lemma 2 is quite the same as that in
[11], the only slight change is that we have replaced derivatives of ®
and ® by Re and Sg. Actually, our proof shows that the condition
® € A, is not necessary to be required as an assumption, and allows
us to insert it as the part of the statement of the strong maximal
theorem.

Let us turn our attention to the Hilbert transform.

It follows easily from the Kerman - Torchinsky theorem that if

® € Ay and ¢ € A,, then o € Ag is necessary and sufficient for

[eture<c [ocine. (3.18)

Indeed, for sufficiency we use Coifman’s inequality [4]

[etmmmesc e

which is valid provided that ® € A, and ¢ € A,,. However, & € A,
is an assumption, and p € A, follows from p € Ag [9].

It may be found of certain interest that both ® € A, and ® € A,
are also necessary for (3.18). We have the following characterization
of the strong type inequality for the Hilbert transform.

Theorem 2. The inequality

)

/<1>(|Hf(m)|)g(a-,)(1;rgc / o(|f(x))e(x)de  (3.19)

holds if and only if ® € Ay, ® € Ay, and p € Ag.

We shall make use of the following assertion.

—
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Lemma 3. Let us define the operator
1L
Gof(z) = — - H(fo)().
g o(x)

Then the following statements are equivalent.
(i) There is C such that

élz\g

*(Hf(@))e@)dz <C [ (Clf(@)])e(x)dz

(ii) There is C' such that
[ @(Get@Ne@ iz < ¢ [ S(Clf@)e(z)dz. (320

Proof of Theorem 2. The “if part” was already established. It thus
remains to show ® € A; and ® € A,. It was proved in [9] that even
the weak type inequality with Hilbert transform implies ® € A, and
0 € As. ¥

It remains to prove ® € A;. By Lemma 3, (3.19) is equivalent to
(3.20). Of course, (3.20) implies the weak type inequality

o{IGofI > A} - o) <€ [ @(Che. (3.21)

-0

Take K positive such that the set £ = {K~! < p(z) < K} has

positive measure, and for any A > 0 define f = Q%XEov where Ej is
any bounded subset of E. Inserting f into (3.21) we get

o(Eo) b
G >0y 2%

in other words, ® € A,. The idea is due to A. Gogatishvili [8]. M

To prove Lemma 3 we employ the following result of D. Gallardo
which was communicated to the author personally [7]. We give a
sketch of the proof since as far as we know the author has not pub-
lished it. When this manuscript was written, we learned that the
same assertion was proved in a preprint by Bloom and Kerman ([3],
Proposition 2.5).

Lemma 4. Let T be a positively homogeneous operator. Then the
modular estimate

/<1>|Tf dc<C/(I> Clf (@) elz) dx

(N <C
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is equivalent to the existence of C' such that for all € and f the norm
inequality

HTfHQEQ = C“f”d’.s@
holds.

Proof of Lemma 4. Let the norm inequality be satisfied with C'
independent of € and f. Then, by the definition of the Luxemburg
norm, [ ®((C||flle,0) T f(z)|)co(z)dz < 1. Fix f, a function with
finite modular, and put € = (f ®(C|f])e)~! > 0. Then |Cf|lo. = 1,

and so )]
C|ITf(z
a(Tf)eo= [ @ (—) et
/ ClCfll.co
Inserting e, we are done. The converse implication is evident. W
Proof of Lemma 3. By Lemma 4, (i) is equivalent to

IH flloce < Cllflloee, — all e
That is,

Cz sup ||Hflloc
17lls o<1

= sup /IHf )g(z)eo(z) de
1£lla o<1 ||gn¢,‘,sl

= s sup_ !Q If(x)|~g(lj[—)lH(ge)(w)!se(r)dw

ll9ll3,¢ <1 [1F1l2,e0<

= s usup: ”Geg”&xsg’

llgll3,e o<
which is, again by Lemma 4, equivalent to (ii). B
4. The Hilbert transform for odd functions. In this section we
shall make use of the measure v defined on (0,00) by dv(z) = z dz.

We say that p € A§ if either ® ¢ By U B, and there exist positive
C, e such that

(i o) (il o i) ) <

T
or & € ByU B, and p € Af, that is,
o(I)
v(I) =

o(2)

< Cess mf;———.
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We say that p € E§ if there exist positive C, e such that
1 z .9(1))
sup—— [ So |e——= dv < C.
P u(l),/ e ( o(@) (1)

Remark. Obviously, p € Aj implies o € A} for any ®. Further,
putting a = % we obtain that p € A§ implies p € E§ for any ®.

We shall prove the following theorems.

Theorem 3. The strong type inequality
/@ |H, f(2)])e(z) dz < C/<I> Clf@)e(z)dz, (41
holds with C' independent of f if and only if ® € A,, = A,, and
0 € Ag.
Theorem 4. The weak type inequality

o({lHof| > A})-2(N) < C/¢(le(x)\)e(r)d2» (4.2)

holds with C independent of f and X if and only if ® € A,, and
g E Ag.

Theorem 5. Let ® € AY. Then the extra-weak type inequality

ettt > <0 [o @) oz, )

holds with C' independent of f and X if and only if p € E§.

The following auxiliary assertion is a modification of Lemma 1 from

(1]-

Lemma 5. Define
_e(yl=))

= 8 #0.
o(z) 2\/m T

Then o € Ay if and only if 0 € Ag, and p € E§ if and only if 0 € Eg.

Proof of Lemma 5. Let I = (a,b), a > 0, and put J = (v/a, Vb).
Easily, |I| = 2v(J) and o(I) = o(J). Therefore,
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and analogously
(o1 ) o(x) z ( yo(J) ) oy)
Bl —(lx:/cb SELACHRRIGG)
,/ ( a(z)) o) 4 \er(d)) e(d)
Similar argument holds for b < 0, and, in the remaining case, we split
the interval into two. M
Proof of Theorem J. Necessity. First we claim that if (4.3) holds,
then ¢ is a doubling weight.
Let I = (a,0),0 < a < b < co. Assume that supp f C I. Since
v(I*) =2b(b— a) > (b* — a?)

5

Hof(x) =

v

o / fWay), cer. (1.4)

Now, easily 4v(I) > v(I*), so inserting f = y; in (4.4) yields Hoxi(z)
> (47)7 ! for all = € I". This together with (4.3) leads to o(I')y < Co(l).
By symmetry, ' E

C7o(I) < olI') < Co(I), 4.5)

and the doubling condition follows.

Now we shall show, using again the idea from [8], that ® € A,.
Given A, set f = (2C)~' Ay, where C is from (4.2) and I is an appro-
priate interval. It then follows from (4.2) that

o) <C el

= C o> 2oy A > O

that is, ® € A,.
It remains to show that p € A%. Given o >0, and [ = (a,b), put

J=C"S (gﬁ)) xi(),

where C' is from (4.2), and

s
A:m!fdu.

.




WEIGHTED ESTIMATES FOR THE HILBERT TRANSFORM ..: 103

Then by (4.4), (2.1), (4.2) and (2.3)

ol 2 < C [ 05, (g$) o(x)de < Cra” | fav,
1 1

or, by (4.5),

e (T de
<5 (ae(w))d =) il

Denote A = f; fdv. Obviously, A > 0. Assume that A = co. Then
f@(gﬁ)g(m)daf = 00, and there must exist a function ¢ € Lg (1)
i

“/CYUCL o(z)dx = — /_/dl/

This and (4.4) would give H,(cg)(z) = co for all 2 € I', and € > 0
and, by (4.2),

such that

o(I')D(N) < C/Q?(an(.r))g(z)dzt, Ae> 0.
? /

Since g € Lg,, there must be € such that the last integral is finite,
and so it follows that g(I’) = 0. However, since g is doubling and
nontrivial, this is impossible. Hence 0 < A < oo and we can divide
both sides of (4.6) by v(I)7'A to get p € A}. W

Sufficiency. By Lemma 5, o € A§ implies 0 € Ag. We thus have
from Theorem A

0o

o({Hg >A})- () < C / &(Clg()))o(x) dz

For given f on (0,00) put g(z) = f(3/) for > 0 and 0 elsewhere.
Then Hg(x) = (H,[)(v/z) [1], and therefore

o({z > 0,[H,f()| > A}) < o({z € R, |Hg(z)| > A})

D/ y)dy. A

e;m
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Proof of Theorem 3. Necessity. By Theorem 4, p € Ag and ® € A,
are necessary even for the weak type inequality. It remains to prove
® € A;. In the same way as in Lemma 3 and Lemma 4 we can prove
that (4.1) implies

o

o{ = H(fo))] > A < C [ (CI(w)])ela) do.

]

For the definition of H. see (1.7). Putting f = #5xg, similatly as in
the proof of Lemma 3 we get & € A,.

Sufficiency. By Lemma 5 and Lemma 2, o € A3 implies 0 € Ag,
with i(®9) < i(®). By Theorem A, o € Ag, and ®; € A, imply the
weak type inequality

o({z € R; Hy(z) > A})@o(A / (z) de

for every g. Given f on (0,00), we put g = f(v/Z) - X{z>0}, = € R.
Change of variables then gives

e{z > 0 Hof > \NOo() < C [ @o(Cf(z))elx) de

which yields the assertion by a usual interpolation argument. &

Proof of Theorem 5. Necessity. First assume that & ¢ B.,. Note
that then Sg is finite on (0,00). Fix & € N and an interval I, put
Iy = {z € I,z < ko(z)}, and define

= old) T
blo) = o) = 8o (25200 o
with € to be specified later. Put

ﬂ,:l/—(ll—)/hdu.

T

Now, assume that K is the biggest of the cohstants C from (2.4), (4.3),
and {4.5). We then have from (4.5) that

o(I) < Ko({|Hoh| > (47)7'B1}).
- Therefore, by (4.3) with f = h and X < (47)~18;,
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=iz o) _ o) z o(I) ;
[ Heqam)en == [+ et ¢

I
=¢eo(I)fr < 4nKeo(I) + 6y,
where 6; =0 if 3; < 47K, and

6 = Kzeg,/@(i;—[]lh(z))g(x)dz, if 1> 4rK.
I

In any case, using (2.4) with A = 47 K/3; we get
(. % o)
Dle——=-=)o(z)dz

,{ (2 i) @

<4rnKeo(I) + 47 K3 /cp( L)Q—E—I%)g(x)drr.

Now, since Sg is finite, we have

Iy}

] ) dv
(

< eo(I)Ss (ek%a—;) < oo,

and hence we can put ¢ < (47 K?)~" and subtract to get
- z o(I) drKe
dr < —————
/‘D(€ (I)V(I)) ole)dz < T ze(d),
k

which yields o € E§ as the constant on the right does not depend on
k.

If ® € Bo, then ®(¢) < Ct for all ¢ and therefore, inserting f = yp
and A = v(E)/(2rv(I*)) into (4.3) we obtain

T g LB
[¥eqim)aae- <1) et

(B ()
g(]) = CQ(E)q)(C V(E\) < L‘Q(&) )-//F\’

that is, p € AJ. Therefore, in this case p € A for any ¢ (see Remark

above).

14
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Sufficiency. By Lemma 5, p € E§ implies 0 € Eg , whence, using
Theorem B, we have
o0

o({Hg>A}) <C / q)(g‘(—lx(f—)—‘)a(m)dm

-0

The same argument as in the proof of Theorem 4 now leads to the
assertion. W
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ORTHOGONAL RANDOM VECTORS AND THE
HURWITZ-RADON-ECKMANN THEOREM

N.VAKHANIA

ABSTRACT. In several different aspects of algebra and topology
the following problem is of interest: find the maximal number of
unitary antisymmetric operators U; in H = R™ with the property
U;U; = =U;U; (i # 7). The solution of this problem is given by
the }Iurw1tz4Radon-Fcl\mann formula. We generalize this formula
in two directions: all the operators U; must commute with a given
arbitrary self-adjoint operator and H can be infinite-dimensional.
Our second main result deals with the conditions for almost sure
orthogonality of two random vectors taking values in a finite or
infinite-dimensional Hilbert space H. Finally, both results are
used to get the formula for the maximal number of pairwise almost
surely orthogonal random vectors in H with the same covariance
operator and each pair having a linear support in HeH.

The paper is based on the results obtained jointly with N.P.Kan-
delaki (see [1,2,3]).
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1. Introduction. Two kinds of results will be given in this paper. One
is of stochastic nature and deals with random vectors taking values in
a finite- or infinite- dimensional real Hilbert space H. The other is
algebraic or functional-analytic, and deals with unitary operators in
H. Our initial problem was to find conditions for almost sure or-
thogonality of random vectors with values in H. Then the question
arose: what is the maximal number of pairwise almost surely ortho-
gonal random vectors in H. The analysis of this question led us to
a problem which is a natural extension of an old problem in linear
algebra, finally solved in 1942. It can’ be called the Hurwitz-Radon-
Eckmann (HRE) problem in recognition of the authors who made the
crucial contribution in obtaining the final solution during the different
stages of the investigation.

In section 2 we give the formulation of this problem, provide its so-
lution, and also give a brief enumeration of areas in which this problem
is of primary interest. In section 3 we give the solution of the gene-
ralized HRE problem. Section 4 is for the conditions of almost sure
orthogonality of two random vectors in H. In section 5 we give an
analysis of these conditions. In section 6 our initial problem of deter-
mining the maximal number of pairwise orthogonal random vectors is
solved under some restrictions. These restrictions simplify the prob-
lem, so that the generalized HRE formula can provide the solution.
Finally, in section 7 we give the proofs of the theorems formulated in
previous sections.

2. The Hurwitz-Radon-Eckmann theorem. In this section we deal
only with finite-dimensional case: H = R™. To begin the formulation
of the problem, we first recall that a linear operator U : R* — R" is
called unitary (or orthogonal) if U* = U~! (and hence it preserves the
distances).

HRE Problem. Find the maximal number of unitary operators
U; : R* — R" satisfying the following conditions (I is the identity
operator):

Ul=-1, UU;=-UU;, i4]j. (1)
The solution of this problem is the number p(n) — 1 where p(n) is
defined as follows: represent the number n as a product of an odd

nurnber and a power of two, n = (2a(n) + 1)2!(" and divide b(n) by
4, b(n) = ¢(n) + 4d(n), where 0 < ¢(n) < 3. Then

p(n) = 2°™ 4 8d(n). (2)
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The HRE problem is directly connected with the problem of ortho-
gonal multiplication in vector spaces. A bilinear mapping p : R* x
R* — R™ is called an orthogonal multiplication if llp(z, )|l = ||| - ||y||
for all € R™ and y € R¥. An orthogonal multiplication R x RF —
R™ exists if k < p(n) and it can easily be constructed if we have
k —1 unitary operators satisfying conditions (1). Conversely, if we
have an orthogonal multiplication R x R* — R" then we can easily
construct k& — 1 unitary operators with the properties (1). Of course,
there can be different sets of orthogonal operators satisfying (1), and
conespondmgly, there can be different orthogonal multiplications R" x
R* — R™.

Formula (2) shows that we always have p(n) < n. The equality
p(n) = n holds only for n = 1,2,4,8 and so there exists an inner
multiplication in R™ only for those values of the dimension (and R™
becomes an algebra for those n). For n = 1, the corresponding algebra
is the usual algebra of real numbers. For n = 2,4 and 8 we can choose
the unitary operators in such a way that the corresponding algebras
will, respectively, be the algebras of complex numbers, quaternions
and Kelly numbers. Properties like (1) arose also in the theory of
representation of Clifford algebras.

The HRE problem first appeared in the investigation of the classical
problem of computing the maximal number of linearly independent
vector fields on the surface S™! of the unit ball in R™. At first the
linear vector fields have been considered, and the final result for this
case given by B.Eckmann (1942) represents this number as p(n) — 1.
As was later shown by J.Adams (1962) with the implementation of
the K-theory, this number does not increase if we consider instead of
linear vector fields general (continuous) vector fields.

The information given in this section can be found with discussions
and further references among others in [4], Chapter 10.

3. The Generalized HRE Problem and its Solution. Now and in what
follows H can be infinite-dimensional, and in this case we suppose that
it is separable. Note that of a continuous linear operator U is unitary
means that the image im U = H and U* = U™,

Let B be a given arbitrary continuous self-adjoint linear operator
in H.

Generalized HRE Problem. Find the maximal number of unitary
operators U; in H satisfying conditions (1) along with the additional
condition U; B = BU; for all 1.

Clearly, if H = R™ and B = I, this problem coincides with the
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HRE problem. To formulate the solution of this problem we need the
following auxiliary assertion.

Theorem on Multiplicity of the Spectrum (see [5], Theorem VIL6).
For any continuous linear self-adjoint operator B there exists a decom-
position H = Hi® Hy@- - -® Ho, that satisfies the following conditions:

a) Each H, (m =1,2,--- ,00) is invariant with respect to B;

b) The restriction of B to H,, is an operator of homogeneous multi-
plicity m, i.e., is unitarily equivalent to the operator of multiplication
by the independent variable in the product of m copies of the space
L?(”m);

c) The measures p, are given on the spectrum of B, are finite, and
are mutually singular for different m (in fact, it is not the measures
themselves that are of importance, but the collections of corresponding
sets of zero measure).

Remark. For some m the measures i, can be zero; the collection
of the remaining m is denoted by 9. Now let

p(B) = min p(m), (3)

where p(m) is defined by the equality (2) for m=1,2,--- and p(>) =
co.
Note that if the operator B has purely point spectrum, then the
relation (3) gives
p(B) = min p(m;),
J

where my,m, - -+ are the multiplicities of eigenvalu:s Aq, Ag,- -+ of B.
Particularly, p(I) = p(n) if H = R™ and p(I) = co if H is infinite-
dimensional.

Now we give the formulation of one of the main results of this paper.

Theorem 1 (Solution of the generalized HRE problem). The ma-
zimal number of unitary operators in H satisfying the conditions (1)
and also commuting with B is equal to p(B) — 1.

Remark 1. For the case H = R" and B = I this theorem gives the
HRE result. However, our proof of Theorem 1 is based on the HRE
theorem and so, of course, we do not pretend to have a new proof of
it

Remark 2. As it was noticed, p(I) = oo if H is infinite-dimensional.
So, Theorem 1 tells that in the infinite-dimensional case there exists
an infinite set of unitary operators satisfying the condition (1).
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As an easy consequence of Theorem 1 we get the following simple
assertions.

Corollary 1. No self-adjoint operator having an eigenvalue of an odd
multiplicity can commute with an unitary antisymmetric operator.

Corollary 2. There does not exist a compact self-adjoint operator in
H which commutes with infinitely many unitary operators satisfying
condition (1).

4. Orthogonality Conditions for Two Random Vectors. We begin
this section with some preliminaries which are meant mostly for those
readers who usually do not deal with probabilistic terminology. (This
preliminary material can be found with detailed discussions and proofs
in [6], Chapter 3). Let (Q,B,P) be a basic probability space, i.e., a
triple where ) is an abstract set, B is some o-algebra of its subsets
and P is a normed measure on B, P(Q) = 1. Let £ be a random
vector with values in H. Because of assumed separability of H the
two main definitions of measurable sets in H coincide and a random
vector means nothing but a Borel measurable function @ — H. We
will assume for simplicity that ¢ is centered (has zero mean):

E(¢|h) =0 forall heH,

where E stands for the integral over Q with respect to the measure
P and (-|-) denotes the scalar product in H. We will consider only
random vectors having weak second order:

E(€]h)? < +oo forall ke H.

This restriction is less than the demand of strong second order
(E|€||> < +o0) and coincides with it only if H is finite-dimensional.

For any random vector ¢ having weak second order we can define
an analogue of covariance matrix which will be a continuous linear
operator B : H — H defined by the relation

(Bhlg) = E(¢|h)(Elg), hoge (4)

(we remind that ¢ is assumed to be centered).

Any covariance operator is self-adjoint and positive: (Bhlh) > 0,
heH.

If we have two random vectors & and & we can define also the
cross-covariance (or mutual covariance) operator T' = T¢¢, as follows
(we assume again, for simplicity, that & and &, are centered):

(Thlg) = B(&Ih)(Ealg)- h,g € H.
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The cross-covariance operator 7' is also a continuous linear operator
and satisfies the condition

(Thlg)* < (Bih|k)(Bag,g), h,g € H, (5)

where B; is the covariance operator for & (i = 1,2).

The pair (£,&;) can be regarded as a random vector with values in
the Hilbert space H® H and the usual definition, like (4), of covariance
operator can be applied. Then, using the fact that the inner product in
the Hilbert direct sum H @& H is given as the sum of the inner products
of the components, we ®asily get that the cofariance operator K of
the pair (&,&2) is determined by 2 x 2 matrix with operator-valued

elements:
el (WD T
i ( T, B )

where T is the operator adjoint to T (in fact it is equal to Ty, ).

Now we can formulate the main result of this section, which gives
sufficient conditions for almost sure (P-almost everywhere) orthogo-
nality of random vectors &; and &. It may seem somewhat surprising
that the conditions can be expressed only in terms of the covariance
operator K (second moment characteristics) and more specific prop-
erties of the distribution have no effect.

Theorem 2. [f the covariance operator K satisfies the conditions
T*B, = -B\T, TB;=-B,T*, T*=—B,B,, (6)

then any (centered) random vector (€1, &;) with this covariance opera-
tor has almost surely orthogonal components, i.e., P{(&1|¢;) = 0} = 1.

Generally speaking, condition (6) is not necessary. Here is a sim-
ple example: & = ¢,(, & = 6U(, where ¢; and ¢, are independent
Bernoulli random variables (P{¢; = 1} = P{e; = =1} = 1/2; i =
1,2), U is a continuous linear antisymmetri¢ operator in H(U* = —U)
and ( is any non-degenerate random vector in H.

However, the necessity holds for a wide class of distributions, con-
taining Gaussian ones.

Theorem 3. If the support of random vector & = (&;,£;) is a linear
subspace of H @ H, then conditions (6) are also necessary for & and
&, to be almost surely orthogonal.



ORTHOGONAL RANDOM VECTORS 115

5. Analysis of the Orthogonality Conditions. The orthogonality con-
ditions (6) are in fact an operator equation with triples (By, By, T') as
its solutions. For the special case H = R? the general solution of this
equation can easily be given. For the case H = R" with n > 2 and,
especially, for the infinite-dimensional case we cannot expect to have
the same simple picture. However some basic properties of solutions
can be described.
We begin with simple properties.

Theorem 4. If conditions (6) hold for the operators By, By, T, then
the following assertions are true:

a) ker By C ker T, ker B, C kerT™*; (7)

imT™* C imB;, imT C imB;; (8)

b) T commutes with By if and only if it commutes with By and this
happens if and only if T* = —T. In this case we have also BBy =
BgBl 5

c) T =T onlysf T =0;

d) TT* is not necessarily equal to T*T (so T is not necessarily a
normal operator);

e) T'ByBy = B; BT, T*B1B; = BB, T*;

f) If By = B,, then TB = BT and T* = -T;

g) In the finite-dimensional case H = R" with an odd n either
ker By # 0 or ker B, # 0;

h) In any finite-dimensional case the trace of T is zero;

i) In the two-dimensional case H = R* we always have B;B; =

B;B;.

The main part of the next theorem shows that conditions (6) for the
covariance operator of a random vector (¢;,&;) are essentially equiva-
" lent to the existence of a linear antisymmetric connection between the
components. To avoid the word "essentially”, we assume that one of
the covariance operators B; or B, is nonsingular. Suppose for defi-
niteness that ker By = 0 (Bih = 0 = h = 0). This assumption implies
that the inverse operator By' exists; in general it is unbounded, and
not defined on the whole of H but only on the range imB;. Consider
the operator TBy" on this dense linear manifold. It is easy to verify
that under conditions (6) TBy' is always closable. Denote the clo-
sure by U and its domain by D(U). Clearly, imB, C D(U) C H. In
some cases we can have D(U) = H and then U is continuous. Finally,
denote by I' the graph of U, i.e.,

T = {(z,Uz), = € DW)}
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and let also

I' = {(Uz,z), x € D(U)}.

Theorem 5. Suppose that the covariance operator K of the random
vector (&1,&,) satisfies conditions (6) and ker By = 0. Then the fol-
lowing assertions are true:

a)imK =T, ker K =T';

b) D(U*) D D(U) and U= = U on D(U);

c) By, = —UBU, and moreover, D(U) is a dense Bortel set in
H,P{,€DU)} =1 and P{& = U6} = 1.

Remark 1. If instead of ker B; = 0 we assume ker B, = 0, then we
can introduce the operator V which is the closure of T*B; . Of course,
for V' the theorem is again true (with natural slight alterations). If
both B; and B, are nonsingular, we can introduce both U and V; they
will be convertible and we will have U~! = V.

Remark 2. Let both By and B, be nonsingular. Then we have both
U and V. Generally, neither U nor V is necessarily extended to a
continuous operator in H. The example below shows that in fact all
four possibilities can be realized.

Example 1. Let some basis in H be fixed and B; be given as a
diagonal matrix with positive numbers A;, Az, ... on the diagonal. Let
B, be also diagonal with the positive numbers a?)\;, a2\, a2\y, a2)s,
a%)e, a?)s,... on the diagonal. Finally let T' be quasi-diagonal with
the following two-dimensional blocks on the diagonal:

0, aihg 0, gy 0, azlg
—aA, O i —azdz, 0 2 —azls, 0

Remark 3. Let A denote the linear operator determined in H & H
by the matrix || A;;||, where Ayy = Ag; = O and Ajy = Ay = [, and let
d = AK. Conditions (6) can be written as d*> = O ("differentiality” of
d). According to assertion a) in Theorem 5 we have im d = kerd (and
get zero homology), provided By or Bj is nonsingular. If this is not
the case, then the inclusion im d C kerd (which is the consequence of
d* = O) can be strict. Here is a simple example.

Example 2. H = R*, B; and B, are given by diagonal matrices with
the numbers A\ >0, X2 >0, 3 = Ay = 0and py = pa=pa = 0,
g > 0 respectively, and T = 0.
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Remark 4. According to assertion ¢) of the theorem, any triple
(Bi, B2, T') with nonsingular By, satisfying conditions (6) can be given
with the pair of operators (B, U) by the following relations: By = B,
By, = —=UBU, T = UB. In a finite-dimensional case the converse
is also true: any pair of operators (B,U), where B is an arbitrary
nonsingular self-adjoint positive operator and U is an arbitrary anti-
symmetric operator, gives the triple satisfying conditions (6). In the
infinite-dimensional case, as shown by Example 1, unbounded opera-
tors can arise in the direct assertion. Therefore, if we want to obtain
the general solution of the system (6) we should either confine the
collection of possible pairs (B,U) or extend the triples (By, Bz, T') to
admit unbounded operators. However, when By = B, unbounded op-
erators do not occur and the problem of the description of the general
solution of (6) can be solved using only continuous operators.

Theorem 6. If By = B, = B (ker B = 0), then D(U) = H and
hence U is continuous. Furthermore, we have UB = BU, U? = —1I
and so the antisymmetric operator U is also unitary (U* = U™').

6. Systems of Pairwise Orthogonal Random Vectors. Now we con-
sider systems of k > 2 random vectors and look for conditions of
pairwise almost sure orthogonality. A direct application of the condi-
tions for two random vectors to each pair of the system might yield
a solution, but the latter would be too complicated to be of interest.
Therefore, to ease the problem we impose some restrictions on the
systems under consideration. Namely, we assume that all random vec-
tors &5, &y, ... , & have the same covariance operator B, and that each
- pair (&;,&;) has a linear support in H @ H. We assume also, without
losing generality now, that ker B = 0 and all §; are centered. Such sys-
tems of random vectors we call S(H, B)-systems. An S(H, B)-system
&, &, ... & is said to be an SO(H, B)-system if P{(&|¢;) =0} =1
forsi. 1 =1 D sk A gt

Let now (&1,&2,...,&) be any SO(H, B)-system. Fix one of &s,
say &1, and consider the pairs (&,&2), (&1,&3),--.,(€1,&). Denote
by T; the cross-covariance operator Tt and let U; = TiB~'(i =
2,3,...,k). According to Theorem 3 and Theorem 6 we have & = U;&;
almost surely, and each of U;’s is unitary, commutes with B and also
we have U? = —I. It is easy to show that orthogonality of ¢ and ¢;
gives the condition U;U; = —U;U; and if we apply Theorem 1, we get
k < p(B). Conversely, let now Uy, Us, ... ,Uyp) be p(B) — 1 unitary
operators from the generalized HRE problem which exist again by
Theorem 1. Let also & be any centered random vector with a linear
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support in [ and with covariance operator B. It is easy to verify
that (é1, U6y, Uséy,. .. ,Uyy6r) is an SO(H, B)-system. Therefore,

we have derived the following result.

Theorem 7. For any covariance operator B there exists an SO(H,B)-
system containing p(B) random vectors and this is the mazimal num-
ber of random vectors forming any SO(H, B)-system.

Finally we give some corollaries of this theorem concerning Gaussian
random vectors.

Corollary 1. For any natural number k there exists an SO(R", B)-
system, consisting of k Gaussian random vectors (n and B should be
chosen properly).

Corollary 2. For any natural number k there exists an SO(H, B)-
system, consisting of k Gaussian random vectors such that H is infi-
nite-dimensional and the Gaussian random vectors are also infinite-
dimensional.

Corollary 3. There does not exist an infinite SO(H, B)-system, con-
sisting of Gaussian random vectors.

Remark. Corollary 3 means that an infinite system of centered
Gaussian random vectors which are pairwise almost surely orthogonal
does not exist if: a) all pairs of the system have linear supports in ;‘
H@ H; b) all vectors of the system have the same covariance operator.
In connection with this we note that such kind of system does exist if
we drop either one of these two restrictions.

7. Proofs of the Results.
Proof of Theorem 1. The proof is performed in two steps. First we
consider the case of the operator B having a homogeneous multiplicity.

Lemma 1. Let B be a linear bounded operator of the homogeneous
multiplicity m (1 < m < o0). There exist k (0 < k < 00) unitary
operators satisfying conditions (1) and commuting with B if and only
if k < p(m)—1 (we remind that p(co) is defined as o).

Proof. According to the condition on B there exists a linear isometry v
from H onto L(y) such that B = v='Buv where LJ'(u) is the Hilbert
direct sum of m copies of Ly(y) with some finite Borel measure p
supported by a compact set M C R' and B is the operator from
L7 () to itself defined by the equality

(BHYX) =Af(A), AeM.
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Here f = (fi,f2,..., fm) with f; € Ly(p) (: = 1,2,... ,m) for the
case of finite m and f = (fi, f2,...) with the additional assumption
S I < o0 if m = oo

Consider first the case m < oo. To prove the sufficiency part of
the lemma we construct p(m) — 1 unitary operators U; in Lj*(x) that
satisfy conditions (1) and commute with B; the operators U; = v=!Ujv
will solve the problem in H. In virtue of classxcal HRE theorem there
exist p(m) — 1 orthogonal operators U; in R™ satisfying conditions (1).
Let |Ti(p, @)ll (prq = 1,2,. m) be the matrix of U; in the natural
basis of R™, and define thc opPrator U L3 (p) = Ly (n) as Uif = g
(i=1,2,...,p(m) — 1), where g

%N =L 0., p=12...,m. 9
9=1

It is easy to check that the operators Uy, U, ... ,(7p(m)_1 have all
the needed properties.

To prove the necessity part of the lemma we have to show that k <
p(m)—1if Uy, Us, ... , Uy is any system of umtmv operators satisfying
(1) and commuting WJth B. Let U; = vUp~! and B = vBv~! be the
corresponding isometric images of U; and B. These are the operators
acting from Lj'(pt) to itself. Any linear operator Ly (u) — L7'() can
be written in a standard way as a m x m matrix with entries that
are La(u) — La(p) operators. Let ||Ui(p,q)|| be the matrix of the
operator Ui (i=1,2,... ,k;p,qg =1,2,... ,m). Since U;B = BU;, we

have U; fo(B) = fo(B )U for any contmuous function fo : R — R'.
Clearly, the operator fo(B) is the multiplication by the function fo.
Therefore for all i = 1,2,... ,k and f € L(u) we have the following
m relations (p = 1,2,... ,m):

3 [Oitp. ) foli) ) = £o0) X (U, ) ) ().
g=1 7=1

If we take now f = (fi, f2,... , fm) with f, = 0for g #sand f, =1
(s=1,2,...,m), then we get

[Oi(p.3)1a) (V) = Vi, 5 ) fo(V) (10)
where 3 B
Vi(p, i 0) = [Ui(p, $)1] (V).
Since the operators U;(p,s) are bounded, the relations (10) hold

not only for continuous fo but also for all fo € Ly(n). Now it can be
shown by elementary reasonings that for almost all fixed values of A
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the R™ — R™ operators corresponding to the k matrices ||Vi(p, q)]|
are unitary and satisfy conditions (1). Therefore, k < p(m)—1 by the
classical HRE theorem.

To finish the proof of the lemma, we consider the case m = oco. In
this case only sufficiency part is to be proved. The existence of an
infinite system of unitary operators in H satisfying conditions (1) was
proved in [7]. The proof that we give here (see also [3]) is based on the
same idea though the use of block matrices simplifies the technique of
the proof.

Let A; be the quadratic matrix of order 2° with the second (non-
principal) diagonal consisting of +1’s in the upper half and —1’s in
the lower half and all other entries equal to zero. Denote by U; i =
1,2,...) the infinite diagonal block matrix with the matrices A; on
the (prmc1pa1) diagonal. Clearly, A; are unitary and A? = —]. Hence
U; are unitary and U? = —I. To prove the property UU = ~U U;
(i # j), it is convenient to consider U] (if j < i) as a diagonal block
matrix with the matrices (blocks) of the same order 2 as in case of Uj.
This can be achieved combining 2/~ diagonal blocks of U; in one with
zeros as other entries. Denote this matrix (block) of order 2° by A;;.
Now Uj is a diagonal block matrix with the diagonal blocks Aj; of the
same order 2 and it is enough to show that A;A;; = —Aj;A;. For
this we remind that A;; is a diagonal block matrix with 2~/ diagonal
blocks of order 27 each, and represent A; also as a block matrix with
the blocks of order 2/ each. This way we get a block matrix with the
blocks that are all zero matrices except those situated on the second
(non-principal) diagonal which are ¢ in the uppeer half and —¢ in the
lower one. Here § is the matrix of order 27 with +1’s on the second
(non-principal) diagonal and all other entries equal to zero. Now it
is quite easy to show that the needed equality A;A;; = —Aj;A; is a
consequence of the elementary one: A;§ = —8A;, and this completes
the proof of p(co) = oco. The proof of the lemma is also finished
now: define the operators U; (i = 1,2,...)in L3'(1), m = oo, by the
relations (9) with m = oo; it can easily be checked that the operators

U; (i=1,2,...) satisfy conditions (1) and commute with B.

Now we can finish the proof of Theorem 1. Clearly, p(B) = p(m)
if B is of homogeneous multiplicity m, and Lemma 1 coincides with
Theorem 1 for this case. For the general case we will write B as
the diagonal matrix with the restrictions of B to Hy, H,,... on the
diagonal (this is possible because every H,, is invariant for B). The
restriction of B to H,,, m € 9M, is of homogeneous multiplicity m,
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and by Lemma 1 there exist p(B) — 1 unitary operators U™ (i =
L,2,...,p(B)~1)in each H,, (m € M) that satisfy conditions (1) and
commute with Blg,,. The p(B) — 1 unitary operators corresponding
to diagonal matrices with the operators U}, U?,... on the diagonal
satisfy conditions (1) and commute with B.

Finally, let U; (¢ = 1,2,... , k) be unitary operators in H satisfying
conditions (1) and commuting with B, and H, (m € 9M) be the
invariant subspaces corresponding to B. Because of commutativity,
the subspaces H,, are invariant also for all U; and Lemma 1 easily
gives that k < p(B)—1. ®

Proof of Theorem 2. Let A denote the 2x2 matrix with the operator-
valued elements A;y = Agy = O and Ay, = Ay = %1, where O and
I denote, as before, zero and identity operators. It is obvious that
(&112) = (AE|E), € = (&,&2), and hence the problem is transformed
to the problem of orthogonality of ¢ and A¢ in the Hilbert space
Hy @ Hj. It is easily seen, using the definition, that the covariance
operator of A¢ is AA. We have the equalities

a2 L [EOIN By, ST\
§ <3 s 1) =
(AKAK = (AK)* = 5 [( I o)( T, B )] i
L( T+ BB, TB+BT\ _
BT+T"B,, BBy+T )~

7
and the use of the following lemma ends the proof.

Lemma 2. Let ¢ and 1y be centered random vectors in a Hilbert space
H, with covariance operators B, and B,, respectively. If B;B, = O,
then P{({|n) =0} = 1.

Proof. Topological support S¢ of a random vector ¢ with values in
a (separable) Hilbert space H is defined as the minimal closed set
in H having probability 1, i.e. as the intersection of all closed sets
F C H such that P{¢ € F} = 1. Denote by [(S¢) the minimal
closed subspace in H containing S¢. If h.LI(S;), then hLlim B, and
(Bch,h) = O; hence (Beg,h) = 0 for all ¢ € H, and hLim Be.
Conversely, if hLim B¢ then P{(Lh} =1 and so the closed subspace
orthogonal to A has probability 1; hence it contains I(S) and we get
hLIl(S¢). Therefore we have

1(S¢) = m B,. (11)

The condition of the lemma gives that ( B:hB,g)! =!0forall h,ge H.
So, tm B Lim B, and the application of relation (11) together with
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the following obvious relation

P{Cel(Se), nel(Sy)}=1
completes the proof. W

Proof of Theorem 3. We have S¢ = im K because of linearity of
Se and the relation (11) written for ¢ (remaind that B = K). On
the other hand, the condition & L& a.s. gives that S¢ C L where
L = {(u,v), u,v € H, (ulv) = 0}. Therefore, imK C L and so, for
all z,y € H we have the relation

(Biz + T"y|Tz + Byy) = 0. (12)

If we take y = 0 then we get the relation (7 Bjz,z) = 0 for all
z € H which shows that the operator 7By is antisymmetric and
thus proves the first equality in (6). The second one is proved in the
same way by taking x = 0 in (12). Now the relation (12) gives that
(T*y|Tx) + (Biz|Bay) = ((T* 4 By Bi)zly) = 0 for all 2,y € H and
the third equality in (6) is also proved. W

Remark. The necessity of conditions (6) was originally proved for
the case of Gaussian random vectors. The possibility of extension to
this more general case was noticed later by S.A.Chobanyan.

Proof of Theorem 4. a) Relations (7) are an easy consequence of
inequality (5). Relations (8) follow from (7) because ker A+im A* = H
for any linear bounded operator A.

b) It is enough to show that TBy = BT gives T* = —T (the
implication T'By = B,T = T* = —T can be shown analogously). The
condition T*B; = —BT gives T*z = =Tz for z € im B;. Let now
z € ker By. Then, according to (7), Tz = 0 and it suffices to show
that 7"z = 0 too, or (T*zly) = 0 for all y € H. If y € ker By, this
is clear; if y € im By, then y = Byz for some z € H and (T"z|y) =
(z|TByz) = (Biz|Tz) = 0 since @ € ker By. The last assertion is an
easy consequence of T* = —T (which gives T** = T?).

c) The last equality in (6) shows that if 7" = T, then B, By= B> B;.
Therefore, By B, is a positive operator and (T%z,z) =— By Bz, x) < 0.
On the other hand, (T%z,z) = (T'z,Tz) > 0). Consequently, Tz =0
for all z € H.

d) The counterexample can be given even in R*. Let

.0 0, 0 0, 0
m=(58) m=(03) 7=(%0)

where a >0, b> 0, t € R.




A

ORTHOGONAL RANDOM VECTORS 123

e) These equalities immediately follow from the first and second
equalities in (6).

f) If By = B, = B, then T commutes with B? in virtue of the
previous statement and hence it commutes with B too in virtue of
Lemma of the square root (see [5], Theorem VI.9). It is enough now
to apply statement b) of this theorem.

g) If n = 2m + 1, then det(7?) = det(—B;B;) = (—1)*™*+! det By x
x det B, < 0. On the other hand, det(7?) = (det T')? > 0. Therefore
det(7?) = 0 and hence det B, det B, = 0.

h) The first condition in (6) gives the relation (Tz|Byz) = 0 which
shows that (T'f|f) = 0if Bf = Af and A # 0. The last condition
A # 0 can be omitted due to the first relation in (7). Therefore,
(T f|f) = 0 for any eigen-vector of B; and it is enough to note that
in a finite-dimensional space normed eigen-vectors of any self-adjoint
operator constitute a basis and the trace does not depend on the choice
of the basis.

i) It can be checked directly that any linear operator 7' in R? with
trT = 0 has the property 72 = T*2. So, this statement is an immediate
consequence of statement h) and of the last equality in (6). H

Proof of Theorem 5. According to relations (6), we have the equa-
lity TBy'T* = B, on im By, and hence if Byz + T*y is denoted by
h, then Tz + Byy will be equal to TB~'h. Therefore the following
equality in H & H is true

{(Biz+ Ty, Tz + Byy) : 2,y € im B} =
{(h,TB7'h) : h € imB,},

which gives the first equality in a). To prove the second one, note that
ker K is the collection of pairs (z,y) satisfying the system of equations:
Byz+T"y =0, Ta+ Byy = 0. The first equaition gives, because of the
equality B{'T* = —TB;" on im By, the relation By(z — U,) = 0 and
hence ¢ = Uy. It is also easy to show that the pair (Uy,y) satisfies
the second equation for all y € D(U) as well.

Using again the equality BT~ = —T B;* on im By, we get for any
fixed y € im B, the equality

(TBi'z|y) = —(z|TBr'y) for all z € D(U)

that just means the validity of statement b).

Finally we prove statement c). The equality By = —UB,U can be
verified directly. It is clear that D(U) is the projection of I' on H
that is continuous one-to-one mapping of the closed set I' C H & H

\///‘/
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into H. Therefore D(U) is a Borel set (this can be shown, for example,
by Kuratowski theorem, [6], p.5). Furthermore, any random vector
belongs a.s. to its topological support, and the support of the random
vector (£1,&;) is included in im K (see relation (11)) that is equal to
I' according to statement a). Therefore, (¢1,&;) € T a.s. which means
that £ € D(U) and &, = Ué; as. W

Proof of Theorem 6. Continuity of everywhere defined closed opera-
tors is well known. We show that D(U) = H. Sinceker B =0, im B =
H and it is enough to show that convergence of Bz, implies conver-
gence of TB~!(Bz,), z, € H, n = 1,2... which is easily checked
by using 7 = —T (Theorem 4) and T? = —B? (relation 6). Finally,
since BT = TB (Theorem 4), UB = TB™'B = BT'B~! = BU, and
—B? =T? = (UB)? = U?B? which gives that U? = —]. W
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