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Chapter 1 

 

 

 

 

 

 

 

Introduction 
 

    We frequently deal with shear flows of various kinds in astrophysics or in 

meteorology, that is, flows where processes are driven and sometimes energetically 

maintained by inhomogeneous background velocity profile.  They are equally important 

together with systems where energetic processes and instabilities are associated with 

thermodynamic sources, for example, temperature and entropy inhomogeneities. Gas 

flow in accretion and circumstellar discs around normal stars and compact objects, 

galactic rotation, planetary rings, protoplanetary discs, astrophysical jets are only few 

examples from a wide variety of flows met in astrophysical objects. On the other hand, 

zonal or azimuthal geostrophic flows in the atmosphere and ocean, jet streams related to 

atmospheric fronts, various kinds of winds are all examples of shear flows in 

meteorology. Due to a large occurrence of shear flows in nature and a wide variety of 

energetic processes therein, they have attracted basic interest and their investigation has 

been initiated for more than a century. Traditionally, the main subject of study and 

interest in shear flows is their stability to various types of perturbations to which they are 

unavoidably subject (Drazin & Reid 1981). These perturbations may be of stochastic 

nature intrinsic to flows or may be caused by some other extrinsic factors. The stability 

study is very important. It is concerned with when and how laminar state breaks down, 

its subsequent evolution and eventual emergence of coherent structures or onset of 
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turbulence. Turbulence itself is a very common phenomenon in nature and has serious 

consequences in both meteorology and astrophysics (for example, in accretion discs 

turbulent stresses can remove angular momentum outwards allowing matter to accrete 

(Balbus & Hawley 1998, Balbus 2002, 2003). Interstellar medium in galaxies is often 

turbulent and this fact has important observational consequences (Elmegreen et al. 

2003a)). It is much less amenable to analytical treatment and investigators often have to 

resort to numerical simulations or experiments to extract necessary information on the 

process.  

    Generally, the characteristic properties, first of all, the stability and other behaviour of 

shear flows present in astrophysics or in meteorology are best revealed in various 

laboratory experiments where small-scale analogs of real flows are reproduced. Perhaps 

the best first study of shear flows was made by Osborne Reynolds (1883) in his classic 

series of experiments on the instability of flow in a pipe. He showed that laminar flow 

breaks down and becomes turbulent when a characteristic number of a flow, which was 

afterwards named after him (Re), exceeds a certain critical value. Theoretical 

investigation of the stability of shear flows was pioneered in the nineteenth century, 

notably by Helmholtz, Kelvin and Rayleigh. At this time the method of normal modes 

for studying the oscillations and stability of dynamical systems of particles and rigid 

bodies was already highly developed. A known solution of Newton’s equations for the 

system was perturbed and the equations were linearized by neglecting second order 

terms. Then by assuming the perturbed quantities to be proportional to (normal 

modes), where ω is some complex constant, values of ω were calculated from the 

linearized equations. If at least one mode happened to have ω with positive imaginary 

part then the system was deemed unstable because a general initial small perturbation 

would grow exponentially in time. Stokes, Kelvin and Rayleigh applied this method of 

normal modes to hydrodynamic problems. This proceeds in two stages: the linearization 

of fluid dynamical equations about a mean (laminar) background flow and then seeking 

for unstable solutions of the linearized problem depending on time in the same 

exponential manner. However, Lord Kelvin developed another so-called non-modal 

tie ω−
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method in 1887, which we describe below and stress its advantages over the modal 

approach. The fluid dynamical equations are partial differential equations in contrast to 

Newtonian equations that are ordinary differential equations. This fact leads to many 

technical difficulties in hydrodynamic stability, which, to this day, have been overcome 

analytically for only a few classes of flows with very simple configurations.   

     A basic procedure of linearization of hydrodynamic equations and finding normal 

modes is described in a great detail in an excellent monograph by Drazin and Reid 

(1981). Here we would like to note only that a normal mode depends on time 

exponentially and eigenfrequencies are found from the linearized hydrodynamic 

equations supplemented with appropriate boundary conditions. If at least one 

eigenfrequency has positive imaginary part then the flow is said to be unstable. 

Experiments show that there exists some critical maximum value of Reynolds number 

below which a flow is stable for all wavenumbers and above which unstable modes 

begin to emerge. Despite a huge success of modal approach in the stability study of shear 

flows they are still far from being completely understood. There are an increasing 

number of cases where results predicted by this modal analysis lead to controversy. 

These cases involve smooth (without inflection point) shear flows the stability study of 

which was revisited in the 1990s by means of different approach (cf. Reddy et al. 1993, 

Reddy & Henningson 1993, Craik & Criminale 1986, Butler & Farrel 1992, Trefethen et 

al. 1993, Trefethen 1997, Gustavsson 1991, Gustavsson & Hultgren 1980, Criminale & 

Drazin 1990, Farrell & Ioannou 1993a,b, 1996, 2000,  Chagelishvili et al. 1994, 

1997a,b). Smooth shear flows were commonly deemed stable according to the classical 

stability criterion, which states that the existence of an inflection point in the equilibrium 

velocity profile is a necessary condition for the spectral instability (Fjørtøft 1950) and, 

accordingly, it was believed that the energy extraction from the mean flow is possible 

only in the presence of the inflection point in the mean velocity profile. However, it was 

found in the 1990s that flows without inflection point are rich in energetic processes – 

processes of mean flow energy extraction, energy exchange between perturbations, etc. 

owing to non-orthogonal eigenfunctions of governing operators (see below). As we will 
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see throughout the thesis, transiently amplified perturbations can efficiently extract 

energy from mean flow and cause instability.  

      The problem has a long history. As was mentioned above, the traditional and 

generally acknowledged paradigm in the stability study is the modal analysis. The 

necessary condition for the flow to behave unstably (in the sense of the standard linear 

theory) is the existence of exponentially groining eigenmodes. For some processes (e.g. 

thermally driven instabilities in Rayleigh-Benard convection flow, or centrifugally 

driven instabilities in rotating Couette flow) results based on the modal approach well 

match laboratory experiments. At the same time, for other kinds of smooth shear flows, 

especially those driven predominantly by shear forces, the predictions of the normal 

mode approach fail to match most experiments. For plane Couette flow, for instance, 

turbulence is observed in experiments for Reynolds numbers Re ≈ 1300 (see e.g. 

Dauchot & Daviaud 1995, Bottin et al. 1998), whereas the common eigenvalue analysis 

predicts stability for all Reynolds numbers. The same is true for Couette flow between 

two counter rotating and co-rotating cylinders (Coles 1965), where turbulence is 

observed despite the absence of exponentially growing linear perturbations. Plane 

Poiseuille flow becomes linearly unstable at Re=5772 (Orszag 1971), while experiments 

exhibit well-developed turbulence already at Re=1000. This fact indicates that the onset 

of turbulence must be different from the eigenvalue instability. Attempts to resolve the 

problem questioned the validity of the linearization process and appealed to nonlinear 

effects (nonlinear instability in hydrodynamics) (cf. Bayly 1986, Bayly et al. 1988, 

Orszag & Kells 1980, Orszag & Patera 1980, Herbert 1988). However, it turned out that 

the basic cause of the discrepancy was the eigenmode analysis itself (Reddy et al. 1993, 

Trefethen et al. 1993, Butler & Farrell 1992, Reddy & Henningson 1993).  

      In was shown mathematically by Reddy et al. (1993) (see also Trefethen 1993) that 

the application of modal approach to some smooth shear flows leads to incorrect results 

regarding the stability of flows. The thing with it is that the operators that figure in the 

modal study of shear flows; in particular, in plane Couette or Poiseuille flows are not 

self-adjoint and, correspondingly, their eigenfunctions are not mutually orthogonal and 
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strongly interfere with each other. Due to interference a non-normal system can exhibit 

large amplification of small perturbations (by factors of thousands and more (Reddy & 

Henningson 1993)) in a limited time interval even when all the eigensolutions (and, 

correspondingly, a perturbation itself) die out at large times, i.e. when the system is 

stable according to modal analysis. This transient amplification of perturbations is 

overlooked in the modal treatment because it focuses on the asymptotic (at large times) 

stability of the system (Case 1960, Dykii 1960, Van Kampen 1957) and, therefore, is 

unable to fully account for phenomena arising from the interference of non-orthogonal 

eigensolutions and taking place during finite time intervals. Hence, the use of the full 

spectral expansion for this category of shear flows may be quite misleading: the study of 

an individual normal mode evolution does not give adequate description of the system 

behavior. Even if we, in spite of all, stay in the modal approach and wish to analyze a 

finite time dynamics correctly we must sum over all interfering eigenfunctions which is, 

without doubt, a formidable task. In practice it can only be done numerically. However, 

in this process we may easily lose salient features of the dynamics of non-normal 

systems.       

    These difficulties provoked a change in the paradigm. A new notion of 

pseudospectrum was developed (Trefethen et al. 1993, Trefethen 1997, see also Reddy & 

Henningson 1993) that generalizes the spectral approach and easily captures features 

characteristic of non-orthogonal systems (shear flows). One of the main applications of 

pseudospectrum is to the analysis of energy growth for initial value problems (Pazy 

1983, see also Reddy & Henningson 1993). Roughly speaking energy growth in non-

normal systems depends on how far pseudospectrum extends into the upper half-plane of 

complex numbers. There was formulated theorem (Hille-Yosida theorem) that defines 

necessary and sufficient conditions for no energy growth in non-normal systems. 

Numerical calculations of pseudospectra were performed for various smooth shear flows 

to specify more accurately its stability characteristics. Reddy and Henningson (1993), 

Gustavsson (1991), Farrell (1988), Butler & Farrell (1992) extensively investigated 

numerically transient growth of perturbations in bounded Poiseuille and Couette flows. 
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Their results show that growth by a factor O (1000) may occur at subcritical Reynolds 

numbers. For Couette flow it was found that the maximum energy growth is proportional 

to Re2 and that growth by a factor ≈19000 may occur for Re=4000. For both flows it was 

shown that the initial perturbation that achieves the large growth is essentially a 

streamwise vortex. The existence of transient amplification was vividly demonstrated by 

Landahl (1980), who by integrating the equations of motion showed that perturbations 

can be amplified despite the spectral stability of a flow and introduced the notation of 

algebraic instability. All these show that instability mechanism is different from that 

predicted by modal treatment. 

      As mentioned above, Lord Kelvin introduced another method in 1887 that is able to 

easily capture transiently growing solutions in inviscid incompressible parallel shear 

flows. The method was developed well before the realization of non-normality of shear 

flows. This method is now known as non-modal approach and consists in transforming 

coordinates from laboratory to co-moving frame and studying the evolution of individual 

spatial Fourier harmonics (SFH) without any spectral expansion in time. The 

wavenumber of each SFH becomes variable in time: there exists “drift” of SFH in 

wavenumber k-space (Marcus & Press 1997, Chagelishvili 1993). The non-modal 

formalism is also well described in the case of bounded compressible plane shear flows 

(Criminale & Drazin 1990). This method can be considered as a certain modification of 

an initial value problem in contrast to boundary value problem in modal analysis. 

Together with applications in hydrodynamical problems (cf. Farrell & Ioannou 2000, 

Criminale & Drazin 1990,  Craik & Criminale 1986, Chagelishvili et al. 1994, 1996a, 

1997a,b) this method has been extensively exploited both in astrophysical (cf. Goldreich 

& Lynden-Bell 1965, Goldreich & Tremaine 1978, Nakagawa & Sekiya 1992, Julian & 

Toomre 1966, Jog 1992, Balbus 1988, Ryu & Goodman 1992, Goodman & Balbus 2001, 

Chagelishvili et al. 2003, Tevzadze et al. 2003) and meteorological (cf. Barcilon and 

Bishop 1998; Hakim 2000, Hodyss and Grotjahn 2003, Kalashnik et al. 2004, 2006) 

contexts. The non-modal approach greatly simplifies the mathematical description and 

helps to grasp phenomena that were overlooked in the framework of the modal approach. 
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It is more productive when combined with numerical calculations. The non-modal 

approach allowed revealing two novel channels of energy exchange in shear flows: 

transient extraction of energy from mean flow by perturbations (especially by vortical 

perturbations), which plays a central role in the bypass scenario of transition to 

turbulence (Broberg & Brosa 1988, Bagget et al. 1995, Gebhardt & Grossman 1994, 

Grossman 2000, Reshotko 2001, Chapman 2002, Chagelishvili et al. 2003, Rempfer 

2003, Waleffe 1997), and mutual transformation of different modes (exchange of mode 

energies) into each other at the linear stage of evolution which results from flow shear 

(cf. Bodo et al. 2001, Chagelishvili et al. 1996b, 1997a,c, 1999, Chagelishvili & 

Chkhetiani 1995, Rogava & Mahajan 1997, Rogava et al. 1999, Poedts et al. 1998, 

Poedts & Rogava 2002, Tevzadze 1998).  

 

1.1 Aim of the thesis 

      The main purpose of the presented thesis is to examine non-orthogonality induced 

perturbation dynamics in some atmospheric, oceanic and astrophysical smooth shear 

flows. Our main tools of investigation are non-modal approach and numerical analysis. 

These allow us to disclose many interesting phenomena and properties that were not 

seen/observed in the framework of the modal approach both in astrophysical and 

meteorological flows. In particular, non-modal approach enables us to find mixed 

explosive/exponential-linear-type of instability in meteorological flows and a new 

phenomenon, which has not been discussed in the meteorological literature before, of 

transformation of vortices into waves. This phenomenon is important in view of the fact 

that traditionally in quasigeostrophic models of geophysical hydrodynamics the role of 

fast wave motions is underestimated and the main subject of study is the dynamics of 

slow vortical geostrophic perturbations, while the former type of motion can potentially 

render flow unstable. We also show that vortices can effectively extract energy from the 

mean flow and possibly cause turbulence via bypass scenario, which has recently been 

advocated by many researchers in hydrodynamics. We also derive a useful and elegant 
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criterion for the stability of flows with boundaries that does not require spectral 

expansion in time.  We also discuss the viscosity effects on the perturbation dynamics.      

      The second part of the thesis is devoted to analyzing the properties of spiral density 

waves and vortices in gaseous galactic, protoplanetary or accretion discs, which can be 

considered as special cases of shear flows since all these objects are in differential 

rotation. Compared with flows present in meteorology here we have additional factor 

self-gravity of the medium, which considerably changes the dynamics.  

      Traditionally density waves are analyzed in the framework of Lin-Shu theory (Lin & 

Shu 1964, 1966, see also Bertin et al. 1989), which itself is a modal theory and well 

suited for studying grand-design spiral structures, while flocculent and open spiral 

structures can be interpreted as transiently amplified density waves, which are best 

studied in the shearing sheet model/approximation (Goldreich & Lynden-Bell 1965) 

using non-modal approach (by this method combined with numerical simulations it was 

possible to numerically get observationally obtained threshold for star formation in the 

interstellar medium of galaxies (Kim & Ostriker 2001)). Transient instabilities are also 

invoked in explaining bar modes as a superposition of leading and swing amplified 

trailing spiral density wave packets (Toomre 1981, see also Binney & Tremaine 1987). 

In this thesis we more closely analyze the properties of density wave packets in the 

shearing sheet approximation based on the dynamics of individual SFH. This 

approximation enable us to simply interpret many properties seen in global disk 

simulations (see e.g. Sellwood & Carlberg 1984, where the properties of recurrent spirals 

in N-body simulations of disc galaxies are well described by swing amplification in the 

shearing sheet). We show that the energy of individual sheared waves grow 

asymptotically linearly in addition to swing amplification during finite time intervals. 

    Another noteworthy phenomenon considered here is an essentially linear mechanism 

of the generation of spiral density waves by vortices in astrophysical discs.  This was 

investigated by Bodo et al. (2005) and Tevzadze (2006) in the non-self-gravity limit. We 

analyze this phenomena taking into account self-gravity, which changes vortex mode 

dynamics and enhances wave generation. Vortical perturbations are important in their 
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own right because they can represent aggregation regions of solid particles for the 

eventual formation of planets in protoplanetary discs (Barge & Sommeria 1995). 

Potential role of vortical perturbations as drivers of turbulence in accretion discs by 

transient amplification (bypass scenario) has been recently explored by several authors 

(Yecko 2004, Umurhan 2004, Afshordi et al. 2005, Chagelishvili et al. 2003). Vortical 

motions were also observed in several spiral galaxies (Fridman & Khoruzhii 1999a,b) 

and the present study can be applied to this case as well. 

 

1.2 Plan of the thesis 

    In chapter 2 we study the linear dynamics of wave and vortex perturbations in 

geostrophic zonal nonuniform flow of an incompressible, inviscid and stratified (along 

the z-axis) fluid. In section 2.1 we introduce the basic equations describing the motion of 

a rotating stratified fluid written in the Boussinesq approximation on an f plane. Then 

after linearizing about the mean qeostrophic zonal shear flow and expansion in normal 

vertical modes we reduce the equations to the form most convenient for non-modal 

analysis. Then depending on the value of the Rossby number we consider two regimes. 

In subsection 2.2.1 we study small Ro << 1 case and in subsection 2.2.2 we consider 

moderate values Ro ~ 1, when most of the interesting phenomena take place and explain 

non-axisymmetric instability in terms of symmetric instability.  In section 2.3 we briefly 

discuss viscosity effects. In section 2.4 we derive a theorem for stability using variational 

method. In chapter 3 we study dynamics of density waves, vortical perturbations and 

localized packets in the shearing sheet approximation using non-modal approach 

combined with numerical calculations. In section 3.1 we introduce the basic equations of 

the shearing sheet and make Fourier transformation in spatial coordinates. We also make 

identification of perturbation modes.  In section 3.2 we analyze the properties of 

individual SFH; their time-evolution, reflection and transmission phenomenon and 

generation of spiral density waves by vortices. In section 3.3 we examine the 

peculiarities of the propagation of packets of spiral density waves. In chapter 4 we give a 

summary of the thesis. 
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Chapter 2 

 

 

 

 

 

 

Linear dynamics of non-symmetric perturbations in geostrophic 

horizontal shear flows 

 
     The theory of hydrodynamic stability of zonal geostrophic shear flows plays a central 

role in dynamic meteorology. It comprises a broad range of problems regarding the 

generation and propagation of vortical and wave motions in the atmosphere and ocean. 

Due to a large variety of spatial and temporal scales of the dynamic phenomena various 

approximations and approaches are used in their study. The investigation of the stability 

of zonal geostrophic flows with respect to perturbations that are independent of the 

streamwise coordinate forms the basis for the theory of symmetric instability (Hoskins 

1974; Weber 1980; Emanuel 1983; Xu Qin 1986). Linear and nonlinear symmetric 

instabilities are intensively studied in connection with the formation of frontal cloud 

bands, circulations of Hadley in planets’ atmosphere and etc. (Bennets & Hoskins 1979; 

Mu, Vladimirov and Wu 1999, Kalashnik 2000, 2001). The problem of general (non-

symmetric) instability is much more complicated. This type of instability is commonly 

studied in the framework of simplified models based on the equation governing the 

transport of potential vorticity in the quasigeostrophic approximation (Pedlosky 1987). 

In quasigeostrophic models fast inertial gravitational waves (as we will show below, so 

essential to instabilities) are filtered and the main subject of study is the dynamics of 

slow vortical geostrophic perturbations. The number of papers on the quasigeostrophic 

stability theory rapidly rises because of the problems of cyclogenesis in the atmosphere 
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(numerous references on this topic can be found in the monographs Gill (1982), 

Pedlosky (1987), Shakina (1990) and in the review Pierrehumbert & Swanson (1995)). 

However, many of them, considering quite complex background geostrophic flows, 

overlook basic phenomena (existing even in the simplest shear flows) due to the 

described in the Introduction imperfection of classical hydrodynamic methods in regard 

to non-normal smooth shear flows of a general kind, because in geophysical 

hydrodynamics as well as in classical hydrodynamics the main tool of investigation of 

linear stability is the selfsame canonical/spectral method. It should be noted that the non-

normality of the linear dynamics of perturbations in shear flows was recognized by the 
meteorological community in the 1990s (cf. Farrell & Ioannou 1993a, 1996, 2002; Nolan 
& Farrell 1999a, 1999b; Nolan & Montgomery 2000). As a result, elements of non-

modal approach have been exploited more extensively since then (Barcilon & Bishop 

1998; Hakim 2000; Hodyss & Grotjahn 2003). The non-modal approach to such 

problems leads to important novelties to which the present chapter is devoted. Among 

these novelties we should stress the discovery of a new linear mechanism of 

transformation of vortices into acoustic waves at moderate (O(1)) Rossby numbers in 

atmospheric and oceanic zonal geostrophic shear flows. 
     In this chapter we investigate the linear dynamics of vortex and wave type 

perturbations in geostrophic zonal nonuniform flow of an incompressible, inviscid and 

stratified (along the z-axis) fluid. A somewhat similar problem, linear dynamics of three-

dimensional perturbations in a two-dimensional basic flow, is studied by Straub (2003). 

However, in that study interest lies with the stability of time-dependent (chaotic) flows, 

while we study the basic stationary flow with a constant horizontal shear (V0 = (Ay,0,0); 

A = const). Consequently, in these studies perturbation dynamics and the physics of 

energy exchange between perturbations and basic flow are different. Our study is carried 

out on the basis of the full linearized system of dynamic equations without invoking the 

filtering approximation. It is well known that symmetric perturbations (that do not 

depend on the zonal/streamwise coordinate) are stable if the Rossby number Ro < 1 (Ro 

= A/f, where f is the Coriolis parameter) and unstable if Ro > 1 (Bennets & Hoskins 
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1979; Kalashnik 2000, 2001; Xu Qin 1986). We analyze the dynamics of non-symmetric 

perturbations using the non-modal approach. Depending on the value of potential 

vorticity perturbation (PV) non-symmetric perturbations can be divided up into two 

types: wave/oscillatory with zero PV and slow vortex/aperiodic with nonzero PV. At 

Ro<<1 perturbations of these two types represent, correspondingly, fast inertial gravity 

waves and slow vortical geostrophic perturbations. Such a classification of perturbations 

is analogous to that accepted in the adjustment theory (Obukhov 1949; Blumen 1972; 

Gill 1982; Zeitlin, Reznik and Ben Jelloul 2003, Bartello 1995). We show that the 

energy of non-symmetric wave perturbations increases linearly for large times at Ro < 1. 

In other words, there takes place an algebraic amplification of non-symmetric shear 

internal waves. At Ro > 1 a time interval of the linear growth is preceded by an interval 

of exponential (explosive) growth. Such a behaviour represents mixed explosive-linear 

type of instability specific to shear flows. We also show that vortex and wave modes are 

coupled; pure vortical perturbations gain the basic flow energy and then are transformed 

into non-symmetric shear internal waves at Ro > 0.8. This kind of wave generation by 

vortices is also typical of smooth shear flows in hydrodynamics (Chagelishvili et al. 

1997a) and casts doubt on the use of filtration of fast wave perturbations in the 

traditional quasigeostrophic models of geophysical hydrodynamics (Pedlosky 1987; 

Dimnikov & Filatov 1990; Doljanski et al. 1990; Shakina 1990). Coupling among modes 

of different timescales occurs also in stratified, rigidly (without shear) rotating flows 

(Bartello 1995), but in that case the coupling is of nonlinear origin, while in our problem 

the mode coupling due to flow shear is already present in the linear regime. The content 

of the present chapter includes the description of the following three basic effects:  

(i)  Algebraic growth of wave perturbations for Ro < 1,  

(ii) Transient exponential/explosive growth of wave perturbations for Ro > 1,  

(iii) Transformation of vortical perturbations into wave ones at Ro ~ 1.  

None of these effects can be described/analyzed in the framework of the traditional 

spectral hydrodynamic stability theory.  
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2.1 Mathematical formalism 

 

     It is well known that (Pedlosky 1987) in the Boussinesq approximation the motion of 

a rotating stratified fluid on an f plane is governed by the system of equations: 

                                            
where v is the velocity vector with the components u, v, w along the axes x (zonal 

coordinate); y (azimuthal coordinate) and z (height from the earth’s surface) 

respectively, */ ρρσ g−= , ρ  is the deviation of density from the background value 

const=*ρ ,  */ ρp=Φ

*

, p is the deviation of pressure from the hydrostatic value that 

corresponds to ρ , gravitational acceleration, −g −f  Coriolis parameter (Gill 1982, 

Pedlosky 1987, LeBlond & Mysak 1978), Z –the unit vector along the z-axis;  

),( ∇v// ∂∂=dtd +t r -the total derivative operator. Consider Eq.(1) in the region of limited 

vertical extent  +∞<<∞− yx, , Hz ≤≤0  given 0=w  at the horizontal boundaries 0=z  

and Hz =  (there is no flow through the boundaries). From Eqs. (1) follows the 

conservation of potential vorticity (see Gill (1982) and Pedlosky (1987)): 

                                          
where Ω=rotv+fz – is the absolute curl of the velocity. In geophysical hydrodynamics 

instead of Eqs.(1) one often considers a simplified system replacing the equation of 

motion along the z-axis with the hydrostatic equation σ=∂Φ∂ z/ . The hydrostatic 

approximation is valid if the horizontal scale of perturbations is much larger than the 

vertical one. For hydrostatic systems the conservation of potential vorticity has the form 

(2) where Ω= )//,/,/( fyuxvzuzv +∂∂−∂∂∂∂∂−∂ . 

     Investigate the linear stability of the following exact solution 
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where , here the Brunt-Väisälä frequency is defined as 

. It is simply a frequency with which fluid particles 

make vertical small oscillations around equilibrium height. Solution (3) represents a 

zonal horizontal flow with a constant horizontal shear A, vertical stratification and 

potential vorticity .  Such a representation of real meteorological flows 

corresponds to the second linear term of the power expansion of background velocity 

field in the small parameter

zNz 2
* / =∂Φ∂

/)/ 0* ≡ ddzdρρ

0 (q =

0/( 0
2 >−= dzgN σ

2)NAf −

Vl yV ∂∂ /) 0/( 0 , where l – is the azimuthal length scale of the 

perturbation and - is the background flow. For simplicity we suppose that the mean 

flow has a constant Brunt-Väisälä frequency. Assuming v=V0+v`,

0V

σσσ ′+= 0 , Φ′+Φ=Φ 0  

in Eqs.(1) and considering hydrostatic approximation for the small deviations from (3) 

we get (primes are ommited): 

                            
where .  From Eqs. (4) we can derive the conservation law: yAxtDtD ∂∂+∂∂= /2//

                        
representing the linearized form of Eq.(2) and playing a central role in the further study.  

      Equations (4) admit separation of variables – seek solutions in the form of a series of 

eigenfunctions of the operator : 22 / dzd

                              
 

Such a procedure is well known in dynamic meteorology (cf. Gill 1982, Straub 2003). 

Substituting (6) into Eqs.(4) and excluding  nnw σ,  we arrive at the  following equations 

of a rotating shallow water type 
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where  nHNcn π/=  is the velocity of n-th vertical mode of internal waves. 

 

 

2.2 Dynamics of non-symmetric perturbations 

 
     Consider non-symmetric perturbations (when all perturbed quantities depend on the x 

coordinate) and, following the non-modal approach, introduce new co-moving 

coordinates: 

                                   
It is easy to verify that under this transformation Eqs.(7) become homogeneous with 

respect to the new coordinates x1, y1. So we can seek its solution in the following form: 

               
where k, l are the zonal and azimuthal wavenumbers respectively, Φ~,~,~ vu  are the 

amplitudes depending only on time. It is convenient to rewrite the main equations in the 

nondimensional variables ,ttA→ ),~,~()/~,/~( 00 vuvvvu → , Φ→Φ ~/ 0fvk where v0 is the 

characteristic scale of the velocity and A > 0 (as we will show later, A > 0 is the range of 

main peculiarities/novelties). These amplitudes then evolve according to: 
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where   is the Rossby number and is the nondimensional parameter 

equal to the square of the ratio of the perturbation scale to the radius of the Rossby 

deformation. 

fARo /=

tp )(

222 / kcfF n≡

kl /tktltlttktl ,)(,/)( ** ≡−=−=≡

*t

. Note that in the physical variables (x, 

y) the solution (9) describes a harmonic plane wave with a time-dependent amplitude and 

phase Θ = kx + l(t)y. As the azimuthal wavenumber l(t) is time-dependent, the lines of 

constant phase rotate around the z-axis and become parallel to the streamwise in the limit 

. The parameter  defines the initial orientation of the phase lines: at  the 

angle between the phase lines and the direction of the mean flow is obtuse, at 

∞→t 0* >t

* 0<t -- 

sharp. 

A remarkable feature of (10) is that it possesses the first integral 

                                                         

that corresponds to the conservation of potential vorticity (5). Using Eq. (11), system 

(10) is reduced to the second order inhomogeneous differential equation 

                                   
The other physical quantities Φ~,~v are expressed through  uq ~,~  and   dtud /~

                       
The perturbation energy density has the form  

                                                       
and its time derivative equals the Reynolds stress term  with the minus sign 

.  

vu~~

vudtEd ~~/~
−=

    It is possible to classify modes involved in Eq. (12) from the mathematical and 

physical standpoints separately. Mathematically the general solution of Eq. (12) may be 
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written as the sum of two parts: a general solution of the corresponding homogeneous 

equation (oscillatory, wave mode) and a particular solution of this inhomogeneous 

equation. It should be emphasized that the particular solution of the inhomogeneous 

equation is not uniquely determined: the sum of a particular solution of the 

inhomogeneous equation and any particular solution of the corresponding homogeneous 

equation (i.e. wave mode solution) is also a particular solution of the inhomogeneous 

equation, i.e. the particular solution may comprise any dose of the wave mode. 

     Physically Eq. (12) describes two different modes/types of perturbations: 

(1) wave mode )(~ wu ; that is oscillatory and is determined by a general solution of the 

corresponding homogeneous equation and has zero potential vorticity, 

(2) vortex mode )(~ vu ; that is aperiodic, originated from the equation inhomogeneity 

( qtp ~)(−

q

), and represents a nonoscillatory particular solution of the inhomogeneous 

equation. In the shearless limit this mode is independent of time and has zero divergence, 

but nonzero potential vorticity. Therefore, vortex/aperiodic mode is uniquely 

determined. From the above argument it follows that the correspondence between the 

aperiodic vortex mode and the particular solution of the inhomogeneous equation is quite 

unambiguous; the vortex mode is associated only with such a particular solution that 

does not contain any oscillatory part. The amplitude of the vortex mode is proportional 

to ~ and goes to zero when 0~ =q . We will see below that such a separation of modes is 

possible only far from the point . In the following we will keep to the physical 

standpoint of separation of perturbation modes.  

*t

     Thus, the general solution of Eqs.(12-14) can be expressed as a superposition of 

oscillatory/wave and aperiodic/vortex components and we write: 

                                    

                                  
In fact, the (modified) initial value problem is solved by Eqs. (12-14) (or equivalently by 

Eqs. (10)). The character of the dynamics depends on a mode of perturbation inserted 
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initially in Eqs. (10, 12-14): a pure wave mode (without admixes of aperiodic vortices) 

or a pure aperiodic vortex mode (without admixes of waves). 

     The performed classification of perturbations (into vortex and wave ones) depending 

on the value of the potential vorticity corresponds to an analogous classification of 

perturbations into stationary (geostrophic) and non-stationary (wave), accepted in the 

classical linear theory of geostrophic adaptation (Obukhov 1949; Blumen 1972; Gill 

1982). 

     From Eq. (13) it follows that one has to distinguish between two cases in the analysis 

of Eq. (12): at Ro < 1 ω2(t) is always positive, while at Ro > 1 it may change sign. This 

change results in the qualitative changes of the structure of the solution. 

     For purposes of further analysis let us evaluate the characteristic values of the 

parameters. For the Earth’s atmosphere in the middle latitudes 

( ) the deformation radius of the first baroclinic mode is kmHsNsf 10,10,10 1214 === −−−−

kmL atmR 5.318/1000. == π  and for oceans ( ) is kmHsN 5,10 13 == −− kmL oceanR 9.15/50. == π . 

Values of Ro depend on the structure of the flow and may vary substantially. For smooth 

atmospheric flows of synoptic scale L = 1000 km~ LR atm and characteristic velocity U = 

10 m s-1, horizontal shear equals a =U/L=10-5 s-1; consequently, Ro = 0.1. The Rossby 

number Ro is considerably higher in the areas of jet streams related to atmospheric 

fronts, where the characteristic velocity variation U = 30 m s-1 is achieved on a scale L = 

100 km (see Gill (1982) and Pedlosky (1987)). In this case A = 3�10-4 s-1 and Ro = 3. 

Similarly, for oceanic synoptic vortices with L = 50 km and U = 5 cm s-1, the horizontal 

shear equals A = 10-6 s-1 and consequently Ro = 10-2. Again, this value is considerably 

higher for intensive oceanic jet streams. Thus, the Rossby number of realistic 

meteorological flows may be either Ro<<1  or  Ro ~1. In the following we focus on such 

values. 
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2.2.1. Ro<<1 regime. WKB analysis 

 

     Here we study (Kalashnik et al. 2004) the dynamics of perturbations for the values of 

parameters (Ro<<1, F = O(1)) typical for the synoptic scale atmospheric and oceanic 

flows (Gill 1982; Pedlosky 1987). In this limit one can use WKB analysis and find an 
asymptotic solution of Eq. (12). In the first approximation the general solution of 

homogeneous equation (at 0~ =q ) has the form 

              
where 0φ  is the initial phase. It is clear that the value of the constant C defines the 

amplitude of the wave and the sign defines the direction of wave propagation. Below 

will be considered for simplicity the positive values of C and ω(t). In the first 

approximation the aperiodic particular solution of Eq. (12) has the form (Nayfeh 1982; 

Moiseev 1987): 

                                               
Note that adding to this particular solution any solution of the homogeneous equation 

one gets also particular solution. However, it is the only slow solution free from 

oscillations. Thus, accurate to O(Ro) for Φ~,~,~ vu  one can write: 

                            

                         

 (17)       
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Outline peculiarities of the wave and vortex components separately. The wave parts of 

the solutions (17) describe oscillations with an amplitude a(t) and phase Θ(t), for 

instance, )(cos)(~
~~

)( ttav vv
w θ=  where )()()( ~~ ttt vv αφθ += , )(/)()(~ tptFttg v ωα =  and 

)1)(~ FFtav += ω /()()()( 12 Cttpt + −ω . Simple analysis shows that  reaches a 

maximum at  and then decreases. Contrary to this, amplitudes  reach a 

minimum at  and then increase according to the square root law. The growth of the 

amplitudes results in the unlimited growth of the wave energy at asymptotically large 

times. The same is true for the time-dependent frequency ω(t) that grows linearly with 

time at : This peculiarity is due to the flow shear; in the shearless limit the wave 

)(~ tau

),(~ atav*tt =

*tt =

)(~ tΦ

∞→t
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perturbations represent ordinary internal gravitational waves. Examples of the 

numerically calculated time development of  at )()()( ~,~,~ www vu Φ 5,1,2.0,0~
* ==== tFRoq

yfux nnn

 are 

shown in Fig. 1. The numerical solutions are in perfect accord with the analytical ones. 

Draw attention that the vortical solutions (see vortex parts of (17) in the coordinate 

representation are reduced to the geostrophic relations fvn ∂Φ−∂=∂Φ∂= /,/ , i.e., 

the vortex components of the solutions (17) describe slowly varying geostrophic 

perturbations. It is not difficult to understand that the traditional quasigeostrophic 

approach involving filtration of fast wave motions (Pedlosky 1987, Dimnikov & Filatov 

1990, Doljanski et al. 1990, Shakina 1990) is not able to describe the flow instability 

associated with the linear growth of the wave perturbations.  

     Analyze the energy equation. As the solution contains rapidly oscillating components, 

main interest represents not energy itself, but its averaged value Ee ~~ =  over the fast 

oscillation period )(/2 tT φπ=  

                                                        

            

           
 

where  )(~ ve , as other vortex parts of (17), is determined by  q~ . This equation shows that 

the wave and vortex component energies are additive at Ro<<1. Besides, if , the 

aperiodic/vortex mode energy 

0* >t

)(~ ve  transiently grows for *tt <  achieving a maximum at 

 and monotonically decays for  . The oscillating/wave energy *tt = *tt > )(~ we  achieves a 

minimum at  and then grows linearly at large times. Combining these behaviours *tt =
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one can easily construct four different scenarios of the total energy time dynamics 

depending on the values of the parameters C; q~  and . *t

 

2.2.2 Ro ~ 1 regime. Numerical solution 

 
Here we present the Ro~1 case (Kalashnik et al. 2006). In this regime the adiabatic 

approximation is no longer valid during the whole evolution. Far from the point 

)(, ** ttt << , when 1)( >>tp  the WKB approximation holds, so one can explicitly 

construct the )()( ~,~ vw uu  solutions of Eq.(12) (Nayfeh 1982). For these times the wave 

mode rapidly oscillates and the vortex mode varies slowly and there is no coupling 

(energy exchange) between these two modes; they evolve independently. Perturbation is 

the sum of energies of these two modes. However, on approaching the point  the total 

energy can no longer be represented as a sum of energies because the timescales of the 

vortex and wave modes are comparable. As a result a mode transformation/conversion (a 

transfer of energy from one mode to another may take place. This process can easily be 

traced by numerically integrating Eqs.(11-15). 

*t

     First consider a pure wave perturbation ( 0~ =q ) with 1/* >>= klt  initially imposed on 

the basic flow. In Fig.2 we present the evolution of the corresponding perturbed 

quantities  and normalized wave energy Φ~,~,~ vu )(~ we  at F = 25 and Ro = 0.9 < 1. In the 

beginning the energy of the wave perturbation decreases.  Then in the vicinity of  some 

algebraic growth of the energy take place that is followed by a linear growth. For large 

values of F (for example, F= 100) and at Ro > 1 this algebraic growth acquires 

exponential nature and is more pronounced and substantial as it is shown in Fig.3. Such 

a behaviour represents mixed explosive-linear type of instability specific to shear flows. 

Qualitative analysis of the explosive behaviour of the wave mode is given later in this 

subsection. Another novelty at Ro ~ 1 is the emergence of oscillations from aperiodic 

perturbations, or physically, the generation of the wave mode by the vortex mode that is a 

consequence of the above mentioned mode coupling and ultimately of shear.  

*t
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the generation becomes noticeable at Ro = 0.4, but in this case (and also for smaller 

values) large (O(100)) transient growth of vortex energy dominates the dynamics (see 

Fig.4). This transient growth phenomenon is a direct consequence of the non-

orthogonality of shear flow operators and resembles that found in Reddy & Henningson 

(1993) or Farrell & Ioannou (2000) for bounded flows. It is in apparent conflict with the 

result of modal theory according to which flow of the type considered here (Couette 

flow) is stable for all Reynolds numbers and at all wavelength. But, as was discussed in 

the Introduction, there is actually no conflict; the result of modal theory applies for 

asymptotically large times, while transient growth is essentially a finite time interval 

phenomenon. Despite asymptotic stability there may be self-sustained turbulence  
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provoked and fed just by this transient growth (bypass scenario) (Reshotko 2002, 

Chapman 2002, Bagget et al. 1995, Gebhardt & Grossman 1994, Grossman 2000, 

Chagelishvili et al. 1996a, Rempfer 2003). At Ro > 0.8 wave generation becomes a main 

feature in the shear flow dynamics (see Fig.5). Below we describe this new phenomenon. 

     Consider now the case when a pure vortex perturbation ( 0~ ≠q ) is imposed initially on 

the mean flow. This perturbation is cleared from wave admixes at 0=t  using a 

numerical iterative method (Moiseev 1987, Nayfeh 1982, Bodo et al. 2005 or subsection 

3.2.3). The evolution of the perturbed quantities Φ~,~,~ vu  and its normalized energy )0(~/~ EE  

are shown in Fig.5. Evolving in the shear flow the imposed vortex mode gains energy 

from the mean flow and grows, but retains its aperiodic nature till . In the vicinity of 

 oscillations arise, i.e., we observe the appearance of waves. Thus, it turns out that the  

*tt <

*t
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linear dynamics of the vortex mode perturbation is followed by the wave generation. In 

the vicinity of t* timescales of the vortex and wave modes are comparable and the 

perturbations are not separable/distinguishable, we have some mix of aperiodic and 

oscillatory modes. At later times ( ) the characteristic timescale of the wave mode 

becomes much shorter than that of the vortex mode and the modes are well 

distinguishable. The nature of the wave generation phenomenon (also called conversion 

of vortices into waves) is described in detail for the simplest shear flow in Chagelishvili 

et al. (1997a). Thus, vortex mode perturbations are important in that they are able to 

generate waves which effectively extract energy from the mean flow and grow 

asymptotically linearly and may render flow linearly unstable. However, their nonlinear  

*tt >>

 27



     
 

development should be rigorously analyzed in order to find out whether turbulence 

eventually sets in or not. This can be done through complex numerical simulations. 

     Before proceeding to the qualitative analysis we would like to remind the reader of 

symmetric instability, since it helps to gain a better insight into the explosive behaviour 

of the wave mode. As it is well known, this type of instability may occur when 

perturbations do not depend on the streamwise coordinate x. For them 0/ =∂∂ x , 

 and system (7) is reduced to a single equation for  tDtD ∂∂= // nv
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Looking for a solution of this equation in the form )cos()exp( lytvn γ= , for the growth rate 

one gets  

                                                      
From this expression we deduce that the flow is symmetrically stable at Ro < 1 and 

unstable at Ro > 1 for wavenumbers in the range 

                                                             
One can rewrite the latter condition in the form 1/2 −> RoLL Rπ , where  is lL /2π=  the 

wavelength and fcL nR /=  the baroclinic radius of the Rossby deformation for n-th 

mode. According to the above expression symmetric instability carries a long 

wavelength character with the largest growth rate at l = 0. One should draw attention that 

the condition Ro > 1 may be fulfilled for positive (anticyclonic) values of the shear 

parameter A (for such flows vorticity  rotv=-Az is antiparallel to the planetary vorticity 

2fz). Thus, cyclonic shear flows (A < 0) are always symmetrically stable. 

      We now turn to the qualitative analysis of the explosive growth. Note that when Ro 

>1, ω2(t) may change its sign (if Ro < 1, ω2(t) is always positive and we have not any 

explosive growth, Fig.2). From Eq. (13) it follows that change of sign occurs at Ro 

>1+1/F, Taking into account F = (f/cnk)2, this inequality becomes k2<(Ro-1)f2/cn
2 The 

last condition formally coincides with the condition of symmetric instability and is 

satisfied for long waves in the zonal (streamwise) direction. For the further analysis 

rewrite Eq. (13) as 

                                                   
where formally 1)1(*2,1 −−= RoFtt m . However, in the considered case of  Ro > 1 + 1/F 

and F>>1 it reduces to )1(*2,1 −= RoFtt m  . The homogeneous part of Eq. (12) has the 

form 
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The last equation is a classic example of equation with turning points, i.e., points at 

which coefficient of the second term changes sign. This change of sign is reflected in the 

alternation of solution types (from oscillatory to exponential or vice versa). If 0 < t1 < t2 

there are two turning points. In the interval (0, t1) the solution is oscillatory, in the 

interval (t1, t2) has an exponential (explosive) behaviour and at t > t2 is oscillatory again. 

If t1 < 0 < t2 in the integration interval there is only one turning point t2 crossing which 

the exponential behaviour (at 0 < t < t2) changes into oscillatory (at t > t2). 

    The existence of the turning points in the non-symmetric problem may readily be 

explained in terms of the symmetric instability. Note that the condition of symmetric 

instability can be rewritten in the form: -lcr < l < lcr; ncr cRofl /1−= . As it was stressed 

earlier, in the physical variables (x,y) solution (9) corresponds to perturbations with a 

time-dependent meridional wavenumber: l(t) = l-kt: If l(0) = l > lcr, then, as it is clearly 

seen, the wavenumber l(t) “enters” the symmetric instability interval (-lcr, lcr) at the 

moment t1 and leaves it at t2. The values of t1 and t2 are found from the relation l(t) =lcr 

and have the form t2,1 = (l± lcr)/k. These moments are just the turning points t1, t2. If 0 < 

l(0) < lcr then at the initial moment of time the wavenumber l(t) is already within the 

interval (-lcr, lcr) and leaves it in the course of time; here we have only one turning point 

t2. An example of   time development in the case of two turning points is 

presented in Fig.3 (turning points in this figure are t1≈15.5 and t2≈24.5). Stress that the 

energy increases linearly for later times t>t2. The above described behaviour represents 

mixed exponential-algebraic type of hydrodynamic instability. This kind of instability 

may be associated with the rather complicated dynamics: t1 and t2 are defined by a 

wavenumber l. I.e., the time interval (t1, t2) of explosive behaviour is different for 

different l. Therefore, for waves with different l, the explosive stage sets in at different 

moments of time. Consequently, the dynamics of some packet of internal waves should 

represent an alternation of explosion processes. 

)()()( ~,~,~ www vu Φ
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2.3 Influence of viscosity 

 

   Viscosity can be easily incorporated in the main dynamical equations. This is 

accomplished by adding the terms nnn vu ΔΦΔΔ μμμ ,,  to the rhs of Eqs. (7). Hereμ   is the 

coefficient of horizontal viscosity and Δ  is the two dimensional Laplas operator. 

Carrying out the operations (8, 9), for the nondimensional amplitudes instead of (10) we 

get the system 

                                    
 

where E =  is the Eckman number. Making a change of variables  fk /2μ

                            
we get the previous system (10). Thus, the influence of the horizontal viscosity is 

reduced to the multiplication of the physical quantities by the corresponding decaying 

exponent. It follows that, the viscosity diminishing the amplitudes, does not affect the 

instant frequency of time oscillations (the latter tends to infinity at large times). 

      It is interesting to follow how the viscosity damps the wave energy at Ro << 1. In 

this case the wave energy density takes the form 

                             
Consider the limit E/Ro =δ << 1: From this expression it is easy to show, that the energy 

decreases till a moment t(1) = t* + (1 + F)δ/2  and then increases till t(2) = t* + (2δ)-1/3=3. 

After that it begins to diminish fully under the action of viscosity. As t(2) → ∞ at δ → 0, 

the interval of the algebraic growth is too large at small viscosity. 
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2.3 Bounded flows 

 
     In this section we consider a theorem (Kalashnik 2004, private communication), a 

sufficient criterion, for the stability of a geostrophic zonal flow when we can not ignore 

channel walls bounding the flow. This is the case when the azimuthal scale of 

perturbations is comparable to the channel width. For perturbations with characteristic 

scales much smaller than the channel dimensions (for example,  some localized packet of 

waves) we can use results obtained in the preceding subsections, however, as 

perturbation scale increases channel walls come into play and begin to influence the 

perturbation dynamics. The theorem is valid only for wave mode perturbations although 

this fact in no way detracts from its importance since, as we have seen, the main part in 

the asymptotic instability are played by wave-type perturbations. It should also be noted 

that just such perturbations are usually considered in the modal treatment (Narayan et al. 

1987). As for large scale vortex mode perturbations their dynamics/evolution should be 

analyzed via numerical calculations.  

     Let us consider a channel bounding the flow in the azimuthal y direction with two 

rigid walls (Fig. 6). 

 y 

 
H 

 

 

 

 

 
                                                                  Fig.6 

 

Recall the main equations (7) describing the linear evolution of wave mode perturbations 

(index n of the vertical mode is omitted) 
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where the last equation is the condition of zero potential vorticity. The channel width is 

H. The azimuthal component of the velocity v satisfies the boundary conditions: v=0 at 

y=0, H. This condition is analogous to the condition along the z-axis and states that there 

is no flow through the rigid walls. 

       Let us now derive a Lagrangian density that will give us first three equations of (18) 

(Narayan et al. 1987). First introduce the displacement vector )),(),,(( trtr yx
rrr

ξξξ  for fluid 

elements.  This vector characterizes the perturbed motion of each fluid element and is a 

function of time and element’s Lagrangian position vector rr , i.e., the place to which a 

given fluid element would have been carried at a given time by the unperturbed flow. It 

is easy to show that the velocity components and pressure are expressed via the 

displacement vector in the following way 

                             y
x A

Dt
D

tru ξ
ξ

−=),(r ,     
Dt

D
trv yξ=),(r ,     ξ

rr divctr 2),( −=Φ ,             (19) 

where as before xAytDtD ∂∂+∂∂= /// . The third equation is the solution of the 

corresponding third equation of (18). As it is clear, the introduction of the displacement 

vector has simplified matters; all perturbed quantities are expressed through this vector.      

       As it is well known the Lagrangian of a system is the difference between its kinetic 

and potential energies. If in addition Coriolis force is present then we will have 

corresponding terms in the Lagrangian. The situation is similar when making up the 

Lagrangian for continuous medium. Take kinetic, potential energy densities and terms 

corresponding to Coriolis force and write the following Lagrangian  
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where the integration interval for x is ),( +∞−∞  and for y is (0,H). It is quite 

straightforward to verify that this Lagrangian after variation with respect to ),( trr
r
ξ  gives 
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indeed the first two equations of (18). As for the third equation, it is already implied in 

the third equation of (19). Actually we have obtained a set of two equations for two 

independent variables yx ξξ , . Since the background flow is independent of zonal x 

coordinate we can assume that the perturbed quantities are periodic in x coordinate with 

the period k/2π , where k is, as before, the zonal wavenumber. 

     As we can see, our Lagrangian does not depend explicitly on time t and on zonal 

coordinate x. Consequently, we have two conserved quantities corresponding to 

translations along these two coordinates (Noether’s theorem). The first one is the 

conservation of wave action that we do not use in our problem and the second one 

represents the conservation of wave energy. To see this more clearly let us first write the 

energy conservation in terms of the Lagrangian density             
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where time derivative involved in this equation is a total not partial derivative (the latter 

is zero). This equation follows from translation invariance with respect to time. The 

summation convention for repeated indices i=x,y has been used. On averaging this 

expression over the period k/π  along the x-axis, integrating along the y-axis from y=0 

to y=H, using the boundary condition for v  and taking into account the condition of zero 

potential vorticity, we arrive after some algebra at the following expression for the 

conservation of energy 
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here   brackets indicate averaging over x-coordinate. It follows that if cAH <  then L is 

always positive definite and all quantities must remain bounded at all times. This implies 

that in this case the flow is stable to wave-type perturbations. 
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Summary 

 

        In the present chapter we have investigated the linear dynamics of non-symmetric 

perturbations imposed on geostrophic flows with a constant horizontal shear by means of 

the non-modal approach combining numerical and qualitative study. It has been shown 

that the important feature of non-symmetric perturbations is the conservation of potential 

vorticity. Depending on the value of the potential vorticity the perturbations are 

classified as wave/oscillatory perturbations ( 0~ =q ) and vortex/aperiodic perturbations 

( 0~ ≠q ).  

        The energy of non-symmetric wave perturbations at large times increases linearly 

(algebraic instability). If Ro < 1 there takes place only an algebraic growth of non-

symmetric shear internal waves. At Ro > 1 a time interval of the linear growth is 

preceded by an interval of exponential (explosive) growth if  (i.e., if initially the 

angle between the constant phase lines of the perturbation and the streamwise direction 

is obtuse). This explosive-linear instability is specific to zonal geostrophic shear flows 

and essential for self-sustained turbulence. 

0* >t

        As for vortex perturbations, if and Ro ~ 1, they initially gain the basic flow 

energy and then are converted into shear internal waves. We can say that in shear flows 

waves can be excited at the expense of vortex perturbation energy, which is impossible 

in the shearless limit. By contrast, For Ro<<1 wave and vortex modes evolve 

independently; there is no coupling. This kind of wave generation by vortices is also 

distinctive for smooth shear flows (Chagelishvili et al. 1997a) 

0* >t

    We have also analyzed viscosity effects on the perturbation dynamics. It has turned 

out that viscosity diminishes only perturbation amplitudes for large times. 

    We have also proved the theorem concerning the stability of shear bounded flows. In 

particular, we have obtained that when cAH <  the flow is stable to wave type 

perturbations. This criterion facilitates study in that saves us from making spectral 

expansion in time and finding unstable eigenvalues. 
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      One of the main conclusions of this chapter is that in both cases the shear flow 

instability is related to the growth of fast wave perturbations filtered and, so ignored, in 

traditional quasigeostrophic models of geophysical hydrodynamics, while the later plays 

an important role in flow instability 
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Chapter 3 

 

 

 

 

 

 

 

 

 

 

 

Linear dynamics of perturbations in astrophysical discs 

 
    The importance of spiral density waves in the study of the spiral structure of galaxies 

has long been recognized. There has been a great deal of research on the subject that 

advanced considerably the understanding of galaxies spiral nature. The principal tools of 

investigation are modal approach (spectral expansion in time) and numerical analysis for 

finding eigenvalues and eigenfunctions. These two methods complement each other to 

produce a consistent dynamical picture of the processes underling the spiral structure. 
The same tools are widely employed in the stability study of many astrophysical systems 

as well. By means of modal approach in the 1970s the basic mechanism of amplification 

for tightly wound density waves-so called WASER mechanism-was formulated (Mark 

1976, 1977, see also Bertin et al. 1989, Bertin & Lin 1996), according to which a mode 

is amplified by the transfer of angular momentum outwards by trailing waves. The 

results were tested in many numerical calculations and proved to be in a good agreement 

with the approximate phase integral relation derived by Mark (1977) and Lau et al. 

(1976) (see e.g. Berin & Lau 1978, Bertin et al. 1989 and references therein). Generally, 

there are two basic forms of this WASER process (Bertin et al. 1989, Bertin & Lin 

1996), the first one that describes the over-refection at corotation of a radially outward 

propagating long trailing wave into a radially inward propagating short trailing wave is 

applicable to normal tightly wound spirals, and the second one, often referred to as 
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"swing amplification", is for bar type (open spirals) modes and occurs when a leading 

open wave is converted into a higher amplitude trailing open wave (Toomre 1981, see 

also Binney & Tremaine 1987). The swing mechanism is known to give considerably 

larger amplification factors for over-reflected waves than those in the first case, which 

gives only a moderate amplification (typically 1.4 in its most basic form). The basic 

reason for large growth factors is the conspiracy between three agents: differential 

rotation, epicyclic motion and self-gravity (Toomre 1981, Balbus 1988). Apart from bar 

instabilities Swing amplification is also invoked in the explanation for the formation of 

self-gravitating cloud complexes (Elmegreen 1996 and references therein) and flocculent 

spirals (Elmegreen 2003b) 
    Swing amplification is usually discussed in the shearing sheet model (Goldreich & 

Lynden-Bell 1965), though different authors treat it differently. Some of them stay in the 

modal formalism (cf. Drury 1980, Pellat et al. 1990, Tagger et al. 1989, Fuchs 2001) and 

study the properties of steady waves in co-moving frame, while others (Julian & Toomre 

1966, Goldreich & Tremaine 1978, Nakagawa & Sekiya 1992 (NS)) introduce co-

moving coordinates and examine the temporal evolution of spatial Fourier harmonics 

(SFH) of perturbations without any spectral expansion in time, or use so-called non-

modal approach advantages of which was discussed in the Introduction  We note once 

more that modal approach focuses on the stability of individual normal modes and does 

not address the question of time evolution of an arbitrary perturbation imposed initially 

on the unperturbed flow. Just this question is most interesting from the dynamical point 

of view and can be analyzed with the help of non-modal approach.   

     In this chapter we apply the non-modal analysis combined with numerical 

calculations to the study of the dynamics of spiral density waves in gaseous discs in the 

shearing sheet approximation. Although, the mass fraction of gas in spiral galaxies is 

small the approach of gaseous disc is often fruitful because the hydrodynamic behavior 

and stellar dynamic behaviuor of galaxies are very similar. Besides, such gasodynamical 

treatment allows us to examine more closely the properties of instabilities that dominate 
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the gas discs and their influence on the stellar component in creating spiral patterns (Jog 

1992).  

     Many investigators studying the development of perturbations numerically take white 

noise (flat power spectrum) initial distribution for perturbed quantities (cf. Gammie 

2001, Wada et al. 2002). Instead here we concentrate on the dynamical properties of 

localized density wave packets, but first we investigate the properties of individual 

sheared waves, namely their amplification and reflection, because these are essential for 

understanding the specific behaviour of localized packets. This issue was first addressed 

by Toomre (1969). He showed that any localized packet of tightly wound waves winds 

up in approximately 109 years. However, he used modal approach and WKB analysis 

based on the work by Lin & Shu (1966). Goldreich and Tremaine (1978) used non-

modal approach but packets they considered are not localized and are obtained by adding 

different waves with equal weights/amplitudes. That is why their final result is 

independent of time and describes steady wave trains. In addition their analysis is based 

on certain approximations. Here we use non-modal approach that allows us to follow all 

stages of packet evolution both in real and in wavenumber planes and to proceed without 

invoking Lindblad and corotation resonances and making approximations of Goldreich 

and Tremaine. Because the packet is localized it exhibits many interesting properties and 

the shearing sheet model is the best opportunity to demonstrate clearly the regimes of 

amplification and the properties of packet propagation in real plane by transforming to 

Fourier plane. Though our study is carried out in the shearing sheet, the properties of the 

localized packets obtained here help to grasp the specific features of the packet evolution 

in global disc simulations of Toomre and Zang (see Toomre (1981) or Binney & 

Tremaine (1987), Ch.6) (namely, the splitting of a leading wave packet into two trailing 

ones). These simulations were performed with the aim of examining the swing 

amplification of density wave packets. Results appeared approximately similar to those 

given by the shearing sheet mode. This encourages us to consider wave packets in the 

shearing sheet. Analogous investigation, but in a different context, was carried out by 

Bodo et al. (2001). They considered the spatial aspect of MHD wave transformations in 
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astrophysical flows, in particular, flows with uniform velocity shear contained in an 

external regular magnetic field parallel to the mean velocity. 

     Another notable phenomenon considered in this chapter is the generation of spiral 

density waves by vortical perturbations analogous to that found in atmospheric and 

oceanic flows, but now self-gravity of medium influence the dynamics. This 

phenomenon has been investigated recently by Bodo et al. (2005) and Tevzadze (2006) 

in the non-self-gravity limit. In general vortical perturbations play an important role in 

disc dynamics. First of all, they can be considered as main sources and sustainers of 

turbulence in accretion discs, because of their transient amplification (Chagelishvili et al. 

2003, Yecko 2004, Umurhan 2004, Afshordi et al. 2005). Secondly, they serve as 

generators of waves in general and spiral density waves in particular in shear flows.  In 

previous works, the role of this vortex mode has been often underestimated (cf. Ryu & 

Goodman 1992, Goodman & Balbus 2001), or it has been confused with fictitious 

displacements that arise in Lagragian formalism (Friedman & Schutz 1978).  

 

 

3.1 Physical model and equations 

 

   We study the linear dynamics of 2D small scale perturbations (i.e. with characteristic 

length scales in radial and azimuthal directions much less than the radial characteristic 
scale of the background/disk flow) to a differentially rotating axisymmetric razor-thin 

gaseous disc (Mamatsashvili 2006) in the shearing sheet approximation (e.g., Goldreich 

& Lynden-Bell 1965; Goldreich & Tremaine 1978; Nakagawa & Sekiya 1992). In this 

case the dynamical equations are written in the local co-moving Cartesian frame (x, y): 

                          
where ),( φr  are standard cylindrical coordinates and Ω0 is the local rotation angular 

velocity of the co-moving coordinate frame at r = r0. Because of the small scale 

assumption made above, we can consider the expansion 
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where 

                                                    
A parameter characterizes the mean velocity shear in the local frame rotating with 

angular velocity Ω0. The standard Oort constant is B = Ω0+ A. The main assumption of 

the shearing sheet approximation is the neglect of the basic flow vorticity gradient, the 

only gradient being considered is differential rotation. The simplifications made above 

help to clarify the underlying physical processes operating in the disc. Since the forms of 

continuity and Euler equations in the shearing sheet are well known (Goldreich & 

Lynden-Bell 1965, Goldreich & Tremaine 1978), we give here only their linearized 

version 

 

                                       
 

where u, v, p and σ are the perturbations of radial and azimuthal velocities, pressure and 

surface density respectively, ψ is the gravitational potential due to the surface density 

perturbation. As usual, the unperturbed surface density Σ0 is assumed to be independent 

of coordinates over a particular patch of the disc we consider. The set of linear 

perturbation equations are completed by Poisson's equation 

                                         
and by the relation between pressure and surface density perturbations 
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where cs is the sound speed in the gas. 

       Following the standard method of nonmodal analysis (cf. Goldreich & Lynden-Bell 

1965; Goldreich & Tremaine 1978) we introduce the spatial Fourier harmonics (SFH) of 

perturbations with time-dependent phases 

                

                         (5)       

where F (u, v, p, σ, ψ). The streamwise/azimuthal wavenumber ky remains constant and 

the streamcross/radial wavenumber kx(t) changes with time at a constant rate, its initial 

value at t = 0 is kx. In the linear approximation SFH \drifts" in k-plane (wavenumber 

plane) along the kx-axis. The effect of this change is that the lines of constant phase 

(wave crests) are rotated by the basic flow. 

      Substitution of Eqs.(5) into Eqs. (1-4) yields the system of ordinary differential 

equations that govern the linear dynamics of SFH of perturbations in the described flow: 

                                    

                                          
 

where  . The last equation follows from Poisson's equation and is 

straightforward to obtain (Goldreich & Tremaine 1978, Nakagawa & Sekiya 1990). 

Introducing 

2/122 ))(()( yx ktktk +=

0/)()(ˆ Σ≡ tit σσ  and )()( tit ψφ ≡ , from Eqs.(6-9) one gets the final set of 

equations with real coefficient 
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One can readily show that this system possesses an important time invariant 

                                         
which follows (for SFH of perturbations) from the conservation of potential vorticity. 

This time invariant I, in turn, indicates the existence of the vortex/aperiodic mode in the 

perturbation spectrum. The properties of the vortex mode are considered later in 

subsection 3.2.3. So, now we set I = 0, which corresponds to the case of spiral density 

waves. 

     We define the spectral density of total energy of perturbations in k-plane as 

                                 
where Ek(k,t); Ep(k,t) and Eg(k,t) correspond to the kinetic, potential and gravitational 

energies of SFH respectively. Note that the total spectral density of the energy would be 

conserved in the shearless limit, i.e., would not be exchange of energy between 

perturbations and background flow; its variation is entirely due to shear. 

     The numerical study of SFH of density wave dynamics is based on Eqs. (10-13). 

However, for the fundamental comprehension of the linear dynamics of reflection of 

spiral density waves it is advisable to rewrite them in another form. from Eqs. (10-14) 

one can derive the following second order differential equation for φ(t) (see: Goldreich 

& Tremaine 1978) 
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where κ is the epicyclic frequency, κ2 = 4BΩ0. This expression in the shearless limit 

resembles the dispersion relation for tightly wound waves in a fluid model with pressure 

(Lin & Shu 1968). Describe each term contained in this equation. The first term 

characterizes the frequency of epicyclic oscillations of fluid particles in the unperturbed 

gravitational field of the disc, the second term corresponds to self-gravity in the disc (we 

assume that there is no other external gravitational field), the third term is due to 

pressure (compressibility) of the gas, the forth and fifth terms, which distinguish this 

expression from the well known dispersion relation for tightly wound waves, are new 

and represent the effects of the basic flow shear. Each of these terms dominates in 

various areas of k-plane: the pressure and self-gravity terms are appreciable at large 

wavenumbers, the epicyclic term is independent of wavenumber and the shear term 

operates on small radial wavenumbers yx ktk ≤)( . An additional shear effect is also 

present in the wavenumber k(t); due to this the frequency ω is dime-dependent (through 

kx(t)) and, as we will show later, interaction between different perturbation modes 

(vortex and wave) is possible. The epicyclic and pressure terms have a stabilizing 

influence, while the gravitational term causes instability (Jeans instability). The 

contribution of the shear to the local stability is discussed below. 

         We express u(t), v(t) and )(ˆ tσ  in terms of φ(t) and its time derivative 
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For subsequent analysis it is convenient to introduce dimensionless quantities: 

,τκ →t yys Kkc =κ/ , ( κ/sc

Q/1

 is of the order of disc thickness),   

 

,ˆ/0 Ω=Ω κ ,ˆ/ AA =κ

, cG s/0
ˆ/ BB =κ =Σ κπ , ,ˆ/ ucu s = vcv s ˆ/ = , ,  E(k,t)/Σ0cs

2=E(K,τ). 

Here Q is Toomre's parameter. For definiteness in the following we take a Keplerian 

rotation law. In this case , though our analysis can be easily 

generalized to include flat rotation curves (Sofue et al. 1999) seen over the major portion 

of discs of most spiral galaxies. 

φφ ˆ/ 2 =sc

25.0

,ˆ/ AA =κ

ˆ,75.0− Bˆ,1ˆ
0 ==Ω A =

     Then Eq.(24) is rewritten as  

                             
when ω2 > 0 the solution of this equation is oscillatory and we have stability, while for  

ω2 < 0 the solution is exponentially growing and we have instability (swing 

amplification). In the shearless limit the stability or instability of the solution does not 

change with time, the flow is either stable or unstable for given values of parameters, but 

in the presence of shear stable regions in K-plane alternate with unstable regions due to 

the wavenumber drift. To see this more clearly and understand the role of shear in the 

flow stability we plot in fig.11 stable and unstable regions in K-plane for A = 0 and A ≠ 0 

for various values of Q. In the case Q < 1 instability in the shearless flow occurs only for 

wavenumbers with components Kx, Ky located between two circles with radii 

1/1/1 2
2,1 −±= QQK centered at the origin K = 0 in K-plane. This torus widens with 

decreasing Q, i.e., the influence of self-gravity increases. The same situation with shear 

is more interesting; shear deforms the inner and outer circles. As a result this torus is 

transformed into  
1 all figures in this chapter are numbered as in Ch.2 
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butterfly-like figure. In the case of  there is no unstable region in the shearless flow. 

The flow is locally stable for all wavenumbers (ω2 everywhere in K-plane). Contrary to 

this situation shear leads to the broad unstable regions. Compared with the Q<1 case, 

now the role of shear is important, it makes the flow locally unstable. Therefore, discs 

locally stable with respect to axisymmetric perturbations can be locally unstable to 

nonaxisymmetric perturbations owing to shear. This is a simple derivation of an old and 

general result confirmed in many numerical simulations of star or fluid discs (cf. Toomre 

1981, Sellwood & Carlberg 1984) and is omitted in the Lin-Shu dispersion relation 

where for  there is always stability to all kinds of perturbations, either axisymmetric 

1≥Q

1≥Q

 46



or nonaxisymmetric. Thus in sheared flows together with Jeans instability there exists 

also shear induced instability. The interesting fact is that though instability for  is 

caused by shear it diminishes when Q increases (ω2 < 0 region shrinks). We would like 

to note that this instability is of transient nature in contrast to modal one, which takes 

place for t→ ∞. 

1≥Q

 

 

 

3.2  SFH dynamics 

 
3.2.1 Numerical integration 
 
      Equations (10)-(13) together with appropriate initial values of the perturbed 

quantities preserving zero potential vorticity pose an initial value problem describing the 

dynamics of SFH of density waves. We solve them numerically for different values of Q 

and Ky. A somewhat similar integration was carried out also by Goldreich and Lynden-

Bell (1965), but they did not consider different regimes. We wish to perform these 

calculations in the context of our identification of stable and unstable regions in K-plane 

(Fig.1). This picture allows us to see clearly in what regions we have either 

exponential/transient growth (swing amplification) or oscillations of a solution. The 

numerical results are summarized in Fig.2 where we plot the evolution of the normalized 

energy E(t)/E(0);E(t) = Ek(k, t) + Ep(k, t). 
      Let us begin with the case Q = 1. Consider three different values of the azimuthal 

wavenumber Ky = 0.03, Ky = 0.3, Ky = 3 (in all cases below Kx < 0, i.e. initially wave 

crests have a leading orientation). First of all, we note once more that all large growths in 

this case are due to shear and not to self-gravity. For Ky = 0.03 drifting wavenumber 

Kx(τ), starting from the initial value Kx, crosses two unstable regions and one relatively 

large intermediate stable region. The corresponding time development of E/E(0) is  
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shown in Fig.2. Until Kx(τ) reaches the first unstable region energy oscillates without 

increasing its mean value (over the period of oscillations). When it enters the first 

unstable region the solution turns from an oscillatory into exponential type and energy 

increases monotonically. This exponential/transient growth (swing amplification) lasts 

while Kx(τ) crosses this unstable region. Then it moves to the intermediate stable region 

and the solution reverts to an oscillatory type, consequently the energy oscillates again; 
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its mean value grows little. After that there follows again the second unstable region 

where energy as well as other quantities undergo exponential growth. However, because 

of the narrowness of both unstable regions this exponential growth does not achieve 

considerable value as it does for Ky = 0.3. In the end Kx(τ) gets back in the stable region 

and never leaves it. Here the solution is oscillatory again and energy grows 

asymptotically linearly (algebraic instability). Of course, this linear growth as well as the 

exponential growth is at the expense of the basic flow. Differential rotation helps 

perturbations to extract energy from the mean flow. Thus, exponential growth is 

followed by asymptotically linear growth of the perturbation energy. This fact is 

overlooked in the modal treatment of density waves.  

    The case Ky = 0.3 is qualitatively similar to the previous one. Now the unstable 

regions crossed by the time dependent radial wavenumber are broader and the minimum 

value of ω2 is smaller than that for Ky = 0.03 and, in addition, the intermediate stable 

region is narrower (Fig.1). Due to this the time needed for the wavenumber to traverse 

the intermediate stable region is comparable to the oscillation period and as a 

consequence intermediate oscillations in the solution and, therefore, the oscillations of 

the energy between two exponential amplifications as it has been in the previous case, 

are not noticeable, but growth magnitudes for both energy and other quantities are 

substantially larger. For this order O(0.1) of azimuthal wavenumbers the unstable 

regions are largest (Fig.1) and waves are amplified most effectively. As before, the 

energy grows asymptotically linearly for τ→∞. We will further show that the reflection 

and transmission of waves are largest for such values of Ky.  

      In the case of Ky = 3 the wavenumber drifts above the unstable regions. The solution 

is oscillatory at all times and the energy varies smoothly with small oscillations. In the 

beginning it decreases and then increases approximately linearly without undergoing 

exponential amplification.  

      For Q < 1 (in Fig.2 we show the evolution for Q = 0.8) we have qualitatively a 

similar situation, but growth factors in the two unstable regions are significantly larger 

than that for Q = 1 (in the Fig.2 for Ky = 0.03 and Ky = 0.3). There are several aspects 
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that favor such growth: smaller minimum values of ω2 than that for Q≥1 (for the same 

values of Ky) in the unstable regions and the relatively large breadth of the two unstable 

regions caused by the combined action of shear and self-gravity and, as a result, the large 

amount of the time required for Kx(τ) to traverse these two unstable regions due to small 

Ky. The case Ky = 3 is entirely similar to the corresponding one for Q = 1, now there is 

no unstable region and the energy evolves without exponential growth.  

      The situation with Q > 1 (in Fig.2 we show the evolution for Q = 1.5) differs from 

the above considered cases. The two unstable regions traversed by the time-dependent 

radial wavenumber are small compared with the above cases and become smaller and 

smaller with increasing Q. For Ky = 0.03 the two unstable regions are very narrow; they 

shrink to the point (Kx=0,Ky=0) with decreasing Ky, consequently the energy evolves 

without amplification. For Ky = 0.3 the drifting radial wavenumber crosses two unstable 

regions which are narrower than for Q = 1, and as a result exponential amplification is 

not strong, only of order 10. The case Ky = 3, as before, is identical to the one for Q = 1.  

     We would like to note that the very large growth factors for Q < 1 obtained in our 

numerical calculations are, of course, unrealistic in a real system because nonlinear 

effects will eventually take over. These were examined in detail by Kim & Ostriker 

(2001) (see their purely hydrodynamical case). Besides, such values of Q are not often 

realized. For example, in the solar neighborhood Q lies probably between 1 and 2 (Jog & 

Solomon 1984). So below we deal only with the case Q=1. Nevertheless, they 

emphasize the importance of transient amplification of perturbations that is a direct 

result of the non-normality of the operators governing perturbation dynamics in shear 

flows as mentioned in the Introduction. Transient amplification of waves occurs also for 

Q > 1, but is not as powerful; however in this case vortical perturbations may display 

larger transient growth factors.  Studies in laboratory shear flows showed that transient 

amplification may sometimes achieve values as large as O(1010) (Reddy, Shmidt and 

Henningson 1992). The modal treatment can predict the stability only in asymptotic for 

large times, but unable to account for transient phenomena that are common to shear 

flows.  
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3.2.2  Reflection and transmission  
 

   Now we go on to examine the reflection and transmission of spiral waves. For this 

purpose it is convenient to take the azimuthal wavenumber Ky to be positive without loss 

of generality (we can do that freely because our basic equation (24) is invariant under 

transformation Ky→-Ky and therefore the reflection coefficient is independent of the sign 

of Ky and to redefine the origin of time as (henceforth hats will be omitted) 

yx AKK 2/−→ττ  (in this subsection only). Now ττ yx AKK 2)( −=  and, since A < 0, the 

sign of Kx(τ) is the same as that of τ.  For ∞→τ , i.e. when the wavenumber Kx(τ) is far 

from the vicinity of Kx = 0, the adiabatic condition )(/ 2 τωτω <<dd  is met, which means 

that for large τ  we can use the WKB approximation to construct the solutions of  

Eq.(24) (NS). Generally, solution at −∞→τ  is a superposition of waves with the 

different signs of frequency that propagate in opposite directions. We choose the 

positive-frequency solution as the incident wave. For simplicity we set the amplitude to 

unity: 

                   

                         
 

where ω is the positive root of the expression in Eq.(24). To avoid confusion we note 

that the wave is "incident" in time not in space as it is in quantum mechanical problems 

or in the modal theory of density waves where an incident wave is over-reflected at 

corotation resonance (Mark 1976, Bertin et al. 1989). In this case all three waves 

incident wave itself and the over-reflected and (over)-transmitted waves are present 

simultaneously. In our case instead the "incident" wave is initiated in the distant past and 

evolves with time. In space it is spread out to infinity. The phase velocity )(/)( ττω xK  is 

negative for τ<0. Then the radial wavenumber Kx(τ) approaches the region in K-plane 

where the WKB approximation breaks down. So now we can no longer separate two 
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wave branches with positive and negative frequencies; we have some mix of waves 

which interact and exchange energy with each other and with the basic flow. The 

dependence on the spatial coordinates of this mixture is a simple harmonic exp(ikx(t)x + 

ikyy), but the amplitude is some function of time which does not fall into the sum of 

exponents of the type (25). This situation is somewhat analogous to the over-reflection at 

corotation discussed by Mark (1976) except that the role of spatial coordinates is played 

by time and "corotation point" is at τ = 0 that corresponds to Kx = 0. After crossing this 

nonadiabatic region which together with the intermediate stable region may include the 

two unstable regions, the drifting radial wavenumber gets again into the adiabatic region 

with a positive sign. At time ∞→τ  for the solution we have 

                                    

                              
 

where T and R are the transmission and reflection coefficients, respectively, and the 

corresponding waves are called the transmitted and reflected waves. The transmitted 

wave has the same sign of frequency as the incident wave, however its phase velocity is 

directed opposite to the phase velocity of the incident wave, i.e., it travels outwards, and 

the reflected wave, with the opposite sign of frequency, propagates inwards in the radial 

direction. At first sight it might seem that the transmitted wave is a reflected wave 

because of the opposite phase velocity (NS), but this is not the case, because actually the 

change in the direction of the phase velocity is merely due to the wavenumber drift and 

the question of which wave is transmitted and which reflected is resolved in terms of the 

time variable τ (and not in spatial coordinates) according to the form of Eq. (26). If we 

formally replace τ by x in Eqs. (25, 26) we obtain correspondence to the analogous 

definition of incident and transmitted waves accepted in quantum mechanics (Landau & 

Lifshitz 1974). Thus, behaviour of the waves in real space is entirely described by the 

characteristics in K-plane. The splitting of the incident wave into transmitted and 
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reflected parts in real space occurs around the "corotation point" Kx = 0, and the moment 

of splitting is found by the initial wavenumber, yxsp AKK 2/=τ  (in former notations).  

       From the wave action conservation law (NS) or directly from Eq.(24) we obtain a 

general relation between the transmission and reflection coefficients  22 1 RT +=  (as 

mentioned above our definition of the transmitted and reflected waves differs from that 

of Nakagawa and Sekiya and the conservation of wave action looks differently). This 

relation simply means that the amplitude of the transmitted wave is always larger or at 

least equal to the amplitude of the incident wave (over-transmission). This is because the 

non-axisymmetric waves are able to extract energy efficiently from the basic flow and 

amplify as we have seen in the preceding subsection. This process is possible only in the 

presence of differential rotation. If R  exceeds unity then over-reflection occurs in 

addition to over-transmission.  

   Like Nakagawa and Sekiya (1992), we numerically calculated the reflection coefficient 

(its absolute value R ) as a function of Ky for various Q (Fig.3) (a detailed procedure of 

the calculation is given in NS. For the calculation they used the equation for the 

azimuthal velocity v, their Eq. (2.24). Our curves for R  coincide with their T  curves). 

We explain the peculiarities of this dependence on the basis of the obtained stable and 

unstable regions for ω2. We start with the case Q = 1. Consider first the interval 

0.01<Ky<0.1. For such values we have two narrow unstable regions and one larger 

intermediate stable region (Fig.1) where the adiabatic condition is satisfied only far from 

and between these unstable regions and, therefore, the solution here is given as a 

superposition of two waves. The T and R coefficients in the solution depend on the value 

(phase) of φ with which it enters the second unstable region. But this value is roughly 

given as a periodic function of Ky (owing to the WKBJ approximation there) which 

oscillates more and more rapidly with decreasing Ky, and following from it the necessary 

conditions for the total ( 0=R ) or with reflection transmission alternate quickly. As a 

result, the reflection coefficient behaves in the same fast oscillatory way (see also 

Appendix A). Note that the period of R  oscillations increases with growing Ky. Because  
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of the narrowness of the unstable regions the reflection and transmission coefficients are 

not large in this case. As the azimuthal wavenumber increases (0.1<Ky) the adiabatic 

condition becomes invalid and the oscillations of the solution in the intermediate stable 

region are not pronounced, accordingly R  varies smoothly with Ky. At first it increases 

with the broadening of the unstable regions reaching a maximum and then decreases. 

The coefficients R  and T  are now considerably larger compared with those for small 

wavenumbers. To make certain that only shear is responsible for the growth (NS 

associated it with self-gravity), we run calculations when the terms proportional to A was 

dropped in Eq.(24) (Fig.4). As expected, the reflection coefficient is not large for 0.1<Ky.  
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When Ky>>1 the reflection coefficient is very small. Here the compressibility term 

begins to dominate over all other terms in ω2 and the evolution is adiabatic at all times. 

So an initially incident wave propagates without splitting and turns gradually into a 

transmitted one for +∞→τ .  

      The case when Q > 1 is distinct from the previous case. Now we have two leaf-like 

unstable regions (Fig.1). These leaves shrink towards the origin and, consequently, there 

is little reflection for small Ky. The breadth of these leaves increases and then decreases 

to zero and the behaviour of the transmission coefficient follows it. The absence of fast 

oscillations for small Ky~O(0.01) is explained by the fact that the intermediate stable 

region, unlike the above situation with Q=1, is very narrow for the validity of the 

adiabatic approximation there, while it is fairly well satisfied in the stable region. So 
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there are no intermediate oscillations in the solution. The above argument applies also 

for Ky~O(0.1). However, there follows another peak produced by the resonance between 

compressibility and epicyclic terms. The latter peak becomes higher, whereas the former 

lower with increasing Q (NS). 

 

3.2.3  Generation of spiral density waves by vortices 

 
    The dynamics of vortices in astrophysical disks has recently attract much interest both 

because vortices in protoplanetary discs can represent aggregation regions of solid 

particles for the eventual formation of planets (Barge & Sommeria 1995) and more 

generally for understanding accretion disc dynamics and the basic problem of angular 

momentum transport (Lovelace et al. 1999, Li et al. 2000). Several works have been 

devoted to the analysis of the possibility of forming and maintaining coherent vortex 

structures in the strongly sheared flow pertaining to Keplerian disc both in barotropic 

configurations, where the initial potential vorticity perturbation is conserved (Bracco et 

al. 1999, Godon & Livio 1999, 2000, Davis et al. 2000, Davis 2002) and in baroclinic 

situations where one can have vorticity generation (Klahr & Bodenheimer 2003, Klahr 

2004). In the incompressible case it has been shown that coherent vortex structures can 

indeed form (under conservation of potential vorticity) and anticyclonic vortices can 

survive longer than cyclonic ones (Bracco et al. 1999) and give rise to the appearance  of 

Rossby waves in the system (Davis et al. 2000). The effects of compressibility have not 

yet been fully analyzed and require rigorous study. Godon and Livio (1999) performed 

two dimensional time-dependent simulations of vortices in viscous compressible 

Keplerian discs. Vorticity waves are considered as one of the constituents of 

(anticyclonic) vortex dynamics, but without specification of the wave properties and 

analysis of their genesis and dynamics (the subject of the study was the stability and 

lifetime of vortices). Davis (2002) performed fully compressible numerical simulations 

of the dynamics of a single vortical structure in a Keplerian disc flow and has reported 

the generation of outward-moving compressible waves by the coherent vortex (the 
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generation was attributed to nonlinear processes. By contrast, in this subsection we show 

that such a generation is present already in the linear approximation) pointing out the 

potential importance of this phenomenon for vortex dynamics. Johansen, Andersen & 

Branderburg (2004) considered the dynamics of nonlinear vortices by numerical 3D 

simulations in the local shearing sheet approximation, also observing indications of wave 

generation. Klahr & Bodenheimer (2003) performing 2D and 3D hydrodynamical 

simulations of protoplanetary discs, found that a radial entropy gradient can generate 

Rossby waves which eventually break into vortices. Klahr (2004), by a linear stability 

analysis in fact showed that a radial entropy gradient leads to continuous generation of 

potential vorticity and to a transient swing-like amplification of the vortical/aperiodic 

mode, without the subsequent decay observed in the linear barotropic configurations.       

    In this subsection we study the linear dynamics of initially imposed vortex mode 

perturbations in Keplerian discs having in view understanding the linear phenomenon of 

generation of spiral density waves by vortical perturbations. It is analogous to that found 

in Chapter 2, however, now the self-gravity of medium comes into play. As before, our 

comprehension of wave generation phenomenon is based on paper Chagelishvili et al. 

(1997a). This phenomenon was studied in the non-self-gravity limit by Bodo et al. 

(2005) in global disc simulations and by Tevzadze (2006) in the shearing sheet 

approximation taking into account vertical stratification of the disc. The properties of 

wave generation in global disc simulations of Bodo et al. (2005) are well characterized in 

the shearing sheet model. Vortical motions were also observed in several spiral galaxies  

(Fridman & Khoruzhii 1999a,b) and the present study can be applied to this case as well. 

   To study the vortex dynamics we first need a relevant procedure for picking out vortex 

mode perturbations at the beginning of evolution. To do this, recall that in 3.1 we set the 

potential vorticity to zero. In the present case I is nonzero and the equation (24) for the 

gravitational potential perturbation is modified as 
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 (here I is appropriately nondimensionalized κ/II → . Hats are omitted). For other 

perturbed quantities we obtain 
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Equation (27) is of the type considered in atmospheric and oceanic flows (Eq.(12) in 2.1) 

and the described in 2.1 separation of perturbation modes applies here too. So in this 

case we again keep to the physical standpoint of separation of perturbation modes and 

write each quantity as 

                        ,     ,  ,   )()( vw uuu += )()( vw vvv += )()( vw σσσ += )()( vw φφφ +=

where the wave parts (w) in these quantities correspond to spiral density waves (I=0, 

solutions of homogenious equation (24)) and the vortex parts (v) are related to the 

potential vorticity I. We below obtain the exact form of this relation (see also Appendix 

in Bodo et al. 2005). 

     )0(),0(, φφ ′I  form the full set of initial conditions for Eq.(27). We seek the vortex 

mode solution in the following analytic form: 
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where the zero order term is deduced from the stationary form of the solution (Eq. 27 

with A=0) and subsequent terms are derived using the iterative method   
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The principal concern with such a solution is its convergence. For instance, this solution 

diverges at *ττ = , 0)( * =τxK or more generally over the whole of the nonadiabatic region, 

which depends on the azimuthal wavenumber . However, the first two terms of this 

series can be considered to be an excellent approximation to the exact numerical solution 

for large times, sufficiently far from the nonadiabatic region. Therefore, we can use this 

analytic solution to compose initially at

yK

0=τ  the vortex mode perturbation.  From these 

formulae we see that the initial value )0(φ  is expressed via I and the corresponding 

solution (29) is called the vortex/aperiodic mode. As stressed, such a separation of 

modes is valid only in the adiabatic region. In the nonadiabatic region the above series 

diverges and the mode separation does not have any meaning. Here the timescales of 

vortex and wave modes are comparable; we have some mix of both modes in the 

solution. However, with going away from the nonadiabatic region modes get clearly 

separated and we can calculate the amplitudes of generated waves. As for the vortex 

mode it gradually dies out after going through the nonadiabatic region. Newly created 

waves extract energy from the mean flow; the vortex energetics is not changed by waves. 

In other words, we can say that vortex acts as a mediator between the background flow 

and the wave and then gradually returns its energy to the flow.    

        In Figs.5-8 we present the evolution of perturbed quantities and the normalized 

energy pertaining to the initially imposed vortex E/E(0),  for various 

values of Ky (we take Q=1 and I=0.3 in calculations). A qualitative picture of evolution is 

similar to that in meteorological flows. Initially, when we are in the adiabatic region, 

imposed vortex mode gains energy from the mean flow and amplifies, but retains its 

aperiodic nature. On approaching the nonadiabatic region an oscillating part in the 

solution begins to appear. Thus, the linear vortex mode is followed by the generation of 

spiral density waves. In this region, as mentioned, the timescales of the vortex and the 

waves are comparable and the perturbations are not separable/distinguishable, we have a 

mix of aperiodic and oscillating modes. There follows again the adiabatic region and the 

timescale of the waves becomes much shorter than that of the vortex and the modes are  

2/)( 222 σ++= vuE
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well distinguishable. From these figures we see that the energy increases initially 

monotonically (transient growth) and then linearly. The first stage corresponds to a  

 60



          
 

 

purely vortex mode evolution and the second one is the asymptotically linear 

amplification of the generated waves’ energy. For Ky < 1 transient amplification is 

considerably enhanced by the unstable regions (Fig.5,6,10). Wave generation is strongest 

in this interval as well (Fig.9). For moderate Ky~1 (Fig.7,8,10) transient amplification is 

solely due to the non-orthogonality of the shearing sheet and can reach considerably 

larger values (O(100)) compared with wave amplification factors for the same Ky  (see 

Fig.2). Wave generation is little noticeable for large Ky >10 (Fig.8,9) (due to the fact that 

the adiabatic condition is satisfied all along the vortex evolution), but now transient 

amplification of the vortex mode energy plays a central part in the perturbation 

dynamics. As stressed many times the existence of such transient amplification of the 

perturbation energy may be important for self-sustenance of turbulence in astrophysical 

discs.  
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   To calculate the amplitudes of generated waves as a function of Ky we note that at 

−∞→τ  the solution contains only vortex mode (for τ  we again redefine the origin of 

time as in 3.2.2)   
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for simplicity here we have omitted further terms in the asymptotic expression (29). 

After going through the nonadiabatic region at ∞→τ  we have both wave and vortex 

parts         
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where the last term is the vortex mode and the first two terms are the excited waves with 

amplitudes a and a*. Of course, these amplitudes are proportional to I, since it is the 

main generator of waves.  In Fig.9 we plot a  as a function of Ky . This curve resembles 

in appearance the one in Fig.3 for Q=1. The existence of fast oscillations is due to the 

same reason as in the reflection coefficient. Wave excitation is greatly enhanced for 

Ky<1 due to the large transient amplification of vortex perturbations producers of waves.  

   In Fig. 10 we also plot maximum energy during transient amplification when the self-

gravity of the gas is ignored. As expected, transient growth is considerably larger in self-

gravitating discs.  
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  We would like to stress that this phenomenon of generation of nonvortical/wave 

perturbations by vortical perturbations is a fundamental property of shear flows. It was 

observed in complex numerical simulations of graviturbulence in galactic discs (Wada et 

al. 2002), where the energy spectrum of vortical (solenoidal) component of turbulent 

velocity after some time becomes similar to that of wave (compresible) component. 

 

 

3.3 Dynamics of localized density wave packets 

 
    The behaviour of individual SFH of wave perturbations summarized in the preceding 

section gives us important information on the mechanisms of amplification and over-

reflection of density waves. However, a complete and vivid picture of the phenomenon 

can be obtained by examining the behaviour of the solutions in real space for a wave 

packet (superposition of different Fourier harmonics) that is localized both in real and 

wavenumber planes. In this section we undertake this task. 

     As an initial condition, we superimpose on the basic shear flow a localized wave 

packet, that we define in K-plane centered around a point (Kx0,Ky0) (of course, there is a 

counterpart centered around (-Kx0,-Ky0) since all perturbed quantities are real). The 

location and appearance of the perturbations for the different physical variables in real 

space for all times can then be obtained through the inverse Fourier transform and 

expressed in the following form: 
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where (u,v,σ,φ)(K,τ) characterize the shapes (packets) for the distributions of the radial 

and azimuthal velocities, surface density and gravitational potential in K-plane (we 

remind that, as made above, hats over these dimensionless quantities are omitted. (x, y) 

coordinates are nondimensionalized by cs/κ·). In general, any initial packet in K-plane far 

from nonadiabatic regions contains contributions from two waves with oppositely 

directed phase velocities (negative and positive frequency waves of Eq.(24)). Below we 

describe how to excite a packet which initially has a group velocity directed in a certain 

direction. Initially for the shape of the surface density perturbation in the packet we 

choose the form 

                    

                          
where  

                            
An analogous expression for the packet initial shape was adopted by Bodo et al. (2001) 

in their numerical simulations of localized packets of MHD waves in shear flows. It 

consists of two oval shaped localization areas in K-plane with sizes defined by ΔKx, ΔKy 

and centres situated at (Kx0,Ky0) and (-Kx0,-Ky0), as has been mentioned above. The 

quantities x0 and y0 specify the initial position of the packet centre in real space (that is 

easy to see if we make inverse Fourier transform of this expression. It is also clear that 

the resultant packet in real space is localized as well). The amplitude of the perturbation 

is defined by the scaling factor εp = 0.01, which is taken to be sufficiently small in order 

for the linear approximation, in which we work, to be valid. In our calculations we make 

the parameters Kx0,Ky0 take on various values because we are interested in the packet 

dynamics when its center is situated at the beginning of evolution in different positions 

(provided the adiabatic condition is fulfilled there) in K-plane relative to the unstable 

regions (Fig.1). If (Kx0,Ky0) is located in the second quadrant of K-plane we have a 

packet of leading waves, if in the first quadrant then we have a packet of trailing waves. 
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(The cases where (Kx0,Ky0) is located in the lower half plane reduce to the previous cases, 

so below in all calculations (Kx0,Ky0) lies in the upper half plane Ky > 0.)  

   As we have mentioned, any packet in the adiabatic region contains positive and 

negative frequency waves and as a result it divides at the beginning of the evolution due 

to the oppositely directed group velocities corresponding to these waves (for the 

definition of group velocity in the context of non-modal approach see Appendix B). To 

avoid such initial splitting, which does not represent a novelty, we should consider from 

the outset a packet composed of one sort of waves either with negative or positive 

frequency and follow its subsequent evolution. Here we choose positive-frequency 

waves (Eq.(25)), so the x-component of the group velocity at τ = 0 is directed radially 

inwards if Kx0 < 0 (packet of leading waves) and outwards if Kx0 > 0 (packet of trailing 

waves). This choice requires (u,v)(K,0) to be related to σ(K,0) through the expressions 

    

                       
 

which follow from Eq. (21)-(23) and the form of the positive-frequency waves (25). We 

would like to note that this method of initial preparation of the packet with only positive-

frequency waves is approximate in the sense that it is based on the asymptotic expansion 

of the WKB approximation far from the nonadiabatic regions. It would be exact for 

oscillatory systems with constant characteristics, while the parameters (ω(τ),K(τ) ) of our 

system varies with time. Nevertheless, it is fairly satisfactory in our calculations.  

    We examine all the peculiarities of packets composed originally of short leading 

waves (Kx0 < 0, ׀Kx0׀ >>Ky0). Specifically, we describe the dynamics for three different  
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bands of the packet parameters (see Fig.11, this figure is only schematic, so numerical 

values of Kx0 and Ky0 in this figure do not match their actual values used in calculations): 

(a) The initial short leading packet with yinyy KKK <Δ±<0  is situated at the point 1′ , 

(b) The initial short leading packet with youtyyyin KKKK <Δ±<  is situated at the point 1′′ , 

(c) The initial short leading packet with youtyy KKK >Δ±  is situated at the point 1 ′′′ . 

The dynamics of packets of short trailing waves (Kx0>>Ky0) is less interesting and quite 

predictable; they propagate without splitting and the group velocity never changes sign. 

Besides, the final stage of evolution of short leading wave packets are short trailing 

packets, so we do not consider later as a special case. We take the quantity e(x,y,τ) = 

(u2(x,y,τ)+v2(x,y,τ)+σ2(x,y,τ))/2 as a measure of the packet intensity, which we call the 

packet energy density. In the following we consider marginally stable disks Q = 1. The 

dynamics for Q > 1 does not differ qualitatively from that for Q = 1 and can be 

considered by analogy. Thus, we elaborate on the value Q = 1 in more detail. 
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    As stressed earlier, due to differential rotation the radial wavenumber Kx(τ) of each 

SFH composing the packet changes/drifts with time. As a result, the packet itself also 

starts to drift in K-plane from its initial position along the Kx-axis in the positive 

direction (since A<0) and crosses the stable and unstable regions discussed in 3.1.  Since 

the drift velocity is different for different Ky the packet alongside the drift undergoes a 

shearing deformation. The schematic illustration of the packet drift is presented in 

Fig.11. We will see below that all the peculiarities of the dynamical picture in physical 

r-plane stem just from this drift. The general evolution in r-plane can be seen in 

Fig.12,13,14 where we show images of the packet energy density  e(x,y,τ) at different 

times for various values of Kx0 and Ky0 (although a qualitative picture of evolution is 

identical for the packets of all perturbed quantities) 

     We now give an interpretation of this behaviour in terms of the various locations of 

the packet centre relative to the unstable regions in K-plane in the course of its 

evolution/drift. Begin with the case (a) when the centre of a short leading wave packet 

during its drift crosses the two narrow unstable regions and one longer intermediate 

stable region (Ky = 0.04 in Fig.11). From Fig.12 we can see that in the beginning the 

group velocity of the packet inverse Fourier transform (PIFT) (i.e.,the corresponding 

localized packet in r-plane) is directed towards the origin of (x,y), according to our 

choice, and propagates as a whole without initial splitting. Along with the propagation it 

also rotates in the anticlockwise direction. The rotation is associated with the shearing 

deformation of the packet. However, at the time when the packet begins to enter the first 

unstable region (point 2' in Fig.11), PIFT gradually stops (τ = 45 in Fig.12), since the 

group velocity for ω2<0 is zero (not defined). From this moment the first amplification 

of the packet ∫∫ ++= dxdyvuE )()( 222
2
1 στ  energy occurs (Fig. 15). Then the packet leaves 

this region (point 3') and starts crossing the relatively long intermediate region of ω2>0 

where it can be approximately represented as a superposition of positive (transmitted) 

and negative (reflected) frequency waves traveling in the opposite directions. The 

wavenumber of each SFH decreases and constituent waves become long leading. At this  
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time the PIFT is split into two parts (τ=63), which propagate along different trajectories 

as each consists of one from these two kinds of waves. However, as the packet crosses 

the line/corotation point Kx = 0 (point 4') the waves in it change from long leading to 

long trailing. As a consequence, in r-plane the split fragments reverse the sign of the x-

component of their group velocities and begin to near each other. From the above it 

follows that these two parts are initially made up of long leading and then of long trailing 

positive and negative frequency waves. After this intermediate region the packet moves 

onto the second ω2<0 region. On entering that (point 5') these split parts merge and the 

resultant packet in r-plane stops for some time (τ=67) until the packet leaves this region 

(point 6'). There occurs the second amplification of the packet energy (Fig.15).   
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On leaving this region it gets into the region ω2>0 and never leaves it. Here, as in the 

analogous intermediate stable region, the solution is a superposition of oppositely 

traveling waves. So the composite packet in r-plane splits again (τ=130), but now both 

split parts are composed of short trailing waves and continue to remain so. 

Corresponding group velocities retain their direction, since wavenumber Kx does not 

change sign throughout this last ω2>0 region. In analogy to the above choice of 

transmitted and reflected waves, we call a transmitted packet the part made up of 

transmitted (positive frequency) waves and a reflected packet the part that is composed 

of reflected (negative frequency) waves. The x-component of the group velocity of the 

transmitted packet is directed opposite to that of the incident packet and gives the 

impression of being the reflected one, but this is not the case, since the change in the  
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direction of group velocity of the positive frequency packet is associated with the sign 

reversal of the drifting central wavenumber Kx0(τ) = Kx0-2AKy0τ. That is seen most 

clearly in the case (c) considered below, when the fraction of the reflected short trailing 

waves (packet) is negligible. From now on the energies of these enhanced split 

fragments increases linearly (Fig.15). Because of the shearing deformation of the packet 

in K-plane these two split parts gradually become more and more tightly wound.  

     In the considered case the energies of these two packets are nearly the same, since for 

Ky0 = 0.04 the transmitted and reflected coefficients of waves are comparable (Fig.3), but 

if we took Ky0 corresponding to small values R  (for example, Ky0 = 0.03625 in Fig.3) and 

the size ΔKy of the initial packet was small enough as well, much of the initial packet 

energy would be concentrated in the transmitted packet. It should be noted that such 
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properties of the packet behaviour are connected with the differential rotation (the shear 

A parameter) that leads to the modified Lin-Shu dispersion relation (24) (Fig.1). Indeed, 

the moments when the packet splits and the two parts then join are determined by the 

shape of the ω2 = 0 curve in K-plane and the initial position (Kx0,Ky0) of the packet centre 

relative to this curve. Knowing these moments it is also possible to determine an 

approximate location of splitting and merging points of a packet in r-plane by integrating 

the group velocity over time. Thus, all the peculiarities of the packet behaviour in r-

plane can be explained by analyzing the dynamics/drift of its Fourier transform in K-

plane and the behaviour of the group velocity, which is given as a function of the central 

wavenumber of the packet and system parameters. It would be rather difficult to 

analyze/interpret packet propagation properties described above based on the normal 

modes of the shearing sheet alone.    

    Consider now the case (b) (Fig. 13) when the centre of the packet during its drift 

crosses larger unstable regions. This case is qualitatively similar to the previous case, but 

there are some quantitative distinctions. Before reaching the first unstable region (point 

2") the packet proceeds in much the same way as in the case (a) in both planes. Then 

follows the amplification of the packet energy (Fig. 16) corresponding to its location in 

the large unstable region between points 2" and 3". However, intermediate splitting of 

the packet in r-plane is no longer observed, because the adiabatic approximation between 

points 3" and 5" is not met (the time interval during which the packet crosses this 

intermediate stable region is comparable to the period of oscillations) and therefore in 

this region the packet does not divide into waves with certain frequencies (of course, the 

spatial dependence of these waves is, as before, plane harmonic. in this region they 

change from long leading to long trailing). Accordingly, during this stage PIFT does not 

move. It is not possible to define the group velocity for such a non-WKB solution. Then 

the packet moves onto the second unstable region (point 5") where its energy increases 

further. The growth of the energy in both unstable regions is considerably higher than 

that for the preceding case. The reason is the same as that for individual SFH in 3.2.1. 
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After leaving (point 6") it again gets into the adiabatic region and becomes, as before, 

composed of positive and negative frequency short trailing waves. As a result, we again 

see the splitting of the incident packet into transmitted and reflected ones. The 

transmitted packet propagates opposite to the incident one (x-component of the group 

velocity is reversed).  

        In the case (c) (Fig.14) the packet centre crosses neither unstable region. The PIFT 

in r-plane starts from being a packet of positive frequency short leading waves and 

propagates towards the origin of (x,y), then gradually becomes a packet of long leading 

waves, of long trailing waves, when the packet in K-plane crosses the line Kx = 0, and at 

the same time changes the sign of the x-component of the group velocity due to the sign 

reversal of Kx0(τ) and propagates outwards from the origin. Finally, composing long 

trailing waves are gradually converted into short trailing ones and the packet in r-plane 

winds tighter and tighter with time due to the shearing deformation. There is no splitting 

in this case, since the adiabatic condition is met all along the evolution and, therefore, 

the portion of reflected waves is negligible. The packet energy initially decreases until 

the corotation Kx = 0 point and then increases linearly (Fig. 17).  

      The case of an initial trailing wave packet (Kx0 > 0) is not as interesting as other 

considered cases. There is no conversion between waves and the packet remains 

composed of trailing waves with the same sign of frequency at all times. Following from 

it the group velocity never changes sign. During the drift it does not cross any 

dynamically interesting regions in K-plane. If an initial packet consists of positive 

frequency waves its PIFT propagates along the x-axis, otherwise the propagation is 

opposite. It does not split during the whole evolution and winds tighter and tighter. 
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Summary 

        

       In this chapter we have analyzed the dynamics of individual SFH and localized 

packets of spiral density waves in the shearing sheet approximation using non-modal 

approach combined with numerical calculations. We have shown that density waves 

(packets) experience strong swing amplification as they swing from a leading to a 

trailing orientation. The growth for Q ~ 1 is most effective when the inverse of the 

azimuthal wavenumber is comparable to the disc thickness (see also NS) and is due to 

flow shear. For large times swing amplification is followed by asymptotically linear 

growth of wave energy. Large swing amplification of both waves and vortices can 

expedite fragmentation of medium (Kim & Ostriker 2002, Gammie 2001) or 

turbulization of flow (Wada et al. 2002) (depending on the value of Q) and serve as a 

main extractor of energy from the mean flow in case of turbulence. We have also 

analyzed the reflection and transmission of waves. It has been shown that the reflection 

coefficient behaves in an oscillatory manner for small azimuthal wavenumbers and is 

greatly enhanced due to flow shear for Ky~O(0.1) (Ky nondimensionalized azimuthal 

wavenumber) 

    We have also examined the properties of vortical perturbations. It has been shown that 

vortical perturbations undergo transient amplification, which increases with decreasing 

Ky  For Ky>1 wave generation by vortices is noticeable, but the dynamics is dominated by 

transient growth which may be larger than wave amplification for the same Ky. For Ky<1 

vortices can effectively excite spiral density waves after transient amplification stage. 

This effect is possible only in sheared flows and tends to zero in the shearless limit.  

   We have also studied the peculiarities of propagation of localized packets of density 

waves. Non-modal approach allows considerably simpler and clearer for comprehension 

treatment of this problem compared with modal approach. From the above analysis it is 

obvious that we can judge the packet dynamics knowing how its Fourier transform 

evolves in K-plane. So we no longer need to introduce corotation and Lindblad 

resonances in the shearing sheet model, as was done in Goldreich & Tremaine (1978) 
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and also in Binney & Tremaine (1987). The positions where a packet splits and split 

parts merge are defined entirely by its Fourier transform characteristics. Although the 

shearing sheet model does not allow us to analyze the packet evolution all over the disc 

but it is particularly helpful in examining the situation near a particular area in the disc, 

and the splitting of packets observed in global disc simulations by Toomre and Zang 

(Toomre 1981) can be readily explained in terms of our analysis. There is other valuable 

asset of the shearing sheet; it admits the treatment of initial value problems by means of 

non-modal approach saving us from summing many interfering eigenfunctions. It is 

hardly possible to explain the properties of localized density wave packets described 

here based on the modal approach alone.  
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Chapter 4 

 

 

 

 

 

 

 

Summary and Discussions 

 

 

      In this thesis we have investigated the phenomena taking place due to non-

orthogonality of shear flows, which are quite common in meteorology or astrophysics. In 

principle, these phenomena can be analyzed in the framework of modal approach, but 

having done that we encounter rather serious difficulties associated with the non-

normality and interference of eigenfunctions, whereas non-modal approach permits 

simple and elegant description of phenomena. 

      In Chapter 2 we have considered dynamics of two kinds of perturbations, vortices 

and waves in zonal geostrophic shear flows. The classification of perturbation modes has 

been made based on the value of potential vorticity. Traditionally, in quasigeostrophic 

models of geophysical hydrodynamics wave perturbations are filtered and the main 

subject of study is the dynamics of vortical perturbations. Our investigation instead has 

shown that waves are equally important. We have considered two regimes Ro<<1 and 

Ro~1, which are typical of most atmospheric and oceanic flows (atmospheric and 

oceanic synoptic vortices, jet streams associated with atmospheric fronts, oceanic jet 

streams). In the first regime wave and vortex modes evolve separately; there is no 

transformation between modes. Because of the fact that the frequency of oscillations is 

time-dependent, energy of wave perturbations increases asymptotically linearly. Vortical 

perturbations die out after transient amplification. It can be said that the flow is 
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algebraically unstable to waves but stable to vortical perturbations. Transient and linear 

amplification of perturbations in this case may be important for the instability of 

synoptic cyclones. Thus, traditional quasigeostrophic approach is valid for small Rossby 

numbers. Accordingly, in this case the role of shear is less effective. In the second case 

the flow shear plays a central role in perturbation dynamics. First we have examined the 

properties of pure wave perturbations initially imposed on the flow. It has been shown 

that for Ro<1 waves grow asymptotically linearly for large times (algebraic instability), 

as in the first case, however for Ro>1 linear amplification is preceded by exponential 

amplification of wave energy. The existence of exponential amplification may prompt 

transition to turbulence by bypass scenario. Note that according to modal analysis the 

flow of the type considered (Couette flow) here is stable and there seems to be no linear 

mechanism capable of extracting energy from shear. 

    As regards vortical perturbations, they generate internal waves which amplify further. 

Vortical perturbations themselves after transient amplification return energy to the mean 

flow and die out. They act as a mediator between the background flow and waves. This 

phenomenon of wave generation by vortiacal/aperiodic perturbations cast doubt on the 

validity of quasigeostrophic approach, which underestimates the role of wave 

perturbations, while they play a decisive role in the instability of shear flows.  

   We have also briefly discussed the effects of viscosity. Viscosity merely diminishes 

the wave amplitudes without affecting the frequency. For bounded flows by means of 

variational approach we have derived the sufficient criterion for stability cAH < , where A 

is the shear parameter, H is the distance between bounding walls and c is the sound 

speed. If this condition is satisfied then a flow is linearly stable to wave perturbations. 

This criterion facilitates study in that saves us from making spectral expansion in time 

and finding unstable normal modes.   

    As was estimated in the text the value Ro~1 is related to atmospheric and oceanic jet 

streams associated with fronts. Our analysis sheds new light on the properties of these 

flows and shows that they are much richer than that predicted by modal analysis. 

Particularly, wave generation, explosive-algebraic type of instability and transient 
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growth of vortex mode perturbations may be important in the stability study of jet 

streams and, consequently, of fronts. The problem of the stability of frontal interfaces is 

of high importance for geophysical hydrodynamics. In the first approximation this is a 

problem of the stability of inclined surface separating rotating mediums with different 

characteristics. Solution of this problem is important in meteorology, primarily in 

connection with a so called wave hypothesis of cyclogenesis, offered by Norwegian 

meteorology. According to this hypothesis non-tropical cyclones and anticyclones are 

generated as a result of instability of a wave on inclined surface that separates air masses 

with different properties (frontal interface).  

   First attempts to analyze the stability of frontal interfaces can be found in Kochin 

(1949). In the framework of an oversimplified model, he has formulated analytical 

criterion for the stability of frontal surface and discovered that length scales of unstable 

waves closely match the size of frontal cyclones on moderate latitudes. These results 

were further developed by Blinova, Kibel and others and were generalized to the case of 

compressible medium. Numerical investigation of the stability of frontal interfaces can 

be found in Orlanski (1968), Abramov et al. (1972), Tang (1972), Joly & Thorpe (1990), 

Sinton & Heise (1993). Notwithstanding a more realistic consideration, the physical 

interpretation of these results is highly complicated due to various models and 

parameters employed and absence of reliable experimental data. Besides, linear stability 

analysis does not allows the description of finite amplitude perturbations that lead to the 

development of frontal cyclones. Nevertheless, it shows by the use of non-modal 

approach that instabilities do exist in spectrally stable flows that potentially can result in 

the emergence of frontal cyclones. Thus, the problem of stability of frontal interfaces is 

far from the deep understanding and require further investigation and the main tool 

should be non-modal approach combined with numerical simulations to analyze 

nonlinear evolution if we want to describe the phenomena adequately.   

      In Chapter 3 we have studied the dynamics of spiral density waves and vortices in 

differentially rotating astrophysical thin discs with self-gravity in the shearing sheet 

approximation by means of non-modal approach and numerical calculations. First we 
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have introduced the shearing sheet equations and made spatial Fourier transform of 

perturbed quantities. Then we have analyzed the evolution of individual spatial Fourier 

harmonics (SFH) and found that the energies of both vortex and wave SFH experience 

strong swing amplification (transient growth) when the inverse of the azimuthal 

wavenumber is comparable to the disc thickness. Due to this multi-arm spiral structure 

often emerge in many numerical simulations of galactic discs (see e.g. Sellwood & 

Carlberg 1984). Swing amplification is followed by asymptotically linear amplification 

of wave energy. Strong swing amplification together with linear amplification is 

important for forming gravitationally bound complexes (e.g. giant molecular clouds) in 

the interstellar medium of galaxies or for triggering turbulence in accretion discs by the 

bypass transition scenario that was observed in complex numerical simulations of Wada 

et al. (2002) or Kim & Ostriker (2001) 

    We have also analyzed the reflection and transmission of density waves. (Over)-

reflection coefficient attains its maximum (O(100)) for azimuthal wavenumbers of the 

order of 0.1, which is brought about by flow shear; for small shear parameters reflection 

coefficient remains of order unity. The properties of over-reflection of density waves in 

real plane are characterized by the drift of radial wavenumber in K-plane. The specific 

behaviour of the reflection coefficient with azimuthal wavenumber can be simply 

explained based on the shape of unstable regions in K-plane. 

   We would like to note that shear enhanced reflection of waves are essential and 

effective to the instabilities associated with resonances found by Papaloizou and 

Savonije (1991) in their numerical investigations of non-axisymmetric perturbations in 

thin self-gravitating discs. 

    For nondimensionalized azimuthal wavenumber Ky<1 vortices can effectively excite 

spiral density waves after transient amplification stage. This effect is possible only in 

sheared flows and tends to zero in the shearless limit. This effect is undetectable in the 

modal treatment of the shearing sheet. This wave generation is seen in global disc 

simulations of vortices (Bodo et al. 2005) and its characteristics are well explained in the 

shearing sheet. Thus, from our analysis it is clear that vortices can be considered as a 
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novel source of spiral density waves in addition to already well-known ones (bar 

excitation, companion galaxy, instabilities in discs).   

    We would like to stress that this phenomenon of generation of nonvortical/wave 

perturbations by vortical perturbations is a fundamental property of shear flows. It was 

observed in complex numerical simulations of graviturbulence in galactic discs (Wada et 

al. 2002), where the energy spectrum of vortical (solenoidal) component of turbulent 

velocity after some time becomes similar to that of wave (compresible) component. 

   We have also studied the peculiarities of propagation of localized packets of density 

waves. Non-modal approach allows considerably simpler and clearer for comprehension 

treatment of this problem compared with modal approach. As individual SFH, localized 

packets undergo swing amplification when evolving from being leading packet to 

trailing one. From the above analysis it is obvious that we can judge the packet dynamics 

knowing how its Fourier transform evolves in K-plane. So we no longer need to 

introduce corotation and Lindblad resonances in the shearing sheet model as was done in 

Goldreich & Tremaine (1978) or Binney & Tremaine (1987). The positions where a 

packet splits and reflects in real plane are defined entirely by its Fourier transform 

characteristics. 

     

Once again below we list the main results of the thesis 
    
• For Ro<<1 (Ro is the Rossby number) wave and vortex modes evolve independently; 

there is no coupling between modes. The energy of the wave mode increases 

asymptotically linearly. The vortex mode after transient amplification gradually dies 

out; 

 

• In atmospheric and oceanic shear flows novel features of wave and vortex modes 

have been found at moderate (O(1)) Rossby numbers. The energy of non-symmetric 

wave perturbations at large times increases linearly (algebraic instability). If Ro < 1 

there takes place only an algebraic growth of non-symmetric shear internal waves. At 
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Ro > 1 a time interval of the linear growth is preceded by an interval of exponential 

(explosive) growth. This explosive growth is explained in terms of symmetric 

instability. At Ro > 0.8 vortex mode perturbations initially gain the basic flow energy 

and then are converted into shear internal waves, energy of which then grows 

linearly. For Ro=0.4 wave generation starts to be noticeable, but transient 

amplification of vortex mode is a dominant feature in the dynamics. Such transient 

amplification may be important for triggering and maintaining turbulence in shear 

atmospheric and oceanic flows; 

 

• Viscosity effects on the perturbation dynamics have been analyzed. It has turned out 

that viscosity diminishes only perturbation amplitudes for large times and does not 

affect the instant frequency of time oscillations; 

 

• There has been proved a theorem concerning the stability of shear bounded flows. In 

particular, when cAH < , where A is the shear parameter, H is the distance between 

walls bounding the flow in the azimuthal direction and c is the sound speed, a flow is 

stable to wave type perturbations. This theorem facilitates study in that saves us from 

making spectral expansion in time and finding unstable eigenvalues; 

 

• For Q~1 (Q is Toomre’s stability parameter) the swing amplification of waves in 

discs is most effective when the inverse of the azimuthal wavenumber is comparable 

to the disc thickness and is due to flow shear. For large times swing amplification is 

followed by asymptotically linear growth of wave energy; 

 

• Reflection and transmission of waves have also been analyzed. It has been shown that 

the reflection coefficient behaves in an oscillatory manner for small azimuthal 

wavenumbers and is greatly enhanced (O(100)) due to flow shear for Ky~O(0.1);  
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• Specific properties of vortical perturbations have been investigated. It has been 

shown that vertical perturbations undergo transient amplification which increases 

with decreasing azimuthal wavenumber Ky. For Ky>1 wave generation by vortices is 

noticeable, but becomes weaker and weaker with increasing Ky; the dynamics is 

dominated by transient growth of vortex mode which may be larger than wave 

amplification factors for the same Ky. For Ky<1 vortices can effectively excite spiral 

density waves after a transient amplification stage. This effect is possible only in 

sheared flows and tends to zero in the shearless limit; 

 

• The peculiarities of propagation of localized packets of density waves have been 

studied. From the analysis it has turned out that we can judge the packet evolution 

knowing how its Fourier transform evolves/drifts in K-plane. So we no longer need to 

introduce corotation and Lindblad resonances in the shearing sheet model as was 

done in previous works.  
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Appendix A 

 

 

Analytical derivation of the oscillatory behaviour of the reflection 

coefficient for small Ky~O(0.01) 

 
    As it is obvious from Fig.3 for Q = 1 and for the considered here  azimuthal 

wavenumbers Ky~O(0.01) shear leads only to a little amplification of the reflection 

coefficient compared with Fig.4 without affecting the oscillatory behaviour. Therefore 

for understanding the basic reason for the oscillatory nature for small Ky we can set A = 

0. In this case Eq.(24) reduces to (hats are ommitted) 

                                                  
where 

                                          
 

In this equation, as in subsection 3.2, we have made substitution yx AKK 2/−→ττ . The 

function  has two minima at )(2 τω 11
2
1

2 −±=±
yKA

τ  and one maximum at τ = 0 (Fig.A1). 

It is easy to show that the adiabatic condition is satisfied far from these minima between 

as well as outside them. So in these regions we can use the WKB solutions 
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0
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′′ ττ
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d  114)( 22 −+= ττω AK y  or after evaluating the elementary 

integral we have ( ),)(exp
)(

1 τ
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if±       
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In the vicinity of each minimum we can expand  in a Taylor series with respect to )(2 τω

±−ττ  and keep only second order terms (it can be shown that for small Ky it is a very 

good approximation). The coefficients of zero and first order terms in this expansion are 

zero as it is clear from Fig.A1. After that our basic equation close to the point ±τ  takes 

the form of the parabolic cylinder equation 

                                 
whose solutions as well as the connection formulae for waves on either side far from the 

nonadiabatic region are well known (see also Goldreich & Tremaine 1978 and 

Nakagawa & Sekiya 1992).        

      Let us start from −<< ττ . Here the solution has the form of the incident positive 

frequency wave with unity amplitude ( ,)(exp
)(

1 τ
τω

if− ) , which close to the point  −τ  (but 

still sufficiently far so that the adiabatic condition is satisfied. This requires that 
22/1 yy KKA −<< −ττ 2/1 A<<  ) can be represented  
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We now connect this solution to the WKB solution at +− << τττ with the help of the 

well-known relation for parabolic cylinder functions and their asymptotic expansion 

(Goldreich & Tremaine 1978; in our case b = 0 corresponding to Q = 1) 

                         
 

As a result we get 

                    
for +− << τττ . The exponents in this expression after analogous connection through the 

point +τ go over to the following sums at +>> ττ  
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Hence, for the solution for +>> ττ we have 

                        
From this expression we can identify the reflection and transmission coefficients 

                                 , 

Or after evaluating the module we have 

                       
Shown in Fig.A2 is this function. 
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Appendix B 

 

Derivation of group velocity for a localized wave packet 

 
    In this Appendix we derive group velocity at which the energy of the localized packet 

is transported. To do this we first need an equation for the normalized surface 

density 0/Σ= σϑ , which can be derived from the shearing sheet equations (1-3), Poisson 

equation (4) and condition of zero potential vorticity (we consider here only density 

waves) 02/ =+∂/ ∂−∂∂ ϑBxvyu  and has the form 

                             χϑϑϑϑ 2
2

2

2

22

2

2

)48(44 Δ=
∂
∂

Ω++
∂
∂

Ω+
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∂

+Δ
y

BAB
x

B
Dt
D

yx
A

Dt
D ,               (B1) 

where , 2222 // yx ∂∂+∂∂=Δ yAxtDtD ∂∂+∂∂= /2// , , ψ is the perturbation 

of the gravitational potential corresponding to 

extc ψψϑχ ++= 2

ϑ , ψext is an external potential.  

   To find an expression for the packet energy let us first consider driving of the surface 

potential perturbation by some external gravitational field ψext (our derivation of the 

energy of perturbation parallels that of Mark (1974) and Landau & Lifshitz (1960)). The 

total work done by this external potential on surface area of the disc per unit time is 

given by  

                                               ∫∫∫∫ ∂
∂

−=∇⋅Σ−= dxdy
t

dxdyuP extext
σψψr ,                       (B2) 

where we have used continuity equation and assumed that perturbations are either 

localized or periodic in spatial coordinates; in the latter case integration is assumed over 

spatial periods. Suppose that the external potential has the form 

))()(exp()(
0

0 yikxtiktdtit yx

t

ext ++′′−= ∫ωψψ , where  )(0 tψ  is a slowly varying function of 

time and the frequency is given by Eq. (19) of Ch.3. It follows that generated surface 

density perturbations will be of the same form . The 

amplitude 

))()(exp(
0

yikxtiktdti yx

t

++′′− ∫ωϑ )(0 t=ϑ

)(0 tϑ is found from Eq.(B1) and is related to )(0 tψ  in the following way 
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 For periodic perturbations of the above considered type Eq.(B2) is rewritten as  

                                                 ∫∫ ∗∗ −
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4 0000
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which after some algebra reduces to the expression    
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(WKB small terms are neglected) or, equivalently 
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This relation can be viewed as a conservation of energy if we identify the integrand in 

the left hand side with the energy of perturbations. A change in energy is due to the work 

done by external forces and to the exchange with the mean flow. In the shearless limit 

exchange with the mean flow is absent and we have only the work of external forces. 

Thus the energy density of perturbations is 2

2
0

2
0

2k
e

ϑωΣ
= .  

      Assume now that 0ϑ  is in addition a slowly varying function of spatial coordinates 

(x,y),i.e.,  and is localized in space. In this case the packet is 

. If we now substitute this solution into Eq.(B1) 

and retain only first derivatives of 
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This is an energy conservation law and shows that the energy of a packet is transported 

with the group velocity ),( gygxg UUU
r

, where  and  are given by gxU gyU
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and varies due to the exchange with the mean flow that is reflected in the source term on 

the right hand side of this equation. As it is obvious is proportional to and 

changes sign with it. So, an apparent reflection of the packet in fig. 14 is connected with 

this change of sign. 
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