Тбилисский Государственный Университет им. Иванэ Джавахишвили

на правах рукописи

Иосиф Почхуа

_

01.01.01 - Математический анализ

Автореферат

представленный для соискания ученой степени кандидата физикоматематических наук

Тбилиси 2006

Работа выполнена в Техническом Университете Грузии

Научные руководители: СЕРГО ТОПУРИЯ

доктор физико-математических наук, профессор.

НОДАР МАЧАРАШВИЛИ

кандидат физико-математических наук, доцент.

Официальные оппоненты: ОМАР ДЗАГНИДЗЕ

доктор физико-математических наук, профессор.

Гиви Надибаидзе

кандидат физико-математических наук, доцент.

Защита диссертации состоится «----» «-----» 2006 года «----» часу на заседании диссертационного совета 3. .01-06. №6 Тбилисского Государственного Университета им. Иванэ Джавахишвили.

Адрес: Тбилиси, 0143, Улица Университетская №2, ауд. №202

Ознакомиться с диссертацией можно в центральной научной библиотеке Тбилисского Государственного Университета им. Иванэ Джавахишвили.

Автореферат разослан «----» «-----» 2006 года.

Ученый секретарь диссертационного совета кандидат физико-математических науд

Г. Барельдзе

Общая характеристика диссертации

Актуальность темы. Изучение суммируемости продифференцированных рядов Фуръе по обобщенным системам сферических функций и свойств интеграла Валле-Пуссена на сфере является одним из актуальных вопросов современного гармонического анализа. Интерес к этой теории обусловлен как внутренней потребностью, так и широким спектром применения в таких отраслях математики, как анализ Фурье, граничные задачи дифференциальных уравнений с частными производными и аналитических функций и др. Таким образом результаты, установленные в диссертации, относятся к актуальной тематике.

Цель работы. Установление характеристик интеграла Вале-Пуссена и его продифференцированного интеграла на сфере, изучение вопросов суммируемости методом Абеля продифференцированных рядов Фурье по системам обобщенных сферических функций.

Метод исследования. В работе использованы методы теории функций.

Научная новизна. 1. В метриках $\mathfrak{h}(\mathfrak{d}^{3-1})$ и $\mathfrak{g}(\mathfrak{d}^{3-1})$ установлен порядок отклонения функции, определенной на гиперсфере \mathfrak{d}^{3-1} , от функции плотности интеграла Валле-Пуссена.

- **2**. Изучен вопрос суммируемости продифференцированного интеграла Валле-Пуссена.
- **3**. Доказаны теоремы о суммируемости методом Абеля продифференцированных рядов Фурье по системам обобщенных сферических функций.

Научная и практическая ценность. Работа имеет теоретический характер. Результаты и методы, представленные в работе, могут быть использованы в теории функций.

Апробация работы. Основные результаты диссертации были доложены на научном семинаре при кафедре математики №63 Грузинского Технического Университета (зав. Кафедрой профессор С. Б. Топурия) и на научном семинаре при кафедре функциональной теории и функционального анализа Тбилисского Государственного Университета имени Ив. Джавахишвили (зав. Кафедрой академик Академии Наук Грузии Л. В. Жижиашвили).

Публикации. На тему диссертации опубликованы четыре работы. Их список приведен на последней странице диссертации.

Объем и структура работы. Диссертация состоит из введения, двух глав и списка использованной литературы, который содержит 25 наименований. Общий объем диссертации составляет 55 страниц, набранных на компьютере.

Содержание диссертации

Во введении приведен короткий обзор тем, которые непосредственно связаны с рассмотренными в диссертации вопросами. Обсуждается актуальность темы, значение и краткое содержание работы.

В первой главе диссертации, которая состоит из трех параграфов, изучены свойства функции Валле-Пуссена, определенного на $_{\partial}$ -мерной $^{\partial_{\partial}-1}$ гиперсфере ($_{\partial} \ge 3$) и ее продифференцированного интеграла.

В §1.1. приведены определения и обозначения, которые используются в первой главе.

Определение 1.1.1. Скажем, что $g \in (\mathcal{P})$, интеграл

$$V_n(f;x) = \frac{n+1}{4\pi} \int_{S^2} \left[\frac{1 + (x,y)}{2} \right]^n f(y) dS^2(y)$$

называется сингулярным интегралом Вале-Пуссена.

Определение 1.1.2. Скажем, что $f \in (\mathcal{B}^{-1})$. Точка $\in \mathcal{B}^{-1}$ называется точкой функции $g(\cdot)$, если

$$\lim_{h \to 0} \frac{1}{h^{k-1}} \int_{D^{k-1}(P,h)} [f(Q) - f(P)] dS(Q) = 0.$$

Модуль непрерывности функции $g(\)\in \mathcal{B}(\mathcal{B}^{-1})$ определим формулой:

$$\omega(f,\delta) = \sup_{0 < h \le \delta} ||f(P) - \frac{1}{|C_h^{k-2}(P)|} \int_{C_h^{k-2}(P)} f(Q) dS(Q)||_{C(S^{k-1})} =$$

$$= \sup_{0 < h \le \delta} \max_{P \in S^{k-1}} \left| f(P) - \frac{1}{|C_h^{k-2}(P)|} \int_{C_h^{k-2}(P)} f(Q) dS(Q) \right|.$$

Модуль гладкости функции $g(\) \in \mathcal{H}(\mathcal{B}^{-1})$ определим формулой:

$$\omega^{*}(f,\delta) = \sup_{0 < h \le \delta} \|f(P) - \frac{1}{|D^{k-1}(P,h)|} \int_{D^{k-1}(P,h)} f(Q) dS(Q) \|_{C(S^{k-1})} =$$

$$= \sup_{0 < h \le \delta} \max_{P \in S^{k-1}} \left| f(P) - \frac{1}{|D^{k-1}(P,h)|} \int_{D^{k-1}(P,h)} f(Q) dS^{k-1}(Q) \right|.$$

Интегральный модуль непрерывности в пространстве $J(\mathcal{B}^{-1})$ $(1 \le p \le \infty)$ определим формулой:

$$\omega(f,\delta)_{L_{p}(S^{k-1})} = \sup_{0 < h \le \delta} \|f(P) - \frac{1}{|C^{k-2}(P,h)|} \int_{C^{k-2}(P,h)} f(Q) dS(Q) \|_{L_{p}(S^{k-1})} =$$

$$= \sup_{0 < h \le \delta} \left\{ \int_{S^{k-1}} \left| f(P) - \frac{1}{|C^{k-2}(P,h)|} \int_{C^{k-2}(P,h)} f(Q) dS(Q) \right|^{p} dS(P) \right\}^{\frac{1}{p}},$$

а интегральный модуль гладкости, формулой:

$$\omega^{*}(f,\delta)_{L_{p}(S^{k-1})} = \sup_{0 < h \le \delta} \|f(P) - \frac{1}{|D^{k-1}(P,h)|} \int_{D^{k-1}(P,h)} f(Q) dS(Q) \|_{L_{p}(S^{k-1})} =$$

$$= \sup_{0 < h \le \delta} \left\{ \int_{S^{k-1}} \left| f(P) - \frac{1}{|D^{k-1}(P,h)|} \int_{D^{k-1}(P,h)} f(Q) dS(Q) \right|^{p} dS(P) \right\}^{\frac{1}{p}}.$$

Соответственно определим обобщенный модуль гладкости, интегральный модуль непрерывности и интегральный модуль гладкости:

$$\Omega(f;\delta) = \sup_{c \ge 0} \frac{\omega(f;c\delta)}{(1+c)^{2}};$$

$$\Omega^{*}(f;\delta) = \sup_{c \ge 0} \frac{\omega^{*}(f;c\delta)}{(1+c)^{2}};$$

$$\Omega(f;\delta)_{L_{p}(S^{k-1})} = \sup_{c \ge 0} \frac{\omega(f;c\delta)}{(1+c)^{2}};$$

$$\Omega^{*}(f;\delta)_{L_{p}(S^{k-1})} = \sup_{c \ge 0} \frac{\omega^{*}(f;c\delta)}{(1+c)^{2}};$$

$$\Omega^{*}(f;\delta)_{L_{p}(S^{k-1})} = \sup_{c \ge 0} \frac{\omega(f;c\delta)}{(1+c)^{2}}.$$
(1.1.6.)

Определение 1.1.3. Если

$$\Omega(f;\delta) \le A \left(\sin\frac{\delta}{2}\right)^{\alpha} \qquad (0 < 2)$$

$$\left(\Omega * (f;\delta) \le A \left(\sin\frac{\delta}{2}\right)^{\alpha}\right),$$

То скажем, что g удовлетворяет условию Липшица (обобшённому условию Липшица) в метрике f и пишем $f \in \text{Lip} \alpha$ ($f \in \text{Lip} \alpha$).

Определение 1.1.4. Если

$$\Omega(f;\delta)_{L_p(S^{k-1})} \le A \left(\sin \frac{\delta}{2} \right)^{\alpha}, \qquad (0 < 2),$$

$$\left(\Omega * (f;\delta)_{L_p(S^{k-1})} \le A \left(\sin \frac{\delta}{2} \right)^{\alpha} \right),$$

Тогда скажем, что g удовлетворяет условию (обобщенному) Липшица в метрике L_p и пишем

$$f \in \operatorname{Lip}(\alpha; p)_{S^{k-1}} \qquad (f \in \operatorname{Lip} * (\alpha; p)_{S^{k-1}}).$$

Обобщенный оператор Лапласа $\overline{\Delta}f(x)$ точке $x\in \mathcal{B}^{-1}$ функции g определяется равенством:

$$\overline{\Delta}f(x) = \lim_{h \to 0} \frac{\frac{1}{\left|C^{k-2}(x;h)\right|} \int_{C^{k-2}(x;h)} f(y) dS^{k-2}(y) - f(x)}{\frac{2}{k-1} \sin^2 \frac{h}{2}},$$

а оператор второго порядка имеет вид:

$$\frac{\Gamma\left(\frac{k-1}{2}\right)}{\left|C^{k-2}\left|\sin^{k-2}h\right.C^{k-2}(x;h)} \int_{C^{k-2}(x;h)}^{f(y)} dS^{k-2}(y) =$$

$$= f(x) + \left(\frac{\Gamma\left(\frac{k-1}{2}\right)}{\Gamma\left(\frac{k-1}{2}+1\right)} + \frac{(k-1)\Gamma\left(\frac{k-1}{2}\right)}{2\Gamma\left(\frac{k-1}{2}+2\right)} \sin^{2}\frac{h}{2} \cdot \sin^{2}\frac{h}{2} \overline{\Delta}f(x) +$$

$$+ \frac{\Gamma\left(\frac{k-1}{2}\right)}{2\Gamma\left(\frac{k-1}{2}+2\right)} \sin^{4}\frac{h}{2} \overline{\Delta}^{2} f(x) + o(1-\cosh)^{2}.$$

Более общий оператор Лапласа в точке $x \in \mathcal{B}^{-1}$ функции g определяется равенством:

$$\widetilde{\Delta}f(x) = \lim_{h \to 0} \frac{\frac{1}{\left|D^{k-2}(x;h)\right|} \int_{D^{k-2}(x;h)} f(y) dS^{k-1}(y) - f(x)}{\frac{2}{k+1} \sin^2 \frac{h}{2}},$$

A оператор второго порядка $\overset{\sim}{\Delta}^2$ определяется равенством:

$$\frac{1}{\left|D^{k-1}(x;h)\right|} \int_{D^{k-1}(x;h)} f(y)dS^{k-1}(y) =$$

$$= f(x) + \left(\frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k+1}{2}+1\right)} + \frac{(k-1)\Gamma\left(\frac{k+1}{2}\right)}{2\Gamma\left(\frac{k+1}{2}+2\right)} \sin^2\frac{h}{2}\right) \cdot \sin^2\frac{h}{2} \widetilde{\Delta}f(x) +$$

$$+ \frac{\Gamma\left(\frac{k+1}{2}\right)}{2\Gamma\left(\frac{k+1}{2}+2\right)} \sin^4\frac{h}{2} \widetilde{\Delta}^2 f(x) + o(1-\cosh)^2.$$

В параграфе 1.2 исследованы свойства Валле-Пуссена на \mathcal{B}^{-1} сфере. Определение 1.2.1. Пусть $f \in (\mathcal{B}^{-1})$. Интеграл

$$V_n(f,P) = \frac{\Gamma(n+k-1)}{2^{k-1}\pi^{\frac{k-1}{2}}\Gamma(n+\frac{k-1}{2})} \int_{S^{k-1}} \left[\frac{1+(P,Q)}{2} \right]^n f(Q) dS(Q).$$
 (1.2.1)

называется сингулярным интегралом Валле-Пуссена.

Доказаны некоторые свойства этого интеграла. В частности доказаны следующие теоремы:

T е о р е м а 1.2.1. Если $\mathscr{G}(\)\in (\mathscr{B}^{-1})$, то во всех -точках этой функции $\lim_{n \to \infty} V_{\mathcal{G}}(\mathscr{G},\)=\mathscr{G}(\).$

Теорема 1.2.2. Если $\mathfrak{P}(3^{-1})$, тогда

$$\|V_n(f;P) - f(P)\|_{C(S^{K-1})} \le C_k \Omega * \left(f; \frac{1}{\sqrt{n}}\right).$$

 \mathbf{C} ледствие. Если $f \in \mathrm{Lip} * \alpha_{\mathsf{S}^{k-1}}$, тогда

$$||V_n(f;P) - f(P)||_{C(S^{k-1})} \le \frac{C_k A}{\sqrt{n^{\alpha}}}.$$
 (1.2.6)

Теорема 1.2.3. Если $f \in Lp(S^k)$, тогда

$$\|V_n(f;P) - f(P)\|_{L_p(S^{k-1})} \le B_k \Omega * \left(f; \frac{i}{\sqrt{n}}\right)_{L_p(S^{k-1})}$$

Следствие. Если $f \in \text{Lip}^*(\alpha; p)$, тогда

$$||V_n(f;P) - f(P)||_{L_p(S^{k-1})} \le \frac{B_k A}{\sqrt{n^{\alpha}}}.$$
 (1.2.9)

Теорема 1.2.4. Оценки (1.2.6) и (1.2.9) окончательны (в смысле порядка).

Теорема. 1.2.5. Скажем $g() \in \mathcal{B}(\mathcal{B}^{-1})$. Если, в какой либо точке существует обобщенный оператор Лапласа $\overline{\Delta}f(P)$, то

$$V_n(f,P) = f(P) + \frac{\overline{\Delta}f(P)}{n} + \frac{\rho_n}{n}$$
,

где $\rho_n \to 0$, когда $n \to \infty$.

Теорема 1.2.5 показывает, что интеграл Валле-Пусена несмотря на его общность (равномерно приближает всякую непрерывную функцию), дает сравнительно плохое приближение. Более того, никакое улучшение структурных свойств функции g не дает приближения лучшего порядка, чем $\frac{1}{n}$.

В параграфе 1.3 доказаны теоремы о суммируемости продифференцированного интеграла Валле-Пуссена. В частности:

Теорема 1.3.5. Скажем $g \in (\Im \beta^{-1})$. Если в точке $b \in \Im \beta^{-1}$ существует $\widetilde{\Delta}^2 f(x)$, тогда

$$\lim_{n\to\infty} D_k^2 V_n(f;x) = \widetilde{\Delta}^2 f(x).$$

Теорема 1.3.6. Если $\overline{\Delta}^2 f(x) \in C(S^{k-1})$, тогда

$$\lim_{n\to\infty} D_k^2 V_n(f;x) = \widetilde{\Delta}^2 f(x)$$

ровномерно относительно b.

Во второй главе, которая состоит из двух параграфов, рассмотрен вопрос суммируемости методом Абеля продифференцированных рядов Фурье по системам обобщенных сферических функций.

В параграфе 2.1 приведены определения и обозначения, которые использованы в этой главе.

Допустим, на поверхности единичной сферы дана вектор-функция $g(\theta; \theta)$. Определим комбинацию компонентов этой функции [17]

$$\beta_0 = \beta_0, \quad \beta_1 = \frac{1}{\sqrt{2}} (\beta + \rho \beta_0), \quad \beta_{-1} = \frac{1}{\sqrt{2}} (\beta - \rho \beta_0)$$

и разложим их по отношению системе обобщенных сферических функций

$$v_m(\theta, \varphi) \sim \sum_{l=|m|}^{\infty} \sum_{n=-l}^{l} c_{mn}^l T_{mn}^l (\frac{\pi}{2} - \varphi, \theta, 0)$$
 (2.1.1)

где

$$T_{mn}^{l}(\frac{\pi}{2}-\varphi,\theta,0)=e^{-in(\frac{\pi}{2}-\varphi)}P_{mn}^{l}(\cos\theta)$$

являются обобщенными сферическими функциями,

$$P_{mn}^{l}(\mu) = \frac{(-1)^{n-m} i^{n-m}}{2^{l} (l-m)!} \sqrt{\frac{(l-m)!(l+n)!}{(l+m)!(l-n)!}} \cdot (1-\mu)^{-\frac{n-m}{2}} (1+\mu)^{-\frac{n+m}{2}} \frac{d^{l-n}}{du^{l-n}} [(1-\mu)^{l-m} (1+\mu)^{l+m}],$$

a

$$C_{mn}^{l} = \frac{2l+1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} v_{m}(\theta', \varphi') \overline{T_{mn}^{l}(\frac{\pi}{2} - \varphi', \theta', 0)} \sin\theta' d\theta' d\varphi'$$
 является

коэффициентами Фурье.

Рассмотрим средние Абеля ряда (3.1.1)

$$u(v_m; \rho, \theta, \varphi) = \sum_{l=|m|}^{\infty} \rho^l \sum_{n=-l}^{l} C_{mn}^l T_{mn}^l (\frac{\pi}{2} - \varphi, \theta, 0) =$$

$$= \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} v_m(\theta', \varphi') Q(\rho, \theta, \varphi, \theta', \varphi') \sin\theta' d\theta' d\varphi',$$

где

$$Q(\rho, \theta, \varphi, \theta', \varphi') =$$

$$\sum_{l=|m|}^{\infty} (2l+1)\rho^{l} \sum_{n=-l}^{l} T_{mn}^{l} (\frac{\pi}{2} - \varphi, \theta, 0) \overline{T_{mn}^{l} (\frac{\pi}{2} - \varphi', \theta', 0)}.$$
 (2.1.3)

Определение 2.1.1. Ряд (2.1.1) называют суммируемым методом Абеля числу \Im в точке $(1, \theta_0, 0)$, если

$$\lim_{\rho \to 1^{-}} u(v_{m}, \rho, \theta_0, \varphi_0) = S.$$

Определение 2.1.2. Ряд (2.1.1) называют суммируемым методом Абеля *к числу \Im в точке (1, θ_0 , θ_0 , если

$$\lim_{(\rho,\theta,\varphi)\stackrel{\wedge}{\rightarrow} (,\theta_0,\varphi_0)} u(v_{m;}\rho,\theta,\varphi) = S ,$$

где $(\rho,\theta,\varphi) \xrightarrow{\wedge} (1,\theta_0,\varphi_0)$ символ означает, что точка $(\rho,\theta$,) стремится к точке $(1,\theta_0,\theta_0)$ по некасательному к сфере направлению.

Определение 2.1.3. Если существуют числа δ_0 , δ_1 , ..., δ_{6} такие, что в некоторой окрестности области точки b выполняется равенство

$$\frac{1}{|C(x;h)|} \int_{C(x;h)} f(t)dS(t) = \sum_{\nu=0}^{r} \frac{a_{\nu}}{(\nu!)^{2} 2^{\nu}} (1 - \cosh)^{\nu} + o(1 - \cosh)^{r},$$

$$r = 1,2,...$$
(2.1.4)

то скажем, что функция f в точке b имеет обобщенный оператор Лапласа порядка r и обозначим его символом $\overline{\Delta^r} f(x)$.

Обобщенный оператор Лапласа, определенный равенством (2.1.3), связан с числами δ_V равенством

$$\overline{\Delta^0}f(x)=a_0\,,$$

$$\overline{\Delta}[\overline{\Delta}+1\cdot 2]\{\overline{\Delta}+2\cdot 3]\cdots[\overline{\Delta}+(\nu-1)\nu]f(x)+a_\nu,\quad \nu=1,2,...,r, \eqno(2.1.5)$$
 где
$$\overline{\Delta}^i\cdot\overline{\Delta}^\gamma=\overline{\Delta}^{i+\gamma}\,,\qquad o,\gamma\ 0,\ o+\gamma\ \text{ б.}$$

Определение 2.1.4. Скажем, что интегрируемая в окрестности точки $b \in \mathcal{P}$ функция f(x) имеет обобщенный оператор Лапласа $\overset{\circ}{\Delta^r} f(x)$ порядка r, если имеет место представление

$$\frac{1}{|D(x;h)|} \int_{D(x;h)} f(t)dS(t) =$$

$$= \sum_{v=0}^{r} \frac{b_{v}}{v!(v+1)!2^{v}} (1-\cosh)^{v} + 0(1-\cosh)^{r}, \quad v = \overline{1,r}.$$

оператор $\Delta^r f(x)$ связан с числами ∂_v равенствами вида (2.1.5).

Определение 2.1.5 Скажем f(x) интегрируемая функция в некой сферической окрестности точки $b_0 \in \mathcal{F}$. Если существуют функции $s_0(b)$, $s_1(b)$, ..., s_0 - $s_0(b)$ и число s_0 такие, что $\lim_{x \to a} a_y(x) = a_y$ и

$$\frac{1}{|C(x;h)|} \int_{C(x;h)} f(t)dS(t) = \sum_{\nu=0}^{r-1} \frac{a_{\nu}(x)}{(\nu!)^{2} 2^{\nu}} (1 - \cosh)^{\nu} + \frac{a_{\nu}}{(r!)^{2} 2r} (1 - \cosh)^{r} + \varepsilon(x,h)(1 - \cosh)^{r},$$

где $\lim_{\substack{h\to 0\\x\to x_0}} \varepsilon(x,h)=0$, то скажем, что функция f в точке b_0 имеет обобщенный

оператор Лапласа в сильном смыслем и обозначим его символом $\overline{\Delta_x^r} f(x_0)$.

Ясно, что если $b=b_0$, то $\overline{\Delta}_x^r f(x_0) = \overline{\Delta}^r f(x_0)$.

Оператор
$$\overline{\Delta}_{x}^{r}$$
 δ (=1, 2,..., δ) (2.1.5).
$$b_{0} \in \mathcal{F}.$$
 δ ($b_{0} \in \mathcal{F}.$ δ ($b_{0} \in \mathcal{F}.$) (2.1.5).
$$b_{r} = b_{r}$$
 δ ($b_{r} = 0,1,...,\delta$) (2.1.5).
$$b_{r} = b_{r}$$
 δ ($b_{r} = 0,1,...,\delta$)
$$\frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) = \sum_{\nu=0}^{r-1} \frac{b_{\nu}(x)}{\nu!(\nu+1)!2^{\nu}} (1-\cosh)^{\nu} + \frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) = \sum_{\nu=0}^{r-1} \frac{b_{\nu}(x)}{\nu!(\nu+1)!2^{\nu}} (1-\cosh)^{\nu} + \frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) = \sum_{\nu=0}^{r-1} \frac{b_{\nu}(x)}{\nu!(\nu+1)!2^{\nu}} (1-\cosh)^{\nu} + \frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) = \sum_{\nu=0}^{r-1} \frac{b_{\nu}(x)}{\nu!(\nu+1)!2^{\nu}} (1-\cosh)^{\nu} + \frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) = \sum_{\nu=0}^{r-1} \frac{b_{\nu}(x)}{\nu!(\nu+1)!2^{\nu}} (1-\cosh)^{\nu} + \frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) = \frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) dS(t) = \frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) dS(t) = \frac{1}{|D(x;h)|} \int_{D(x;h)} f(t) dS(t) dS(t)$$

 $+\frac{b_r}{r!(r+1)!2^r}(1-\cosh)^r+\varepsilon(x,h)(1-\cosh)^r,$

$$\lim_{\substack{h \to 0 \\ x \to x_0}} \varepsilon(x,h) = 0, \qquad f \qquad b_0$$

$$\tilde{\Delta}_x^r f(x_0).$$

$$, \qquad b = b_0 \qquad \tilde{\Delta}_x^r f(x_0) = \tilde{\Delta}^r f(x_0).$$

$$\partial \qquad (2.1.5).$$

$$2.2. \qquad \vdots$$

$$2.2.1 \qquad Q(\rho,\theta,\varphi,\theta',\varphi') = 0.$$

$$2.2.3 \qquad g(\ ;\) \in (\mathcal{P}). \qquad r \in \mathbb{N} \qquad \tilde{\Delta}^r v_{\nu}(\theta,\varphi),$$

$$\lim_{\rho \to 1^-} D_3^r u(v_m;\rho,\theta,\varphi) = \tilde{\Delta}^r v_{\nu}(\theta,\varphi).$$

$$2.2.5 \qquad g(\ ,\) \in (\mathcal{P}) \qquad r \in \mathbb{N}. \qquad (0,0)$$

$$\lim_{\tilde{\Delta}(\rho,\theta,\varphi)} V_m(\theta_0,\varphi_0),$$

$$\lim_{\tilde{\Delta}(\rho,\theta,\varphi)} D_3^r u(v_m;\rho,\theta,\varphi) = \tilde{\Delta}^r v_{\nu}(\theta_0,\varphi_0).$$

Публикации по теме диссертации:

- 1. Macharashvili N., Pochkhua I., Summability of Differentiated Fourier, Series over the Generalized System of Spherical Functions by Abel's Method. Bull. Georg. Acad. Sci, 173(1), 2006, pp. 38-42.
- 2. I. Pochkhua, N. Matcharashvili, On Vallee-Poussin Integral on the S^k . Bull. Georg. Acad. Sci, 172(3), 2005, pp. 376-378.
- 3. I. Pochkhua, On the Second-Order Differential of the Vallee-Poussin Integral on the Sphere, Bull. Georg. Acad. Sci, 174(1), 2006, pp. 33-35.
- 4. I. Pochkua, On Vallee-Poussin Differentiated Integral on the Sphere, Bull. Georg. Acad., 174(2), 2006.

Цитированная литература:

- 5. Никифоров А.Ф., Уваров В.Б., Специальные функции математической физики. М.: Наука, 1978.
- 6. Кушниренко Г. Г., О приближений функций, заданных на единичной сфере, конечными сферическими суммами. Научн. докл. высшей школы, физ. мат. наук, 4(1958), Харьков, с. 47-53.

- 7. Литвинков С.С., О сходимости рядов Фурье по обобщенным сферическим функциям. Изв. Высш. учебн. заведений. Математика, 4, Москва, 1962, с. 92-103.
- 8. Литвинков С.С., О дифференцируемости рядов Фурье по обобщенным сферическим функциям. ДАН, СССР 144:5, 1962, с. 977-980.
- 9. Литвинков С.С., Некоторые свойства рядов Фурье по обобщенным сферическим функциям. Сиб. мат. журн., 9:2, 1968, с. 332-339.
- 10. Мачарашвили Н.Д., О линейных методах суммирования рядов Фурье по обобщенным сферическим функциям. собщ. АН Груз. ССР, 1980, 98:3 с. 549-552.
- 11. Мачарашвили Н.Д., О (С, α) ($\frac{1}{2}$ < α <1) суммируемости рядов Фурье по обобщенным сферическим функциям. Тр. Груз. политехн. ин-та, 5(237), 1981, с. 43-48.
- 12. Мачарашвили Н.Д., О константах Лебега рядов Фурье по обобщенным сферическим функциям. Тр. Груз. политехн. ин-та, 5(237), 1981, с. 49-56.
- 13. Мачарашвили Н. Д., Почхуа И. И., **Ц**иклаури З. И., Сходимость продифференцированного интеграла Вале-Пуссена Тр. Груз. политехн. ин-та, 4(454). 2004, с. 9-15.
- 14. Macharashvili N., Pochkhua I., Summability of Differentiated Fourier, Series over the Generalized System of Spherical Functions by Abel's Method. Bull. Georg. Acad. Sci, 173(1), 2006, pp. 38-42.
- 15. Натансон И. П., Конструктивная теория функций. М. Изд. технико-теоретической литературы, 1949.
- 16. Топурия С. Б., Некоторые свойства интеграла Валле-Пуссена на сфере, Труды ГТУ, 3(260), Тб., 1983.
- 17. Топурия С. Б., Граничные свойства продифференцированного интеграла Пуассона для различных областей и их некоторые применения. Технический Университет, Тб., 2003.
- 18. Топурия С.Б., О представлении функций, определенных на поверхности единичной сферы, сингулярными интегралами и суммируемость рядов Лапласа. Труды ГПИ, 7(147), Тб., 1971, с. 25-58.
 - 19. Топурия С. Б., Ряды Фурье-Лапласа на сфере. Тб., 1987.
- 20. Топурия С. Б., Суммирование методом Абеля продифференцированного ряда Фурье. Докл. АН СССР, 209, № 3, 1973, с. 569-572.
- 21. Топурия С. Б., Чикобава Н. Г., Суммирование линейными методами рядов Фурье по обобщенным сферическим функциям Тр. Груз. ГТУ, №2, (407), 1995.
- 22. Pochkhua I., Matcharashvili N., On Vallee-Poussin Integral on the S^{k-1} Bull. Georg. Acad. Sci, 172(3), 2005, pp. 376-378.
- 23. Pochkhua I., On the Second-Order Differential of the Vallee-Poussin Integral on the Sphere, Bull. Georg. Acad. Sci, 174(1), 2006, pp. 33-35.
- 24. Pochkua I., On Vallee-Poussin Differentiated Integral on the Sphere, Bull. Georg. Acad. 174 (2), 2006.
 - 25. Харди Г. Г., Литтльвуд Д. Е., Полия Г. Неравества. М. ИЛ., 1948.