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General Description of the Work  
 

A rapid development of science and engineering gave the humanity absolutely new means of 
automation – these are commercial robots used in the most diverse spheres of economy: in industry 
they are used as flexible systems of complex automation, transporting facilities, technological machines 
and so on. Among an enormous variety of robotic devices a special place is held by manipulating 
robots designed to perform all sorts of technological operations such as assembly and erection, 
painting, welding and many others.  

In recent years, manipulating robots have been actively used for agricultural work, in particular, 
for gathering various fruits and vegetables, and also for various agro-technical operations such as 
pruning and so on. The use of robots lowers the production cost of final agricultural products, 
contributes to the improvement of their quality and decreases the share of hard manual labor.  

One of the basic scientific and technical tasks connected with the development and 
implementation of robots designed for fulfilling various technological processes in industry and 
agriculture is the solution of problems dealing with the control of spatial motions of robots. Among the 
latter problems, the problem of controlling spatial rotations of multi-joint working components of 
robots is considered to be the most difficult one. The existing methods of its solution are cumbersome 
and complicated and hence it becomes necessary to use sophisticated hardware and software, which, in 
turn, increases the price both of robots themselves and, in the end, of a technological process as a 
whole.   

This dissertation is devoted to: 
1. The development of a new method of representation of spatial rotations of mechanical 

objects; 
2. The development of simple adaptive algorithms of control of terminal states of spatial 

rotations of working organs of agricultural robots.  
 

Topicality of the Theme: Problems of control of spatial motions in general and, in particular, of 
rotational motions of robots belong to the most topical directions in the complex of high technologies 
which demand a lot of scientific research. Most of the methods used to solve these problems are 
optimal methods of programmed control (disconnected methods without feedback). They include the 
maximum principle, the dynamic programming method, the momentum method and others.  

As has been noted, all the listed methods are the programming ones, i.e. demanding the 
preliminary calculation of the law of control u(t) and not making it possible to correct this law during 
motion. However practice demands the construction of automatic control systems (ACS) employing the 
feedback principle, since such systems make it possible to correct the motion trajectory in the course of 
the process.  

Besides, in a majority of cases, for a successful solution of technological problems of robot 
application it is necessary to provide an exact positioning in the terminal stage of motion and thus, in 
the case of manipulating robots, the control of their terminal states  (terminal control) becomes of 
special topical interest. An effective solution of such problems will enable us to improve the quality of 
technological processes, since the quality of these processes depends in many respects on the accuracy 
of the terminal positioning of the gripping devices of robots.  

From the above-said it follows that problems connected with the development of simple adaptive 
systems of automatic control of terminal states of moving objects are topical and meet the up-to-date 
requirements of the development of technologies based on scientific research.  

 
 
The Scientific Novelty consists in the following: 

1. Spatial rotations are for the first time described by their spinor representation, which 
made it possible to obtain simple relations for describing by means of an element of the 
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controlling orthogonal matrix of the basic representation by the known coordinates of 
three defining rotation points: central, initial and terminal. 

2. Simple formulas are obtained for calculation of controlling Euler angles;  
3. The obtained results have enabled us to reduce the actually three-dimensional problem of 

spatial motion control to the one-dimensional problem; 
4. A general variational method is obtained to solve problems of terminal control of spatial 

rotations;  
5. Simple adaptive algorithms are obtained, by means of which various partial problems on 

the terminal control of acceleration, transfer of the object to a given point, and approach 
are solved under various terminal conditions.  

6. New algorithms of control of spatial rotations of manipulating robots are studied;  
7. An optimal control circuit is developed for the work of the electric drive realizing the 

algorithms of control of spatial rotations of manipulating robots.  
 
Methods of Investigation. The following methods are used in the work: elements of the theory 

of representation of rotation groups, the spinor theory, variational methods of control of electric drive 
motion, methods of ordinary differential equations, and methods of programming by Mat-Cad.  

 
The Practical Importance of the work consists in that the developed algorithms can be 

successfully used in programming robot-manipulators for the solution of practical technological 
problems, which will lead to the improvement of their terminal positioning and thereby to the 
perfection of the technological process as a whole. In addition to this, the obtained results can also be 
used for the solution of the corresponding problems of computer graphics.  

 
Approbation of the Work. The results of the work were announced at an international 

conference, at the applied mathematics chair of Georgian Technical University (2005) and at the 
Machine Mechanics Institute of the Georgian Academy of Sciences (2005, 2006). 

 
Published Works. 3 works have been published on the topic of the dissertation.  
 
Structure and Volume.  The work includes 122 computer type-set pages and consists of four 

chapters, a list of references and 37 figures.    
 
Contents of the Thesis. The first Chapter is devoted to the analyses of the state of the problem. 

The survey of corresponding references was carried out. At the end of the chapter the objectives were 
formulated. 

The second chapter is devoted to the presentation of the spinor method of the solution of the 
spatial rotations kinematics. The problems related to the control of manipulation robots belong to the 
most urgent modern scientific and technical problems. The majority of methods used to solve them is 
represented by program methods (rarely – by adaptive ones) of optimal control based either on the 
principle of maximum or on boundary problems for ordinary linear differential equations. All of them 
use to some extent the kinematical relationships of spatial movements of multi-joint mechanisms. The 
main difficulty here is a problem related to three-dimensional rotations. The given problem for 
mechanisms with rotatory kinematical pairs in many cases results in essential computational 
complications, while for spatial mechanisms with spherical kinematics pairs it, apparently, has no 
solution in general.  

Proceeding from the above-said, the purpose of the present work consist of the derivation of new 
relationships  for the description of spatial mechanisms with spherical joints that in future will make a 
basis for development of a new method of control  of their movement. 



In works [1,2], on the basis of spinor model of generalized  rotations of the three-dimensional 
Euclid  space, were received: 

 
1. Unitary matrix of the second order (spinor matrix)  
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2. Simple relationships between elements of a three-dimensional orthogonal matrix A of the basic 
representation of the three-dimensional rotation group and Euler angles, on the one hand, and 
coordinates of initial and final rotation points, on the other hand  
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33cos a=θ ; 31sinsin a=θϕ  and 13sinsin a=θψ , (4) 
where  and  - coordinates of initial and final points of rotation, respectively; 321 ,, xxx 321 ,, yyy

2121 ;;; ββαα   parameters of the spinor rotation matrix   ψφθ ;; . - Euler angles. 
Thus, having expressions (2) (3), it is easy to calculate Euler angles ensuring the turn of a point 

 into a point . If we assume that zero Euler angles   correspond to the 
initial point, then the control of rotation consists in changes in time of Euler angles 

),,( 321 xxxx ),,( 321 yyyy ),,( 321 xxxx
0000 === ψφθ   

from initial values 000 ;; ψφθ  to final ones fff ψφθ ;;  computed by the formulas (4). In a general form 
the control process can be presented as functions of change of Euler angles )(tθ ; )(tφ ; )(tψ  that  should 
satisfy the following conditions: 

0)( 0 =tθ ;  0)( 0 =tφ ; 0)( 0 =tψ , 

fft θθ =)( ;  fft φφ =)( ; fft ψψ =)( ,  (5) 
where  and  - initial and final moments of control process. 0t ft

Based on  the above-said the  problem  of  determination  of control  functions )(tθ ; )(tφ ; 
)(tψ naturally follows,  to which  the given work is devoted. 

It is necessary to point out that  the following: dependences )(tθ ; )(tφ ; )(tψ  have kinematical 
nature character, as they do not allow  for  neither moments nor elasticity nor any other dynamic 
characteristics of process, therefore after their definition the  task of  synthesis of the dynamic  adaptive 
control on the basis of these functions arises [3].  This problem will be considered in the subsequent 
works. 

In a fig. 1 the fixed  vectors ;   and intermediate rotating vector 
, which at the initial moment of time t=t0 coincides with an initial vector of rotation 
 and at the  final  one t=tf -  with a final vector , are represented  The current 

),,( 321 xxxx ),,( 321 yyyy

);;( 321 ξξξξ
),,( 321 xxxx ),,( 321 yyyy
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angle  γ  between vectors  and  at the moment of time t=t0 is equal to zero, 

and at the moment t=tf - 

),,( 321 xxxx );;( 321 ξξξξ

fγγ = , where )),(cos()
*

),(cos( 2x
yxar

yx
yxarf ==γ ;  scalar product of 

vectors x and y. It is obvious that the current angle between vectors  and  is 
equal to 

−),( yx

),,( 321 yyyy );;( 321 ξξξξ
γγ −f .  

Let us determine the coordinates of a vector  from a condition that it makes angles  );;( 321 ξξξξ
γ  and γγ −f  with vectors  and  and at the same time is located in their plane. 
With this purpose we shall enter a vector , being a vector product of the 
vectors of vectors x and y. 

),,( 321 xxxx ),,( 321 yyyy

);;( 122131132332 yxyxyxyxyxyxr −−−

 
 ),,( 321 ξξξξ  
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 fγ
 
 )(tγ   ),,( 321 xxxx  ),,( 321 yyyy   
 
 
 

Fig. 1 Initial, final and intermediate vectors of spatial rotation 
 
Then the above conditions can be written down as the following system of linear equations:  
 

;0),( =rξ  

;cos),( 2 γξ xx =  

).cos(),( 2 γγξ −= fxy   (6)   
It is easy to see that the vector determined by the system (6) meets the following 

conditions:  
);;( 321 ξξξξ

1.  At 0=γ   = , that follows from the second equation of system (4) as 

in this case 

);;( 321 ξξξξ ),,( 321 xxxx
2),( xx =ξ  that is possible only under condition of  = ; );;( 321 ξξξξ ),,( 321 xxxx

2. At fγγ =   = , that follows from the third equation of system (4) as in 

this case 

);;( 321 ξξξξ ),,( 321 yyyy
2),( xy =ξ  that is possible only under condition of  = ; );;( 321 ξξξξ ),,( 321 yyyy

3.  yx ==ξ , that follows from the second and third equations of system (6). 

Thus, the vector  determined by the system (6) corresponds to a fig. 1, that is, it can 
be considered as a vector rotating (the condition 3) from a vectors  (the condition 1) to a 
vector  (the condition 2). At that the angle 

);;( 321 ξξξξ
),,( 321 xxxx

),,( 321 yyyy γ  changes in limits fγγ ≤≤0 . 
The equations of the system (6) can be presented in the coordinate form 
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It is easy to see that its determinant is equal to 
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))(cos))(((cos(
)cos(

cos
0

233223322

322

322

32

1 yryrxrxrx
yyx
xxx
rr

f
f

−−−−=

−

=Δ γγγ
γγ

γ

;

 

              ))(cos))(((cos(
)cos(

cos
0

311331132

321

321

31

2 yryrxrxrx
yxy
xxx
rr

f

f

−−−−=

−

=Δ γγγ
γγ

γ ;

;

 

               ))(cos))(((cos(
)cos(

cos
0

122112212

221

221

21

3 yryrxrxrx
xyy
xxx

rr

f

f

−−−−=

−

=Δ γγγ
γγ

γ . (8) 

 
 (7) and (8) allow coordinates of a required vector  to be obtained in the following 

form: 
);;( 321 ξξξξ
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In these expressions an independent variable is the angleγ  which can be considered as a function 
of time, and it means that the coordinates of a vector  also are functions of time. 
Additionally   we assume that 

);;( 321 ξξξξ
)(tγ  is enough smooth and meets the following 

conditions: ffo ttиtt γγγ ==== )(0)( . We  emphasize  that the problem  of synthesis of spatial 
movement control is reduced in this way  to the definition of a concrete kind of function )(tγ , that is 
related  to the  dynamics of rotation process  and that will be stated in future works. In the given work 
we suppose that )(tγ  is any function satisfying the above conditions. For certainty let us assume 

 tt ωγ =)( ,  (10) 
where fπω 2=  - constant angular frequency. 
If we introduce new vectors  and 

 equal to the vector products [r×x] and [r×y], respectively, 
we shall obtain simple expressions for required coordinates as functions of time 
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As it was already said, the vector  is a rotating vector, therefore at each moment of 
time it can be considered as a final vector of the current moment of rotation process. Having substituted 
in the formulas (2) instead of coordinates of the point  expressions (11), we obtain the 
representations of parameters of the spinor matrix C, orthogonal matrix A (the formula (2)) and Euler 
angles (3) as functions of time. Thus, we obtain a time-dependent (kinematical) representation of 
rotation of a point  into a point . Before this , however, we should  redefine a 
matrix C  in such a manner that at the initial moment of time  the spinor equation of rotation (1) would 
look like 

);;( 321 ξξξξ
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XCCX T= , that, obviously,  is possible only when C is an unitary matrix. It can be made by 
the appropriate selection of parameters 21 and αα .  

Indeed, having put ,   we obtain that  0;1 21 == αα
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We substitute further in (2') instead of coordinates of the vector y the coordinates of a vector ξ  
from (11), then the matrix C will depend on time and will have the following form: 
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From the above-said follows that the spinor matrix of rotation (12) is determined correctly. But in 
such case the Euler angles (4) are correctly determined also which turn out to be the functions of time 
that it is easy to see from (3), (4) and (11) 
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The obtained expressions (13) solve the formulated problem of determination of the control 

kinematical   functions )(tθ ; )(tφ ; )(tψ . On the other hand, it is necessary to note that the offered theory 
allows the problem of spatial movement control to be reduced to one-dimensional one. Indeed, it is 
enough to synthesize in any way a function )(tγ  meeting the appropriate boundary conditions, then, 
obviously, the control process will be completely determined by means of the spinor matrix of rotation 
(12) and functions of Euler angles (13).  

The third chapter is devoted to the elaboration of solution and creation of algorithms of terminal 
control of moving objects. Problems related to the control of moving mechanical objects belong to the 
class of sufficiently well studied problems, many of which for a long time have been regarded as 
classical ones [1÷4]. In the first place, they include such methods as the principle of maximum, 
dynamic programming, the momentum method and others directly connected with the classical 
methods of variational calculus. These methods are rather difficult for application, since the eventual 
control algorithms obtained with their aid are actually of programming character, i.e. explicitly 
depending on time. Therefore it is impossible to carry out the current correction of a phase trajectory, 
though such a correction is absolutely necessary because a moving objected is influenced by perturbing 
environmental factors (both systematic and random). A change of controlling forces brings about a 
change of uncontrolled forces too. All forces (uncontrolled +controlled) acting on the controlled object 
generate the object motion accelerationV . It is obvious that V  can be easily measured directly and 
therefore we should pose the problem on the synthesis of a controlling function in the form of 
acceleration

& &

)(tψ&& . Then the control process reduces to the fulfillment of the equality  
)(tV γ&&& = , (14) 

where  is the measured acceleration of the object and V& ( )tγ&&  is the given (synthesized) 
acceleration of the object.  

The synthesis of a control algorithm can be reduced to some variational problem in a phase space: 
Given two points ( 00 ; )γγ &  and ( )ff γγ &;  in a two-dimensional phase space, it is required to derive the 
equation of a curve of this phase space that connects ( )00 ;γγ &  and ( )ff γγ &;  delivers a minimum to the 
next functional  

       

.))(,,,(1

0

2∫=
T

F dtttf
T

J αγγ &

 (A) 
Functional (3.8) belongs to the type of functionals containing derivatives of second order and 

therefore its corresponding Euler equation can be written in the form  
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 (15) 
Solution  (15) is a third order polynomial  
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 (16) 
The boundary conditions are equal:    

         t = 0;              0γγ = ;            0γγ && = , (17) 

         t = T;             fγγ = ;            fγγ && = . (18) 
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These four conditions are sufficient for defining four constants Сi (i = 0, 1, 2, 3) contained in 
(18), which completely defines an optimal trajectory.  

This approach is quite general, so it gives possibility to solve different terminal control problems: 
reduction, acceleration and approachment. Having limited text space we present only the results 
connected with the last one, but we have to mention that   all full solution of all the problems are 
completely presented in thesis.  

The approachment problem employs four boundary conditions (17) and (18) which allow us to 
calculate immediately the coefficients Сi (i = 0, 1, 2, 3) in the controlling function (16): 

       00 γ=C ; 01 γ&=C ; )2(2)(6
0022 γγγγ && +−−= ff TT

C ; )(6)(12
02033 γγγγ && ++−= ff TT

C .(19) 

The last gives possibility to get the controlling function for the problem of approachment 
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In order to obtain an adaptive control algorithm we proceed as follows: since now the object is all 
the time at the initial point of time, it is assumed that t = 0 and the initial velocity and coordinate values 
are replaced by the respective current values, and the moment of time T is replaced by the difference   
T – t. In the case the adaptive controlling function are obtained 
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The forced and transitional components of controlling process are as follows: 
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It should be emphasized that in the above expressions the initial values 1010 γγ &and  are not equal 
to the initial values given (17) and (18) and thus there arises the transitional process (21) which gets 

damped with time (in this case the time constant is equal to
2
TΔ ), i.e. the object moves to the forced 

trajectory, which leads to a complete solution of the approachment problem.  
Frequently, it is not enough to have four boundary conditions (17) and (18) of the approachment 

problem to solve applied problems of terminal control. For example, in the case deceleration it is not 
enough to assume that the terminal velocity is equal to zero: for a complete stop it is necessary that the 
terminal acceleration, too, be equal to zero. Thus there arise an additional boundary condition (the fifth 
one) related to acceleration:  

        t = 0;                  0γγ = ;                   0γγ && = , 

        t = T;                  fγγ = ;                  fγγ && = ;           fγγ &&&& = . (22) 
Omitting complicate and long details we are giving below final solution of the five boundary 

problems for the approachment problem  

( ) ( )γγγγγ &&&& +
−

−−
−

= ff tTtT
t

)(
6

)(
12)( 2 . (23) 

Here we assume that 0=fγ&&  what is naturally for braking process. 
Chapter four: The spinor model of the kinematics of spatial rotations developed on the basis of 

spinor representation of generalized spatial rotations (Chapter II) and the methods of the control theory  
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of terminal states of motion of mechanical objects (Chapter III) made it possible to create simple 
methods of controlling terminal states of spatial rotations of robot-manipulators. All the below results 
were modeled by means of Mat-Cad system. 

The theory developed in Chapter II has enabled us to reduce the three-dimensional problem of 
spatial motion  control to the one-dimensional problem because we have defined the coordinates of the 
rotating vector (11) as functions of one rotation angle lying in the rotation plane1. It is obvious that the 
trajectories corresponding to this kind of rotations consist of three natural stages: acceleration, uniform 
rotation2 and deceleration for the control of which we will use the results of Chapter III.  

From the standpoint of dynamics, the initial process of rotation means that the object of control 
which is at rest must be accelerated to the desired velocity fγ& . It might seem from this definition that 
in this case we should use the results of the solution of the acceleration control problem, but the matter 
is that if we want to finish the initial stage of motion in the right-hand end of the segment [ ]fγα1;0 , 
then, certainly, we should use the methods of the approach problem which take into account all 
boundary conditions.  

As the initial and terminal vector we took x(10, -45, 30) and  y(1, 20, 51.225). It is obvious that 

the angle between them is equal to 0
2 65.77)),(cos( ==
x
yxarfγ .The angle of rotation  650.77=fγ  was 

divided into three equal angles 3/fγ  = 25.880; 3/2 fγ = 51.770 and 650.77=fγ , i.e. in that case 

3
2

3
1

21 == αα and . In what follows we will use the angle values expressed in terms of radians; 

therefore 3/fγ  = 0.452; 3/2 fγ  = 0.904 and fγ  = 1.355. Let us assume that the angular velocity is 
equal to ω = 1 and the rotation time is also T = 1 sec. We also assume that all three rotation stages are 

of equal duration, i.e. 333.0
31 ==
TT  sec. Initial conditions for the first stage are  

t=0;  00 =γ ;   00 =γ& ,   t=T1;                452.0=fγ ;            1== ff ωγ& .  
Below the dynamic characteristics of control process are given  
 
 

         
a) b) 

                                                           
1 The rotation plane is defined by three principal points of each rotation: central, initial and terminal.  
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2 The segment corresponding to uniform rotation may be zero.   



 c) 

Fig.2. The initial motion segment: rotation angle values as functions of time:  
                  a) the forced component; b) the transient component; c) the phase trajectory   
 
 

 
 
Fig.3.  The initial motion segment: the angular velocity value as a function of time:  

a) the transient component; 
b) the complete solution: the sum of  the forced and transient components 

 
Finally, let us comment on the character of the curves. Fig. 2,b shows the presence of a transient 

process, but it is two orders weaker that the forced component (Fig. 2,а) and soon damps down. The 
transient component of the angular velocity also damps down soon (Fig. 3,a), but its order is 
comparable with the order of the forced component. Weak deflections of the phase trajectory (Fig.2,c) 
and the total velocity (the sum of the transient and forced components), (Fig.3,b)) is a result of the 
transient process.  

For Uniform rotation stage control is the same, only initial conditions are changed 
t = 0; 452.00 =γ ;  10 =γ& ,t = T1; 904.0=fγ ;  1== ff ωγ& . 

Figs. 4÷5 show the dynamic characteristics of the control process on the uniform rotation 
segment. Again we clearly see that the control satisfies the boundary conditions:  at the end of the 
control period T = 0.33 sec. the controlled object really has the given angular coordinate 904.0=fγ  
and the velocity 1=fγ& . Though the transient process takes place, the transient component for the 
angular coordinate function is insignificant (Fig.5,b), while the velocity function (Fig..6,b) is 
comparable with the forced (Fig. 6,a) and total components. 
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Fig.4. The uniform motion segment: rotation angle values as functions of time:  

a) the forced component; 
b) the transient component; 
c) the phase trajectory 
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Fig.5.  The uniform motion segment: the angular velocity value as a function of time:  
a) the transient component;  
b) the complete solution: the sum of the forced and transient components  

 
For the deceleration process ending in a complete stop we need to used the problem with five 

conditions since it is clear that at the end of the rotation process the acceleration must be equal to zero. 
Therefore the boundary conditions take the following form:   

 
t = 0; 904.0=γ ;  1=γ& , 
t = T; 355.1=γ ;  0=γ& ; 0=γ&& . 



Figs. 6 show the dynamic characteristics when .0and0 010010 ==== γγγγ &&  In this case, as 
seen from Figs. 7 there exists a transient process. As different from the preceding motion stages, in this 
case the intensity of transient processes is quite comparable with stationary functions though these 
transient processes damp down soon. Nevertheless the control again satisfies the boundary conditions – 
this fact also follows from trajectory functions for t = T1, which gives for the deceleration stage the 
values 355.1)( 1 == fT γγ  and 55)()0( 1 === Tx ξξ .  

After we have obtained the algorithms of an adaptive terminal control of spatial rotations of 
robot-manipulators, there arises a problem on the development of an optimal control of the electric 
drive of these systems. In this case, too, we have used the variational  methods connected with power 
losses. It should be said that these methods have found quite a wide application for the solution of 
problems of this kind. 

It is required to find functions v(τ)  and  i(τ) that reduce the functional  to a minimum.   ∫=
T

diW
0

2 τ

The boundary conditions are given in the form υ(0) = 0, v(T) = 0. In addition to this, the 

isoperimetric condition  is given, where α is the rotation angle. Then we consider the 

synthesis of the control of electric drive of manipulator shown in fig. 7 

∫=
T

vd
0

τα
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                                        a) b) 

 
Fig. 6 The deceleration segment: the rotation angle value as a function of time:  

a) the forced component;      b) the transient  component 

 
Fig. 7 The diagram of the manipulator with three joints 



 

Let us minimize   for the given ,  ∫=
T
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conditions, where Мдiн — moment of the electric drive,  —acceleration of the electric drive 
shaft, the friction force is not taken into account.  

iΠΩ&

For the third drive we minimize the functional 
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what finally gives control function.  
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Analogically, we got for the second and the first joints (drive) 
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С3 can be determined from the equation 
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Fig. 8 shows the circuit realizing the control of the manipulator motors. The circuit inputs receive 

information on the velocities 3,2,1 ααα &&& accelerations 3,2,1 ααα &&&  moments of force  Q1 Q2, Q3 
calculated or measured on the preceding time interval and recorded in the memory within the given 
time interval Δt. This information is used to calculate q1, q2, q3 and, after that, the control for the next 
time interval which begins when new memorized potentials are delivered to the circuit inputs; in that 
case, the signal values at the integrator outputs are set to zero by closing the discharge loops of the 
capacitors.  

The control realized by the circuit shown in Fig. 4.19 is cancelled by the programming device in 
the initial and terminal parts of the arm trajectory when the inequalities β1 i< α3i-αi < β2i are fulfilled. 
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This ensures the smoothness of the start and stop. Here α3i is the given stepwise displacement of the     
i-th joint set in time by the programming device. 

 
Fig. 8  The Circuit Realizing the Control of the Manipulator Motors. 

 
Conclusions  

 
1. Spatial rotations are for the first time described by their spinor representation, which made   
it possible to obtain simple relations for describing by means of an element of the controlling 
orthogonal matrix of the basic representation by the known coordinates of three defining rotation 
points: central, initial and terminal. 
2. Simple formulas are obtained for calculation of controlling Euler angles;  
3. The obtained results have enabled us to reduce the actually three-dimensional problem of  
spatial motion control to the one-dimensional problem; 
4. A general variational method is obtained to solve problems of terminal control of spatial  
rotations;  
5. Simple adaptive algorithms are obtained, by means of which various partial problems on  
the terminal control of acceleration, transfer of the object to a given point, and approach  
are solved under various terminal conditions.  
6. New algorithms of control of spatial rotations of manipulating robots are studied;  
7. An optimal control circuit is developed for the work of the electric drive realizing the  
algorithms of control of spatial rotations of manipulating robots.  
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