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General Description of the Work  

 

A rapid development of science and engineering gave the humanity absolutely new means of 

automation – these are commercial robots used in the most diverse spheres of economy: in industry 

they are used as flexible systems of complex automation, transporting facilities, technological 

machines and so on. Among an enormous variety of robotic devices a special place is held by 

manipulating robots designed to perform all sorts of technological operations such as assembly and 

erection, painting, welding and many others.  

In recent years, manipulating robots have been actively used for agricultural work, in 

particular, for gathering various fruits and vegetables, and also for various agro-technical 

operations such as pruning and so on. The use of robots lowers the production cost of final 



agricultural products, contributes to the improvement of their quality and decreases the share of 

hard manual labor.  

One of the basic scientific and technical tasks connected with the development and 

implementation of robots designed for fulfilling various technological processes in industry and 

agriculture is the solution of problems dealing with the control of spatial motions of robots. 

Among the latter problems, the problem of controlling spatial rotations of multi-joint working 

components of robots is considered to be the most difficult one. The existing methods of its 

solution are cumbersome and complicated and hence it becomes necessary to use sophisticated 

hardware and software, which, in turn, increases the price both of robots themselves and, in the 

end, of a technological process as a whole.   

 

This dissertation is devoted to: 

1. The development of a new method of representation of spatial rotations of mechanical 

objects; 

2. The development of simple adaptive algorithms of control of terminal states of spatial 

rotations of working organs of agricultural robots.  

Topicality of the Theme: Problems of control of spatial motions in general and, in 

particular, of rotational motions of robots belong to the most topical directions in the 

complex of high technologies which demand a lot of scientific research. Most of the 

methods used to solve these problems are optimal methods of programmed control 

(disconnected methods without feedback). They include the maximum principle, the 

dynamic programming method, the momentum method and others.  

As has been noted, all the listed methods are the programming ones, i.e. demanding 

the preliminary calculation of the law of control u(t) and not making it possible to correct 

this law during motion. However practice demands the construction of automatic control 

systems (ACS) employing the feedback principle, since such systems make it possible to 

correct the motion trajectory in the course of the process.  

Besides, in a majority of cases, for a successful solution of technological problems 

of robot application it is necessary to provide an exact positioning in the terminal stage of 

motion and thus, in the case of manipulating robots, the control of their terminal states  

(terminal control) becomes of special topical interest. An effective solution of such 

problems will enable us to improve the quality of technological processes, since the 



quality of these  processes depends in many respects on the accuracy of the terminal 

positioning of the gripping devices of robots.  

From the above-said it follows that problems connected with the development of 

simple adaptive systems of automatic control of terminal states of moving objects are 

topical and meet the up-to-date requirements of the development of technologies based 

on scientific research.  

 

The Scientific Novelty consists in the following: 

1. Spatial rotations are for the first time described by their spinor representation, which 

made it possible to obtain simple relations for describing by means of an element of 

the controlling orthogonal matrix of the basic representation by the known 

coordinates of three defining rotation points: central, initial and terminal. 

2. Simple formulas are obtained for calculation of controlling Euler angles;  

3. The obtained results have enabled us to reduce the actually three-dimensional 

problem of spatial motion control to the one-dimensional problem; 

4. A general variational method is obtained to solve problems of terminal control of 

spatial rotations;  

5. Simple adaptive algorithms are obtained, by means of which various partial 

problems on the terminal control of acceleration, transfer of the object to a given 

point, and approach are solved under various terminal conditions.  

6. New algorithms of control of spatial rotations of manipulating robots are studied;  

7. An optimal control circuit is developed for the work of the electric drive realizing 

the algorithms of control of spatial rotations of manipulating robots.  

Methods of Investigation. The following methods are used in the work: elements of the 

theory of representation of rotation groups, the spinor theory, variational methods of control of 

electric drive motion, methods of ordinary differential equations, methods of programming by 

Mat-Cad.  

The Practical Importance of the work consists in that the developed algorithms can be 

successfully used in programming robot-manipulators for the solution of practical technological 

problems, which will lead to the improvement of their terminal positioning and thereby to the 

perfection of the technological process as a whole. In addition to this, the obtained results can also 

be used for the solution of the corresponding problems of computer graphics.  



Approbation of the Work. The results of the work were announced at an  international 

conference, at the applied mathematics chair of Georgian Technical University (2005) and at the 

Machine Mechanics Institute of the Georgian Academy of Sciences (2005, 2006). 

 

Published works. 3 works have been published on the topic of the dissertation.  

 

Structure and volume.  The work includes 122 computer type-set pages and consists of four 

chapters, a list of references and 37 figures.  

 

1. Analysis of Literature Sources 

 

Robotics is one of the fastest growing engineering fields of today. Millions of dollars have 

been spent in the developments of robots to be used in all sorts of field. The use of robots is more 

common today than ever before and it is no longer exclusively used by the heavy production 

industries. Robots are designed to remove the human factor from labor intensive or dangerous 

work. The computer is the brain of the robot which receives data from various sources to control 

the movement of the robot in order to accomplish a task.  

Robotics is usually associated with the manufacturing industry, where it has had a history 

which is patchy, to say the least. In agriculture, the opportunities for robot-enhanced productivity 

are immense and the robots are appearing on farms in various guises and in increasing numbers.  

The essential 'robotic' blending of intelligent sensing with mechanical actuation can be 

found in vision-guided tractors, product grading systems, planters and harvesters, applicators for 

fertilizers and pest control. Robot manipulators can divide plant material for micro-propagation in 

sterile conditions; others can skin fruit for canning.  

All the ingredients of robotics are there. Sensing is important in all aspects. These range 

from simple transducers to measure actuator positions to vision for guidance and grading, time-

series analysis of cutter vibration, flow rates for yield monitoring and GPS for precision agriculture 

and many more which have not yet been thought of. Actuation, software for intelligent control, 

kinematics and communication all have a party to play in this rapidly growing art. 

 

 

 

http://www.usq.edu.au/users/billings/ieee/toul1.htm


1.1 Types of Robots 

 

Robots can be found in the manufacturing industry, the military, space exploration, 

transportation, and medical applications. Below are just some of the uses for robots.  

Typical industrial robots do jobs that are difficult, dangerous or dull. They lift heavy 

objects, paint, handle chemicals, and perform assembly work [1,7]. They perform the same job 

hour after hour, day after day with precision. They don't get tired and they don't make errors 

associated with fatigue and so are ideally suited to performing repetitive tasks. The major 

categories of industrial robots by mechanical structure are [2÷5]:  

Cartesian robot /Gantry robot: Used for pick and place work, application of sealant, 

assembly operations, handling machine tools and arc welding. It's a robot whose arm has three 

prismatic joints, whose axes are coincident with a Cartesian coordinator.  

Cylindrical robot: Used for assembly operations, handling at machine tools, spot welding, 

and handling at die-casting machines. It's a robot whose axes form a cylindrical coordinate system.  

Spherical/Polar robot: Used for handling at machine tools, spot welding, die-casting, 

fettling machines, gas welding and arc welding. It's a robot whose axes form a polar coordinate 

system.  

SCARA robot: Used for pick and place work, application of sealant, assembly operations 

and handling machine tools. It's a robot which has two parallel rotary joints to provide compliance 

in a plane.  

Articulated robot: Used for assembly operations, die-casting, fettling machines, gas 

welding, arc welding and spray painting. It's a robot whose arm has at least three rotary joints.  

Parallel robot: One use is a mobile platform handling cockpit flight simulators. It's a robot 

whose arms have concurrent prismatic or rotary joints.  

Industrial robots are found in a variety of locations including the automobile and 

manufacturing industries. Robots cut and shape fabricated parts, assemble machinery and inspect 

manufactured parts. Some types of jobs robots do: load bricks, die cast, drill, fasten, forge, make 

glass, grind, heat treat, load/unload machines, machine parts, handle parts, measure, monitor 

radiation, run nuts, sort parts, clean parts, profile objects, perform quality control, rivet, sand blast, 

change tools and weld.  

http://prime.jsc.nasa.gov/ROV/images/cartesian.GIF
http://prime.jsc.nasa.gov/ROV/images/gantry.gif
http://prime.jsc.nasa.gov/ROV/images/cylindrical2.GIF
http://prime.jsc.nasa.gov/ROV/images/sphericalpolar.GIF
http://prime.jsc.nasa.gov/ROV/images/SCARA.GIF
http://prime.jsc.nasa.gov/ROV/images/articulated.jpg
http://prime.jsc.nasa.gov/ROV/images/parallel.jpg


Outside the manufacturing world robots perform other important jobs. They can be found 

in hazardous duty service, CAD/CAM design and prototyping, maintenance jobs, fighting fires, 

medical applications, military warfare and on the farm.  

Farmers drive over a billion slow tractor miles every year on the same ground. Their land is 

generally gentle, and proven robot navigation techniques can be applied to this environment. A 

robot agricultural harvester named Demeter is a model for commercializing mobile robotics 

technology. The Demeter harvester contains controllers, positioners, safeguards, and task software 

specialized to the needs commercial agriculture [6].  

Some robots are used to investigate hazardous and dangerous environments. The Pioneer 

robot is a remote reconnaissance system for structural analysis of the Chornobyl Unit 4 reactor 

building. Its major components are a teleoperated mobile robot for deploying sensor and sampling 

payloads, a mapper for creating photorealistic 3D models of the building interior, a coreborer for 

cutting and retrieving samples of structural materials, and a suite of radiation and other 

environmental sensors [8].  

An eight-legged, tethered, robot named Dante II descended into the active crater of Mt. 

Spurr, an Alaskan volcano 90 miles west of Anchorage. Dante II's mission was to rappel and walk 

autonomously over rough terrain in a harsh environment; receive instructions from remote 

operators; demonstrate sophisticated communications and control software; and determine how 

much carbon dioxide, hydrogen sulfide, and sulfur dioxide exist in the steamy gas emanating from 

fumaroles in the crater. Via satellite, Dante II sent back visual information and other data, as well 

as received instruction from human operators at control stations in Anchorage, Washington D.C., 

and the NASA Ames Research Center near San Francisco. Dante II saves volcanologists from 

having to enter the craters of active volcanoes. It also demonstrates the technology necessary for a 

robot to explore the surface of the moon or planets. That is, the robot must be able to walk on 

rough terrain in a harsh environment, receive instructions from remote operators about where to go 

next, and reach those commanded goals autonomously [9,10].  

Robotic underwater rovers are used explore and gather information about many facets of 

our marine environment. One example of underwater exploration is Project Jeremy, collaboration 

between NASA and Santa Clara University. Scientists sent an underwater telepresence remotely 

operated vehicle (TROV) into the freezing Arctic Ocean waters to investigate the remains of a 

whaling fleet lost in 1871. The TROV was tethered to the surface boat Polar Star by a cable that 

carried power and instructions down to the robot and the robot returned video images up to the 

http://www.rec.ri.cmu.edu/projects/demeter/
http://www.frc.ri.cmu.edu/projects/pioneer
http://spacelink.nasa.gov/NASA.Projects/Space.Science/Solar.System/Dante/
http://screem.engr.scu.edu/jeremy


Polar Star. The TROV located two ships which it documented using stereoscopic video cameras 

and control mechanisms like the ones on the Mars Pathfinder. In addition to pictures, the TROV 

can also collect artifacts and gather information about the water conditions. By learning how to 

study extreme environments on earth, scientists will be better prepared to study environments on 

other planets.  

Space-based robotic technology at NASA falls within three specific mission areas: 

exploration robotics, science payload maintenance, and on-orbit servicing. Related elements are 

terrestrial/commercial applications which transfer technologies generated from space telerobotics 

to the commercial sector and component technology which encompasses the development of joint 

designs, muscle wire, exoskeletons and sensor technology.  

Today, two important devices exist which are proven space robots. One is the Remotely 

Operated Vehicle (ROV) and the other is the Remote Manipulator System (RMS). An ROV can be 

an unmanned spacecraft that remains in flight, a Lander that makes contact with an extraterrestrial 

body and operates from a stationary position, or a rover that can move over terrain once it has 

landed. It is difficult to say exactly when early spacecraft evolved from simple automatons to robot 

explorers or ROVs. Even the earliest and simplest spacecraft operated with some preprogrammed 

functions monitored closely from Earth. One of the best known ROV's is the Sojourner rover that 

was deployed by the Mars Pathfinder spacecraft. Several NASA centers are involved in developing 

planetary explorers and space-based robots.  

The most common type of existing robotic device is the robot arm often used in industry 

and manufacturing. The mechanical arm recreates many of the movements of the human arm, 

having not only side-to-side and up-and-down motion, but also a full 360-degree circular motion at 

the wrist, which humans do not have. Robot arms are of two types. One is computer-operated and 

programmed for a specific function. The other requires a human to actually control the strength 

and movement of the arm to perform the task. To date, the NASA Remote Manipulator System 

(RMS) robot arm has performed a number of tasks on many space-missions serving as a grappler, 

a remote assembly device, and also as a positioning and anchoring device for astronauts working 

in space.  

 

 

http://ranier.oact.hq.nasa.gov/telerobotics_page/programdesc.html
http://ranier.oact.hq.nasa.gov/telerobotics_page/programdesc.html
http://robotics.jpl.nasa.gov/
http://robotics.jpl.nasa.gov/
http://prime.jsc.nasa.gov/ROV/rms.html
http://spacelink.nasa.gov/NASA.Projects/Space.Science/Solar.System/Mars.Pathfinder/.index.html
http://www.jpl.nasa.gov/technology/robotics/robotics_index.html
http://tommy.jsc.nasa.gov/
http://prime.jsc.nasa.gov/ROV/rms.html
http://prime.jsc.nasa.gov/ROV/rms.html


1.1.1 Robots in Agriculture 

 

Agricultural robots and precision farming have a great potentiality not only to change the 

agriculture, but also to solve many problems even for global issues [11]. The idea of applying 

robotics technology in agriculture is very new. The main area of application of robots in 

agriculture is at the harvesting stage. Fruit picking robot and sheep shearing robot are designed to 

replace human labor. The agricultural industry is behind other industries in using robots because 

the sort of jobs involved in agriculture are not straight forward and many repetitive tasks are not 

exactly the same every time. In most cases, a lot of factors have to be considered (i.e.: size and 

color of the fruit to be picked) before the commencement of a task [12÷17].  

In the field of agriculture, various operations for handling heavy material are performed. 

For example, in vegetable cropping, workers should handle heavy vegetables in the harvest season. 

Additionally, in organic farming, which is fast gaining popularity, workers should handle heavy 

compost bags in the fertilizing season. These operations are dull, repetitive, or require strength and 

skill for the workers. In the 1980’s many agricultural robots were started for research and 

development. Kawamura and co-workers developed the fruit harvesting robot in orchard. Grand 

and co-workers developed the apple harvesting robot .They have been followed by many other 

works including our previous works. Many of the works focus on structure systems design (e.g., 

mechanical systems design) of the robots and report realization of the basic actions in actual open 

fields. However, many of the robots are not in the stages of diffusion but still in the stages of 

research and development. It is important to find rooms to achieve higher performance and lower 

cost of the robots [18÷20]. 

There are many robots used in agriculture and food industry. Some of them are as follows 

[21÷24]: 

1.1.1.1  Fruit Picking Robot 

The principles of fruit picking robots have been developed since the early 1980's. These 

principles have opened up new approaches to the harvesting of crops. To start with, the fruit 

picking robots need to pick ripe fruit without damaging the branches or leaves of the tree. Mobility 

is a priority, and the robots must be able to access all areas of the tree being harvested. It goes then 

without saying that the robots must be 'intelligent', and have a human-like interaction with their 



surroundings through senses of touch, sight, and image processing. The fundamental blocks of 

these robots are shown in the diagram here [25÷33].  

 

 

 

 

Fig 1.1 Fruit Picking Robot 

The robot can distinguish between fruit and leaves by using video image capturing. The 

camera is mounted on the robot arm, and the colours detected are compared with properties stored 

in memory. If a match is obtained, the fruit is picked. If fruit is hidden by leaves, an air jet can be 

used to blow leaves out the way so a clearer view and access can be obtained.  

The robot arm itself is coated in rubber to minimise any damage to the tree. It has 5 degrees 

of freedom, allowing it to move, in, out, up, down, and in cylindrical and spherical motion 

patterns. The pressure applied to the fruit is sufficient for removal from the tree, but not enough to 

crush the fruit. This is accomplished by a feedback process from the gripper mechanism, which is 

driven by motors, hydraulics, or a pneumatic system. The shape of the gripper depends on the fruit 



being picked, as some fruits, such as plums, crush very easily, while others, like oranges are not so 

susceptible to bruising.  

1.1.1.2 Tomato and Cherry Tomato Harvesting Robot 

 

Fig. 1.2 shows a tomato and cherry tomato harvesting robot. This robot consists of 4 

components; manipulator, end-effector, visual sensor, and traveling device. Here, those 

components are described. A seven degrees of freedom manipulator was used to harvest larger size 

tomato and cherry tomato fruits as shown in Fig.1.2. This manipulator could have high 

manipulatability when it had a harvesting posture. The manipulator consisted of two prismatic 

joints and five rotational joints. The lengths of upper arm and fore arm were 250 mm and 200 mm, 

while strokes of the prismatic joints are 200 mm in horizontal direction and 300 mm in vertical 

direction [25]. 

 

 

 
 

Fig.1.2 Tomato and Cherry tomato harvesting robot 

 



1.1.1.3 Strawberry Harvesting Robots     

Two types of strawberry harvesting robots [19] have been developed. One is for 

hydroponic system (Fig.1.3) and the other is for soil system. Since the plant training systems are 

different each other, two different types of robot are required. These robots also have similar 

components. The former robot is also cooperated with an agricultural machinery company. 

 

 
 

Fig. 1.3 Strawberry Harvesting Robot for Hydroponic System. 

 

1.1.1.4 Cucumber Harvesting Robot 

Fig. 1.4 shows a cucumber harvesting robot designed in 1996. As its manipulator, 6 DOF 

articulate manipulator was prepared to be able to work in the inclined trellis training system, which 

was developed for the robotic harvesting system. The training system made fruits hang down from 

its trellis to be able to detect fruits easily. Its visual sensor should be able to discriminate green 

fruit from green leaves and stems, since immature fruit is usually harvested. In this robot, 

therefore, a monochrome TV camera with 850 nm wavelength interference optical filter was used 

to discriminate the fruit based on its spectral reflectance. In its end-effector, a peduncle detector, a 

cutter and fingers were installed, because it is difficult to detect peduncle position by the visual 



sensor and it is necessary to cut the peduncle. This project is collaborated with an agricultural 

machinery company. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4 Cucumber 

Harvesting Robot. 

 

Fig. 1.5 MAGALI Apple Picking Arm ,1987 

1.1.1.5  Multi-Operation Robot for Grapevine 

Fig.1.6 shows a robot to work in vineyard. In open field, harvesting period is so short that a 

harvesting robot may not be efficient if it is not able to do other operation.  To make working 



period of the robot longer, several end-effectors were developed. This robot has a polar coordinate 

manipulator with five degrees of freedom. The manipulator end could be moved on horizontal 

plane below the trellis at a constant speed under CP control.  

  The length of the arm was 1.6 m, and the stroke was 1 m.  In our  laboratory,  a  

harvesting end-effector (Fig.1.7), a berry thinning  end-effector,   a bagging   end-effector,  and  a  

spray  nozzle  were  attached to the manipulator end and experimented. 

 

 

  

  

 

 

 

 

 

 

 

 

 

Fig.1.6 Multi-Operation Robot for Grapevine (Bagging operation). 



 
 

Fig.1.7 Harvesting End-effector. 

 

1.1.1.6  Chrysanthemum Cutting Sticking Robot 

Fig.1.8 shows a robotic cutting sticking system. The system mainly consists of three 

sections; a cutting providing system, a leaf removing device (Fig.1.9) and a sticking device 

(Fig.1.10). First, a bundle of cutting is put into a water tank. The cuttings are spread out on the 

water by vibration of the tank. The cuttings are picked by a manipulator based on information of 

cutting position from a TV camera. Secondly, another TV camera recognizes the shape of cutting 

transferred from the water tank by the manipulator and detects its position and direction. The TV 

camera indicates the grasping position of the cutting for another manipulator. Thirdly, the 

manipulator moves the cutting to the leaf removing device and to the sticking device. Finally, the 

cuttings are stuck into a plug tray by the planting device [9,10].  

 

 

 

 



 

 

 

 

 

 

     

 

 

 

 

Fig. 1.8 Cutting providing system 

 

 

 

 

 

 

 

 

 

Fig. 1.9 Leaf removing device 



 
 

 

 

 

 

 

 

 

 

Fig 1.10 Sticking Device 

 

1.1.2   Stock Raising 

  1.1.2.1   Sheep Sheering Robot  

The Oracle robot is a Sheep Sheering robot and it was developed at the University Of 

Western Australia in 1979. Many of the Oracle's concepts formed the basis for its successor, the 

Shear Magic Robot. The Oracle is pictured in Fig.1.11  

During shearing operations, the sheep is restrained firmly by holding its legs and its head in 

a manipulator, called the ARAMP. The shearing arm is directed by complex motion control 

algorithms which maintain the cutter at a predefined height above the sheep's skin. It should be 

noted that not all sheep are the same shape, and they sometimes object very strongly to being 

shorn.  

 

http://kernow.curtin.edu.au/www/Agrirobot1/shepsher.htm
http://kernow.curtin.edu.au/www/Agrirobot1/shepsher.htm
http://www.uwa.edu.au/
http://www.uwa.edu.au/
http://kernow.curtin.edu.au/www/Agrirobot1/shmagic.htm
http://kernow.curtin.edu.au/www/Agrirobot1/aramp.htm


 

Fig. 1.11:  Sheep Shearer 

The robotics arm which holds the clippers can be manoeuvred in six directions, and is 

powered by a series of hydraulic actuators using proportional analogue servo controls. These 

actuators are controlled by a minicomputer through a conventional D/A interface. The Hewlett 

Packard 21MX-E is utilised to control Oracle. To maintain such a critical distance from the sheeps' 

skin, many sensors are used to feedback the actual position of the shearing arm and the relative 

position of the sheeps' skin. Difficulties are associated with such sensing, as wool has a tendency 

to conduct electricity, and this characteristic can vary with moisture, humidity and other 

environmental factors, so sensors can give erroneous readings. However, a combination of several 

types of sensors are used to keep the clippers at a safe distance from the skin whilst still ensuring a 

reliable cut to the wool.  

http://kernow.curtin.edu.au/www/Agrirobot1/sensors.htm


1.1.3 Robots for the Food Industry 

 

  The benefits of robotic technology have been demonstrated in many aspects of engineering 

and manufacturing industry. There are also many potential benefits for the food sector although 

these have yet to be commercially realized. Many business reasons are cited for the introduction of 

robotics including improved product quality and reductions in unit production costs. For the food 

industry the extra benefits of robotic automation are improved quality, in terms of hygiene and 

repeatability of processing, and reduced labor costs. Introducing robots is not however easy. Food 

products vary tremendously in size, shape, texture, flexibility, etc. and intelligence is needed to 

optimize processing. Relatively advanced sensors such as machine vision are commonly required 

to assess product variation and often artificial intelligence is required to make correct processing 

decisions. However, some robot systems have been used in the food sector. The majority of these 

are for applications where the product being handled is of uniform size and shape such as boxes or 

packaged components. There are some systems in development that attempt to go further and cope 

with the inherent flexibility required to successfully process food materials directly. [34-35]. 

Robots are grasping a larger foothold in manufacturing, especially in the food industry. In 

1995, about 400 robots valued at approximately $20 million were shipped to food and beverage 

processors only in the U.S.  This made the food industry the fifth largest consumer of robotics 

behind automotive, machinery, electronics and fabricated metal products. 

Food processors are turning to robotics for their flexibility, ruggedness and repeatability. 

Categorized as flexible automation, robots can be programmed to do multiple tasks. And, they can 

be reprogrammed as the task changes. Changing the end-of-arm tooling or end effectors, for 

example, from a vacuum to a clamp gripping device, further increases the versatility of the 

machine. Robots can be built to operate in a constant freezing (32 [degrees] F) or sub-freezing (-10 

[degrees] F) environment. 

 

1.1.3.1  The Intelligent Integrated Belt Manipulator (IIBM) 

The new IIBM is a hybrid of pneumatics and electro-servo drives. Two pneumatic axes and 

two electro-servo axes allow motion in four different directions: up and down, parallel with the 

conveyor belt, perpendicular across the conveyor belt, and a 90-degree rotational pivot.  



In automotive and electronics industries, parts are consistently shaped and easy for robots 

to handle. Yet in the poultry business, products vary considerably in size and shape, making 

grasping demands another challenge for the IIBM. Physical dimensions of the tray pack remain 

constant, but the poultry pieces inside vary the contours of the package's top by as much as two 

inches, causing weight and center of gravity to shift.  

 

 
Fig.1.12 Belt Manipulator picks up packaged chicken from a conveyor belt. 

 

1.1.3.2  Food Cutting Systems 

 

Most food cutting systems are empirically designed and operated, with little fundamental 

understanding of the separation processes involved. Many systems use technology developed in 

other industries, e.g. metal guillotining, and often require the food to be pre-processed (tempered) 

to give it the required properties. This added pre-processing is costly and time consuming, and if 

not carried out correctly can result in serious reductions in quality, yield and throughput of cut 

product. In addition to this, the cutting equipment often causes further problems, such as creation 

of debris (bone splinters, crumbs etc.), separation of food components, loss of yield and has high 

maintenance and operating costs. 



 
Fig.1.13 Food cutting system 

 

1.1.3.3  Vision-Based Object Handling 

Some industrial applications of a visually-guided system for robot grasping using an 

inexpensive two-finger gripper have been developed. In all cases, the robot uses visual information 

as input and is able to reason about the shapes of the objects in the scene in order to decide the best 

stable grasp online. The first version of this system was able to grasp rectangular parts in arbitrary 

positions in the scene, and was successfully deployed. New applications in industry have been 

addressed, that have to cope with the cost, time and reliability requirements imposed by the 

industrial process. Our results show that the capabilities of the underlying methodology make it 

feasible to deal with more complex shapes, even a priori unknown, opening new possibilities 

within industrial domains that have traditionally not been fully automated, such as the food 

industry, due to a large shape variability of the objects to be handled. 



 

 
 

Fig.1.14  Vision-Based Object Handling 

 

 

1.2 Survey of Robot Manipulators Movement Control Methods 

 

The demands of practice and, in the first place, the needs of modern engineering stimulated 

the development of controlled systems and gave rise to a multitude of problems which became the 

subject of the mathematical theory of controlled processes. An essential place in this theory is held 

by optimal control problems. In a general formulation, the problem consists in the following: an 

object (a mechanical system, an electric circuit and so on) subjected to a controlling action is 

considered under given parameters (for instance, the initial and the terminal state of an object) of 

the desired motion. Requirements for the process quality are also stated. These requirements 

usually include the condition of minimum or maximum and may also include the condition of 

minimax or maximin of some performance characteristic of a system. A typical example is the 

condition of minimum of electric power consumption.  It is required to find a law that defines 

forces realizing the desired motion.  

The theory of optimal control unites a great number of various problems. The study of this 

theory is somewhat difficult because of the absence of a generally recognized classification of 

problems which are investigated by mathematicians and mechanical researchers, physicists and 

engineers, biologists and sociologists who may have different aims and who use different methods 

when studying analogous problems. For individual branches of the control theory that have 



recently been actively developed there exists vast and rather mixed up bibliography, which makes 

it difficult to survey the results.  

Consideration is given only to finite-dimensional objects whose current state and 

controlling action can be described by the finite-dimensional vectors   

х = {х1,...,х п},   и = { u1,...,u2 },  the motion  {xi (t)}   being  defined by the system of ordinary 

differential equations  

                      ( ) ( ).,...,1,,...,,,...,, 11 niuuxxtfx rnii ==& ,                                 (1.1) 

where  t  is the time.  

The main attention is focused on the problem of bringing an object to a given state. This 

situation frequently occurs in problems of mechanical motion control.  

There are two well-known basic aspects of the general control problem.  

 

I. The problem on programmed control, where the initial information on the initial state of 

the object is given (by the initial time αtt = ) and it is required to find an action in the form of a 

time function и = и (t), such that by the process termination αtt ≥ βtt =   the system would be in 

the given state. Also, as has been indicated above, it is required to provide the desired quality of 

the process.  

An example of such a problem is the following problem of the limiting programmed speed 

of action: Given the initial state ,  αtt = ( ) α
α xtx =  of the object and the position ( ) β

β xtx =  to 

which the object should be moved, it is required to find an action и= и0 (t) satisfying the condition 

( ) μ≤tu 0  and putting the object in the state ( ) β
β xtx =  in the shortest possible time  

. (The symbol ||u|| denotes the norm of the vector  ( ) 2/121
2 ... ruu ++ ).  αβ ttT −=

For problems of this type it is typical that the additional information, which might be 

delivered in the course of the process, is not used to correct the motion in order to improve the 

result, i.e. the motion is realized by the rigid program и=и(t) prepared beforehand. This restricts 

the role of respective results and makes it necessary to consider the second aspect of the problem  

 

II. The problem on the system synthesis with feedback. Here the best law of control is 

sought for in the form of equations connecting the force и with certain values  {у1(t), ..., ут(t)}  

delivering information on the current states х(t) of the object. In the particular case, where all 



coordinates xi(t) of the vector х(t) can be defined quickly and quite accurately, the controlling 

actions  uj are usually defined in the form of functions ( ) ( )[ ].,....,, 1 txtxtuu njj =   

An example is the problem of pursuance. In this problem, two objects (which can certainly 

be interpreted as two parts of one composite object) are given. They are described by the equations  

  ( ) ( ) ( ) ( )[ ],,...,,,..., 1
11

1
11

rk uuxxfx =&        (1.2) 

                    ( ) ( ) ( ) ( )[ ],,...,,,..., 1
22

1
22

rk vvxxfx =&        (1.3) 

and can therefore be mapped in some k-dimensional space by the points    
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }txtxtxtx ii

2211 , == , respectively. It is assumed that object (1.2) pursues object 

(1.3) and the aim of this pursuance is to make the point x(1)(t) coincide with the point  x(2)(t); while 

object (1.3), on the contrary, tries to avoid the coincidence of these points.  Thus the choice of 

controlling forces uj is dictated by the wish to hasten the time βtt =  of the coincidence of the 

points, while the choice of VJ is dictated by the opposite wish to postpone this moment. If it is 

assumed that at each moment of time t both partners know the realized values x(1 (t)  and  x(2)(t),  

then one can pose a game problem on choosing optimal controls ( ) ( )[ ]210 , xxu  and [ ]( ) ( )210 , xxv  

which are restricted by the conditions vvu ≤≤ ,μ , calculated at each moment of time t by 

means of the actually realized values x(1)(t) and  x(2)(t), .i.e. in the form ( ) ( ) ( ) ( )[ ]txtxuu 2100 ,= , 

[ ( ) ( ) ( ) ( )]txtxvv 2100 ,=  and provide minimax for the time  when the coincidence of the points βt
( ) ( ) ( ) ( )ββ txtx 21 =  takes place for the first time.  

The investigation of problems on system synthesis with feedback naturally includes the 

problem of defining the current coordinates  хi (t) of the controlled object by means of the values yj 

(t) that are accessible for observation. The latter problem is known the problem on observation of a 

dynamic system. Here special importance is attached to questions related to the best concordance 

of observation and control in terms of the optimality of the final results of the process.  

Let us briefly discuss some main trends in the theory of optimal processes described by 

ordinary differential equations (1.1). 

Exhaustive investigations and final results are the necessary criteria of optimality for the 

programmed control problem with the condition that the integral be minimal:  

                       .     .                          (1.4) ( ) ( )[∫=
β

α

ω
t

t

dttutxtI ,, ]



The theory of such necessary conditions is based on the classical ideas of variational 

calculus [36÷41] and on their development by the new methods that have been elaborated in the 

last few decades. The principle of maximum [42] is a profound and strictly substantiated criterion 

of optimality whose form makes it convenient for applications. This principle corresponds to the 

classical Weierstrass' variational principle and to the method of canonical Hamilton equations [43].  

Another approach to control problems, which is considered to be suitable for problems of 

synthesis of optimal systems with feedback, develops in the direction called the method of dynamic 

programming [44]. This method corresponds to the notions well– known in variational calculus – 

of excitation propagation and leads to equations of the type of Hamilton-Jacobi partial equations 

[44,45].  

One of the difficult and insufficiently studied problems remains the boundary value 

problem connected with the necessity of bringing the controlled object to a given terminal state. At 

the present time, this boundary value problem frequently becomes the stumbling block on the path 

of concrete calculation of controlling forces. The matter is that the known optimality criteria are 

related mainly to the internal properties of optimal motions and describe their local behavior in the 

neighborhood of each point on a given trajectory. By virtue of these properties, each optimal 

motion develops in time in the absolutely definite way. However the direction in the space {х}, in 

which an optimal trajectory may deviate from the given initial state ( ) α
α xtx = , is defined by a set 

of some parameters l1,..., ln. The difficulty consists in choosing such parameters that direct the 

trajectory to the desired point ( ) β
β xtx = . The above-mentioned aiming problem still has no 

general effective solution.  

Thus, for the theory of controlled systems and its applications an important role belongs to 

the problem of construction a controlling force и which brings the object to the given state. It is 

expedient to investigate this control problem first even without taking into account the optimality 

requirement for this or another parameter. In particular, this is explained by the fact that in a 

number of numerical methods, optimal motions are found by a descent from some initial motions 

satisfying the given boundary conditions. It has already been mentioned that in the general case of 

nonlinear equations (1.1), the boundary value problem has no general working theory. However, 

for systems described by equations (1.1) whose right-hand parts are linear with respect to xi and uj, 

the considered control problem becomes essentially simplified and can be investigated by the 

methods of linear analysis. Satisfactory theories have been constructed for this problem and 



despite its partial character it has quite a vast bibliography. The control problem for linear objects 

is the main subject of this work.  

 

1.3  Differential Equations of Motion 

 

We will consider the controlled objects whose state at each moment of time t is characterized 

by the values x1(t), ,.. ..., хп(t) which are the parameters connected with motion, for instance, 

velocity coordinates or some coordinate and velocity functions. The values  xi can be interpreted as 

components of the n-dimensional vector х = {xi}. Let us assume that the object is subjected to the 

action of controlling forces u1..., иr  which are interpreted as components of the r-dimensional 

vector  и = {uj}. The variables xi or  uj can indeed be used in the sense of components of real 

physical vectors. For instance, the numbers и1 u2 и3 can be projections on the coordinate axis of the 

three-dimensional vector of the force и applied to some mechanical system. However it is not 

always that the values xi or uj are the components of the real vectors х = {xi} (i=1,..., n),   и = {uj}     

(j=1,...,r). For instance, there may occur a situation  with xi = qi,  хi+m = gi, where  qt and     qi (i = 

l,...,m) are respectively generalized curvilinear coordinates and generalized velocities of a 

mechanical system. In such situations the interpretation of unions {х1,.., хп} or {u1,..., иn} in the 

form of vectors should be regarded as a convenient mathematical technique. The vector и is called 

the control.  

We assume that the time-dependent variation of values xi(t) is described by a system of 

ordinary differential equations that can be reduced to the normal form  

 

( rnii uuxxtfx ,...,,..., 11=& )                      (i = 1,..., n )                     (1.5) 

We call the vector-function  и(t) = {UJ (t)} a possible control (on the considered time 

interval ) if the components uj(t) are piecewise-continuous functions admitting only βα ttt ≤≤

discontinuities of first kind for individual isolated values t = t*.  

After substituting some possible control и(t) = {uj(t)} into equation (1.5), the right-hand 

parts of these equations transform to the functions of t and xi. We assume that on the considered 

time interval these functions fi (t, х1..., хп, и1 (t),...,ur(t)) satisfy the existence and uniqueness 

conditions for solutions х(t) = {xi(t)} under all the initial data  

 



             t = t0,      ( ( ) 0
0 ii xtx = βα ttt ≤≤ ;  i = 1,..., n ),                              (1.6) 

 

which can be encountered in the problem. The motion х(t)={xi (t)} generated by the initial 

condition (1.2) is denoted by the symbol х (t1, t0, х0),. where therefore   { }00
ixx = . If it is 

necessary to emphasize that the motion х(t) is generated by some fixed control  и=и(t), then we 

will write  х (t, t0,  x0; и). 

So, if we give the initial conditions and choose a certain possible motion  и(t), we will 

thereby uniquely define the continuous motion х(t). The vector х is called  a phase vector of the 

object which is defined as follows.   

 

Definition 1.1.  Any vector х={xi}  (i = 1,... , n) that possesses the properties given below is 

called a phase vector of the object:  

1.   The components xi (t) characterize the state of the object. 

2.   For the chosen possible control  и(t) each initial state х(t0) = x0 uniquely defines     

       the values х (t) = x (t, t0, x0) for all considered moments of time t. In this case the     

      equalities  х (t, т, хT) = х (t, t0, х0) will be  valid if and only if  жт = х (т, t0, x0) no    

      matter what  t, т and  t0  from the segment  [ ]βα tt ,   are. 

Components xi(i=1,...,n)  are called phase coordinates  of the object. 

Let, for instance, the controlled object be a holonomic mechanical system having к degrees 

of freedom and described by the generalized coordinates q1,...,q2. As a phase vector we can choose 

a 2k-dimensional vector . Indeed, as is known, the motion of such an object { kk qqqqx && ,...,,,..., 11= }
can be described by a system of к differential equations of second order which can be reduced to a 

system of 2к equations of form (1.5). In this case, if at some moment of time t = t0 we give all the 

components   of the vector x(t0) for the known law of variation of external forces     ( ) ( )00 , tqtqi &

и(t)={uj(t)}, then we will thus define uniquely the motion of the system. Simultaneously, we define 

the values  Conversely, a k-dimensional vector q={q1,.... qk} is not a phase vector of  (t). q (t), q ii &

the considered system since the values do not define uniquely the values q1(t)  ).(t q ),...,(t q 0k0i

(i=1,.., к). 

Note that in individual situations one and the same object may have several phase vectors 

of varying dimension. So, in the simplest case of the point т moving along the straight line ξ 



according to the equation   as a phase vector  х we can choose the two-dimensional ,um =ξ&&

vector  х={x1, х2} = {ξ, ξ). At the same time, if we are interested only in the variation of the 

velocity ξ of this point and not in its coordinate, then its suffices to consider the one-dimensional 

phase vector . Generally speaking, the choice of this or another phase component ξ&== 1xx

depends on the concrete conditions of the problem.  

 As a rule, the equations which describe control are linear:  

                              (1.7) (∑ ∑
= =

=++=
n

k

r

j
ijijkiki niwubxax

1 1
.,...,1& )

where  аik, bij, wi are constant values or variable functions of the time t which are assumed to be 

continuous.  The values atk, bij and wt are defined by the parameters of the controlled system (and 

perhaps by the external forces applied to the object in addition to the controlling forces).  

In the sequel, for the sake of brevity, we will frequently use the matrix form of the notation. 

The prime in the superscript will mean transposition. Thus, for instance,  the symbol  h' will mean 

the vector row. Therefore the symbol h'.x means the product of the vector row h' by the column 

vector  х, i. e. the scalar product α = h'.x = h1x1+...+ hnxn  of the vectors h and  х. 

The system of equations in the matrix form looks like  
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   (1.4) 

or, shortly, 

.wBuAxx ++=&  

 

Formulation of the Control Problem. 

 

One of the basic control problems is formulated as follows.  

Problem 1.1. Given the equations of motion (1.1), the time interval  [ ],, βα tt  the initial and 

the terminal value { } { }ββαα
ii xxxx == ,  of a phase vector of the controlled object, it is required to 

find a possible control и(t) that takes system  (1.1) from the state  х (tα) = хα and brings it to the 

state  х (tβ) = xβ.[44] 



It is therefore required to find piecewise-continuous functions uj(t)  

( ),;,...,1 βα tttrj ≤≤=  such that if they are substituted into equations (1.1), the latter will have 

the solution x(t,tα,xα; u) satisfying the boundary condition ( ) .,,, βα
αβ xuxttx =  

The above formulated problem can be exemplified by the problem on shaft oscillation 

damping. Let the rotation angles of flywheels qi (tα) and their angular velocities   be known ( )αtqi&

at the initial moment of time t = tα, and also let it be assumed that during a time interval 

βα ttt ≤≤  the shaft is subjected to the action of the periodic disturbing moment 

( ) ( )γ += ttv sin δ  vanishig at t = tβ. Then  problem  1.1 consists in choosing controlling moments 

и1(t)  and  u2(t) which must work during the time βα ttt ≤≤  and, by the time , must bring βtt =

the shaft to the state of uniform rotation and и damp the stress, i.e. it is required to bring the object 

to the state ( ) ( ) ( )3,2,1i0tq,0tq ii === ββ & . 

In concrete problems, as a rule we choose some value characterizing the expenditures of 

resources on the control process realization. Usually, it is required to achieve the desired result so 

that this value would not exceed a certain given limit or so that it would be minimal.  

We call this value the intensity of control and denote by the symbol х[и]. It is  assumed that 

the value  x [и] is meaningful and nonnegative for any possible control  и (t) .  βα ttt ≤≤

Let us now formulate the general problem on optimal control of minimal intensity.  

Problem 1.2. Given the equations of motion (2.1), the time interval [tα, tβ], the initial and 

the terminal value { } { }ββαα
ii xxandxx ==   of the phase vector,  and the intensity х[и] which  is 

used as a control estimate. Among possible controls and (t) it is required to find an optimal control 

u0(t) that transfers the system from the state x(tα) = хα to the state x(tβ) = xβ  and has the smallest 

possible intensity х[и].  

Therefore Problem 1.2 is the problem of an optimal control defined by the following two 

conditions:  

 

1.   An optimal control  и0(t) is a possible one.  

2. The control  и0(t) solves Problem  4.1 and possesses the property  

 

                                      [ ] [ ]uxux ≤0             (1.9) 

 



no matter what other possible control и(t) also solving Problem 1.1 could  be. 

1.4  Terminal Control Problems 

 
In the last 10-15 years, new objects emerged and new problems arose, which 

preconditioned the development of the automatic control theory. Space vehicles, for instance, 

require minimal fuel consumption or minimal heating during the descent from the orbit and 

passage through the atmosphere. These requirements led to a rapid development of various 

methods of control optimization. Such problems as air traffic control over large airports, soft 

landing of space satellites, vertical take-off planes and helicopters, the mating of space flying 

objects and planes for the fuel refilling, control of a row of moving objects and many other 

problems made it imperative to focus attention to the methods of terminal control of objects, since 

these methods allow us to achieve a given phase state of the object at a given moment of time.  In 

other words, we can, for instance, to move the object to a chosen point of the space with a given 

velocity vector within the desired time.       

The above-mentioned problems are so important that they have always received a great 

deal of attention. Thus, the 4th All-Union Conference on the Control of Moving Objects was held 

in Tbilisi in September 5—October 5, 1968, and the 6th Symposium of IFAK dedicated to the 

control of objects in space was held in Tsahkadzor in 1974.  

Besides, a number of fundamental works dealing with general theoretical questions have 

been published in the recent years in the sphere of optimal terminal control [46÷50]. However, a 

majority of the obtained results are related to the methods of programmed control which is 

calculated in the form u=u(t), while   practice demands the construction of automatic control 

systems in which the feedback principle is used, i.e. there exists a need in the synthesis of controls 

which are functions of the current phase state of the object.  

 To solve the problem of synthesis and technical realization of terminal controls it is 

necessary to overcome a number of difficulties indicated by the authors of the above-mentioned 

works.   

«One of the difficult and little studied problems remains the boundary value problem 

connected with a necessity to bring the controlled object to a given terminal state. At the present 

time this boundary value problem frequently becomes the stumbling block on the path of concrete 

calculation of controlling forces» (N.N. Krasnovski) [48].  



«The boom of the control theory prepared by the entire prehistory of its development is 

closely connected with the appearance of electronic computer facilities, owing to which it became 

worthwhile to create complex control algorithms» (N.N. Moiseyev) [49].  

A.M. Letov also notes in the chapter «Terminal Control» [50] that at the present time there 

are no sufficiently simple methods of solution of terminal control problems.  

As we see, the authors emphasize that algorithms of calculation of optimal controls are 

difficult and demand the use of computing facilities.  

The analysis of the literature and materials of the above-mentioned two conferences has led 

to the following conclusion:  indeed, to this day there are no simple methods of terminal control 

with feedback. Here simplicity is understood as the simplicity of calculation of a controlling 

function and the simplicity of its technical realization in automatic control systems.  

Despite a great number of works on the theory of terminal state control and a vast area of 

important applications of this theory, the latter theory remains in the state far from satisfying the 

requirements of engineering practice. Though scientists have passed from general theoretical 

questions of optimization to the statement and solution of concrete problems of control, yet many 

aspects of this theory have been worked out insufficiently.  

 

1.5  Aims and Objectives of the Investigation  

 

As follows from the above survey, manipulating robots have found an active application in 

various spheres of agricultural production. However the existing methods of control of their spatial 

motions are cumbersome and complicated, which leads to a necessity to use sophisticated software 

and hardware, which in turn leads to an increase of the price of manipulating robots themselves 

and, in the end, to an increase of the cost of a technological process as a whole. Simple and reliable 

methods of optimal control have not found a wide application for the above-mentioned problems.  

Proceeding from the above-said, we have formulated the following aims and objectives of the 

investigation: 

1. To develop a new method of representation of spatial rotations of the working organs of 

agricultural robots;  

2. To develop simple and reliable algorithms of adaptive control of terminal states of spatial 

rotations of the working organs of agricultural robots.  

 



2. The Spinor Model of Spatial Rotation Kinematics [42,44] 

 

Before we proceed to the development and synthesis of algorithms of terminal control of 

moving mechanical objects, it is necessary to consider a number of problems connected with the 

kinematics of spatial rotations, since the control of spatial rotations of mechanical systems 

(manipulators, joint mechanisms and so on) demands the knowledge of Euler angles that realize a 

given rotation. The latter problem leads in many cases to essential computational difficulties which 

eventually decrease the accuracy of the estimation of Euler angles, worsen the control quality of 

the process on the whole and, in particular, the accuracy of the final positioning of the object to be 

controlled. The reason for such a situation is evidently the widely used method of representation of 

three-dimensional rotations (the so-called basic representation of a group of three-dimensional 

rotations) by means of orthogonal real matrices of third order, the elements of which are 

trigonometric functions of Euler angles. This method, firstly, is intended for the description of 

individual concrete rotations with zero center (located at the origin) and, secondly, does not allow 

one to express Euler angles as functions of the coordinates of three points – central, initial and 

terminal – which define the considered rotation. It is the latter fact that creates the above-

mentioned difficulties.  

The solution of this problem is proposed in the works [51,52,53]. It is based on the 

representation of a group of three-dimensional rotations by means of unitary matrices of second 

order in two-dimensional complex spaces, i.e. on the so-called spinor representation. Since our 

further discussion is wholly based on these results, below we will give their brief description 

following the works we have referred to above.   

 

 

2.1 Spinor Representation of Generalized Three-Dimensional Rotations  

 

Generalized rotations are understood as a set of all possible rotations with both zero and 

nonzero centers which transform the initial three-dimensional point to the terminal point. The first 

problem that arises in this context can be formulated as follows: Given two three-dimensional 

points x(x1,x2,x3) and y(y1,y2,y3) which are the initial and terminal points of some rotation, it is 

required to express the dependence of the coordinates of a set of all possible centers of rotations of 

z(z1,z2,z3) on the fixed coordinates of the points x(x1,x2,x3) and y(y1,y2,y3) and to find a set of 



corresponding transformations of the rotation which ensure the transformation of the point 

x(x1,x2,x3) to the point y(y1,y2,y3).   

It has been mentioned above that when we speak of such transformations, we mean such 

representations of the rotation of a three-dimensional space that are different from the basic 

representation [54÷56]. If the basic representation is realized by means of real orthogonal matrices 

of third order which act in a three-dimensional Euclidean space, the spinor representation used in 

this paper is based on complex unitary matrices of second order which act in a two-dimensional 

linear space over the field of complex numbers.  

Let L3 be the linear Euclidean space with the orthonormalized basis e1, e2, e3. To each vector  

x = x1e1+ x2e2+x3e3  of the space  L3
  we assign the traceless Hermitian matrix   

321

213

xixx
ixxx

X
−+
−

= , (2.1) 

the elements of which are the spinor components of the vector x. The replacement of the usual 

Euclidean components of the vector x to the spinor ones means the identification of the vector x 

with Hermitian functionals on the two-dimensional linear space С2 over the field of complex 

numbers С. We denote by  L(С2) the set of all Hermitian functionals on С2, which is a linear three-

dimensional space over the field of real numbers provided that we take Pauli matrices as basis 

elements. In this case, for each matrix of form  (1) the expansion [57÷59] 

X= x1σ1+ x2σ2+x3σ3,                                                            (2.2) 

        is valid, where 
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,

0
0

,
01
10
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=

−
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 are Pauli matrices.  

Expansion (2.2) allows us to say that the set L(С2) is a linear three-dimensional space over 

the field of real numbers and therefore we can identify it with L3. Note that to each basis of the 

two-dimensional space C2 there corresponds a basis σ1, σ2, σ3 of the space  L(С2) (and also an 

orthonormalized basis e1, e2, e3 due to the identification of L3 and L(С) ): each of the matrices σi is 

represented as some linear combination of tensor products of basis vectors of the space C2. The 

said means that for any matrix С∈С2, which is the transformation matrix between two bases of the 

space C2, we can also define the transformation matrix between the corresponding orthonormalized 

bases of the space  L3.  

It is important to note here that, as proved in [51],  the transformation matrix of bases in C2 is 

unitary.  



The initially posed problem can now be reformulated in terms of the spinor space С2 as 

follows [60,61]: Given two traceless matrices of Hermitial functionals      

321

213

xixx
ixxx

X
−+
−

=  and 
321

213

yiyy
iyyy

Y
−+
−

= ,  it is required to define 

 

1) a family of unitary matrices 
αβ
βα −

=C  that satisfy the equality [62÷67] 

XCCY T= ; (2.3) 

2) one-dimensional subspaces that are invariant with respect to transformations      

    given by matrices C (a set of the corresponding rotation centers).  

This problem is easily extended to the case where instead of two points we consider two 

finite sets of points xi  and yi    i= 1,2, …, m, which correspond to rotations 

of a solid body.  

),,( 321
iii xxx ),,( 321

iii yyy

The formulation of the second problem is now obvious: it is required to find the dependence 

of three Euler angles ϕ,  ψ  and θ  on nine numbers  x1, x2, x3, y1, y2, y3, z1, z2 and z3. 

Substituting the matrix С and the matrices of Hermitian functionals X and Y into the matrix 

equality (2.3), we obtain the following system of linear homogeneous equations with respect to the 

unknowns α and β: 

 
,
,

33

33

αδββαγ

βδαγβα

+=−
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yx
yx

 (2.4) 

where   and . 21 ixx +=γ 21 iyy +=δ

For an arbitrary α, the solution of (2.4) is   

       33 yx +
−

=
αδαγβ  .  (2.5) 

From  (2.5) it follows that  

33

32
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1
)()(
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yxyx
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==

αα
ββ  and 33

22
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11
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)()(Im
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yxyx
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==
αα

ββ . (2.6) 

From the condition that the matrix С ( ) is unitary we can define either 12
2

2
1

2
2

2
1 =+++ ββαα

αα Re1 =  or .Im2 αα =  We can also act in a different way: giving  1α  and 2α  arbitrary values, 



we multiply the matrix С by the value  
2
2

2
1

1

αα +
, which, as is easy to see, is equivalent to the 

first way and is actually the normalization of the matrix С.  

Thus, (2.6) defines the rotation for 0≠α  and .  033 ≠+ yx

 

 

2.2 Calculation of Euler Angles [51,52] 

 

We can establish the correspondence between the elements of the transformation matrix 

αβ
βα −

=C  acting in C2 and the elements of the orthogonal real rotation matrix A in L3, which, 

eventually, will allow us to solve the second problem of defining the dependence of Euler angles 

on the coordinates of the center, initial and terminal points of the considered rotation.  

The matrix A is, by definition, the transformation matrix between two orthonormalized bases 

of the space L3, and its rows are expansions of the vectors of the new basis with respect to the 

vectors of the previous basis. Therefore, due to the identification of the spaces L(С2) and L3, we 

have  

         )3,2,1,( =′= ′
′ iiaCC i

i
ii

T σσ , (2.7) 

where iσ  are the Pauli matrices corresponding to the previous basis, i′σ  are the Pauli matrices 

corresponding to the new basis,  are elements of the matrix  A-1.  i
i
′α

(2.7) can be represented in the expanded form as three matrix equalities 
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from which we easily obtain the expressions for calculating the elements of the matrix A by the 

elements of the matrix С, which in their turn depend, by virtue of formulas  (2.6) and the condition 

that the matrix С is unitary, on  x1, x2, x3, y1, y2, y3, z1, z2 and z3: 
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Expressions (2.8) make it possible to calculate the elements of the matrix A-1 (due to the 

orthogonality of A-1 = AT) through the given values of the coordinates of three points – initial, 

terminal and center – which define the rotation.  

Since, on the other hand, the matrix  A can be written in the form  

θθψθψ
θϕψϕθψϕψϕθψϕ
θϕψϕθψϕψϕθψϕ

cossincossinsin
sincoscoscoscossinsinsincoscoscossin

sinsinsinsincossincossinsincoscoscos
−+−+

−−−
=A , (2.9) 

where –π < ϕ ≤ π, 0 ≤ θ ≤ π  and –π < ψ ≤ π are Euler angles, it is easy to see that, using 

expressions (2.8) and the corresponding elements of matrix (2.9), we can write three equations for 

defining the Euler angles (it should al be borne in mind that expressions (2.8) give the transposed 

matrix with respect to A) 

33cos a=θ ; 31sinsin a=θϕ  and 13sinsin a=θψ . (2.10) 

 

A Numerical Example 

We will give a numerical example of the calculation of Euler angles.  

Assume that we are given two arbitrary vectors of equal length x(100; –30; 10) and y(–12; 2; 

104,73) with zero rotation center. For an arbitrarily taken α = –5 + 8i we calculate by (6) that β = –

6.867 + 4.765i. Hence, after normalization, we obtain the transformation matrix  

ii
ii

C
635,0397,0378,0545,0
378,0545,0635,0397,0

−−+
+−+−

= . 

Representing the vectors x and y by the spinor matrices  
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=
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i
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212173,104
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−−

=
i

i
Y , 

we verify the validity of equality  (2.3) 
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=
173,104212
212173,104

−+−
−−

i
i

, i.e. the thus defined transformation matrix С really realizes the 

rotation we want to define.  

 

Using formulas (2.8) matrix calculated 

121,0392,0912,0
992,0092,0092,0

048,0916,0399,0

−
−−

−−
=A . 

It is not difficult to see that the determinant of the matrix А is equal to one and that А-1=АТ, 

i.e. that is really an orthogonal matrix. 

 

Further, we check the equality  Ax=y 

 
73,104

2
12

10
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100
.

121,0392,0912,0
992,0092,0092,0

048,0916,0399,0 −
=−

−
−−

−−
. 

Thus the matrix А performs the same rotation in L3 as the complex matrix С does in С2. 

 

2.3. Kinematics Expressions for Euler Angles [53] 

 

Having expressions (2.6) and (2.8), it is easy to calculate the Euler angles which ensure 

rotation of the point  to the point . If it is assumed that to the initial point 

 there correspond the zero Euler angles 

),,( 321 xxxx ),,( 321 yyyy

),,( 321 xxxx 0000 === ψφθ , then the control of rotation 

consists in making a time-dependent change of the Euler angles  from the initial values 000 ;; ψφθ  

to the terminal values fff ψφθ ;; calculated by formulas (2.10).  

In a general form, the control process can be represented as change functions of the Euler 

angles )(tθ ;  )(tφ ; )(tψ which must satisfy the conditions 

0)( 0 =tθ ;  0)( 0 =tφ ; 0)( 0 =tψ , 

fft θθ =)( ;  fft φφ =)( ; fft ψψ =)( , (2.11) 

where    and  are the initial and terminal moments of time.  0t ft



The above-said naturally implies the problem on defining the control functions  )(tθ ;  )(tφ ; 

)(tψ .  

It should be emphasized that dependences )(tθ ;  )(tφ ; )(tψ  have a kinematics character, 

since they take into account neither moments, nor elastities nor any other dynamic characteristics 

of the process and therefore, after defining them, there arises a problem of synthesizing – on the 

basis of these functions –  the dynamic adaptive control. This issue will be discussed below.  

Fig. 2.1 shows the fixed vectors ;  and the intermediate rotating vector 

 which at the initial moment of time t = t0 coincides with the initial rotation vector 

 and, at the terminal moment of time t = tf, with the terminal vector  . The 

moving angle 

),,( 321 xxxx ),,( 321 yyyy

);;( 321 ξξξξ

),,( 321 xxxx ),,( 321 yyyy

γ  between the vectors  and  is equal, at the initial moment 

of time t = t0,, to zero and, at the moment of time t = tf , to 

),,( 321 xxxx );;( 321 ξξξξ

fγγ = , where   

)),(cos()
*

),(cos( 2x
yxar

yx
yxarf ==γ 1;  is the scalar product of the vectors x and  y. It is 

obvious that the moving angle between the vectors  and  is equal to 

)y,x(

),,( 321 yyyy );;( 321 ξξξξ

γγ −f .  

Let us define the coordinates of the vector  assuming that it forms the angles );;( 321 ξξξξ γ  

and γγ −f  with the vectors  and   and is located in their plane. To this end, 

we introduce the vector  which is the vector product of the vectors x 

and y. Then the above conditions can be written in the form of the following system of linear 

equations:  

),,( 321 xxxx ),,( 321 yyyy

);;( 122131132332 yxyxyxyxyxyxr −−−

;0),( =rξ  

;cos),( 2 γξ xx =  

).cos(),( 2 γγξ −= fxy  (2.12) 
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2* xyx = , since during rotation  yx = . 

fγ

)(tγ  
),,( 321 xxxx ),,( 321 yyyy  



 

 

 

 

Fig. 2.1 The initial, terminal and intermediate vectors of spatial rotation  
 

which is cross product of vectors x and y, then above mentioned conditions can be  

written as a following system of linear equation. 

;0),( =rξ  

;cos),( 2 γξ xx =  

).cos(),( 2 γγξ −= fxy  (2.12) 

 
 

It is not difficult to see that the vector  defined from system (2.12) satisfies the 

following conditions:  

);;( 321 ξξξξ

1. for 0=γ  , );; = ),, , which follows from the second equation of 

system (2.12), since in this case  

( 321 ξξξξ ( 321 xxxx
2),( xx =ξ , which is possible only provided that 

);; = ),, ; ( 321 ξξξξ ( 321 xxxx

2. for fγγ = , );; = ),, , which follows from the third condition of 

system (2.12), since in this case 

( 321 ξξξξ ( 321 yyyy

2),( xy =ξ , which is possible only provided that 

);; = ),, ; ( 321 ξξξξ ( 321 yyyy

3. yx ==ξ , which follows from the second and third equations of system  (2.12). 

Therefore the vector  defined from system (2.12) corresponds to        Fig. 2.1, 

i.e. it can actually be regarded as the vector rotating (condition 3) from the vector 

(condition 1) to the vector  (condition 2). Note that in this case the angle  

);;( 321 ξξξξ

),,( 321 xxxx ),,( 321 yyyy γ  

changes in within  fγγ ≤≤0 . 

The equations of system  (12) can be written in the coordinate form as follows:  

0222211 =++ rrr ξξξ  
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)cos(2222211 γγξξξ −=++ fxyyy .  (2.12) 

It is not difficult to see that its determinant is equal to  
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Other determinants of Kramer's formulas for system (2.12) will be equal to 
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which allows us to obtain the coordinates of the desired vector in the following form:  
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In these expressions, the angle γ  is an independent variable and can be treated as  time 

function, which means that the coordinates of the vector  are also time functions. 

Here we assume that 

);;( 321 ξξξξ

)(tγ  is sufficiently smooth and satisfies the 

conditions ffo ttиtt γγγ ==== )(0)( . We would like to emphasize that the problem of 

synthesis of spatial motion control thus reduces to defining a function )(tγ of the concrete form, 



which is connected with the rotation process dynamics and will be discussed in future works. Here 

we assume that )(tγ is an arbitrary function satisfying the above-given conditions. For definiteness, 

we assume that  

 tt ωγ =)( , (2.16) 

where  fπω 2=  is the constant angular velocity.  

          If we introduce the new vectors  and 

 which equal to the vector products [r×x]  and [r×y], 

respectively, then we obtain simple expressions for the unknown coordinates as   time functions  
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. (2.17) 

As has already been noted, the vector  is a rotating vector and therefore at each 

moment of time it can be considered as a terminal vector of the current moment of the rotation 

process. If in formulas (2.12) we replace the coordinates of the point  by expressions 

(2.17), then we obtain representations of the parameters of the spinor matrix С, the orthogonal 

matrix А (formulas (2.9)) and Euler angles (2.10) in terms of time functions. Thus, we obtain a 

time-dependent (kinematics) representation of the rotation of the point  to the point 

. However first we should predetermine the matrix С so that at the initial moment of 

time the spinor equation of rotation (2.3) would have the form 

);;( 321 ξξξξ

),,( 321 yyyy

),,( 321 xxxx

),,( 321 yyyy

XCCX T= , which is evidently 

possible only if C is a unit matrix. This can be done by an appropriate choice of the parameters α1 

and  α2.  

Indeed, setting 0;1 21 == αα  we obtain  
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2Im
yx
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== ββ .   (2.6') 

Further, if in (2.6') the coordinates of the vector y are replaced by the coordinates of the vector ξ 

from (2.17), then the matrix С will depend on time and take the following form:  
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(2.17). 

)(),(),( 321 ttt ξξξ

It is obvious that at the initial moment of time  the matrix 0t 10
01

)( == ottC , since in that 

case 0)( 0 =tγ  and = .  );;( 321 ξξξξ ),,( 321 xxxx

For  we have ftt = fft γγ =)( , =  and accordingly  );;( 321 ξξξξ ),,( 321 yyyy

1))()((

))()((1

1
1)(

33

2211

33

2211

2

yx
yxiyx

yx
xyixy

ttC f

+
−−−

+
−+−

+
==

β
 . (2.19) 

From the above-said it follows that the spinor matrix of rotation (2.18) is defined correctly. 

But in that case the Euler angles (2.10), too, are defined correctly. They also turn out to be the 

functions of time, which can be easily established by (2.9), (2.10) and (2.17)  
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Expressions (2.20) solve the problem we have formulated on defining the kinematics 

functions )(tθ ;  )(tφ ; )(tψ . On the other hand, it should be noted that the proposed theory allows 

one to reduce an actually three-dimensional problem of spatial motion control to a one-

dimensional problem. Indeed, for this it is sufficient to synthesize in one way or another function 

)(tγ  satisfying the corresponding boundary conditions. Then it is obvious that the control process 

is completely defined  

by the spinor matrix of rotation (2.18) and the Euler angle functions (2.20).  



 

A Numerical Example 

Let us consider a numerical example illustrating the above reasoning.  

Assume that the initial vector x(10, −45, 30) and the terminal vector  y(1, 20, 51.225) are 

given arbitrarily. The angle between them is equal to 0
2 65.77)),(cos( ==

x
yxarfγ . Assuming for 

the sake of simplicity that 1=ω  with a step equal to 
3

fγ , lets us calculate in five different ways 

five intermediate positions of the rotating vector . Using formulas (2.17), we obtain 

the following coordinates of the rotating vector for three angle values (Table 2.1)  

);;( 321 ξξξξ

Table 2.1 Coordinates of the Rotating Vector    );;( 321 ξξξξ

Angle  f
0γ 1ξ  2ξ  3ξ  ξ  

1 2 3 4 5 

3/fγ  =25.880 8.48 −27.25 47.02 55 

3/2 fγ =51.770 5.2 −4.03 54.60 55 

fγ =77.650 1 20 51.23 55 

 

The procedure of  verifying whether the Euler angles have been calculated consists in the 

following:  using the obtained coordinates of the intermediate positions of the vector , 

for each of five angle values from Table 2.1 we should calculate the Euler angles by formulas 

(2.20) and the three-dimensional orthogonal matrix A of the basic representation (2.9) and then 

again the intermediate coordinates of the rotating vector by the formula 

);;( 321 ξξξξ

Ax=ξ , where x is the 

initial rotation vector. The obtained values should coincide with those given in the table. The 

results of the corresponding calculations are presented in Table 2.2.  

The matrix A was calculated for the Euler angle values calculated by formulas (2.20) and 

given in column 2 of Table 2.2. The coordinate values of the rotating vector  were 

calculated by multiplying matrix (2.9) by the initial rotation vector  

);;( 321 ξξξξ

x(10, −45,30): Ax=ξ . From columns 4÷6 of Table 2.2 we see that the coordinates of the rotating 

vector coincide with the coordinates calculated by formulas (2.17) (Table 2.1). 

 



Angle  f
0γ 1ξ 2ξ 3ξEuler angles 

Orthogonal matrix  А    

1 2 3 4 5 6 

3/fγ =25.880 

0

0

0

87.4
87.4
05.26

−=

=

=

ψ

ϕ

θ
 

A
1
=

0.999

8.59 10 3−
×

0.037−

8.59 10 3−
×

0.899

0.438

0.037

0.438−

0.898

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠ 

 

8.48 -27.25 47.02 

3/2 fγ =51.770 

0

0

0

58.6
58.6
98.56

−=

=

=

ψ

ϕ

θ

 
A2

=

0.995

0.044

0.09−

0.044

0.621

0.783

0.09

0.783−

0.616

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

 

 

5.27 -4.03 54.60 

fγ =77.650 

0

0

0

88.7
88.7
87.77

−=

=

=

ψ

ϕ

θ
 

A
3
=

0.985

0.107

0.134−

0.107

0.225

0.968

0.134

0.968−

0.21

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

 

 

1 20 51.23 

 

Table 2.2. Calculation of the coordinates of the rotating vector  );;( 321 ξξξξ

by means of the orthogonal matrix A (2.9) 

 

3. Problems of Terminal State Control for Controlled Objects  

 

3.1. General  

In Chapter I, it has been shown that many motion control problems can be reduced to 

problems of control of terminal states of controlled objects. The main purpose of this investigation 

has also been stated there: to work out a simple adaptive method of terminal state control. The 

discussion below enables us to accomplish this task [68,69].  

For simplicity, let us consider one-dimensional motion of a controlled object, the   coordinate 

of which is γ. It is obvious that its motion is described by the following system of differential 

equations  

∑ ∑
= =

+=
n

i

k

j
ji fF

m
V

1 1

)(1& ; 

γ&=V , (3.1) 

where V is the motion velocity of the controlled object under consideration;               Fi (i=1, 2, …, 

n) are the projections of uncontrolled forces on the  direction of motion, i.e. on the γ -axis; fj (j = 1, 

2, …, k) are the projections of controlled forces on the direction of motion, i.e. on the γ -axis; m is 

the object mass.  



Uncontrolled forces may include, for example, all perturbations generated by the 

environment in which the motion takes place.  

The terminal state control problem is formulated as follows: Given the initial phase state of 

the object ( 00 ;γγ & ), it is required to transfer it – within time T -- to the terminal state ( ff γγ &; ). 

Uncontrolled forces are functions of time t, the coordinateγ  and velocity γ - ),,( γγ &tFF ii = , while 

controlled forces, in addition to being all these functions, are also functions of the controlling 

parameter α :2 ),,,( αγγ &tff jj = . Note that the parameter α  is frequently the position of the 

controlling element and may be a function of time. The traditional approach to the solution of the 

above-stated motion control problems consists in finding the functions ),,,( αγγ &tff jj =  for which 

solutions of system (3.1) satisfy, on the time interval [0; T], the corresponding boundary 

conditions. As has been said, the uniqueness of a solution is obtained by using an additional 

condition that solutions must supply an extremum to some specially chosen functional. Such an 

additional condition is frequently the requirement for a control time minimum (quick action 

maximum) or an energy minimum of controlling forces. There are also other kinds of functionals. 

Solutions obtained in this manner are of program character (the control system is open), which 

leads to the instability of the realized motion because of the unforeseen influence of uncontrolled 

forces. The development of an adaptive method demands a different approach: it is necessary to 

keep a continuous control over the current state of the controlled object and these demands to take 

respective measurements.  

Let us discuss this issue in more detail. Let an optimal function ϕ(t) of controlling forces be 

defined in some manner. Then it is obvious that the controlling parameter function )(tα  can be 

defined as a solution of some differential equation, the right-hand side of which depends on a 

difference between the given optimal function ϕ (t) of controlling forces and the current measured 

value of the resultant of these forces ))(,,,( ttff αγγ &= . Assume that this differential equation 

has the form  

 

))(,,,()(()( ttftkt c αγγϕα && −= 3. (3.2) 

Assume that a relation between the controlling parameter )(tα  and the value of the current 

(measured) force ))(,,,( ttff αγγ &=  can be written in the form of an inertia element of first order  

                                                 
2 For example, in the case of jet engines the throttle quadrant may play the role of  a controlling parameter. 
3 This control law gives astatism of third order with respect to external perturbing forces.  



).)(( ftkf f −= α&  (3.3) 

The device described by equation (3.3) is a regulator, i.e. a power unit generating the 

controlling force ))(,,,( ttff αγγ &= . 

The control process is therefore described by means of the system of differential equations 

(3.1)÷(3.3). Knowing the synthesized function of controlling forces ϕ(t), we can transfer the object 

from the initial state )();( 00 tt γγ &   to the terminal state  )();( ff tt γγ & . However here we encounter a 

difficulty caused by the necessity to measure controlling forces. This, obviously, can be done if 

these forces are separated from controlled forces during the object motion. From the practical 

standpoint, the latter is an unsolvable problem and this circumstance impedes the development of 

adaptive methods which could be applicable to problems of terminal state control.   

The problem we consider here can be solved by taking a different approach [69].  

A change of controlling forces brings about a change of uncontrolled forces too. All forces 

(uncontrolled +controlled) acting on the controlled object generate the object motion acceleration 

. It is obvious that V  can be easily measured directly and therefore we should pose the problem 

on the synthesis of a controlling function in the form of acceleration 

V& &

)(tψ&& . Then the control 

process reduces to the fulfillment of the equality  

)(tV γ&&& = , (3.4) 

where  is the measured acceleration of the object and V& )(tγ&&  is the given (synthesized) 

acceleration of the object.  

Note that (3.4) is actually the equation of motion of the controlled object under the action of 

the controlling function )(tγ&&  and is equivalent to  (3.1). This is explained by the fact that the 

measured acceleration of the object V  takes into account changes of both uncontrolled and 

controlled forces. We will make an essential use of this fact in the sequel. It is not difficult to 

realize equality (3.4) physically if the regulator (power unit) described by the equation of an inertia 

element (3.3) is sufficiently powerful. In that case it becomes possible to compensate uncontrolled 

forces by controlled ones and to fulfill equality (3.4).  

&

Let us assume that the relation between the given acceleration )(tγ&&  and controlling forces   

))(,,,( ttff αγγ &=  is  

))(,,,( ttkf αγγγ &&& =  (3.5)  

where  is the proportionality coefficient.  k



The synthesis of a control algorithm can be reduced to some variational problem in a phase 

space: Given two points ( 00 ;γγ & ) and ( ff γγ &; ) in a two-dimensional phase space, it is required to 

derive the equation of a curve of this phase space that connects  ( 00 ;γγ & ) and ( ff γγ &; ) and delivers 

a minimum to the next functional  

.))(,,,(1

0

2∫=
T

F dtttf
T

J αγγ &   (A) 

The equation of the curve we want to define can be written parametrically as )()( tиt γγγγ && == . 
Then it is obvious that to the phase curve defined in this manner there corresponds the motion 
trajectory from the point 0γ  to the point fγ . The initial velocity at the initial moment of time 

is equal to 0γ&  and at the terminal moment of time Tt =  --  to  fγ& .  0tt =
 From (A) it follows that the trajectory )()( tиt γγγγ && ==  delivering a minimum to (А) is 
optimal in the sense that it minimizes energetic controlling actions.  

The acceleration along the optimal trajectory is the function of phase coordinates  

).,( γγϕγ &&& =  (3.6) 

From  (3.4) and  (3.5) we have   

).,())(,,,( γγϕαγγ && =ttkf  (3.7) 

Substituting (3.7) into  (А) we obtain   

 ∫∫ ==
TT

dtk
T

dtk
T

J
0

2
1

0

2
1 ][1)],([1 γγγϕ &&& , (3.8) 

where   
k

k 1
1 =  . 

Functional  (3.8) belongs to the type of functionals containing derivatives of second order 

and therefore its corresponding Euler equation can be written in the form  

.02

2

=
dt
d γ&&  (3.9) 

Solution  (3.9) is a third order polynomial  

.
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3

2

210
tCtCtCC +++=γ  (3.10) 

The boundary conditions are equal:    

t = 0; 0γγ = ;  0γγ && = , (3.11) 

t = T; fγγ = ;  fγγ && = . (3.12) 

 



These four conditions are sufficient for defining four constants Сi (i = 0, 1, 2, 3) contained in 

(3.10), which completely defines an optimal trajectory. 

 

Below we will consider some particular cases defined by various values of the boundary 

conditions (3.11) and (3.12). 

 

3.2. Reduction Problem [69] 

3.2.1 Controlling Function Synthesis  

The reduction problem is defined by the following boundary conditions:  

     t = 0;     0γγ = ;     0γγ && = , (3.13) 

     t = T;     fγγ = ;   (3.14) 

Conditions (3.13) and (3.14) mean that the object should be transferred from the initial state 

0γγ =  and oγγ && =  to the state fγγ =  and at that its motion velocity should be arbitrary. In terms 

of variational calculus, this is a problem with moving ends.  

For problems of this kind, the given boundary conditions (3.13) and (3.14) are supplemented 

by the so-called natural boundary condition which in our case looks like [41,70,71] 

0=− γγ &&& G
dt
dG , (3.15) 

where . 2γ&&kG =

Clearly,  

    (3.16) 0=γ&G

and 

γγ &&&& 2=G . (3.17) 

Condition (3.15) is reduced to the form  

02 =γ&&& . (3.18) 

Differentiating (3.10) thrice, taking into account the boundary conditions (3.13), (3.14) and 

the natural condition (3.18), we can define Ci (i = 0, 1, 2, 3) as follows:  
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;0 γγ
γγγ

==−
−

== CC
TT

CC f & . (3.19) 

Substituting (3.19) into the first and the second derivative of (3.10), we obtain the following 

expressions for an optimal trajectory in the phase space:  



00

2
0

2
0

2
)

2)(2
( γγ

γγγ
γ ++−

−
= tt

TT
f &

&
, (3.20) 
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= t

TT
f . (3.21) 

The acceleration (the second derivative in (3.20)) takes the form  

TT
f 0

2
0 2)(2 γγγ

γ
&

&& −
−

= . (3.22) 

This is the law of control for the reduction problem. It means that if the acceleration of the 

controlled object on the time interval [0;T] is assumed to be constant and equal to (3.22), then at 

the moment of time t = T  its state will satisfy the boundary conditions (3.12). However this is an 

open (program) law of control, i.e. the control law without feedback. Due to the possibility of 

direct measurements of the acceleration of a controlled object, (3.21) can be transformed to the 

control law with feedback. For this it suffices to assume the initial phase state to be the current 

one, i.e. to assume 00 γγγγ && == и . In that case, the task fulfillment time should be assumed to be 

equal to the remaining time T—t. Then (3.22) takes the form  

)(
2

)(
)(2

2 tTtT
f

−
−

−

−
=

γγγ
γ

&
&& . (3.23) 

From (3.23) we see that in this case the acceleration acting on the controlled object stops to 

be constant and becomes dependent on the current velocity and coordinate values of the controlled 

object, i.e. we have the realization of control with feedback. The block-diagram of the realization 

of control with feedback is presented in Fig. 3.1. The measured coordinates of the current state 

( γγ &; ) are delivered to the automatic control unit (ACU), where the required value of the 

influencing acceleration (3.23) is computed.  
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Fig. 3.1 The block-diagram of the ACU of the reduction problem.  

 

3.2.2 Analysis of the Control Process Dynamics in the Reduction Problem  

 

It is not difficult to see that the motion program (3.20) (open control) is accelerated motion 

with constant acceleration (3.22). As has already been said, the transition to the control with 

feedback (3.23) transforms it to motion with variable acceleration. However, in that case, for  t = T 

there arises one singularity – the denominator of the controlling function becomes equal to zero. 

This difficulty can be overcome by doing the following.  

Assume that T – t = ΔT, where ΔT is a constant time interval. From the physical standpoint 

this means that the target point of the reduction process is also moving, since it leaves the 

controlled object behind by the value ΔT. Denote its variable coordinate by mγ . The controlling 

acceleration function on the time interval ΔT takes the form  

  
TT

m

Δ
−

Δ
−

=
γγγ

γ
&

&&
2)(2

2 , (3.24) 

where  γγ &and  (the coordinate and velocity of the controlled object) are, as previously,  the 

variable values which are functions of time.  

Thus when using the left-hand side of expression (3.24) for the controlling acceleration, it is 

assumed that the object moves with a constant lag in time by the value ΔT from the target 

point mγ and, after time Т, its coordinate becomes equal to the given value fγγ = . 

Now let us verify that this is really so.  

We begin by noting that by analogy with (3.20) we have the following program for the 

control of the coordinate of the moving target point  
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2
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TT
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. (3.25) 

This equation reflects the fact that the leading point mγ  leaves the controlled object behind 

by time ΔT.  

Substituting (3.25) into (3.24) and performing some simple transformations, we obtain the 

following expression for the controlling acceleration  

ωγγ ωγ
112

210 kktktkk ++++=&& , (3.26) 
 



where γω &= 4 is the velocity of the controlled object 
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Expression (3.26) is a linear non-homogeneous differential equation of second order with 

constant coefficients  
2

210 tktkkkk ++=++ γγγ γω &&& , (3.27) 

where . 11
ωωγγ kkиkk −=−=

As is known, its solution consists of two parts: a general solution of the corresponding 

homogeneous equation and a particular solution of the non-homogeneous equation. The first of 

these solutions is the so-called transitional component and the second solution is a stationary 

component [72÷78]. 

Let us first define a particular solution, i.e. a stationary component. It will be sought in the 

form of a polynomial of the same structure as the right-hand part  
2

210 tataa ++=γ& . (3.28) 

Substituting (3.28) into (3.27) and equating the right-hand parts, where powers t are assumed 

to be equal, we obtain the following equations for the coefficients  (i=0, 1, 2): ia

00122 kakaka =++ γω ; 

1122 kakak =+ γω ; 

22 kak =γ . (3.28) 

(3.28) is easy to solve:   

                                                 
4 We mean that the theory developed here will be used for controlling the rotation process of manipulating robots and 
therefore, along with the notation )(tγ& we also use the traditional notation of angular velocity )(tω   
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Substituting the coefficients ki (i = 0, 1, 2) from (3.26) into expressions (3.29), we finally 

obtain  
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Hence a particular solution of the non-homogeneous equation (3.27) has the form 
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TT
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which coincides with (3.20) and thus indeed satisfies the boundary conditions (3.13) and (3.14).  

Now let define a solution of the homogeneous equation  

0=++ γγγ γω kk &&& ,  (3.32) 

i.e. a transitional function of the reduction process. The characteristic equation (3.32) can be 

written in the form  

02 =++ γωλλ kk , (3.33) 

which, as is easily seen, has two complex-conjugate roots  

i
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1λ , (3.34) 

where 1−=i . 

By virtue of (3.34), a general solution of the homogeneous equation (3.32) can be written in 

the form  
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which leads to a general solution of the non-homogeneous equation (3.27)  
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We also need a derivative   (3.36) 
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The initial values of functions (3.36) and (3.37) defined according to the initial conditions   

t = 0; 10γγ = ;  10γγ && = , (3.38) 

allow us to define the constants С1 and С2 

0101 γγ −=C  и )()( 0100102 γγγγ −−−Δ= &TC  (3.39) 

and thereby the final form of a solution of the differential equation (3.27) 
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Here we should make a remark concerning the initial conditions (3.38), since they differ 

from the first of the boundary conditions (3.13). The matter is that the reduction process can be 

started for any initial values of the coordinate and velocity of the controlled object. It is not 

obligatory that these values be equal to the calculated values of the coordinate and velocity of the 

controlled object which are given preliminarily in (3.13). If values (3.13) and (3.28) are not equal, 

then there occurs a transitional process defined by the exponential summand in (3.40). Otherwise, 

the transitional component is absent and the reduction process has to be content with the forced 

component, i.e. with the second summand in (3.40).  It should also be noted that the transitional 

component has a damping character and the value TΔ  plays the role of a time constant: the larger 

it is, the slower the damping process is, and vice versa. Thus the value TΔ  can so-to-say serve as a 

measure of «strictness» of reduction process control. 

 

3.3 The Acceleration Problem  

3.3.1 Controlling Function Synthesis   

 

In the acceleration problem the boundary condition (3.14) is replaced by   



t=T; fγγ && = , (3.41) 

which means that in this case it is required that at the given moment of time t = T the velocity of 

the controlled object reach the given value fγγ && = . The coordinate may have an arbitrary value 

[41,70].  

This is again a variational problem with moving ends. The natural boundary condition (3.18) 

remains as before. Analogously to the reduction problem, we obtain the following values of the 

coefficients Ci (i = 0, 1, 2, 3) in the expression for the controlling program (3.10): 
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The last expression is the law of acceleration process control. It means that if on the time 

interval [0; T] the controlled object is subjected to control (3.45), then at the moment of time t = T 

its velocity will satisfy the boundary condition (3.41), i.e. the acceleration problem will be thereby 

proved.  

However this is again the program law of control and to make it self-correcting (adaptive) 

we proceed as in the case of the reduction problem, i.e. we replace the initial velocity and 

coordinate values by the respective current values, and the moment of time T by the difference T – 

t: 

tT
f

−

−
=

γγ
γ

&&
&& . (3.46) 

The block-diagram of the acceleration process control is shown in Fig. 3.2. 

Control (3.46) has the same singularity as the law of adaptive control of the reduction 

process and therefore we should use an analogous method to eliminate it.  

 

 

 



3.3.2 Analysis of the Control Process Dynamics in the Acceleration Problem 

 

Assume that T – t = ΔT, where ΔT is a constant time interval. From the physical standpoint 

this again means that the target point of the acceleration process is also the moving one, since it 

leaves behind the controlled object by the value ΔT. Denote its variable coordinate by mγ . 

 

 

 

 

 

 

 

 

 

Fig. 3.2 The block-diagram of the acceleration process control  

 

 

The function of controlling acceleration on the time interval ΔT will take the form  

  
T
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γγ
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&& , (3.47) 

where ωγ =&  is the velocity of the controlled object which is a function of time.  

Thus the use of the left-hand part of expression (3.24) for the controlling acceleration means 

that the controlled object moves with a constant lag in time by the value ΔT from the target point 

mγ  and, after the time Т, its velocity will be equal to the given value fγγ && = . 

Proceeding analogously to 3.2.2, we obtain the following program of velocity control of the 

moving target point  
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Substituting (3.48) into (3.47) and performing some simple transformations, we obtain the 

following expression for the controlling acceleration  
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where  γω &=  is the velocity of the controlled object; 
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Expression (3.49) is a linear non-homogeneous differential equation of second order with 

constant coefficients  

tkkk 10 +=+ γγ ω &&& , (3.50) 

where . 1
ωω kk −=

Let us first define a particular solution, i.e. the stationary component (3.50). It will be sought 

in the form of a polynomial of the same structure as the right-hand part  

taa 10 +=γ . (3.51) 

Substituting (3.51) into (3.50) and equating the right-hand parts with the same powers t, we 

obtain the following expressions for the coefficients  (i = 0, 1): ia

0012 kaka =+ ω ; 

11 kak =ω . (3.52) 

(3.52) is easy to prove  
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Substituting the values of the coefficients from (3.49) into the last expression, we obtain  
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Hence a particular solution of the non-homogeneous equation (3.49) will have the form  
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and its derivative will be  
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which coincides with (3.44) and therefore indeed satisfies the boundary conditions (3.13) and 

(3.41).  

 

Let us now define a solution of homogeneous equation  

0=+ γγ ω &&& k ,  (3.57) 

i.e. a transitional function of the acceleration process. The characteristic equation (3.57) can be 

rewritten as   

02 =+ λλ ωk , (3.58) 

which, as is easily seen, has two roots  
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By virtue of (3.59) a general solution of the homogeneous equation (3.58) can be written in 

the form  
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which leads to a general solution of the non-homogeneous equation  (3.50)  
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Derivative (3.61) is equal to  
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The initial values defined according to the initial conditions  

t=0; 10γγ = ;  10γγ && = , (3.63) 

allow us to define the constants С1 and С2 

1001 γγ −=C  and )()( 0100102 γγγγ −+−= &C , (3.64) 

and thereby we define a solution of the differential equation (3.50) and its derivative  
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Here we should make a remark concerning the initial conditions (3.38), since they differ 

from the first of the boundary conditions (3.13). The matter is that the reduction process can be 

started for any initial values of the coordinate and velocity of the controlled object. It is not 

obligatory that these values be equal to the calculated values of the coordinate and velocity of the 

controlled object which are given preliminarily in (3.13). If values (3.13) and (3.28) are not equal, 

then there occurs a transitional process defined by the exponential summand in (3.40). Otherwise, 

the transitional component is absent and the reduction process has to be content with the forced 

component, i.e. with the second summand in (3.40).  It should also be noted that the transitional 

component has a damping character and the value TΔ  plays the role of a time constant: the larger 

it is, the slower the damping process is, and vice versa. Thus the value TΔ  can so-to-say serve as a 

measure of «strictness» of acceleration process control. 

 

 

3.4 The Approach Problem  

3.4.1 Controlling Function Synthesis  

 

The approach problem employs four boundary conditions (3.11) and (3.12) which allow us 

to calculate immediately the coefficients Сi (i=0, 1, 2, 3) in the controlling function (3.10): 
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Since for the acceleration (3.10) implies  
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we obtain the synthesized control function  
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of the velocity and coordinate program  
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The block-diagram of the approach problem is shown in Fig. 3.3.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 The block-diagram of the approach program  

 

In order to obtain an adaptive control algorithm we proceed as follows: since now the object 

is all the time at the initial point of time, it is assumed that t = 0 and the initial velocity and 

coordinate values are replaced by the respective current values, and the moment of time T is 

replaced by the difference   T – t: 
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Since control (3.46) again contains the same singularity as the law of adaptive control of the 

reduction process, we should use an analogous method of its elimination.  

 

3.4.2 Analysis of the Control Process Dynamics in the Approach Problem  

In (3.71), replace T – t by ΔT, where  ΔT is a constant time interval, i.e. it is  again assumed 

that the target point of the approach process is mobile. Its variable coordinate denote by mγ   is 

obviously equal to 
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It is easy to see that the velocity of the mobile target point is equal to  
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Substituting (3.72), (3.73) and T – t = ΔT into (3.71) and performing some transformations, 

we obtain the differential equation of second order  
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С2 and С3 are defined from (3.66).  
 

The forced component from the general solution (3.74) has the form  
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The transitional component is written as follows:  
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where   
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It should be emphasized that in the above expressions the initial values 1010 γγ &and  are not 

equal to the initial values given (3.11) and thus there arises the transitional process (3.76) which 

gets damped with time (in this case the time constant is equal to 
2
TΔ ), i.e. the object moves to the 

forced trajectory (3.75), which leads to a complete solution of the approach problem.  

 

 

3.5 The Approach Problem with an Additional Condition Imposed  

on the Terminal Accelerations  

 

Frequently, it is not enough to have four boundary conditions (3.11) and (3.12) of the approach 

problem to solve applied problems of terminal control. For example, in the case deceleration it 

is not enough to assume that the terminal velocity is equal to zero: for a complete stop it is 

necessary that the terminal acceleration, too, be equal to zero. Thus there arise an additional 

boundary condition (the fifth one) related to acceleration:  

        t = 0; 0γγ = ;  0γγ && = , 

t = T; fγγ = ;  fγγ && = ; fγγ &&&& = . (3.77) 

It is clear that in this case the controlling function should be taken in the form of a 

polynomial of fourth order containing five coefficients, of which only three are to be defined, since 

it is obvious that the first two coefficients satisfy the first two (initial) conditions (3.77) 
4
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4
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3200)( tCtCtCtCtt +++++= γγγ & . (3.88) 

Calculating the first and second derivatives and substituting them into the last three 

equations (3.77), we obtain the values of the coefficients Сi (i = 2, 3, 4) 
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From (3.88) and (3.89) it follows that the controlling acceleration function has the form  
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To pass to the control with feedback we proceed as in the preceding cases, i.e. we assume 

that in (3.90) t = 0, ΔT = T – t, and replace the initial values of the phase coordinates by the 

respective current ones. As a result, we obtain ( ) ( γγγγγ &&&& +
−

−−
−

= ff tTtT
t

)(
6

)(
12)( 2 )5. (3.91) 

(3.90) is again the law of control with a singularity and to eliminate this singularity we 

proceed as before. We assume that T – t = ΔT = const and the terminal values of the phase 

trajectories are equal to the variable phase trajectories of the mobile target point  
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where С2, С3 and С4  are defined from (3.89). 

Substituting functions (3.92) into (3.91) and performing simple but rather lengthy 

transformations, we obtain the differential equation of the approach problem which does not 

contain singularities  
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5 The terminal acceleration value is assumed to 0=fγ&& ,  which is natural for the deceleration (stopping) problem. 
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Let us define the transitional and stationary components of equation (3.93). A particular 

solution of the non-homogeneous equation will be sought in the form ,  (3.94) i

i
i ta∑

=

=
4

0
γ

where  аi are the coefficients we want to define.  

Differentiating (3.94) twice, substituting into (3.93) and equating the coefficients at equal 

powers t, we obtain a system of equations with respect to the desired coefficients аi (i = 0,…,4) 
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from which they are defined quite easily:   
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Expressions (3.96) define the stationary component of the approach process with the given 

terminal (zero) acceleration value.  



The transitional component (a general solution of the non-homogeneous equation (3.93)) is 

likewise easy to write:  
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k , s1,  s2  are the constants we want to define.  

A complete solution of the differential equation (3.93) can now be written as a sum of the 

transitional and the stationary process  
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To define the constants s1 and s2 we use the initial conditions (3.38) and derivative (3.98), 

which gives the following expressions for the sought constants  
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and eventually the final expression for a complete solution of (3.93).  
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 The transitional process (3.97) gets damped with time (the time constant is equal to 
2
ωK

), 

i.e. the object moves to the forced trajectory (3.94). 

 

The velocity of the controlled object is equal to  
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Substituting the value t = T into the stationary solution of equation (3.93) and into its 

derivative, it is not difficult to see that they indeed satisfy the boundary conditions (3.12) provided 

that the terminal acceleration is equal to zero, which solves the posed problem on the terminal state 

control in the approach problem.  

 
 
 



4. Control of Terminal States of Spatial Rotations of Robot-Manipulators  

 

The spinor model of the kinematics of spatial rotations developed on the basis of spinor 

representation of generalized spatial rotations (Chapter II) and the methods of the control theory of 

terminal states of motion of mechanical objects (Chapter III) made it possible to create simple 

methods of controlling terminal states of spatial rotations of robot-manipulators.  

Here we would like to repeat what has already been stated previously (see subsection 2.3): 

the theory developed in Chapter II has enabled us to reduce the three-dimensional problem of 

spatial motion  control to the one-dimensional problem because we have defined the coordinates of 

the rotating vector (2.17) as functions of one rotation angle lying in the rotation plane6. It is 

obvious that the trajectories corresponding to this kind of rotations consist of three natural stages 

[79,80,81]: acceleration, uniform rotation7 and deceleration for the control of which we will use 

the results of Chapter III.  

Let us consider the following problem. It is required to bring by means of rotation a 

mechanical object of control (for instance, a gripping device or a spherical link) with coordinates 

 to the point of a three-dimensional space with coordinates . As has been 

shown in Subsection 2.3, an intermediate rotating vector   performs rotation by an 

angle defined by the terminal and initial points of rotation - 

),,( 321 xxxx ),,( 321 yyyy

);;( 321 ξξξξ

)),(cos()
*

),(cos( 2x
yxar

yx
yxarf ==γ .  

In the same subsection we have obtained the kinematics expressions for the rotating vectors.  

 

 

where ,    ;         );;( 122131132332 yxyxyxyxyxyxr −−−= );;( 122131132332 xrxrxrxrxrxrrx −−−=

          .      (2.17′) );;( 122131132332 yryryryryryrry −−−=

 

                                                 
6 The rotation plane is defined by three principal points of each rotation: central, initial and 

terminal.  
 

7 The segment corresponding to uniform rotation may be zero.   



It should be emphasized that, unlike (2.17), in expressions (2.17′) we have used the rotation 

angle function )(tγ  satisfying the following quite obvious condition: 

)),(cos()(0 2x
yxart f =≤≤ γγ .  

It is obvious that this function defines in fact the motion dynamics of the object of control 

and in the theory of terminal control it is therefore the main sought for function. The preceding 

chapter was entirely dedicated to the solution of problems of this kind in the general case. Now it 

remains to use the obtained general results to solve the concrete problems of terminal control of 

spatial rotations of multimember mechanisms with spherical and rotational pairs.  

Let us divide the interval ];0[ fγ  into three segments: ];0[ 1 fγα  ];[ 21 ff γαγα  ];[ 2 ff γγα , 

where 1212 1, αααα ≥< и . It is clear that the first segment corresponds  to the beginning of the 

motion process, the second segment to uniform motion and, finally, the third subinterval to 

deceleration. If we give 12 αα = , then there will be  no uniform motion (the length of the second 

segment is equal to zero), i.e. the initial stage of motion is immediately followed by the 

deceleration stage. This is evidently the most economical case, but in what follows we will all the 

same consider all three phases of spatial rotation control [82÷84].  

 

4.1 Control in the Initial Rotation Stage 

From the standpoint of dynamics, the initial process of rotation means that the object of 

control which is at rest must be accelerated to the desired velocity fγ& . It might seem from this 

definition that in this case we should use the results of the solution of the acceleration control 

problem (3.3), but the matter is that if we want to finish the initial stage of motion in the right-hand 

end of the segment ];0[ 1 fγα , then, certainly, we should use the methods of the approach problem 

which take into account all boundary conditions.  

The boundary conditions of the initial rotation states are as follows:  

t = 0; 0)0( γγ = ; ( ) 00 =γ&  

t = T; fT γαγ 1)( = ; fT γγ && =)( ,                  (4.1) 

where T is the given duration time of the initial rotation stage.  

Substituting sum (3.75) into (3.76) (the sum of the transient and stationary functions of the 

approach process control) we obtain the coordinates of the rotating vector as functions of time 

which represent the dynamics of the initial rotation stage process  
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where all parameters are defined in  (3.75) and (3.76). 

It is not difficult to define the functions of rotation velocity coordinates of the intermediate 

vector. For this we introduce the notation  
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Besides, taking into account that  
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we obtain the expression for a derivative of the rotation angle function  
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and, finally, the velocity functions of the rotating vector )(tξ  
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The rotation process in the initial stage was modeled by means of the MathCAD software. 

As initial data we used we used the values from Subsection 2.4.  

 

 

Numerical Example 

 

As the initial and terminal vector we took x(10, -45, 30) and  y(1, 20, 51.225). It is obvious 

that the angle between them is equal to 0
2 65.77)),(cos( ==

x
yxarfγ . As shown in Table 2.1, the 

angle of rotation   was divided into three equal angles 065.77=fγ 3/fγ  = 25.880; 3/2 fγ  = 

51.770 and fγ  = 77.650, i.e. in that case 
3
2and

3
1

21 == αα . In what follows we will use the 

angle values expressed in terms of radians; therefore 3/fγ  = 0.452; 3/2 fγ  = 0.904 and fγ  = 



1.355. Let us assume that the angular velocity is equal to ω = 1 and the rotation time is also T = 1 

sec. We also assume that all three rotation stages are of equal duration, i.e. 333.0
31 ==
TT  sec. 

Since now we are considering the initial rotation stage, the boundary conditions are written 

as follows:  

t=0; 00 =γ ;  00 =γ& , 

t=T1; 452.0=fγ ;  1== ff ωγ& . (4.5) 

Using the results of Subsection 3.4 (transient and forced solutions of equation (3.74)) and 

also expressions (4.2) and (4.3), we obtain the dynamic characteristics of the control in the initial 

rotation stage which are given in Figs. 4.1 and 4.2. 

From the analysis of the curves shown in these figures we see that the control completely 

satisfies the given boundary conditions. This conclusion can be easily verified by calculating the 

angle of rotation at the moment of time T1 by the expression  
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from which we obtain  452.0)( 1 == fT γγ . The latter fact is important for yet another reason: it 

shows the correct consistency of the terminal control methods and the spinor method of 

representation of spatial solutions: expressions (4.2) containing the dynamic functions of the 

rotation angle. Note that by direct calculation it can be easily verified that   

55)()0( 1 === Tx ξξ , which tells us that the method really realizes rotation.  

Finally, let us comment on the character of the curves. Fig. 4.1 b shows the presence of a 

transient process, but it is two orders weaker that the forced component (Fig. 4.1,а) and soon 

damps down. The transient component of the angular velocity also damps down soon (Fig. 4.2,b), 

but its order is comparable with the order of the forced component (Fig. 4.2,а). Weak deflections 

of the phase trajectory (Fig. 4.3) and the total velocity (the sum of the transient and forced 

components calculated by expression (4.3), (Fig.4.2,b)) is a result of the transient process.  

 



 
a) 

 

 

 
b) 

Fig. 4.1  The initial motion segment: rotation angle values as functions of time:  

                  a) the forced component;      b) the transient component.   

 

 

 



 
c) 

Fig. 4.1 The initial motion segment:  rotation angle values as functions of time:   

             c) the complete solution: the sum  of the forced and transient components.  

 

 
a) 

 

 Fig.. 4.2 The initial motion segment: the angular velocity value as a function of  time:  

a) the forced component 

 

 



 
b) 

 
c) 

 

 

Fig. 4.2 The initial motion segment: the angular velocity value as a function of time:  

b) the transient component; 

c) the complete solution: the sum of  the forced and transient components 

 

 



 
Fig. 4.3. The initial motion segment: the phase trajectory 

 

 

 
Fig. 4.4. The initial motion segment: acceleration as a function of time 

 

 

 

4.2 Control in the Uniform Rotation Stage 

 

In this case the control is not changed, i.e. the same equations and relations are used as in the 

initial motion stage.  

We only change the boundary conditions 

  



t = 0; 452.00 =γ ;  10 =γ& , 

t = T1; 904.0=fγ ;  1== ff ωγ& . (4.7) 

 

Figs. 4.5÷4.8 show the dynamic characteristics of the control process on the uniform rotation 

segment. Again we clearly see that the control satisfies the boundary conditions:  at the end of the 

control period T = 0.33 sec. the controlled object really has the given angular coordinate 

904.0=fγ  and the velocity 1=fγ& . 

 Though the transient process takes place, the transient component for the angular coordinate 

function is insignificant (Fig. 4.5,b), while the velocity function (Fig..4.6,b) is comparable with the 

forced (Fig. 4.6,a) and total (Fig. .4.6,c) components. 

From expression (4.6) it follows that at the end of the segment 904.0)( 1 == fT γγ  and that 

55)()0( 1 === Tx ξξ .  

 

 
a) 

 



 
b) 

 

 

Fig. 4.5 The uniform rotation segment: the rotation angle value as a function of time:  

a) the forced component; 

b) the transient component 

 
c) 

 

Fig. 4.5 The uniform rotation segment: the rotation angle value as a function of time:  

c) the complete solution: the sum  of the forced and transient  components 

 

 



 
Fig. 4.6 The uniform rotation segment: the angular velocity value as a function of time: a) the 

forced component 

 

 

 

 
b) 

 



 
c) 

 

Fig. 4.6 The uniform rotation segment: the angular velocity value as a function of  time: b) the 

transient component; 

c) the complete solution: the sum of the forced and transient components 

 

 

 

 

Fig. 4.7. The uniform rotation segment: the phase trajectory 

 
 



 

 
 

Fig. 4.8. The uniform rotation segment: acceleration as a function of time.  

 

 

 

4.3 Deceleration 

For the deceleration process ending in a complete stop we need to use the problem with five 

conditions since it is clear that at the end of the rotation process the acceleration must be equal to 

zero. Therefore the boundary conditions (3.77) take the following form:   

 

t = 0; 904.0=γ ;  1=γ& , 

t = T; 355.1=γ ;  0=γ& ; 0=γ&& . (4.8) 

 

Substituting (3.100) into (2.17) we obtain the following expressions for the rotating vector 

coordinates as functions of time: 
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where  Kω, ai (i = 0, 1, 2, 3, 4) and β are defined from (3.95), (3.96) and (3.97), respectively.  It is 

not difficult either to calculate the derivatives for (4.9), but we omit these calculations here 

because they are too long and tedious.  

As stated in Chapter III, the values are equal to the initial deviations from the synthesized 

control trajectories and define the presence of a transient process. When they are equal to the 

boundary conditions (4.8) for t = 0, this means that there is no transient process at all.  

Figs. 4.9÷4.12 show the dynamic characteristics of the control process on the deceleration 

segment when 1and905.0 010010 ==== γγγγ && , i.e. when there is no transient process – this is 

clearly seen from Figs. 4.9,b and 4.10,b. Therefore the curves in Fig. 4.9,a and Fig. 4.10,a 

coincide, since the transient component is absent. Again we see that the control fully satisfies the 

boundary conditions and in this case the acceleration and the velocity become equal to zero at the 

end of the given time interval (Fig. 4.10,c and Fig. 4.12) , which results in a complete stop.  

Figs. 4.13÷4.16 show the dynamic characteristics when .0and0 010010 ==== γγγγ &&  In 

this case, as seen from Figs. 4.13,b and 4.114,b, there exists a transient process. As different from 

the preceding motion stages, in this case the intensity of transient processes is quite comparable 

with stationary functions though these transient processes damp down soon. It is obvious that the 

intensity of transient processes explains an essential difference between the stationary and 

complete functions of angular motion (Fig. 4.13,a and 4.13,b) and its velocity (Fig. 4.14,a and 

4.14,b). Nevertheless the control again satisfies the boundary conditions – this fact also follows 



from (4.6), where we should substitute the values of functions (4.9) for t = T1, which gives for the 

deceleration stage the values 355.1)( 1 == fT γγ  and 55)()0( 1 === Tx ξξ .  

 

 
а) 

 
b) 



 

Fig.  4.9 The deceleration segment (there is no transient process): the rotation 

angle value as a function of time: 

a) the forced component;       b) the transient  component 

 

 

 
c) 

 

Fig. 4.9  The deceleration segment (there is no transient process):  the rotation   

angle value as a function of time:  

c) the complete solution: the sum of  the forced and transient components 

 



 
Fig. 4.10 The deceleration segment (there is no transient process): the rotation  

angle value as a function of time: а) the forced component 

 

 

 
b) 



 
c) 

 

Рис. 4.10 The deceleration segment (there is no transient process): the angular  

                 velocity value as a function of time:  

b) the transient component; 

c) the complete solution: the sum of the forced and transient components 

 

 
 

Fig. 4.11  The deceleration segment (there is no transient process): the phase trajectory  

 

 



 
 

Fig. 4.12  The deceleration segment (there is no transient process): acceleration as  

         a function time  

 

 

 
a) 

 



 
b) 

 

Fig. 4.13 The deceleration segment (there is a transient process): the rotation angle  

              value as a function of time:  

a) the forced component; b) the transient  component 

 
c) 

 

Fig. 4.13   The deceleration segment (there is a transient process): the rotation  

                  angle value as a function of time:  

c) the complete solution: the sum of the forced and transient components 

 



 
 

Fig. 4.14  The deceleration segment (there is a transient process): the angular  

                 velocity as a function of time  

a) the forced component 

 
b) 

 



 
c) 

 

Fig. 4.15  The deceleration segment (there is a transient process): the angular  

                 velocity as a function of time 

b) the transient component; 

c) the sum of the forced and transient components 

 

 

Fig. 4.15 The deceleration segment (there is a transient process): the phase 
trajectory: 

 



 
 

Fig. 4.16.   The deceleration segment (there is a transient process): acceleration as a  

                   function of time  

 

 

 

 

 

 

4.4 Development of an Optimal Control of the Electric Drive of Spatial Rotations of 

Manipulators 

 

After we have obtained the algorithms of an adaptive terminal control of spatial rotations of 

robot-manipulators, there arises a problem on the development of an optimal control of the electric 

drive of these systems. In this case, too, we have used the variational methods connected with 

power losses. It should be said that these methods have found quite a wide application for the 

solution of problems of this kind [84÷88].  

Let us derive an optimal diagram of the rotation velocity of the drive shaft. Ωд and the 

armature current iя by considering  as an example an electric motor working on direct current of 

separate excitation. The power dissipated in the armature winding during the transient process is 

assumed to have a minimal value.  

We begin the consideration by assuming that the total moment of inertia in the drive system 

is J∑ = const and the static load moment is Мс — const. In the equation  



dt
d

JMic Д
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Ω
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 (4.10) 

we pass to relative units by denoting  

 

τ

υμ

=Φ=ΦΦ

==ΩΩ=Ω= ΗΣ

MHД

HЯЯДДMДНДНДc

Tt

iiiTMJMM

/;/

/;/;/;/ 0

 
 

Here МДн = СДiЯнФH is the nominal moment of the motor; iян and Фн are respectively the 

nominal armature current and the nominal excitation flow; ΩДH is the nominal velocity of the 

motor.  

If  Фд = Фн, then  Ф = 1  and the equation of drive motion is written in the form  

   

 i =  υ(1)  + μ0.   (4.11) 

It is required to find functions v(τ)  and  i(τ) that reduce the functional  to a ∫=
T

diW
0

2 τ

minimum.  The boundary conditions are given in the form υ(0) = 0, v(T) = 0. In addition to this, 

the isoperimetric condition  is given, where α is the rotation angle. For the functional ∫=
T

vd
0

τα

( )( ) τμυ dW
T

∫ +=
0

2
0

1  we use the method of Lagrangian multipliers and obtain the integrand of an 

auxiliary functional  

( )( ) λυμυ ++=
2

0
1*F . (4.12) 

We define the partial derivatives  

∂F* / ∂υ = λ,               ∂F*/∂υ(1)=2(υ(1)+μ0).  (4.13) 

After substituting then into the Euler equation  

∂F*/∂υ- d/dτ     ∂F*/∂υ(1) = 0,  

we obtain  λ – 2υ(2) = 0,   i.e.  υ(2) = λ/2. Then  
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From the boundary conditions we have  
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whence we have 

The constant λ is defined from the isoperimetric condition  
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Thus we obtain the optimal functions of velocity υ(τ)  and current i (τ) in the transient process  
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In the above-considered problem we have illustrated the application of the variational 

method, i.e. the method which underlies the solution of the terminal problems in Chapter III, to the 

d.c. electric motor without taking into account the restrictions υ, i and control. Let us consider the 

synthesis of controls electric motors of the manipulator whose diagram is shown in Fig. 4.17:  
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3Q

 

Fig. 4.17 The diagram of the manipulator with three joints  

 

In order to find an optimal fast-acting positional control of the electric motors,  we write the 

differential equations of the considered manipulator in form [87, 88]: 
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Let us consider the rotation of the joints on a small time interval Δt, to which there 

corresponds the increments of the angles α1, α2, α3 equal to Δα1, Δα2, Δα3, and practically the 

constancy of the functions q1, q2, q3 which depend on the rotation angles, velocities and 

accelerations of the joints. Let us make the value  tend to a minimum (this means that we ∫
Δ

=
t

dtW
0

need a maximal quick action) by fulfilling the  

conditions  
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where  Мдiн is the given moment of the electric motor;  is the acceleration of the drive shaft; iΠΩ&

the friction force is not taken into account.  

For the third motor we minimize the functional  
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From the Euler equation  we obtain  0)4(
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We can show that [87, 88] 
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and therefore on the time interval Δt. the extremum αз(t) is  
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At the moment of time  
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the device, which controls the motor and  the power-driven electronic converter, computes the new 

coefficients С1, С2, Сз, С4 of the function α3(t) for the next time interval Δt1. Here of two different 

sign before the square root we should take the one which corresponds to the smallest positive 

value of Δt. The sign before Mд3H is taken positive or there take place the moments of force Mд3 = 

MдЗн  or    . ( )1
333 ΠΩ′+ ДJq



For the second electric motor we minimize the functional  
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by fulfilling the conditions  
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where МД2н is the given moment for the second motor. The optimal trajectory of the second joint is  
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whence we have   
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where the sign before МД2н depends on whether the direction of the force Mд2н coincide or does not 

coincide with  that of  ).  ( )1
222 ΠΩ′+ ДJq

For the first electric motor we find the optimal trajectory α1(t) in an analogous manner as for 

the second motor. Thus we obtain  
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Displacements of the first and second joints performed on the time interval Δt  can be 

calculated by the formulas  

 
 

( ) ( ) .;
0

22
0

11 dttdtt
tt

∫∫
ΔΔ

=Δ=Δ αααα &&  (4.24) 



For the known εi, Ωi the electric motor can be correctly chosen after constructing the load 

characteristics, i.e. the dependence of velocities on moments of force for each motor, in the 

transient process. These load characteristics are obtained by means of the laws of motion of 

manipulator joints. These laws are constructed by the given manipulator capacity and the results of 

the synthesis of optimal motions. The constructed load characteristics are used to define a 

maximal moment and a maximal velocity of the drive. If the drive has these values, then the given 

law of motion is realizable. Next, after choosing a reduction gear, we estimate the nominal power 

value by the motor heating condition. In Fig. 4.18 we give the examples of the simplified diagrams 

of accelerations ε1, decelerations ε2 and velocities Ωд of the motor of the robot with remote 

control. Using these values, we can preliminarily estimate Мд maх, Ωд mах for the diagrams 

shown in Fig. 4.18,a while the load characteristic has the form of an ellipse  

 

 
Рис. 4.18 Diagrams of accelerations ε1, decelerations ε2 and velocities Ωд of the motor of a 

robot with positional control.  
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is the control time ty = 2ΔαД/ΔΩД; ΔαД is an angular displacement of the motor in the transient 

process. shaft угловое перемещение вала двигателя в переходном процессе. For the diagrams 

in Fig. 4.18,b the load characteristic is  
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For the diagrams in Fig. 4.18,c the load characteristic has the form of an ellipse and  
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 (4.27) 

 

In the formulas for ΩДmax and МДmах we do not take into account the feedback in the drive 

with respect to Ωд and Mд. If the initial and terminal values of joint trajectories αiН and αiк are 

arbitrary (for example, for tracking systems), i.e. probable in the working zone of the manipulator, 

then the motor is chosen by a trajectory which is the most difficult one from the standpoint of 

obtaining Mд max, Ωд max and motor  heating.  Note that the condition of motor heating used above 

in the motion synthesis does not take into account heat exchange and is regarded as a repeated 

short-lived phenomenon when the heating of the armature winding has no time to reach an 

admissible heat value during the motion cycle.  



Fig. 4.19 shows the circuit realizing the control of the manipulator motors. The circuit inputs 

receive information on the velocities ,,, 321 ααα &&& accelerations  ,,, 321 ααα &&& moments of force  Q1 Q2, 

Q3 calculated or measured on the preceding time interval and recorded in the memory within the 

given time interval Δt. This information is used to calculate q1, q2, q3 and, after that, the control for 

the next time interval which begins when new memorized potentials are delivered to the circuit 

inputs; in that case, the signal values at the integrator outputs are set to zero by closing the 

discharge loops of the capacitors.  

The control realized by the circuit shown in Fig. 4.19 is cancelled by the programming 

device in the initial and terminal parts of the arm trajectory when the inequalities β1 i< α3i-αi < β2i 

are fulfilled. This ensures the smoothness of the start and stop. Here  α3i is the given stepwise 

displacement of the i-th joint set in time by the programming device. 

 

  

 

 

 

 

 

 

 

 

 

 



 
Fig. 4.19  The Circuit Realizing the Control of the Manipulator Motors  

 

 
 

Conclusions 

 

 
1. Spatial rotations are for the first time described by their spinor representation, which 

made it possible to obtain simple relations for describing by means of an element of the 

controlling orthogonal matrix of the basic representation by the known coordinates of 

three defining rotation points: central, initial and terminal. 

2. Simple formulas are obtained for calculation of controlling Euler angles;  



3. The obtained results have enabled us to reduce the actually three-dimensional 

problem of spatial motion control to the one-dimensional problem; 

4. A general variational method is obtained to solve problems of terminal control of 

spatial rotations;  

5. Simple adaptive algorithms are obtained, by means of which various partial problems 

on the terminal control of acceleration, transfer of the object to a given point, and 

approach are solved under various terminal conditions.  

6. New algorithms of control of spatial rotations of manipulating robots are studied;  

7. An optimal control circuit is developed for the work of the electric drive realizing the 

algorithms of control of spatial rotations of manipulating robots.  
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